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BEVEZETES

Jelenleg is a legérdekesebb kutatdsi teriiletek
egyike a nagy molekuldk és komplex szildrd testek k&té=-
sének kvantitativ leirdsa., Olyan anyagokra gondolunk, mint
amilyenek a sokatomos molekuldk gdzfdzisban, kristdlyos
kornyezetben vagy éppen oldatban; "molekula"-kristdlyok,
ahol t6bb atom van elemi cellédnként; szennyezések és hibdk
egyébként tokéletes kristdlyban; rendezetlen vagy amorf
anyagok; a bioldégidban jelentds makromolekuldk, polimerek,
stb. Ha a kvantumkémidt hatdsosan akarjuk alkalmazni ilyen
rendszerekre, akkor, szem elltt tartva a mai nagy szdmitd=-
gépek adta lehetdségeket, uj és pontos szdmitdsi mnddszere-

ket kell kidolgozni.

A hagyomdnyos ab initio Hartree-Fock self-consis-
tent-field mdédszerek, melyek az atomi pdlyék linedris kom-
bindcidjén, mint molekulapdlydn alapulnak /SCF=-LCAO mdéd-
szerek/, nehezek, és sokatomos rendszerre vald alkalmazd-
suk koltséges is, mert az ardnylag nagy bdzis haszndlata
és a nagyszdmu tobbcentrumu integrdl ill. ekvivalens
Hartree-Fock métrixelem kiszdmitdsa sok gépiddt vesz igény-
be.

Az egyszeriibb kozelitl és félempirikus mdédszerek,
olyanok, mint amelyek a CNDO /Complete Neglect of Differen-
' tial Overlap/ mdédszeren [1] alapulnak, a tdbbcentrumu in-
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tegrdlok kiilonféle kozelitésétdl vagy a mdtrix elemek
paramétereit8l fiiggnek. Ezek a mddszerek j6l haszndlha-
tdk akdr kicsi, akdr nagy molekuldk szemikvantitativ le-
irdsédra, de csak akkor, ha a molekula alacsony rendszdmu
atomokat tartalmaz. Azonban a magasabb rendszdmu atomokat
/pl. &tmeneti vagy ritka foldfémet/ tartalmazd molekuldk

vagy kristdlyok kezelésére nem alkalmas.

A hagyoményos sdvelméletet hasonldképpen nehéz
alkalmazni olyan kristdlyokra, amelyekben t6bb mint egy
atom van elemi celldnként, ezenkiviil ez a mddszer fiigg a

récsperiodicitédsi feltételtll is.

Az elektron-dllapotok "mély nivé"-inak hagyomédnyos
elméletei, meljek e kristdlyok bizonyos tipusu szennyezé-
seivel dllnak kapcsolatban /példdul &ditmeneti-fém szennye-
zések félvezetlkben/, elvileg megkivédnjdk, hogy ismerjiik
a kiilonben tokéletes rdcs egy-elektron hulldmfliggvényei-

nek teljes rendszerét [ 2].

J. C. Slater [3] javaslatdt kovetSen K. H. Johnson
[4-9] kidolgozott egy uj elméleti kozelitést,elslsorban a
sokatomos molekuldk és szildrdtestek elektrondllapotainak
szdmitdsdra, Ez a technika sok olyan nehézséget elkeriil,
amelyek a kvantumkémia és a kristdlyok sdvelméletének ha=-
gyomdnyosabb mddszereiben elSfordulnak. A médszerrel a na-
gyobb sztereokémiai komplexitdsu molekuldk és szildrd tes-
tek kémiai kUtése pontosan leirhatd kiilonosebb szdmitdsi -

nehézaég és gépidd felhaszndlds nélkiil,



A médszer alapvetlen a vizsgdlt rendszernek sok-
atomos klaszter /cluster/-komponensekbe valdé folosztdsd-
ra éplil. Minden klasztert, amely lehet véges sokatomos mo-
lekula, makromolekula része, vagy sokatomos komplex egy
rendezett vagy rendezetlen szildrd testbll, geometriailag
folytonos atomi, atomktzi és molekuldn kiviili térre osz=-
tunk. Az egy-elektron Schrddinger-egyenletet numerikusan
integrdljuk minden tartomdnyban a gzférikus és térfogati
dtlagolt potencidlokra, melyek a kicserélddésre az Xa
statisztikus kozelitést tartalmazzdk. A hulldmfiiggvények
és elsl derivdltjaik folytonosan kapcsolddnak Ossze a
klaszter kiilonboz8 tartomdnyain keresztiil, éppugy mint a
tobbszdérdsos elméletben, amelyet eredetileg Korringa fej-
lesztett ki [10, ll]. Egy'partikuléris kornyezet hatésaia
klaszterra hatdrfeltételekkel irhatd le, példdul egy
szimmetrikus sokatomos molekula esetében a molekuldn kivii-
1i tartomdnyban a Schrodinger-egyenlet megolddsdt illesz-
teni kell az egész molekuldt korililvevl mesterséges gbmbha-
tdrhoz. Az eljdrds gyorsan konvergdld szekuldris egyenlet-
rendszerhez vezet, amelyek numerikus megolddsdval a mole-
kula-pélya energidk és fiiggvények adddnak. Ezen egyenletek
médtrix elemeit, Osszehasonlitva az ab initie LCAO uddsze=-
rekre jellemzdkkel, egyszerii szdmiteni. Nagy elényiik,
hogy nem tartalmaznak tobbcentrumu integrdlokat. Az egész
numerikus eljdrdst addig kell ismételni, minden iterdcid=-
ban a kapott fiiggvénybdl toltéssiiriiséget é€s uj potencidlt
generdlva, amig a self-consistent-field feltételt elérjiik.
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Az SCF t0bbszdrdsos technika csak kis t0redékét
haszndlja annak a gépidlnek, ami egy ab initio Hartree-
-Fock LCAO médszerhez kell., Ezenkiviil az alkalmazdsok azt
mutatjdk /pl. [7],[9] /, hogy ez a mddszer a kisérletekkel
kvantitative igen jdl egyezd eredményekre vezet. Példaul
az optikai gerjesztések "dtmeneti dllapot" elméletét hasz-
ndlva, a tobbszdrdsos modell a molekula és kristdly op-
tikai tulajdonsdgainak pontos leirdsdt adja, amely még a
pédlyarelaxdcidk hatdsdt is magdban foglalja [6,7]. A méd-
szert ezenkiviil olyan kristdlyokra €és molekuldkra is le=-
het alkalmazni, ahol az ab initio LCAO médszerekkel a
szdmitdsi nehézségek és gépidd-kiltség miatt nem érhetd
el eredmény. Tovébbd, kiinduldsul az X« statisztikus to-
tédlis energidt haszndlva, meghatdrozhaté a totdlis ener-

gia, mint a sztereo-kémiai geometria fiiggvénye.

Az elméleti formalizmust ki lehet terjeszteni a
komplex kristdlyok elektronstrukturdjédnak leirdsdrae, vagy
olyan problémdkra, mint & szennyezések és hibdk kristdly- /
beli ké?g;g;;;:\;ovébbé rendezetlen vagy amorf anyagok

strukturdja vizsgéla@%ég. {5. fejezet].

A disszertdcid célja a médszer, és a médszer alap-
jén készitett programok részletes leirdsa, a program fut-
tatdsdhoz sziikkséges tudnivaldk ismertetése, valamint a prog-

ram futédsai kdzben szerzett tapasztalatok bemutatédsa.

Az 1. és 2. fejezet a médszer elméleti alapjait
tdrja £61, a haszndlt egy=-elektron k&zelitd mddszert (Xu)



és az egy-elektron egyenletek megolddsdnak médjédt /tObb=

szdérdsos mdédszer/.

A 3. fejezet ismerteti a mdédszer alapjan irt
programokat. A szllkséges numerikus részleteket a Fliggelék

tartalmazza.

A 4, fejezet a programok az R-40-es szdmitdgép-
re tortént dtirdsdt, valamint a futdsok kodzben szerzett
tapasztalatainkat tartalmazza. Ebben a fejezetben taldlha-
ték a viz, a metdn és a kénhexafluorid molekuldra kapott

eredményeink is, Osszehasonlitva az irodalmi értékekkel.

Az 5, fejezet b6 &ttekintést nyujt a mddszer ed-
digi alkalmazdsairdl. A cikkbibiiogréfia 1977. é&prilisd-
ig bezdrdan tartalmazza az alkalmazds jellemzd adatait.
/Milyen anyagon, mit szdmoltek, a szerzd/k/ nevét, a meg=-
jelenés helyét és idejét/.

A Fliggelék, a mdr emlitett numerikus eljdrdsok le=-
irdsdn kiviil, a& futtatdsok eredeti, szdmitdgépes listdit
is magédban foglalja.

A disszertdcidé végén kapott helyet az elsd négy
fejezethez és a Fiiggelékhez tartozd irodalmi hivatkozdsok
jegyzéke. | 4



1. AZ Xo - MODSZER

1.1. A Hartree-Fock egyenletek

Induljunk ki egy n elektront és N magot tar-
talmazd molekula Schrodinger-egyenletébdl

H(&,Q)ty(&,?):

:ef' 4 __ :z—.cei
{2; 2me )+{qlﬂ-]l Cﬁlﬁ—id+
N . ‘Zz e"
e R LSRR = |
4_%;( 15, d>-+Z#JRu_Rp‘}\Y Ey (4.4)

ghol a Y(F, R) =\Y(F3,.--5 Tp, Rygeees ﬁn) molekula-fiigg-

vény az Osszes elektron és Usszes mag koordindtdjatdl fiigg.

Mivel a magok az elektronokndl jdéval lassabban mo=-
zognak, az elektrondllapotok kiszdmitdsdndl a magok jé
kozelitéssel nyugvének tekinthetdk. /Adiabatikus kozelités
[1] 7.

Vezessiink be atomi egységeket, azaz legyen e=1,
#=1, m,=1 . Ekkor a hosszusdg egysége lesz a bohr /jele

52

ao/‘ Qozmzq_f

= 0.529177.10'8 cm; az energia egysége a Rydberg
S
/Ry/: 4RY“7_Q =

(o]

= 2.1799.10" 11

erg=13.%06 eV. Ezentul mindig atomi

egységeket hasznédlunk.
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A Schrddinger-egyenletet &dtirva atomi egységekre,
az elektronok staciondrius dllapotait leird (p(l,...,n)

antiszimmetrikus filiggvényt a

[Z( A; — lez“ )+Z|~ ]QPM

:(Zc;:ﬁt+%%‘}>Qf(4)"';“)=EC{’M,.,,,n) (2.2)

egyenletbSl hatdrozhatjuk meg, ahol a ¢ argumentumdban
szereplld 1,...,n sSzdmok az elektronok hely- és spin-koor-
dindtdit jelolik, tovédbbd az egy=-elektron operdtort rdviden
{. -vel, a két-elektron operdtorokat Gy =vel jeloltiik.
/A magkoordindtdkat paraméterként kezeljiik; az'egyszeriiség
kedvéért nem irjuk ki/.

Ha ismerjiik az S‘L**k('ﬂ}:?gy-elek’cron spinpdlydk
teljes rendszerét, akkor az elektronok sajdtfiiggvénye f6l=-

irhaté, mint
p(1y..., )= Z’:‘C" AR (1.3)

ahol
» B ;(l:r)ﬁ""’e“?\
A e {

—_—

G, 1) L Lum | e

‘Ij_

il (n)'\li":

w 1), . . Waln)




a K=(k1""’kn)/(kl<""<;kn) rendezett konfigurdcid-
hoz tartozd Slater-determindns. Els§ kOzelitésként olyan

{u} rendszert keressiink, hogy a

u4(4) .o uﬂ(‘h)
LFO(4,.,.ﬂ)=A°(n)=-1T

il \
Ua(1) ... Us(n)

egyetlen Slater-determindnssal a lehetd legjobb energidt

kapjuk. Mésszdval dgy\élgseiak meg az W; fliggvényeket,
c7C W)

hogy a rendszer ki 2

g

CEHFY =< B (mH] A (1)) | (1.4)

totdlis energidja minimdlis legyen. Részletesen kiirva

<EHF%€:mSuﬁﬂﬁuﬂﬂdm—+
+%hch55ut(4)ur(l‘) [U»;(’\) UJ(Z)— (1'5)

= Omgmy, U (4) u;(L)] q,, dv, du,

lesz a rendszer totdlis energidja, ahol n; az i-dik spiﬁpélya
betsltési szdma /0 vagy 1/, az integrdl pedig a spinre va-
16 6sszegzést is jelenti. Az 1 L j kikotés elhagyhatd,
az utolsé tagot pedig a spin szerint szétvdlasztva kapjuk,

hogy



(1Y
- 11 = @F?’\ MM Es 0?/';; .

CEHFY = Znc{ufend,uithdo, +
L (1.6)
¥ %S?“)?(D%Ldu«d% i

+ %S[?f(4)uxur¢(4) 5 ?w(ﬂuxuw (4)] o,

THt g*(43=2:41¢u:(4)u¢(4) a * spinii elektronok sii-
o

riisége az El helyen és

U @==2 nin; Yl @ ui(Dg,du, 1.

XHF & 4
it 2—- Me Uy (A u, (4)
] )

Léthatdé, hogy a totdlis energia (1.6) kifejezésében az elss

tag a kinetikus energia és az elektronoknak a magok terében

vett energidjdnak Osszege. A mdsodik tag a Coulomb-kSlcsdn-

hatdsi energia, amely magdba foglalja az elektron sajdt-
kolcsonhatdsdt is. Az utolsdé tag a kicseréldédési energia,

ami viszont az el8bbi sajdt-kdlcsOnhatdst éppen megsemmi-
siti.

A totdlis energia minimumdt az uy spinpdlydk varid-

lédsdval kell megkeresni, mikozben figyelembe vessziikk, hogy

a spinpdlydk ortonormdltak [12]. EbbSl adddik az u; spin-
pédlydk meghatdrozdsdra szolgdléd

[+ n; Sufu, @1, dv, + Vo, @] u; (1) =
' (1.8) -

= ecHFLA;(4)

Hartree=Fock egyenlet, ahol
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* %
\/ (4)5 _ ;hj SU{,(")UJ (Z)ui('nui (2) (}4,_OlU'z (l-9>
wHE Wl () u M)

a kicserélddés potencidlja. Az egyenletben szerepld

Eygp (1.8) 68 (1.5) alapjdn felirhatd, mint

{EHF(n;=4)) ~{ EHF (n;=0))
(1.10)

azaz a molekula totdlis energidja, ha az i-edik spinpdlya
be van toltve, minusz & molekula totdlis energidja, ha
az i-edik spinpdlya lires. Ez megfelel a Koopmans=-tétel=-
nek [;3], amely szerint a Hartree-Fock-egyenlet sajadtérté-

kének minusz egyszerese 8z ionizdcids energia.

1.2. A kicserél8dés statisztikus kozelitése

Az (1,8) egy-elektron egyenlet megolddsédban az
egyik nehézséget a kicserél8dés szdmitdsa jelenti., Slater 4<CQkw,

v ¥t el
az (1.9) kicserél8dési potencidlt egy sulyozott dtlaggal y ¢
) U ot e

helyettesitette [14], majd az dtlagot szabad elektrongdz- ../
ra kiszédmolta [ié]. Igy a kicserélddésre a

413
V,or = - 6 L7 8:0)

kozelit§ formuldt kapta /ahol Q, mdr a Zz;n;uf(4)u¢(4)
r

aktudlis toltéssiiriiséget jelenti/. Ha még bevezetiink egy

o paramétert (d(SIater)= 1), megkapjuk az Xx kicseréll=-

dést: ’\ \'. L r R } ';‘Q \\
\Bbv\,&/[\, A\ QHL’k h‘ N :
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4[3
Viun ()= *Gm[.T?E%(“] ' (1.11)

Igy az egy-elektron egyenlet:

[~§74"+\/C ) +V.

XA

(4)]mu¢(4)==ccaxq(4> (1.12)

Gdspér R. [15], W. Kohn és L. J. Sham [16] megfor-
ditotta az eljdrds lépéseinek -~ a varidlds és a kicseré-
18dés statisztikus kdzelitése - sorrendjét. Ok a totdlis
energia kicserélddési tagjdt helyettesitették statisztikus
étléggal és ezutdn varidltak az M. spinpdlya szerint. A
kapott egy-elektron egyenlet (l.l2)-nek felel meg, ha o(:%
értéket vesziink, |

A totdlis energia az

CEXD =% ne Swiind, uc i du, +499@)g , du,du,+
L (1.13)

4

+4 5 (-9.0 6 ) Lo, ™ 1 g, (1™ dlv,

alakban irhaté, és konnyen beldthats [14], hogy a sajdt-

Srichek most ez M; elhl, Awaoa
L i g .
I/—'C&Lm, ok /
oLk X /v et
Cexu ™ <an.d> <1.14>

osszefliggést elégitik ki az (1.10)-beli véges differencia
helyett. Az &y, sajdtértékek ennélfogve nem azonosak az

Ecnr Hartree=Fock sajédtértékekkel.
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Héatra van még az a kérdés, hogyan vdlasszuk meg
az A szorzdé értékét. A totdlis energia  -val linedrisan
védltozik, tehdt minimalizdldsi eljdrds nem jchet szdba.
KézenfekvS megoldds o -t ugy vdlasztani, hogy az (1.13)
X« -totdlis energia egéaktul megegyezzék az (1.6) Hartree-
-Fock energidval. Ezzel a foltétellel K. Schwarz [;7] ki-
szdmitotta a konnyi atomokra.(z=1,...,“4) az oK értékeket.
Ilyen A =kkal végrehajtva egy self-consistent-field szda=-
moldést, azt taldltdk [18], hogy az Xd& spinpdlydk jol
egyeznek a Hartree-Fock atomi pdlydkkal.

Egy médsik eljdrds o~-t ugy vdlasztja meg, hogy az
(1.8)=beli i spinpdlyékkal szdmolt Hartree~Fock ener=-
gia a lehetd legkisebb legyen. Az igy vdlasztott « =kat
Lindgren [19] javaslata alapjén E. Kmetko [26] szdmolta ki

az egész periddusos rendszerre.

Bizonyithaté [14], hogy az u, ZX«- spinpdlydkkal
egzaktul teljesiil a viridl-tétel bdrmilyen & =ra. Eszerint
egy szabad atomra a kinetikus energia pontosan egyenlé a
totdlis energia (-l)~szeresével, De a Hartree-Fock megoldds
is egzaktul teljesiti a viridl-tételt. Igy abbdl a £folté-
telbdl, hogy az X« - totdlis-energia legyen egyenl$ a
Hartree-Fock energidval, az kidvetkezik, hogy a két médszer
kinetikus energidi is egzaktul egyenl8k. Ez igen érzékeny
tesztje a pdlydk egyezésének. Tovdbbd, a potencidlis ener=-
gidk is meg fognak egyezni. Ha a két mdédszerrel szdmitott
spinpdlydk k&zel vannak, & Coulomb-energidk kozel egyenlS-

ek lesznek, mert azonos formula szolgdltatja Sket. Ennél-
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fogva az X« - médszer kicserélB8dési energidja kozel egyen-
16 lesz a Hartree-Fock kicserél8dési energidval. Ne felejt=
siikk el azonban, hogy az &y, sajdtértékek jelentbsen kii-

1onbdznek a Hartree-Fock spinpdlya energidktdl.
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2. A TOBBSZORASOS MODSZER

Az el6z6 fejezetben kapott

["V,,2'+ \/(’?)]VL-(’ﬂ:eLW;(”—’\’ (2.1)

egy-elektron egyenletet tobbféleképpen lehet megoldani.
Példdul Roothaan médszerével |21], a megoldds ugy addédik,
hogy a . fiiggvényeket az atomi spinpdlydk szerint ki-
fejtik és a kifejtési egylitthatdkra kapott egyenletrendszert
megold jék. EkOzben elkeriilhetetlen a tdbbecentrumu integré-
lok szémitdsa, ami nehéz és iddigényes feladat. Ezt a ne-
hézaséget keriili el a tobbszdrdsos médszer, melyet J. C.
Slater [3] javaslatédra elfszdr K. H. Johnson dolgozott

ki [4-6]. Bz a ndédszer nem mds, mint a szildrdtestfizikd-
ban haszndlt KKR /azaz Korringa [ld]-Kohn-Rostocker [11] -
médszer /Green=-fiiggvényes médszernek is nevezik// alkalma-

zdsa molekuldra illetve klaszterra.

2.1. A KKR-mdédszer

A (2.1} egyenlet megolddsa bdrmilyen V(#) poten-
cidl mellett a

ok lm -~

YR ==\ S V() np (7 ol (2.2)

|5 - ')
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integrédlegyenlet formdjédban irhatd, ahol =g és K
valdés vagy imagindrius aszerint, hogy €70 vagy £€<0.
 Ha mér elértilkk a self-consistent field-et, akkor a (2.2)
egyenlet szerint azt mondhatjuk: A fiiggvény a potencidlon
snmagdba szérddott, mdsszéval az Osszes kiilonboz8 T pontbsl
jovd \/( ) v (& erbsségii "hulldmocskdk" egyesiilése
adja a Y(+) hullémfﬁggvényt.

Tekintsiink egy egyféle atombdl 4114 kristdlyt.
Haszndljunk muffin-tin potencidlokat: az atomok koriil a

potencidl szférikus, a kdzti térben konstans /példdul 0/:

V(R =2Z VL (5-1) (2.3)
T
ahol L a transzldciés vektor. Behelyettesitve (2.2) =be
kapjuk:
[ twts-#Y (
- A (- | - 2'
W (F - - T— , \/a(,;-&w(;)olm', E8) )
‘7)) IF-A

ahol az integrédlds csak az { koriili celldra vonatkozik,
mivel V., (#-L) kiilonben eltiinik, Legyen T’’=T’-F
és haszndljuk £61, hogy (2.1) megolddsa kristdlyban
Bloch=fliggvény:
' kt N
VA =e W (v-1),

ghol k¥ a hullémvektor, igy



4 Q/\',Klrr-'rl | DL " L)O‘-'
fqzk(&h—l-ﬁriz 3 e Vel =L))o Wy LT =
- = I 2‘5
——L'A—ms{G(K,kﬁ-/‘r")}\/q(;”)‘h(’* ) d& (2:5)

Szemléletesen azt lehet mondani, hogy F-nél a hulldm-
fiiggvény az Osszes celldktdl szdrddd "hulldmocskdk" Cgz-
szege [22]. Mivel minden cella azonos, be lehet vezetni
a struktura-Green~fiiggvényt:

R A

Glak 7-7)=) & —— 3 (2.6)
3 | J |

F-~"+ 1|

amely r-nél az T=t81 é8 az Gsszes t6bbi cella ekvivalens

pontjdtél szdrédé hulldm hatdsdt adja. /2.1. dbra/

2.1, &bra
A struktura Green-fliggvény, mely
egyesiti a rdcsbeli Osszes ekvi=-

valens pontbdl jové hulldmot

[22].

Igy elegendS lesz egyetlen elemi celldra integrélni,

hogy az egész hulldmfiiggvényt kapjuk. Az eljdrds kivet=
kez8 1épése megalkotni egy olyan funkciondlt, melynek va-
ridlédsa a (2.5) integrélegyenletet adja. Kdnnyen beldtha-
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t6, hogy ez

,/\_ = NS‘T: (;)\/q (#) Y4, (&) dr +

ﬂfgg SSW:(H\/Q(&)G(«.\Z.fr-&")\/a(/;“)wrkcf;“), (2.7)
s dds’

lesz. Az integrdlds csak egy elemi celldra vonatkozik, és
mivel a potencidl az atomi gombon kiviil eltiinik, fonndll,

hogy r,r’’ { Ry . /Rs az atomi gomb sugara/

Valamely atomi gtmb belsejében viszont a hulldm-

fliggvény a gombfiiggvények szerint sorba fejthets:

\,',(,;PZ: C... R(M Y, (0.0) (2+8)

Behelyettesitve (2.7 -be,JN_a (: egylitthatdk kvadratikus
Lm

filiggvénye lesz

*
N\ =1§UM' _/\(Wt.u, CQM g (2.9)
A varidcids feltétel homogén linedris egyenletrendszerhez
vezet /szekuldris egyenletek/, amelynek \ ]\.bh;uw;\
determindnsa el kell, hogy tiinjon. A determindns a k hul-
l4mvektor és az E=4" energia fliggvénye, igy a determi-
néns gyokei az &(k) ' sszefilggést adjék. A determindns

elemei
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S A, g red & mendke o)

zm}elw‘_l ™o Lw ! T mm 3"(.‘ = ,&-eL(

A

alakuak, ahol mn,, 4, szférikus Bessel-fliggvény és L,
az R, radidlis fiiggvény logaritmikus derivdltja. Az

A egylitthatdk struktura-konstansoknak tekinthe-

1m’ 1°m?
t8k, mert k és k-n kiviil csak a rédcsstrukturdtdél filiggenek.
A pontos formuldk Clebsch-Gordan egyiitthatdkat és szféri-
kus Bessel-fiiggvényeket tartalmaznak, amelyek a Green-
~-fliggvény T és ¥'? irdnyu gombfiiggvényekbe vald kifej-
tése kUvetkeztében addédnak. Az atomi potencidl az RL radi-

dlis fiiggvénynek a gombhatdrndl vett  logaritmikus deri=-

valtjén keresztiil jelenik meg a de termindnsban.

A t6bbezdrdsos mddszer klaszterra

A t0bbszdrdsos mdédszer klaszterra elvileg azonos
a KKR médszerrel, csak a megolddsfiiggvények a kristédlyok=-
ban elfirt peridédicitds helyett exponencidlisan cstkkennek
a klasztert8l tdvol /kotott dllapot/. A szekuldris egyen=-
let levezetésében varidlds helyett a hulldmfiiggvényeknek
a kiilonb6z8 gombhatdrokndl vald egyideji illeszkedésébll
indulunk ki.

2.2 Muffin-tin potencidlok

A SCF t6bbszdérédsos formalizmust legegyszeriibben
egy atomokbdl 8116 szimmetrikus klaszteren szemléltethet-
jik. A 2.2 &brdn ldthaté egy ilyen négyatomos "molekula"

kétdimenzids képe.
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2.2, 4bra
Négy atombdél 4116 szimmet-

rikus klaszter kétdimenzids

képe.

0

A klaszter terét geometriailag hdrom alaptartomdnyra
osztjuk. El8sz6r is minden atomot nem-dtfedl gombbel ve-
sziink koriil, melyeken beliil legyen a potencidl szférikus.

A p=-edik gombben:

", A
\ (]/
= L A —_— 2,11
\/P(/rfﬂ'—‘-;’—r'gg\/(/r) an@Pol@Po‘CPP ( , )
r =— - R _é' L - ~
ahol rp » Rp g B rp._ bp , ha bp a p=-edik gomb

sugara, - Rp &8 p-edik gomb kozéppontjinak az origdtdl

vald tédvolsdga. Megjegyezziikk, hogy az I. tartomdnybeli
(2.11> potencidl nemcsak az ide lokalizdlt atomtdél szérma-
zik, hanem az OUsszes 1t6bbi atomi potencidlnak az erre a
tartoményra vett, szférikusan dtlagolt jdruléka is. Igy az
4tfedS potencidlok hatédsa elsd rendben figyelembe van véve.
Ugyanez €érvényes a II. és III. tartomdnyra is. Mint azt az
alkalmazésok szemléltetik [7-9), ez & médszer a (2.2) &bré-

hoz hasonld szimmetrikus sokatomos molekuldk és szimmetri-



kus kristdlykdrnyezetben levs sokatomqk klaszterek eseté- |
ben pontos molekulapdlya energidkhoz g; fliggvényekhez ve=-
zet, anélkiil, hogy a potencidlban nem-szférikus tagokat fi=
gyelembe kellene venni. Kisebb szimmetridju komplex sokato=
mos molekuldkra a pontossdgot a nem-szférikus tagok pertur-

bdcidként valdé figyelembevételével lehet ndvelni. [23]

Az atomi gombdkon beliil a megoldds a gombfiiggvé-

nyek szerint sorba fejthetdl:

P PP .
w (&P):ZL'CL RL (axmp)YL ("-P) ) (2.12)
I
ahol Z;.E'gz — , és R; a megfeleld
=0 i

[.4__<J_,fzi JL(QM) v(,r) E]R (e,7)=0 (2.13)

radidlis egyenlet megolddsa valamilyen & energiaértékre
és { xvantumszdmra. A radidlis fliggvényeknek az atomok
k5zéppontjdban végesnek kell lennie, igy Rz (2.13) -bé1

numerikus kifelé /outward/ integrdlédssal hatdrozhatd meg.

Az atomi gombdk kozti tartomdnyban a potencidl kons-

tans, dltaldban az Osszes potencidl térfogati dtlaga:

\/K_-_ﬁ-— Visds 2.14.
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anol J; = l—‘—s— (& - ; 2 az atomkdzi tarto-
mény térfogata. Célszeri az atomi gomboket ugy vdlaszta-
ni, hogy az atomok kizti tér a& lehetd legkisebb legyen

és a gombdk érintsék egymdst, bdr még mds fizikai paramé=-
terek, mint példdul az empirikus atomi- vagy ion-rédiuszok

is befolydssal vannak a gombdk méretére.

Az egész molekuldt koriil szokds venni egy nagy
gombbel, amelyen kiviil /III. tartomdny/ a potencidl ismét

gszférikus:

Vi (7)) = o= SS\/(f‘r)om@od@oold)o) (2.15)

ahol By ™= 3 = Ro 5

sugara. Az eldézbekhez hasonldan a megoldds itt is sorba=-

b6<r°<oo , ha b, a kiils§ gomb
fejthetd:

Yimy =L DI R; () Vo (4 (2.26) -

ahol RZ a (2.13) -mal analdg radidlis egyenlet megoldé-
sa. Lokalizdlt elektrondllapotok esetén a fliggvénynek

a molekuldtdl nagy tdvolsdghban exponencidlisan kell csSkken-
nie, ezért a megoldds adott & és L paraméterek mellett
numerikus befelé /inward/ integrdldssal addédik az egyenlet-
bdl.

Mivel & potencidlok & kicserélddést az X« statisz-

tikus kicserélfdéssel kozelitik, gondoskodni kell az &
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paraméter kiilonbdz8 tertomdnybeli értékeinek megfelell
megvdlasztdsdrdl., Szokdsos vdlasztds: az atomi gombdkben
az atomhoz tartozd /Schwarz-féle/ érték, a kozti tarto-
ményban pedig az atomi értékek sulyozott 4dtlaga. A moleku-

lén kiviil az emlitettek koziil valamelyike.

2.3. Az egy=elektron egyenlet megolddsa az atomkdzi térben

A konstans potencidlu atomkdzi térben a Schrodin-

ger-egyenlet a kozonséges sajdtértékegyenletre redukdld-

dik: /,\ f]yé@h {6‘1 /,L
o Sl . copld dupe
t '
(VL+£m~V&>q&}&)=C). A/ (&lﬂ

Ennek megolddsa Green-fliggvény :

[vi+e—\/E]G(%,+')=cf(fF-w") (2.28)

/A _Green-fliggvénynek a tovdbbi szdmoldshoz szikséges

kifejtéseit a Fliggelék 4.§-a tartalmazza/

Szorozzuk be (2.17)-et G (T,T')-rel, (2.18)-at
\yn:(f') vel, a két egyenletet vonjuk ki egymdsbdl és
integrdljuk az atomkdzi tartomdnyra:

12
MNr(F) = [G(&.?')v Vg () -
Um 12
—~ Y (F)V G(f;,q’-')Jdu‘ (2.19)
A jobb oldalon alkalmazva a Green-tételt, fontos kiindu-
16 egyenlethez jutunk [4]:



~G,(r;,&‘)‘g;,r"‘¥m(&‘)]df;' (2.20)

Integrdlni az atomkdzi tartomdny feliiletére kell, ami
a killsd gtmb és atomi gombCk felilileteibSl &11, megfele-

18 irédnyitdssal. /2.3. ébra/.

2.3, dbra
A (2.21) egyenlet integ-
raldsi felilletei

Ennek alapjan (2.20) igy irhaté:

N\ = 1—:‘ .Q_— Y
\"/n(*)_;; EG(TP' r»)a,r,;"*n( )
P

—«yn(&')——gm,C—(f?p.fF,,')]oli,l - (2.21)
P
—S [G(;,,,ra,‘)—fg,r. Yy (F) =M (ri—')——&, G(n?,,,f;)]df,,'
3, ° .

Vezessiink még be poldrkoordindtékat, akkor (2.21) ilyen
alaku lesz:

- 2 - _1\O m(’?')
’\{’n ('r)=7;‘tr', _QS_PLC’('TP.’TP) _’;—4;_ -

—%m%%, 1dn, - &:é i %f{— ~ A ?g-% lan.  (e-22)



- 26 =

ahol dfl = sin@d@d(P.

Megkivédnjuk, hogy a hulldmfiiggvény és els( derivdlt-
jai folytonosan menjenek &t a gombok hatdrdn. Igy (2.22)
jobb oldaldn Yy, helyébe l{»P , illetve 'LI/O irhaté. Hasz=
néljuk még £61 a Green-filggvény (F4.1) és (F4.3) kifej-
téseit, akkor (2.22) -ben a p-edik gombon vett integrél

igy irhatd:

S[KZ( 4) x (‘Jr)fz (K’F)\/ () Y, (,rp‘);

Z_de,r Rgt(& (rp Yis (’rp) -

L+A4 . '
— ZC; R:. (e, &) Yo (#9) KZ(—A) 5%% (kerp) X

b pen ¥, Y (M]o\n |

4

ahol az il,’ kf, Bessel=-fliggvényeket a Fliggelék 1.§=-a

tartalmazza. A kifejtést arra az esetre irtuk £5l, amikor
= V. )

E,<\/U_ , 6s r‘p7r’p-— bp . Ha 5) T vagy rp >rp_ , 8k-

kor a Green=filiggvény (F4.2) és (F4.4) kifejtéseit kell

haszndlni (F4.1) és (F4.3) helyett.

Vezessiik még be az

R]= 1 2Re_p 2 (2.23)

"94’ e or
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jeltlést és haszndljuk ki, hogy SX_*(,;‘)X, & d s :dlu )
L
akkor Yy +t0bbcentrumu kifejtését kapjuk:

. 24 . P Ly 2
oy ()= 2 by 2600 "L RE Yy CF by ey Yo (8,) -
19 P

(2.24)
— ki 2 Loy wemRe g D: o £ (k) Y, (72)
L

Legyen
AEE (A) [m (er), R, ]q, 5 i
és B =il [‘f&:)(Kn—),RZ)Qf D. (2-25)

igy ha ¢( \/II , akkor

; P "
Py (B = 2 5; A,k er,d Y, (7)) + (2.26)
+ Z B: (—A)QM iy (K"‘o7\/1_ (r?oﬁ
L

illetve ha €3>V, , akkor

Y () = ZL 21'; A: n, (Jm-,,)yL (wp) +

2.27
o . R
+ ZL BL }e (K,'T,,) yL ( ’To)
Az egyiitthatékra vonatkozd (2.25) formuldban, ha & >Vp ,

(0
akkor (-/t)LM ¥ helyett 4, , Yv.,, helyett pedig n,
{rands.



- 28 =

2.4. A megolddsok illesztése: a szekuldris egyenlet

Az atomi gombokon bellili, illetve a kiils6 tarto-
médnybeli megolddsnak egyidejiileg kell illeszkednie a kozti
tartomdny megolddsdhoz. Ez a feltétel szolgdltatja a sze-
kuldris egyenletet. Ehhez ugy jutunk, hogy a (2.21) kiindu~-
16 egyenletben a Green-fiiggvényt az egyes atomi centrumokrs
kifejtjiik.

Legyen a q-adik atomi gomb centruma az, amire
kifejtjlk a Green-fiiggvényt. Két eset lehetséges: q vagy

LA
egybeesik a p centrummal és akkor (G%)* e 2 ie)

G(#, ) =G (7.7, )= kz it (kb wr )Y GV (A1) (2.28)
vagy nem, és akkor

G(7#) =6, 7)) =6 (7 - R, .7 )=
= k2 ) Ry (kIR =R )Y, (my-Ryp)»  (2:29)
"yl_*("'pl)

Az Osszes kifejtést £{ Vg esetre végezziik el. qu a p~-

edik és gq-adik centrum tdvolsdga és foltettiik, hogy rp'> ri
Ryp b Ty (2.29) tovébb alakithaté, ha folhaszndljuk az
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(F4.7 - F4.12) kifejtési Osszefiiggéseket. A felirt eset-
ben (F4.7) -et felhaszndlva:

“> _ ;
R, (ki =R DY (5, -Rep) =

(2.30)
Lt (¢)) A ) .
= 4 Z (—'ﬂ Z IL" (LIL‘) k(n (& Ror-r)yl_" (Rﬂrp)ka' (K'Tﬁr) yL' ('T%)
2 il
Az itt eldforduld
T v
Iu- (LU= qu) Sm@d@ Yo (@Yo (0,9), Y. (6,0)
o o)

mennyiség a Gaunt-integrdl, hdrom valds gombfiiggvény
szorzaténak integrdlja. Ez csak akkor nem zérus, ha telje=-

siil, hogy

|- 40" L st és 2"+ L +1'= pdros szén.
A Gaunt integrdlok kiszémitdsa a Fiiggelék 2.§-dban taldl-
hatd.

Vezessilk be a

2+
ey (4 =d. Dy (4 x
GUL (ey= ( NOELAC) (2.31)

7T (L DRy, (kRepd Y (R, )
o

jelvlést /G-mdtrix/, ezzel(2.29) a kovetkez8 alakban irhatd:

G (7R, 7 )=k Z L Gy (€ ity » (2.32)

¥ LU

X YL" (,;‘-P') der(K’my‘-‘ (’;—Q«)
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Teljesen hasonlé kifejtést kell végrehajtani a (2.21)
egyenlet mdésodik felére /ahol a kiilsl gbmbre kell integrdl-

ni/. Itt az
S‘:”i (&) &= )-17:!:(—4) 7: Iu'( LY L) >
) (2.33)
x ill,(KRo’_o)yLn<Rq'D)
jelolést vezetjiikk be, és igy
G (%, - R, 7 =+«ZZS (e) »
(2.34)

(X D)

{LL (knr, )\/ (v )\.‘Q‘(K’f) /u ("'qj

Ha a gq-dik centrum egybeesik a kiiled gtmb centrumdval,

a kifejtés (2.28)=hoz hasonlé, vagy ami ugyanaz, (2.34)-
0 "

ben SL‘L = ch‘L_ -t kell irni.

Irjuk be ezen sorfejtéseket a (2.21) kiinduld
egyenletbe és a baloldalon is tartassuk T=t rqr-hoz. Ekkor
’\,{;n(/":_)r?q_j= «;(q(f%) és a g-adik atomi gdmbdn beliili sor-

fejtést be lehet irni. Folhaszndlva még a

[:ic (el h:’udrs] = szz

)
(2.35)
[1£u4ﬁ),n&(KL4}= =L .

Wronsky-relécidkat, valamint a (2.25) egylitthaték kozti
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Osszefliggést, a szekuldris egyenlet egyik felét kapjuk:

>7{4.d [Re k], q,,}

\ Py w = \
F ¥ [_i,_u RJ ]l-', "

Al-2.SF B.-0 236

L K

Szokéds még bevezetni a

t" - [iz ! RLP ]z,r.
9 p W)
[R( ! L‘L]fr?

mennyiséget, melyet t-matrixnak neveznek.

. (2.37)

A szekuldris egyenlet médsik felét ugy kapjuk, hogy
a Green-fiiggvényeket a O-adik /kiils8 gomb/ centrumdra
fejtjiik ki. A (2.21) kiinduld egyenlet baloldala most
°(#,) ~-hoz tart, és a megfelell sorfejtést beirva

adédik, hogy

or AP [”z'R:1bb °
ZP-§ SL' L AL' K{‘t \RZ-XQ,O BL = (2'38>

ahol az S-matrix (2.33)-mal van definidlva. Legyen

(C})

ke Re Te, (2.39)
[“'a ‘ p‘tl{,o '

akkor eredményeinket igy foglalhatjuk Ossze:

Q&)=
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Osszefoglalds:

A II. tartomdnyban & hullédmfiiggvény kifejtési egyiitt-

hatdira a
ZP%_ [T @] AL - ZSM B.=0 (2.40)
LT SHA -, [l 8-

szekuldris egyenlet 411 fenn, ahol, ha g4 Ny

el =dd 8T -G @

L L :
. (2.41)
bR e, Ll
T Rele, © o Lec R,

GZ:(E) = ('1~JO(P>L(1'C(-4) ZI (L 4 ) U' KR"(P>\/L" (RAorF) |

Lll

e Byl ZIL..(L L) 1 e Rea) Vi (Ryo)

(AN 84

A molekula pédlya energidkat a

[—T_ () ]LL, *-ES?:,(c) |
(2.42)
o o -1
Sihey =& lge)

determindns zérushelyei adjédk. Mivel mindeniitt valds
gombfiiggvényeket haszndlunk, ezért a mdtrixok valds, on=
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adjungdlt /tehdt szimmetrikus/ mdtrixok:

9P GP"r _GM*

te T VYo Yy

g S g
L Lo Ly .

A szekuldris mdtrix nem-diagondlis elemeit a G

(2.43)

i

P
L

ndtrix elemek adjdk. A G -mdtrixot "struktura-konstans"-
nak lehet tekinteni, mivel az energidn kiviil csak a mole-
kula geometriai adataitdl fiigg. A szekuldris mdtrix dia-
gondlis elemeit a t-mdtrix adja, amely a radidlis fiigg=-
vényen keresztiil a potencidltdl is fiigg. Eldfordulhat,

hogy a t-mdtrix inverze szinguldris, azaz

[t RS Iy, =0 (2-44)

Ha ez igy van, akkor (2.25) szerint az Ai egylitthatdk
zérusok, a C: -k hatdrozatlanok lesznek. Tovdbbd (2.44)-
bél egyszeri dtrendezéssel addédik, hogy a radidlis fiigg-
vény és a szférikus Bessel=-fiiggvény logaritmikus derivdlt-
ja folytonosan megy 4t a gombhatdron. Ugyanez a jelenség
figyelhet8 meg elektronok atomon valé szbéréddsakor /Ram=-
sauer-effektus [4,24]/.

B4r a mdtrix elemek bonyolultnak tiinhetnek, kisz4-
mitdsuk viszonylag nem nehéz. Ez annak koszbnhetd, hogy
()
csak a radidlis fiiggvényektSl /pl. R:(&%@) és ka(k%g)/'
és elsd derivdltjaiktél, illetve a "struktura-fektorok"-tél
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/pl. &:’(KRPQ VL(FZAP,,,) / figgnek. Az &-t61 és {-t61
fliggd radidlis Schrodinger-egyenlet megolddsdra a Numerov-
-nédszert [25,26] j61 lehet haszndlni. A rekurziés for-
muldk alapjén /Fiiggelék 1. §/ nem nehéz szdmitdgép-progra-
mot irni az ﬁs;zes eléforduldé szférikus Bessel=fiiggvény és
gonbfiiggvény kiszdmitdsdra. Itt nem szerepelnek az LCAO=-MO
médszerre jellemz8 tobbcentrumu integrdlok. A Gaunt-integ-
rdlok is kinnyen kiszdmithatdk, akdr kozvetleniil, akdr mint
Clebsch-Gordon egyiitthatdk szorzatkifejezései /Fliggelék 2.§/.

Az energia paraméterként minden mdtrix elemben szere-
pel, ezért a sajédtértékeket interpoldcidval kell megkeres-
ni: A matrix elemeket kiszdmitjuk egy energiatartomdny
/ahol a sajdtértékeket sejtjiikk/ tobb pontjdban, amig a de=-
termindns zérushelyét kelld pontossdggal meg nem kozelitet=-

tuk.

2.5. A szekuldris egyenlet megolddsa; szimmetria

A szekuldris egyenlet megolddsdat olyan prébafiigg-
vénnyel kezdhetjilkk, melyek egy vagy két parcidlis hulldm-
b6l 4llnak. Kltaldban azt tapasztaltdk [4,27], hogy atomon-
ként /ha alacsony rendszdmu/ két vagy hdrom parcidlis hul=
1dm /0 =0,1,2/ elegendd a legttbb sokatomos molekuldra,
hogy & sajdtértékeket £ 0.001 Ry-es hibival érjék el.

A megoldanddé determindns méretét jelentdsen cstkken=-
teni lehet, ha figyelembe vessziik a molekula szimmetria=-

tulajdonsdgait.
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Bizonyithaté, hogy valamely sajdtértékhez tarto-
z6 sajétfiiggvények az adott szimmetriacsoport egy irredu-
cibilis elddllitdsédnak bdzisdt alkotjdk. Ilyen fliggvények-
kel az eredeti mdtrix blokkos formdba rendezhet8 &t [27].
Olyan prébafiiggvényeket kell tehdt folvenni, melyek az
egyes irreducibilis elddllitdsok bazisfiliggvényei is egy-
uttal. A ésoportelmélet médszereivel az adott irreducibi-
lishez tartozd fiiggvényeket meg lehet keresni [i,Zl] .

Az uj filiggvények a régiek linedris kombindcidi lesznek:

(w P G e
MZ CaLk L (PL ) (2’45)

oak?.

(3 ; _
ahol K}k ¢ a (}) irreducibilis A-dik eldéfordulédsé-

bd1l a k-dik fiiggvény, mindig egyetlen K-hez és valamely
p atomtipushoz tartozik. Itt (P: = RZ zj, azaz
ﬂkp==E:C£%pf , ahogy az (2.12)-ben szerepel, Fejtsiik sor-
ba \yé- -t az uj bdzisfliggvények szerint:

G) P

" ZZLXkQKdu , (2.46)

g ek @

Beirva ide a K-filiggvények (2.45) sorfejtését az uj /szim=-
metrizdlt/ és a régi sorfejtési egyiitthatdk kozti Ossze=-

filiggést kapjuk:

P (}) (Q)P
CL | Cdk,_ , (2.47)

Mivel a szekuldris egyenlet C: -re vonatkozik, (2.47)
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felhaszndlédsdval megkaphatjuk a szekuldris egyenlet szim-

metrizdlt alakjidt:

(30 ' (5)'
Z M&k aLU 0((:.,‘ :O ) <2.48>

oL\{.(}

(3 W
ahol Jiﬁ;JU) a szimmetrizdlt mdtrix elem a régibldl a
(2.45)-ben szerepll kifejtési egyiitthatdkkal vald szorzds-

gal &llithatd eld:

3)(1) (4> p W' p'
Z dk L L L} C l‘_l L (2'49>

o
dk
Wep'

A madtrixelemek koziil csak az nem zérus, amelyik azonos
irreducibilis egyes eldforduldsainak azonos sordhoz tar-
tozik [28]. Valamely két eléfordulds kozti mdtrix elem
viszont azonos, akdrmelyik sorral is szdmoltuk., Ez a mdtrix

nagysdgénak tovdbbi csdkkentését teszi lehetldvé.

A (2.11) szuperpondlt-atomi potencidlokkal gene-
rédlt betoltott .molekula-pdlya energidk és fliggvények a ki-
induld mennyiségei egy teljes self-consistent-field szé-
moldsnak. A kezd8 fliggvényekbdl képzett t5ltéssiiriiség lesz
.az alapja az uj potencidl generdldsédnak. Ez a potencidl
szférikusan 4dtlagolt a killonbbzd atomi gbmbbkben és a mo-
lekuldn kiviili tartomdnyban. Térfogati Atlagolt potencidlt
haszndlunk a gombok kozti térben. /A potencidlok kiszdmi-
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tédsa: Fiiggelék 3. §/. Ennek és a kezdd potencidlnak egy
alkalmas dtlaga szolgdl a kovetkez8 iterdcid szdmdra po-
tencidlként. Ezzel uj sorozat pdlyaenergidt és fliggvényt
kapunk, €s az eljdrdst addig kell ismételni, amig a po=-
tencidl és t6ltéssiiriiség self-consistent field-jét elér-
Jjik.

A tobbszdrdsos Xo médszer sokatomos molekuldkra
és kristdlyokra vald alkalmazdséndl azt taldltdk, hogy
a legmélyebb "torzs" pdlydk t6ltéssiiriiségét fixen lehet
tartani /befagyasztds/ és a végsl "kémiailag eltolddott™
t0rzs pdlya energidkat ujra szdmoljédk a megmaradd valen=-
cia elektronok self consistent field-jével, anélkiil, hogy
felbecsiilhet8 hibdt okozndnak. Killonben is mivel az SCF-X
eljdrés nagyon gyors /néhdny perc IBM 360/65-=6n, 10 perc
az R40-en/ az Usszes t6rzs elektron hozzdvétele mdr nem
volna gazdasagos.

Az SCF szdmolds kinnyen elvégezhet8 spin-fliggd for=-
médban is /azaz klilénboz6 spinhez kiilonboz 8 padlyék tartoz-
nak/ ha a kicserélédés Xo kozelitésének (1.11)-beli spin-
fliggd formdjdt haszndljuk:

4
TR —Go&(i%ég)f(”)) 3’

Xkt
. 113,
3.
illetve \/xew () = ——on( e 90(“) .

Ezekben a kifejezésekben ¢r és O, a "spin-up" és "spin-
-down" elektronok t8ltéssiiriiségét jelenti, killon-kiildn.
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Az SCF t0bbszdérdsos Xo médszer spinfiliggl vdltozata
kiilondsen értékes az olyan '"nyitott-héju"™ molekuldk

és kristdlyok elektronszerkezetének és a hozzd kapcsold-
dé jelenségeinek megértésében, mint példdul az dtmeneti-

fém~komplexek. [5. fejezetJ

2.6, A médszer lehetlségei és korldtai

Jé1 ismert, hogy az ab initio LCAO mdédszerek alkal-
mazdsdnak komplex molekuldkra és 8zildrd testekre a bd-
zis mérete ésatcbbcentrumu integrdlok vagy az ekvivalens
Hartree-Fock mitrixelemek szdma szab hatdrt. Az SCF t5bb-
8zérdsos Xo modellban nincsen bdzisprobléma, mert egysze-
rilen numerikusan integrdljuk a Schrodinger-egyenletet egy
Xo potencidlra. Nincsenek benne tdbbcentrumu integrdlok és
a médszer kiilondsen jé, mind spin-filiggetlen, mint spin-
~-fliggl formdban a jelentls sztereokémiai bonyolultsdggal
rendelkezd sokatomos rendszerekre. A mdédszer kiterjedt al-
kalmazdsdt a komplex molekuldkra és szildrd testekre az 5.

fejezet ismerteti. S

~

A médszerrel elsdsorban %é\?gy—elektron-energiak >
és filiggvények hatdrozhatdk meg. Bdr egy SCF tobbszdérdsos
X« egy-elektron analizis sok kémiai és fizikai tulajdon-
sdg pontos leirésdhoz vezet /példaul tﬁltéssﬁrﬁségek, mnag-
neses és optikai tulajdonsdgok/, az is nagyon fontos, hogy
ismerjik a teljes sok-elektron energidt. Az alapdllapotu ‘

&SDC £ (] s i ,QAJC n3 L{?z 5{{/&)3‘7(7» Q/\/f/“t{/(;\ FH ﬁb(x %
Now bl < cohnel mogatopan o A . i ndt

: 7
(,C e Lo [T/’ p wr{‘! N
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totdlis energia, mint a sztereokémiai geometria fiiggvé-

nye, lényeges a molekuldris és kristdlyos kohézids tulaj-
donsédgok /pl. kotési energia, erdkonstans/ kvantitativ
megértéséhez. A t6bbszbérdsos X« mddszerrel ki lehet szd=-
mitani a totdlis energidt LZQ] alapjén. /Fliggelék 3. §/.
Megemlitjiikk még, hogy mind a viridl wind a Hellmann-Feynman=
~-tétel nagy pontossdggal teljesiil az SCF t6bbszdrdsos X«
formalizmusban [}4] . Tovédbbd, ellentétben a Hartree-~Fock-
-médszerrelez a technika helyes szepardlt atom limithez

vezet, ha a magok k0zotti tdvolsdg a végtelenbe tart.

|

Mivel a jelen mdédszer a pdlya fliggvények gyors kon-
vergencidju numerikus reprezentdcidjdt adja, az elméleti
modell pontossdgdt perturbdcid szdmitdssal lehet ndvelni,
ha sziikkséges. Vannak esetek, amikor a muffin-tin potencidl
haszndlata nem ad kielégitd eredményt. /példdul alacsony
szimmetridju klaszterek, erdsen irdnyfiiggl jelenségek
esetében /5. fejezet a/ pont./. Ilyen esetben a nem-muffin-
tin tagokat perturbdcidként figyelembe véve haszndlhatd
lesz a médszer. Egy mdsik korrekcids lehet8ség az dtfedd

szférikus potencidlok haszndlata /5. fejezet a/ Rosch/.
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3. A MODSZER SZAMITOGEPRE IRT PROGRAMJATI

A t0bbszdrdsos Xx wmdédszer alkalmazdsdhoz hdrom,
FORTRAN IV nyelven megirt program tartozik. Valamennyi
program & JATE Kibernetikai Iaboratdrium R=40 /ESz-1040/

/
szdmnitdgépén miikodik is.

A

atombdl dllhat /beleértve a kiilsd gombot is/, amelyek hé-

' 1
A vizsgdlandé molekula vagy klaszter legfeljebb lé;f('
25 PO e

rom kiilonbozd fajtdhoz tartozhatnak. A szekuldris deter=-

mindns meximdlisan 11 x 11 -es méretii lehet. A radidlis
-/__/

filiggvények sorfejtésében 1l=6-ig lehet elmenni. A program

a szdmitédsokat spin-filiggl és spin-fiiggetlen formdban
egyardnt el tudja végezni.

3.1, A kiinduld adatokat el8dllitdé programok

Az els6 program, az un., Herman-~Skillman program
fliggetlen a mésik kett6t81 és mdsfajta szdmoldsokra is
alkalmas. A Herman-Skillman program szférikus kozelités-
ben megoldja az atom Schrodinger-egyenletét, és eredmé=
nyiil a sajdtértékeket, a radidlis fliggvényeket és a self=-
-consistent atomipotencidlokat szolgdltatja [Bd}. Az ato=-
mi potencidlok az Xo kicserélddést is tartalmazzdk.

‘Ezeket az atomi potencidlokat haszndlja a t&bb-
szdérdsos Xa mdédszer kezdd potencidlnak. A mdsodik prog=-
ram, a MOLPOT, végzi el a potencidl és a t8ltéssiiriiség
szférikus és térfogati dtlagoldsdt a molekula geometri=-

édjénak megfelelben [31] .

”

14

{

-



~ A1 =

Részletesen csak a harmadik programmal foglalko-
zunk, ez jelenti a t0bbszdrdsos X« mddszert. Az eredeti,
K. H. Johnson és F., C., Smith Jr. altal irt valtozatot hasz-
ndljuk, D. Liberman és P. Batra mdédositdsaibdl csak az el=-

engedhetetleniil szilkkségeseket vettik 4t.

3.2. A nem=gelf=consistent=-field program

Ha csak a sajdtértékekre van szikség, akkor a nem } 1
self-consistent field védltozatot célszerii ﬁ;éénéiniguxr
programhoz szilkséges potencidlok szdrmazhatnak a MOLPOT-
bél. Nagy eldnye, hogy a sajdtértékeket nem kell ellzete-
gsen megbecsiilni, hanem a program egy energiaintervallumban
megkeresi az Usszes sajdtértéket. Ezt a programot lehet

haszndlni SCF potencidllal a radidlis fiiggvények el8dlli-
[
tdsédra is.
A 3.1. dbrdn 1évd8 folyamatdbridn jé1 ldtszik a prog=-
ram szerkezete. Az egyes szubrutinok részletes leirdsa

a 3.2, dbrdn taldlhatd.
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CALL INPUT

beolvassa a kezd§ poten-
cidlt és a molekula geo=
metriai adatait

1

CALL SETUP

beolvassa a soron 1év3
irreducibilis el84l1litéds
fliggvényeit

[

CALL EIGEN

ID=3. Az ehhez az irredu-
cibilis elddllitdshoz tarto=-
z6 sajdtértékeket megkeresi
egy adott energiaintervallum=-
ban

I

igen Van~-e még irreducibilis

3.1.

édbra.

k el18411itds ?

nem

CALL OUTPUT

kiirja az eredményeket
a szélesnyomtatdra

STOP

A nem-SCF program folyamatédbrédja
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3.3. A self consistent field program

Az SCF program a szekuldris egyenlet mindenkori
megolddsa mellett a self consistent iterdcidt tartalmaz=-
za. Mikodése és az egyes szubrutinok szerepe tovédbbi ma-
gyardzat helyett a 3.2. abrdbdél leolvashatd.

NSTS az dllapotok szdémdt, NITER az iterdcidk szdmat,

TOL a self consistent field kritériumot jelenti.

CALL INPUT

beolvassa a molekula geometriai
adatait, a MOLPOT outputjébdl az
els$ iterdcidé szdmdra elkésziti a
muffin tin potencidlt (V).

|
——»N = 1,NSTS

CALL SYMM

a SETUP szubrutin elsdé fele, amely
beolvassa és térolja az irreduci-
bilis eldallitdsok adatait; kiszd-
molja és tdrolja a Clebsch-Gordan
egylitthatdk /FUNCTION CGC/ segitsé-
gével a Gaunt-integrdlokat.

/Fiugg. 2.7./

—]
1|

CALL STRUCT

a SETUP szubrutin mdsik fele, amely
kiszdmolja és tdrolja az Osszes ell=-
forduld gombfiiggvényt /CALL YIM1/

I

> N= 1,NITER
~ M= 1,NSTS

(:) (f) 3.2. &bra
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?

CALL EIGEN

Linedris és kvadratikus interpoldcidéval meg-
keresi a szekuldris determindns zérdhelyét és
igy a sajdtértéket szolgdltatja. Az dltala hi-
vott SMTX szubrutin szdmolja ki a szekuldris
determindnst adott energidra. A TMAT szubrutin
numerikusan integrdlja a radidlis Schrodinger-
egyenletet, megadja a radidlis filiggvényeket
és a t-mdtrixot. A GMAT szubrutin a C2~métrix
elemeit szdmolja, az OSBF szubrutin a kiilon-
féle Bessel-fiiggvényeket Fiigg.l.§. . A LINEQ
szubrutin szdmitja ki a determindns értékét.

l

CALL NRMLIZ
Kiszdmitja és normdlja a toltéssiirlisé-
geket és a kifejtési egylitthatdkat.

Kiszdmolja a teljes toltéssiirilséget

l

CALL VGEN

A t61ltéssiirliségbdl kiszdmolja az uj
potencidlt ( Vi) és a totdlis ener-

gidt (Figg. 3.3.).

\ﬁr-\/'c
Viegi

{ EPS igen

nem

3.2, dbra /folytatéds/

v
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VP Vyy+ (l -p)Vrégi lesz a
kovetkez6 iterdcidé potencidlja,
ahol 3 O és 1 kozotti szdm.

Perturbdcidszdmitdssal mdédositja a
préba sajdtértékeket a kovetkezd
iterdcid szémdra

CALL OUTPUT

kiirja a végeredményt, az SCF poten=-
cidlt és a sajétértéket a szélesnyom=-
tatdra

lSTOPI

3.2, dbra

A tobbszdérdsos X« SCF program folyamat=
dbréja
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4. A PROGRAMOK FUTTATASA: EREDMENYEK ES TAPASZTALATOK

4,1, Alkalmazds a JATE R-40 /ESZ=1040/ szdmitdégépére

A Herman-Skillman és a MOLPOT program futtatdsa

nem jelentett kiilonOsebb nehézséget.

A t0bbszdrédsos X« mdédszer programjdndl a £6 gond

a nagy méret volt. Mig a Herman-Skillman program kb, 76 K,

/

€2 s

a MOLPOT program 100 K, a SCF program a ?6bb§é53§5“535?-
kesztés ellenére is 150 K helyet foglal el a memdéridban
'(1 K=1024 byte). A felhaszndlhatd memdriateriilet kb, 180 K, /
de ez{bérom particidéba van osztva, igy a program futtatdsa ;'/
csak a¥barticiéhatérok ujrakijelolésével lehetséges. Na-

gyobb memdridju gépen természetesen nincs ilyen probléma.

¢

A futtatdshoz még égy mégnesszalag sziikséges, amelyi;SSQJﬁ
a hdrom program kdzti adatdtvitelt biztositja. Kényelme- ; =
sebb és megbizhatdbb, mint kértydra lyukasztani az eredmé-

nyeket.

A Herman-Skillman és a MOLPOT program koriilbeliil
3-3 percet kivdn, mig egy SCF futds ideje 10 perc koriil
van. Altaldban azonban az eljdrds nem lesz rogtén self
consistent. A program nagyon érzékeny bizonyos numerikus
paraméterek értékeire, ezek kicsiny védltoztatdsdval kell
az eljdrdst konvergenssé tenni. Ilyen pafaméter az uj és
régi potencidl, vagy toltéssiiriiség ardnya a kovetkezd ite-
rdcidé potencidljdban vagy toltéssiiriiségében. Fontos a

kezd§ sajdtértékek minél pontosabb becslése, mert a szeku-
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ldris egyenlet megolddsa igen sok idét kovetel.

4.2. Eredmények

~ A programot a viz, a metén és a kénhexafluorid mo-
lekuldra prébéltuk ki. Az aldbbi eredmények mindegyike

az eredeti futdsi listékon is megtekinthetd.

a/ H,0 molekula .lfy(géhm%%é}ay?
A 3.3, dbra szerinti elrendezésben a molekula az

“ y-z-s8ikon helyezkedik el. A koor-

dindtarendszer origdéja az oxigén

gomb kozéppontja.

c a A bemend paraméterek a kdvetkezdk
» Voltak: kGtéstdvolsdg
\ y Yo = 1.84 a.e., az atomi gomblk
2 = 3,4 a.e.,

sugardnak ardnya o
3.3. &bra ebbll addéddan a H gomb sugara

A H50 molekula ato=- rH=O.4181818 a.e., az 0O gomb

ml gbmbjed sugara r =1.4218182 a.e..

A kiilsd gombot a lehetd legkisebbre véve /mindhédrom atomi
gﬁmbaﬁ kiviilrdl érinti/ T =1.9800774 a.e., és kdzéppont-
jédnak tévolsdga az U gomb kbzéppontjdtél 0.5582592 a.e.

A H-0-H kbotési szdg 104.5°,

Az & paraméter értékei:

H 0 atomkozi tér  kiilsé tart.

0.97804 0.74367 0.86086 0.86086
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A vizmolekula a C2v szimmetriacsoportba tarto-

zik., Kiinduld fiiggvényekiil a hidrogénatomndl (=0, az

oxigénatomndl és a kiils§ gombnél az L=0,1 fiiggvénye-

ket vettik figyelembe. Kiredukdlds utdn hdrom egydimen-

zids irreducibilis elf4llitdst kaptunk, melyek rendre

5=-gz0r (Al), 2-szer (Bl) és 3-szor (32) fordulnak eld.

Igy a legnagyobb megoldandd determindns 5x5-0s.

A megkivdnt self-consistent-field-hez /0.001 pon-

tossdg/ 8 iterdcid szilkséges, a gépidd 6 perc. A kapott

sajdtértékeket az I tdbldzat tartalmazza. Befagyasztott

dllapot nincs.

Allapot| sajdtérték /Ry/ | ,
Irodalom -2
b2 - 0.8026 - 0.778
aq -37.502 -37.498
I. tdbldzat

MS-Xa sajdtértékek H,0-ra

A molekula totdlis energidja =152.231 Ry

2 ia
fsz?£/4<

* U.Mitzdorf, Theor. Chim.Acta 37, 129 /1975/

r’[p., ,‘d<,(/"' .

/

L4



- AY -

(Mitzdorf: - 152.230 Ry), & kinetikus energia 152.39 Ry
(Mitzdorf: 152.223Ry),igy & viridltétel 0.00l pontossig-
gal teljesiil.

Lithaté, hogy mind a sajdtértékek, mind a totdlis ener-

gia az irodalomban kozdlttel jol egyezik.
b/ Metédn molekula

A tetraéderes /Tg csoport/ szimmetridju metdn
molekuldban a hidrogénre't=0, a szénre és killsé tar-
tomdnyra az ¢ =0,1 gombfiiggvényeket vettiik figyelembe.

A kiredukdlds utédn egy egydimenzids /Al/ és egy harom=-
dimenzids /1:/ irreducibilis elddllitédst kaptunk, melyek
mindegyike hdromszor fordult eld.

A t0bbszdrédsos Xa paraméterek a kovetkezlk voltak:

a C gbmb sugara 1.485 a.e, a H gomb sugara 0.626 a.e.,
a kiils6 gomb sugara 2.737 a.e, a C=H kotési tdvolsdg
2.109 8.0

Az Xo kicserélddési paraméter értékei:

¢ H atomktzi kiilsd tart
0.7547 0.97804 0.93413 0.97804

A self consistent field-et 3 perc alatt 6 iterdcidban
érte el /0.001 pontossdg/, hédrom alapdllapot van, a megfe=-
leld sajadtértékek:
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dllapot sajdtérték /Ry/
|

II. tébléazat

A CI-I4 molekula MS-=Xo sajdtértékei

A totdlis energia =79.999 Ry, ugyanilyen paraméterek-

*r , 8z egyezés igen

kel kapott irodalmi érték =80.24 Ry
joé. A kinetikus energia 80.33 Ry, a viridl tétel 4 ezred

pontossdgra teljesiil.

c/ SF6 molekula

Ezzel & molekuldval volt a legtdbb nehézség. Nézzik
eldszor a paramétereket.

Az SF; molekula oktaéderes (Oh) szimmetridju. A fluor
atomokra €=O,l e kén atomra és a kiilsé gombre Q=0,1,2
gombfiiggvényeket vettiink figyelembe. A kiredukdlds a kovet-
kez8 irreducibilis elfédllitdsokat adta: négyszer fordul eld

az egydimenzids Ay, ugyancsak négy8zer.a kétdimenzids Eg,

** J. B. Danese, Int. J. Quantum Chem. 6§, 209 /1972/
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a hdromdimenzidsokbdl egyszer fordul el a: Tlg és Toyus
hédromszor a ng, és Otszor a T,,- A legnagyobb szekuldris
determindns igy 5x5=0s.

A t5bbszdérisos Xe. paraméterek:
A fluor gﬁhb sugara 1.224 a.e, a kén gomb sugara 1.762 a.e,
a kiils8 gomb sugara 4.211 a.e, a fluor kén k&tési tdvolsdg

2.987 a.e. Az Xo kicserélddési paraméterek:

S F - atomkozi kiils6 tart.
tér
0.72426 0.73651 0.73476 0.73476

A valenciaelektronoknak alapéliapotban tiz betoltott
nivéja van. Ha a torzselektronokat /fluor ls, kén 1ls, 2s,
2p elektronok/ az atomi értékeken befagyasztva tartjuk,a
ITI. tdblézat elsb oszlopa szerinti eredményeket kapjuk az
alapdllapotok sajédtértékeire. Itt a potencidl 8 iterdcid
alatt teljesiti a self consistent field feltételt. /Gépidd
kb. 12 perc/. A kénre és kiils6 gombre { =4-ig mentiink el a
parcidlis hullédmokban, de ez az eredményt nem befolyédsolta,.
Léthaté, hogy a totdlis energidra nagyon rossz értéket ka-
punk,

Ha az iterdcids eljdrdsban a potencidl dtlage helyett
a régi és uj toltéssiiriiségek 4dtlagdt vesssziik, akkor mdr 4
iterdciéban self consistent field-et ériink el, az eredmény

pedig ldthatdan nagyon hasonld az el8zdekhez /2. oszlop/.
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Ha egyetlen 4llapotot sem fagyasztunk be, akkor a
totdlis energia mdr sokkal jobb, a sajatértékek nem sokat
vdltoznak /3. oszlop/, a torzsdllapotok energidi kismérték-
ben eltolddnak. Ekkor viszont az eljdrds nem lett konver-
gens, hanem oszcilldlt. A 3. oszlopbeli sajdtértékek a 3.
iterdcid végeredményei, ahol a potencidl eltérése 0.26,

de a ktvetkezl8 iterdcidban sokkal nagyobb lesz.

A kGvetkezl lépés volna, a torzselektronokat nem az
atomi, hanem imudr ezen eltolt értékeknél befagyasztani és

a self consistent eljdrdst igy elkezdeni.

dllapot sajétérték'(Ry)
1. 2. 3 4.
L - 0.96 - 1.01 - 0.977 - 0.890
. - 1.02 - 1.04 - 1.00 - 0.958
Vg - 1.03 - 1.075 - 1.04 - 0.962
by - 1.08 - 1.09 - 1.044 - 1.012
tg - 1.17 - 1.17 - 1.15 - 1.106
- 1.37 - 1.37 - 1,32 - 1,330
Clyg - 1.71 - 1.70 - 1.61 - 1.688
e - 2.41 - 2.42 - 2.37 - 2.336
tau - 2.47 - 2.48 - 2,43 - 2.41
Qus - 2.66 - 2.66 = 2.59 - 2.61
S 2p =11,573 ¥ ~11.82
S 24 -15.469 -15.52
F 15 -48. 68 -48,.95
S 1s =176.177 =17849 -
totdlis | =1974.8 =1975.0 ~1987.09 -1987.92
energia
kinetikus| 2016.0 2016.0 2005.0
energia

III. tdbldzat
Az SF¢ molekuldra kapott eredmények
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Az oszlopok jelentése:

1. Ha a torzselektronokat atomi értéken tartijuk,
kénre, kiils8 gombre f{=4-ig vett gbmbfiiggvények.

2. Torzselektronok az atomi értéken, az iterdcidban
toltéssiiriiség 4dtlagoldst haszndlva,.

3. Nincs befagyasztott dllapot.

4, J. W. D. Connolly, K. H. Johnson, Chem. Phys. Lett.
10, 616 /1971/ eredményei. '

Megjegyzések:

a/ Nem self-consistent eredmény

b/ Hermen-Skillman atomi értékek.

¢/ Ez a Hartree-Fock hatdr a szepardlt atomokra, a mole-
kula energidjdnak ennél kisebbnék /abszolut értékben
nagyobbnak/. A Connolly-Johnson cikkben emlitett szd-
moldsokndl a totdlis energia wmindeniitt nagyobb a H=-F
hatdrndl. Hogy a t6bbszdridsos X4 szdmoldsndl a szer-
z0k mekkora totdlis energidt kaptak, & cikkbdl sajnos

nem deril ki.

A III. tdbldzatbdl ldtszik, hogy az eredmények igen
jék, mdr ami a sajdtértékeket illeti. Szerencsétlenségilinkre
a program tesztjének vdlasztott cikkbll lényeges koriilmények
nem deriilnek ki, pl. az, hogy a totdlis energidra a szerzlk
mit kaptak, és hogyan fagyasztottdk be a t6rzs-elektfono-

kat.

Az SF¢ molekuldra valé alkalmazds kimutatta, hogy a

program numerikus eljdrédsai, és konvergencidja mennyire bi-
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zonytalan. Bér ha egyszer mdr konvergenssé valt, akkor
az eredmények reprodukdlhatdk /a tédbldzat elsd és mdsodik

oszlopa./ T

A programmal spin fiiggl szdmoldsokat is lehet végez~
ni, bdr ezt még nem prdébdltuk ki.

Tovédbbi lehet8ségeket adna az, ha a szdmithatd klasz-
ter méretét 18 atomndl meg lehetne ndvelni. Ez egyediil a

szdmitégép memdria nagysdgdnak fliggvénye.

Végeredményben a kitlizott célt teljesitettilkk. A tObb=-
szdérdsos X« mddszer hozzédférhet8 és milkod8képes a tovdbbi

kutatémunkdk szdmdra.

* A viz és metdn esetén ilyen gondok nem jottek eld, de

ezek a mulekuldk voltaképpen nagyon egyszeriiek, kevés és

alacsony rendszdmu atomot tartalmaznak.
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5. A TOBBSZORASOS Xo MODSZER ALKALMAZASAI /CIKKBIBLIOGRAFIA/

A cikkeket témdjuk szerint az aldbbi csoportokba
osztottuk: |

a/ Elméleti tdrgyu cikkek: a t&bbszdrdsos ZXo mdédszer
tovdbbfejlesztésével, kiegészitésével foglalkoznak.

b/ Szabad atomokra és molekuldkre vald alkalmazds.

¢/ Nagyobb molekuldk, féleg fémkomplexek részeire, gyokok-
re vald alkalmazésa. '

d/ Szildrd testekre /kristdlyos anyagok klaszterjei/ valé
alkalmazds: séennyezések, feliileti jelenségek vizsgédla-
ta.

e/ Szerves molekulédk, bioldgiai makromolekuldk részeinek

vizsgdlatai.

Az egyes csoportokon beliil az els8 szerzd szerinti abe
sorrendben kovetkeznek a cikkek. A szerz$ neve utdni utaléds
a csoporton beliili azon cikkekre vonatkozik, ahol a szerzd

neve el8fordul.

A csoportban egy cim tartalmazza a szerzlk nevét, a
megjelends helyét és idejét, és nagyon roviden ntal a cikk
tdrgydra.

Ha egy cikk t6bb csoportba sorolhatd témdju, akkor
& megfeleld helyeken mindeniitt £61 van sorolva.

A bibliogréfia a tobbszdrdsos médszer elsd alkalmazd-
saitdl /1971/ 1977. &prilisdig foglalja magdba a térgyréll

82416 irodalmat.
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a/ A mddszer tovdbbfejlesztése, mddositéds

Andersen, O. K., R. G. Woolley, Mol. Phys. 26, 905 /1973/;
SW X és L.C.MTO kapcsolat
Averill, ¥, W., T. E. H. Walker, J. T.Waber, J. Chem. Phys.
%9, 2907 /1974/; molekula Rydberg-&llapo-
ok.
Bagus, P. S., B. I. Bennett, Int. J. Quantum Chem. 9,
143 /1975/; szinglett=-triplett folhasadds
Cartling, B. G., J. Phys. C.8, 31741/1975/; kovalens fél=-
vezetd, valenciasdy struktura
D. M. Whitmore, Chem. Phys. Lett. 35, 51
/1975/; relativisztikus
D. M. Whitmore, Int. J. Quantum Chem. 7S
279 /1973/; non-muffin-tin korrekcidk
Chem. Phys. Lett. 45, 150 /1977/; non=-
-nuffin=-tin korrekcidk
Danese, J. B., J. W. Connolly, Int. J. Quantum Chem.,%ﬁ
279 /1973/, non-muffin-tin korrekcid
s Jo. W. Connolly, J. Chem. Phys. 61, 3063
/1974/; totdlis energia funkcTIondl
Dehmer, J. L., D. Dill, Phys. Rev. Lett., 35, 213 /1975/;
shape rezonances
De Sigueira, M. L., S. Larsson, J. W, D, Connolly, J. Phys.
and Chem. Solids, 36, 1419 /1975/;
Mossbauer-izomer eltoldédés
Diamond, J. B., Chem. Phys. Lett. 20,63 /1973/; szimmetria
Grant, I. P., M. A, Whitehead, Mol, Phys. /GB/, 32,
1181 /1976/; muffin-tin kozelitésrdl
Gyémént, I. K., M. G. Benedict, Gy. Papp, B. Vasvdri,
Acta Phys. et. Chem. Szeged, 22, 1
/1976/; szdért &llapotok ‘
Herman, F., A. R, Williams, K. H. Johnson, J. Chem. Phys.
61, 3508 /1974/; atfedd gombok
Johnson, K. H., Int. J. Quantum Chem. 78, 347 /1973/; uj
alkalmazdsi lehet8ségek
s R. P. Messner, J. Vac. Sci. and Technol. 11,
236 /1974/; kemiszorpcidé, katalizis
, 1l4sd még F. Herman, N. Rosch, C. Y. Yang
Kaufman, J. J., Int. J. Quantum. Chem. 75, 369 /1973/;
gombsugdr vdlasztésa
Keller, J., Int. J. Quantum Chem. 9. 583 /1975/; cellular
MS X -
Kjellander, R., Chem. Phys. Lett. 29, 270 /1974/; egyszerii-
sitett modell.
» Chem. Phys. 12, 469 /1976/; egyszeriisitett
modell.
Konowalow, D.D., M., E. Rosenkrautz, Chem. Phys. Lett. 44 ,
| 321 /1976/; félempirikus <« vdlasztés
Larssa S., Chem. Phys. Lett. 32, 401 /1975/; satellite
excitations -
ldsd még: M. L. De Sigueira

.
]
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Machado, W. V.M., L. G. Ferreira, Chem. Phys. Lett. 37,
51 /1976/; relativisztikus
Mershall, R. F., R. J. Blint, A. B. Kunz, Phys. Rev. B 13,
3333 /1976/; H-F médszer Xoa =val
Neto, A. A., L. G. Ferreira, Phys. Rev. B 14, 4390 /1976/;
relativisztikus o,
Noodleman, L. J. Chem. Phys. 64, 2343 /1976/; abszorpcios
intenzitas - e
Norman, J. G., J. Chem. Phys. 61, 4630 /1974/; &tfedd gdmb
Quinn, C. M., N. V.Richardson, J. Phys. C 8, L 236
/1975/; adszorpcid
Rosch, N, W. G. Klemperer, K. H. Johnsgn,”Chgm. Phys. Lett.
23, 149 /1973/; 4tfedl gdmbok
Rosicky F., P. Weinberger, F. Mark, J. Phys. B.9, 2971
/1976/; relativisztikus
Scheire L., P. Phariseau, Int. J. Quantum Chem. 8$, 109
/1974/; 4ltalédnos molekulapotencial
» P. Phariseau, Int. J. Quantum Chem. 3§, 887
' /1975/; tetszlleges formdju molekula
Schwarz, K., P. Weinberger, Chem. Phys. Lett. 27, 415
/1974/; totdlis energia-o! kapcsolat
Slater, J.C., Int. J. Quantum Chem. 98, 7 /1975/; ©sszeha-
sonlitds a Thomas-Fermi-Dirac modellel
Tomasek, M., V. Mikolas, Czech. J. Phys. B 24, 878 /1974/;
Green~-fliggvényes tdrgyalds
s V. Mikolas, Physica, 75, 185 /1974/; MS=X
szérmaztatdsa més uton
Weinstein H., Int. J. Quantum Chem, 85, 123 /1974/; anali~
tikus potencidl i
Yang C. Y., K. H., Johnson, Int. J. Quantum Chem. 10§, 159
/1976/; dtfedd gombok leviégdssal
» S. Rabii, Phys. Rev. A 12, 365 /1975/; relati-
visztikus —

b/ Szabad atomok és molekuldk

Antoci S., L. Michich, G. F. Nardelli, J. Chem. Phys. 61,
1245 /1974/; H,O0 egyensulyi geometria

Averill, F. W., T. H., Walker, J. T. Waber, J. Chem. Phys.

60, 2907 /1974/; Z2 £36 atomok, BF,, HF

molekula Rydberg dllapotok

" ldsd még Waber, J. T.

Boring M., J. H. Wood, J. W. Moskowitz, J. W. D. Connolly,
J. Chem. Phys. 58, 5163 /1973/; H,0 Rydberg
dllapotai. :

y J. W. Moskowitz, Chem. Phys. Lett. 38, 185
/1976/; UF |

Case D. A., M. Karplus, Chém. Phys. Lett. 39, 33 /1976/;

NO2 hiperfinom kdlcs.hat.
Connolly, J. W. D.§y Int. J. Quant.Chem. 6§ , 201 /1972/;
N,, CO, NO, CF
, K.°H, Johnson, 8hem. Phys. Lett 10, 616
/1971/; SFg
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J. R. Sabin, J. Chem., Phys. 56, 5529
/1972/; H,O0 totdlis energia

, H. Siegbanf , U. Gelius, C. Nordling,
J. Chem. Phys. 58, 4265 /1973/

C- és N-oxidok, CF,, NH..

, ldsd még Boring M., ﬁanesé J. B., Johnson
K. H., Konowalow D. D., Phillips E. W.,
Preston H. J. T.

Danese, J. B., Int. J. Quantum Chem. 6§, 209 /1972/;

CH
, J. Ghew. Pnys. 61, 3071 /1974/; C,, N,
potencidl
» Chem. Phys. Lett. 45, 150 /1977/; H,, Co,
N,, CO NMNT korrekcidk
y J.°W. D. Connolly, Int. J. Quantum Chemn,
75, 279 /1973/; C,, W,, CH, NuT-korrek-
cidk.
, 1dad még Preston, H. J. T.
Edelstein N., D. Karraker, J. Chem. Phys. 63, 2269 /1975/;
kommentdr UF ~hoz. -
Johnson K. H., Solid State Commun., 12, 313 /1973/; NiO
, ldsd még Connolly J. W. D., R6sch N., Tossell

.

A'
Keller J., Int. J. Quantum Chem. 95, 583 /1975/; SF,
Hy, H, cellular ME =X
Konowalow D. D., ﬁ. E7 Rosenkrantz, Chem. Phys. Lett. 44,
321 /1976/; Li, félempirikus « .
, P. Weinberger; J. L. Calais, J. W. D.
Connolly, Chem. Phys. Lett., 16, 81 /1972/
Ne
s P2 Weinberger, Int. J. Quantum Chem. 75,
353 /1973/; N ’ 02) ¥
Maylotte D. H., R. L. St. Petgrs, R. ?. Messmer, Chem.
Phys. Lett. 38, 181 /1976/; UF., UF
Messner R. P., D. R. Salahub. J. Chem., Phys. 65, 779
/1976/; 0, gerjesztett dllapotok
, 14sd wég Mdylotte D. H., Salahab, D. R.,
Mitzdorf U., Theor. Chim. Acta 37, 129 /1975/; H,0
Norman J.G ., J. Chem. Phys. 61, 4630 /1974/; PH
Phillips E. W., J. W. Connolly, S. B. Trickey, Chem. Phys.
Lett. 17, 203 /1972/; XeF
Preston H. J. T., J. J. Kaufman, J. Keller, J. B, Danese,
J. W, D. Connolly, Chem. Phys. Lett. 37,
55 /1976/; bérhaloidok
Richardson N. V., P. Weinberger, J. Electron Spectr. and
Relat. Phenom. 6, 109 /1975/; So
Résch N., K. H, Johnson, Chem. Phys. Lett 24, 199 /1974/;
ferrocéne.
s V. H, Smith Jr, M. H. Whangbo, J. Am. Chemn.
Soc. 96, 5984 /1974/; SF¢, T&F., SeF(
Salahub D. R., Rz PS'Mgssmer, Phys. Rev. B 14, 2592°/1976/;
) SN
s R Pf(Messmer, J. Chem. Phys.64, 2039
/1976/; (SN), NO, NO,
, ldsd még Messmer R. P.
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Schwarz K., P. Weinberger, Chem. Phys. Lett. 27, 415
/1974/;§K% képzési energia
Sommer, C., R. De Groot, D. Kaplan, A. Zylbersztejn,
J. Phys. Lett. 36, L 157 /1975/; VO,
, d-elektron dllapotok
Tossell J. A., J. Electron Spectr. and Relat. Phenom. 8,
‘ 1 /1976/; dtmeneti- és f6ld-fém oxidok
s D. J. Vaughan, K. H. Johnson, Chem. Phys.
Lett, 20, 329 /1973/ Sio0,, SiOZ’
Waber J. T., F. W. Averiil, J. Chem. Phy8. 60,% 4466 /1974/;
PtF., E 110 F¢ .
, ldsd mgg Averill™F., W.
Wahlgren, U., Chem. Phys. Lett. 20, 246 /1973/; H,0,
Weber J., Chem. Phys. Lett. 45, 261 /1977/, 080,
- , H. Berthon, C. K. Jorgensen, Cheu., 'Phys.
Lett. 45, 1 /1977/; lantan -trifluoridok
Woodruff S. B., M. WolIsberg, J. Chem. Phys. 65, 3687
/1976/; LiH dipol.kvadrupol- momentum.

¢/ Gyskok, fémkomplexek

Boring M., J. H. Wood, J. W. Moskowitz, J. Chem. Phys. 63,
638 /1975/; UOS'
Boudreaux I., T. S. La France,_ J. Phys. Chem. Solids 35,
897 /1974/; voi‘ , Cr02~
Cotton, F. A., R. M. Hedges, J+ B. Harmén, J. Am. Chem.
“Soc. 98, 1417 /1976/; S5 , Sa
Bllis D. E., F. V. AveTill, . Chem. 'Phfs. 68, 2856 /1974/;
: FeCl
Gubanov V. A., J. Web&r, J. W. D. Connolly, J. Chem. Phys.
63, 1455 /1975/; VO;”, Cr02-
Interrante L. V., R. P. Messmer, Chém. PhyS. Lett. 26,
225 /1974/; Pt(CN,)*"
Jaginski J. P., S. I. Holt, J. Chém. Soc. Faraday Trans.
II. 72, 1304 /1976/; MnO;” , MnOp"
Johnson K. H., F. C. Smith Jr, Chem. Phyé. Lett"7, 541
/1970/; so, , Clo,
y F. C. Smith Jr, Int. J. Quantum Chem. 55,
249 /1971/; SO,
, F. C. Smith Jr, Chem. Phys. Lett. 10, 219
/1971/; MnO,
s, F. C. Smith Jr, Phys. Rev. B 5, 831 /1972/;
HhO,
, U. Wahlgren, Int. J. Quantum Chem. 6S,
~ 243 /1972/; MnO; , Ni (CO), , CnCli™
Larsson S., J. W. D. Connolly, Chem. Phys. Lett. 20, 323
/1973/; dtmeneti — fém-fluoridok
Larsson S. E. K, Viinikka, M. L. De Sigueira, J. W. Connolly,
~ Int. J. Quentum Chem. 85, 145 /1974/;
dtmeneti-fém-haloidok ;
, Jo W, D. Connolly, J. Chem. Phys. 60,
1514 /1974/; 4tmeneti-fém-haloidok
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Messmer R. P., Int. J. Quantum Chem. 7§, 371 /1973/;
PtCl1l,
, Chem. Phys. Lett. 18, T /1973/, PtCLY
s D. R. Salahub, Int. J. Quantum Chem. 10§,
183 /1976/; (SN), Os ,
, ldsd még Interrante L. V.,
Mortola A. P., J. W. Moskowitz, N. Rosch, Int. J. Quantum
Chem. 85, 161 /1974/, ReCly
, J. W. Moskowitz, N. Rosch, C. D. Cowman, H.
B. Gray, Chem. Phys. Lett. 32, 283 /1975/;
REClQ-
Norman J. G., J. Am. Chem. Soc. 96, 3327 /1974/; Pt(PH,).(0,)
s, H. J. Kolari, J. ZAm. Chem. Soc. 97, 33
/1975/; MO, (Cly)
Onopko K. E., S. A, Titov, Sov. Phys. Solid State, 18, :
817 /1976/ vagy Fiz. Tverdogo Tela 18,1413,
/1976/; NiF,"~
Preston H. J. T., J. J. Kaufman, W. S. Koski, Int. J.
Quantum Chem. 95, 137 /1975/; bér-vegyii-
letek
Sink M. L., G. E. Juras, Chem. Phys. Lett. 20, 474 /1973/;
Si, Ge hidridek
Tossell J. A., J. Phys. and Chem. Solids 36, 1273 /1975/;
Mg, Al, Si oxidok
, Chem. Phys. 25, 303 /1976/; Cu, Zn oxidok
s J. Phys. and Chem. Solids 37, 1043 /1976/;
C, Si, Ge oxidok ;
Weber, J., Chem. Phys. Lett. 40, 275 /1976/; PO’

d/ Szildrdtestfizikai alkalmazdsok

Albuquerque E. L., B. Maffeo, H. S. Branchi, M. L. De
Siqueira, Solid State Commun. 18, 1381
/1976/; CoF.” klaszter LiF=ben

Batra I. P., C. R. Brundle, Surf. Sci. 57, 12 /1976/;
Ni-n adszorbedlt No.

s S. Ciraci, B. Ortemnburger, Solid State Comm.

18, 563 /1976/; H chemiszorpcié= Si(100)
Teliileten

Brunn W., L. Fritsche, K. Hermann, Int. J. Quantum Chemn.
85, 483 /1974/, H adszorpcidja Cr és Mo

. eliileten .
Cartling B. G., J. Ph%s. C. 8, 3171 /1975/; kovalens fél=-
vezet
, B. Roos, U. Wahlgren, Chem. Phys. Lett. 21,
380 /1973/; Si kristdly S és Fe szennye-

) zéssel

De Hasson, J. Th. M., Phys. Status Solidi B 78, 791 /1976/;
Mo klaszter .

De Siqueira M. J., S. Larsson,Chem. Phys. Lett. 32, 359

/1975/; Zns, CdS-ban Cu, Ni, Co, Fe szeny=-

nyezések. '

, lédsd még Albuquerque E. L., Hsi-Ling Yu,

Oliveira L. E. :
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Gubanov V. A., J. W, D. Connolly, Chem. Phys. Lett. 44, 139
/1976/; TiCs’" .

Hamera M., Phys. Status Solidi B 69, K 45 /1975/; Mn
ion ZnSe=ben

Harris J., G. S. Pointer, Phys. Rev. Lett. 36, 151 /1976/;
O kemiszorpcidja Al feliileTen

Hemstreet L. A., Jr, Phys. Rev. B 11, 2260 /1975/;
vakancia PbS kristalyban

Hsi=Ling Yu, M. J. De Siqueira, J. W. D. Connolly, Phys.
Rev. B 14, 772 /1976/; szincentrumok
KCl=ben

Johnson, K. H., A. I. P. Conf. Prec. /USA/, 34, 97 /1976/;
dtmeneti és nemesfém klaszterek

+

, lédsd még Messmer R. P.

Jones R, 0., P. J. Jennings, G. S. Pointer, Surf. Sci.

53, 409 /1975/; Fe, Ni, C  feliilet

e lésa_%ég Pointer G. S.

Messmer R. P., C. ". TuckerJr, K. H. Johnson, Surf. Sci.
42, 341 /1974/: O kemiszorpcidéja NL felii-
Teten.

s 5. K. Knudson, K. H. Johnson, J. B. Diamond,
C. Y. Yang, Phys. Rev. B 13, 1396 /1976/;
dtmeneti-€és nemesfém- klaszierok

, 1ldsd még G. D. Watkins
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Phys. Rev. B 13, 2848 /1976/; H alkali-
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etilén kemiszorpcidja Ni Teliileten.

, ld4sd még Schwarz K.,

Schwarz K., N. Rosch, J. Phys. C 9, 1433 /1976/; C vakancia

NbC kristdlyban.
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/1974/; vakancia gyémdntban
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4927 /1975/; TTF, TCNQ

, 1l4sd még Herman F., Liberman D. A.
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23, 149 /1973/; etilén,benzol |
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FUGGELEK

1. §. Szférikus Bessel=filiggvények

Az x4 Lxws + [xz—&u\»ﬂ]w:O

differencidlegyenlet linedrisan fliggetlen megolddsai

a }'CUQ elséfaju szférikus Bessel-fiiggvény és az 1, (x)
mdsodfaju szférikus Bessel fiiggvény /vagy szférikus
Neumann-figgvény/ ill. a {‘Lrh(’o és &\m(’q harmadfa-
ju szférikus Béssel-fﬁggvények /vagy elsd és mésodfaju
szférikus Hankel-fiiggvények/.

E16411itdsi formuldk  [32]:

L

X Z X (X> }

hisa= m3.5”.(22+4){4"’“@£+37'+ 21(2043)(22+5)

135, Q0 (g 32 ) .

M ()= ~ ey 1l(4 20 T ZT-10(3-2¢)

( . .
k(”(x) ES }a(x) + Lng(x)

’fx(“(x) }e(x) —1,r\ (x)

Ha f{ (x) valamelyik szférikus Bessel=-fliggvény, akkor

érvényes a

4, 00y, 0= 201 00

rekurzidés formula.



= G o

Algebrai alakjuk:

. AN X

}o()&’)z |

; _ Alnx oA X
A
'ho(x):""é'_‘()()=— QO?(X s

LN X _ NHunx
X* X

ny (= -4 (X)= -

Aszimptotikus formuldk:

L
‘tJ: { LX): X
xro e 4.3.5..-(2¢+1) !
. 4.2.5 ...(2¢+4)
(Lm 'ﬂ(()(7=— (+1
X=>0 X

Um 4,00 = 4 on(x— Ldn)
okl S

X

. ) A . ) e-
Limn ne(x)z%mn(x-—l—z——%) ’ X.uv\ '{‘t (x)=——x '
X200 X dco

Az

' + Lxmwr' - [x7'+ aee 4)]/&,\1 =0
differencidlegyenlet linedrisan fiiggetlen megolddsai
az aldbbi fiiggvények, melyeket =0, l-re algebrai
alakjukban adunk meg:
Médositott szférikus Bessel-fliggvény:

«;o(x)=6’5x7x ,

L (x):«i’lé+.&%\(.&

ilx;L(x)= f a0, @),
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Médositott szférikus Neumann-fiiggvény:

chx

mo(x): )

W\4(X)= Qxx

chx
fo
Médositott szférikus Hankel-fiiggvény:
- X

()] e
Ro () = -

D S
hy (=14 5) &

A rekurzids formulae azonos az eldzdvel.

2. §. A Gaunt-integrdlok

Hérom gombfiiggvény szorzatintegrdlja, az

I(£4£L(3)MAMLM5>E SOLQ-Y yg "‘z

4’"4

Gaunt-integrdl kifejezhetd a Clebsch-Gordan egyiittha-
tékkal [26]:

I({% {L{s)mdmz. m3)=

_(2 4, + (24, +1
b (24, +1)

4}1
>J Ctityymem,m)C(4,44,;000) |

A Gaunt-integrdl csak akkor nem nulla, ha

£’4+{L+(’3= pédros szdm és \'{4'}'{1'2{3}—,‘(4'{1] .

A Clebsch-Gordan egylitthatdk elddllitdsdra jdl haszndl-
haté a Wigner-formula [}3]: '

C(&,{Lh) m4m1m3>=

L+ - =L+ - LN (+m53’ (- Ms)]
L+ L+ L+ = m) (L m )L -m ) (L 4wy

e (s ) (L mee)!
v v (33-€4+(L-ﬁﬂ((3+m3-vN(p+€4—{f_m3)!

= J - [(2(3+4

s)ml
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ahol olyan V egész szédmokra kell Usszegezni, hogy a
nevez$ pozitiv legyen.
Ezek a formuldk a komplex gombfiiggvények szorzatdra vo-

natkoznak. Ha valds gombfliggvényeket haszndlunk, akkor

j (K‘ (a_esjmlm,_ms) = Sdﬂy‘ism“ IHEZM,_,U&M, =

o ?/’(4444 M:LMJ.)I (ea‘e"-zlﬁ ‘M'HM"”ML'B

ahol ¥ az aldbbi értékeket veszi fel -

S I N N . s
14

S I S

v
4 1
02 1 2 2 = -

M>0, V>0, [My]=Iml+imy] .

3. §. A totdlis energia és a muffin-tin potencidl kiszd-

mitdsa a muffin-tin t5ltéssiirtiségekbdl [29]:

A rendszer totdlis energidja
1e(2)
ETOTY = (o, du, + (( &2 40 4
< > Sg 4 SS ’rn A L T (F 3.1)
+%89“)V’“ (1) du,

ahol

- _p?t ZE,‘
$0- v -5 2
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Az utolsd tag a kicserélédési energia

Eexc)\sji S(—g"‘)(%\:)‘;?:%d‘f« =
(F 3.2)

ahol

2 11 s,
de(4)=-Cak[§;t9] : a kicserélddési potencidl, (F 3.3)

A mdsodik tag az elektron-elektron counlomb energia
‘ (1) 0(2) 1
Eyon = §$8 dudi, = 7 (3O (0duy, (7 3.4)
ahol
VC("):,Z, Sg«%d% az elektron coulomb-potenciél,(F 3.5)

Az els$ tagban a kinetikus energia mellett van a mag-

elektron energia is:

E. .. =g Vendu,, (7 3.6)

ahol

SR e 1 (F 3.7)
en R "?"'R,g\

a mag-elektron potencidl.



- 68 -

Hozzd kell még adni az eddig figyelmen kiviil hagyott

mag-mag energidt:

2 b (F 3.8
W TR k

Maradt még a kinetikus energia:

T= ——Z guf(ﬂv:ui(/()olg

Az egy-elektron egyenletbdl kiindulva

T-Z e ~ (gVindy, (F 3.9)

ahol V(1) az Gsszes potencidl.
Mivel a potencidl muffin-tin, (3.3),(3.5) és (3.7) min-
dig szétbonthatd a ’

V()= gv“cﬂ + V7Y + VO (F 3.10)

forméban, ahol v* , v°  szférikus, v" konstans poten-
cidl. A szdmitdshoz fol kell tételezni, hogy a t&ltés-
siiriiség is muffin-tin,

Ennek alapjén elvégezve a szférikus és térfogati dtlago-
l4sokat, az aldbbi eredmények adddnak az F 3.1. dbra
jeltlései szerint( 6(m)= L(It'rzg(rrﬁ , 82 &
index az A& -dik centrumbdl mért mennyiségre vonatkozik,
b az ® -dik gomb sugara, q_, az d ~dik gOmbben le-

A

v8 tﬁltésa
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F 3.1. &bra

Elektron-elektron potencidl:
: i

V/(N)—"Sﬁ(”)dT 4w28§££ld¢;.+

(o}

Qo (7s) 2
&, btk P 3 4
tn 4L ol 2.3 ~ K
VALORS LWL L Lk St - AEFAL SN
(v BH#A %

A potencidl kifejezések
jeloléseinek magyardzata

6,3

),
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A mag=elektron potencidl:

A 2,2-,( 22(5
\/en (Pr) - /T‘& - é‘j#{d @

in e LY &@_ﬁ_iiﬁﬂ
VL, () = JZZ Va2 € 2 3‘5?&0‘9\0{(s )

Vim=-3 22
L

A kicserélddési potencidl:

T 9] -G L S

- G, [8%5 ?°]m

A potencidlokat szorozva a toltéssiiriiséggel és integ-
rédlva az energidkat kapjuk:

Az elektron-elektron energia:

‘%S )\/oo d +Z S dfr +
4
o
? ') | ZC}
+ q hS Go("" dn' + % AE SQLVdetd’r‘ Z _RE_O.& +
i A s p
&, o



= T

ahol
" (-2
2 ’ 0, (~') |
voo('r)z ?SSO (A )dA —+ 2 g dnr )
4o =
i, RX& (e
l 6, (M) | §.(~)
\/do((rrdjz —,%_; Ssd("‘u})d"}. + 93 —‘—_‘d,m.* O\fr,,L +2~S—Q_—_/r d~ 3
o Ty Qro

(n
V. a 3.12 =-beli kifejezés.

A mag-elektron energia

- &,
)
E o= -Z 224 J27dr + §8f0an 47 g0 o
en A Q"O fo) ﬁ#d {5

+L,ﬂ:9t:n ( —27 - T 2 6#0‘ 3Rup

Ezek a kifejezések mdr csak egyvdltozds integrdlokat

tartalmaznak, igy kiszdmitdsuk nem mnehéz,

4. §. A Green-fiiggvények kifejtési tételei

3
vin

Valés gombfiiggddeket haszndlunk /Fiigg.2.§/

Ha « valds:

L{(,ﬂ-‘,‘-—;‘l

18 . (F 4.1)
(CV)
L

] . A
=ik ) k) hy (k) VLAY (R, mam,
L
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Ha . X imegindrius X > K helyettesitést végezve
(F4.1) -ben
-k -,
1 e )
I{E I'ﬁ - = —-KZ '?1 («k/rﬂ)}g(mkfr,_)y (fr )y (’TD

(1)

- Z_ %\ (K’r)’kQ(K/T,_) y\_(ﬂ’ 3y\.(’1"4_)
L

) 4—174'2
(F 4.2)
=2 {Q(kfmk(;(wm\/df?ﬂyJ’?D y TakTy
(F4.1)-et f6lhaszndlva adédik, hogy
1 wlm -4l _ - g
i ml'f X KZ n (K'r)}z(kr,_)\/,_(/r‘)\/,-_(/rﬂ, (F 4.3)
T 2 Ty
= "'K%ja(Kﬂ',‘)’f\Q(K’rl)\/L(’;A)yx_(’;z_\ ) /1"44’7'2_
m e = <Dtk e L BIVLCR)
Az
. (F 4.5)
<R "1 5%
e _ZL 3 (RRYY_(KOY (R) ~

gikhulldm kifejtési tétel; a

z Y ()Y (! “**

m':-

?(wa@) (F 4.6)



- 13 -

addicids tétel, /anol O a (ah @) és (J.¢) irdnyok
dltal bezdrt szbg/, valamint az (F4.1 =f4.4) kifejtési
formuldk segitségével igazolhatdk [17] az aldbbi for-
nuldk:

A !+L| i
&l(K"i-iWYL (F,-7)= b2 (D L L. (50 «
L(

l_“
gy k) Yo B Cuemd Yo (), mym  (F 4.7)

4) 9.+L'
LA ACRE AT ACOND I I (P
Ll

Lll

(F 4.8)

)

% (Q--(KT‘)YL“ (#) lq:,)(xn;) Yoy, m<m,
140 '
i,z(Kﬁ’z.-del)yL(,;t_ 7)) = li')tLZ(—ﬂ Z IL" (L; L") x @ 4.9)
' Lll

X ian (K’T‘ )yl_l\(’;‘) {('(KmisyU (/;1) /

)

Q'-{ _Ul
T A I ke WAk I

xhv.mmyu«(f?.)}v(kn\yu(f&) g My
L I ‘
n (k17 —E DY (5 -7 y=hnid 2o L (L L)«
| T (7 4.11)

x }e,, (K’\'A)yl_n (=) n{,(wrl)y (A T L A

by A |
ﬁ(lepﬁl)yL(/i_ﬁ)=147th . IL"(L-,L')X (F 4.12)
L|

Lll

X ‘S'U,(k'n)y,_u(’ﬂ)j{,(liﬂ’,.)y,_u ("':L) .
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SZAMITOGEPI LISTAK

Jelmagyardzat:

A bemend adatok:

A molekula geometriai adatai utén az dllapotok
folsoroldsa kdvetkezik és az dllapothoz tartozd irre-
ducibilis reprezentdcid.

A kimendé adatok:

EPS: Az elért self-consistent field.

E: A sajatérték /Ry/ az illetd iterdcidban

Q(I): Az I. centrum t&ltése

H: A radidlis beosztds /R/ léptéke

CHANGE POINTS: A radidlis beosztdsban a blokkhatdrok
indexe. ,

V: A self consistent field potencidl.
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0

molekula
wUiBeR QF CENTEXRS® &  OUTER SPHERE AT CENTER 1
AT oy PuSITION RADIUS EQ
7 OCUTR 1 IRV 0,0 045583 149501 0
P JiA T o} Qa0 0.0 0.3 1|"L’.1[’J 0
5 HY 1 Jad 214454y 141265 Hik152 U
4 HY.& 1 Q43 114549 141265 046132 3
15 2 U G U 0 3 i J Ues0U00
gavl =36G,00000 2400000 1 1 54 0
LINMENSTON UFR SECULAR MAT=IX® 5 DEGENERACY® 2
BaglS FUNCTION wOs 1 k= J., HO« OF TERUS= 1
S I= 1 ATu® Ngs= 1 ChS 1¢0000000000
BASIS FPUMCTION HOs 2 L= 1 Nos OF TERHMS= 1
Me 0 I= 1 ATOT 40«2 1 CN= 140000000C00
A BASIS FUNCTIUW 0w 3 &= 73 NGy OF TERis= 1
1 = 0 I= 1 ATG HQges 2 CA® 100000000000
Ba81S FUNCTION WO & k= NOs OF TERISE
M= 0 I= 1 ATod NQse= 2 CN= 1000000600000
BaglsS PUuNCTION wDs 5 L2 9D NOs OF TERMs= &
CE I= 1 ATQA NQe= 3 Cii= 047071067691
= 0 Iz 1 ATOM NQeE & CN= 0070721007691
NO OF TWEGWJIVALENT ATOMsa 3
“Os OF COEFFICIENTS® b FMAXsSUBSCRIPT= 3
2400 =9,50000 04200990 1 1 5. 0
2100 ®C,500¢C0 Celulul 1 1 Su 0
2:00 ®0,7500C Ca100ud & 1 5u o)
LINENSIOn UF SECULAR MATRIX= 2 DEGENERACY® 2
BASIS FulCTION ®OW 1 L= 1 NCs OF TERMs=2 1
B e 1 I= 1 AToH dues 1 CN® 100000000009
1 8ASIS FUNCTION Gy 2 b= 0 MUs QF TE®NS= 1 :
Me 1 I= 1 ATO™ Nges 2 (= 140000000C07
NQO OF TWEWUIVALENT ATunss 2
0. OF COEFFICIENTS® 7 MAXWSUBSCRIPTE 7
2sU0 ®0, 85000 0410000 5 1 5u 0
LIvEnsION UF SECULAR MATHIX= 3 DEGENERACY® 2
BASIS FunCTION nOw 1 L= 1 Nos OF TERMs= 1
SERE I= &1 ATUM Nog= 1 CN= 140000000000
B BASIS FUNCTION wOo 2 L= 1 No.« OF TERMSE 1
Z Ma 1 I= &1 AT Noe® 2 CN2 140000000000
BASIS FUNCTION wOs 3 k= 0 NGe OF TERtS= 2 -
Me 0 I= 1 ATUY NQ«® 3 CA= 017071067691
Me 0 Is= 1 ATOY NQe= & QN= &0,47071067691
NO OF IHEQUIVALENT ATOMSS 3
MOy OF COEFFICIENTSH 8 MAXsSUBSCRIPT= T



INTERSPHERE CMARGES
Q¢ 1= 1,4525290E Cu

STATE 1 oOcups
Q¢ 1)% 3,0305184E80¢g
INTENSPHERE CHARGE®=

STATE ¢ 0OCup®
GC 1)= 1,1522818EaC)
INTERSPHERE CHARGE=

STATE & OCUp®
Q¢ 1= 2,0652839Ee0]
INTERSPHERE CHARGE=

STATE & OCUp®
Q¢ 1) 1,4703311E=(1
INTERSPHERE CHARGE=

STATE » Oc¢Up®
Q¢ 1)e 2,uP67748Ea0
INTERSPHERE CHARGES

XMLPHA STATISTICAL TOTAL EJERGY® =21,5223155E 02

ITERATION 8 Epg=
11964390¢E OV

QC 2)B i138¢2074E 00  QF 308 4y7435448E%02

2200 EET =5,7502472€ 01 HEXT
Q¢ 2)= 1400ulu0ue J0 G 3)=
Vil

2400 E= %1,7957802E U  NEXT
QC 2)2 6uabks57665E501 QL 3)=
1¢8914032E%01

2aU)  E® %7,60124T8E801 NEXT
GC 2)= 5¢8919507E%017 Q¢ 3)=
] l91(:?805£‘f()7

c100 [E= 47,1450502E801  HEX)
GC 2)m geUdak225E%07 w( 3)=
1164525728201

g0 EZ SU,02085B0E@01 NEXT
GC 2= 5401092063E=017 QC 3)=
csUG851018401

CONSTANT POTEWTIALE @0,1570927E U1

6172328848503

B8 @3,7474777E
141209720E=09

Ez #1,7859449E
545277757E=03

E= #7,5799507E%01
EeaUU0674E=03

Ee @7,0511776E=01

Es =7,9388928E%01
1417898586402

42 4 l435445E202
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1/ Parcidlis hulldmok a kiilsé gombre és kenre 6-—4-1g.
dllapot befagyasztva.
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2/ A régi és uj toltéssiirliségek dtlaga szerepel a potencidlok
dtlaga helyett.

A befagyasztott dllapotok az eldézbvel azonosak.

A parcidlis hulldmok a kiils§ gombre és a kénre { =2-ig.
Emiatt 8z aldbbi irreducibilis elddllitdsokban lesz vélto=

z
zas:

Sl ®1,0CC00 Ca05000 5 1 54 ¢
‘ LWIMENSION “YF SECULAR MATHIX 1 NDEGEMERECY=R ¢
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M= 0 I= 1 ATOM Loem 3 Ch= Urs00duouuuVY
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- Me 1 I= 1 ATO™ Nuys 7 (N= Ji20yQuouyuY
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LIMEUSION “F SECULAR MATnIA= 1 DEGEERACYT o
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A t6bbi bemend adat véltozatlan.



INTENSPHERE CHARGE®
Q¢ 1)2 1,3053188E C¢
Qt 7)= ?,u?7584108 C0Q

STHTE i NCcUpe

Q¢ 1= 2,9883392Eale
Q¢ 7)e 1,uU3a0u28E901
INTERSPHERE CHARGE®

STATE 2

Qe 1)Y= 9,0
Q¢ ?)e 1 ,1131543E=01
INTERSPHERE CHARGES

ucup®

STATE & OCUps
QC 122 2 .2459616Em(2
Q¢ 7)* 1,28334,88Ea01
INTEKSPHERE CHARGE®

STATE 4 OCUpn
QC 1)% 4,2677265E=C¢
QC 708 1 ,1753243E=0
INTENSPHERE CHARGE®

ST;’\TE 2

Q¢ 1= g0
al 7)= 1,21062143E=C
INTEKOPHERE CHARGE®

Oclp=

ITERATION ¢ EPg=

1126423445 01

Q¢ 2)® 143590027E 01 a¢ 5)s
QC gl 7,u?58410E Qu Q¢
€400 E£2 4141789389E QU HEXT
QC 2)® 2y cbol2e5E802  GC 5)=
QC g)® T4U3400828E%017 Wl

3492720661E401

G100 B2 %21,u7539048F OU  HEXT
QC 2)8 y,v Q¢ §)=
QC 8)& 141131543E801 A
343210754C%01

4100 EB “244257412E 00  NEXT
GC 2= 1,vy9rT812E=0e  w( s)®e
GC 88 10c8334805E=01 QU
118756104E<01

4000 B2 w1,0921507E DO NEXT
GC 208 7y5al0l73E=0, GC 30
QC #8)e 1417532435E%07  al

14787118vE%0

6+00 EB =1,0111895E 00 NEXT
Ql 2= ¢yu Ql 4)s=
QC 8)8 142102143E%01  G¢
€17027130E=01

515846870E2u3

TaU758670E 00 Qf

Ea #1,1660%00E
1410340628Ea01
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Q(

00
ac

E2 «1,0672240¢E
101131543E=01

00
Qq

B =2,4107332E
112333488801

00
Q¢

Ee ®1.,0780524E
101753243801

E2 ®9,9586236E801
1121021435401 G(

w)m 24U758410E 00

sping 1  SYMMETRY
4)8 1,U%240828E=01

SpInN= 1 SYMMETRY
4)8 141131543E=01

SPIN= 1  SYMMETRY
4)8 1 2833488E=0

SPINE 1 SYWMMETRY
4)2 141753243E=01

SPIN2 1 SYMMETRY
4)2 1421621435E01

S e 7,UPsB4L10E 00
)2 1,U240828E201
by= 1411315436201
5)s 1,£333488E201
5)e 111752243E%01
5)= 142162143E201



STATE & OCUp®

Q¢ 1)# 1,3304077EuC2

Q¢ 7)2 1,2002558E=C
INTERSPHERE CHARGE®

STATE 7 OCUp®

QC 108 6,4290836EaC3
Q¢ 7)= 7,78¢7334E=0¢
INTEXSPHERE CHARGES

STATE o OCUp™

Q¢ 1)=8 1,U963768E=(1
Q¢ 7)=2 9,6057236Ea02
INTEKSPHERE CHARGE®=

STATE v OCUp

Q¢ 1)® 1,U3u3453Ea02
Q¢ 7)% 9,6550U20E02
INTEKSPHERE CHARGE®

STATE 1u OCUp®

Q¢ 1) 2,15r0172EaC2
QU 7)® £.9778919Em(2
INTEXSPHERE CHARGE®

XALpHA STATISTICAL TOTAL E.eRaY® “1,67509y0u U3

€100 E= #2,68Y7661E 0U  NEXT
Qt 2)e weobrlegoeb=sdy  Qf 3)=
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0s00 E& =1,37207938E 00  HEXT
Q¢ 2)= o, ibybapsE=0r Gl 3)s
QC 8= 7,7827534E%0¢2 QX
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INTCHSPHERE CHARGE® 112039832E 01

¢ 1% 1,2871006E UG
C 70® 7,1024440E C4

STATE 1 OCUR®
16 1) 1 ,0771002EmCE
36 7% 9,83kQ007E=Ce
INTEGKSPHERE CHARGE®R

STATE 2 OCUp®

JC 12 241714516Ealg
Q¢ ?)® 7,U615590E8C2
ANTERSPHERE CHARGE®

STATE & OCUgs

Qb 1)= 2,2595212E802
Ql=7)8-142829620E301
INTERSPNERE CHARGE®

STATE & OCUp®
QC 108 4,2685925Em0¢
Qe 7)ea 1 ,1779940E801
" INTERSPHERE CHARGE®

STATE 5

Q¢ 103 Q40
Q¢ 7)= 1,2140548EeC
INTEKWSPHERE CHARGEE

Dcupe

STATE o OcUpe
0Ne 139 1,3451704E902
G 7Y%= 1,19v72235E80

IHTERSPHERE CHARGE®

STATE ¢ OCUpe
QC 1)8 6,3341406E=C3
Q¢ 7)% 7,8569797EmQ2
INTERSPHERE CHARGE®

STATE & OCUp®

Q¢ 1) 1,1002098E901
Q¢ 7)= 9,5954001€E%0¢2
INTEHSPHERE CHARGE®

117896652E501

ITERATION & Erys
Q¢ 2)8 145450297E 01 ¢ 3)=
Q¢ 8)® ?11024440E 00 Gt
2100 ES @2.0647377E 00  NEXT
QC 208 JTynouloSTE=)) Uy )=
Q¢ )8 9,0320007E802 Gt
€15267029E%01
2400 E& ®1,0919603E 00 HEXT
Q¢ 2)8 3,5 1usbeuEa]) Wl 3)=
GC B)B 74U6155920EB02 G
L21U350361E%01
4y00 EB 22,4332801E 00 NEXT
Q¢ 2)8 1T4v7uUs558802 J( 3)=
weQe-g) 819 2829620EB01 Q¢
418792725E501
400 EB P1410U03919E 00 HEXT
Q¢ 208 7,16uU656E202 Ul 3)=
Q¢ 8)2 1,177994UEBQ1 Q¢

6400 E8 ®1,U207943E Oy IEXT

5904572116401

G( 202 ygu A 8=
Q¢ 8)® 1,¢140545E201 Q¢
2471567346501
6400 EB 22,5020847E 00  ABXT
Q¢ 2)= 4y5108u72E=Q2 G( 3)=
Q¢ d)® 141997223E%01 U
212357174640
6900 E® =1.384778CE 00 JEXT
Q¢ 2)m ¢, 1755544E801 n¢ 3)=
Q¢ B)® 74G56979PES0e Wi

|
6100 EB #1,0546557E 00 NEXT

QL 2)8 o 0958v45E402
Q¢ 8)B yy954001E20,

E16666691E%0

Ui 4=
G

215537097E201
7113024446E 00

ER @2 0669922E
Yy8320007E=02

Ed 21 ,7256498E
71061558CE=NR

8 92,4207945E
1428290208101

E® «1,0913057¢E
10177994UE~0

E8 21,0081091E
Te2140548E%01

Ee @z, 4880634¢E
141997223E=01

Eg 21 ,35897467E
Ti8589797E=02

g2 &1,04067758E
v15954001E802
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/J(
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Q¢

4)2 (i1ucubbot OO

SPIN T SYMMETRY
)T wiu4eQ007E=02

SEING T SYMMETRY
4)® 7iUC165590E802

SPING 1
4)3

SYMMETRY
1124¢96020E%01

SPING 1 SYMMETRY
4)% 11'1779940E=01

SPING ' SYMMETRY
4)% 132160548E%07

SPINT, V SYMMETRY
Q)% 1v19972235E801

SPING 1 SYMMETRY
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SPING 1+ SYMMETRY
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w
~r
)

w
~
1

(010244 40E 00

7,8320007E=02

F1U61559UER0e

|, 23250206901

14177994 0E=01

142140540E201

1a1997223E201

[,858679rFE=02

745954001E%0¢

- ga -



STATE v Ocupe
Q¢ 1)= 2,98¢511CEe(z
QC 7)% 1,0333794E9C

INTERSPHERE CHARGE®
STATE 1J OCUpe
Q¢ 1)8 (,0

Q¢ 732 1,1077350E%01 -

IHTERSPHERE CHARGE®
STATE 11 OcUp®
Q¢ 1)= Ugl
QL 772 0,0

INTERSPHERE CHARGE®

STATE 12 OCUp*
QL 1)® Q40 :
Gy 7)= 040
iNTLRSPHERE CHARGE®
_ STATE 13 oOcUp®
QL 13 0,0
Q¢ 7% 0,40
INTERSPHERE CHARGE=

€00

040

E2 41 ,1965018E 00  HEXT
QU 2)8 ¢y 19u0sgeERQe Q¢ 9=
GC 8)2 1.U333794E%07 Q¢
3128247076201
6100 E® 81,09Y37424E 00  HEXT
Q¢ 2)= Uy e 3)s
Q¢ 8)® 1,1077350E%017 Qt
3135359576201
29400 E2 #71,79U%020F 02 WNEXT
Q¢ 2)® 1,w0uUUOUE Du Q¢ a)=
GC 8)E 0y X

2900 E® 91,5325292E 01 HEXT

Q¢ 28 1,U0uvuiduE U
QC 8)8 (qU
G0

Qg e
R4

6000 &% 87,1682519E 01 HEXT

QC 2)8 T¢YJUuvuulE Ou
Q¢ 8)% Qv
qu

STATE 14 DCUP® 12900 E2 @4,3927474¢ 01

Qs ])? 04V
QL 738 1,066666GERC
INTERSPHERE CHARGE®

Q¢ 2= 04U
QC B)® 119600669E80
Ug%

QC 3)=
PR

NEXT
¢ 3)=
R

Ee @) ,1799555E
T10333794E20

E2 281,0745621E
191077550E=01

= @] ,7797141¢E
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Je0
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UNRY

Ee W4, 8860¢91E
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0y
Q¢

00
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u2
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Qg

0
Qq

SPINS, T SYMMETRY
4)8 120333 704E=01

SPIN® 1 SYMMETRY
4)8 141077350ER01

SPIND 1 SYMMETRY
W)e QU

SPIN, T SYMMETRY
G)® yiu

SPING 0 SYMMETRY
4)® YU

SPInN, 1 SYMMETRY
4)2 116666669E201
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