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The importance of Tauberian theorems emanated from Littlewood’s
theorem (1910) which became the starting point of a new branch of mathe-
matical analysis: the Tauberian theory. A typical Tauberian theorem says
if a given sequence is summable by some regular summability method plus
an additional so-called Tauberian condition is satisfied, then the sequence
in question is convergent to the same limit. Tauberian theorems have a
wide range of application, for example in number theory or in probability
theory. The aim of this research is to give Tauberian theorems for locally
integrable functions, under which convergence follows from summability by
weighted mean methods and to give Tauberian conditions for integrals and
double sequences under which the statistical limit/ statistical convergence
follows from their statistical summability.

In 2003 Ferenc Móricz introduced the notion of statistical limit of mea-
surable functions as the nondiscrete analogue of statistical convergence. In
the fourth chapter of dissertation we give necessary and sufficient condition
for the existence of statistical limit. The dissertation consists of 6 chapters
based on 4 papers: [4], [3], [6] and [5].

1. The sharpening one of Karamata’s Tauberian theorems

Jovan Karamata published one of his popular theorems in 1937 [7]. If
P is continuous and strictly increasing to ∞,

σ(t) =
1

P (t)

∫ t

0

s(x)dP (x) → c, t → ∞,

and s(t) is slowly decreasing with respect to P , that is

lim
λ→1+

lim inf
t→∞ min

t≤x≤P−1(λP (t))
{s(x) − s(t)} ≥ 0,

then
s(t) → c, t → ∞.
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This chapter give necessary and sufficient conditions for locally integrable
functions under which convergence follows from summability by weighted
mean methods.

Let P be a function defined on R+ := [0,∞) such that

(1) P is nondecreasing on R+, P (0) = 0 and lim
t→∞P (t) = ∞.

P is called a weight function, due to the fact that it induces a positive Borel
measure on R+.

For any complex-valued function f : R+ → C which is integrable in
Lebesgue’s sense over every finite interval (0, t) for 0 < t < ∞, in symbol:
f ∈ L1

loc(R), we set

(2) s(x) :=
∫ x

0

f(y)dy and σ(t) :=
1

P (t)

∫ t

0

s(x)dP (x), t > 0,

provided that P (t) > 0. The integral in the definition of σ(t) exists as a
Riemann-Stieltjes integral.

Now, σ is called the weighted mean of s and the formal integral

(3)
∫ ∞

0

f(x)dx

is called summable by the weighted mean method determined by the weight
function P , shortly: summable (W,P ), if the following finite limit exists:

(4) lim
t→∞σ(t) = L.

Let ρ : R+ → R+ be a strictly increasing, continuous function such that
ρ(t) → ∞ as t → ∞. We say that ρ is an upper allowed function with
respect to P if

lim inf
t→∞

P (ρ(t))
P (t)

> 1.
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Similarly, we say that ρ is a lower allowed function with respect to P if

lim inf
t→∞

P (t)
P (ρ(t))

> 1.

We denote by Λu and Λ� the classes of all upper and lower allowed functions,
respectively. For real-valued functions f we shall prove the following one-
sided Tauberian theorem.

Theorem 1. ([4]) Assume that P satisfies (1), f : R+ → R and f ∈
L1

loc(R+). The convergence of integral (3) follows from its summability
(W,P ) to the same limit if and only if both of the following two conditions
are satisfied:

(5) sup
ρ∈Λu

lim inf
t→∞

1
P (ρ(t)) − P (t)

∫ ρ(t)

t

{s(x) − s(t)}dP (x) ≥ 0

and

(6) sup
ρ∈Λ�

lim inf
t→∞

1
P (t) − P (ρ(t))

∫ t

ρ(t)

{s(t) − s(x)}dP (x) ≥ 0.

Karamata’s theorem is an immediate consequence of this theorem. For
complex-valued functions f we shall prove the following two-sided Taube-
rian theorem.

Theorem 2. ([4]) Assume that P satisfies (1), f : R+ → C and f ∈
L1

loc(R+). Then the convergence of integral (3) follows from its summability
(W,P ) to the same limit if and only if one of the following two conditions
is satisfied:

(7) inf
ρ∈Λu

lim sup
t→∞

∣∣∣ 1
P (ρ(t)) − P (t)

∫ ρ(t)

t

{s(x) − s(t)}dP (x)
∣∣∣ = 0

or

(8) inf
ρ∈Λ�

lim sup
t→∞

∣∣∣ 1
P (t) − P (ρ(t))

∫ t

ρ(t)

{s(t) − s(x)}dP (x)
∣∣∣ = 0.
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In the complex case we can give a Karamata-type corollary, but this time
we have to use the condition of slowly oscillating, that is

lim
λ→1+

lim sup
t→∞

max
t≤x≤P−1(λP (t))

|s(x) − s(t)| = 0,

in place of the condition of slowly decreasing. The main results of this
chapter apply to all weighted mean methods and unify the results known
in the literature for particular methods.

2. The nondiscrete analogue of Schoenberg’s theorem

The notion of statistical convergence was introduced by H. Fast in 1951
[1]. The number sequence xk is said to be statistically convergent to some
number ξ, if for each ε > 0,

lim
n→∞

1
n
|{k ≤ n : |xk − ξ| ≥ ε}| = 0,

where the vertical bars denote the cardinality of the set which they enclose.
In 1959 Schoenberg proved [10] that xk is statistically convergent to some
ξ if and only if for every t ∈ R,

lim
�→∞

1
�

�∑
k=1

eitxk = eitξ

holds.

In 2003 Ferenc Móricz introduced the notion of statistical limit of a
measurable function. Let f be measurable (in Lebesgue’s sense) on the
interval (0, ∞). We say that f has a statistical limit at ∞ if there exists a
number ξ such that for every ε > 0,

(9) lim
a→∞

1
a
|{x ∈ (0, a) : |f(x) − ξ| > ε}| = 0,
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where the vertical bars denote the Lebesgue measure of the set which they
enclose. We extend Schoenberg’s theorem for functions of n-variables. We
shall consider a complex-valued function f defined on Rn

+, R+ := [0,∞),
which is measurable in the sense of the n-dimensional Lebesgue measure,
where n ≥ 1 is a fixed integer. Motivated by (9), we say that the function
f(u) := f(u1, u2, . . ., un) has a statistical limit at ∞ if there exists a number
ξ such that for every ε > 0,

(10) lim
b→∞

|b|−1|{0 ≤ u ≤ b : |f(u) − ξ| ≥ ε}| = 0,

where we agree that b := (b1, b2, . . . , bn) → ∞ means min1≤j≤n bj → ∞,
|b| := b1b2 . . . bn, and 0 ≤ u ≤ b means 0 ≤ uj ≤ bj for each j = 1, 2, . . . , n.
If this is the case, then we shall write

st– lim
u→∞ f(u) = ξ.

Theorem 3. ([3]) Let f : Rn
+ → C be a measurable function, where n ≥ 1

is a fixed integer. For
st– lim

u→∞ f(u) = ξ

it is necessary and sufficient that for every t ∈ R,

lim
b→∞

1
|b|

∫ b1

0

. . .

∫ bn

0

eitf(u)du1 . . . dun = eitξ.

Schoenberg’s theorem can be extended from single to multiple sequences
of complex numbers. To this effect, let Nn

+ be the set of n-tuples k :=
(k1, k2, . . . , kn) with positive integers for the coordinates kj , where n ≥ 1
is a fixed integer. We shall consider an n-multiple sequence (xk : k ∈ Nn

+)
of complex numbers. We say that (xk) is statisticallly convergent if there
exists a number ξ such that for every ε > 0,

lim
l→∞

|l|−1|{1 ≤ k ≤ l : |xk − ξ| ≥ ε}| = 0,
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where

|l| = |(�1, �2, . . . , �n)| = �1�2 . . . �n and 1 := (1, 1, . . . , 1).

If this is the case, we shall write that

st– lim
k→∞

xk = ξ.

Theorem 4. ([3]) Let xk : Nn
+ → C, where n ≥ 1 is a fixed integer. For

st– lim
k→∞

xk = ξ

it is necessary and sufficient that for every t ∈ R,

lim
l→∞

1
|l|

∑
1≤k≤l

eitxk = eitξ.

Let ν be an arbitrary positive measure defined on the Borel measurable
subsets of Rn

+ (or possibly concentrated only on Nn
+) with the property

that ν(Rn
+) = ∞. We introduce the concept of statistical limit (at ∞)

of Borel measurable functions on Rn
+, as well as statistical conwergence of

multiple sequences on Nn
+ with respect to the measure ν as follows. A Borel

measurable function f : Rn
+ → C is said to have a statistical limit at ∞

with respect to ν if there exists a number ξ such that for every ε > 0,

(11) lim
b→∞

ν({0 ≤ u ≤ b : |f(u) − ξ| ≥ ε})
ν({0 ≤ u ≤ b}) = 0.

Now, definition (10) is the special case of (11) when ν is the ordinary
Lebesgue measure on Rn

+. It can be proved that both Theorems 3 and
4 remain valid if we use the more general definition (11).
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Theorem 5. ([3]) Let f : Rn
+ → C be a Borel measurable function and

ν a positive Borel measure on Rn
+ such that ν(Rn

+) = ∞. Then the limit
relation (11) holds for every ε > 0 if and only if for every t ∈ R,

lim
b→∞

1
ν({0 ≤ u ≤ b})

∫ b1

0

. . .

∫ bn

0

eitf(u)dν(u1, . . . , un) = eitξ.

3. Tauberian theorems for statistical limit

In view of the notion of statistical limit it was a natural idea to define
the statistical summability and to find Tauberian conditions under which
statistical limit follows from statistical summability.

Let 0 �≡ P : R+ → R+ be a nondecreasing function such that P (0) = 0
and

(12) st– lim inf
t→∞

P (λt)
P (t)

> 1 for every λ > 1.

We introduce the functions s(x) and σ(t) as in (2). If the finite limit

(13) st– lim
t→∞σ(t) = l exists,

then we say that ∫ ∞

0

f(x)dx

is statistically summable to l with respect to the weight function P (t).
First we consider real-valued function f and prove the following theorem
under one-sided Tauberian conditions.

Theorem 6. ([6]) If a real-valued function f ∈ L1
loc(R+) is such that (12)

and (13) hold, then st– limx→∞ s(x) = l holds if and only if for every ε > 0,
we have

inf
λ>1

lim sup
a→∞

1
a
|{t ∈ (0, a) :
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(14)
1

P (λt) − P (t)

∫ λt

t

[s(x) − s(t)]dP (x) < −ε}| = 0

and
inf

0<λ<1
lim sup

a→∞
1
a
|{t ∈ (0, a) :

(15)
1

P (t) − P (λt)

∫ t

λt

[s(t) − s(x)]dP (x) < −ε}| = 0.

Second, we consider the general case where the function f may take on
complex values. We shall prove the following theorem under two-sided
Tauberian condition.

Theorem 7. If a complex-valued function f ∈ L1
loc(R+) is such that (12)

and (13) hold, then st– limx→∞ s(x) = l holds if and only if for every ε > 0,
we have

inf
λ>1

lim sup
a→∞

1
a
|{t ∈ (0, a) :

(16)

∣∣∣∣∣
1

P (λt) − P (t)

∫ λt

t

[s(x) − s(t)]dP (x)

∣∣∣∣∣ > ε}| = 0,

or
inf

0<λ<1
lim sup

a→∞
1
a
|{t ∈ (0, a) :

(17)
∣∣∣∣ 1
P (t) − P (λt)

∫ t

λt

[s(t) − s(x)]dP (x)
∣∣∣∣ > ε}| = 0.
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4. Tauberian conditions for statistical summability of

double sequences

Móricz and Orhan have recently proved necessary and sufficient Taube-
rian conditions under which statistical convergence follows from statistical
summability by weighted means [9]. We extend this result from single to
double sequences.

A double sequence (xjk : j, k = 0, 1, 2, ...) of (real or complex)
numbers is said to be statistically convergent to some number L, if for each
ε > 0,

lim
m,n→∞

1
(m + 1)(n + 1)

|{j ≤ m and k ≤ n : |xjk − L| ≥ ε}| = 0.

Let p := {pj}∞j=0, q := {qk}∞k=0 be two sequences of nonnegative numbers
(p0, q0 > 0) with the property that

Pm :=
m∑

j=0

pj → ∞ as m → ∞ and Qn :=
n∑

k=0

qk → ∞ as n → ∞.

The weighted means of a given double sequence (xjk) are the (N, p, q)
means tmn, which are defined by

(18) tmn =
1

PmQn

m∑
j=0

n∑
k=0

pjqkxjk , m, n = 0, 1, 2... .

We say that the sequence xjk is statistically summable (N, p, q) to L if

(19) st– lim tmn = L.

First, we consider sequences (xjk) of real numbers and give one-sided Taube-
rian conditions. We use the notion of statistical limit inferior and limit
superior introduced by Fridy and Orhan [2].

9



Theorem 8. ([5]) Let p := {pj}∞j=0, and q := {qk}∞k=0 be two sequences of
nonnegative numbers such that p0 > 0, q0 > 0 and

(20) st– lim inf
Pλm

Pm
> 1 and st– lim inf

Qλn

Qn
> 1 for all λ > 1,

where λm := [λm], λn := [λn], and let (xjk) be a sequence of real numbers,
which is statistically summable (N, p, q) to a finite number L. Then (xjk)
is statistically convergent to the same L if and only if the following two
conditions hold: for every ε > 0,

(21) inf
λ>1

lim sup
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M and n ≤ N :

1
(Pλm − Pm)(Qλn − Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqk(xjk − xmn) ≤ −ε}| = 0

and

(22) inf
0<λ<1

lim sup
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M and n ≤ N :

1
(Pm − Pλm)(Qn − Qλn)

m∑
j=λm+1

n∑
k=λn+1

pjqk(xmn − xjk) ≤ −ε}| = 0.

Second, we consider sequences (xjk) of complex numbers and give two-sided
Tauberian conditions.
Theorem 9. ([5]) Let p := {pj}∞j=0, and q := {qk}∞k=0 be two sequences of
nonnegative numbers such that p0 > 0, q0 > 0 and conditions in (20) are
satisfied. Assume that (19) holds. Then (xjk) is statistically convergent
to the same L if and only if one of the following two conditions holds: for
every ε > 0, either

(23) inf
λ>1

lim sup
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M and n ≤ N :
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∣∣∣∣∣∣
1

(Pλm
− Pm)(Qλn

− Qn)

λm∑
j=m+1

λn∑
k=n+1

pjqk(xjk − xmn)

∣∣∣∣∣∣ ≥ ε}| = 0

or

(24) inf
0<λ<1

lim sup
M,N→∞

1
(M + 1)(N + 1)

|{m ≤ M and n ≤ N :

∣∣∣∣∣∣
1

(Pm − Pλm)(Qn − Qλn)

m∑
j=λm+1

n∑
k=λn+1

pjqk(xmn − xjk)

∣∣∣∣∣∣ ≥ ε}| = 0.
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