
PHD ÉRTEKEZÉS

HIERARCHIKUS ÉS RENDEZETLEN 

RENDSZEREK KRITIKUS 

VISELKEDÉSE

írta: Szalma Ferenc

Témavezető: Dr. Iglói Ferenc 

egyetemi tanár

JATE ELMÉLETI FIZIKAI TANSZÉK 

SZEGET)
1998



ф

Tartalom] egyzék

1 Bevezetés 3

2 Statisztikus fizikai áttekintés
2.1 Modellek, mennyiségek, fázisátalakulások ............

2.1.1 Spin modellek....................................................
2.1.1.1 Ising-modell......................................
2.1.1.2 Potts-modell......................................

2.1.2 Statisztikus fizikai átlagok..............................
2.1.3 Fázisátalakulások..............................................

2.1.3.1 Renormálási csoport transzformáció
2.1.3.2 Skálázás..............................................
2.1.3.3 Kritikus exponensek........................
2.1.3.4 Perturbációk, relevancia-irrelevancia kritériumok .... 17
2.1.3.5 Konform invariancia

2.2 Számolási technikák ........................
2.2.1 Transzfermátrix módszer . .

2.2.1.1 Ising-lánc transzverz térben (szabad fermion leírás) . . 22
2.2.2 Monte Carlo-módszerek

8
8
8
9
9

10
12
12
14
16

18
20
20

29

3 Véletlen kötésű Ising-rendszerek vizsgálata
3.1 Bevezetés....................................................
3.2 Előzmények..................... ........................
3.3 Kétdimenziós hígított Ising-modell . . .

3.3.1 Tömbi fázisátalakulás...............
3.3.2 Felületi fázisátalakulás...............

37
37
37
41
42
45

4 Hierarchikus kölcsönhatású modellek
4.1 Bevezetés ....................................
4.2 Felületi mágnesezettség............

49
49
50

1



TARTALOMJEGYZÉK 2

4.3 Határfelületi fluktuáció ....
4.4 Renormálási csoport vizsgálat

5 Összefoglalás

57
61

68

Függelék 70

Angol nyelvű összefoglaló 71

Köszönetnyilvánítás 77

Irodalomj egyzék 78



í. fejezet

Bevezetés

A két tapasztalatból is legismertebb fázisátalakulás a folyadék-gáz, illetve a ferromág- 

nes-paramágnes fázisátalakulás. A folyadék-gáz és a mágneses fázisátalakulás első 

elméleti leírása van der Waals [96] és Weiss [100] nevéhez fűződik, akik az átlagtér el­
mélet keretében vizsgálták a két különböző rendszert, ahol a rendszert alkotó részecs­
kék a többiek által keltett homogén potenciál-, vagy mágneses térben helyezkednek el. 
Ezen klasszikus elméletek — a '30-as években — a Landau-elméletben [55] [56] nyer­
ték el végleges alakjukat, amelyben bevezetésre került a rendparaméter fogalma. Ezen 

elmélet alapfeltevése szerint a különböző termodinamikai mennyiségek a fázisátala­
kulási pont környékén sorb afej the tők a rendparaméter szerint. Ezen sorok vizsgálata 

tette lehetővé a fázisátalakulások pontosabb megértését.
A statisztikus fizikában jellemző sokrészecskés bonyolult rendszerek fázisátalaku­

lásainak elméleü vizsgálatában az első analitikus megoldás a kétdimenziós Ising-mo- 

dell Onsager-féle megoldása (1944) [70], amely lehetőséget adott a klasszikus elmé­
lettel való összehasonlításra. A két elmélet diszkrepanciája (az eltérő kritikus expo­
nensek) rávilágított a klasszikus elmélet hiányosságaira, a korrelációk nem megfelelő 

figyelembevételére és a fluktuációk szerepére.
Másodrendű fázisátalakulásokban nagy szerepet játszó korrelációs hossz fontossá­

gát és a fluktuációk szerepét a '60-as években ismerték fel Ebben az időben születik 

meg a Widom-féle skálahipotézis [101] [102] és a Kadanoff-féle blokkspin transzformá­
ció [46], amelyek mind elemei a fázisátalakulások később kialakuló általános elméleté­
nek. A kísérleti eredmények arra utaltak, hogy a kritikus exponensek nagyfokú univer­
zalitást mutatnak függetlenül az anyagi minőségtől [21] [47], függetlenül az anyag mik­
roszkopikus kölcsönhatásainak erősségétől. Ezek sem adták azonban vissza a klasszi­
kus elmélet exponenseit és több univerzalitási osztály létezésére is utaltak. Továbbá a 

különböző hőmérsékleti sorfejtések is alátámasztották a kritikus ponthoz közeli skála-
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1. FEJEZET BEVEZETÉS 4

viselkedést.
Az áttörést a térelméletekben már korábban is ismert renormálás alkalmazása jelen­

tette (Wilson 1971) [103], amely a rendszert a renormálási csoport transzformáció során 

egy kevesebb szabadsági fokkal, de azonos tulajdonságokkal (pl. azonos szimmetriájú 

Hamilton-operátorral) rendelkező rendszerre képezi le, amelynek ötlete abból szárma­
zik, hogyha a rendszerben levő karakterisztikus hosszúság — amelyet a korrelációs 

hossz jellemez — végtelenné válik, akkor a rendszer önhasonló [16], azaz bármekkora 

részekre bontva azt, és a részekben a szabadsági fokokra átlagolva, az ezen transz- 

formáció során kapott új rendszer ugyanolyan jelleget ölt a kritikus pontban, mint az 

eredeti. Az azonos dimenziójú és azonos Hamilton-operátorra vezető rendszerekre az 

eljárás azonos kritikus exponenseket ad, így az elmélet magyarázatot adott arra, hogy 

miért lehetnek meglehetősen különböző fizikai rendszerek kritikus tulajdonságai azo­
nosak. Magyarázatot adott továbbá a skálahipotézisre, illetve a kritikus exponensek 

közötti összefüggésekre.
Az átlagtér elmélettel csak homogén kölcsönhatású rendszerek voltak vizsgálhatók, 

amelyet a Landau-elmélet általánosítása tett alkalmassá felületek fázisátalakulásainak 

vizsgálatára.
A kísérleti technika gyorsütemű fejlődése tette lehetővé a nem homogén (felületek­

kel, hibavonalakkal, -helyekkel, aperiodikus kölcsönhatás-modulációval rendelkező) 

rendszerek vizsgálatát. A kvázikristályok [79] kísérleti felfedezése és a jó minőségű 

atomi rétegeket tartalmazó anyagok (multirétegek) [67] előállítását lehetővé tevő, mo­
lekulasugár epitaxia kifejlődése óta erőteljes elméleti érdeklődés indult meg az aperio­
dikus struktúrák [58] — az olyan „geometriai" jellemzők, mint az önhasonlóság vagy 

kváziperiodikusság hatása [25] a rendszer fizikai jellemzőire — tanulmányozása iránt. 
A '90-es évek első feléig alapos vizsgálat tárgya volt az ilyen rendszerek fonon, illetve 

elektronspekruma [44] [28].
A '90-es évek elején kezdődött az aperiodikus rendszerek (pl. spinrendszerek) ko­

operatív viselkedésének — főként kritikus tulajdonságainak — vizsgálata. Jellemzően 

alacsonydimenziójú modell rendszereket vizsgálnak e területen, mint pl. a kétdimen­
ziós rétegesen aperiodikus klasszikus Ising-modell, vagy az ennek megfelelő egydi­
menziós aperiodikus kvantum Ising-modell [62] [33]. Ezen aperiodikus rendszerek­
ben létrejövő fázisátalakulások megváltozásának kérdése már a homogén kétdimen­
ziós Ising-modell analitikus megoldása után felvetődött.

A korai periodikus [17] és véletlen réteges J66] kétdimenziós modellek (McCoy- 

Wu-modell) után a kváziperiodikus [58][19] és hígított [90][61][11][38][40] modellek 

elméleti [37] és — a számítógép kapacitások növekedése folytán egyre pontosabb —
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numerikus [89] [13] [34] és kísérleti vizsgálatok sokasága jelent és jelenik meg napjaink­
ban is a szakirodalomban.

Heurisztikus perturbatív kritériumot sikerült felállítani a hígított mágnesek (mint 
amilyen például a véletlen kötésű Ising-modell) fázisátalakulása perturbáció hatására 

történő megváltozására [22]. A perturbáció relevanciája a homogén rendszer fajhő ex­
ponensével hozható kapcsolatba. Hasonló — a homogén rendszer kritikus exponen­
seivel, illetve a perturbációt jellemző ún. vándorlási exponenssel megadható — krité­
riumot találtak a gyengén perturbált aperiodikus rendszerekre is [62][63], amelyeket 
mindezidáig minden egzakt és numerikus vizsgálat alátámasztott. Ezek azonban leg­
feljebb kvalitatív képet adnak az inhomogenitás hatásáról.

Az alkalmazott vizsgálati módszerek egyik leghatékonyabbika a már említett re- 

normálási csoport transzformáció, amely általános elméleti jelentősége mellett, számí­
tási módszert is ad. Jónéhány nem triviális probléma megoldása vált segítségével le­
hetővé, mint pl. a kétdimenziós háromszögrácson értelmezett Ising-modellé [26], vagy 

különböző diffúziós folyamatoké bizonyos fraktál struktúrákon [20]. A módszer ter­
mészetes módon ad lehetőséget az önhasonló struktúrák vizsgálatára, mint amilyenek 

a dolgozatban is vizsgált hierarchikus rendszerek.
Hasonlóan jól alkalmazható módszernek bizonyult a — Kramers és Wannier [53] [99] 

által először alkalmazott — transzfermátrix technika, amely a kétdimenziós Ising-mo­
dell Onsager-féle megoldásában is nagy szerepet játszott. Segítségével egyszerűen: a 

mátrix legnagyobb sajátértékeinek meghatározásával megkaphatjuk a vizsgált rend­
szer szabadenergiáját, illetve korrelációs hosszát. A homogén rendszereken kívül egy­
aránt alkalmas hígított [1][78][88] és aperiodikus rendszerek vizsgálatára tetszőleges 

kötéskiosztások és csatolási erősségek mellett.
Széles körben elterjedt a ma már nemcsak integrálok kiszámítására alkalmazott 

Monte Carlo-szimuláció, amellyel — a számítógép kapacitások rohamos növekedésé­
nek köszönhetően — mezoszkopikus méretű statisztikus rendszerek tulajdonságai is 

vizsgálhatók. A '80-as évek végén diszkrét spinrendszerekre kidolgozott klaszterflip 

Monte Carlo-módszerek (amelyek nemcsak egy vagy néhány spint fordítanak át egy 

lépésben, hanem egész tartományok spinje változik meg), mint a Swendsen-Wang [91] 
és a még ennél is gyorsabb Wolff-féle [104] módszerek — amelyek a dinamikai expo­
nens zérushoz közeli értéke miatt alig mutatnak kritikus lelassulást a kritikus hőmér­
séklet közelében — olyan problémákra is alkalmazható, mint a hígított kétdimenziós 

Ising-modell fázisátalakulásának vizsgálata, amelyben a térelméleti jóslatokból ismer­
ten csak bizonyos rendszerméretek felett mutathat a minta a már a hígított modellre 

jellemző, a tiszta rendszerétől esetleg eltérő kritikus exponenseket. A módszer előnye,
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hogy a rendszer tetszőleges része, vizsgálható: a felület és a tömbi részek is, ellentétben 

más, egyébként szintén hatékony módszerekkel, mint pl. a csillag-háromszög transz- 

formáció [27], amellyel csak a rendszer felületéről kaphatunk információt.
Ez a dolgozat a fenti módszerek alkalmazásával vizsgálja önhasonló (hierarchikus) 

és hígított spinrendszerek fázisátalakulásait, illetve az önhasonló potenciálban elhe­
lyezkedő irányított polimerlánc viselkedését.

A dolgozat 2. fejezete áttekintést ad a későbbiekben vizsgált vagy felhasznált klasszi­
kus és kvantum spinmodellekről és példát ad lehetséges fizikai realizációjukra. A re- 

normálási csoport transzformáció általános keretei között bevezetem a másodrendű 

fáziátalakulások esetén később felhasznált fogalmakat és a kritikus exponensek de­
finícióit. Röviden bemutatom a felhasznált módszereket: a transzfermátrix technikát, 
amelynek keretein belül részletezem a kétdimenziós klasszikus Ising-modell és az egy­
dimenziós transzverztérbeli kvantum Ising-modell kapcsolatát. Tárgyalom továbbá a 

spinrendszerekre alkalmazott alapvető Monte Carlo-algoritmusok lényeges elemeit. A 

disszertáció további fejezetei a saját eredményeket tartalmazzák.
A 3. fejezet a kétdimenziós hígított Ising-modell felületi fázisátalakulásaira kapott 

eredményeket tartalmazza. Nagypontosságú, klaszterflip Monte Carlo-algoritmusok 

segítségével — a más módszerekkel való összehasonlíthatóság kedvéért — az (11) fe­
lületre végzett vizsgálatokkal a hőmérséklet függvényében a kritikus pont közelében 

(és attól viszonylag távolabb is) effektiv mágnesezettségi exponenseket kaptunk, ame­
lyekből a számolás pontosságán belül extrapolálni lehet az aszimptotikus kritikus ex- 

ponenesre. Megvizsgáltuk a tömbi kritikus viselkedésben már korábban tapasztalt — 

és többek által vitatott — ún. „túllövést" különböző hígítások mellett, illetve vizsgál­
tuk a mágnesezettségi és exponens profilokat is.

A 4. fejezet három részre tagolódik három különböző vizsgálat szerint. Az elsőben 

a hierarchikus sorozatnak megfelelő csatoláskiosztású egydimenziós transzverz Ising- 

modell felületi kritikus viselkedését vizsgálom. A felületi mágnesezettségi exponens 

a sorozat önhasonló struktúrájának köszönhetően analitikusan egzaktul meghatároz­
ható. A sorozat kétféle általánosítása esetén is megvizsgáltuk az exponenseket, illetve 

a fázisátalakulások jellegét.
A második vizsgálat a rétegesen hierarchikus kétdimenziós Ising-modell kétféle 

spinállapotú fázisát elválasztó határfelület fluktuációjára — amely megfelel az önha­
sonló potenciálban bolyongó részecskének, vagy a potenciálba behelyezett irányított 
polimernek — vonatkozik. A fluktuáció természetes módon vizsgálható a transzfer­
mátrix módszer segítségével, amelynek legnagyobb sajátértékei véges méret skálázá­
sából következtethetünk a határfelület vándorlási exponensére.
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A harmadik vizsgálat egységes keretek között tárgyalja a Ising-modell fázisátala­
kulását, illetve a határfelület fluktuációját hierarchikus kötéskiosztású rács esetén. Az 

egységes tárgyalást az teszi lehetővé, hogy a határfelület bolyongásának transzfermát­
rixa megegyezik a kvantum Ising-lánc energiasajátérték-problémájára kapott mátrix­
szal. A két feladat a mátrixok elemeinek és sajátértékeinek renormálásával oldható 

meg a korábban az aperiodikus sorozatokra kidolgozott renormálási csoport módszer 

segítségével. A megoldások két különböző fixponthoz tartoznak a renormálási cso­
port transzformációban. így analitikusan vizsgálhattuk az Ising-modell anizotrópia 

exponensét [29][6]: a korrelációs hossz más-más exponensekkel skálázódik a rétegekre 

merőleges irányban és azokkal párhuzamosan. A bolyongó esetében pedig vizsgál­
hattuk a már előzőleg a transzfermátrix módszer segítségével is kiszámolt vándorlási 
exponens anomális viselkedését.

A dolgozat utolsó fejezete összefoglalja a legfontosabb eredményeket.



2. fejezet

Statisztikus fizikai áttekintés

Modellek, mennyiségek, fázisátalakulások2.1

2.1.1 Spin modellek

A lokalizált spinekkel rendelkező mágneses rendszerek egyik legáltalánosabb modellje

sisj

(Ü)<ü)

Hamilton-operátorral írható le, amelyben az i és j rácspontokon elhelyezkedő spinek 

megfelelő komponensei a J± és Jz csatolási konstansokon keresztül hatnak kölcsön 

egymással, illetve 2 komponensük a megfelelő irányú H külső mágneses térrel. A 

kölcsönhatások rövid távolságúak, az összegzések az (ij) legközelebbi szomszédokra 

történnek.
Az sf (a x, у vagy г a Descartes koordinátákat jelöli) spinoperátorok feles spinű 

rácspont-objektumok esetén a a° Pauli-mátrixokkal egyeznek meg. Ezek az operáto­
rok nem felcserélhetők, így a modell alapvetően kvantummechanikai.

A csatolási állandók különböző választása esetén speciális modelleket kapunk. A 

J± = Jz választás a Heisenberg modellt [23] adja vissza, amely bizonyos mágneses 

szigetelők, mint pl. az EuS ferromágneses viselkedését írja le. A Heisenberg modell 
spin-térben megkövetelt teljes anizotrópiáját kevés anyag mutatja azonban.

A J. = 0 esetén a spinek kétdimenziós kvantummechanikai vektorok, beállásuk az 

x—y síkra korlátozódik. Ez az ún. X—Y modell, amely annyiban hasonlít a Heisenberg 

modellre, hogy szokásos értelemben vett fázisátalakulása nem-zérus hőmérsékleten

8
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csak d > 2 dimenzióban van.

2.1.1.1 Ising-modell

A J± = 0 választással az Ising-modellt [43] kapjuk

n = -j, E s<si - я £s? - (2.1)
(ü)

amely erősen anizotrop mágneses rendszerek leírására használható, a spin csak a z 

tengely irányával párhuzamosan állhat be. Ennek megfelelő fizikai rendszer például 
a MnF2, amelynek jó közelítéssel csak egy tengellyel párhuzamosan állhatnak be a 

spinjei. Feles spin esetén a rácspontok spinjei a az Pauli-mátrix sajátértékeit vehetik 

fel. Ezzel egy "klasszikus" spin modellt kapunk, hiszen a Hamilton-operátor egymás­
sal felcserélhető tagokat tartalmaz, így az operátorok egyszerűen helyettesíthetők sa­
játértékeikkel. Ez a modell egyszerűsége ellenére nemcsak mágneses rendszerek leírá­
sára alkalmas, hanem az ugyanezen Hamilton-operátorra leképezhető rendszerekére 

is, mint amilyenek például a bináris ötvözetek, amelyekben a sajátértékeknek az felel 
meg, hogy a két különböző fajta atom közül melyik foglalja el az adott rácspontot. Lé­
nyegében azonos Hamilton-operátorra jutunk a rácsgáz modell esetében is, ahol a két 
sajátérték az adott rácshely betöltöttségét vagy benemtöltöttségét jellemzi, a H pedig 

egyfajta kémiai potenciál.
Ezekbe a rendszerekbe a rendezetlenséget a Jz csatolási konstansokon keresztül 

vihetjük be, amelyek rácspontról-rácspontra változhatnak.

2.1.1.2 Potts-modell

Az Ising-rendszer Hamilton-operátora írható kicsit másképpen is: az svSj kölcsönhatási 
tag helyére írva a 2őSiiSj — 1-et lényegében ugyanazt kapjuk (az energiaskálát eltolva)
[76]:

П = -2 *I>.Si^Sj

(íj)

Ez a forma lehetőséget ad az általánosításra, amelynek során az ún. (/-állapotú Potts- 

modellt kapjuk, amelyben Sj-k q különböző értéket veheüaek fel: a = 1, 2, ... ,g. A 

q = 2 érték nyilvánvalóan az Ising-modellnek felel meg.
A kétdimenziós q = 3 állapotú Potts-modell szimmetriájával rendelkező rendszer 

egyik fizikai realizációja a grafit rács felületén adszorbeált kripton. A kripton atomok
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elég nagyok ahhoz, hogy ha egy hatszög gyűrűbe bekerülnek, akkor a közvetlen szom­
széd gyűrűbe ne kerülhessenek újabbak, így a felületen három alrács keletkezik, ame­
lyeket egy-egy rácsponton a Potts-állapotok indexelnek.

A Potts-modell továbbá fontos szerepet játszott a Monte Carlo klaszterflip algorit­
musok kidolgozásánál, mint ahogy azt a későbbiekben látni fogjuk.

2.1.2 Statisztikus fizikai átlagok

Az N elemű rács kanonikus állapotösszege

zN(T,H) = Y,e~ßEr^ (2.2)

ahol ß = 1 /kT, к a Boltzmann-állandó , Т a hőmérséklet, Я a külső tér. Az összegzés 

az összes r mikroállapotra (pl. {sí} spinkonfigurációra) történik, Er az ezekhez tartozó 

energia.
Általában egy X fizikai mennyiség átlagértékét a következőképpen fejezhetjük ki

J^A'rexp[~ßEr]PO (2.3)

A rendszer szabadenergia-sűrűsége az állapot összeg logaritmusával arányos

1
f{T,H) = -kT lim -InZN(T,H)

N-400 1\
(2.4)

termodinamikai limeszben (N oo). Minden makroszkopikus termodinamikai tulaj­
donságot a szabadenergia differenciálásával nyerhetünk.

A mágnesezettség az egy spinre eső mágneses momentum átlaga

1
m(T,H) = —AM)N

1 1 ^2(M)exp[-ßE{s.}],
N ZN

hd

ahol M = sir és amelyet beírva pl. (2.1)-et (2.2)-ben ET helyébe, majd H szerint dif­
ferenciálva, és figyelembe véve (2.4) -et — termodinamikai határesetben — ugyanazt 
adja, mint a jól ismert

этТт^rn(T, H) =
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A szuszceptibilitás, a rendszer külső térre való érzékenysége

dm
Hm 7777 я-+о dHX

1 {(M2)-(M)2}.NkT

A fajhő

d2fC = T
dT2 '

Korrelációk. A korrelációs függvény a spinek hasonló beállásának valószínűségét
méri:

((■h {si))(sj (sj))) ■Gij (2.5)

Spinrendszerekben jellemző a korrelációs függvény

e~TA Г-.
G(r) « (2.6)j-d—2+г)

alakú lefutása a rácsállandónál lényegesen nagyobb távolságokban. Az exponenciális­
ban szereplő £ azonosítható a korrelációs hosszal. A fázisátalakulási hőmérséklethez 

közeledve a korrelációs hossz divergál, amely azt eredményezi, hogy egyre nagyobb 

tartományok spinjei korrelálnak, mígnem végtelenné válik a korreláció hatótávolsága.
A korrelációs hossz divergenciája magában rejti bizonyos fizikai paraméterek di- 

vergencáját is. A minta térfogatára integrálva (2.6)-t vagy összegezve i, j-re (2.5)-ben 

éppen M szórását kapjuk, amely x_ben is megjelenik, így

G{r)ddrkTx ~

összefüggés alapján világos, hogy miért divergál a szuszceptibilitás a kritikus hőmér­
sékleten.

Felületi mennyiségek. Ha a vizsgált rendszer felülettel rendelkezik, akkor a szabade­
nergiában egy ehhez kapcsolódó új /ДТ, Я, Hs) tag is megjelenik, amely a Hs lokális 

mágneses tértől is függ.
A előzőekhez hasonlóan származtathatjuk a különböző felületi termodinamikai

A-
S%* F

r?A
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mennyiségeket, mint pl. a felületi mágnesezettséget, szuszceptibilitást vagy fajhőt [8]:

d2f,dmsdfs ,CS = TXs =ms = дн ’ дТ2дн

2.1.3 Fázisátalakulások

2.1.3.1 Renormálási csoport transzformáció

A fázisátalakulások elméletében fellépő olyan kérdéseket, mint hogy miért léteznek 

másodrendű fázisátalakulások esetén univerzalitási osztályok, ezekhez tartozó felső 

kritikus dimenziók, illetve hogy a termodinamikából ismert exponens egyenlőtlensé­
gek miért egyenlőségekként állnak fenn, vagy hogy a kritikus exponensek ugyanazt 
az értéket veszik fel ha fölülről vagy alulról közelítünk a kritikus hőmérséklethez, a re­
normálási csoport transzformáció magyarázza meg, sok esetben egzakt értékeket adva 

a kritikus hőmérsékletre és kritikus exponensekre.
A renormálási csoport transzformáció a rendszer hosszúság skálájának változtatá­

sával működik

TpE Cífc-.

-ь <6>1)x' =

miközben csökkenti a rendszer szabadsági fokainak számát

NN' = —
bd ’

d a rendszer dimenziója. A rendszer tulajdonságai csak a kritikus pontban — a transz- 

formáció fixpontjában — maradnak változatlanok a hosszúság skála változtatásával 
szemben. A termodinamikai függvények skálázási formába lesznek írhatók.

A transzformáció formálisan a kiindulási és a renormált redukált Hamilton-operátor 

{EL = TL/kT) közötti összefüggésként írható:

EL = EUH

A Hamilton-operátor általános alakja:

ahol S komponensei a megfelelő szimmetriájú operátorok szorzatai, és /7 komponensei
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a hozzájuk tartozó konjugált terek, a paraméter tér komponensei. Az egymás után kö­
vetkező renormálási csoport transzformációk úgy változtatják a Hamilton-operátort, 
hogy a rendszer végig megy a paramétertéren

/7 = R/l.

A leképezés fixpontjában

-*! -» _ -**/X = fi = fi

és az e pont körüli kis környezetben

(2.7)/1 = ß* + 6ß 

/7 = pr + Sf1' (2.8)

a fixponttól való kis eltérések az eredeti és a renormált rendszerben összekapcsolhatók 

a renormálási csoport transzformáció Taylor sorfejtésével

5 p' = L b(p*)őp,

ahol Lb konstans mátrix a transzformáció derivált mátrixa a fi* fixponban. Lb mátrix 

sajátértékei a transzformáció csoporttulajdonságai miatt

A* (ft) = byi

alakba írhatók, ahol íji skáladimenziók már nem függenek a b skálafaktortól és a rend­
szer kritikus exponensei kifejezhetők segítségükkel. A /7 fixpont körüli paramétertér­
beli mozgás az Lb mátrix vt sajátvektoraival egy kezdeti pontból:

/1 = /7 + ^2 дм

ahol g{-к a lineáris skálaterek, egy transzformáció hatására

/7 = /7 + bVigiVi,

pontba jut. Leolvasható, hogy az г-edik skálatér byi-ve 1 skálázódik.

fji > 0 esetben a gt skálatér releváns változó, a renormálás hatására a rendszer távo-
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lodik a fixpontjától, legalábbis a linearitási tartományon belül.

Ha yi < 0 akkor a skálatér irreleváns, az egymásra következő renormálási csoport 
transzformációk következtében a rendszer a kritikus pontjához közelít.

Ui = 0 esetben a (2.7-2.8) egyenletek Taylor sorfejtésekor nem elég az első (lináris) 

tagot figyelembe venni csak. A skálatér marginális változó.

A kritikus felületet azon pontok adják a paramétertérben, amelyekben mm den re­
leváns skálatér zérus. A felület bármely pontjából indulva a fixpontba jutunk a renor­
málási csoport transzformáció sokszori végrehajtásával, miközben a korrelációs hossz 

minden lépésben b-ed részére csökken, amely alapján világos, hogy a rendszer korrelá­
ciós hossza a felületen végtelen, mivel a kritikus pontban is az és a rendszer kritkikus 

állapotban van. Ezek szerint az irreleváns paraméterek megváltoztatásával nem vihető 

ki a rendszer a kritikus állapotából.
A fentiekből látható, hogy különböző fizikai rendszerek azonos univerzalitási osz­

tályba tartoznak ha dimenziójuk megegyezik és hasonló alakú Hamilton-operátor ha­
tározza meg1 viselkedésüket, függetlenül a rendszerekben kölcsönhatások részleteitől, 
amelyek csak a kritikus pont (fixpont) helyét változtathatják meg.

A transzformáció konkrét alakja általában erősen függ az adott problémától.

2.1.3.2 Skálázás

A Hamilton-operátoron keresztül a benne levő paraméterek meghatározzák a redu­
kált szabadenergia-sűrüség / = f/kT szinguláris részének viselkedését a renormálás 

hatására:

= b~d7,un')
a kritikus pont közelében a lineáris skálaterekkel:

fsingfa h, g3, $4, • • •) ^ b dfsing{bytt, byhh, ЬУзд3, by* gAi...)

ahol gi = t (= a redukált hőmérséklet, g2

redukált szabadenergia szinguláris része általánosított homogén függvényként írható. 
A többi termodinamikai függvény és változó is, mint például a fajhő, a mágnesezett- 

ség vagy a szuszceptibilitás, illetve a korrelációs hossz és a korrelációs függvény —

Trreleváns paraméterekben különbözhetnek, mint pl. a távolabbi szomszéd kölcsönhatások.

h = H/kT a külső mágneses tér, a
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ebből származtathatóan — hasonló skálázási formába (általáriosított homogén függ­
vényként) írható a megtelő gt skálaterekkel és уг skáladimenziókkal.

A fajhő a szabadenergia hőmérséklet szerinti második deriváltja a kritikus felület 
közelében

a2jsmg = /«M = o)~rd+2^(^%o)C{t,h = 0)-~ dt2
/l=0

Mivel b tetszőlegesen választható, legyen b = t x!yt, és így a fajhő redukált hőmérsék­
lettől való függése

(2.9)

alakba írható. A mágnesezettség hasonlóan:

9 f sing 
= -fh(t,h)^b~d^fh(m,^h)m(í,fc)~ gh

és így hasonló skálafaktor választással mint az előbb

hm(t, 0) ~tV-yh)/ytfs(l, 0).

A szuszceptibilitás pedig

x(t,o)hh(i,o)

A korrelációs függvény — definíciójából következően — arányos a mágnesezettség 

négyzetével, ezért
<£—

G{t, h, r) ~ b~2XmG (by4, byhh: 0

alakba írható, ahol xm = d - tjh- A b = r és h = 0 választással a korrelációs függvény

e(f)J(»‘-i>G(r»f,0,1) = r2<“-">G ((-jjj-)"',0,l)G(t, 0, r) rs/ T
(d—yh)

alakú, ahol a korrelációs hosszt a

-1/2/fJ ~ t
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definícióval azonosítjuk.

2.1.3.3 Kritikus exponensek

A kritikus exponensek az előző alfejezetbeli íji skáladimenziók segítségével a 2.1 táb­
lázat alapján határozhatók meg. így a fajhő a exponense a (3.5) egyebet segítségével

definícióexponens

CH ~ \t\~a 

{-t)ß

x~l C7
j ~ |í|-"

rj párkorrelációs függvény Tc-nél (h = 0) G(r) ~ —Ár,
rr*Q, ”7/

a fajhő exponens Ш

ß mágnesezettség exponens (h — 0) m ~

7 szuszceptibilitás exponens (h = 0)

и korrelációs hossz exponens

2.1 táblázat: Az alapvető kritikus exponensek definíciói

a = (2yt - d)/yt (2.10)

és hasonlóan a többi exponensekre

ß= (d~ VhMvt 
7= (2 yh-d)/yt

(2.11)

(2.12)

(2.13)

(2.14)
1 (Vtи —

V= d + 2- 2 yh

Az alapvető exponensek láthatóan csak két skáladimenziótól függenek, így közöttük 

összefüggések találhatók. Például a (JS:5) és (2.13) egyenleteket kombinálva kapjuk a 

hiperskálatörvényt: г. I c

du = 2 — а, (2.15)
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vagy (2.10-2.12) egyenletek kombinálásával a Rushbrook skálatörvényt:

a 4- 2/5 + у = 2 .

Felületi exponensek. A felületi redukált szabadenergia-sűrűségre a skálahipotézis

/,(<, h, hs) = bVhh, bVhshs)

alakban írható. Ennek segítségével a felületi mágnesezettség ßs kritikus exponense az 

előzőek szellemében:

dfs d — 1 — yh~ tßs ßs =rns -
dh Vt

2.1.3.4 Perturbációk, relevancia-irrelevancia kritériumok

A (2.1) Ising Hamilton-operátorban a helyfüggő Jl3 csatolási állandókon keresztül be­
vezetve a pertubációkat (ff = 0 mellett) az utóbbi években egyik leggyakrabban vizs­
gált inhomogén spinrendszert kapjuk. A perturbációk kritikus viselkedésre gyakorolt 
hatását különböző relevancia-irrelevancia kritériumok írják le, hasonló szóhasználat­
tal, mint a renormálási csoport elméletben. Véletlen kötésű rendszerekre Harris [22] 
dolgozott ki egy heurisztikus kritériumot, amely a tiszta rendszer fajhő exponensével 
hozza kapcsolatba a kritikus tulajdonságok megváltozását. Ennek analógiájára Luck 

[62] [63] általánosította az eredményt aperiodikus struktúrákra. Itt röviden ismertetem 

az eredeti gondolatmeneteket és eredményeiket.
Hamis-kritérium: Tételezzünk fel gyenge hígítást a Ji3 kötésekben: Ji3 = J0(l + et]), 

ahol J0 az átlagos kötéserősség. Az el3 egymástól független valószínűségi változók, 
amelyekre I — 0 és e2 = A2 <C 1.

A tiszta rendszer (Д = 0) kritikus pontja közelében egy su spinnel korrelációban 

levő spinek száma a Jd korrelációs tartománnyal arányosan divergál. Gyenge pertur­
báció hatására a tipikus J átlagos csatolás ebben a tartományban (J — Jq)/Jq ~ J~dl2A. 
Ez a lokális csatolási állandó változás — arányosan — elmozdítja a kritikus hőmérsék­
letet is: őt ~ \t\d,/^2 A, amelyet a kritikus ponttól való távolsággal kell összehasonlítani:

őt- - |f|d"/2_1 A ,
/
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amelyből leolvasható — figyelembe véve a (2.15) hiperskálatörvényt —> hogy

a — 2 — du > 0

esetén releváns a perturbáció, hiszen ebben az esetben a minta bizonyos részeiben az 

effektiv hőmérséklet Tc alatti, így ott mágneses rendeződés van, míg máshol nincs, 
hiszen az effektiv hőmérséklet Tc feletti. Az a < 0 esetben az effektiv hőmérséklet a 

mintában gyakorlatilag azonos, a perturbáció hatása irreleváns, a = 0 a marginális 

eset, amikor is további vizsgálódásra van szükség.
Luck-kritérium: Legyen a rendszer L lineáris méretű El tartományában В (kV) számú 

kötés, és E(Q) = Jij a megfelelő kötésekhez tartozó csatolási állandók összege.
A E(íl)/S(f2) arány a J0 átlagos csatolási állandóhoz tart — definíció szerint — a ter­
modinamikai határestben (L —> oo). Egy nagy, de véges tartományra

E(íí) - J0B{íl) ~ Ldu ,

ahol íü az aperiodicitás fluktuációs vagy vándorlási exponense, и < 0 esetben a perturbá­
ció korlátos, míg и > 0 esetén nem korlátos. A gyenge aperiodikus moduláció hatása a 

kritikus pont közelében a következőképpen becsülhető meg: (J - J0)/ J0 ~ (£duJ) Д, 
ahol most Д az aperiodikus moduláció amplitúdója. Ebben a korrelációs tartomány­
ban az átlagos csatolási állandó értékének eltolódása miatt a lokális hőmérséklet elto­
lódása és a kritikus hőmérséklettől való távolság aránya:

őt du(l—ui)—l д
t

amelyből a

ф = 1 + du(uo — 1) (2.16)

„crossover" exponens tartalmaz hasonló információt, mint a Harris-kritérium esetén 

a fajhő exponens. A perturbáció releváns (irreleváns) ha ф > 0 (ф < 0) és marginális 

Ф — 0 esetén.

2.1.3.5 Konform invariancia

A '80-as évek közepén ismerték fel, hogy bizonyos rövidtávú kölcsönhatással ren­
delkező rendszerek a kritikus pontjukban nemcsak skálainvariánsak, hanem a kon­
form invariancia tulajdonságaival is rendelkeznek [10]. A konform transzformációban
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f -> r'(r) a hosszúság újraskálázó faktora b(r) a hely síma függvénye, nyújtás, forga­
tás és eltolás kombinálásával áll elő. A transzformáció Jakobi determinánsa b(r)~d = 

det (dr'/dr). A transzformáció a skálázás általánosításának tekinthető, amelynek so­
rán a rács struktúrája lokálisan megőrződik. A kétpont korrelációs függvény a skálázás 

során megszokottakhoz hasonlóan transzformálódik:
к p- i<

\('Ф{г1)'ф(г2)) = ft(fi) xb{r2) х{'Ф{г1’)^(г2')). (2.17)

A konform invariancia módszere kétdimenzióban különösen hatékony, hiszen itt a 

konform csoport sokkal gazdagabb, mint magasabb dimenziókban, izomorf a komp­
lex analitikus függvények csoportjával. Itt meghatározhatók a kritikus exponensek 

lehetséges értékei a rendszerek bizonyos osztályaira.
Kétdimenzióban két különböző geometriájú rendszer közötti leképezésre a komp­

lex leképezés használható. Ha az egyik rendszerben ismerjük a kritikus korreláció­
kat, akkor ezeket áttranszformálhatjuk a másikba. A lokális dilatációs faktor b(z) = 

\dw/dz\~l. így a síknak L szélességű periodikus csíkra (hengerre) való leképezését 
adja a logaritmikus transzformáció

i'
fo ■ I г

L
w — —\nz.

27Г

A w = (u, v) и komponense a csíkmenti távolság, amely a z síkbeli távolság logarit­
musa, v a transzverz irányú távolság, а г síkon a valós tengellyel bezárt szög kons­
tansszorosa. A (2.17) korrelációs függvény az új koordinátákban:

. I

0- v :
&

l? w
)^(u2,v2)) = X )(2 cosh — u2) — 2 cos — v2))

?,■ - e ’-

amely az \щ — u2\ L nagy távolságokban a

27t\ 2x
g— (2ттх/L)|ui — u21{ll)(uX,Vx)^{u2,v2)) ~

L

exponenciális lecsengést mutatja, amelyből a korrelációs hossz a csík mentén

27Г.Т

amely a konform kovariancia legfontosabb eredményei közé tartozik, hiszen adott csík-
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szélesség mellett egyértelmű kapcsolatba hozza a skáladimenziót a korrelációs hosszal, 
amely — ahogy a későbbiekben látható lesz — a transzfermátrixból számolható.

2.2 Számolási technikák

2.2.1 Transzfermátrix módszer

A transzfermátrix módszer segítségével egy rendszer állapotösszegét mátrixok szorza­
tának nyomaként írhatjuk A rendszer termodinamikai tulajdonságai a mátrix spektru­
mának elemeivel fejezhetők ki. A szabadenergia — termodinamikai határesetben — a 

mátrix legnagyobb sajátértékétől függ, a korrelációs hossz a két legnagyobb sajátérték 

függvénye.
A módszer jól alkalmazható például egydimenziós rövidtávú kölcsönhatással ren­

delkező spinrendszerek, illetve ezzel analóg véletlen bolyongó problémák megoldá­
sára.

Egyszerű példa az egydimenziós homogén Ising-lánc:

n—j'Zw-H'E«, (2.18)
<ö> i

amelynek partíciós függvénye periodikus határfeltételek mellett

^ ' g)3J(.SoSl+.S;iS2 + ...+.SjV-lSo)+/3-H'Úo + Sl+...+.SjV_i) = ^ ' Tp l T: 9 Тдг ) 0 (2.19)
{S} hl

ahol {5} jelöli, hogy az összegzés végigfut a rendszer összes lehetséges állapotán: .s* = 

±1 minden s* spinre, és leolvasható, hogy
Г

! Г
r J"

T , _ pßJsiSi+-l+ßH(si+si+-i)l2 
x г,г+1 — c (2.20)

egy mátrix elemei, amelyben .st = +1 és -1-hez tartozó értékek vannak a mátrix sorai­
ban és s,+i = +1 és -1-hez tartozók az oszlopaiban:

eß(J+H)

e~ßJ

e-ßJ \
eß(J-H) I ■ (2.21)Тг,г+1 -
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így az N spinből álló rendszer állapotösszege a T mátrix iV-edik hatványának nyoma:

Zn = Z (т")о,о, (2.22)
S0 = ±1

és mivel a mátrix nyoma független a bázis választástól

(2.23)

— ahol A-к a transzfermátrix sajátértékei — ami a példától elvonatkoztatva is érvé­
nyes általános eredmény.

A transzfermátrix módszer eredményessége a mátrix méretétől és analitikus vagy 

gyakran numerikus diagonalizálhatóságától függ. A mátrix mérete az egydimenziós 

Ising-modell esetén láthatóan 2 x 2-es, egy q állapotú Potts-modell esetében q x q, 
a kétdimenziós N szélességű Ising-modell esetében 2N x 2Л legközelebbi szomszéd 

kölcsönhatást feltételezve. A módszer szemléletes képet ad az újabb és újabb spinek 

figyelembe vételéről, ahogy a következő mátrixszal való szorzás egy új spint épít a 

rendszerhez a megfelelő csatolással.
Ha egy N x N-es transzfermátrix sajátértékei nöyekúS sorrendben Ль Л2, 

akkor a termodinamikai határesetben a szabadenergia-sűrűség

l íc
... , Ajv,

~ 111 Z\!f — kT lim лт
Лг->- oo N

(2.24)

—kT lim -^-ln<jAjM 1 + I >.
N-> oo N \ j

1
(2.25) e—

A logaritmusbeli szumma a termodinamikai határesetben zérushoz tart, így

/ = —kT In A! (2.26)

csak a legnagyobb sajátértéktől függ. Hasonló módon a korrelációs hossz

£-1 = — 1п(Л2/Aa) (2.27)

a két legnagyobb sajátérték függvénye. A fentiekből látható a transzfermátrix módszer 

nagy előnye, hogy elegendő megtudni a mátrix legnagyobb sajátértékeit a rendszer 

tulajdonságainak meghatározásához, ami nyilván sokkal kisebb feladat, mint a teljes 

spektrum meghatározása.
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2.2.1.1 Ising-lánc transzverz télben (szabad fermion leírás)

A kvantummechanika Feynman-propagátoros megfogalmazása és a statisztikus fizika 

transzfermátrix formalizmusának formális hasonlósága [52] lehetővé teszi, hogy a d 

dimenziós klasszikus rendszerekhez d— 1 dimenziós kvantumos rendszert társítsunk.
A kétdimenziós, réteges Ising-modellt külső tér nélkül a következő Hamilton-ope- 

rátor írja le:

ßFL — 'У ^ [Ki(k')sn^Sn+i,k F E2{k) sn^Sn,k+i] ? (2.28)
n,k

ahol Kx (k)-k a vertikális csatolási állandók, K2(k)-k pedig a horizontálisak, sn>fc-к klasszi­
kus spin változók ±1 értékeket vehetnek fel és /5 = 1 /kT. Ez a kifejezés felírható az 

egyes sorok Hamilton-operátorainak összegeként:

FL — ^%(n,n + 1) , (Sn,l) Sn,2i ■ ■ ■ ■) $п,к) ■

A rendszer kanonikus állapotösszege — ha n irányban periodikus határfeltételt ve­
szünk — így egy mátrix nyomaként írható, analóg módon az előző pontbeli egydi­
menziós esettel:

E « E 11' -ß’H(sn,Sn+1)-ßH _z =
S\,S2 ,SN Sl,S2,— ,SN ПГ"

TS1„2T Tr ('TN) ,TS2,S3 ■ SN ,S 1
Si,S2 ,S A'>*•*

_ e ßH(si,si+i) a rp m^trix elemei adott s*, si+1 spinkonfigurációk mellett aahol T
megfelelő sorokban.

Feltételezve, hogy a rács pontjaiban az sn^ spinváltozók a aßk spinmátrixok sajátér­
tékeit vehetik fel, a T mátrix ezen Pauli-mátrixok sajátvektorai direktszorzat-bázisán

l'-’n) |"Sn,l) |^n,2) • ■ • I’Sn./c)

két mátrix szorzataként írható:

T = ,



2. FEJEZET STATISZTIKUS FIZIKAI ÁTTEKINTÉS 23

$n,k

K-,(k)m m
S\ ,k■51,1 Sl,2

1
hí h2 hk
1Ai iЛг 1—!—!—Uü—l

а2 "• &k

2.1 ábra: A kétdimenziós anizotrop Ising-modell és a megfelelő transzverztérbeli kvan­
tum Ising-modell.

ahol V2 egy diagonális mátrix, amelynek mátrixelemei:

У ^ hí2(k)Зп,к$п,к+1 I ){$n\ к2 l^n+l) — h s ■ ■ ^«n,K,«n+l,K eXPín,liSn+l,l ^Sn,2,«n+1,2 ■
к

amely így:

V2 = exp
к

mátrix alakba írható. A Ví mátrix К darab azonos alakú mátrix direkt szorzata, hiszen 

mátrixelemei:

(y>,(4(Sn 1171 |s,!+i) = exp Sn,k$n+ \,k I i
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és így egy vk mátrix, amelynek mútrixelemei {sn>k\ vk |sn+ijfe)-k:

eKi(k) е-к^к) 

e-Ki(k) eK\{k)Vk =

alakú, amely felhasználva a ax Pauli-mátrix (ax)l = 1, ha / páros, tulajdonságát

eaax _ 2 С08^ a _)_ ax a — cosh a (1 -h ax tanh a)

és a K[{k) duális csatolásokat a tanh K*(k) = e 2KEk) módon definiálva kapjuk, hogy:

(fc)) = (2sinh2K\(k))1/2 eK^k)aZvk = eK'W(l Falé-2 Кг

formába is írható. A vk-k direktszorzatából kapjuk, hogy

'ЕК'ЛкМV\ = exp

és a rendszer állapotösszege a Vi, V2 operátorokkal:

Z = J^(2 sinh 2/1! (/c))7V/2Tr(Vr2lh)iV •

/•
így a transzferoperátort definiálhatjuk a következőképpen:

(^2KÁk)^k+ ij exp ^T' - V2Vi = exp Щ(к)ах\ . (2.29)

Az extrém anizotrop határesetben, amikor K2(k) —> 0 és K\(k) —» oo (és így az időten­
gely irányában a csatolás erős, míg a tértengely irányában gyenge) a kötések arányát 
{K2{k)/K*(k)-ot) fixen tartva kapjuk az ún. hamiltoni határesetet, amelyben a transz­
feroperátor exp(—2K*H') alakban írható — ahol K* egy referencia konstans —, és ezt 
első rendben kifejtve kapjuk, hogy

T' = 1 - 2к\т +...,
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amelyben FC a feles spinű transzverztérbeli Ising-lánc Hamilton-operátora:

\ + hkaxk) ,H' = - (2.30)
к

ahol Xk = K2(k)/K*u hk = K{{k)/K{.
A fentiekből leolvasható, hogy a kétdimenziós Ising-modell és a kvantum spinlánc 

— ebben az esetben — megfeleltethető egymásnak, hiszen a transzferoperátor sajá­
tértékei és sajátállapotai megegyeznek a kvantum spinláncéval. Másodrendű fázisá­
talakulás esetén a korrelációs hossz inverze arányos a spinlánc első energiagapjével 
(2.27)(2.29)(4.53):

1
E\ — E0 (2.31)-

£
A (2.30) Hamilton-operátort a

ax -> az (2.32)

(2.33)„Z .. _xa —> —a

kanonikus transzformációval a szokásos [73]

\ + А*«+1)H' = - (2.34)
к

alakban írhatjuk. Ez a Hamilton-operátor egzaktul diagonalizálható és a teljes sajátér­
ték spektrumot és a sajátfüggvényeket megkaphatjuk egy Jordan-Wigner-transzformá­
ció [45] seítségével, amelyben a spin operátorok helyett fermion operátorok lépnek be
[59].

Bevezetve a af léptető operátorokat:

1
°k = 2 (°к±{ак)

a Jordan-Wigner-transzformáció [45] létrehozza a:

к-1
П exp(—)cfc

+
= ak

i=1
Л-1
Пехр(гтга+аг )afeCfc =
i=i
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operátorokat, amelyek már teljesítik a szokásos fermion antikommutációs relációkat. 
A kvantum lánc Hamilton-operátora szabad határfeltétel mellett

к-1к
Xk^ - Ck^Ck+l + Ck+ÉП = (2.35)

/,•=1k= 1

alakú, amely a fermion operátorokban kvadratikus, így egy Bogoljubov transzformá­
ció [9] segítségével diagonalizálható. A diagonális bázisban az új fermion operátorok:

Vq = + hVCi)

j

Iq = Á9qjCj 9” hqjCj ) ,

3

amelyekkel a rendszer Hamilton-operátora:

(2.36)

lesz, ahol Л9 kielégíti a következő mátrix egyenleteket:

(А-В)Ф9 = Л9Ф, 

(А + В)Ф9 = Л9Ф9

(2.37)

(2.38)

Az A mátrix a cjfc^és c.kc^ alakú tagok, az |B mátrix a c£ck+és с/cC^alakú tagok 

együtthatóit tartalmazza a (2.35) Hamilton-operátorból. Mindkét mátrix a legköze­
lebbi szomszéd kölcsönhatások miatt tridiagonális, továbbá valós és A szimmetrikus, 
В pedig antiszimmetrikus. А Ф9 és Ф9 vektorok komponenseit

^qÜ) — 9qj hqj 

^qü) = 9qj + hqj

relációk definiálják.
A (2.37-2.38) mátrix egyenleteket kombinálva a következő sajátérték egyenlethez

jutunk

(А-В)(А + В)Ф, = Л^Ф,.

így a probléma az eredeti 2h x 21' mátrix diagonalizálása helyett egy К x К méretű
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tridiagonális szimmetrikus mátrix (t.i. (A — B)(A + B)) sajátértékproblémájára egy­
szerűsödik.

A transzverz Ising-lánc kritikus pontja: Az Ising-lánc kritikus pontját — a fentiek sze­
rűit — akkor kapjuk, amikor az energiagap zérussá válik, és így az alapállapot dege- 

nerálttá válik az első gerjesztett állapottal. Ekkor a korrelációs hossz divergál.
A Aq gerjesztési spektrumot a

det((A- B)(A + B) — Ajl) = 0

sajátérték egyenlet határozza meg, amelyben az A + В és A — В mátrixok:

/ hí 0
Л1 Л.2 0

0 Л2 Л.З

Afc \

A — В = (A + B)T = (2.39)

0
Afc-1 hk )\ 0

periodikus határfeltételt feltételezve, amely К —» oo esetben megegyezik a szabad ha­
tárfeltétellel.

A sajátérték egyenlet Aq = 0 megoldása esetén, amikor det((A - B)(A + B)) = 0

к к
det(A — В) = det(A -h B) = Afc

fc=i k=1

és így a kritikus feltétel [74]:

í™, Й(£)
k=1 4 ' c

(2.40)= 1,

amely hk = 1 és = Л esetén a homogén lánc Л = Ac = 1 kritikus csatolását adja, a 

lánc zérus hőmérsékletén. А Л < 1 a rendezetlen fázis a homogén rendszerben, míg a 

A > 1 csatolású esetben a rendszer a rendezett állapotában van.
Felületi mágnesezettség: A kétdimeziós Ising-modellből [80] kiindulva ismert, hogy 

Н/ß külső tér esetén a (2.28)-ben -ßFL-hoz egy Ha^ k tagot hozzávéve egy
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Кз = exp

diagonális mátrixszal szorzódik az eredeti T' transzfermátrix, amely kis tér esetén a 

[106]

Т'(Я) = Т' + Я2>;Т'
к

alakú külső tértől is függő transzfermátrix lesz. AT <TC hőmérsékleten a legnagyobb 

sajátértékhez tartozó sajátvektor — а К —> oo limeszben — degenerálttá vált. A külső 

tér hatására ez a degeneráció felhasad és a legnagyobb sajátérték exponenciálisában 

elsőrendben megjelenik a külső mágneses tér és így a szabadenergiában is [106][80]. 
Végrehajtva az extrém anizotrop limeszt és véve a (2.32-2.33) kanonikus transzformá­
ciót a felületi mágnesezettség:

ms = mi = <1K|0) ,

ahol |0) a FC alapállapota, |1) = rjJ |0) az első gerjesztett állapot. A of-et felírva az rj£, 
щ fermion operátorokban

m 1 = (0| riiAi |0) ,

ahol

Ál = + Vq)

és így a felületi mágnesezettség

rns = Фг(1) .

A kritikus hőmérséklet alatt, T < Tcr Ai = £í - E0 = 0 és így (2.38) alapján

(А + В)Фа = 0,
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amelyből (2.39) segítségével Ф^^-ге rekurziós egyenleteket kapunk

ф.о) = П(-|) ■Mi),

amiből a felületi mágnesezettség explicit módon kifejezhető [71], tekintve, hogy Ф] 
normált

-1/2Hú (Ю (2.41)

Ez alapján tetszőleges kötéskiosztás esetén meghatározható az Ising-lánc felületi mág- 

nesezettsége.

2.2.2 Monte Carlo-módszerek

A statisztikus fizika egyik alapvető számítógépes vizsgálati módszere, az először az 

'50-es években alkalmazott Monte Carlo-szimuláció. A klasszikus Monte Carlo-algo- 

ritmusok közül az elsőt — a Metropolis-algoritmust [68] — folyadékok modellezésére 

használták először, de spinrácsok, polimerek, rendezetlen rendszerek statisztikus fizi­
kai tulajdonságainak meghatározására és rácsmértékelméletekben való vizsgálatokra 

is alkalmasnak bizonyult. A '80-as évek nagy felfedezése a spinrácsokra és rácsmér­
tékelméletekben alkalmazható modern Swendsen-Wang [91] és Wolff-féle [104] [105] 
klaszterflip algoritmusok.

Statisztikus fizikai szempontból az energia, mágnesezettség stb. (2.3) alapján való 

meghatározása a cél. Ezt az átlagot már egy kis rendszer esetén is nehéz egzaktul meg­
határozni, hiszen pl. egy N részecskéből álló Ising-modell esetén is 2N féle spinkonfi­
gurációra kellene összegezni. N = 1000 esetén is már lehetetlenség a teljes összegzést 
elvégezni.

Ha nem végezzük el a teljes összegzést, hanem véletlenszerűen választunk ki fá­
zistérbeli pontokat, amelyek Boltzmann-faktorát az összegben hagyjuk, akkor sem ka­
punk megfelelő eredményt, hiszen a termodinamikai mennyiségek valószínűségi el­
oszlása a fázistérben az átlagérték körül rendkívül erős csúcsot mutat, így az érde­
kes tartományból csak nagyon ritkán kerül kiválasztásra fázispont. Ezért az (2.3)-beli
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összegzés helyett egyszerű

(2.42)
2=1

átlagképzés történik oly módon, hogy r-et gyakrabban választjuk a termodinamikai 
egyensúly körüli tartományból (importance sampling).

Generálható olyan Markov-folyamat, amelyben {A)n, az A átlaga az n egymás után 

következő állapotban, konvergál a (2.3)-beli termodinamikai átlaghoz

^={а)+оШ (2.43)

Az n —» oo határesetben minden r állapot a maga e~0Er Boltzmann-faktorával lesz 

súlyozva. A Markov-láncnak az a tulajdonsága, hogy az egymás után következő álla­
potok mindegyike csak az előző állapottól függ, és így az állapotok erősen korreláltak, 
lassabbá teszi az eljárást, mint ha ezek egymástól függetlenek leimének. Az r —> r' 
átmenet a modelltől és az algoritmustól függően többféle lehet: pl. az Ising-modell 
esetében egy spin árfordítása (single spin flip), két szomszédos spin cseréje, vagy spi­
nek nagy klaszterjének átfordítása (cluster flip).

A folyamatoknak ergodikusaknak kell lenniük, minden állapot elérhető kell le­
gyen. Ez spinrácsokra általában teljesül is, míg bizonyos polimerrendszerek esetén 

(self-avoiding walk) problémát jelent, bár a tapasztalat szerint végeredményben nem 

okoz eltérést.
További (elegendő) feltétel, hogy a folyamatnak ki kell elégítenie a részletes egyen­

súly (detailed balance) elvét

PTWr-tri = PriWr/^r, (2.44)

ahol PT az r állapotban tartózkodás valószínűsége, WT^rt az r állapotból az г'-be való
átmenet valószínűsége. A fenti feltétel nem határozza meg az átmeneti valószínűséget 
egyértelműen. A W, átmeneti valószínőséget úgy kell megválasztani, hogy az 

T\ —)► r2 —> ... —> rn minta az n —> oo határesetben a kanonikus eloszlást mutassa.
n—>n+i

A Metropolis-algoritmus [68] a két állapot energiakülönbségével fejezi ki az átme­
neti valószínűséget (6E = Er> - ET):

, ha óE < 0 

, ha SE > 0.
1

= (2.45)e-ß&E
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Ez a választás nyilván kielégíti az (2.44) részletes egyensúlyt, hiszen ha nagyszámú 

Markov-folyamatot tekintünk, és egy adott lépésben Nr rendszer van az r állapotban, 
és Nr’ az r' állapotban és Er < Eri, akkor

e-ß{Er,-Er) (2.46)

(2.47)

Wr->r> 

Ikr7—VT 1.

Az r állapotból az r'-be átlépők száma ennél a lépésnél

Nr^r, = NrWr-+r' = Nre-ß{Er'-Er), (2.48)

illetve a fordított átmeneté

7Vr/^r = NTiWri (2.49)= 7Vr,.—УТ

így az r állapotban levő folyamatok számának változása a Markov-folyamatok követ­
kező lépésére, az r'-be való átmenet, illetve az onnan r-be való átmenet együttes hatá­
sára:

e ßEr' NT,AN, — TJj’ yt* Nr* yj, — Nj. (2.50)r—i-r' Nr J ’g—ßEr

amiből leolvasható, hogy ha az adott lépésben fennállt a kanonikus eloszlás, akkor 

az nem is változott, ha viszont az r állapotban kevesebb rendszer volt, mint ahogy a 

kanonikus eloszlás szerint kellett volna, akkor ANT^ri negatív és r' állapotból r-be több 

átmenet létesül, mint fordítva. És ugyanaz történik ellenkező előjellel, ha r állapotban 

több rendszer volt, mint a kanonikus eloszlásnak megfelelő.
A Metropolishoz hasonló klasszikus módszer a „heat bath" algoritmus, amely ese­

tén a rendszer egy adott l szabadsági fokához rendelünk új a{ értéket tekintet nélkül 
annak előző щ értékére. Ez a próbalépés a következő átmeneti valószínűséggel törté­
nik meg:

e-№(a,')
И'г—vr' — (2.51)

ahol Ei(ai') a helyi energiája az щ szabadsági foknak, és a nevezőben az összegzés az 

l-ik szabadsági fok lehetséges értékeire történik. A részletes egyensúlyt ez az eljárás 

triviálisan kielégíti. Az is látható azonban, hogy minden lépésben több exponenciális 

tagot kell kiértékelni, ami a Metropolis-eljárásnál lassabbá teszi, így ma már főként
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történeti jelentőséggel bír a módszer.
A klaszterflip módszerek [98] nagy előnye a kritikus állapothoz közeli hőmérsékle­

teken is megtartott gyorsaságukban rejlik. A kritikus jelenségek Monte Carlo-módszer- 

rel történő vizsgálatát erősen akadályozta az ún. kritikus lelassulás. Ahogy a kri­
tikus ponthoz közeledünk, a Markov-láncban egymásután következő lépések egyre 

hosszabb szekvenciája korrelál, az ezt jellemző r korrelációs idő a következőképpen 

divergál

(2.52)

ahol J a korrelációs hossz, és г a dinamikai exponens.
A számítógépes szimulációkban a korreláció nem divergál, de növekszik a rendszer 

méretével

r ~ L\ (2.53)

ahol L a rendszer lineáris mérete. A legtöbb Monte Carlo-algoritmus esetén г й 2, 
így r nagy rendszerekre gyorsan nő. A konfigurációk statisztikailag nem függetle­
nek egy r időintervallumon belül, így nagyban megnő a (2.42) egyenletben számolt 
mennyiségek statisztikus hibája. Ennek a problémának a kiküszöbölése nagyon fontos 

a nagy pontosságú Monte Carlo-számolásoknál. A kritikus lelassulás oka a klasszikus 

Monte Carlo-algoritmusoknál abból származik, hogy lokálisak, a változások diffúzió 

jellegűen terjednek.
Az első nem lokális updatinggel működő módszer a Swendsen-Wang-féle [98] klasz­

terflip algoritmus, ami egy — a Potts-modell és a perkolációs probléma közötti — le­
képezésen alapszik [91]. A legegyszerűbben a Potts-modell

H = K 1) (2.54)si ,Sj

(ÍJ)

Hamilton-operátora segítségével írható le a leképezés. Itt К már tartalmazza a -1 jkT 

faktort. A partíciós függvény

Z = TreK. (2.55)
hl

Fortuin és Kasteleyn [18] gondolatmenetét követve egy l és m közötti kölcsönhatást

V\
f •-1?%
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eltávolítunk a Hamilton-operátorból

Щ,т) - К ^

és így kétféle összeget írhatunk fel az / és m spinek relatív helyzete szerint2:

(2.56)-1)siisj

4L = Tre«<’->í (2.57)Sl ,Sm

és

2(Ti.) = Tre««.~> (1 - J (2.58)

és így

Z = *Zn)+e-K*lU (2.59)

Ez a következőképpen is írható:

2 = (l- e-K)zJ!m) + + Z«,,)- (2.60)

Az összeg első tagja az l és m spineket egy klaszterbe teszi p = 1 — valószíiaű- 

séggel, a második tag — függetlenül attól, hogy sí és sm azonos vagy különböző — 

más klaszterekbe teszi 1 — p sülyfaktorral. Látható, hogy az egymás mellett álló azonos 

spinek nem feltétlenül kerülnek egy klaszterbe. Az (2.54)-beli összes kölcsönhatásra 

megismételve a fenti eljárást a Z p és 1 — p faktorok különböző szorzatainak összegére 

bomlik. A klaszterek rácspoiatjai között perkolációs kötések lesznek és minden klaszter 

egy adott q Potts-állapotban van függetlenül más klaszterek állapotától. Ha egy-egy 

adott perkolációs kötéskonfigurációban Nc klaszter van, akkor az állapotösszeg

dLd —b Nc 
4 5Z = Trp6(l — p) (2.61)

{n}

ahol az összegzés a különböző {n} perkolációs kötés konfigurációkra történik, b a per­
kolációs kötések száma a d dimenziós L lineáris méretű hiperköbös rácsban.

Végrehajtva a Potts-rács —> perkolációs rács —> Potts-rács transzformációt egy Mon­
te Carlo-algoritmushoz jutunk, ami kielégíti a részletes egyensúlyt. Tetszőleges Potts- 

állapotból indulva p valószínűséggel perkolációs kötéseket teszünk az azonos Potts-

2tt megegyező, ti nem megegyező irányú spinbeállást jelöl.
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spinű rácspontok közé. A nem azonos Potts-spinű szomszédos helyek közé nem te­
szünk kötéseket. Ha most töröljük az eredeti kölcsönhatásokat, marad egy perkolá- 

ciós kötés (klaszter) konfiguráció a (2.61) egyenletben adott súllyal. Megjegyzendő, 
hogy az eredeti Potts-spin klaszterek kisebb klaszterekre osztódhatnak szét, hiszen az 

ugyanolyan Potts-spinű rácspontok közé nem mindig kerül perkolációs kötés.
A következő lépésben új, véletlenszerű Potts-spin értékeket adunk minden perko­

lációs klaszternek és ugyanezt az értéket minden klaszteren belüli rácspontnak. Most 
eltörölve a perkolációs kötéseket egy új Potts-spin konfigurációt kapunk, ami alap­
vetően eltérhet az eredetitől, mert nagy klaszterek is új spin értékeket vehetnek fel 
egyetlen lépésben.

Az eljárás kielégíti a részletes egyensúlyt, hiszen minden két Potts-állapot közötti 
átmenet valamely perkolációs kötéskonfiguráción megy keresztül, aminek a kialaku­
lási valószínűségébe minden perkolációs kötés egy p faktort, és minden perkolációs 

klaszter — függetlenül a kezdeti Potts-konfigurációtól — egy q faktort tesz. A két 
Potts-állapot egymásba alakulásának valószínűségének különbsége (aránya) ezen per­
kolációs kötéskonfiguráción keresztül a kiindulási Potts-állapotokban létrejövő hiányzó 

kötéseknek megfelelő 1 — p = e~K faktorok aránya, ami éppen a Hamilton-operátorok 

különbségének exponenciálisa

ww P,>— ens,-Hs _ (2.62)
Ps

amiből a részletes egyensúly leolvasható.
Az eljárás alkalmazható bármilyen rácsra, bárhány dimenzióban, különböző köl­

csönhatás erősségek esetén is.
A Wolff-féle egy-klaszterflip algoritmus [105] a Swendsen-Wang-algoritmus tovább­

fejlesztése. Ebben az esetben egy kezdő spint véletlenszerűen választunk ki. En­
nek szomszédait ugyanazzal a valószínűséggel választjuk a klaszter tagjának mint a 

Sw endsen-Wang-al gór itmusb an:

p(si,Sj) = 1 - e KSsi'si. (2.63)

Ezután a klaszterbe került spinek szomszédaira végezzük el ugyanezt a procedúrát, ha 

az adott párra még nem végeztük el ezt. Az eljárás addig folytatódik, míg már nincs 

több új csatolható spin a klaszter peremén. Az így kialakuló klaszter spinjei q = 2 

Potts-spinek esetén előjelet váltanak, q > 3 esetén egyenlő valószínűséggel vehetik fel 
bármely Potts-értéket.
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Az átmeneti valószínűség egy- adott C klaszter esetén:

Wbulk(s,C) Д (1 -p(Si,Sj)),

{i,j)edC

ahol дС a C felülete, amely azon hiányzó kötéseket tartalmazza, amelyek egy klaszer- 

beli spint egy nem klaszterbelivel kötnek össze.

W(s s', C) (2.64)
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ooo**o*o*ooooooo
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2.2 ábra: Klaszter kialakulása a Wolff-algoritmusban kétdimenziós Ising-modellben. 
Az üres karikák a felfelé, a teli karikák a lefelé állapotot szimbolizálják.

A fordított irányú átmenetben W(s' —> s, C) a bulk rész a modell szimmetriája miatt 
ugyanaz, csak a felületi rész különbözik. Az oda és vissza irányú átmenetek átmeneti 
valószínűségeinek aránya éppen (2.62) egyenlet szerinti.

A fenti algoritmusok dinamikai tulajdonságai nagyban különböznek, ahogy koráb­
ban már említhettem. Három különböző algoritmus dinamikai exponensének összeha­
sonlítása látható a 2.2 táblázatban. A kétdimenziós Ising-modell szimulációjánál egy

d dimenzió Metropolis Swendsen-Wang Wolff
2 2.167±0.001 0.25±0.01 0.25±0.01
3 2.02± 0.02 0.54±0.01 0.33±0.02
4 0.86±0.01 0.25±0.02

2.2 táblázat: Monte Carlo-algoritmusok г dinamikai exponensei különböző dimenzi­
ókban [5].

100 x 100-as négyzetrácson a kritikus hőmérsékleten a Metropolis-algoritmusnál kb. 
három nagyságreddel hosszabb a korrelációs idő, mint a Wolff-algoritmus esetén, to­
vábbá figyelembe véve a táblázatbeli adatokat is, t.i. hogy a minta méretével az utóbbi 
esetben a korrelációs idő alig változik, nyilvánvaló, hogy a kritikus viselkedés tanul­
mányozására a klaszterflip algoritmusok sokkal inkább alkalmasak, mint a klasszikus
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algoritmusok.



3. fejezet

Véletlen kötésű Ising-rendszerek 

vizsgálata

3.1 Bevezetés

Már a kétdimenziós Ising-modell kritikus viselkedésének Onsager-féle [70] analitikus 

megoldása óta kérdés, hogy megváltoznak-e egy rendszer kritikus pontbeli tulajdon­
ságai, ha „hibákat" teszünk a rendszerbe. A standard válasz a Harris-kritérium alapján 

sem adható meg, hiszen a fajhő kritikus exponense: a?d,ising = 0 a kritérium marginá­
lis esete, így további vizsgálódás szükséges.

A továbbiakban a hígított Ising-modellen korábban elvégzett térelméleti vizsgála­
tok eredményeit és a Monte Carlo-vizsgálatokat tekintem át, majd a területen elért saját 
Monte Carlo-eredményeimet közlöm.

Előzmények3.2

A kötés hígított Ismg-modell Hamilton-operátora a következőképpen írható:

H — У ] JijSiSj, (3.1)
<ü)

ahol Jij-к független valószínűségi változók, amelyek legegyszerűbb esetben két értéket 
J-t és J'-t vehetnek fel p és (1 — p) valószínűséggel. A csatolások arányára az r = J'/J 

jelölést használom a későbbiekben.
Ennek a rendszernek a kritikus viselkedésére a különböző elméleti megközelítések 

más-más eredményeket jósoltak. A ma legelterjedtebben elfogadott elmélet a Vik. S.

37
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Dotsenko és VI. S. Dotsenko [14] által a '80-as évek elején kidolgozottakon alapszik. A 

tiszta rendszer — Jy = const. — esetén a nem kölcsönható rendszerek kvantum térel­
méleti vizsgálatában fellépő m0 fermion tömeg — ami a korrelációs hosszal fordítottan 

arányos — eltűnik. Ha véletlen kötéseket teszünk a spinek közé, akkor a leírásban a 

fermionok szabadok maradnak, de inhomogén térben mozognak. Hogy a homogeni­
tás visszaálljon DD a replika trükköt alkalmazta, kölcsönhatásokat bevezetve a fermi­
onok között. A kölcsönhatás g erőssége kicsi, ha a rendszer gyengén hígított. A kis 

kölcsönhatás esetén a renormált fermion tömeg:

m0 (3.2)mR =
(l+9ln(|))I/2

szerint változik, ahol m0 ~ t a tiszta rendszer fermion tömege és t = \TC — T\/Tc a 

redukált hőmérséklet. A renormált fermion tömeg definiálja a korrelációs hosszt:

(l+ffln(i))V2
----------------------- (3.3)

tmR

és minden termodinamikai mennyiséget. A fenti egyenletből látható, hogy létezik egy 

tcr crossover hőmérséklet

t = e~l/gL'CT ) (3.4)

amelynél nagyobb redukált hőmérsékletekre a logaritmikus tag nem játszik jelentős 

szerepet, így azokra a hígított rendszer viselkedése ugyanaz mint a tiszta rendszeré. 
A hígított rendszerre jellemző viselkedés csak a kritikushoz nagyon közeli hőmérsék­
leteken t <c tcr észlelhető. Ez a crossover jelenség a véges méret effektusokat is befo­
lyásolja, hiszen a tcr hőmérsékletnek megfelelő crossover hossznál kisebb L lineáris 

rendszerméreten a hígítás hatása nem lesz látható. Ez különösen fontos a számítógépes 

szimulációnál, ahol mindig véges méretekről van szó.
A DD-elmélet szerint a hígított rendszer fajhője dupla logaritmikus szinguláris vi­

selkedést mutat

C(t) ~ In ^1 +pln (3.5)

a tiszta esetre érvényes C(t) ~ ln(l/f) egyszerű viselkedés helyett. A F(r) spin-spin 

korrelációs függvény a tiszta Ising-modell Г(г) ~ 1 /г1/4 (r < /CT esetben) függésről — 

nagyobb távolságokban г » Icr — exponenciálisra változik. Haf(r) ismert, akkor x(t)
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mágneses szuszceptibilitás és M(J.) mágnesezettség már könnyen számolható. A DD- 

elmélet azt jósolta, hogy a ß exponens zérusra csökken és a szuszceptibilitás kritikus 

exponense 7 = 2-re változik.
A DD-elméletet több oldalról támadták. Ziegler [107] szerint a fajhő minden hő­

mérsékleten véges, tehát még a nagyon „lassú" dupla logaritmikus szingularitást sem 

mutatja, míg Shalaev [81], Shankar [82] és Ludwig [64] eredményei ellentmondtak a 

DD elmélet jóslatainak a mágneses mennyiségekre: Г(г)-ге, M-re és x-re, de a fajhőre 

ugyanazt az eredményt kapták.
Shalaev, Shankar és Ludwig a hígított esetben а Г(г) korrelációs függvény r —>• 00 

aszimptotikus viselkedésére ugyanazt az 77 = 1 /4 exponenst kapták mint a tiszta eset 
exponense. Shalaev — felhasználva a DD-elméletben megkapott mR renormált töme­
get — meghatározta a mágnesezettség és a szuszceptibilitás aszimptotikus f-függését
is:

tl/8
M(t) ~ (3.6)1/16(f + <7ln (7))

1/8(1 + sln(l))x(t) ~ t 7/4 (3.7)

Láthatók a tiszta rendszer ß = 1/8 és 7 = 7/4 kritikus exponensei és a szennyeződés 

miatt bejövő logaritmikus korrekciók.
A fajhő véges méret függése a kritikus pontban 3.5 alapján

C(L) = C0 + Ci ln (1 + u ln L) (3.8)

alakú, ahol и — 1/ In lcr. A M(L) mágnesezettség és a x{L) szuszceptibilitás különböző 

alakú a két elméletben.
A korai véletlen kötésű Ising-modell Monte Carlo-vizsgálatok [108] a r = 0 és 

p = 1, 0.9, 0.8, 0.7, 0.6 esetekre vonatkoztak és a Tc kritikus hőmérséklet hígítástól 
való függésének egzakt aszimptotikus viselkedését [90] p < 1-re jól visszaadták. A 

fázisátmenet minden vizsgált p értékre éles maradt és a 7 kritikus exponenst látszó­
lag nem befolyásolta a hígítás. A hígítás meghatározta tartományba való crossover, 
amelyet a logaritmikus korrekciók jellemeznek, nem volt felismerhető a viszonylag kis 

rendszerméretek (L < 60) és a vizsgálatok korlátozott statisztikai pontossága miatt az 

egy-spinflip algoritmusokkal.
A fent említett — egymásnak ellentmondó — analitikus eredmények vizsgálatát a 

'80-as évek második felében felfedezett — a Tc közelében a hagyományosnál sokkal
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gyorsabb — klaszterflip algoritmusok és a számítógép kapacitások növekedése tette 

lehetővé [2] [97] [93] [92] [85]. A vizsgálatokat L x L-es négyzetrácsokon végezték heli- 

kális és teljesen periodikus határfeltételek mellett. AJ és J' csatolási állandók egyenlő 

valószínűséggel voltak jelen a rendszerben: p = 1. Ebben az esetben a modell önduális 

és így a kritikus hőmérséklet egzaktul meghatározható:

tanh(J/Tc) = e~2JI/Tc (3.9)

és — az ettől eltérő p értékek esetében a Tc-ben fellépő pontatlanság — nem okoz ilyen­
kor további pontatlanságokat a kritikus exponensek meghatározásában. A hígítás ha­
tását különböző csatolási állandó arányok mellett vizsgálták (r = J'/J = 1,1/2,3/10, 
1/4,1/10) [97], aminek során a crossover szisztematikusan tanulmányozható volt.

A Swendsen-Wang és a Wolff-féle klaszterflip algoritmusokat alkalmazták, kihasz­
nálva, hogy ezek különösen jók a véletlen Ising-modell számolásokban, lévén a legha­
tékonyabbak a perkolációs határesetben [97] [98].

A kritikus pontban az crossoverhossz erősen függ a csatolások arányától r = 

J'/ J-tői hiszen r — 1/10 esetén lCT « 2, míg ha r = 1 /2, akkor lcr « 103. A vizsgálatokat 
általában r = 1/4-nél végezték, ahol lcr «16. Ebben az esetben a fajhő véges méret 
függésére C(L) megkapták a DD által adott (3.8)-beli dupla logaritmikus viselkedést. 
Az M(L) (~ L~x)~re és x(L) (~ Ly)-ra a véges méret skálázásból kapott adatok szerint 
x « 0.1245 és у « 1.7507, nagyon jó egyezéssel a tiszta eset ß és 7 exponenseivel, ami 
a Shalaev-Shankar-Ludwig elmélet eredményeit támasztja alá. A kritikus korreláció 

Г(г) vizsgálata azt mutatta, hogy kis távolságokon a tiszta rendszer korrelációs függ­
vényéhez képest 10~3 a relatív eltérés, míg nagyobb távolságokon (de q<\,L < 1024) 
néhány százalék, ami nem egy triviális eredmény, hiszen a kritikus hőmérséklet kb. 
fele a tiszta rendszerének. Azonban minél nagyobb a rendszer, annál kisebb az eltérés 

egy fix q távolság esetében. Ez szintén támogatja Shalaev [81] és Ludwig [64] elméletét.
A fajhő, a mágnesezettség és a szuszceptibilitás hőmérsékletfüggésére kapott ered­

mények is alátámasztják a fenti konklúziót.
A C(t) a dupla logaritmikus viselkedést mutatja. Az adott hőmérsékleteken szá­

molt effektiv kritikus exponensek

‘M(t) dx{t)ßeff (3.10)7 eff =<9 ln t d ln t

mutatják a tiszta hatvány függvény szerinti viselkedés mellett a logaritmikus korrek­
ciót is, ami az effektiv exponensek nem-monoton viselkedéséhez vezet. Az így kapott
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„túllövés" (overshooting) jelenségét egy későbbi ábrán mutatom meg, amire a követ­
kező görbe jól illeszthető:

-1/16M(t) « M0t1/8(1 + sV) ^1 + gIn (3.11)

figyelembe véve a skálázáshoz adódó első korrekciós tagot (1 + .sü)-t is, ami Tc-től 
távolabb módosítja a görbe alakját, illetve a — logaritmusos — crossovert létrehozó 

tagot. Hasonló érvényes a szuszceptibilitásra is.
A mágnesezettségre és a szuszceptibilitásra kapott adatokat úgy is magyarázhat­

nánk, hogy a kritikus exponensek növekedtek a tiszta esethez képest [48][49], vagy a 

Shalaev-Shankar-Ludwig-elmélettel konzisztensen: nem változtak, csak erős logarit­
mikus korrekció van. Figyelembe véve, hogy a fajhő exponense nem változik, a zérus 

marad, a kritikus exponensek az első esetben nem elégítenék ki az a + 2/3 + 7 = 2 

Rushbrook skálatörvényt, hiszen a ß és 7 is látszólag megnő.
A következőkben vizsgáljuk meg a két oldalán szabad határfeltételű véletlen kötésű 

Ising-modell kritikus tulajdonságait.

Kétdimenziós hígított Ising-modell3.3

A két oldalán szabad határfeltételű véletlen kötésű Ising-modellben egyszerre tanul­
mányozható a hígítás hatása a felület és a tömb kritikus viselkedésére.

Hasonlóan az előzőekhez kétféle csatolási állandóval hathatnak kölcsön a rácsbeli 
legközelebbi szomszéd spinek. A (3.1) Hamilton-operátor írja le a rendszer energiá­
ját. Mindkét csatolási állandó egyenlő p = 1/2 valószínűséggel fordul elő. A hígí­
tást a két csatolási állandó arányának r = J'/ J változtatásával érjük el. A rendszer 

vizsgálatát (11) és (10) párhuzamos szabad felületek mellett végeztem. A felületen és 

minden vele párhuzamos К oszlopban L spin van. Az első és az utolsó sorok periodi­
kus határfeltétellel kapcsolódnak egymáshoz. A továbbiakban az г index jelöli, hogy 

mely oszlopról van szó i — 1,2,... , К és a j index az adott oszlopon belüli pozíciót 
jelöli j = 1,2,... , L. Az i = 1 és i = К a rendszer két szabad felületét jelöli. A leg­
több számolás az (11) felülettel rendelkező modellre történt, ami lehetőséget adott a 

csillag-delta módszerrel [27] kapott eredményekkel történő összehasonlításra [35] [54]. 
A rendszerek mérete К = 40 és 1280 között volt, hogy a véges méret effektusok jól 
követhetők legyenek.

A vizsgálatok a Wolff-féle [104] egy-klaszterflip Monte Carlo-algoritmussal folytak
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és kisebb rendszerek és Tc-től távplabbi hőmérsékletek esetében főként tesztelés céljá­
ból összehasonlítást végeztem a Metropolis-algoritmussal [68].

A vizsgált mennyiség a mágnesezettségi profil:

(3.12)rrii =
3=1

ahol Síj az г-edik oszlop j-edik sorában elhelyezkedő spin. Az abszolútérték szoká­
sosan a Tc alatt a szimulációban a nem-eltűnő mágnesezettség elérése végett van. A 

felületi mágnesezettség ms — m\ = mK.
A Wolff-algoritmus rendkívül gyorsan az első néhány klaszterflip után már túl­

jut a kezdeti termalizációs tartományon. Ehhez képest nagyon óvatosan, általában az 

első néhány 103 klaszterfliptől tekintettünk el. Az időbeli korreláció az egymás után 

következő állapotok között nagyon kicsi, nehány klaszteflip. Az átlagolást általában 

(rendszermérettől függően) néhány 104 klaszterflipre végeztük, hogy kellő pontossá­
got érjünk el mj-kben. Ezen шгк szórása elhanyagolható volt a kötéskonfigurációkra 

történő átlagolás (quenched average) szórásához képest.
A véletlenszámgenerátoroktól [12] [51] esetleg eredő hiba [83] [84] miatt többfélét is 

kipróbáltunk, de lényeges különbség nem adódott. A kötéskonfiguráció kiosztására az 

R250 nevű „shift register" [50] módszert használtuk a kis korrelációi miatt. A Monte 

Carlo véletlenszámokat a lineáris kongruencia algoritmussal [57] állítottuk elő, amely­
ben erősebb az egymás után következő véletlenszámok közötti korreláció, és ugyan a 

Wolff-algoritmusban ezeket a véletlenszámokat egy adott —már klaszterbeli — spin 

körüli ugyanolyan állású spinek klaszterhez csatolásának eldöntéséhez használjuk, és 

az adott spin a már kialakuló klaszter peremének egymástól viszonylag távoli helyein 

is lehet, és ha sok azonos állású spin van a rendszerben, akkor a véletlenszámokat 
generáló algoritmus korrelációs idejétől függően a kialakuló klaszter bizonyos részei 
gyorsan megnőnek, míg más helyein kevés perkolációs kötés alakul ki, viszont az algo­
ritmus minden Monte Carlo-lépésében térben véletlenszerűen kiválasztott kezdőspin 

megfelelően összekeveri a rács különböző tartományainak újabb klaszterekhez való 

kapcsolódásának valószínűségét, így ez a korreláció végül nem okoz problémát.

I
I

3.3.1 Tömbi fázisátalakulás

A 3.1 ábrán látható mágnesezettségi profilokon jól észrevehető, hogy megfelelően nagy 

rendszerméretek esetén széles plató alakul ki a felületektől távol, ami jól megfelel a 

tömbi mágnesezettségnek. A felületek felé a mágnesezettség monoton csökken a felü-
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3.1 ábra: A kétdimenziós (11) felületű Ising-modell m(i) mágnesezettségi profilja a 
tiszta esetben (négyzetek) és az r = 1/4 hígított esetben (körök), a t = 0.2 (üres szim­
bólumok) és a t = 0.05 (teli szimbólumok) hőmérsékleteken, 160 x 80-as rendszermé­
retnél.

létén levő spinek kisebb koordinációs száma miatt ((11) felületen z — 2, (10) felületnél 
z = 3). A profilok az r = 1 tiszta esetre és egy hígítottra r = 1/4, azonos t redukált hő­
mérsékletek mellett (11) felület esetén készültek. A hígítás láthatóan csökkenti a mág- 

nesezettséget fix t mellett. Az ábráról kvalitatíve az is leolvasható, hogy az egyszerű 

elképzelésekkel ellentétben a bulk korrelációs hossz nő a hígítással, hiszen a platót a 

felülettől távolabb éri el a mágnesezettség a hígított esetben.
A tömbi mágnesezettség kritikus hőmérséklethez közeli viselkedése a homogén 

esetben ismert [70]. Az r = 1/4 hígított rendszerre vonatkozó korábbi Monte Carlo- 

vizsgálatok [85] a (3.11) Shalaev-megoldásnak megfelelő értékeket adtak, amit mi is — 

a felületi exponenesek számolásának egyik mellékeredményeként — a görbére illesz­
kedőnek kaptunk. Erősebb hígítás esetén — r — 1/10 — az irodalomban még nem 

közölt adatokat kaptunk. Az r = 1/4-nél látható "túllövés" tovább nő r = 1/10-ben, 
ami még erősebb logaritmikus korrekciót jelez (3.2 ábra). Megjegyzendő, hogy az áb-
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rázolt ßb exponensek a

1 rnb(t+At) 
11 mb(t-At)ff _ d In mb(t) ~ 

ßb dint ~ (3.13)In LkAí 
111 t—At

alapján voltak számolva, ahol az mb-két a felülettől távol — a korrelációs hossznak 

megfelelő — távoli tömbi rrii-k átlagai adták és a ß^ff-eket adott t-re csak két különböző 

hőmérsékleten felvett mikből számoltuk. (A korábbi vizsgálatokban [85] az effektiv 

exponenseket jóval több pontból számolták, hogy megfelelő eredményeket kapjanak.) 

Emaek ellenére látható a szimulácó nagy pontossága [86].

3.2 ábra: A tömbi mágnesezettség effektiv exponensei r = 1 tiszta rendszer esetén 
(folytonos vonal, egzakt eredmény), r = 1/4 esetén (teli szimbólumok) és r = 1/10 
esetén (üres szimbólumok). A szaggatott vonal a tiszta rendszer aszimptotikus értékét 
jelzi. Különböző hőmérsékleteken 80 x 40 (fordított háromszög), 160 x 80 (háromszög), 
320 x 160 (hegyére állított négyszög), 640 x 320 (kör) és 1280 x 640 (négyszög) méretű 
rendszereket vizsgáltuk. A hibahatárok a különböző kötéskiosztású rendszereken vett 
átlagok szórásából származnak.
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3.3.2 Felületi fázisátalakulás

A felületi exponens vizsgálatánál a tömbi széles platónak köszönhetően mindkét felü-

3.3 ábra: A felületi mágnesezettség effektiv exponensei r = 1 tiszta rendszer esetén 
(folytonos vonal, egzakt eredmény), r = 1/4 esetén (teli szimbólumok) és r = 1/10 
esetén (üres szimbólumok). A szaggatott vonal a tiszta rendszer aszimptotikus értékét 
jelzi. 80 x 40 (fordított háromszög), 160 x 80 (háromszög), 320 x 160 (hegyére állított 
négyszög), 640 x 320 (kör) és 1280 x 640 (négyszög) méretű rendszereket vizsgáltunk. 
A hibahatárok a különböző kötéskiosztású rendszereken vett átlagok szórásából szár­
maznak.

let egy félvégtelen rendszer felületének tekinthető, így az eredmények összehasonlít­
hatók voltak a tiszta rendszerre ismert analitikus eredményekkel [4][72], és a Monte 

Carlo- szimulációval párhuzamosan a csillag-delta transzformáció hígított rendszerre 

általánosított változatával végzett vizsgálatokkal [35] [54]. A kétféle módszerrel való 

vizsgálat célja az volt, hogy kiderítsük a felületi exponensek hígítás hatására történő 

esetleges megváltozását, más univerzalitási osztályba tartozását. A (3.13) egyenlethez 

hasonló módon Monte Carlo-szimulációval számolt felületi mágnesezettségi effektiv 

exponenseket a 3.3 ábrán láthatjuk. A tiszta rendszerre jól visszakaptuk a Peschel-féle 

[72] effektiv exponens változást és aszimptotikus viselkedést. A hígítás hatására a ßs 
exponens kis mértékben megváltozni látszik; a változás kb. ugyanakkora — 5 százalék
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— mint a ßb megváltozása, csak ellentétes előjelű, és a hígítással ezesetben is növekszik 

[35][86]. A kis változás miatt nehéz eldönteni, hogy az exponens valóban — a hibaha­
tárokat is figyelembe véve — eltér a tiszta rendszer ßs — 1/2 exponensétől, vagy. itt 
is erős logaritmikus korrekciókkal van dolgunk. Az effektiv exponensek hibahatárait 
meglehetősen konzervatív módon számoltuk: a két — t + Atést — At — hőmérsékleten 

kapott felületi mágnesezettségek hibájából a szokásos Gauss-féle hibaterjedési képlet­
tel. Ennél határozottan kisebb hibát kapunk, ha minden esetben két komplementer kö­
téskiosztáshoz tartozó mágnesezettségek számtani közepe átlagának hibáját vesszük 

alapul. Az ehhez tartozó hiba kb. az ábrán jelölt szimbólumok méretével egyezik meg.
A 3.4 ábrán a teljes ß*ff profilokat láthatjuk a tiszta és egy hígított rendszer esetén 

különböző kis redukált hőmérsékletek mellett. Látható a tömbi exponensek növeke-

0.4

fcs

^ 0.2

0.0
16012040 80

I

3.4 ábra: A kétdimenziós (11) felületű Ising-modell ß(i) mágnesezettségi exponens pro­
filja a tiszta esetben (négyzetek) és az r = 1/4 hígított esetben (körök), a t = 0.175 (üres 
szimbólumok) és a t = 0.075 (teli szimbólumok) hőmérsékleteken, 160 x 80-as rend­
szerméretnél.

dése a hígítás hatására és a felületi exponensek csökkenése.
Az 3.5 ábra a különböző ß^ff-ek aszimptotikus viselkedését mutatja be a felülethez 

közeli rétegekre és a rendszerben mélyebben is. Az i = 10 esetén jól látható a crosso­
ver a tömb effektiv exponensről a felület meghatározta viselkedésig, ahol a felülettől
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3.5 ábra: Az effektiv exponensek hőmérsékletfüggése a felülethez közeli i = 1, 2, 3, 10 
-ik rétegben és a minta belsejében (bulk). A folytonos vonalak egzakt eredmények 
[71][72][70], míg a szaggatott vonalak a szimulációs eredményeket követik, jelezve, 
hogy milyen hőmérsékleten játszódik le egy „crossover" a tömbi exponensről a felüle­
tire.

való távolság már kisebb, mint az adott hőmérséklethez tartozó korrelációs hossz. Ál­
talánosan is igaz, hogy tetszőleges, de véges távolságban a felülettől a a felületi 
exponenshez tart, ahogy Tc-1 közelítjük. Hasonló jelenséget figyeltek meg a háromdi­
menziós Ising-modell esetében is [75].

A korrelációs hossz viselkedése is megállapítható volt feltéve, hogy a felület és a 

tömb között a mágnesezettségi profil a tiszta esethez — a Bariev [4] által megmuta- 

totthoz — hasonlóan jellemezhető, azaz három rész különböztethető meg: a felülethez 

legközelebb levő réteg, ahol hatványfüggvényszerű a viselkedés, egy bonyolultabban 

leírható köztes réteg, és egy olyan réteg, amelyben a mágnesezettség exponenciálisan 

tart az гпь-hez:

__L (3.14)mb — пц ~ e .

Ennek segítségével meghatározható a 3.6 ábrán látható görbék búikhoz közeli részei 
érintőjének tangensével. A t = 0.1 hőmérsékleten az (10) felület esetében Jb = 2.14 —
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3.6 ábra: A mágnesezettség felülethez közeli viselkedése, amelyből látható, hogy a 
tömbi mágnesezettséget a rendszerek exponenciálisan érik el [4]. A t = 0.1 hőmérsék­
leten az ábráról az (10) felületű tiszta rendszer (élére állított négyszög), (11) felületű 
tiszta rendszer (négyszög) és az r = 1/4 hígítású rendszer (kör) korrelációs hossza be­
csülhető meg. A folytonos vonal az ezen a hőmérsékleten egzaktul meghatározható 
[4] korrelációs hossznak felel meg.

megegyezik a Bariev-értékkel — adódott, az (11) felület r = 1 esetén G = 2.29 és az (11) 
felület és r = 1/4 hígítás esetén G = 3.6 (egységnek véve a rácsállandót). A hígítással 
tehát növekszik a korrelációs hossz, és G ~ , и = 1 hőmérsékletfüggést feltételezve
látható, hogy a vizsgált rendszerek megfelelően nagyok ahhoz, hogy a véges méret 
effektusok nagyrészt kizárhatók legyenek (az összes említett vizsgálatban).



4. fejezet

Hierarchikus kölcsönhatású modellek

4.1 Bevezetés

Az 1. fejezetben említett aperiodikus struktúrák egy fajtája a hierarchikus rendszer, 
amelyet számos különböző kontextusban vizsgáltak korábban. Ilyen jellegű struktú­
rát figyeltek meg például rendezetlen rendszerek (spinüvegek) [69], illetve proteinek 

[3] relaxációs folyamataiban vagy nagy földrengések előtti geológiai folyamatokban 

[30], számítógép architektúrákban [31], gazdasági szerveződésekben [87], de tőzsdei 
árfolyamváltozásokban [15] is. Hierarchikus „potenciálban" történő diffúzió anomális 

jelleget mutatott, amelyet ultradiffúziónak neveznek [32][94][65]h
Ebben a fejezetben ilyen hierarchikus struktúrájú spinrendszerekbeli fázisátalaku­

lásokat vizsgálok. A második alfejezetben a hierarchikusan réteges klasszikus kétdi­
menziós Ising-modell illetve ennek az extrém anizotrop határesetben megfelelő kvan­
tum Ising-lánc felületi fázisátalakulását vizsgálom analitikus eszközökkel. A hierarchi­
kus sorozat vándorlási exponense lo = 0, a tiszta rendszer korrelációs hossz exponense 

v — 1, így a Luck-kritérium szerint a (2.16)-beli ф crossover exponens zérus értéke mi­
att a pertubáció marginális, így ennek a fázisátalakulásra való hatásának megállapítása 

részletes vizsgálatokat tesz szükségessé.2
A harmadik alfejezetben a kétdimenziós hierarchikusan réteges Ising-modell két 

távoli párhuzamos felületen levő spinjeit ellentétes állapotban rögzítve vizsgálom a fá­
zisokat elválasztó határfelület fluktuációs tulajdonságait. Ebben az esetben a rétegekre 

merőleges korrelációs hossz exponens v± = 1 /2, így a crossover exponens pozitív, tehát 
a perturbáció releváns, és a határfelületi fluktációs exponens (nemfolytonos) megvál-

:A témáról összefoglaló található [20]-ban
2Ebben a rendszerben más aperiodicitásra hasonló marginális viselkedést tapasztaltak: pl. [7]

49
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tozása várható.
A negyedik alfejezet a fenti két rendszer együttes tárgyalását tartalmazza a renor- 

málási csoport transzformáció keretein belül.

4.2 Felületi mágnesezettség

A kétdimenziós Ising-modell (10) felületi fázisátalakulását vizsgálom a következők­
ben. A felülettel párhuzamos rétegekben a kölcsönhatás konstans Кг, míg a rétegek 

közötti kölcsönhatás a felületre merőleges irányban hierarchikusan változik: K2(k) a k 

és k + 1 rétegek között. Az extrém anizotrop határesetben Ki —> oo, K2{k) ->0a prob­
léma transzfermátrixa a kvantum Ising-lánc (2.34) Hamilton-operátorát tartalmazza:

(4.1)n = -

2A'2(/c)/ln(tanhJó1).ahol aj, azk a Pauli-mátrixok k helyen és A/c 
A Afc sorozat a következőképpen áll elő

Afc = Arfk, (4.2)

ahol r az ún. hierarchikus paraméter, A egy referencia érték és fk-к természetes szá­
mok, amelyek a következőképpen adhatók meg:

k = m^k (ml +/i), 1 = 0,1,..., (4.3)ц = 1,2,..., m — 1,

ahol m egész szám és a sorozat "periodicitását" határozza meg. A sorozat általáno­
sítható úgy, hogy (4.2) egyenletben \k = Ar9^k\ ahol g(x) egy analitikus függvény. A 

hatványfüggvényekre általánosított változatot fogom vizsgálni: g(x) = xu, lo > 0, így 

az eredeti sorozat lo = 1-hez tartozik.
A kétdimenziós Ising-modell felületi mágnesezettsége az extrém anizotrop határe­

setben a 2.41 alapján következő:

-1/2oo j

1 + £IK2
j=l k=1

Az általánosított hierarchikus sorozatra, amely az ш exponenst is tartalmazza a felületi

(4.4)ms =
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4.1 ábra: Hierarchikus rács kötéskiosztása. Az oszlopok magasságai a csatolási állan­
dók erősségével arányosak. Az /fc-k értékei a hierarchia szintjét jelölik.

•• *,«••

M - 2 /■ > 1(

mágnesezettség a következőképpen írható át:

-1/2ms = [S(A,r)j
S(A,r) = ^A-«r-2“-, 

j=0

£(/*r,

(4.5)

(4.6)

(4.7)n0 = 0.Uj =
*=i

A kritikus csatolást (2.40) egyenlet alapján az alábbi feltételből kapjuk:

3

lim TTa* = 1,
J-+00 -*■

(4.8)
k= 1

amiből látható, hogy a A = Ac kritikus csatolás a hierarchikus paramétertől függ:

Ac = r-i(h,’m) (4.9)
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ahol 5(u, m) = lim,.^ n7nj/mÁ A<5(a>, m) a Függelékben részletezett számítások után:

V m ) mß
4 7 j=i

5(ta, m) = (4.10)

alakba írható és egész w-kra zárt alakban is kifejezhető, и = 1,2,3 és 4 esetében:

1
5(1, m) (4.11)

m — 1 
m + 15(2, m) (4.12)

(m — l)2 
m2 + 4m + 15(3, m) (4.13)

(m — l)3
m3 + llm2 + llm + 15(4, m) (4.14)

(m - l)4

Az lü = 1 esetet vizsgálom először. A (4.6) egyenletbeli hierarchikus paraméter 

exponensére az fmp = fp + 1 és fmp+p = 0,/x = l,2,...,m-l segítségével a következő 

relációk írhatók fel: nmp = np + p és nmp+/1 = nmp. így az (4.6) egyenletbeli S(A, r) 

összeget m részre bontva

m—1 oooo
Er) = y-2mpr-2ramp д-2(тр+р)г-2пт,,+р

p=l p=0

(4.15)
p=о

és felhasználva az n,-k közötti relációkat az alábbi egyenletet kapjuk:

1 - A~2m
S{Kr) = S(Xmr,r) (4.16)

1 - A-2 '

Ebből a kifejezésből a ßs felületi mágnesezettségi exponens, amelyet ms(t) ~ tßs de- 

finiál, ahol t = 1 - (Ac/A)2 -» 0+ (a redukált hőmérséklet) a [95]-ben alkalmazottak 

szerint a következőképpen kapható. Jelölje 5(u) az S(A, r)-nek az и = (Ac/A)2 szerinti 
sorfejtését. A (4.5) egyenlet szerint S(u)-nak a következő hatványfüggvény szingulari- 

tást kell mutatnia

S(u) - (1 - и)~ж\ (4.17)

A (4.16)-ban az új csatolás A' = Amr lesz, míg r és így Ac is változatlan marad (AJ, = Ac). 
A (4.16) egyenletben 5(Amr, r) ugyanolyan szinguláris viselkedést kell hogy mutasson, 
mint S(A, r)—hiszen a (4.16)-ban az 5(Amr, r) szorzófaktora nem szinguláris —, ahogy
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Л —у Ac egy A(r) amplitúdóval: ,

-2/3,2" — 2ßs ч \ 2 m
\Ac (4.18)S(Xmr, r) = A(r) 1- = A(r) 1 — AA'

ahol (4.9) és (4.11) egyenleteket használtuk. Ezt visszaírva (4.16) egyenletbe kapjuk az 

exponenst

1 —\~2,n

ßs = 2 In m

Az m = 2 esetben visszakapjuk az ismert [60] eredményt. A fentiek szerint tehát az 

ui = 1 esetben a hierarchikus Ising-modell kritikus viselkedése nem univerzális, r hi­
erarchikus paraméterrel folytonosan változik. Ezt az eredményt láthatjuk a 4.2 ábrán 

különböző m periódus hosszakra.

4.2 ábra: A felületi mágnesezettség exponense az r hierarchikus paraméter függvényé­
ben a rendszer bal (ßs) és jobb (ßs) felületén különböző m periodicitások esetén

A következőkben vizsgáljuk a rendszert hosszú, de véges szekvenciákon. A rend-

h>\
Vn

-7?
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szer hossza legyen j = mN — 1 = L — 1 és így:

mN — 1 j

A,r) = 1 + ^ riV
j= 1 fc=l

mN — 1
x-*jr-2n:. (4.19)

i=o

Ez a mennyiség rekurzív módon is előállítható

1 - A'2m SN(X,r), X = X ~Lr-nU (4.20)SV+i(A,r) = 1 - A'2

A Függelékben megmutatottak szerint nagy L esetén a (4.9) kritikus feltétel véges mé­
ret korrekciói logaritmikusak

nL = S(co, m)L------——Nu~l + О (Nш“2)
m — 1 4 '

(4.21)

így az X paraméter vezető rendben

X = (Ac/A^ (4.22)

és a kritikus pontban a rekurzió:

1 - Z2m
Sn+\ (Ac) = Sn{Xc), (4.23)

(4.24)
1 - Z2 

2 — г[ш/(т-1)]лг“ -1

alakú. Nagy N esetén Z különbözőképpen skálázódik w = 1-re, со < 1-re és lo > l-re, 
és a megfelelő 5дг(Ас) szintén különböző a három esetben. A fentiekben már vizsgált 
со — 1 esetben SN(XC) a rendszermérettől hatványfüggvény szerint függ:

SN(XC) ~ L2Xs, (4.25)

ahol a véges méret skálázás szerint xs a felületi spinek skáladimenziója. Felhasználva 

<5(1, m)-et, a (4.23-4.25) egyenletekből látható, hogy xs megegyezik ßs-sel, és így a ßs = 

skálafeltétel kielégül, hiszen a korrelációs hossz kritikus exponense a kétdimenziós 

Ising-modell esetén и = 1.
Végesméret skálázással megvizsgálható a rendszer kritikus viselkedése a lánc jobb 

végén L = mN kötés esetén. (Ha a lánc mN - 1 kötést tartalmaz, ahogy korábban, ak­
kor szimmetrikus a középpontjára és a felületi mágnesezettség ugyanaz a két végen.) 

A jobb vég felületi mágnesezettségének inverz négyzetét 5W(A, r)-rel jelölve egyszerű
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összefüggést kapunk

5дг(Л, г) — 1 + Л ~r 2Л 5лг(А, г), (4.26)

amelyből az £<,. — a jobb vég felületi mágnesezettségének skáladimenziója —

1-A?m
lnr 1-AÍ (4.27)a:s = x 2 In mIn m

és így

^s(Ac) — xs(Ac ). (4.28)

Az 0 < из < 1 esetben Z egyhez tart és (4.23) rekurzió vezető rendben

Sjv+1( Ac) = m(l + loN“-1 1пг)5дг(Ас), (4.29)

N Nu~ m rmelynek megoldása SN{Ac) 
mN ~ L ~ |f|~", illetve и = 1, a felületi mágnesezettség hőmérsékletfüggése

. Véges méret skálázással, felhasználva, hogy

ms(t) ~ p/2r-dlo«íl/1°gm)u'/2. (4.30)

így a felületi mágnesezettség ebben az esetben ugyanazzal a ßs = 1/2 exponenssel 
tűnik el, mint a homogén modellben, ahol r = 1, de logaritmikus korrekciók vannak. 
A csatolásokban levő hierarchikusan változó perturbáció az 0 < ui < 1 esetben tehát 
marginálisan irreleváns.

A rendszer viselkedése az lu > 1 esetben teljesen különböző. Külön kell vizsgálni 
az r > 1 esetet, amikor Z divergál, és az r < 1 esetet, amikor Z zérushoz tart. Az első 

esetben az aszimptotikus rekurzió

SN+l(\c) = r2“N^SN(\c) (4.31)

alakú, aminek a megoldása

2 NuSn(Xc) (4.32)

✓
így a felületi mágnesezettség csatolásfüggése anomális

~ (I l°g *1/ log m)"ms(t) (4.33)'f
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4.3 ábra: A kvantum Ising-lánc felületi mágnesezettségének hőmérsékletfüggése az 
r — 0.92 hierarchikus paraméter esetén, különböző egész cc-kra

gyorsabb lefutású mint bármely hatvány függvény, ahogy Л —t Ac.
Az r < 1 esetben (és lo > 1) Z tart zérushoz és az aszimptotikus reláció

Sn+i (Ac) — ^1 +

amelyből leolvasható, hogy Птдг^оо SN(XC) < oo, hiszen a zárójelben lévő második tag 

exponenciálisnál gyorsabban tart zéróhoz. így a

) Sn{Ac),2jjJ /üw-
7* m— 1 (4.34)

'K

П (l+rÄ-—) (4.35)
N=N0

szorzat konvergens. Következésképp a felületi mágnesezettség véges marad a kritikus 

pontban és a fázisátalakulás a felületen elsőrendű. A (4.34) szerint a felületi mágnese­
zettség anomális módon éri el az ms (0) határértékét:

I logí/logml" 12u>/(m—1)ms(t) - ms(0) (4.36)^ 7’

ahol felhasználtam, hogy L ~ t 1.
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A felületi mágnesezettség r = 0.92 hierarchikus paraméter és különböző lo > 1 

értékek esetén a 4.3 ábrán látható.

4.3 Határfelületi fluktuáció
A diagonális réteges ferromágneses négyzetrácsot vizsgálom ebben az alfejezetben. A 

négyzetrácsban Ising-spinek foglalnak helyet és a rétegek közötti kötés hierarchikusan 

változik (ld. 4.4 ábra).

h(x)

x
A

/

1 I
кк K, k2 ...
fk 010201030102010

... КI5

4.4 ábra: A struktúra nélküli határfelület a diagonálisan réteges hierarchikus rácson. 
Az alsó ábrán az oszlopok magassága a spinek közötti csatolások erősségét jellemzi.
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A csatolás a /i-adik diagonälißban Kh = Jh/kBT az előző alfejezetben megismert 
hierarchikus sorozat szerint változik

(4.37)h = 2n(2?n + 1),Kh —

ahol /sn = шс0-
A jobb- és baloldali (11) felületeken a spinek ellentétes irányban rögzítettek és az így 

kialakuló pozitív és negatív tartományt elválasztó határfelület fluktuációját vizsgálom. 
A határfelület egy folytonos, struktúrával nem rendelkező lánc, amelyben a bonyolul­
tabb konfigurációkat, mint például a „buborékokat" és a „kitüremkedéseket" kizár­
juk. Általánosan elfogadott, hogy a határfelületi fluktuációk vizsgálatánál elegendő 

megtartani ezeket az ú.n. "solid-on-solid" (SOS) típusú határfelület konfigurációkat, 
amelyek irányított bolyongóval vagy polimerrel reprezentálhatok [77].

Az SOS modellben a határfelület egy x helyen a h(x) magassággal jellemezhető és 

a határfelületi energia a következő % Hamilton-operátorral írható le:

ч/квт = (4.38)

hiszen a spinek a határfelület mentén ellentétesen állnak. A „vég"-effektusokat figyel­
men kívül hagyjuk, a lánc végei szabadok. A rendszer termodinamikai tulajdonságait 
transzfermátrix technikával vizsgálhatjuk legegyszerűbben. A transzfermátrix az x 

irányban a következő:

-2 Kh + Sh,i+ie 21<l.Th,i = öh,i~ie (4.39)

Itt a transzfermátrix elemei egy (e0, fi, f2, •••) halmazból választódnak ki — ahol = 

foTík, e0 = е~2к° a (4.37)-nek megfelelően — amelyben az egymás után következő ele­
mek aránya konstans fn+i/f„ = r < 1. A homogén rendszerre г = 1 és r általában 

az inhomogenitás mértékét jelenti. A határfelület kis valószínűséggel érint olyan he­
lyeket, amelyeknél az en mátrixelemre n » 1, mivel az ehhez tartozó valószínűség 

rn faktorral súlyozott, hiszen ilyenkor a határfelület olyan spineket választana el egy­
mástól, amelyek között a kötés кп = пк0 erős, ami valószínűtlenné teszi, hogy a spinek 

egymással ellentétesen álljanak be.
A határfelület a szabadenergiáját és a £j| longitudinális korrelációs hosszt, ami a 

rögzített határokkal párhuzamosan méri a korrelációt, a transzfermátrix és AL

? I

-1
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két legnagyobb sajátértéke határozza meg3

(4.40)

(4.41)

a = log

£|7J = log(AL/AL_i).

A határfelület fluktuációja ha tvány függvény szerűen nő

<[л(о) - 4х)}2) ~ x2wi (4.42)

ahol w a vándorlási exponens, amelyről tudjuk, hogy w = 1/2 a homogén kétdimen­
ziós rendszerben.

A probléma transzfermátrixa tridiagonális, szimmetrikus mátrix, így hatékony esz­
közökkel diagonalizálható, mint amilyen pl. a Lanczos módszer. Az adott problé­
mában azonban — a hierarchikus struktúrának köszöhetően — egy rendkívül gyors 

algoritmust használhatunk a megfelelő determinánsok gyökeinek számolására.
Vegyünk egy L = 2l méretű véges rendszert, és fejezzük ki a transzfermátrixának 

D(2l) determinánsát egy 2Í_1 és egy 2,_1 — 1 méretű aldeterminánssal

D{2l) = D(2/"1)D(2'-1) - D{2l~l - 1)D(2 í-i
-

A 2l — 2 méretű D(2l — 2) szimmetrikus determináns , amelyet a D(2;)-ből kapunk 

elhagyva az első és utolsó sort illetve oszlopot, hasonlóképpen fejezhető ki:

(4.43)

D(2l - 2) = D(2i-1 l)D(2l~1 - 1) - D(2 г-i 2)0(2‘-1-2)е?.,. (4.44)

Illetve

D(2' - 1) = D(2l~1)D(2l~l - 1) - D(2l~l - l)D{2 г-i - 2 Я (4.45)-1-

Ezek a képletek, kiegészítx^e a kezdődeterminánsokkal

D{ 1) = -A, D(2) = Л2 — fQ es D(2) = A2 - (4.46)

definiálják a gyors eljárást a nagy méretű determinánsok értékének számolására. A 

gyengén perturbált rendszerre — г й 1 — L = 230 - 240 méretek is kezelhetők vol­
tak. A legnagyobb sajátértékek a legnagyobb rendszerek esetén 10-12 jegy pontosan

?L szélességű rendszer esetén.

о "-2§G£

■ h
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megkaphatok. A A,(L) sajátérték-végesméretfüggését leíró yA gap exponens
A-.- í

(4.47)Al-A i(L)~L~y\

amely a vándorlási exponenst is meghatározza, hiszen (4.41) és (4.47) egyenletekből 
látható, hogy £ц ~ Lyx, és véges rendszerben az (11) felületre merőleges korrelációs 

hosszt a csík szélessége limitálja: £_l ~ L, így a határfelületi vándorlási exponens ~ 

ff módon definiálható. A fentiek kombinálásából leolvasható, hogy

w = 1/tJx (4.48)

Аь/fp w = 1 /у Ar
1.0 2.0 0.5

0.999 1.99800894 0.4567199
0.9 1.82853274 0.4551092

0.75 1.62218648 0.4451438
0.5 1.35286081 0.4004540

0.25 1.14948652 0.3110577
0.1 1.05381456 0.2272971

0.001 1.00050038 0.0911867

4.1 táblázat: A legnagyobb sajátérték és a határfelületi fluktuációs exponens különböző 
hierarchikus paraméterek mellett.

A gap exponens viszonylag kisebb pontossággal volt megkapható: kb 5 jegy. A 

pontosság növelésére ebben az esetben olyan sorozatextrapolációs módszereket hasz­
náltunk mint a Broeck-Schwartz illetve a Bulirsch-Stoer módszerek [24].

A transzfermátrix legnagyobb sajátértékei, amelyek meghatározzák a szabadener­
giát és az extrapolált határfelületi vándorlási exponensek a 4.1 táblázatban láthatók. 
A legnagyobb sajátérték és a vándorlási exponens — láthatóan — monoton nő a hi­
erarchikus paraméterrel. Az r —> 0 határesetben a határfelületi szabadenergia és a 

vándorlási exponens zérushoz tart, ami annak a ténynek felel meg, hogy a rendszer 

független részekre szeparálódik. A vándorlási exponens a legérdekesebb viselkedést a 

homogén eset környékén mutatja . Ahogy r az 1 érték alá csökken a vándorlási expo­
nens a w = - homogén értékről Aw = 0.0432799 mértékű véges ugrást szenved, ami 
azt mutatja, hogy ez az inhomogenitás releváns perturbációt jelent és egy másik stabil 
fixpontba viszi a rendszert — renormálási csoport képben.
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Renormálási csoport vizsgálat4.4

A kvantum Ising-lánc és a határfelületi fluktuáció a renormálási csoport transzformá­
ció segítségével egyszerre vizsgálható, hiszen — mint majd láthatjuk — a két rendszer 

ugyanazon mátrix elemei és sajátértékei renormálásának két különböző fixpontjához 

tartozik.
A korábbiak szerint a hierarchikus Ising-lánc

5 É- 5 E A‘°Í°Í+1 (4.49)H = -
k=1 k= 1

Hamilton-operátora — amelyben а A^-k a hierarchikus sorozat szerint változnak — egy 

Jordan-Wigner-transzformációval fermion operátorokkal kvadratikus alakba írhatók, 
majd egy Bogoljubov transzformációval a (2.36) diagonális alakra hozható, amelyben 

a Aq elemi fermion gerjesztések kielégítik a (2.37-2.38) mátrixegyenleteket, amelyek 

komponensekre kiírva a

Л?Ф9(А:) — —Л.Фq(k) — ХкФq(k + 1) ,

Л9Фq{k) = -Xk-i^q{k - 1) - hVq{k) , (4.50)

egyenleteket adják a A0 = XL = 0 szabad határfeltétellel. А Фч és SE, vektorok elemei a 

Bogoljubov transzformáció együtthatóival állnak kapcsolatban és normáltak. Ezekből 
a vektorokból a 2L dimenziós V9 vektorokat a

Vq(2k — 1) = —Фд(к), Vq(2k) = üfq{k) , (4.51)

módon létrehozva láthatjuk, hogy a (4.50) egyenletek aT

0 0 -Л 

0 •••

( 0 h 0 0

h 0 Ai 0 0
0 Ai 0 h 0 0 •••
0 0 h 0 A2 0 •••

T = (4.52)

mátrix sajátértékproblémájának felelnek meg. A T mátrix úgy is tekinthető mint egy 

irányított bolyongó transzfermátrixa két egymásbacsúsztatott diagonálisan réteges négy­
zetrácson (ld. 4.5 ábra).
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4.5 ábra: A két egymásbacsúsztatott diagonálisan réteges rács a bolyongó egy lépésé­
nek megfelelő szelete.

A bolyongó h és Xk súlyokkal lép az elsőszomszéd rácspontok között a két négy­
zetrács egyikén és a bolyongás a diagonális irányában történik.

A (4.50) egyenletekből látható, hogy ФдЧ -Ф9-га cserélve V9-ban a megfelelő sa­
játérték előjelet vált. így a T mátrix sajátértékproblémája a Aq spektrumot duplán 

tartalmazza: pozitív és negatív előjellel. Elegendő a spektrumnak csak aA, > 0 ré­
szét vizsgálni, hiszen ez minden információt tartalmaz az irányított bolyongóról és az 

Ising-modellről.
Vizsgáljuk a rétegekkel párhuzamos korrelációs hosszt a két rendszer esetében. Az 

irányított bolyongó esetében (2.27) alapján a transzfermátrix két legnagyobb sajátérté­
kével fejezhető ki a korrelációs hossz:

-1
A L AlDW (4.53)ln A—V A^i

amely láthatóan fordítottan arányos a transzfermátrix spektrumának tetején levő gap- 

pel. Az Ising-modell rendezetlen fázisában a korrelációs hossz a Hamilton-operátor 

legkisebb gerjesztési energiájának inverzével arányos (2.31):

*
A L — A^!

IM ~ Л-, 1 . (4.54)4

A Ai fermion gerjesztés a T transzfermátrix spektruma nemnegatív részének a legki­
sebb sajátértéke.

Ha valamelyik kritikus pont közelében vagyunk, akkor a megfelelő korrelációs



4. FEJEZET HIERARCHIKUS KÖLCSÖNHATÁSÚ MODELLEK 63

hossz divergál és a transzfermátrix spektrumának megfelelő része skálázási viselke­
dést mutat. Vegyünk egy I>1 szélességű véges méretű rendszert és jelöljük AA-vel 
a Al — AL_j-t az irányított polimer esetében, illetve A,-t az Ising-modell esetében. A 

hosszúságskála b > 1 faktorral történő megváltoztatásakor — U — L/b — a gapek a 

következőképpen transzformálódnak:

(ДА,)' = byA ДА, , (4.55)

ahol az yA skáladimenzió a spektrum különböző részeire általában más és más. Ez 

véges méret skálázási viselkedéshez vezet ДА; (L) ~ L~VA, így a fent említett korrelációs 

hosszak £ц ~ LVA szerint skálázódnak. Az Ising-modell esetén mivel £j_ ~ L, а £ц ~ 

által definiált z anizotrópia exponens:

(4.56)Z = 1JA -

Az irányított polimer esetében a w vándorlási exponensre (4.48):

w = У a1 ■

Ezek az exponenseket a renormálási csoport transzformáció révén kaphatjuk meg.
Renormálási csoport transzformációs egyenletek. A renormálás során azokat a helyeket 

decimáljuk ki, amelyek Л csatolással vannak összekötve. így 2(m — 1) méretű blokkok 

tűnnek el, és helyettesítődnek egy kötéssel, (ld. 4.6 ábra)

r2A

r A

4.6 ábra: A T mátrix hierarchikus sorozatnak megfelelő off-diagonális elemeit jelzik 
az oszlopok. A renormálandó mátrix sajátvektorának a megjelölt helyeknek megfelelő 
elemei kerülnek kidecimálásra a renormálási csoport transzformáció egy adott lépésé­
ben.

A A = A/A és A = A/h redukált változókat használva, majd elhagyva a „kalapokat",
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a

ArnV(2mn)-AV(2mn + l) + V(2mn + 2) = 0, 

V(2mn + 1) —AF(2mn + 2) + AV(2mn+3)=0, 

АУ(2тп+2)-ЛУ(2тп+3) + У(2тп+4) =0,

AF(2mn+2m—2) — A V(2mn+2m— 1) 4- +Vr(2mn + 2m) = 0, 

V (2mn + 2m —1) — Л V(2mn + 2m) 4- 4-Ar F (2mn 4- 2m 4-1) = 0.

sajátérték egyenletekhez jutunk. A 2m egyenletből a középső 2m - 2-t eliminálva a 

rendszer & = m-ed részére skálázódik. A középső egyenletekbeli V(2mn + 2), V(2mn + 

3),..., V(2mn + 2m — 1) változók mind kifejezhetők V(2ran +1) és F (2mn 4- 2m)-mel. így 

kifejezve V(2mn+2)-t és V(2mn+2m— l)-et, és ezeket visszaírva a két szélső egyenletbe, 
két összefüggésünk marad a V(2mn), V(2mn + 1), V(2mn + 2m) és F(2m" + 2m + l) 

komponensek között:

—V(2mn)-~—-F(2mn + l)+F(2mn+2m) = 0,
X x

V(2mn + l) - —-F(2mn + 2m) + —V{2mn + 2m 4-1) = 0 ,
X X

amelyekben x = Am-1/D2m_2 és s = -£>2m_3/£>2m_2. A D2m_2 a következő (2m-2) x 

(2m —2)-es determinánst jelöli:

(4.57)

(4.58)

-A A 

А -Л 1
1 -A A

£>2//i-2 — (4.59)

1 -A A 

A -A

illetve D a jobb alsó minorja D2m_2-nek. A (4.57-4.58) egyenletekből leolvasható a 

sajátértékek és a csatolási állandók transzformációja:
2m—3

A' = A + £
дт_1 1- Дт-1 ’

£>27/1-227/1—3 А = Ar (4.60)Am_1
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A 4.60 egyenletekből az m = 2 és m = 3 esetben a transzformációs egyenletek:

Л
A' — r(A2- A2)л' = дАл -a2-i>

Л' = y [(Л2 — A2)2
Л L

(m = 2) ,

, A' = y [(Л2 - л2)2 - д2] irn = 3) (.4.62)
Л

(4.61)

- 2Л2 + А2 + 1

Fixpontok és kritikus exponensek. А (4.60) transzformációnak Л* = 0-nál egy Ising- 

fixpontja van. A rendszer fixponthoz közeli tulajdonságainak vizsgálatához fejtsük ki 
a D2m-2 és D2m_3 determinánsokat A-ban lineáris rendig:

1 _ A2"1-2 
Л^ГуГ-= (-A2)m_1 + ö(A2) , + C>(A3) . (4.63)m— 1Дм — (~ i)D2TTI-2

Ezeket visszaírva (4.60) egyenletekbe megkapjuk az Ising-fixpont helyét:

A* = (_i)m-1r-1/(m-1l .A* = 0 , (4.64)

A transzformációt linearizálva a fixpontnál a következő sajátértékeket kapjuk:

dh! * *Ж|A*|m — |А*|~Ш 
I А* I — |A*|-1 ’

ЬУА = (4.65)= m ,<9A ал
és b = m-et figyelembevéve kapjuk az exponenseket:

In (|rm/(m_1) — _ ]n Qrl/(?n-l) _ r-l/(m-l)|^
í ) Vtin m

z = у A =

(4.66)

A transzformáció másik fixpontja a irányított bolyongó kritikus viselkedését hatá­
rozza meg. A fixpont és a megfelelő kritikus exponensek csak m — 2 és m = 3 esetben 

adhatók meg zárt formában.
Az irányított bolyongó fixpontja az m = 2 esetben a (4.61) egyenletekből kapható:

Vl - r + r2 rA* = A* = (4.67)1 — r 1 — r

A linearizált transzformáció nagyobbik sajátértéke:

1/2
1\21 1 1

- 2 (4.68)ei = - + r + - + - + r + -2 2r r
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ж
Л

HF

t

<- ■> -*
IM Л

4.7 ábra: Az Ising-modell és a határfelületi fluktuáció fixpontjai a renormálási csoport 
transzformáció fázisterében.

és így a bolyongó vándorlási exponense

1 ]n_2_
Uh Inéi

(4.69)w = —

hiszen itt b = 2 a skálafaktor. A renormálási csoport transzformáció másik sajátértéke 

e2 < 1 és az ehhez tatozó skálatér irreleváns. (4.67)-ből látható, hogy a homogén eset­
ben (r = 1) a transzformációnak nem létezik fixpontja, így аю = j normális vándorlási 
exponenst nem kaphatjuk meg. Ezzel a módszerrel az anomális fluktuáció tartomá­
nyában (r < 1) a renormálási egzakt eredményeket összehasonlítva a 4.1 táblázatban 

szereplő véges méret skálázással kapott numerikus eredményeinkkel, láthatjuk, hogy 

azok nagyon pontosak, (4.69)-cel legalább 6 jegyre megegyeznek.
Az irányított bolyongó azm = 3 esetben a (4.62) egyenletekből kaphatóan:

y/2 r\/l + r2A* = (4.70)A* =
1 — r 1 — r

fixponttal rendelkezik. A transzformáció legnagyobb sajátértéke:

1/221 1
e: = 2 —1-Г + 1+ 4 - + Г + 1 (4.71)-3r r
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és így a vándorlási exponens:

1 In 3
(4.72)w = —

У a Inéi

mivel b = 3 a skálafaktor.



5. fejezet 

Összefoglalás

A disszertációban különféle inhomogenitások hatását vizsgálom az Ising-modell fázi­
sátalakulásaira. A véletlenszerű és bizonyos determinisztikusán meghatározott nem­
korlátos perturbációk felületi és tömbi kritikus viselkedésre gyakorolt hatásai mind 

megfelelnek a korábban kidolgozott kvalitatív relevancia-irrelevancia kritériumoknak. 
Ezen rendszerek részletes vizsgálatát tartalmazza ez a dolgozat. A területen elért ered­
ményeinket a következő pontokban foglalhatom össze röviden:
1. A kötéshígított kétdimenziós Ising-modell tömbi mágnesezettségét vizsgáltam a 

Wolff-féle klaszterflip Monte Carlo-módszerrel. Megállapítottam, hogy a mágnese- 

zettség effektiv exponense a hőmérséklet egy tartományában fölé nő a térelmélet által 
jósolt aszimptotikus értéknek, mely az irodalomban vitatott „overshooting,,-nak neve­
zett jelenség a hígítás mértékével erősödik [86].
2. Meghatároztam a hígított Ising-modell felületi mágnesezettségének kritikus expo­
nenseit különböző hígítások mellett, mind az (11) és az (10) felületeken. Megállapítot­
tam, hogy mindkét esetben megegyezik a hígított modellek felületi kritikus exponense 

a tiszta rendszer azonos exponensével, azaz a hígítás (marginálisan) irreleváns jellegű. 
A felületi exponensek effektiv értéke a hígítás növekedésekor csak kis mértékben vál­
tozik meg, azaz robusztusabb mint a hasonló tömbi exponensek, ahol a korrekciós 

viselkedés erős, logaritmikus jellegű [86] [35].
3. Diagonális rácson elkészítettem a mágnesezettségi profilokat és a hozzájuk tartozó 

effektiv exponens profilokat és tanulmányoztam a tömbi és a felületi exponensek kö­
zötti „crossover" viselkedést. A felületi réteg vastagságának vizsgálatával meghatá­
roztam a korrelációs hossz hígítás hatására történő megváltozását [86] [35].
4. Vizsgáltam a kétdimenziós hierarchikus kötéskiosztású Ising-modell és az ennek 

— az extrém anizotóp határesetben — megfelelő egydimenziós kvantum Ising-lánc 

felületi kritikus viselkedését. Analitikus összefüggést találtam a felületi mágnesezett-
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ség exponensének a hierarchikus paramétertől való függésére különböző hierarchikus 

szerkezetek esetén. Megállapítottam, hogy az általánosított hierarchikus sorozat a kö­
tések fluktuációjának gyengítésekor marginálisan irreleváns perturbációt jelent, azaz 

csak logaritmikus korrekciók lépnek fel. Ugyanakkor a fluktuációk erősítésekor a per­
turbáció marginálisan releváns: a hierarchikus paramétertől függően a felületi fázisá­
talakulás vagy elsőrendű vagy a mágnesezettség minden hatványfüggvénynél gyor­
sabban cseng le [36].
5 A kétdimenziós hierarchikusan réteges Ising-modell két távoli párhuzamos felüle­
ten levő spinjeit ellentétes állapotban rögzítve vizsgáltam a fázisokat elválasztó határ­
felület fluktuációs tulajdonságait. Megállapítottam, hogy a határfelületi fluktuációk 

anomálisan viselkednek, a vándorlási (fluktuációs) exponens a hierarchikus paramé­
ter folytonosan változó függvénye, melyet transzfermátrix módszerrel numerikusán 

meghatároztam [39].
6. A hierarchikus csatolású rendszerre alkalmaztam az aperiodikus rendszerekre ko­
rábban kidolgozott egzakt renormálási csoport transzformációt, amely a kétdimenziós 

Ising-rács határfelületi fluktuációját és a kvantum Ising-lánc kritikus problémáját azo­
nos keretek között, egyazon renormálási csoport keretében tárgyalja. A megkonstruált 
renormálási csoport transzformáció két nem-triviális fixpontja a határfelületi fluktuá­
cióknak illetve az Ising-modellnek felel meg. A fixponti transzformáció analíziséből a 

két modell kritikus tulajdonságait egzaktul meghatároztam [39] [42].



Függelék

Az 5(ш,т) kiszámolásában kulcsfontosságú az ríj paraméter ismerete különböző i 
m, m2, ... , mN, ... hosszúságú szekvenciákra:

Пт — 15

nm2 = mnm + T - 1ш,

nmN — mnmN-1 + Nu — (N — 1)ш,

és általánosan

(\ - —) V — + N“
V m J ^ rnJJ =1

NnmN = 771

alakban írható. Ebből a kifejezésből a (4.10)-beli ő(w,m) az N —» oo határátmenettel 
már megkapható. A 5(u),m) pozitív egész w -kra viszonylag egyszerű alakban felír­
ható:

■ - 41
S(Lü,m) =

1 - X= m

nmN végesméret korrekciói

Л - —) V — + ívw
V mJ fxl. mlm)mN = N“nmN

mß

ahonnan — sorbafejtve (1 4- j/N)u-1 kapjuk, hogy

—N“-1 + О (N“-2) . 
m — 1

ő(uj, m)mN —ninN =
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Angol nyelvű összefoglaló
h.

This thesis investigates the effect of inhomogeneities on critical behavior by means off\
modern statistical physics.

Previous results

Critical behavior (second order phase transition) was already observed in the last cen­
tury when condensation of C02 and other kinds of gases and their phase diagram were 

investigated. The phenomenon as the liquid and gaseous phases was well described 

by the van der Waals equation. Similar phase transition can be observed when heating 

up ferromagnetic materials, when it looses its spontaneous magnetization and beco­
mes paramagnetic. The paramagnetic-ferromagnetic phase transition was described 

by Weiss' molecular field theory, which was able to support theoretically the empiric 

Curie's law of magnetic susceptibility.
7 €5 j

Around the critical point both theory assumed implicitely that the free energy of 

the system can be expanded in the so called order parameter. This is the basic idea of 

the Landau theory, which describes the above two phenomena in the same framework 

introducing the notion of the order parameter and gives the possibility of investigating 

further systems such as superconductivity through the Ginzburg-Landau equation. 
The experimental results, the various results of high and low temperature series and 

Qnsager's solution of the two dimensional Ising model pointed out the limits of the 

theory. As we presently know this approach actually gives correct information only a 

little away from the critical point,, Very near the critical point it gives only a qualitative 

picture about the character of the phase transition as it could not allow for the long- 

range fluctuations because of the divergency of the correlation length.
The breakthrough in the area of the second order phase transitions was the adop­

tion of the previously known renormalization in field theories, which through the 

renormalization group transformation maps the original system onto a system with 

less degrees of freedom, but with the same features such as the same symmetry in the
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Hamiltonian. The parameters in the Hamiltonian shows scaling properties along the 

maps with the appropriate scaling dimensions, from which the critical exponents of va­
rious physical properties can be determined. The renormalization group transforma­
tion gave also the explanation why there are universality classes, i.e. why completely 

different physical systems have the same critical indices with different order parame­
ters as well. Furthermore it gave an explanation for the relations between the critical 
exponents, the scaling laws and the observed phenomenon that the concrete values of 

the microscopic parameters doé& not affect the universality classes.
The Ising model examined in the thesis also by virtue of its simplicity is one of 

the most fundamental model that describes cooperative phenomena as there is a two­
valued spin variable associated with each site of a lattice. While previously the inter- 

molecular interactions between the spins appeared to be rather oversimplified and in 

this way the model was thought of as an inappropriate model for describing a real 
system, nowadays learning the renormalization group transformation it is clear that 
the microscopic details in the short-range interactions apparently do not affect the co­
operative properties especially the critical behavior. Along the years the Ising model 
became one of the most studied model of statistical physics which by virtue of univer­
sality it describes the liquid-gas phase transition, the previously mentioned magnetic 

phase transition, the order-disorder transition in binary alloys or the phase separation 

in liquid mixtures.
Investigation of systems with disorder or containing certain inhomogeneities (sur­

faces, linedefects, etc.) also started based on the results of the investigation of the criti­
cal behavior of homogeneous systems. The first of these investigations were the peri­
odically and the randomly layered two-dimensional Ising model (McCoy-Wu model) 

and the investigation of the critical behavior of the directed walk in inhomogeneous or 

random media.
To study the effects of inhomogeneities has fundamental importance as we cannot 

find perfectly pure system or perfectly periodic crystal lattice without dislocations and 

point defects in nature.
One of the main topics of the thesis is the examination of the critical behavior of the 

inhomogeneous (bond-diluted) Ising model. According to the criterion worked out by 

Harris the relevance-irrelevance of perturbation caused by inhomogenities depends on 

specific heat exponent of the homogeneous system. This is zero in the case of the two- 

dimensional Ising model and in this way this is the marginal case of the criterion. In 

this case the critical behavior of the of the diluted system can only be determined by 

detailed study.
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Quasicrystals discovered in 1984 can be considered as an intermediate between 

pure (periodic) and disordered (diluted) systems. These are deterministic but non­
periodic structures whose Fourier spectrum can be described as a superposition of 

discrete, finite, irrationally relating peaks, so it does not have a pointsymmetry cor­
respond^ to a periodic structure. Along the discovery of quasicrystals the production 

of multilayers with aperiodic structures that can be produced artificially gave a new 

impulse to the examination of inhomogeneous systems. By virtue of molecular beam 

epitaxy quasiperiodic or more generally aperiodic structures were produced, whose 

theoretical investigation is also very interesting, like for example the Fibonacci super­
lattice structure consisting of GaAs — AlAs alternating layers. The special properties of 

the new structure were confirmed by X-ray and Raman scattering examinations.
The hierarchical system I examine in the dissertation is a similar special structure, 

in which the coupling constants between the spins shows such a self-similar order. Re­
cently such structures were observed in several artificial or natural systems such as, re­
laxation processes of disordered systems (spinglasses) or proteins. Some more distant 
examples are computer architectures, geological processes before large earthquakes 

and in the everyday life various economic organizations or stock market exchange ra­
tes show similar tendency. Various numerical and exact results showed that diffusion 

can be anomolous in a hierarchical "potential", which is called ultradiffusion.
A relevance-irrelevance criterion similar to the Harris criterion for random mag­

nets was found by Luck for phase transitions of general aperiodic structures. In this 

case the sign of the crossover exponent consisting of the correlation length exponent of 

the non-perturbed system and the wandering exponent of the aperiodic sequence de­
cides the type of the phase transition of the inhomogeneous system. The perturbation 

is marginal if the crossover exponent is zero. Critical exponents continously varying 

with the value of the coupling and anisotropic scaling were observed in several such 

systems, in which exact results are also known. In case of anisotropic scaling correla­
tion lengths measured paralell to the layers and perpendicular to them diverge with 

different exponents in the critical point. The hierarchically layered Ising model also 

belongs to this special type of systems as our investigations showed it.

Methods of investigation

Transfer matrix method

With the aid of the method, which was first used by Kramers and Wannier in 1941
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for investigating the Ising model the partition function of a system can be figured out 
as a trace of powers of matrices. The transfer matrix connects the states of consecu­
tive layers in the direction of translational symmetry. To calculate the free energy and 

the correlation length of a system the two largest eigenvalues of the transfer matrix is 

needed (in the thermodynamic limit). In case of the two-dimensional TV-layered Ising 

model an eigenvalue problem of a 2N x 2N matrix must be solved, which is equivalent 
in the extreme anisitropic case with the eigenvalue problem of the Hamilton operator 

of the one-dimensional quantum Ising chain. To solve the Hamiltonian we transform 

the spin operators to fermionic operators with a Jordan-Wigner transformation and 

than after a Bogoliubov transformation on the latters we get a free fermionic system. 
In the latter step of the calculation the solution of an eigenvalue problem of an N x N 

matrix is needed. The first excitations of the quantum problem are in a one-one re­
lationship with the correlation length of the two-dimensional problem, so examining 

that makes possible the investigation of the phase transition of the two-dimensional 
system.

The problem of interface fluctuation can also be investigated by the transfer matrix 

method. In this case the problem is less difficult comparing to the Ising model since 

the dimension of the transfer matrix is N. It can be shown that this transfer matrix is 

equivalent with the matrix in the Ising model got after the Bogoliubov transformation. 
Renormalization group transformation

The transformation with which one can confirm the scaling and the universality hy­
pothesis is an important (numerical) calculational method as well. Through changing 

the length scale the renormalization is generally performed on the Hamiltonian in the 

partition function. The hierarchical system discussed in the thesis naturally provide 

the opportunity of performing the renormalization throught its self-similarity. In our 

case we perform the transformation not on the Hamiltonians, but on the elements and 

eigenvalues of the matrices occuring in the problems. The equivalence of the matrices 

in the problem of the spin system and the interface fluctuation makes it possible to 

discuss them in the same framework. The two problems belong to two different non­
trivial fixpoints of the transformation. The fixpoint describing the lower edge of the 

spectrum controls the critical behavior of the Ising model, while the other one desc­
ribing the higher edge of the spectrum controls the critical behavior of the interface 

fluctuation.
Monte Carlo methods

In the dissertation I applied various classical (Metropolis algorithm) and modern 

(Swendsen-Wang and Wolff algorithms) computational methods. Among these I app-
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lied the Metropolis algorithm mainly for domains away from the critical point since 

this method as generally the one-spinflip methods cannot be applied at temperatures 

nearby the critical state because of the phenomenon of critical slowing-down. A great 
result of the end of the '80-ies is the work-out of such clusterflip algorithms, in which 

the critical slowing down practically disappears, so the greater and greater system si­
zes because of the divergency of the correlation length do only cause problems in the 

numerical calculations. The Swendsen-Wang and Wolff's clusterflip algorithms more­
over needs even less CPU time in various diluted systems than in the homogeneous 

case since they are the fastest in the percolation limiting case.

Results

My results can be summarized in the following six points:
1.1 investigated the bulk magnetization of the bond diluted two-dimensional Ising 

model with Wolff's clusterflip Monte Carlo method. I verified that the effective ex­
ponent of the magnetization goes higher in some range of temperature than the field 

theoretically predicted asymptotic value, which phenomena called "overshooting" dis­
puted in the literature gets stronger with dilution [86].

2. I determined the surface magnetic critical exponents of the diluted Ising model 
for different dilutions, both for the (11) and the (10) surfaces. I found out that in both 

cases the surface critical exponents of the diluted models coinside the counterpart ex­
ponent of the pure system, i.e. the dilution is (marginally) irrelevant. The effective 

value of the surface exponents changes only slightly for stronger dilutions, i.e. it is 

more robust than the similar bulk exponents in which there are strong logarithmic cor­
rections [86] [35].

3.1 made the magnetization profiles and the corresponding effective exponent pro­
files for the diagonal lattice and studied the crossover behavior between the bulk and 

the surface. Examining the thickness of the surface layer I determined the change in 

the correlation length with dilution [86] [35].
4.1 studied the surface critical behavior of the two-dimensional hierarchically laye­

red Ising model and in the extreme anisotropic limit that of the corresponding one­
dimensional quantum Ising chain. I found analitic relation between the surface magne­
tization critical exponent and the hierarchical parameter in different hierarchical struc­
tures. I found out that in the case of the generalized hierarchical series weakening the 

fluctuation in the couplings causes marginally irrelevant perturbation, i.e. only loga-
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rithmic corrections occure. At the same time, strengthening the fluctuations the per­
turbation becomes marginally relevant, i.e. the surface phase transition is first order 

or the magnetization decays faster than any power law depending on the hierarchical 
parameter [36].

5. Fixing the spins oppositely in the two distant surfaces of the two-dimensional 
hierarchically layered Ising model I investigated the fluctuation properties of the in­
terface separating the two phases. I found out that the interface fluctuations behave 

anomalously, the wandering (fluctuation) exponents are a continuously changing func­
tion of the hierarchical parameter, which I determined numerically applying transfer 

matrix method [39].
6. I applied for hierarchically coupled systems the previously elaborated exact re­

normalization group transformation for aperiodic systems, which discusses the prob­
lem of the interface fluctuation of the two-dimensional Ising lattice and the quantum 

Ising chain in the same framework of renormalization group. The two non-trivial fix- 

point of the renormalization group transformation built up correspond to the interface 

fluctuation and the Ising model. From the analysis of the transformation at the fixpoint 
I calculated analitically the critical behavior of the two models [39] [42].
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