
In our dissertation we deal with single and double trigonometric series with

nonnegative coefficients which are absolutely convergent. Since absolute conver-

gence implies uniform convergence, the sums of these trigonometric series exist at

each point and they are continuous functions. It is well known that if a trigono-

metric series is uniformly convergent, then it is the Fourier series of its sum. We

investigate the order of magnitude of the coefficients in order that the sum of the

trigonometric series in question belong to one of the Lipschitz classes Lip α, lipα

and Zygmund classes Λ∗, λ∗ in the case of single series; and to one of the classes

Lip(α, β), lip(α, β), Λ∗(1, 1), λ∗(1, 1) in the case of double series. We give necessary

and sufficient conditions in terms of the coefficients.

1. Known results: single trigonometric series

Given a sequence {ai : i = 1, 2, . . .} of nonnegative numbers such that

(1.1)
∞∑

i=1

ai < ∞,

then the sum of the cosine series

(1.2)
∞∑

i=1

ai cos ix =: fc(x)

and the sum of the sine series

(1.3)
∞∑

i=1

ai sin ix =: fs(x)

are continuous functions, due to uniform convergence. Thus, the series in (1.2) and

(1.3) are the Fourier series of their sums fc(x) and fs(x), respectively.

Relying on the relevant papers by R.P. Boas [2] and J. Németh [11] we briefly

summarize the basic definitions and theorems relating to cosine and sine series.

First we present the results on the Lipschitz classes Lipα and lipα.

We say that a 2π-periodic function φ belongs to the Lipschitz class Lipα for

some α > 0 if there exists a constant C = C(φ) such that for all x and h we have

|φ(x + h) − φ(x)| ≤ C|h|α.
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Furthermore, we say that a 2π-periodic function φ belongs to the little Lipschitz

class lipα for some α > 0 if

lim
h→0

|h|−α[φ(x + h) − φ(x)] = 0

uniformly in x.

It is clear that lipα ⊂ Lipα for all α > 0.

We note that in the case α = 0 we may define Lip 0 as the class of bounded

functions and the class lip 0 as the class of uniformly continuous functions. It is

well known that if φ ∈ Lipα for some α > 1 or if φ ∈ lipα for some α ≥ 1, then

φ is a constant function. Therefore, in the sequal we consider the classes Lip α for

0 < α ≤ 1 and lipα for 0 < α < 1.

R.P. Boas proved in 1967 the following theorems.

Theorem 1.1 (Boas [2]). Let {ai : i = 1, 2, . . .} be a sequence of nonnegative numbers

such that condition (1.1) is satisfied and denote by f either fc or fs defined in (1.2)

and (1.3). Then f ∈ Lipα for some 0 < α < 1 if and only if

(1.4)

∞∑

i=m

ai = O(m−α), m = 1, 2, . . .

or equivalently

(1.5)
m∑

i=1

i ai = O(m1−α), m = 1, 2, . . . .

Theorem 1.1 remains valid if we replace Lipα by lipα and ”O” by ”o”.

If α = 1, then the situation is more complicated, since in this case the cosine

and sine series behave differently. In particular, in case α = 1 Theorem 1.1 and the

equivalence of conditions (1.4) and (1.5) are no longer true. It is not difficult to check

that in case α = 1 condition (1.5) implies (1.4), but not conversely. However, the

stronger condition (1.5) is necessary and sufficient for a sine series to belong to the

class Lip 1, as the following theorem shows.

Theorem 1.2 (Boas [2]). Let {ai : i = 1, 2, . . .} be the same as in Theorem 1.1, and

let fs be defined in (1.3). Then fs ∈ Lip 1 if and only if
m∑

i=1

i ai = O(1), m = 1, 2, . . . .
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We note, that the sufficiency part of Theorem 1.2 was proved by Boas in a

different way. Our method provides a new proof of the sufficiency part of Theorem

1.2.

Boas [2] presents examples of cosine series to demonstrate that in case α = 1 the

stronger condition is not necessary, while the weaker condition (1.4) is not sufficient

for fc(x) to belong to the class Lip 1. However, condition (1.4) together with another

condition are necessary and sufficient for fc(x) to belong to Lip 1, as the following

theorem shows.

Theorem 1.3 (Boas [2]). Let {ai : i = 1, 2, . . .} be the same as in Theorem 1.1. If

α = 1, then fc ∈ Lip 1 if and only if

∞∑

i=m

ai = O(m−1), m = 1, 2, . . .

and
m∑

i=1

i ai sin ix = O(1), m = 1, 2, . . .

uniformly in x.

Before stating the next theorems we recall the definitions of the Zygmund func-

tion classes Λ∗(α) and λ∗(α).

The Zygmund class Λ∗(α) (α > 0) consists of all continuous, 2π-periodic func-

tions φ for which there exists a constant K = K(φ) such that for all x and h we

have

|φ(x + h) + φ(x − h) − 2φ(x)| ≤ K h.

Furthermore, the little Zygmund class λ∗(α) (α > 0) consists of all continuous,

2π-periodic functions φ for which

lim
h→0

h−1[φ(x + h) + φ(x − h) − 2φ(x)] = 0

uniformly in x.

It is plain that λ∗(α) is a proper subclass of Λ∗(α). It is well known that

Λ∗(α) = Lipα and λ∗(α) = lipα, if 0 < α < 1.
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On the other hand, we have

Λ∗ := Λ∗(1) ⊃ Lip 1 and λ∗ := λ∗(1) ⊃ lip 1.

Boas proved that for cosine series the weaker condition (1.4) in the case α = 1 is

necessary and sufficient to belong the class Λ∗, which is narrower than all the classes

Lipα with 0 < α < 1 and broader than the class Lip 1. J. Németh (see [11, Theorem

3] in the special case when ω1(h) := h) proved the same necessary and sufficient

condition in the case of sine series, too.

Theorem 1.4 (Boas [2], Németh [11]). Let {ai : i = 1, 2, . . .} and f be the same as

in Theorem 1.1. Then f ∈ Λ∗ if and only if

∞∑

i=m

ai = O(m−1), m = 1, 2, . . . .

Theorem 1.4. remains valid if we replace Λ∗ by λ∗ and ”O” by ”o”.

Thus, the sine and cosine series behave in the same way in the case of Λ∗ in spite

of the fact that they behave differently in the case of the narrower class Lip 1.

We note that it is enough to require the fulfilment of conditions like (1.4)–(1.5)

only for large enough m, say m > m0, where m0 is a positive integer.

2. New results: double trigonometric series

Now, let {aij : i, j = 1, 2, . . .} be a double sequence of nonnegative numbers such

that

(2.1)
∞∑

i=1

∞∑

j=1

aij < ∞,

then the double cosine series

(2.2)

∞∑

i=1

∞∑

j=1

aij cos ix cos jy =: fcc(x, y),

the double sine series

(2.3)

∞∑

i=1

∞∑

j=1

aij sin ix sin jy =: fss(x, y)
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and the double cosine-sine series

(2.4)

∞∑

i=1

∞∑

j=1

aij cos ix sin jy =: fcs(x, y)

converge uniformly, and in particular, their sums fcc, fss and fcs are continuous

functions. If we interchange the roles of cosine and sine in (2.4), then we obtain the

symmetric counterpart of (2.4), that is, the sine-cosine series

∞∑

i=1

∞∑

j=1

aij sin ix cos jy =: fsc(x, y).

Each theorem on series (2.4) can be naturally reformulated for the latter series.

Therefore, in the sequal we do not deal with this fourth series.

As in the one-variable case, we characterize those double trigonometric series

whose sum belong to some double (multiplicative) Lipschitz or Zygmund class. We

extend a few theorems of the previous chapter from single to double trigonometric

series.

We begin with the definitions of the two-dimensional multiplicative Lipschitz

classes Lip(α, β) and lip(α, β), where α, β > 0. The definitions are due to Ferenc

Móricz [8].

A continuous function φ(x, y), 2π-periodic in each variable, is said to belong

to the two-dimensional Lipschitz class Lip(α, β) for some α, β > 0 if there exists a

constant C = C(ϕ) such that for all x, y, h and k, we have

|φ(x + h, y + k) − φ(x + h, y) − φ(x, y + k) + φ(x, y)| ≤ C|h|α|k|β.

Furthermore, a function φ(x, y) is said to belong to the two-dimensional little

Lipschitz class lip(α, β) for some α, β > 0 if φ(x, y) belongs to Lip(α, β) and if

lim
h,k→0

|h|−α|k|−β[φ(x + h, y + k) − φ(x + h, y) − φ(x, y + k) + φ(x, y)] = 0

uniformly in (x, y) as h and k tend to 0 independently one another.

Similarly to the one-dimensional case, we consider only the case when 0 < α, β ≤ 1.
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The following theorems are motivated by the corresponding one-dimensional

theorems.

The first result is the extension of Theorem 1.1 from single to double series. Since

Theorem 1.1 is valid for both cosine and sine series, we expected that its extension

would be valid not only for double cosine and sine series, but for the mixed cosine-sine

series as well. Indeed, this is the case as the following theorem shows.

Theorem 2.1 (Fülöp [6], [7]). Let {aij : i, j = 1, 2, . . .} be a double sequence of

nonnegative numbers, such that condition (2.1) is satisfied, and let f be either fcc, fss

and fcs are defined by (2.2)–(2.4). Then f ∈ Lip(α, β) for some 0 < α, β < 1 if and

only if

(2.5)

∞∑

i=m

∞∑

j=n

aij = O(m−αn−β), m, n = 1, 2, . . . ,

or equivalently

(2.6)

m∑

i=1

n∑

j=1

ij aij = O(m1−αn1−β), m = 1, 2, . . . .

Theorem 2.1 remains valid if we replace Lip(α, β) by lip(α, β) and ”O” by ”o”:

Theorem 2.2 (Fülöp). Let {aij : i, j = 1, 2, . . .} and f be the same as in Theorem

2.1. Then f ∈ lip(α, β) for some 0 < α, β < 1 if and only if condition (2.5) or

equivalently (2.6) as well as the following condition is satisfied:

∞∑

i=m

∞∑

j=n

aij = o(m−αn−β), m, n → ∞

or equivalently
m∑

i=1

n∑

j=1

ij aij = o(m1−αn1−β), m, n → ∞,

where m and n tend to ∞ independently one another.

In the case when max(α, β) = 1 – like in the case of the one-dimensional series

– the cosine and sine series behave differently. Furthermore, Theorem 2.1 and the
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equivalence of conditions (2.5) and (2.6) are no longer true. Namely, condition (2.6)

is stronger than (2.5) if max(α, β) = 1.

Next, we extend Theorem 1.2 to double sine series. Similarly to the one-

dimensional case, the stronger condition (2.6) is the necessary and sufficient one

for the sum fss(x, y) to belong to Lip(1, 1).

Theorem 2.3 (Fülöp [6]). Let {aij : i, j = 1, 2, . . .} be a double sequence of non-

negative numbers such that condition (2.1) is satisfied and let fss be defined by (2.3).

Then fss ∈ Lip(1, 1) if and only if

(2.7)

m∑

i=1

n∑

j=1

ij aij = O(1), m, n = 1, 2, . . . .

We observe that for double sine series condition (2.7) formally coincides with

(2.6) when α = β = 1. It turns out that the class Lip(α, 1) for 0 < α < 1 can also be

characterized by condition (2.6).

Theorem 2.4 (Fülöp [6]). Under the conditions of Theorem 2.3 fss ∈ Lip(α, 1) for

some 0 < α < 1 if and only if

m∑

i=1

n∑

j=1

ij aij = O(m1−α), m, n = 1, 2, . . . .

The symmetric counterpart of Theorem 2.4 gives a criterion for fss to belong to

Lip(1, β) for 0 < β < 1.

Without claiming completeness, we raise the following problems which may be

the targets of further research.

(i) It is an open problem of how to characterize those double cosine series whose

sum belong to one of the classes Lip(α, β) when max(α, β) = 1, that is, to Lip(1, 1) or

Lip(α, 1) for some 0 < α < 1. We recall that the characterization of single cosine series

whose sum belong to Lip 1 and Lipα for some 0 < α < 1 was different. Therefore,

we even did not try to formulate a conjecture in the case of double cosine series.
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(ii) Likewise, the characterization of the mixed cosine-sine series is also open in

the case when max(α, β) = 1. Motivated by Theorems 2.1 and 2.3, we guess that

m∑

i=1

n∑

j=1

ij aij = O(m1−α), m, n = 1, 2, . . .

is the necessary and sufficient condition for the sum fcs(x, y) of series (2.4) to belong

to Lip(α, 1) for some 0 < α < 1. We have managed to prove the sufficiency of this

condition, but we were unable to prove the necessity part so far.

Next, we characterize the two-dimensional multiplicative Zygmund classes

Λ∗(1, 1) and λ∗(1, 1). The definitions are due to Ferenc Móricz [8].

The Zygmund class Λ∗(1, 1) consists of all continuous functions φ(x, y), 2π-

periodic in each variable, for which there exists a constant K = K(φ) such that for

all x, y, h, k we have

|∆(φ; x, y; h, k)| ≤ K h k,

where
∆(φ; x, y; h, k) := φ(x + h, y + k) + φ(x − h, y + k)

+ φ(x + h, y − k) + φ(x − h, y − k) − 2φ(x, y + k)

− 2φ(x, y − k) − 2φ(x + h, y) − 2φ(x − h, y) + 4φ(x, y).

The little Zygmund class λ∗(1, 1) is a subclass of Λ∗(1, 1) consisting of all those

functions φ(x, y) for which

lim
h,k→0

h−1k−1∆(φ; x, y; h, k) = 0,

uniformly in x and y, where h and k tend to 0 independently one another.

We remark that in a similar way to the one-dimensional case we can define the

two-dimensional function classes Λ∗(α, β) and λ∗(α, β) (α, β > 0). Since the relations

among these classes and the Lipschitz classes Lip(α, β) and lip(α, β) have not been

known yet in the literature, we do not deal with these classes in our dissertation.

In the case of the one-dimensional Zygmund classes, the cosine and sine series

behave in the same way. Therefore we expected that this will be the situation in the

case of the double cosine, double sine and mixed cosine-sine series, too. Indeed, this

same behavior is shown by the following theorem.
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Theorem 2.5 (Fülöp [4], [5]). Let {aij : i, j = 1, 2, . . .} be a double sequence of

nonnegative numbers, such that condition (2.1) is satisfied, and let f be either fcc, fss

and fcs, where fcc, fss and fcs are defined by (2.2)–(2.4). Then f ∈ Λ∗(1, 1) if and

only if

(2.8)
∞∑

i=m

∞∑

j=n

aij = O(m−1n−1), m, n = 1, 2, . . . .

We see that condition (2.8) formally coincides with condition (2.5) in Theorem

2.1 in the special case when α = β = 1. We have noted earlier that between the two

equivalent conditions that characterize the belonging to the Lipschitz class Lip(α, β)

for some 0 < α, β < 1, in the extended case α = β = 1, condition (2.8) is weaker

than condition (2.6) in the extended case α = β = 1.

The counterpart of Theorem 2.5 for the class λ∗(1, 1) is also valid.

Theorem 2.6 (Fülöp [4], [5]). Under the conditions of Theorem 2.5, f ∈ λ∗(1, 1) if

and only if condition (2.8) is satisfied and

∞∑

i=m

∞∑

j=n

aij = o(m−1n−1), m, n → ∞,

where m and n tend to ∞ independently one another.

We note that analogously to the single series it is not difficult to check that it

is enough to require the fulfilment of conditions like (2.5)–(2.7) for large enough m

and n, say m > m0 and n > m0, where m0 is a positive integer.

3. Auxiliary results

The following auxiliary results play key roles in the proofs of one- and two-

variables Theorems.

Lemma 3.1 (Boas [2], Móricz [9]). Let {ai : i = 1, 2, . . .} be a sequence of nonnegative

numbers such that condition (1.1) is satisfied.
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(i) If γ > µ ≥ 0 and

(3.1)

m∑

i=1

iγai = O(mµ), m = 1, 2, . . .

then

(3.2)

∞∑

i=m

ai = O(mµ−γ), m = 1, 2, . . .

(ii) If γ ≥ µ > 0, then the converse implication is also valid.

Comparing statements (i) and (ii) shows that in case γ > µ > 0, conditions (3.1)

and (3.2) are equivalent. In fact, this equivalence was stated by Boas [2, Lemma 1]

without proof. The inclusion of the endpoint cases (that is, when γ = µ or µ = 0) is

due to Ferenc Móricz [9, Lemma 1].

We note that in the proofs of the one-dimensional theorems Boas made use of

another lemma (see [2, Lemma 2]). We have managed to simplify the proofs of these

theorems so that Lemma 3.1 above was enough to complete the proofs.

The following version of Lemma 3.1 is also true.

Lemma 3.2. Under the conditions of Lemma 3.1, conditions (3.1) and (3.2) are

equivalent in the case γ > µ > 0 when the ”O” is replaced by ”o” in (3.1) and (3.2).

We give the extensions of Lemmas 3.1 and 3.2 to double series.

Lemma 3.3 (Fülöp [6]). Let {aij : i, j = 1, 2, . . .} be a double sequence of nonnegative

numbers such that condition (2.1) is satisfied.

(i) If γ > µ ≥ 0, δ > ν ≥ 0 and

(3.3)

m∑

i=1

n∑

j=1

iγ jδ aij = O(mµnν), m, n = 1, 2, . . .

then

(3.4)

∞∑

i=m

∞∑

j=n

aij = O(mµ−γnν−δ), m, n = 1, 2, . . .
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(ii) If γ ≥ µ > 0 and δ ≥ ν > 0, then the converse implication is also valid.

Comparing statements (i) and (ii) shows that if γ > µ > 0 and δ > ν > 0, then

conditions (3.3) and (3.7) are equivalent.

Lemma 3.4 (Fülöp [7]). Under the conditions of Lemma 3.3, if (3.4) is satisfied in

the case γ > µ > 0 and δ > ν > 0 then

m∑

i=1

n∑

j=1

iγ jδ aij = o(mµnν), m, n → ∞

and
∞∑

i=m

∞∑

j=n

aij = o(mµ−γnν−δ), m, n → ∞

are equivalent, where m and n tend to ∞ independently one another.

The interested reader may find further information on the one-dimensional Lips-

chitz and Zygmund classes in the monographs by N.K. Bary [1], R. DeVore and G.G.

Lorentz [3] and A. Zygmund [12] (each of these is available in English) as well as by

I.P. Natanson [10] (which is available in Hungarian).
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[4] V. Fülöp, Double cosine series with nonnegative coefficients, Acta Sci. Math.

(Szeged) 70 (2004), 91-100.
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