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1. fejezet

Bevezetés

A két tapasztalatbol is legismertebb fazisatalakulas a folyadék-géz, illetve a ferromag-
nes-paramagnes fazisatalakulds. A folyadék-gaz és a magneses fazisitalakulas elst
elméleti lefrdsa van der Waals [96] és Weiss [100] nevéhez fliz6dik, akik az dtlagtér el-
mélet Keretében vizsgaltdk a két kiilonbdz6 rendszert, ahol a rendszert alkotd részecs-
kék a tobbiek altal keltett homogén potenciél-, vagy magneses térben helyezkednek el.
Ezen klasszikus elméletek — a "30-as években — a Landau-elméletben [55][56] nyer-
ték el végleges alakjukat, amelyben bevezetésre kertilt a rendparaméter fogalma. Ezen
elmélet alapfeltevése szerint a kiilonb6z6 termodinamikai mennyiségek a fazisatala-
kuldsi pont kérnyékén sorbafejtheték a rendparaméter szerint. Ezen sorok vizsgélata
tette lehet6vé a fazisatalakuldsok pontosabb megértését.

A statisztikus fizikaban jellemz6 sokrészecskés bonyolult rendszerek fazisatalaku-
ldsainak elméleti vizsgélataban az els6 analitikus megoldés a kétdimenzids Ising-mo-
dell Onsager-féle megoldasa (1944) [70], amely lehetséget adott a klasszikus elmé-
lettel val6 Gsszehasonlitédsra. A két elmélet diszkrepancidja (az eltér$ kritikus expo-
nensek) ravilagitott a klasszikus elmélet hidnyossdgaira, a korrelaciék nem megfelels
figyelembevételére és a fluktudcidk szerepére.

Masodrendti fazisdtalakuldsokban nagy szerepet jatsz6 korreldcios hossz fontossa-
gat és a fluktudciok szerepét a '60-as években ismerték fel Ebben az idben sziiletik
meg a Widom-féle skalahipotézis [101][102] és a Kadanoff-féle blokkspin transzforma-
ci6 [46], amelyek mind elemei a fazisatalakuldsok kés¢bb kialakuld altalanos elméleté-
nek. A kisérleti eredmények arra utaltak, hogy a kritikus exponensek nagyfoku univer-
zalitast mutatnak fliggetleniil az anyagi min6ségttl [21][47], fliggetleniil az anyag mik-
roszkopikus koélcsénhatasainak erésségét6l. Ezek sem adtak azonban vissza a klasszi-
kus elmélet exponenseit és tobb univerzalitdsi osztaly létezésére is utaltak. Tovébba a
kiilonb6z6 hdmérsékleti sorfejtések is alatamasztottak a kritikus ponthoz kozeli skala-
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1. FEJEZET BEVEZETES 4

viselkedést.

Az attorést a térelméletekben mar kordbban is ismert renormaélés alkalmazésa jelen-
tette (Wilson 1971) [103], amely a rendszert a renormalasi csoport transzformacio soran
egy kevesebb szabadsagi fokkal, de azonos tulajdonsagokkal (pl. azonos szimmetriaju
Hamilton-operatorral) rendelkez® rendszerre képezi le, amelynek 6tlete abb6l szarma-
zik, hogyha a rendszerben lev$ karakterisztikus hossztisag — amelyet a korrelacios
hossz jellemez — végtelenné valik, akkor a rendszer 6nhasonl6 [16], azaz bdrmekkora
részekre bontva azt, és a részekben a szabadsagi fokokra &dtlagolva, az ezen transz-
forméci6 soran kapott Gj rendszer ugyanolyan jelleget 61t a kritikus pontban, mint az
eredeti. Az azonos dimenzidju és azonos Hamilton-operatorra vezetd rendszerekre az
eljards azonos kritikus exponenseket ad, igy az elmélet magyarazatot adott arra, hogy
miért lehetnek meglehet&sen kiilonbozé fizikai rendszerek kritikus tulajdonsédgai azo-
nosak. Magyarazatot adott tovabba a skalahipotézisre, illetve a kritikus exponensek
kozotti Osszefiiggésekre.

Az atlagtér elmélettel csak homogén kdlcsonhatésti rendszerek voltak vizsgélhatok,
amelyet a Landau-elmélet dltalanositasa tett alkalmassa feliiletek fazisatalakuldsainak
vizsgélatédra. ’

A kisérleti technika gyorstitemfi fejlédése tette lehetévé a nem homogén (feliiletek-
kel, hibavonalakkal, -helyekkel, aperiodikus kolcsénhatds-moduldciéval rendelkezd)
rendszerek vizsgdalatat. A kvazikristdlyok [79] kisérleti felfedezése és a jO minGségii
atomi rétegeket tartalmazé anyagok (multirétegek) [67] eldéllitasat lehetévé tevs, mo-
lekulasugér epitaxia kifejlédése 6ta ertteljes elméleti érdekldés indult meg az aperio-
dikus struktirdk [58] — az olyan ,geometriai” jellemz6k, mint az énhasonlosag vagy
kvaziperiodikussag hatasa [25] a rendszer fizikai jellemz&ire — tanulmanyozésa irant.
A "90-es évek elso feléig alapos vizsgélat targya volt az ilyen rendszerek fonon, illetve
elektronspekruma [44][28].

A 790-es évek elején kezd6dott az aperiodikus rendszerek (pl. spinrendszerek) ko-
operativ viselkedésének — f&ként kritikus tulajdonsagainak — vizsgélata. Jellemz&en
alacsonydimenzi6ju modell rendszereket vizsgélnak e teriileten, mint pl. a kétdimen-
zids rétegesen aperiodikus klasszikus Ising-modell, vagy az ennek megfeleld egydi-
menzids aperiodikus kvantum Ising-modell [62][33]. Ezen aperiodikus rendszerek-
ben 1étrejové fazisatalakuldsok megvaltozasdnak kérdése mar a homogén kétdimen-
zi6s Ising-modell analitikus megoldasa utan felvet6dott.

A korai periodikus [17] és véletlen réteges [66] kétdimenzids modellek (McCoy-
Wu-modell) utdn a kvaziperiodikus [58][19] és higitott [90][61][11][38][40] modellek
elméleti [37] és — a szdmitégép kapacitdsok ndvekedése folytdn egyre pontosabb —
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numerikus [89][13][34] és kisérleti vizsgalatok sokasaga jelent és jelenik meg napjaink-
ban is a szakirodalomban.

Heurisztikus perturbativ kritériumot sikertilt felallitani a higitott magnesek (mint
amilyen példaul a véletlen kotésii Ising-modell) fazisatalakuldsa perturbacié hatasara
torténé megvaltozdsara [22]. A perturbécio relevancidja a homogén rendszer fajht ex-
ponensével hozhaté kapcsolatba. Hasonlé — a homogén rendszer kritikus exponen-
seivel, illetve a perturbacitt jellemz6 tn. vandorlasi exponenssel megadhaté — krité-
riumot talaltak a gyengén perturbalt aperiodikus rendszerekre is [62][63], amelyeket
mindezidaig minden egzakt és numerikus vizsgalat alatdmasztott. Ezek azonban leg-
feljebb kvalitativ képet adnak az inhomogenitéds hatasarol.

Az alkalmazott vizsgélati médszerek egyik leghatékonyabbika a méar emlitett re-
normaldasi csoport transzformacié, amely dltalanos elméleti jelentsége mellett, szami-
tasi modszert is ad. Jonéhdny nem trivialis probléma megoldasa valt segitségével le-
hetévé, mint pl. a kétdimenzids haromszogracson értelmezett Ising-modellé [26], vagy
kulonbo6z6 diffuzids folyamatoké bizonyos fraktal struktirdkon [20]. A moédszer ter-
mészetes modon ad lehet6séget az onhasonlo struktirdk vizsgalatara, mint amilyenek
a dolgozatban is vizsgalt hierarchikus rendszerek. ,

Hasonl6an jol alkalmazhaté médszernek bizonyult a — Kramers és Wannier [53][99]
altal el6szor alkalmazott — transzfermatrix technika, amely a kétdimenzios Ising-mo-
dell Onsager-féle megoldasaban is nagy szerepet jatszott. Segitségével egyszertien: a
matrix legnagyobb sajatértékeinek meghatarozdsaval megkaphatjuk a vizsgalt rend-
szer szabadenergidjat, illetve korrelaciés hosszat. A homogén rendszereken kiviil egy-
arant alkalmas higitott [1][78][88] és aperiodikus rendszerek vizsgélatara tetsz&leges
kotéskiosztasok és csatolasi erdsségek mellett.

Széles korben elterjedt a ma mar nemcsak integralok kiszamitdsara alkalmazott
Monte Carlo-szimulécié, amellyel — a szdmitégép kapacitasok rohamos névekedésé-
nek koszonhet6en — mezoszkopikus méretii statisztikus rendszerek tulajdonségai is
vizsgalhatok. A ’80-as évek végén diszkrét spinrendszerekre kidolgozott klaszterflip
Monte Carlo-médszerek (amelyek nemcsak egy vagy néhany spint forditanak at egy
lépésben, hanem egész tartoméanyok spinje valtozik meg), mint a Swendsen-Wang [91]
és a még ennél is gyorsabb Wolff-féle [104] moédszerek — amelyek a dinamikai expo-
nens zérushoz kozeli értéke miatt alig mutatnak kritikus lelassulést a kritikus hdmér-
séklet kozelében — olyan problémaékra is alkalmazhaté, mint a higitott kétdimenzids
Ising-modell fazisatalakuldsdanak vizsgélata, amelyben a térelméleti joslatokbdl ismer-
ten csak bizonyos rendszerméretek felett mutathat a minta a mar a higitott modellre
jellemzd, a tiszta rendszerétdl esetleg eltérd kritikus exponenseket. A mddszer elénye,
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hogy a rendszer tetszdleges része,vizsgalhato: a feliilet és a tombi részek is, ellentétben
mas, egyébként szintén hatékony mdédszerekkel, mint pl. a csillag-hdromszdg transz-
formacio [27], amellyel csak a rendszer feliiletér&l kaphatunk informaciot.

Ez a dolgozat a fenti médszerek alkalmazdaséaval vizsgélja dnhasonlé (hierarchikus)
és higitott spinrendszerek fazisatalakuldsait, illetve az 6nhasonlé potenciélban elhe-
lyezked6 irdnyitott polimerlanc viselkedését.

A dolgozat 2. fejezete attekintést ad a kesébbiekben vizsgélt vagy felhasznélt klasszi-
kus és kvantum spinmodellekrél és példat ad lehetséges fizikai realizaci6jukra. A re-
normalasi csoport transzformécié altalanos keretei kozott bevezetem a mésodrendii
faziatalakulasok esetén késdbb felhasznélt fogalmakat és a kritikus exponensek de-
finiciéit. Roviden bemutatom a felhasznalt mddszereket: a transzfermatrix technikat,
amelynek keretein beliil részletezem a kétdimenziés klasszikus Ising-modell és az egy-
dimenzios transzverztérbeli kvantum Ising-modell kapcsolatat. Targyalom tovabba a
spinrendszerekre alkalmazott alapveté Monte Carlo-algoritmusok lényeges elemeit. A
disszertécié tovabbi fejezetei a sajat eredményeket tartalmazzék.

A 3. fejezet a kétdimenzids higitott Ising-modell feliileti fazisdtalakuldsaira kapott
eredményeket tartalmazza. Nagypontossagu, klaszterflip Monte Carlo-algoritmusok
segitségével — a més modszerekkel vald Osszehasonlithatésdg kedvéért — az (11) fe-
lilletre végzett vizsgalatokkal a hémérséklet fliggvényében a kritikus pont kdzelében
(és attdl viszonylag tavolabb is) effektiv mégnesezettségi exponenseket kaptunk, ame-
lyekbdl a szdmolas pontossagan beliil extrapoldlni lehet az aszimptotikus kritikus ex-
ponenesre. Megvizsgaltuk a tombi kritikus viselkedésben mar kordbban tapasztalt —
és tobbek 4ltal vitatott — un. ,tallovést” kiilonbozé higitasok mellett, illetve vizsgal-
tuk a magnesezettségi és exponens profilokat is.

A 4. fejezet harom részre tagolddik harom kilénb6z6 vizsgalat szerint. Az els6ben
a hierarchikus sorozatnak megfelels csatoldskiosztasu egydimenzids transzverz Ising-
modell feliileti kritikus viselkedését vizsgalom. A feliileti magnesezettségi exponens
a sorozat 6nhasonlé struktirdjanak koszonhetSen analitikusan egzaktul meghataroz-
haté. A sorozat kétféle altalanositdsa esetén is megvizsgaltuk az exponenseket, illetve
a fazisatalakuldsok jellegét.

A masodik vizsgalat a rétegesen hierarchikus kétdimenzids Ising-modell kétféle
spinallapotu fazisat elvalasztd hatérfeltilet fluktudcidjara — amely megfelel az 6nha-
sonlé potenciadlban bolyongé részecskének, vagy a potencidlba behelyezett iranyitott
polimernek — vonatkozik. A fluktudcié természetes médon vizsgalhaté a transzfer-
matrix modszer segitségével, amelynek legnagyobb sajatértékei véges méret skalaza-
sabol kovetkeztethetiink a hatarfeliilet vandorlasi exponensére.
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A harmadik vizsgélat egységes keretek kozott targyalja a Ising-modell faziséatala-
kulasét, illetve a hatédrfeliilet fluktudci6jéat hierarchikus kotéskiosztasu racs esetén. Az
egységes targyalast az teszi lehet6vé, hogy a hatarfeliilet bolyongasdnak transzfermat-
rixa megegyezik a kvantum Ising-lanc energiasajatérték-problémajara kapott matrix-
szal. A két feladat a matrixok elemeinek és sajatértékeinek renormalasaval oldhat6
meg a kordbban az aperiodikus sorozatokra kidolgozott renormalasi csoport médszer
segitségével. A megoldasok két kiilonb6zd fixponthoz tartoznak a renormaélési cso-
port transzforméciéban. Igy analitikusan vizsgélhattuk az Ising-modell anizotrépia
exponensét [29][6]: a korreldcids hossz mas-més exponensekkel skalazodik a rétegekre
merdleges irdnyban és azokkal parhuzamosan. A bolyongé esetében pedig vizsgal-
hattuk a mar el6z6leg a transzfermétrix médszer segitségével is kiszamolt vandorlasi
exponens anomalis viselkedését.

A dolgozat utolsoé fejezete 6sszefoglalja a legfontosabb eredményeket.



2. fejezet

Statisztikus fizikai attekintés

2.1 Modellek, mennyiségek, fazisatalakulasok

21.1 Spin modellek

A lokalizalt spinekkel rendelkez® mégneses rendszerek egyik legéltaldnosabb modellje
a

H==JL ) (stsj+ols) =) _sisi—H) s

(i) (i)

Hamilton-operétorral irhat6 le, amelyben az i és j rdcspontokon elhelyezked spinek
megfelel6 komponensei a J; és J, csatolasi konstansokon keresztiil hatnak koéleson
egymassal, illetve z komponensiik a megfelel6 irdnytd H kiils6 mégneses térrel. A
kolesdnhatasok rovid tavolsaguak, az 6sszegzések az (ij) legkdzelebbi szomszédokra
torténnek.

Az s (o = x, y vagy z a Descartes koordinétékat jel6li) spinoperétorok feles spini
racspont-objektumok esetén a ¢ Pauli-matrixokkal egyeznek meg. Ezek az operéto-
rok nem felcserélhetdk, igy a modell alapvet&en kvantummechanikai.

A csatolasi dllandok kiilonbozé valasztasa esetén specialis modelleket kapunk. A
Ji = J. valasztds a Heisenberg modellt [23] adja vissza, amely bizonyos magneses
szigetel6k, mint pl. az EuS ferromégneses viselkedését irja le. A Heisenberg modell
spin-térben megkdovetelt teljes>'érﬁzotrc’)piéjét kevés anyag mutatja azonban.

A J, = 0 esetén a spinek ké{dimenziés kvantummechanikai vektorok, bealldsuk az
r—y sikra korlatozédik. Ez az in. X —Y modell , amely annyiban hasonlit a Heisenberg

modellre, hogy szokasos értelemben vett fizisatalakuldsa nem-zérus hémérsékleten
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csak d > 2 dimenzidban van.

2.1.1.1 Ising-modell

A J, = (0 valasztéssal az Ising-modellt [43] kapjuk

H=—J.Y sisi—HY s, (2.1)

(13)

amely er&sen anizotrép magneses rendszerek leirdsara hasznalhatd, a spin csak a 2
tengely irdnyaval parhuzamosan éllhat be. Ennek megfeleld fizikai rendszer példaul
a MnF,, amelynek j6 kozelitéssel csak egy tengellyel parhuzamosan allhatnak be a
spinjei. Feles spin esetén a rdcspontok spinjei a o Pauli-métrix sajatértékeit vehetik
fel. Ezzel egy “klasszikus” spin modellt kapunk, hiszen a Hamilton-operator egymas-
sal felcserélhetd tagokat tartalmaz, igy az operédtorok egyszerfien helyettesithetk sa-
jatértékeikkel. Ez a modell egyszertisége ellenére nemcsak méagneses rendszerek leira-
sara alkalmas, hanem az ugyanezen Hamilton-operatorra leképezhetd rendszerekére
is, mint amilyenek példdul a bindaris 6tvozetek, amelyekben a sajatértékeknek az felel
meg, hogy a két kiilonb6zo fajta atom koziil melyik foglalja el az adott racspontot. Lé-
nyegében azonos Hamilton-operétorra jutunk a rdcsgdz modell esetében is, ahol a két
sajatérték az adott racshely betoltottségét vagy benemtoltottségét jellemzi, a H pedig
egyfajta kémiai potencial.

Ezekbe a rendszerekbe a rendezetlenséget a J. csatoldsi konstansokon keresztiil
vihetjiik be, amelyek racspontrél-racspontra valtozhatnak.

2.1.1.2 Potts-modell

Az Ising-rendszer Hamilton-operéatora irhaté kicsit masképpenis: az s;s; kdlcsonhatasi

tag helyére irva a 24,, ,; — 1-et lényegében ugyanazt kapjuk (az energiaskalat eltolva)
[76]:

H==2]) 840 —H s
(7) i
Ez a forma lehet6séget ad az altalanositasra, amelynek sordn az un. g-allapotu Potts-
modellt kapjuk, amelyben s;-k ¢ kiillonb6z6 értéket vehetnek fel: s; = 1,2, ... ,9. A
q = 2 érték nyilvanvaldan az Ising-modellnek felel meg.
A kétdimenzids ¢ = 3 allapotd Potts-modell szimmetridjaval rendelkezd rendszer
egyik fizikai realizacidja a grafit racs feliiletén adszorbealt kripton. A kripton atomok
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elég nagyok ahhoz, hogy ha egy hatszog gyfirtibe bekertilnek, akkor a kozvetlen szom-
széd gyfirtibe ne keriilhessenek tjabbak, igy a feliileten harom alracs keletkezik, ame-
lyeket egy-egy rdcsponton a Potts-dllapotok indexelnek.

A Potts-modell tovébba fontos szerepet jatszott a Monte Carlo klaszterflip algorit-
musok kidolgozasanél, mint ahogy azt a késébbiekben latni fogjuk.

2.1.2 Statisztikus fizikai atlagok

Az N elemf racs kanonikus éallapottsszege

Fp(THY =) &, (2.2)

ahol g = 1/kT, k a Boltzmann-alland6 , 7' a hdmérséklet, H a kiils6 tér. Az Osszegzés
az 0sszes r mikrodallapotra (pl. {s;} spinkonfigurdcioéra) torténik, E, az ezekhez tartozé
energia.

Altalaban egy X fizikai mennyiség atlagértékét a kovetkezéképpen fejezhetjiik ki

1 .
Xi== Z X, exp|—BE,] (23)
A rendszer szabadenergia-stirtisége az 4llapot 0sszeg logaritmusaval aranyos

F(T,H) = —kT lim ]—1\7-1n Zn(T, H) (2.4)

N—ox

termodinamikai limeszben (N — oo). Minden makroszkopikus termodinamikai tulaj-
donsagot a szabadenergia differencidldsaval nyerhetiink.
A méagnesezettség az egy spinre esd magneses momentum atlaga

= =5 > (M) exp[-BE,],
{si}

ahol M = 3" s;, és amelyet beirva pl. (2.1)-et (2.2)-ben E, helyébe, majd H szerint dif-
ferenciélva, és figyelembe véve (2.4) -et — termodinamikai hatdresetben — ugyanazt
adja, mint a jol ismert

d

m(T,H) = ~30 (T,H).



2. FEJEZET STATISZTIKUS FIZIKAI ATTEKINTES 11

A szuszceptibilitds, a rendszer kiils6 térre valo érzékenysége

i om

X = g%vom
= 1 2 i 2
= M) — (M%)

A fajhs

o f

C=Tozs-

Korreldcick. A korreldcids fliggvény a spinek hasonlé beélldsanak valdszin{iségét
méri:

Gij = ((5: = (s0)) (85 = (55))) - (2.5)

Spinrendszerekben jellemz® a korrelécios fliggvény

e—T/¢ -y
G(r)~ —— (2.6)

~opd=2+7

alaku lefutasa a rdcséllandonal lényegesen nagyobb tédvolsdgokban. Az exponencidlis-
ban szerepld £ azonosithatd a korreldcids hosszal. A fazisdtalakuldsi hémérséklethez
kozeledve a korrelacios hossz divergél, amely azt eredményezi, hogy egyre nagyobb
tartomanyok spinjei korreldlnak, mignem végtelenné valik a korrelacié hatétadvolsaga.

A Korrelaciés hossz divergencidja magaban rejti bizonyos fizikai paraméterek di-
vergencajat is. A minta térfogatéra integralva (2.6)-t vagy 6sszegezve i, j-re (2.5)-ben
éppen M szoérasét kapjuk, amely x-ben is megjelenik, igy

kTx ~ /G(r)ddr

Osszefliggés alapjan vildgos, hogy miért divergdl a szuszceptibilitds a kritikus hémér-
sékleten.

Feliileti mennyiségek. Ha a vizsgélt rendszer feltilettel rendelkezik, akkor a szabade-
nergiaban egy ehhez kapcsol6dé 4j f,(T, H, H,) tag is megjelenik, amely a H, lokdlis
magneses tértol is fligg.

A el6zbekhez hasonléan szarmaztathatjuk a kiilonbozé feliileti termodinamikai
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mennyiségeket, mint pl. a feltiletj mégnesezettséget, szuszceptibilitast vagy fajhot [8]:

_9fs - Omg
L R T

0*f
) Co=To3

g =

2.1.3 Fazisatalakulasok
2.1.3.1 Renormalasi csoport transzformaci6

A fézisatalakuldsok elméletében fellépd olyan kérdéseket, mint hogy miért léteznek
masodrend i fazisatalakulasok esetén univerzalitasi osztélyok, ezekhez tartozé felst
kritikus dimenzidk, illetve hogy a termodinamikébdl ismert exponens egyenl6tlensé-
gek miért egyenlségekként allnak fenn, vagy hogy a kritikus exponensek ugyanazt
az értéket veszik fel ha foliilrél vagy alulrél kozelitiink a kritikus hdmérséklethez, a re-
normaldsi csoport transzformécié magyardzza meg, sok esetben egzakt értékeket adva
a kritikus hdmérsékletre és kritikus exponensekre.

A renormélasi csoport transzformacio a rendszer hosszusag skaldjanak valtoztata-
saval miikodik

r:% b>1)

mikozben csokkenti a rendszer szabadsagi fokainak szamat

N

N,:—l-)—‘;’

d a rendszer dimenzidja. A rendszer tulajdonséagai csak a kritikus pontban — a transz-
formécié fixpontjdban — maradnak véltozatlanok a hosszusag skédla valtoztatasaval
szemben. A termodinamikai fliggvények skéldzési formaba lesznek irhatok.

A transzformécio formalisan a kiindulasi és a renormalt redukélt Hamilton-operator
(H = H/kT) kozotti dsszefiiggésként irhato:

H =RH
A Hamilton-operator éltaldnos alakja:
H= Z ia- S,

ahol S komponensei a megfelel szimmetridju operatorok szorzatai, és i komponensei
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a hozzéjuk tartoz6 konjugalt terek, a paraméter tér komponensei. Az egymas utan ko-
vetkez6 renormélasi csoport transzformaciok ugy véltoztatjdk a Hamilton-operétort,
hogy a rendszer végig megy a paramétertéren

i =XRi
A leképezés fixpontjdban
g=p=i
és az e pont koriili kis kérnyezetben
g = gr+94i (2.7)
g o= i+ (2.8)

a fixponttol valo kis eltérések az eredeti és a renormalt rendszerben 0sszekapcsolhatok
a renormaéldsi csoport transzforméacié Taylor sorfejtésével

o = Ly(@%)di,

ahol L, konstans matrix a transzformacié derivalt métrixa a ji* fixponban. L;, matrix
sajatértékei a transzformécié csoporttulajdonsagai miatt

Ai(b) = b¥i

alakba irhatdk, ahol y; skdladimenziok mér nem fliggenek a b skalafaktortol és a rend-
szer kritikus exponensei kifejezhet6k segitségiikkel. A ji* fixpont kortili paramétertér-
beli mozgéas az L, matrix 7; sajatvektoraival egy kezdeti pontbdl:

fi=p+ Zgiﬁi,
i
ahol g;-k a linedris skélaterek, egy transzformaci6 hataséara
ﬁl = /_L‘* =+ Z I)yigiﬁi,
i

pontba jut. Leolvashatd, hogy az i-edik skalatér b¥i-vel skalazodik.

y; > 0 esetben a g; skalatér relevans véaltozo, a renormaélas hatasara a rendszer tavo-
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lodik a fixpontjatol, legalabbis a linearitési tartomanyon bell.

Ha y; < 0 akkor a skalatér irrelevans, az egymasra kovetkez6 renormalési csoport
transzforméciok kovetkeztében a rendszer a kritikus pontjahoz kozelit.

y; = 0 esetben a (2.7-2.8) egyenletek Taylor sorfejtésekor nem elég az els¢ (linaris)
tagot figyelembe venni csak. A skélatér marginalis valtozo.

A kritikus feliiletet azon pontok adjék a paramétertérben, amelyekben minden re-
levéans skalatér zérus. A feliilet bairmely pontjdbdl indulva a fixpontba jutunk a renor-
malasi csoport transzformécié sokszori végrehajtdsédval, mikozben a korreldcids hossz
minden lépésben b-ed részére csokken, amely alapjan vilagos, hogy a rendszer korrela-
ciés hossza a fellileten végtelen, mivel a kritikus pontban is az és a rendszer kritkikus
allapotban van. Ezek szerint az irrelevans paraméterek megvaltoztatasaval nem vihetd
ki a rendszer a kritikus allapotabol.

A fentiekbdl lathatd, hogy kiilonbdz6 fizikai rendszerek azonos univerzalitési osz-
talyba tartoznak ha dimenzidjuk megegyezik és hasonlé alaki Hamilton-operator ha-
tarozza meg' viselkedésiiket, fiiggetleniil a rendszerekbeli kolcsonhatasok részleteitdl,
amelyek csak a kritikus pont (fixpont) helyét véltoztathatjdk meg.

A transzformacio konkrét alakja dltalaban erbsen fligg az adott problématol.

2.1.3.2 Skalazas

A Hamilton-operatoron keresztiil a benne levd paraméterek meghatarozzdk a redu-
kélt szabadenergia-stirtiség f = f/kT szinguldris részének viselkedését a renormélés
hatésara:

fsing(ﬁ) = b_d73i7zg(ﬁ,)

a kritikus pont kdzelében a lineéris skélaterekkel:

f.sing(fv h? 393,34, - - . ) = b——d._f_sing(bytta byhh7 bysg-'i, by4g47 oy )7

ahol g =t (: T;TTf-> a redukalt hémérséklet, g, = h = H/kT a kiils6 magneses tér, a
redukalt szabadenergia szinguldris része altalanositott homogén fliggvényként irhato.
A tobbi termodinamikai fliggvény és valtozo is, mint példdul a fajhd, a mégnesezett-

ség vagy a szuszceptibilitas, illetve a korrel4ciés hossz és a korrelacids fliggvény —

'Trrelevans paraméterekben kiilonbozhetnek, mint pl. a tévolabbi szomszéd kolcsonhatasok.
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ebbdl szdrmaztathatéan — hasonl6 skélazési formaba (altalanositott homogén fiigg-
vényként) irhat6 a megfels g; skalaterekkel és y; skaladimenzidkkal.
A fajh¢ a szabadenergia hémérséklet szerinti mésodik derivéltja a kritikus feliilet

kozelében

o
0 fsing

C(t,h=0)~ 5

= Tult, h = 0) ~ b2  (bv, 0)

h=0

Mivel b tetsz6legesen vélaszthato, legyen b = t~1/¥%, és igy a fajh redukélt h6mérsék-
lettd] valo fliggése

C(t,0) ~ ¢4/ f,(1,0) (2.9)

alakba irhat6. A mégnesezettség hasonléan:

m(t,h) ~ —%ﬁ;ﬁ = —fiu(t, h) ~ b=V f, (bVet, b h)
és igy hasonl6 skalafaktor valasztassal mint az el6bb
m(t,0) ~ tld=v/vef(1,0).
A szuszceptibilitds pedig

x (2, 0) ~ t(d_th)/y‘m(l, 0)

A korrelaci6s fiiggvény — definici¢jdbdl kovetkezéen — ardnyos a magnesezettség
négyzetével, ezért

G(t,h,r) ~ b~2nG (by't, Whh, %)

alakba irhat¢, ahol z,, = d — . Ab = r és h = 0 vélasztassal a korrel4ciés fiiggvény

G(t,0,r) ~ r2W=dG(r¥e4 0,1) = P2Wr-dG ((_7«_)% 0, 1) _ g (€>

1~ 1/ye r2(d—yn)

alaku, ahol a korreldcios hosszt a

£~ 1~ /e



2. FEJEZET STATISZTIKUS FIZIKAI ATTEKINTES

definiciéval azonositjuk.

2.1.3.3 Kritikus exponensek

16

A kritikus exponensek az el6z8 alfejezetbeli y; skaladimenziok segitségével a 2.1 tab-

lazat alapjan hatdrozhatok meg. Igy a fajh o exponense a (3.5) egyelet segitségével

exponens definicié
« fajhd exponens Cu ~ [t|™*
[ mégnesezettség exponens (h = 0) m ~ (—t)P
7 szuszceptibilitds exponens (h = 0) x~ |t
v korrelaciés hossz exponens £~ t|™"
1

n parkorrelécios fliggvény T,-nél (h = 0) G(7) ~

rd—2+n

2.1 tablazat: Az alapvetd kritikus exponensek definicioi

a = (2y; — d)/y;

és hasonldan a tobbi exponensekre

B= (d—yn)/u
vy= (2yn—d)/u
1/th
n= d+2-2y,

Il

v

(2.10)

(2.11)
(2.12)
(2.13)
(2.14)

Az alapvet6 exponensek lathatéan csak két skaladimenzi6tol fliggenek, igy kozottiik
Osszefuggések talalhatok. Példaul a (3:5) és (2.13) egyenleteket kombinalva kapjuk a

hiperskalatorvényt:

dv =2 — a,

(2.15)
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vagy (2.10-2.12) egyenletek komhinaldsaval a Rushbrook skélatorvényt:
ok 20y =2
Feliileti exponensek. A feliileti redukélt szabadenergia-siir{iségre a skalahipotézis
Fo(t, hyhe) = b=UF (p¥et, b¥nh, b¥shy)

alakban irhat6. Ennek segitségével a feliileti magnesezettség 3, kritikus exponense az
el6zbek szellemében:

875 B d_l_yfl
~ e g o e
oh b Yt

ms = —

2.1.3.4 Perturbaciok, relevancia-irrelevancia kritériumok

A (2.1) Ising Hamilton-operétorban a helyfligg® J;; csatolasi allanddkon keresztiil be-
vezetve a pertubacidkat (H = 0 mellett) az utébbi években egyik leggyakrabban vizs-
gélt inhomogén spinrendszert kapjuk. A perturbécidk kritikus viselkedésre gyakorolt
hatdsat kiilénboz6 relevancia-irrelevancia kritériumok irjak le, hasonlé széhasznalat-
tal, mint a renormalési csoport elméletben. Véletlen kotésti rendszerekre Harris [22]
dolgozott ki egy heurisztikus kritériumot, amely a tiszta rendszer fajh$ exponensével
hozza kapcsolatba a kritikus tulajdonsdgok megvaltozasat. Ennek analdgidjara Luck
[62][63] altaldnositotta az eredményt aperiodikus strukturdkra. Itt roviden ismertetem
az eredeti gondolatmeneteket és eredményeiket.

Harris-kritérium: Tételezziink fel gyenge higitast a J;; kotésekben: J;; = Jo(1 + ¢€;5),
ahol J; az atlagos kotésertsség. Az e;; egymdstol fliggetlen valészintiségi véltozok,
amelyekre € = 06s 2 = A? < 1.

A tiszta rendszer (A = 0) kritikus pontja kozelében egy s, ; spinnel korrelaciéban
levs spinek szdma a £¢ korrel4ciés tartomannyal ardnyosan divergal. Gyenge pertur-
baci hatésara a tipikus J 4tlagos csatolas ebben a tartoményban (J — Jp)/Jo ~ £7%2A.
Ez a lokalis csatolasi dlland6 véltozas — érényosan — elmozditja a kritikus hmérsék-
letet is: 6t ~ |t|*/* A, amelyet a kritikus ponttél valé tavolsdggal kell 6sszehasonlitani:

%‘; . ‘t‘dl//Q—l A,
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amelybdl leolvashaté — figyelembe véve a (2.15) hiperskalatorvényt —, hogy
ag=2—dr>0

esetén relevans a perturbacio, hiszen ebben az esetben a minta bizonyos részeiben az
effektiv hémérséklet T, alatti, igy ott magneses rendez6dés van, mig mashol nincs,
hiszen az effektiv htmérséklet T, feletti. Az o < 0 esetben az effektiv hdmérséklet a
mintédban gyakorlatilag azonos, a perturbacié hatasa irrelevans. a = 0 a marginalis
eset, amikor is tovabbi vizsgélodéasra van szilikség.

Luck-kritérium: Legyen a rendszer L linedris méretii () tartomanyaban B({2) szdmu
kOtés, €s B(2) = 37, iveq Jij a megfelel6 kotésekhez tartozo csatolési allandok Ssszege.
A £(Q2)/B(Q2) arany a J, atlagos csatolési dllandohoz tart — definicié szerint — a ter-
modinamikai hatdrestben (L — 00). Egy nagy, de véges tartomanyra

2(Q) — JoB(Q) ~ L% |

ahol w az aperiodicitas fluktudciés vagy vindorldsi exponense. w < 0 esetben a perturba- | -

cié korlatos, mig w > 0 esetén nem korlatos. A gyenge aperiodikus modulécié hatasa a
kritikus pont kézelében a kdvetkez&képpen becsiilhetd meg: (J — Jy)/Jo ~ (€4/€9) A,
ahol most A az aperiodikus modulacié amplitiddja. Ebben a korrelacids tartomény-
ban az atlagos csatoldsi allandé értékének eltolddédsa miatt a lokalis hémérséklet elto-
l6désa és a kritikus hdmérséklettsl vald tdvolsag aranya:

_5;’_ = lt‘d”(l_w)_l A

7

amelybdl a
p=14+dv(w—-1) (2.16)

»Crossover” exponens tartalmaz hasonlé informaciét, mint a Harris-kritérium esetén
a fajh6 exponens. A perturbacié relevéns (irrelevans) ha ¢ > 0 (¢ < 0) és marginélis
¢ = 0 esetén.

2.1.3.5 Konform invariancia

A "80-as évek kozepén ismerték fel, hogy bizonyos rovidtavu kolcsonhatassal ren-
delkezd rendszerek a kritikus pontjukban nemcsak skalainvariansak, hanem a kon-

form invariancia tulajdonsagaival is rendelkeznek [10]. A konform transzforméciéban
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7 — 7'(7) a hosszlsag ujraskélazo faktora b() a hely sima fliggvénye, nyujtas, forga-
tas és eltolas kombinalasaval 4ll els. A transzforméci6 Jakobi determinansa b(7) =% =
det (07’ /O7). A transzformdcié a skéaldzas altaldanositasdnak tekinthets, amelynek so-
ran a racs struktirdja lokalisan meg6rz6dik. A kétpont korreléacios fliggvény a skalazas
soran megszokottakhoz hasonléan transzformalédik:

((m1)(72)) = b(71) T*b(F2) ~* (¥ (71 (72 )) - (2.17)

A konform invariancia médszere kétdimenzidban kiilonodsen hatékony, hiszen itt a
konform csoport sokkal gazdagabb, mint magasabb dimenziékban, izomorf a komp-
lex analitikus fliggvények csoportjdval. Itt meghatdrozhatok a kritikus exponensek
lehetséges értékei a rendszerek bizonyos osztélyaira.

Kétdimenzidban két kiilonb6z6 geometridju rendszer kozotti leképezésre a komp-
lex leképezés hasznédlhaté. Ha az egyik rendszerben ismerjiik a kritikus korrelécio-
kat, akkor ezeket attranszformalhatjuk a masikba. A lokalis dilataciés faktor b(z) =
|dw/dz|~'. Igy a siknak L szélességii periodikus csikra (hengerre) valé leképezését
adja a logaritmikus transzformacié

w=—Inz.
27

A w = (u,v) v komponense a csikmenti tdvolsdg, amely a z sikbeli tdvolsag logarit-
musa, v a transzverz irdnyu tdvolsdg, a z sikon a valés tengellyel bezért szog kons-
tansszorosa. A (2.17) korreléciés fliggvény az 1j koordinatdkban: /

Y(uy, v1)Y(ug, vy)) = L = .
Wz, o)z, v2)) (2 cosh 2 (uy — up) — 2cos 2 (v; — vy)) .
amely az [u; — up| > L nagy tadvolsdgokban a
B 2z
<'([)(u1, 1)1)'¢(u2, 1)2)> ~ <—E-) e—-(27ran/L)|u1—u2

exponencialis lecsengést mutatja, amelybd! a korrelaciés hossz a csik mentén

_ L
6—277.7:’

amely a konform invariancia legfontosabb eredményei kozé tartozik, hiszen adott csik-

(QW)QI P
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szélesség mellett egyértelmii kapcsolatba hozza a skdladimenziot a korrelacios hosszal,
amely — ahogy a késtbbiekben lathato lesz — a transzfermétrixbol szamolhato.

2.2 Szamolasi technikak

2.2.1 Transzfermatrix modszer

A transzfermatrix modszer segitségével egy rendszer allapotosszegét matrixok szorza-
tdnak nyomaként irhatjuk A rendszer termodinamikai tulajdonsagai a métrix spektru-
manak elemeivel fejezhetdk ki. A szabadenergia — termodinamikai hataresetben — a
matrix legnagyobb sajatértékétdl fiigg, a korreldcids hossz a két legnagyobb sajatérték
figgvénye.

A moédszer jol alkalmazhaté példaul egydimenzi6s rovidtavia kélesonhatéassal ren-
delkez6 spinrendszerek, illetve ezzel anal6g véletlen bolyongé problémak megolda-
séra.

Egyszer(i példa az egydimenziés homogén Ising-lanc:

H=-JY sisi—HY si, (2.18)
(i) i

amelynek particios fliggvénye periodikus hatarfeltételek mellett

o o, Z eﬂJ(sosl+slsz+...+sN_1so)+ﬂH(so+51 +otsN-1) — Z T0,1T1,2 s TN—1,07 (219)
{s} {s}

ahol {s} jeldli, hogy az 0sszegzés végigfut a rendszer Osszes lehetséges allapotan: s; =
+1 minden s; spinre, és leolvashat6, hogy

T‘i,i+1 =l eﬁJ5i3i+l+/3H(si+si+1)/2 (220)

egy matrix elemei, amelyben s; = +1 és —1-hez tartoz6 értékek vannak a métrix sorai-
ban és s;4; = +1 és —1-hez tartozok az oszlopaiban:

HUHH) =B
Tiit1= TR (2.21)
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Igy az N spinbdl 4116 rendszer 4llapotdsszege a T matrix N-edik hatvanyanak nyoma:

Zy= Y (TV)oo, (2.22)

S():ﬁ:l

és mivel a matrix nyoma fliggetlen a bazis valasztastol

Zws Y AT, (2.23)

1

— ahol A;-k a transzfermatrix sajatértékei —- ami a példéatdl elvonatkoztatva is érvé-
nyes altalanos eredmény.

A transzfermatrix modszer eredményessége a métrix méretétdl és analitikus vagy
gyakran numerikus diagonalizalhat6sédgatol fligg. A matrix mérete az egydimenzios
Ising-modell esetén lathatdan 2 x 2-es, egy ¢ éllapottd Potts-modell esetében ¢ x g,
a kétdimenziés N szélességii Ising-modell esetében 2%V x 2V legkdzelebbi szomszéd
kolesonhatast feltételezve. A moédszer szemléletes képet ad az wjabb és Gjabb spinek
figyelembe vételérsl, ahogy a kdvetkezd métrixszal vald szorzas egy j spint épit a
rendszerhez a megfelel$ csatoldssal. boo'h ktrd

Ha egy N x N-es transzfermatrix sajatértékei ndvekvd sorrendben A;, Ay, ..., Ay,
akkor a termodinamikai hataresetben a szabadenergia-stirtiség

1
)} 229

— _RT lim —1nd AY 1+ZA£V
- Noowo N T AT

A logaritmusbeli szumma a termodinamikai hataresetben zérushoz tart, igy

f==kThi\ (2.26)
csak a legnagyobb sajatértéktdl fligg. Hasonlé médon a korrelaciés hossz
£ = —1In(As/Ay) (2.27)

a kétlegnagyobb sajatérték fliggvénye. A fentiekbdl lathato a transzfermatrix médszer
nagy elénye, hogy elegendd megtudni a matrix legnagyobb sajatértékeit a rendszer
tulajdonsdgainak meghatarozasdhoz, ami nyilvan sokkal kisebb feladat, mint a teljes
spektrum meghatarozésa.

/1\
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2.2.1.1 Ising-ldnc transzverz térben (szabad fermion leiras)

A kvantummechanika Feynman-propagétoros megfogalmazasa és a statisztikus fizika
transzfermétrix formalizmusanak formaélis hasonléséga [52] lehet6vé teszi, hogy a d
dimenzios klasszikus rendszerekhez d — 1 dimenzids kvantumos rendszert tarsitsunk.

A kétdimenzios, réteges Ising-modellt kiilsd tér nélkiil a kovetkezé Hamilton-ope-
rator irja le:

—BH = [K1(k)snksnsrh + Ko(k)snpsnis1] (2.28)
n,k
ahol K (k)-k a vertikalis csatolési dllandok, K, (k)-k pedig a horizontalisak, s, ;-k klasszi-
kus spin valtozok +1 értékeket vehetnek fel és § = 1/kT. Ez a kifejezés felirhat6 az
egyes sorok Hamilton-operéatorainak dsszegeként:

?{ - Z H(Tl, n+ 1) ’ Sp = (Sn,la 371,23 FEE 3 Sn,K) .
n

A rendszer kanonikus allapotdsszege — ha n irdnyban periodikus hatarfeltételt ve-
sziink — igy egy matrix nyomaként irhat6, analég mddon az el6z6 pontbeli egydi-
menzios esettel:

Z = Z e—ﬂn — Z He“ﬁﬂ(sn,5n+1)

81,824ee0 48 81,52, sSN M

N
= ¥ BT T =L ) . 4

51,5254+ 38N

ahol T, ,,,, = e”#"(s0si41) 3 T métrix elemei adott s;, s;4; spinkonfiguraciék mellett a
megfelel$ sorokban.

Feltételezve, hogy a récs pontjaiban az s, ; spinvéltozok a o , spinmaétrixok sajétér-
tékeit vehetik fel, a T matrix ezen Pauli-matrixok sajatvektorai direktszorzat-bazisan

‘Sn> = Isn,l> |Sn,2> ce ISn,K>

két matrix szorzataként irhato:

T =WV,
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o, Snk
53,1
52,1
K1)  |KQ) Ki(k)
K1) | K2 Ky(k)
S1,1 51,2 S1,k
hl }Lg hk
[hafrl | x|
01 02 Ok

2.1 &bra: A kétdimenzids anizotrép Ising-modell és a megfelels transzverztérbeli kvan-
tum Ising-modell.

ahol V; egy diagonalis matrix, amelynek métrixelemei:

o 7 o — > o >
<5n' "2 I’51z+1> . 6sn,1,sn+1,1 6sn,2,sn+1,2 R 6.5‘.,1.1\' »Sn+1,K exp ( E KQ(]“)'STL,IC'S’IL,IC-}J) )
k

amely igy:

Va = exp (Z I(Q(k)ogag+1>
k

matrix alakba irhat6. A V; métrix K darab azonos alaki méatrix direkt szorzata, hiszen
matrixelemei:

(5] VA [sn41) = exp (Z Is"l(k).s-n,k.sm,k> ,
k
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és igy egy vj, matrix, amelynek matrixelemei (s, x| vg |Spt1,%)K:
eKi(k)  p—Ki(k)
= ( o= Ki(k)  pKa(k) )
alaku, amely felhasznalva a o® Pauli-métrix (¢%)! = 1, ha [ péros, tulajdonsagat
€*” =1cosha+ o”sinha = cosha (1 + o” tanh a)
és a K; (k) duélis csatolasokat a tanh K; (k) = e~2X1(}) modon definidlva kapjuk, hogy:
Vp = e]"l(k)(l + a;fe“QK‘(k)) = (2sinh 2K1(k))1/2 eKi(k)eg

forméba is irhat6. A v-k direktszorzatdbdl kapjuk, hogy

Vi = exp (Z K;(k)ag>
k

és a rendszer allapotdsszege a 1}, V, operéatorokkal:

Z = [ [(@sinh 2K: (k)" *Tr(Va V1) .
k

Igy a transzferoperatort definidlhatjuk a kovetkezképpen:

T = V,V; = exp (Z I(Q(k)a,ia,jJrl) exp (Z K{‘(k)aif) : (2.29)
k k

Az extrém anizotrdp hatéresetben, amikor Ky (k) — 0 és K; (k) — oo (és igy az id6ten-
gely irdnyaban a csatolds er6s, mig a tértengely irdnydban gyenge) a kotések aranyét
(Ko(k)/K{ (k)-ot) fixen tartva kapjuk az an. hamiltoni hatéresetet, amelyben a transz-
feroperator exp(—2K;H') alakban irhaté — ahol K7} egy referencia konstans —, és ezt
els6 rendben kifejtve kapjuk, hogy

T =1-2K{H +...,
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amelyben H' a feles spinfi transzverztérbeli Ising-lanc Hamilton-operétora:

H =—2) (Mofoiy + heok) , (2.30)

ahol Ay = K»(k)/K7, h = K{(k)/K{.

A fentiekbdl leolvashatd, hogy a kétdimenziés Ising-modell és a kvantum spinlédnc
— ebben az esetben — megfeleltethetd egymasnak, hiszen a transzferoperator sajéa-
tértékei és sajatéllapotai megegyeznek a kvantum spinldncéval. Méasodrendi fazisa-

talakulds esetén a korreldcids hossz inverze ardnyos a spinldnc els§ energiagapjével
(2.27)(2.29)(4.53):

1

-~ E; — E (2.31)
§
A (2.30) Hamilton-operatort a
o — o* (2.32)
o — —o° (2.33)

kanonikus transzformaciéval a szokasos [73]

! 1 z T T
alakban frhatjuk. Ez a Hamilton-operator egzaktul diagonalizalhat6 és a teljes sajatér-
ték spektrumot és a sajatfliggvényeket megkaphatjuk egy Jordan-Wigner-transzforma-
ci6 [45] seitségével, amelyben a spin operatorok helyett fermion operétorok lépnek be
[58].

Bevezetve a o7 1éptetd operatorokat:

1
of = 5(of % io})

V4

a Jordan-Wigner-transzformacio [45] létrehozza a:

k-1
cl =of H exp(—imoj o])
1=1
k-1
G = Hexp(z’wojo[)og

1=
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operétorokat, amelyek mar teljesitik a szokdsos fermion antikommutaciés relaciokat.
A kvantum lanc Hamilton-operétora szabad hatarfeltétel mellett

]\1

Z }Lk Cp— = Z )\k = CL k+1 = (,fk+1) (2.35)

alaku, amely a fermion operatorokban kvadratikus, igy egy Bogoljubov transzforma-
ci6 [9] segitségével diagonalizélhat6. A diagonalis bazisban az 4j fermion operatorok:

77: = Z(gqj('j + hgjcs)

J

g = Z(gqjcj + h,qjc;.L) ,

J

amelyekkel a rendszer Hamilton-operatora:
H= Z (g — = (2.36)

lesz, ahol A, kielégiti a kovetkez8 matrix egyenleteket:

(A - B)¥, = A&, (2.37)
(A +B)®, = A, ¥, (2.38)

Az A miétrix a ¢ cK €5 crcf alaku tagok, az $B matrix a cici s crex 3laki tagok

egytitthatéit tartalmazza a (2 35) Hamilton-operatorbol. Mindkét matrix a legkoze-
lebbi szomszéd kolcsonhatasok miatt tridiagonalis, tovédbba valds és A szimmetrikus,
B pedig antiszimmetrikus. A ¥, és &, vektorok komponenseit

Ue(J) = 9oi — haj
Dy(5) = 9oj + hys
relaciok definialjak.
A (2.37-2.38) métrix egyenleteket kombinalva a kovetkezd sajatérték egyenlethez
jutunk
(A-B)(A+B)®, =A’P,.

Igy a probléma az eredeti 25 x 2X matrix diagonalizalsa helyett egy K x K méretii
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tridiagondlis szimmetrikus matrix (ti. (A — B)(A + B)) sajatértékproblémajara egy-
szertisodik.

A transzverz Ising-lanc kritikus pontja: Az Ising-lanc kritikus pontjat — a fentiek sze-
rint — akkor kapjuk, amikor az energiagap zérussa valik, és igy az alapallapot dege-
neralttd valik az elsd gerjesztett dllapottal. Ekkor a korreldcios hossz divergal.

A A, gerjesztési spektrumot a

det((A —B)(A+B)— A1) =0

sajatérték egyenlet hatdrozza meg, amelyben az A + B és A — B maétrixok:

hi 0 Ak
M hy O
0 X hs
A-B=(A+B)7T = : (2.39)
0
0 Me—1 hu

periodikus hatéarfeltételt feltételezve, amely K — oo esetben megegyezik a szabad ha-
tarfeltétellel.

A sajatérték egyenlet A, = 0 megoldasa esetén, amikor det((A — B)(A+B)) =0

K K
det(A — B) = det(A +B) = [ [ he = [[ M
k=1 k=1

és igy a kritikus feltétel [74]:

K /\
lim (-h—‘”> =1, (2.40)

K—o00 3
k=1 k

amely hy = 1és \; = A esetén a homogén lanc A = \. = 1 kritikus csatoldsét adja, a
lanc zérus homérsékletén. A A < 1 a rendezetlen fazis a homogén rendszerben, mig a
A > 1 csatolasu esetben a rendszer a rendezett dllapotaban van.

Feliileti mdgnesezettség: A kétdimezios Ising-modellb6l [80] kiindulva ismert, hogy
H/( kilst tér esetén a (2.28)-ben —FH-hoz egy Ho} , tagot hozzavéve egy
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Vi =exp (Z Ha;)
k

diagonalis matrixszal szorzédik az eredeti T' transzfermatrix, amely kis tér esetén a
[106]

T(H)=T+H» ofT
k

alaku kiils6 tértdl is fliggd transzfermatrix lesz. A T < T, hémérsékleten a legnagyobb
sajatértékhez tartozo sajatvektor — a K — oo limeszben — degeneréltta valt. A kiils6
tér hatdsara ez a degeneréci6 felhasad és a legnagyobb sajatérték exponenciédliséban
elsérendben megjelenik a kiils6 magneses tér és igy a szabadenergidban is [106][80].
Végrehajtva az extrém anizotrép limeszt és véve a (2.32-2.33) kanonikus transzforma-
ciét a feliileti magnesezettség:

e = = {1] a7 |0} ,

ahol |0) a #' alapéllapota, |1) = nf |0) az els6 gerjesztett allapot. A o¥-et felirva az n,
ny, fermion operatorokban

my = (0| 7141 ]0) ,
ahol

Al = Z%(l)(ﬂj + 1)

és igy a feliileti magnesezettség
ms = P1(1) .
A kritikus hémérséklet alatt, T < T., A; = E; — Ey = 0 és igy (2.38) alapjén

(A‘*—B)@l :0,
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amelybdl (2.39) segitségével d, (j)-re rekurzids egyenleteket kapunk

amibdl a feliileti magnesezettség explicit médon kifejezhets [71], tekintve, hogy @
normdlt

oo J -2 ~1/2 |
ms = &, (1) = (1 = Z I <2—i) ) (2.41)

Ez alapjan tetsz6leges kotéskiosztas esetén meghatarozhat6 az Ising-lanc feliileti mag-
nesezettsége.

2.2.2 Monte Carlo-modszerek

A statisztikus fizika egyik alapvetd szamitogépes vizsgélati modszere, az el6szor az
'50-es években alkalmazott Monte Carlo-szimulédcié. A klasszikus Monte Carlo-algo-
ritmusok koziil az els6t — a Metropolis-algoritmust [68] — folyadékok modellezésére
hasznaltdk el6szor, de spinrdcsok, polimerek, rendezetlen rendszerek statisztikus fizi-
kai tulajdonsagainak meghatdrozaséra és racsmértékelméletekben valé vizsgalatokra
is alkalmasnak bizonyult. A '80-as évek nagy felfedezése a spinracsokra és racsmér-
tékelméletekben alkalmazhaté modern Swendsen-Wang [91] és Wolff-féle [104][105]
Klaszterflip algoritmusok.

Statisztikus fizikai szempontbdl az energia, magnesezettség stb. (2.3) alapjan valo
meghatérozésa a cél. Ezt az dtlagot mar egy kis rendszer esetén is nehéz egzaktul meg-
hatérozni, hiszen pl. egy N részecskébdl all6 Ising-modell esetén is 2% féle spinkonfi-
guraciora kellene 6sszegezni. N = 1000 esetén is mar lehetetlenség a teljes 0sszegzést
elvégezni.

Ha nem végezziik el a teljes 8sszegzést, hanem véletlenszertien vélasztunk ki fa-
zistérbeli pontokat, amelyek Boltzmann-faktorat az 9sszegben hagyjuk, akkor sem ka-
punk megfeleld eredményt, hiszen a termodinamikai mennyiségek valoszintiségi el-
oszlasa a fazistérben az atlagérték korul rendkiviil erds csticsot mutat, igy az érde-
kes tartomanyboél csak nagyon ritkdn kertil kivalasztasra fazispont. Ezért az (2.3)-beli
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Osszegzés helyett egyszerii .

(A== A (242)

atlagképzés torténik oly médon, hogy r-et gyakrabban véalasztjuk a termodinamikai
egyensuly koriili tartomanybdl (importance sampling).

Generalhat6 olyan Markov-folyamat, amelyben (A4), , az A dtlaga az n egymas utan
kovetkezd.allapotban, konvergél a (2.3)-beli termodinamikai atlaghoz

(4). = (A)+ O (\%) | (2.43)

Az n — oo hatéresetben minden r 4llapot a maga e %%

Boltzmann-faktorédval lesz
sulyozva. A Markov-lancnak az a tulajdonséga, hogy az egymas utan kovetkez6 alla-
potok mindegyike csak az el6z6 allapottdl fligg, és igy az éllapotok er&sen korrelaltak,
lassabbé teszi az eljarast, mint ha ezek egymastol fiiggetlenek lennének. Az r — 7/
atmenet a modelltdl és az algoritmustdl fliggden tobbféle lehet: pl. az Ising-modell
esetében egy spin arforditasa (single spin flip), két szomszédos spin cseréje, vagy spi-
nek nagy klaszterjének atforditasa (cluster flip).

A folyamatoknak ergodikusaknak kell lennitik, minden allapot elérhetd kell le-
gyen. Ez spinrdcsokra &ltalaban teljestil is, mig bizonyos polimerrendszerek esetén
(self-avoiding walk) problémat jelent, bar a tapasztalat szerint végeredményben nem
okoz eltérést.

Tovabbi (elegendd) feltétel, hogy a folyamatnak ki kell elégitenie a részletes egyen-
suly (detailed balance) elvét

PrI/Vr—W’ = Pr’ VVr’—)r: (244)

ahol P, az r llapotban tartézkodas valdszintisége, W, _,,» az r allapotbdl az r'-be val6
atmenet valészintisége. A fenti feltétel nem hatarozza meg az dtmeneti valészintiséget
egyértelm@ien. A W, ., adtmeneti valdszindséget ugy kell megvalasztani, hogy az
ry — Ty — ... — 1, minta az n — oo hataresetben a kanonikus eloszlast mutassa.

A Metropolis-algoritmus [68] a két allapot energiakiilonbségével fejezi ki az dtme-
neti valészintiséget (§E = E. — E,):

1 ha E<O0
ALy e ’ =
Wiy { e~5E  ha SE > 0. (2.45)
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Ez a valasztas nyilvan kielégiti az (2.44) részletes egyensulyt, hiszen ha nagyszamu
Markov-folyamatot tekintiink, és egy adott 1épésben N, rendszer van az r allapotban,
és N,» az r' &llapotban és E, < E,., akkor

Wy = e PEs=Er) (2.46)
Wyse = 1. (2.47)

Az r dllapotbdl az r'-be 4tléptk szama ennél a 1épésnél
N,y = N,W,_p = Ne PEn—Er) (2.48)
illetve a forditott &tmeneté
Nesyr = NyWeisr = Ny (2.49)

Igy az r allapotban lev folyamatok széménak véltozasa a Markov-folyamatok kévet-
kezd 1épésére, az r'-be valod atmenet, illetve az onnan r-be vald dtmenet egytittes hata-
sara:

(2.50)

7 ()'_ﬂEr/ ]\Tr’
ANy p = Nyspt — Npyr = N, >

e=PEr N

amibdl leolvashat6, hogy ha az adott lépésben fenndllt a kanonikus eloszlas, akkor
az nem is valtozott, ha viszont az r allapotban kevesebb rendszer volt, mint ahogy a
kanonikus eloszlés szerint kellett volna, akkor AN, _,,» negativ és r’ llapotb6l r-be tobb
dtmenet létesiil, mint forditva. Es ugyanaz torténik ellenkez6 el&jellel, ha r allapotban
tobb rendszer volt, mint a kanonikus eloszldsnak megfeleld.

A Metropolishoz hasonlé klasszikus modszer a ,heat bath” algoritmus, amely ese-
tén a rendszer egy adott | szabadségi fokdhoz rendeliink 4j o értéket tekintet nélkiil
annak el6z6 «; értékére. Ez a probalépés a kovetkezd atmeneti valoszintiséggel torté-
nik meg:

e~ BEI(a)

Wisp = S e PE@’
!

(2:51)
ahol Ei(ay") a helyi energidja az a; szabadséagi foknak, és a nevez6ben az dsszegzés az
l-ik szabadsagi fok lehetséges értékeire torténik. A részletes egyensulyt ez az eljaras
trividlisan kielégiti. Az is lathaté azonban, hogy minden lépésben tobb exponencialis
tagot kell kiértékelni, ami a Metropolis-eljarasndl lassabba teszi, igy ma maér f6ként
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torténeti jelentéséggel bir a mddszer.

A Klaszterflip médszerek [98] nagy elénye a kritikus allapothoz kozeli hémérsékle-
teken is megtartott gyorsasagukban rejlik. A kritikus jelenségek Monte Carlo-médszer-
rel torténd vizsgalatat er6sen akadalyozta az un. kritikus lelassulds. Ahogy a kri-
tikus ponthoz kozelediink, a Markov-lancban egymaésutan kovetkez6 1épések egyre
hosszabb szekvencidja korreldl, az ezt jellemz& 7 korrelacids id6 a kovetkezdképpen
divergal

T~ €, (2.52)

ahol ¢ a korrelacios hossz, és z a dinamikai exponens.
A szamitégépes szimuldcidkban a korrelacié nem divergal, de ndvekszik a rendszer
méretével

T~ L%, (2.53)

ahol L a rendszer lineédris mérete. A legtobb Monte Carlo-algoritmus esetén z ~ 2,
igy 7 nagy rendszerekre gyorsan né. A konfiguracidk statisztikailag nem fiiggetle-
nek egy 7 idSintervallumon beliil, igy nagyban megné a (2.42) egyenletben szdmolt
mennyiségek statisztikus hibdja. Ennek a probléménak a kikiiszobolése nagyon fontos
anagy pontossagu Monte Carlo-szdmolasoknal. A kritikus lelassulds oka a klasszikus
Monte Carlo-algoritmusoknal abbdl szarmazik, hogy lokalisak, a valtozésok diffizié
jellegtien terjednek.
Az els6 nem lokalis updatinggel m{ikod6 médszer a Swendsen-Wang-féle [98] klasz-

terflip algoritmus, ami egy — a Potts-modell és a perkolacios probléma kozotti — le-
képezésen alapszik [91]. A legegyszer{ibben a Potts-modell

H=K (85 —1) (2.54)
(i.1)

Hamilton-operétora segitségével irhat6 le a leképezés. Itt K mér tartalmazza a —1/kT
faktort. A particids fliggvény

Z= ;ﬁieﬂ. (2.55)

Fortuin és Kasteleyn [18] gondolatmenetét kdvetve egy I és m kozotti kdlesonhatast
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eltdvolitunk a Hamilton-operatorb6l

Mooy =5 Y Abiray =10 (2.56)

(1,5)#lm)

és igy kétféle Gsszeget irhatunk fel az | és m spinek relativ helyzete szerint?:

2y = Tre™ame, ., (2.57)
és
2y = Tre™tm (1 = 6y, 0,,) (2.58)
és igy
Z=2Z, +e 2, (2.59)

Ez a kovetkezOképpen is irhato:

- ~K\ 21t -K(zt 1
Z=(1-e)Zte (2 + Zim) (2.60)

Az Bsszeg elsd tagja az | és m spineket egy klaszterbe teszi p = 1 — e~ valészint-
séggel, a masodik tag — fliggetleniil attdl, hogy s; és s, azonos vagy kiilonb6z6 —
maés klaszterekbe teszi 1 — p stlyfaktorral. Lathat6, hogy az egymas mellett 4116 azonos
spinek nem feltétlentil kertilnek egy klaszterbe. Az (2.54)-beli 0sszes kolcsonhatasra
megismételve a fenti eljarast a Z p és 1 — p faktorok kiilénb6z8 szorzatainak 6sszegére
bomlik. A klaszterek rdcspontjai kozott perkolacios kotések lesznek és minden klaszter
egy adott ¢ Potts-dllapotban van fliggetleniil més klaszterek dllapotatol. Ha egy-egy
adott perkoléciés kotéskonfigurdcidoban N, klaszter van, akkor az allapotosszeg

Z=Trp'(1- e (2.61)
ahol az 6sszegzés a kiilénb6z6 {n} perkolaciés kotés konfigurdciokra torténik, b a per-
kol4cios kotések szama a d dimenzids L linedris méretti hiperkdbos racsban.

Végrehajtva a Potts-racs — perkolacids racs — Potts-racs transzformaciét egy Mon-
te Carlo-algoritmushoz jutunk, ami kielégiti a részletes egyensulyt. Tetsz6leges Potts-
allapotbdl indulva p valészintiséggel perkolaciés kotéseket tesziink az azonos Potts-

21 megegyezd, 1) nem megegyez6 iranyu spinbeallast jelol.
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spinii racspontok kozé. A nem azonos Potts-spin{i szomszédos helyek kozé nem te-
sziink kotéseket. Ha most toroljik az eredeti kolcsonhatdsokat, marad egy perkola-
ci6s kotés (klaszter) konfiguracié a (2.61) egyenletben adott sullyal. Megjegyzendd,
hogy az eredeti Potts-spin klaszterek kisebb klaszterekre osztddhatnak szét, hiszen az
ugyanolyan Potts-spinti racspontok k6zé nem mindig kertil perkolacios kotés.

A kovetkezd lépésben tj, véletlenszer(i Potts-spin értékeket adunk minden perko-
laciés klaszternek és ugyanezt az értéket minden klaszteren beliili racspontnak. Most
eltorolve a perkolaciés kotéseket egy ) Potts-spin konfiguraciot kapunk, ami alap-
vetden eltérhet az eredetitél, mert nagy klaszterek is 4j spin értékeket vehetnek fel
egyetlen 1épésben.

Az eljarés kielégiti a részletes egyensulyt, hiszen minden két Potts-dllapot kozotti
atmenet valamely perkolaciés kotéskonfigurdcion megy keresztiil, aminek a kialaku-
lasi valészin{iségébe minden perkolaciés kotés egy p faktort, és minden perkolacios
klaszter — fliggetlentil a kezdeti Potts-konfigurdciétél — egy ¢ faktort tesz. A két
Potts-allapot egymadsba alakuldsanak valészintiségének kiilonbsége (aranya) ezen per-
kolaciés kotéskonfiguracion keresztiil a kiindulasi Potts-allapotokban 1étrejové hidnyzo
kotéseknek megfeleld 1 — p = e~ * faktorok aranya, ami éppen a Hamilton-operatorok
kiilonbségének exponencidlisa

g;—i— = Mo —He = %’, (2.62)
amibdl a részletes egyenstily leolvashato.

Az eljaras alkalmazhat6 barmilyen racsra, barhany dimenziéban, kilonbozé kol-
csOnhatds erésségek esetén is.

A Wolff-féle egy-klaszterflip algoritmus [105] a Swendsen-Wang-algoritmus tovébb-
fejlesztése. Ebben az esetben egy kezd6 spint véletlenszer(ien véalasztunk ki. En-
nek szomszédait ugyanazzal a valdszintiséggel valasztjuk a klaszter tagjanak mint a
Swendsen-Wang-algoritmusban:

p(si,85) =1— e Kie; (2.63)

Ezutan a klaszterbe keriilt spinek szomszédaira végezziik el ugyanezt a procedurat, ha
az adott parra még nem végeztiik el ezt. Az eljards addig folytatédik, mig mér nincs
tobb 1j csatolhat6 spin a klaszter peremén. Az igy kialakul6 klaszter spinjei ¢ = 2
Potts-spinek esetén eljelet valtanak, ¢ > 3 esetén egyenld valdszintiséggel vehetik fel
barmely Potts-értéket.



2. FEJEZET STATISZTIKUS FIZIKAI ATTEKINTES 35

Az atmeneti val6szintiség egy-adott C klaszter esetén:

Wi(s—s,C) = wpuk(s,C) H (1 — p(si,55)), (2.64)
(i,5)€6C

ahol 9C a C feliilete, amely azon hidnyzé kotéseket tartalmazza, amelyek egy klaszer-
beli spint egy nem klaszterbelivel ktnek Gssze.

OCOeO000000000000OO0O 0Oe000000000000O0O
O00Oee0Oe@e0@®@000000O 0O0O0OeeO0O®00000000O0
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0O0000ee00000000O0 0O0000ee0000000O0O
0000000000000 0O000Oee®ee 000000000
0O000eee 000000000 0O000Ce0eee 000000000
0O000eee 000000000 O00O0Oeee00000000O0
OOOO0.0.IOO'OOOOOO OOOO..O.I..'OOOOOO
0000000000000 O0|OO O0O00O0O0O0O|eeee e e eOO0
0000000000000 0OO0O 000000
O0000|0000|je®eee® 00O e 0000
O000000O0|I0O0OO00O00O0O 000000
0O000e®e|0O00|IOO0O0O0O000O0 000000
C00e e 00000000000 000000
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2.2 abra: Klaszter kialakuldsa a Wolff-algoritmusban kétdimenziés Ising-modellben.
Az lres karikék a felfelé, a teli karikak a lefelé 4llapotot szimbolizaljék.

A forditott irdnyu d&tmenetben W (s’ — s, C) a bulk rész a modell szimmetridja miatt
ugyanaz, csak a feltileti rész kiilonbozik. Az oda és vissza iranyu dtmenetek dtmeneti
valésziniiségeinek aranya éppen (2.62) egyenlet szerinti.

A fenti algoritmusok dinamikai tulajdonsagai nagyban kiilonboznek, ahogy korab-
ban mér emlittettem. Harom kiilénbdz6 algoritmus dinamikai exponensének dsszeha-
sonlitdsa lathat6 a 2.2 tdblazatban. A kétdimenziés Ising-modell szimulaciéjanal egy

[ d dimenzi6 | Metropolis | Swendsen-Wang | Wolff |

2 2.167+0.001 0.25::0.01 0.25+0.01
0 2.024+ 0.02 0.54+0.01 0.33+0.02
4 — 0.86+0.01 0.254+0.02

2.2 tdblazat: Monte Carlo-algoritmusok 2z dinamikai exponensei kiilénb6z6 dimenzi-
Okban [5].

100 x 100-as négyzetracson a kritikus hémérsékleten a Metropolis-algoritmusnal kb.
hérom nagységreddel hosszabb a korrelaciés id6, mint a Wolff-algoritmus esetén, to-
vabba figyelembe véve a tdblazatbeli adatokat is, t.i. hogy a minta méretével az utdbbi
esetben a korreldcios id6 alig valtozik, nyilvanvald, hogy a kritikus viselkedés tanul-
manyozaséra a klaszterflip algoritmusok sokkal inkébb alkalmasak, mint a klasszikus
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algoritmusok. E
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3. fejezet

Véletlen kotésii Ising-rendszerek

vizsgalata

3.1 Bevezetés

Mar a kétdimenziés Ising-modell kritikus viselkedésének Onsager-féle [70] analitikus
megoldésa ota kérdés, hogy megvéltoznak-e egy rendszer kritikus pontbeli tulajdon-
sagai, ha , hibdkat” tesziink a rendszerbe. A standard vélasz a Harris-kritérium alapjan
sem adhat6 meg, hiszen a fajho kritikus exponense: asp rsing = 0 a kritérium margina-
lis esete, igy tovabbi vizsgalodds sziikséges.

A tovabbiakban a higitott Ising-modellen kordbban elvégzett térelméleti vizsgala-
tok eredményeit és a Monte Carlo-vizsgélatokat tekintem at, majd a tertileten elért sajat
Monte Carlo-eredményeimet kozIlom.

3.2 El6zmények

A kotés higitott Ising-modell Hamilton-operatora a kovetkez6képpen irhaté:

H=- Jii8i85, (3.1)
(i7)
ahol J;;-k fliggetlen val6szintiségi valtozok, amelyek legegyszer{ibb esetben két értéket
J-t és J'-t vehetnek fel p és (1 — p) valdszintiséggel. A csatolasok aranyéraazr = J'/J
jelolést hasznalom a késbbiekben.
Ennek a rendszernek a kritikus viselkedésére a kiilonboz6 elméleti megkozelitések
mas-mas eredményeket jésoltak. A ma legelterjedtebben elfogadott elmélet a Vik. S.

37
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Dotsenko és V1. S. Dotsenko [14] &ltal a ‘80-as évek elején kidolgozottakon alapszik. A
tiszta rendszer — J;; = const. — esetén a nem kolcsonhaté rendszerek kvantum térel-
méleti vizsgalataban fellép6 m, fermion témeg — ami a korrelacios hosszal forditottan
ardnyos — elttinik. Ha véletlen kotéseket tesziink a spinek kozé, akkor a leirasban a
fermionok szabadok maradnak, de inhomogén térben mozognak. Hogy a homogeni-
tas visszadlljon DD a replika triikkot alkalmazta, kdlesonhatasokat bevezetve a fermi-
onok kozott. A kolcsonhatds g erdssége kicsi, ha a rendszer gyengén higitott. A kis
kolesonhatds esetén a renormélt fermion tomeg:

mo

= ; 3.2
"= () .
szerint véltozik, ahol my, ~ t a tiszta rendszer fermion tomege és t = |T, — T|/T, a
redukalt hémérséklet. A renormélt fermion tomeg definiélja a korrelaciés hosszt:
1 1+ glIn(3))1/2

mpg s

és minden termodinamikai mennyiséget. A fenti egyenletbdl lathat6, hogy létezik egy
ter crossover homérséklet

tor = €19, (3.4)

amelynél nagyobb redukalt h6mérsékletekre a logaritmikus tag nem jatszik jelentds
szerepet, igy azokra a higitott rendszer viselkedése ugyanaz mint a tiszta rendszeré.
A higitott rendszerre jellemz& viselkedés csak a kritikushoz nagyon kdzeli hémérsék-
leteken ¢ < t., észlelhet6. Ez a crossover jelenség a véges méret effektusokat is befo-
lyasolja, hiszen a t., hémérsékletnek megfeleld (.. crossover hossznal kisebb L lineéris
rendszerméreten a higitas hatdsa nem lesz lathaté. Ez kiilonosen fontos a szamitogépes
szimulaciénal, ahol mindig véges méretekrél van szé.

A DD-elmélet szerint a higitott rendszer fajh&je dupla logaritmikus szingularis vi-

selkedést mutat
1
C(t) ~1In (1 +gln <7>> (3.5)

a tiszta esetre érvényes C(t) ~ In(1/t) egyszer(i viselkedés helyett. A T'(r) spin-spin
korreldcios fliggvény a tiszta Ising-modell T'(r) ~ 1/r'/* (r < I, esetben) fliggésrél —
nagyobb tavolsdgokban r > [, — exponencialisra véltozik. Ha I'(r) ismert, akkor x(t)
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mégneses szuszceptibilitds és M (t) mégnesezettség mar konnyen szamolhat6. A DD-
elmélet azt jésolta, hogy a [ exponens zérusra csokken és a szuszceptibilitas kritikus
exponense 7y = 2-re valtozik.

A DD-elméletet tobb oldalrél tdmadtak. Ziegler [107] szerint a fajh$ minden ho-
mérsékleten véges, tehat még a nagyon , lasst” dupla logaritmikus szingularitast sem
mutatja, mig Shalaev [81], Shankar [82] és Ludwig [64] eredményei ellentmondtak a
DD elmélet jéslatainak a magneses mennyiségekre: I'(r)-re, M-re és x-re, de a fajh&re
ugyanazt az eredményt kaptak.

Shalaev, Shankar és Ludwig a higitott esetben a I'(r) korrelaciés fliggvény r — oo
aszimptotikus viselkedésére ugyanazt az n = 1/4 exponenst kaptdk mint a tiszta eset
exponense. Shalaev — felhasznalva a DD-elméletben megkapott mp renormaélt tome-
get — meghatarozta a magnesezettség és a szuszceptibilitds aszimptotikus ¢-fliggését
is:

M(t) ~ - — (3.6)
(1+9In(3))
1/8
x(t) ~ 77/ (1 +gln <-})> . (3.7)

Lathatok a tiszta rendszer 5 = 1/8 és v = 7/4 kritikus exponensei és a szennyez&dés
miatt bejovd logaritmikus korrekcidk.
A fajh véges méret fliggése a kritikus pontban 3.5 alapjan

C(L)=Cy+CiIn(14+ulnL) (3.8)

alakd, ahol w = 1/Inl.. A M(L) mégnesezettség és a x(L) szuszceptibilitas kiilonbdzs
alaku a két elméletben.

A korai véletlen kotésti Ising-modell Monte Carlo-vizsgélatok [108] a » = 0 és
p =1,09, 0.8, 0.7, 0.6 esetekre vonatkoztak és a T, kritikus hémérséklet higitastol
valo fliggésének egzakt aszimptotikus viselkedését [90] p < 1-re jOl visszaadtik. A
fazisatmenet minden vizsgélt p értékre éles maradt és a v kritikus exponenst latsz6-
lag nem befolyasolta a higitds. A higitas meghatarozta tartomanyba val6 crossover,
amelyet a logaritmikus korrekciok jellemeznek, nem volt felismerhet6 a viszonylag kis
rendszerméretek (L < 60) és a vizsgalatok korlatozott statisztikai pontossdga miatt az
egy-spinflip algoritmusokkal.

A fent emlitett — egymadsnak ellentmondé — analitikus eredmények vizsgalatét a
'80-as évek mésodik felében felfedezett — a 7, kdzelében a hagyoményosnal sokkal
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gyorsabb — klaszterflip algoritmusok és a szamitogép kapacitidsok novekedése tette
lehetvé [2][97][93][92][85]. A vizsgélatokat L x L-es négyzetrdcsokon végezték heli-
kalis és teljesen periodikus hatarfeltételek mellett. A J és J' csatolasi dllandok egyenld
val6szintiséggel voltak jelen a rendszerben: p = ;. Ebben az esetben a modell 6nduélis
és igy a kritikus hémérséklet egzaktul meghatarozhato:

tanh(J/T,) = e /T (3.9)

és — az ettdl eltérd p értékek esetében a T,-ben fellép6 pontatlansag — nem okoz ilyen-
kor tovabbi pontatlansdgokat a kritikus exponensek meghatarozdsaban. A higitas ha-
tasat kiillonbozo csatolési allandé aranyok mellett vizsgaltak (r = J'/J =1,1/2,3/10,
1/4,1/10) [97], aminek soran a crossover szisztematikusan tanulmanyozhaté volt.

A Swendsen-Wang és a Wolff-féle klaszterflip algoritmusokat alkalmaztak, kihasz-
nalva, hogy ezek kiiléndsen jok a véletlen Ising-modell szamolésokban, 1évén a legha-
tékonyabbak a perkolaciés hataresetben [97][98].

A kritikus pontban az /., crossoverhossz ertsen fligg a csatoldsok aranyétol r =
J'/J-t6l hiszenr = 1/10 esetén I, ~ 2, mig ha r = 1/2, akkor [, ~ 103. A vizsgalatokat
altalaban r = 1/4-nél végezték, ahol /., ~ 16. Ebben az esetben a fajh véges méret
fliggésére C'(L) megkaptak a DD 4&ltal adott (3.8)-beli dupla logaritmikus viselkedést.
Az M(L) (~ L™%)-re és x(L) (~ L¥)-ra a véges méret skdlazasbol kapott adatok szerint
x ~ 0.1245 és y ~ 1.7507, nagyon j6 egyezéssel a tiszta eset 3 és v exponenseivel, ami
a Shalaev-Shankar-Ludwig elmélet eredményeit tdmasztja ald. A kritikus korrelaci6
['(r) vizsgalata azt mutatta, hogy kis tdvolsagokon a tiszta rendszer korrelaciés fiigg-
vényéhez képest 1072 a relativ eltérés, mig nagyobb tavolsagokon (de ¢ < £, L < 1024)
néhany szdzalék, ami nem egy trividlis eredmény, hiszen a kritikus hémérséklet kb.
fele a tiszta rendszerének. Azonban minél nagyobb a rendszer, annél kisebb az eltérés
egy fix q tdvolsag esetében. Ez szintén tdmogatja Shalaev [81] és Ludwig [64] elméletét.

A fajhs, a magnesezettség és a szuszceptibilitds hémérsékletfiiggésére kapott ered-
mények is aldtdmasztjék a fenti konklaziét.

A C(t) a dupla logaritmikus viselkedést mutatja. Az adott hémérsékleteken sza-
molt effektiv kritikus exponensek /.

(0} ox(t)
Bers = 21773 Yeff = Fint (3.10)

mutatjdk a tiszta hatvany fliggvény szerinti viselkedés mellett a logaritmikus korrek-
ciot is, ami az effektiv exponensek nem-monoton viselkedéséhez vezet. Az igy kapott
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,tillévés” (overshooting) jelenségét egy kesdbbi abran mutatom meg, amire a kovet-
kez® gorbe jol illeszthetd:

-1/16
M(t) = Myt /3(1 + s1t) (1 +gln <z)> (3.11)

figyelembe véve a skaldzdshoz adoddé elsd korrekcids tagot (1 + s:¢)-t is, ami T,-t6]
tdvolabb moédositja a gorbe alakjat, illetve a — logaritmusos — crossovert létrehozé
tagot. Hasonl6 érvényes a szuszceptibilitdsra is.

A magnesezettségre és a szuszceptibilitdsra kapott adatokat gy is magyarazhat-
nank, hogy a kritikus exponensek novekedtek a tiszta esethez képest [48][49], vagy a
Shalaev-Shankar-Ludwig-elmélettel konzisztensen: nem véltoztak, csak er8s logarit-
mikus korrekcié van. Figyelembe véve, hogy a fajh6 exponense nem valtozik, a zérus
marad, a kritikus exponensek az els6 esetben nem elégitenék ki az o + 23 + v = 2
Rushbrook skalatorvényt, hiszen a 3 és v is latszolag megnd.

A kovetkezkben vizsgaljuk meg a két oldalan szabad hatérfeltétel(i véletlen kotésti
Ising-modell kritikus tulajdonséagait.

3.3 Kétdimenziés higitott Ising-modell

A két oldalan szabad hatérfeltételti véletlen kotésti Ising-modellben egyszerre tanul-
manyozhat6 a higitds hatésa a feliilet és a tomb kritikus viselkedésére.

Hasonl6an az el6z6ekhez kétféle csatoldsi allandéval hathatnak koleson a réacsbeli
legkozelebbi szomszéd spinek. A (3.1) Hamilton-operétor irja le a rendszer energia-
jat. Mindkét csatolasi dllandé egyenld p = 1/2 valdszintiséggel fordul els. A higi-
tast a két csatoldsi 4llando aranyanak r = J'/J valtoztatasaval érjiik el. A rendszer
vizsgélatat (11) és (10) parhuzamos szabad feliiletek mellett végeztem. A feliileten és
minden vele pdrhuzamos K oszlopban L spin van. Az elsd és az utolsé sorok periodi-
kus hatarfeltétellel kapcsolddnak egymashoz. A tovabbiakban az 7 index jeldli, hogy
mely oszloprél van sz6 i = 1,2,...,K és a j index az adott oszlopon beliili poziciét
jeloli j = 1,2,...,L. Azi = 1ési = K a rendszer két szabad feliiletét jeloli. A leg-
tobb szamolds az (11) feliilettel rendelkez modellre tortént, ami lehet6séget adott a
csillag-delta modszerrel [27] kapott eredményekkel torténé dsszehasonlitésra [35][54].
A rendszerek mérete K = 40 és 1280 kozott volt, hogy a véges méret effektusok jol
kovethettk legyenek.

A vizsgalatok a Wolff-féle [104] egy-klaszterflip Monte Carlo-algoritmussal folytak
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és kisebb rendszerek és T,-t6l tdvolabbi hdmérsékletek esetében f6ként tesztelés célja-
b6l 8sszehasonlitast végeztem a Metropolis-algoritmussal [68].
A vizsgalt mennyiség a magnesezettségi profil:

1 L
mi == (1> sil), (3.12)
g=1

ahol s;; az i-edik oszlop j-edik soraban elhelyezkedd spin. Az abszolutérték szoka-
sosan a 7T, alatt a szimuldciéban a nem-eltlind magnesezettség elérése végett van. A
feliileti magnesezettség m, = m; = mg.

A Wolff-algoritmus rendkiviil gyorsan az elsé néhany klaszterflip utdn mar tul-
jut a kezdeti termalizacids tartomanyon. Ehhez képest nagyon 6vatosan, altaldban az
els6 néhany 10° klaszterfliptdl tekintettiink el. Az id6beli korrelacié az egymés utdn
kovetkezd allapotok k6zott nagyon kicsi, nehdny klaszteflip. Az atlagoldst 4ltaldban
(rendszermérettd] fiigg&en) néhany 10* klaszterflipre végeztiik, hogy kell6 pontossa-
got érjunk el m;-kben. Ezen m;-k szérédsa elhanyagolhat6 volt a kotéskonfiguracidkra
torténd atlagolds (quenched average) szoérdsahoz képest.

A véletlenszamgeneratoroktol [12][51] esetleg eredd hiba [83][84] miatt tobbfélét is
kiprobéltunk, de Iényeges kiilonbség nem adddott. A kotéskonfigurdcid kiosztasara az
R250 nevti ,shift register” [50] médszert hasznaltuk a kis korrelaciéi miatt. A Monte
Carlo véletlenszamokat a linedris kongruencia algoritmussal [57] éllitottuk el&, amely-
ben er6sebb az egymas utdn kovetkezd véletlenszdmok kozotti korrelacid, és ugyan a
Wolff-algoritmusban ezeket a véletlenszdmokat egy adott —mar klaszterbeli — spin
koriili ugyanolyan éllasu spinek klaszterhez csatolasdnak eldontéséhez hasznaljuk, és
az adott spin a mar kialakul6 klaszter peremének egymadstdl viszonylag tavoli helyein
is lehet, és ha sok azonos alldsu spin van a rendszerben, akkor a véletlenszamokat
generdl6 algoritmus korrelaciés idejétél fliggben a kialakul6 klaszter bizonyos részei
gyorsan megnének, mig mas helyein kevés perkolaciés kotés alakul ki, viszont az algo-
ritmus minden Monte Carlo-lépésében térben véletlenszerfien kivéalasztott kezd&spin
megfelel6en Gsszekeveri a racs kiilonboz6 tartomanyainak djabb klaszterekhez val6
kapcsolédédséanak valészintiségét, igy ez a korrelacié végiil nem okoz problémat.

3.3.1 Tombi fazisatalakulas

A 3.1 ébran lathaté magnesezettségi profilokon jol észrevehets, hogy megfelel6en nagy
rendszerméretek esetén széles platé alakul ki a feliiletekt6l tdvol, ami jol megfelel a
tombi magnesezettségnek. A feliiletek felé a magnesezettség monoton csékken a felii-
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0.2

1 40 80 120 160

3.1 dbra: A kétdimenzids (11) feliiletli Ising-modell m(i) magnesezettségi profilja a
tiszta esetben (négyzetek) és az r = 1/4 higitott esetben (korok), a ¢ = 0.2 (lires szim-
bélumok) és a ¢t = 0.05 (teli szimbélumok) hémérsékleteken, 160 x 80-as rendszermé-
retnél.

leten lev6 spinek kisebb koordinéciés szdma miatt ((11) feliileten 2z = 2, (10) feltiletnél
z = 3). A profilok az r = 1 tiszta esetre és egy higitottra r = 1/4, azonos ¢ redukalt h&-
mérsékletek mellett (11) feliilet esetén késziiltek. A higitds lathatéan csokkenti a mag-
nesezettséget fix ¢ mellett. Az abrarol kvalitative az is leolvashatd, hogy az egyszerti
elképzelésekkel ellentétben a bulk korrelaciés hossz né a higitassal, hiszen a platét a
feliilett®l tdvolabb éri el a magnesezettség a higitott esetben.

A tombi méagnesezettség kritikus hémérséklethez kozeli viselkedése a homogén
esetben ismert [70]. Az r = 1/4 higitott rendszerre vonatkozé korabbi Monte Carlo-
vizsgalatok [85] a (3.11) Shalaev-megoldasnak megfeleld értékeket adtak, amit mi is —
a fellileti exponenesek szamoldsanak egyik mellékeredményeként — a gorbére illesz-
kedbnek kaptunk. Er&sebb higitds esetén — r = 1/10 — az irodalomban még nem
kozolt adatokat kaptunk. Az r = 1/4-nél lathat6 “tallovés” tovabb né r = 1/10-ben,
ami még erbsebb logaritmikus korrekciot jelez (3.2 abra). Megjegyzendd, hogy az ab-
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razolt f, exponensek a ,

1 my (t+AL

my (t—At)

s t+At
dInt In 7

5 dInmy(t)
e e

44

(3.13)

alapjan voltak szdmolva, ahol az m;-ket a feliiletts] tdvol — a korrel4ciés hossznak

megfelel — tavoli tombi m,-k atlagai adték és a '/ -eket adott t-re csak két kiilénbdz6
hémérsékleten felvett m,-kb6l szamoltuk. (A korédbbi vizsgalatokban [85] az effektiv
exponenseket joval tobb pontbdl szamolték, hogy megfelel6 eredményeket kapjanak.)

Ennek ellenére ldthat6 a szimuldcé nagy pontossaga [86].

0.10

B\eff

0.05

0.00 iy L A 1 " | Y 1 i
0.00 0.10 0.20 0.30 0.40 0.50

3.2 abra: A tombi magnesezettség effektiv exponensei r = 1 tiszta rendszer esetén
(folytonos vonal, egzakt eredmény), r = 1/4 esetén (teli szimbélumok) és r = 1/10
esetén (lres szimb6lumok). A szaggatott vonal a tiszta rendszer aszimptotikus értékét
jelzi. Kulonb6z6 homérsékleteken 80 x 40 (forditott haromszog), 160 x 80 (hdromszdg),
320 x 160 (hegyére allitott négyszog), 640 x 320 (kor) és 1280 x 640 (négyszog) méretit
rendszereket vizsgéltuk. A hibahatarok a kiilonbdz6 kotéskiosztasu rendszereken vett

atlagok sz6érasabol szarmaznak.
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3.3.2 Feliileti fazisatalakuylas

A feliileti exponens vizsgalatanal a tombi széles platénak koszonheten mindkét felii-

o7 b ki
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0.1 F b
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3.3 dbra: A feliileti mégnesezettség effektiv exponensei r = 1 tiszta rendszer esetén
(folytonos vonal, egzakt eredmény), r = 1/4 esetén (teli szimbélumok) és r = 1/10
esetén (lires szimbolumok). A szaggatott vonal a tiszta rendszer aszimptotikus értékét
jelzi. 80 x 40 (forditott haromszodg), 160 x 80 (hdromszog), 320 x 160 (hegyére allitott
négyszog), 640 x 320 (kor) és 1280 x 640 (négyszog) méretli rendszereket vizsgaltunk.
A hibahatérok a kiilonb6z6 kotéskiosztasu rendszereken vett atlagok szorasabol szér-
maznak.

let egy félvégtelen rendszer feliiletének tekinthetd, igy az eredmények 6sszehasonlit-
hatok voltak a tiszta rendszerre ismert analitikus eredményekkel [4][72], és a Monte
Carlo- szimulaciéval parhuzamosan a csillag-delta transzformacié higitott rendszerre
altalanositott valtozataval végzett vizsgalatokkal [35][54]. A kétféle modszerrel vald
vizsgalat célja az volt, hogy kideritsiik a feliileti exponensek higitds hatdsara torténé
esetleges megvaltozasat, més univerzalitdsi osztdlyba tartozasat. A (3.13) egyenlethez
hasonlé médon Monte Carlo-szimuldciéval szdmolt feliileti mégnesezettségi effektiv
exponenseket a 3.3 abran lathatjuk. A tiszta rendszerre jol visszakaptuk a Peschel-féle
[72] effektiv exponens véltozast és aszimptotikus viselkedést. A higitas hatdsara a 3,
exponens kis mértékben megvéltozni latszik; a véltozés kb. ugyanakkora — 5 sz4zalék
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— mint a 3, megvaltozdasa, csak ellentétes eljeld, és a higitassal ezesetben is névekszik
[35][86]. A kis valtozéds miatt nehéz eldonteni, hogy az exponens valéban — a hibaha-
tarokat is figyelembe véve — eltér a tiszta rendszer f; = 1/2 exponensétdl, vagy itt
is er6s logaritmikus korrekciokkal van dolgunk. Az effektiv exponensek hibahatéarait
meglehet&sen konzervativ médon szamoltuk: a két — ¢+ At ést— At —hSmérsékleten
kapott feliileti magnesezettségek hibajabol a szokasos Gauss-féle hibaterjedési képlet-
tel. Ennél hatarozottan kisebb hib4t kapunk, ha minden esetben két komplementer ko-
téskiosztashoz tartoz6 magnesezettségek szdmtani kdzepe atlagénak hibajat vessziik
alapul. Az ehhez tartozé hiba kb. az dbran jel6lt szimbSlumok méretével egyezik meg.

A 3.4 4brén a teljes 377 profilokat lathatjuk a tiszta és egy higitott rendszer esetén
kilonbozd kis redukalt hémérsékletek mellett. Lathaté a tombi exponensek néveke-

0.0 . g .
1 40 80 120 160

3.4 dbra: A kétdimenziés (11) feliilet(i Ising-modell (i) magnesezettségi exponens pro-
filja a tiszta esetben (négyzetek) és az r = 1/4 higitott esetben (kordk), at = 0.175 (iires
szimbolumok) és a ¢ = 0.075 (teli szimbolumok) hémérsékleteken, 160 x 80-as rend-
szerméretnél.

dése a higitas hatdsara és a feliileti exponensek cstkkenése.

Az 3.5 &bra a kiildnbsz6 ;77 -ek aszimptotikus viselkedését mutatja be a feliilethez
kozeli rétegekre és a rendszerben mélyebben is. Az i = 10 esetén jol lathaté a crosso-
ver a tomb effektiv exponensrdl a feliilet meghatarozta viselkedésig, ahol a feltilettl
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3.5 abra: Az effektiv exponensek hmérsékletfiiggése a feliilethez kozelii =1, 2, 3, 10
-ik rétegben és-a minta belsejében (bulk). A folytonos vonalak egzakt eredmények
[71][72][70], mig a szaggatott vonalak a szimulacidés eredményeket kovetik, jelezve,

hogy milyen hémérsékleten jatszodik le egy ,,crossover” a tombi exponensrdl a feliile-
tire.

val6 tavolsag mar kisebb, mint az adott hémérséklethez tartozé korreldcids hossz. Al-
talanosan is igaz, hogy tetsz6leges, de véges tavolsagban a feliilettsl a 377/ a feliileti
exponenshez tart, ahogy 7,-t kozelitjitk. Hasonl6 jelenséget figyeltek meg a haromdi-
menzios Ising-modell esetében is [75].

A korrelaciés hossz viselkedése is megéllapithat6 volt feltéve, hogy a feliilet és a
tomb kozott a magnesezettségi profil a tiszta esethez — a Bariev [4] altal megmuta-
totthoz — hasonléan jellemezhet, azaz harom rész kiilonboztethetd meg: a feliilethez
legkozelebb levo réteg, ahol hatvanyfliggvényszerti a viselkedés, egy bonyolultabban

leirhat6 koztes réteg, és egy olyan réteg, amelyben a magnesezettség exponencialisan
tart az my-hez:

my — m; ~ e_é. (3.14)

Ennek segitségével &, meghatérozhat6 a 3.6 abran lathat6 gorbék bulkhoz kozeli részei
érintdjének tangensével. A t = 0.1 hdmérsékleten az (10) feliilet esetében &, = 2.14 —
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In[m,—m(i)]

i—1

3.6 abra: A magnesezettség feliilethez kozeli viselkedése, amelybdl lathatd, hogy a
tombi magnesezettséget a rendszerek exponencidlisan érik el [4]. A ¢ = 0.1 h6mérsék-
leten az abrardl az (10) feliiletd tiszta rendszer (élére allitott négyszog), (11) feliiletli
tiszta rendszer (négyszog) és az r = 1/4 higitasu rendszer (kor) korreldcios hossza be-
csiilhetd meg. A folytonos vonal az ezen a hémérsékleten egzaktul meghatarozhato
[4] korrel&ciés hossznak felel meg.

megegyezik a Bariev-értékkel — adddott, az (11) feltlet r = 1 esetén &, = 2.29 és az (11)
feliilet és r = 1/4 higitas esetén &, = 3.6 (egységnek véve a racsallandot). A higitdssal
tehat novekszik a korrelacios hossz, és &, ~ 17", v = 1 homérsékletfiiggést feltételezve
lathatd, hogy a vizsgélt rendszerek megfelel6en nagyok ahhoz, hogy a véges méret
effektusok nagyrészt kizarhatok legyenek (az 6sszes emlitett vizsgalatban).



4. fejezet

Hierarchikus kolcsonhatasu modellek

41 Bevezetés

Az 1. fejezetben emlitett aperiodikus struktirak egy fajtdja a hierarchikus rendszer,
amelyet szamos kiilonb6z6 kontextusban vizsgaltak kordbban. Ilyen jellegli struktu-
rat figyeltek meg példaul rendezetlen rendszerek (spintivegek) [69], illetve proteinek
[3] relaxacios folyamataiban vagy nagy foldrengések el6tti geoldgiai folyamatokban
[30], szamitégép architektirakban [31], gazdasagi szervez6désekben [87], de t6zsdei
arfolyamvaltozasokban [15] is. Hierarchikus , potencidlban” torténé diffizié anomalis
jelleget mutatott, amelyet ultradiffiziénak neveznek [32][94][65]'.

Ebben a fejezetben ilyen hierarchikus struktiréja spinrendszerekbeli fézisatalaku-
lasokat vizsgélok. A masodik alfejezetben a hierarchikusan réteges klasszikus kétdi-
menzios Ising-modell illetve ennek az extrém anizotrép hatéresetben megfelel kvan-
tum Ising-lanc feliileti fazisatalakuldsat vizsgalom analitikus eszkézokkel. A hierarchi-
kus sorozat vandorlasi exponense w = 0, a tiszta rendszer korrelaciés hossz exponense
v =1,1igy a Luck-kritérium szerint a (2.16)-beli ¢ crossover exponens zérus értéke mi-
att a pertubaci6é marginélis, igy ennek a fazisatalakuldsra val6 hatdsanak megéllapitésa
részletes vizsgalatokat tesz sziikségessé.?

A harmadik alfejezetben a kétdimenzids hierarchikusan réteges Ising-modell két
tavoli parhuzamos feliileten levd spinjeit ellentétes allapotban rogzitve vizsgalom a fa-
zisokat elvélaszt6 hatarfeliilet fluktuaciés tulajdonségait. Ebben az esetben a rétegekre
merd&leges korrelacios hossz exponens v, = 1/2, igy a crossover exponens pozitiv, tehat
a perturbaci6 relevéns, és a hatarfeliileti fluktaciés exponens (nemfolytonos) megval-

'A témarol osszefoglalé talalhato [20]-ban
2Ebben a rendszerben més aperiodicitasra hasonlo marginalis viselkedést tapasztaltak: pl. [7]

49
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tozéasa varhato. )

A negyedik alfejezet a fenti két rendszer egytittes targyaldsat tartalmazza a renor-
malasi csoport transzformacié keretein beltil.

4.2 Feliileti magnesezettség

A kétdimenzids Ising-modell (10) feliileti fazisatalakuldsat vizsgalom a kovetkezOk-
ben. A feliilettel parhuzamos rétegekben a kolcsonhatés konstans K, mig a rétegek
kozotti kolesonhatas a feliiletre meréleges iranyban hierarchikusan valtozik: K, (k) a k
és k + 1 rétegek kozott. Az extrém anizotrép hataresetben Ky — oo, Ky (k) — 0 a prob-
léma transzfermatrixa a kvantum Ising-lanc (2.34) Hamilton-operétorat tartalmazza:

H=—2 3 [0} + Mofotl, (4.1)
k

ahol o}, of a Pauli-métrixok & helyen és A\, = —2K,(k)/In(tanh k).
A )\, sorozat a kovetkezSképpen all el

e = Arfk (4.2)

ahol r az un. hierarchikus paraméter, A egy referencia érték és fj-k természetes sza-
mok, amelyek a kdvetkez6képpen adhatok meg:

k=mfe(ml+p), 1=0,1,..., pu=12,...,m—1, (4.3)

ahol m egész szam és a sorozat “periodicitasat” hatarozza meg. A sorozat éltalano-
sithat6 ugy, hogy (4.2) egyenletben )\, = Ar¢Ur) ahol g(z) egy analitikus fiiggvény. A
hatvanyfliggvényekre altalanositott valtozatot fogom vizsgélni: g(z) = 2z, w > 0, igy
az eredeti sorozat w = 1-hez tartozik.

A kétdimenziés Ising-modell feltileti magnesezettsége az extrém anizotrép hatére-
setben a 2.41 alapjan kovetkez6:

o ~178
MWy = (1 + Z H )\;2) . (4.4)

Az altalanositott hierarchikus sorozatra, amely az w exponenst is tartalmazza a feltileti
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4.1 abra: Hierarchikus récs kotéskiosztasa. Az oszlopok magassdgai a csatolasi allan-
dok er6sségével aranyosak. Az fi-k értékei a hierarchia szintjét jelolik. v #

magnesezettség a kovetkezSképpen irhato at:

ne = [S(A, )2, (4.5)
=D ATV, (4.6)
7=0
J
nj=Y (fr)¥, mno=0. 4.7)
k=1

A kritikus csatolast (2.40) egyenlet alapjan az alébbi feltételb6l kapjuk:

J
Jim [T =1, (4.8)
k=1
amibdl lathato, hogy a A = X, kritikus csatolés a hierarchikus paramétertdl fiigg:

Ao = ,,,—(S(Lu,m)7 (49)
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ahol §(w, m) = lim;_, n,pi /7. Ard(w, m) a Fliggelékben részletezett szamitdsok utan:

1 o0 )
d(w,m) = <1 — E) —Tjn—J (4.10)
=1

alakba irhato és egész w-kra zart alakban is kifejezhets. w = 1,2, 3 és 4 esetében:

1

dl,m) = ) (4.11)
§(2,m) = (g—_ill—); (4.12)
83, m) = % (4.13)
) = m? +11m? + 11m + 1 (4.14)

(m—1)*

Az w = 1 esetet vizsgdlom el6szor. A (4.6) egyenletbeli hierarchikus paraméter
exponensére az fo, = fp + 168 frpi, =0, =1,2,...,m — 1 segitségével a kévetkez5
relaciok irhatok fel: nu,, = 1, + p €S Nups, = Nmp. gy az (4.6) egyenletbeli S(\,r)
Osszeget m részre bontva

o0 m—1 oo
S, r) =) ATEmep=nme 4 N N " \-Hmptu) = 2nmots (4.15)
p=0 p=1 p=0

és felhasznalva az n;-k kozotti relacidkat az alabbi egyenletet kapjuk:

1l = /\—2m

S{A, r) = S\ "y, 7‘)1—_)\—_2

(4.16)
Ebbdl a kifejezésbdl a f3, feliileti magnesezettségi exponens, amelyet m;(t) ~ t* de-
finial, ahol ¢ = 1 — (A./A\)? — 0% (a redukalt hdmérséklet) a [95]-ben alkalmazottak
szerint a kovetkez6képpen kaphaté. Jelolje S(u) az S(A,r)-nek az u = (\./))? szerinti
sorfejtését. A (4.5) egyenlet szerint S(u)-nak a kdvetkezd hatvanyfuggvény szingulari-
tast kell mutatnia

S(u) ~ (1 —u)~ %, (4.17)

A (4.16)-ban az Gj csatolds ' = \™r lesz, mig r és igy A is valtozatlan marad (\, = A,).
A (4.16) egyenletben S(A™r, r) ugyanolyan szingularis viselkedést kell hogy mutasson,
mint S(), r)—hiszen a (4.16)-ban az S(\™r, r) szorz6faktora nem szingularis —, ahogy
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A — A, egy A(r) amplitudéval:

somn=a0[1-(3)] a0 fi-(5)7] . e

ahol (4.9) és (4.11) egyenleteket hasznaltuk. Ezt visszairva (4.16) egyenletbe kapjuk az
exponenst

—2m
5 ==
=

2lnm

Az m = 2 esetben visszakapjuk az ismert [60] eredményt. A fentiek szerint tehét az
w = 1 esetben a hierarchikus Ising-modell kritikus viselkedése nem univerzalis, r hi-
erarchikus paraméterrel folytonosan véltozik. Ezt az eredményt lathatjuk a 4.2 abran
kiilonb6zd m periddus hosszakra.

2.0

1.5

1.0

0.5

4.2 dbra: A feltileti magnesezettség exponense az r hierarchikus paraméter fiiggvényé-
ben a rendszer bal (5;) és jobb (/3,) feliiletén kiilonboz m periodicitdsok esetén

A kovetkezSkben vizsgaljuk a rendszert hosszu, de véges szekvencidkon. A rend-
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szer hossza legyen j = m” — 1 =L — 1 ésigy:

mN-1 j mN -1

Sy =1+ Y [Tag2="3 A%y (4.19)
j=1 k=l j=0

Ez a mennyiség rekurziv médon is elallithat6d

=X 2m

T—xondr), X= Xt (4.20)

SN-H (/\, T') =

A Fuggelékben megmutatottak szerint nagy L esetén a (4.9) kritikus feltétel véges mé-
ret korrekciéi logaritmikusak

ng = 8(w,m)L — ——N“"1 + O (N¥-2), (4.21)

m — 1

igy az X paraméter vezets rendben
X = (A/A)Eple/(m-1INe=t (4.22)

és a kritikus pontban a rekurzi6:

1 — ZQm
Sna1(A) = T——7Sn(Ac), (4.23)
Z = plo/tm-DINe (4.24)

alaki. Nagy N esetén Z kiilonbozbképpen skalazédik w = 1-re, w < 1-re és w > 1-re,
és a megfelels Sy(A.) szintén kiilonbozé a hdrom esetben. A fentiekben mar vizsgalt
w =1 esetben Sy(\.) a rendszermérettdl hatvanyfliggvény szerint fligg:

SN(/\C) LN LQIS, (425)

ahol a véges méret skaldzés szerint xz, a feliileti spinek skdladimenzidja. Felhasznélva
d(1,m)-et, a (4.23-4.25) egyenletekbdl lathatd, hogy z, megegyezik f;-sel, és igy a 3, =
vz skalafeltétel kielégiil, hiszen a korrelaciés hossz kritikus exponense a kétdimenzios
Ising-modell esetén v = 1.

Végesméret skdlazdssal megvizsgalhato a rendszer kritikus viselkedése a lanc jobb
végén L = m" kotés esetén. (Ha a lanc m”" — 1 kotést tartalmaz, ahogy korébban, ak-
kor szimmetrikus a kdzéppontjara és a feliileti magnesezettség ugyanaz a két végen.)
A jobb vég feliileti magnesezettségének inverz négyzetét Sy (), r)-rel jeldlve egyszeri
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Osszefliggést kapunk y
Sy, 1) =14+ 2272V Sh (N, 1), (4.26)

amelybdl az Z;, — a jobb vég feliileti magnesezettségének skéladimenzidja —

1-\2m
[ - S
Inp D [ T-AZ }

o= e e T O e Gyl
és igy
Balhe) =il ). (4.28)
Az (0 < w < 1esetben Z egyhez tart és (4.23) rekurzié vezetd rendben
Sn+1(Ae) = m(1 + wN*"Inr)Sy(Ae), (4.29)

melynek megoldasa Sy(X\.) ~ m™Nr¥". Véges méret skaldzassal, felhasznalva, hogy
m"N ~ L ~ [t|77, illetve v = 1, a feliileti mégnesezettség hdmérsékletfiiggése

Tfls(t) - t1/2r—(|10gt|/log7n)“’/2. (430)

Igy a feliileti magnesezettség ebben az esetben ugyanazzal a 3, = 1/2 exponenssel
tlnik el, mint a homogén modellben, ahol » = 1, de logaritmikus korrekciék vannak.
A csatolasokban levd hierarchikusan valtozé perturbacié az 0 < w < 1 esetben tehét
marginalisan irrelevans.

A rendszer viselkedése az w > 1 esetben teljesen kiilonb6z6. Kiilon kell vizsgalni
az r > 1 esetet, amikor Z divergdl, és az r < 1 esetet, amikor Z zérushoz tart. Az els6
esetben az aszimptotikus rekurzié

Sn41(he) = 7% Sx (Ao) (431)
alakd, aminek a megoldasa
Sn(Ae) ~ 27, (4.32)
Igy a feliileti mégnesezettség csatolasfliggése anomaélis

mg(t) ~ = (logtl/logm)” (4.33)
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4.3 dbra: A kvantum Ising-lanc feliileti mégnesezettségének hémérsékletfliggése az

r = 0.92 hierarchikus paraméter esetén, kiilonb6z6 egész w-kra

gyorsabb lefutdsii mint barmely hatvany fliggvény, ahogy A — A..
Az r < 1esetben (ésw > 1) Z tart zérushoz és az aszimptotikus relacié

2w Awu—l

Swar(he) = (1477757 Sy(h), (434)

amelybdl leolvashat6, hogy limy_,o, Sy (A:) < 00, hiszen a zardjelben 1évé masodik tag
exponencilisnal gyorsabban tart zéréhoz. Igy a

o0

I1 (1 + m—") (4.35)

N=Ng

szorzat konvergens. Kovetkezésképp a feliileti magnesezettség véges marad a kritikus
pontban és a fazisatalakulds a feliileten elsérendii. A (4.34) szerint a feltileti mégnese-
zettség anomalis modon éri el az m,(0) hatarértékét:

ms(t) _ ms(O) ~ 7,|logt/ logm|“"12w/(m—l), (436)

ahol felhasznaltam, hogy L ~ t~1.
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A feliileti magnesezettség » = 0.92 hierarchikus paraméter és kiilonb6z6 w > 1
értékek esetén a 4.3 dbran lathato.

4.3 Hatarfeliileti fluktuacio

A diagonalis réteges ferromagneses négyzetracsot vizsgalom ebben az alfejezetben. A
négyzetracsban Ising-spinek foglalnak helyet és a rétegek kozotti kotés hierarchikusan
valtozik (1d. 4.4 &bra).

h(x)

1 1.1 1.1 I I I I I |
K, K, K,... K
f, 01702 01030102010

4.4 abra: A struktira nélkiili hatérfeliilet a diagonalisan réteges hierarchikus racson.
Az alsé dbran az oszlopok magassaga a spinek kozotti csatoldsok erésségét jellemzi.
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A csatolas a h-adik diagondlisban K}, = J,/kgT az el6z6 alfejezetben megismert
hierarchikus sorozat szerint valtozik

Wy =8y, M= 271(2777, + l), (4.37)

ahol k,, = nk,.

A jobb- és baloldali (11) feliileteken a spinek ellentétes irdnyban rogzitettek és az igy
kialakul6 pozitiv és negativ tartomanyt elvalaszt6 hatarfeliilet fluktuacidjat vizsgdlom.
A hatarfeliilet egy folytonos, struktirdval nem rendelkez& lanc, amelyben a bonyolul-
tabb konfiguraciékat, mint példdul a ,buborékokat” és a ,kitliremkedéseket” kizér-
juk. Altalanosan elfogadott, hogy a hatérfeliileti fluktuéciék vizsgalatanal elegend
megtartani ezeket az i.n. “solid-on-solid” (SOS) tipusu hatérfeliilet konfiguréaciokat,
amelyek irdnyitott bolyongéval vagy polimerrel reprezentalhatok [77].

Az SOS modellben a hatérfeliilet egy x helyen a h(z) magassaggal jellemezhetd és
a hatarfeliileti energia a kovetkezd H Hamilton-operétorral irhat6 le:

H/ksT =Y 2Kn(), (4.38)

hiszen a spinek a hatarfeliilet mentén ellentétesen allnak. A , vég”-effektusokat figyel-
men kiviil hagyjuk, a ldnc végei szabadok. A rendszer termodinamikai tulajdonségait
transzfermétrix technikédval vizsgédlhatjuk legegyszertibben. A transzfermétrix az z
iranyban a kovetkezd:

Tpy = 511,1—16_21(" + Sp e 2K (4.39)

Itt a transzfermétrix elemei egy (e, €1, €2, ...) halmazbdl valasztédnak ki — ahol ¢, =
eor’*, €g = e~ a (4.37)-nek megfelel6en — amelyben az egymas utan kovetkez6 ele-
mek ardnya konstans €,41/e, = 7 < 1. A homogén rendszerre r = 1 és r 4ltaldban
az inhomogenitds mértékét jelenti. A hatéarfeliilet kis valészintiséggel érint olyan he-
lyeket, amelyeknél az €, matrixelemre n > 1, mivel az ehhez tartoz6 valdsziniség
r™ faktorral stilyozott, hiszen ilyenkor a hatérfeliilet olyan spineket vélasztana el egy-
mastol, amelyek kozott a kotés k, = nkg erds, ami valdsziniitlenné teszi, hogy a spinek
egymassal ellentétesen alljanak be.

A hatarfeliilet o szabadenergiajat és a ¢ longitudinalis korrelaciés hosszt, ami a
rogzitett hatarokkal parhuzamosan méri a korrelaciét, a transzfermatrix Ay és Aj_;
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két legnagyobb sajatértéke hatédrgzza meg®

o=—-logAL (4.40)
5”_1 = log(AL/AL-1)- (4.41)

A hatérfeliilet fluktuacidja hatvanyfliggvényszertien no
([1(0) = h(@)]?) ~ 2™, (4.42)

ahol w a vandorlasi exponens, amelyrdl tudjuk, hogy w = 1/2 a homogén kétdimen-
zi6s rendszerben.

A probléma transzfermaétrixa tridiagonalis, szimmetrikus métrix, igy hatékony esz-
kozokkel diagonalizélhatd, mint amilyen pl. a Lanczos mddszer. Az adott problé-
maban azonban — a hierarchikus struktirédnak koszohetéen — egy rendkiviil gyors
algoritmust hasznalhatunk a megfelel$ determindnsok gyokeinek szdmoléaséra.

Vegyiink egy L = 2' méretii véges rendszert, és fejezziik ki a transzfermaétrixanak
D(2') determindnsat egy 2!~ és egy 2!~! — 1 méret{i aldeterminénssal

D(2Y) = D(2"Y)D(2"Y) — D2 - 1) D2 - 1)€,. (4.43)

A 2! — 2 méretti D(2' — 2) szimmetrikus determindns , amelyet a D(2!)-b6] kapunk
elhagyva az elsd és utolsé sort illetve oszlopot, hasonloképpen fejezhetd ki:

DIF —2) = D = 1)D(F — 1) = DI = D(F- = 2)é2,. (4.44)
Illetve

D(2'—1) = D(2"")D(2"! — 1) = D2 = 1)D(2"! - 2)¢f;. (4.45)
Ezek a képletek, kiegészitve a kezd6determindnsokkal

D(1)==) D@2)=X-¢ es D(2)=)—¢ (4.46)

definidljak a gyors eljarast a nagy méreti determinansok értékének szamoldséra. A
gyengén perturbalt rendszerre — r =~ 1 — L = 23% — 2% méretek is kezelhet6k vol-
tak. A legnagyobb sajatértékek a legnagyobb rendszerek esetén 10-12 jegy pontosan

L szélességli rendszer esetén.
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megkaphatdk. A A;(L) sajatérték-végesméretfiiggését leird y, gap exponens
— W p 2
AL — Ai(L) ~ L7, (4.47)

amely a vandorlasi exponenst is meghatérozza, hiszen (4.41) és (4.47) egyenletekbdl
lathat, hogy & ~ L¥», és véges rendszerben az (11) feliiletre merdleges korrelacios
hosszt a csik szélessége limitalja: £, ~ L, igy a hatarfeliileti vandorlasi exponens £, ~
€|’ modon definidlhat6. A fentiek kombinélasabdl leolvashato6, hogy

w=1/th (4.48)
r Apfeo | w=1/ys |
1.0 2.0 0.5
0.999 | 1.99800894 | 0.4567199
0.9 | 1.82853274 | 0.4551092
0.75 | 1.62218648 | 0.4451438
0.5 | 1.35286081 | 0.4004540
0.25 | 1.14948652 | 0.3110577
0.1 | 1.05381456 | 0.2272971
0.001 | 1.00050038 | 0.0911867

4.1 téblazat: A legnagyobb sajatérték és a hatarfeliileti fluktuécios exponens kiilénbozé
hierarchikus paraméterek mellett.

A gap exponens viszonylag kisebb pontossaggal volt megkaphat6: kb 5 jegy. A
pontossag novelésére ebben az esetben olyan sorozatextrapoldciés modszereket hasz-
naltunk mint a Broeck-Schwartz illetve a Bulirsch-Stoer mddszerek [24].

A transzfermétrix legnagyobb sajatértékei, amelyek meghatérozzak a szabadener-
giat és az extrapolalt hatarfeliileti vandorldsi exponensek a 4.1 tablazatban lathatok.
A legnagyobb sajatérték és a vandorlasi exponens — lathatéan — monoton nd a hi-
erarchikus paraméterrel. Az r — 0 hatdresetben a hatarfeliileti szabadenergia és a
vandorlasi exponens zérushoz tart, ami annak a ténynek felel meg, hogy a rendszer
fliggetlen részekre szeparalédik. A vandorlasi exponens a legérdekesebb viselkedést a
homogén eset kornyékén mutatja . Ahogy r az 1 érték ala csokken a vandorléasi expo-
nens a w = £ homogén értékrsl Aw = 0.0432799 mértéki véges ugrast szenved, ami
azt mutatja, hogy ez az inhomogenitas relevans perturbaciot jelent és egy masik stabil
fixpontba viszi a rendszert — renormalési csoport képben.
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4.4 Renormalasi csoport vizsgalat

A kvantum Ising-lanc és a hatarfeliileti fluktuécié a renormalasi csoport transzforma-
ci6 segitségével egyszerre vizsgélhato, hiszen — mint fnajd lathatjuk — a két rendszer
ugyanazon matrix elemei és sajatértékei renorméldsanak két kiilonb6z6 fixpontjahoz
tartozik.

A korabbiak szerint a hierarchikus Ising-lanc

:_“Zh%

Hamilton-operédtora — amelyben a A\;-k a hierarchikus sorozat szerint valtoznak — egy

t~
._.

wl»—*
i\g]

Ak OOk 41 » (4.49)

Jordan-Wigner-transzforméciéval fermion operatorokkal kvadratikus alakba irhatok,
majd egy Bogoljubov transzforméciéval a (2.36) diagonélis alakra hozhat6, amelyben
a A, elemi fermion gerjesztések kielégitik a (2.37-2.38) matrixegyenleteket, amelyek
komponensekre kiirva a

—
Q

=l
Q
=

Il

—~hq(k) — Mgk +1),
Ag®y(k) = —Ap_1Ug(k —1) = hW(k), (4.50)

egyenleteket adjdk a A9 = A =0 szabad hatérfeltétellel. A ®, és ¥, vektorok elemei a
Bogoljubov transzformacié egyiitthatéival dllnak kapcsolatban és norméltak. Ezekbdl
a vektorokbdl a 2L dimenziés V, vektorokat a

Ve — 1) = =B(k),  Vi(2k) = Tg(k) , (4.51)

modon létrehozva lathatjuk, hogy a (4.50) egyenletek aT

0 h 0 0 0

h 0 A O 0
T=|0 XN 0 A 0 (4.52)

0

0 0 A 0 X

matrix sajatértékproblémadjanak felelnek meg. A T matrix ugy is tekinthetd mint egy
irdnyitott bolyongé transzfermatrixa két egymaésbacsusztatott diagonalisan réteges négy-
zetracson (1d. 4.5 dbra).
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2k-1 2k 2k+1

4.5 dbra: A két egymadsbacsusztatott diagonélisan réteges racs a bolyongé egy 1épésé-
nek megfeleld szelete.

A bolyong6 h és A, sulyokkal 1ép az elsszomszéd racspontok kozott a két négy-
zetracs egyikén és a bolyongés a diagonalis irdnyaban torténik.

A (4.50) egyenletekb®l lathat6, hogy ®,-t —®,-ra cserélve V,-ban a megfeleld sa-
jatérték elsjelet valt. Igy a T matrix sajatértékproblémaja a A, spektrumot duplén
tartalmazza: pozitiv és negativ el&jellel. Elegend6 a spektrumnak csak a A, > 0 ré-
szét vizsgélni, hiszen ez minden informaciét tartalmaz az iranyitott bolyongoéroél és az
Ising-modellrdl.

Vizsgéljuk a rétegekkel parhuzamos korreldcios hosszt a két rendszer esetében. Az
iranyitott bolyongé esetében (2.27) alapjan a transzfermétrix két legnagyobb sajatérté-
kével fejezhetd ki a korrelacids hossz:

: A \17° A
DW _ |1 < AL >} B i i 4.53
i { Ara Ay = Aps 14.59)

amely ldthatéan forditottan ardnyos a transzfermatrix spektrumanak tetején levé gap-

pel. Az Ising-modell rendezetlen fazisaban a korreldciés hossz a Hamilton-operator
legkisebb gerjesztési energiajanak inverzével ardnyos (2.31):

EM ~ AT (4.54)

A A, fermion gerjesztés a T transzfermatrix spektruma nemnegativ részének a legki-
sebb sajatértéke.

Ha valamelyik kritikus pont kézelében vagyunk, akkor a megfeleld korreldcids
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hossz divergél és a transzfermétrix spektrumanak megfelel6 része skalazasi viselke-
dést mutat. Vegylnk egy L > 1 szélességii véges méretli rendszert és jeloljiik AA;-vel
a Ay — Ap_;-t az irdnyitott polimer esetében, illetve A;-t az Ising-modell esetében. A
hosszusagskala b > 1 faktorral torténd megvaltoztatasakor — L' = L/b — a gapek a
kovetkezbképpen transzformalédnak:

(AA) = 0¥ AN, (4.55)

ahol az y, skaladimenzi6 a spektrum kiilonboz6 részeire altaldban mas és mas. Ez
véges méret skdlazasi viselkedéshez vezet AA;(L) ~ LY+, igy a fent emlitett korrelacios
hosszak & ~ L¥* szerint skalazoédnak. Az Ising-modell esetén mivel £, ~ L, a § ~ &%
altal definialt z anizotrépia exponens:

Z=Yx . (4.56)
Az iranyitott polimer esetében a w vandorlasi exponensre (4.48):
w = y;l :

Ezek az exponenseket a renormalési csoport transzformécié révén kaphatjuk meg.

Renormalasi csoport transzformidcios egyenletek. A renormalas soran azokat a helyeket
decimaljuk ki, amelyek \ csatoldssal vannak dsszekotve. Igy 2(m—1) méretti blokkok
tlinnek el, és helyettesitédnek egy kotéssel. (1d. 4.6 abra)

4.6 abra: A T matrix hierarchikus sorozatnak megfelel$ off-diagonalis elemeit jelzik
az oszlopok. A renormalandé matrix sajatvektoranak a megjelolt helyeknek megfelel
elemei kertilnek kidecimélasra a renormalasi csoport transzformacio egy adott 1épésé-
ben.

AX=)\ /h és A= A/h redukélt valtozokat hasznalva, majd elhagyva a , kalapokat”,
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a
Ar*V (2m") - AV (2m"+1)+V (2m"+2) =0,
V(em"+1)-AV(2m"+2)+ AV (2m"+3) =0,
=

AV (2m"+2) — AV (2m™+3)+V (2m" +4)

AV(EeM"+2m—2)—AV(2m"+2m—1) + +V(2m"+2m) = 0,
Vi emt+2m—1)—AV(2m"+2m) + +Ar V(2m" +2m +1) = 0.

sajatérték egyenletekhez jutunk. A 2m egyenletbdl a kozépsd 2m — 2-t eliminélva a
rendszer b =m-ed részére skdldzédik. A kdzépsé egyenletekbeli V(2m™ + 2), V(2m" +
3),-.., V(2m™ +2m — 1) valtozék mind kifejezhetSk V (2m™ +1) és V(2m™ + 2m)-mel. Igy
kifejezve V (2m"+2)-t és V (2m"+2m—1)-et, és ezeket visszairva a két széls6 egyenletbe,
két Osszefliggésiink marad a V(2m™), V(2m" +1), V(2m" +2m) és V(2m" +2m+1)
komponensek kozott:

Ar®_ A—s
A — ¢
V(i2em"+1) — gV(21’n"—i—2m) 5 éﬁV(Zm”+2m +1j =10, (4.58)
z

amelyekben z = A"~ /Ds,,_5 és s = —Day_3/Dom—9. A Dapm_o a kdvetkez6 (2m —2) x
(2m—2)-es determindnst jeloli:

Dopm—o = ) ’ (459)

illetve D,,,_3 a jobb alsé minorja D,,,_,-nek. A (4.57-4.58) egyenletekbdl leolvashat6 a
sajatértékek és a csatolési allandok transzformacidja:

D2m—2 D2m—3 / D2m—2
= A )\m—l )\m——l ’ /\ = /\ ¢ (460)

= A /\m—l

A
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A 4.60 egyenletekbdl az m =2 és in=3 esetben a transzformacios egyenletek:

A = %(A2 = APy N=r(A2=X) (m=2), (4.61)
A= % (A2 = 43" —an2 4 22 +1] , N = T (A =2) =N (m=23)@62)

Fixpontok és kritikus exponensek. A (4.60) transzformaciénak A* = 0-nal egy Ising-
fixpontja van. A rendszer fixponthoz kozeli tulajdonsagainak vizsgalatdhoz fejtstik ki
a Dy 6s Doy, 3 determinansokat A-ban lineéris rendig:

T )\2171—2

D2m—2 = (_)\2)m—1 o O(AQ) , D2m—3 - (_1)111—1A e /\2

+O(A%) . (4.63)
Ezeket visszairva (4.60) egyenletekbe megkapjuk az Ising-fixpont helyét:
=0,  X=1pr-lyiien, (4.64)

A transzformaciot linearizélva a fixpontnadl a kdvetkez6 sajatértékeket kapjuk:

OA'|* A — A% b X[
= — 6t = — = 4.
oA o YT T™ (4.65)

byA

és b=m-et figyelembevéve kapjuk az exponenseket:

In (‘T.m/(m—l) _ 7.—m/(7n—1)|) —1In (l,rl/(m—l) _ 7.—1/(m—l)‘)

7yt:V_1:1)

(4.66)

Z=Ya =
Inm

A transzformdcié mésik fixpontja a iranyitott bolyong6 kritikus viselkedését hata-
rozza meg. A fixpont és a megfelel6 kritikus exponensek csak m =2 és m = 3 esetben
adhat6k meg zart formaban.

Az iranyitott bolyongd fixpontja az m =2 esetben a (4.61) egyenletekbdl kaphato:

A=Y T

1—17r

(4.67)

A linearizalt transzformacié nagyobbik sajatértéke:

' N2 1/2
<_ o _> _2] : (4.68)
P 2

1 1
Ei=—+r+—+
r 2

<
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HF

A :

g > -

M A

4.7 dbra: Az Ising-modell és a hatérfeliileti fluktudci6 fixpontjai a renormalési csoport
transzformaci6 fazisterében.

és igy a bolyong6 vandorlasi exponense

W (4.69)
YA In €
hiszen itt b = 2 a skélafaktor. A renormdlasi csoport transzformécié masik sajatértéke
€2 < 1 és az ehhez tatoz6 skalatér irrelevédns. (4.67)-bol lathatd, hogy a homogén eset-
ben (r = 1) a transzformaciénak nem létezik fixpontja, igy a w =  normélis vandorlasi
exponenst nem kaphatjuk meg. Ezzel a mddszerrel az anomalis fluktuacié tartoma-
nyaban (r < 1) a renormaldsi egzakt eredményeket 6sszehasonlitva a 4.1 téblazatban
szerepld véges méret skdldzassal kapott numerikus eredmenyeinkkel, lathatjuk, hogy
azok nagyon pontosak, (4.69)-cel legaldbb 6 jegyre megegyeznek.
Az iranyitott bolyongé az m =3 esetben a (4.62) egyenletekb&l kaphatéan:

JIT P 5
A¥ = 11 L 1‘[’" 4.70)
—r = i

fixponttal rendelkezik. A transzformaécié legnagyobb sajatértéke:

1/2

1 1 :
61:2(;+T+1>+'4<—+7‘+1) —3} ; (4.71)
-
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és igy a vandorlési exponens:

mivel b=3 a skélafaktor.

67

(4.72)



5. fejezet

Osszefoglalas

A disszertacidban kiilonféle inhomogenitasok hatésat vizsgalom az Ising-modell fazi-
satalakuldsaira. A véletlenszer( és bizonyos determinisztikusan meghatarozott nem-
korlatos perturbéciok feliileti és tombi kritikus viselkedésre gyakorolt hatdsai mind
megfelelnek a kordbban kidolgozott kvalitativ relevancia-irrelevancia kritériumoknak.
Ezenrendszerek részletes vizsgélatat tartalmazza ez a dolgozat. A tertiileten elért ered-
ményeinket a kdvetkez6 pontokban foglalhatom 6ssze réviden:

1. A kotéshigitott kétdimenziés Ising-modell tombi mégnesezettségét vizsgéltam a
Wolff-féle klaszterflip Monte Carlo-moédszerrel. Megéllapitottam, hogy a méagnese-
zettség effektiv exponense a hémérséklet egy tartomanyaban f6lé n6 a térelmélet altal
josolt aszimptotikus értéknek, mely az irodalomban vitatott ,,overshooting”-nak neve-
zett jelenség a higitds mértékével er6sodik [86].

2. Meghatdroztam a higitott Ising-modell feliileti magnesezettségének kritikus expo-
nenseit kiilénb6z6 higitdsok mellett, mind az (11) és az (10) feliileteken. Megéllapitot-
tam, hogy mindkét esetben megegyezik a higitott modellek feliileti kritikus exponense
a tiszta rendszer azonos exponensével, azaz a higitds (marginalisan) irrelevans jellegfi.
A feliileti exponensek effektiv értéke a higitds novekedésekor csak kis mértékben val-
tozik meg, azaz robusztusabb mint a hasonlé tombi exponensek, ahol a korrekciés
viselkedés er®s, logaritmikus jellegti [86][35].

3. Diagonalis racson elkészitettem a magnesezettségi profilokat és a hozzajuk tartozo
effektiv exponens profilokat és tanulményoztam a tombi és a feliileti exponensek ko-
z0tti ,crossover” viselkedést. A feliileti réteg vastagsdganak vizsgalataval meghaté-
roztam a korrelaciés hossz higitds hatdséara tortén6é megvaltozasat [86][35].

4. Vizsgédltam a kétdimenzios hierarchikus kotéskiosztdsu Ising-modell és az ennek
— az extrém anizotép hatéresetben — megfelel egydimenziés kvantum Ising-lanc
feltileti kritikus viselkedését. Analitikus dsszefliggést taldltam a feliileti mégnesezett-
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ség exponensének a hierarchikus paramétertdl valo fliggésére kiilonboz6 hierarchikus
szerkezetek esetén. Megéllapitottam, hogy az altalanositott hierarchikus sorozat a ko-
tések fluktuacidjanak gyengitésekor marginalisan irrelevans perturbaciét jelent, azaz
csak logaritmikus korrekcidk lépnek fel. Ugyanakkor a fluktuéciok erdsitésekor a per-
turbdci6é margindlisan relevans: a hierarchikus paramétertdl fliggéen a feliileti fazisa-
talakulds vagy els6rend(i vagy a magnesezettség minden hatvanyfliggvénynél gyor-
sabban cseng le [36].

5 A kétdimenziés hierarchikusan réteges Ising-modell két tdvoli parhuzamos feliile-
ten lev( spinjeit ellentétes 4llapotban rogzitve vizsgaltam a fazisokat elvalaszto hatar-
feliilet fluktuacids tulajdonsagait. Megéallapitottam, hogy a hatérfeliileti fluktudciok
anomalisan viselkednek, a vandorlasi (fluktuaciés) exponens a hierarchikus paramé-
ter folytonosan valtozé fliggvénye, melyet transzfermétrix modszerrel numerikusan
meghataroztam [39].

6. A hierarchikus csatolasti rendszerre alkalmaztam az aperiodikus rendszerekre ko-
rabban kidolgozott egzakt renormélési csoport transzformaciét, amely a kétdimenzios
Ising-racs hatarfeliileti fluktuédcidjat és a kvantum Ising-lanc kritikus problémajat azo-
nos keretek kozott, egyazon renormélasi csoport keretében targyalja. A megkonstrualt
renormalési csoport transzformdcié két nem-trividlis fixpontja a hatarfeliileti fluktua-
cidknak illetve az Ising-modellnek felel meg. A fixponti transzformacié analizisébdl a
két modell kritikus tulajdonsagait egzaktul meghataroztam [39][42].
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This thesis investigates the effect of inhomogeneities on critical behavior by means of
modern statistical physics.

Previous results

Critical behavior (second order phase transition) was already observed in the last cen-
tury when condensation of CO, and other kinds of gases and their phase diagram were
investigated. The phenomenon as the liquid and gaseous phases was well described
by the van der Waals equationi. Similar phase transition can be observed when heating
up ferromagnetic materials, when it looses its spontaneous magnetization and beco-
mes paramagnetic. The paramagnetic-ferromagnetic phase transition was described
by Weiss” molecular field theory, which was able to support theoretically the empiric
Curie’s law of magnetic susceptibility. _

Around the critical point both theory ‘assumed implicitély that the free energy of
the system can be expanded m\the so called order parameter. This is the basic idea of
the Landau theory, which describes the above two phenomena in the same framework
introducing the notion of the order parameter and gives the possibility of investigating
further systems such as superconductivity through the Ginzburg-Landau equation.
The exp)erimental results, the various results of high and low temperature series and
Onsager’s solution of the two dimensional Ising model pointed out the limits of the
theory. As we presently know this approach actually gives correct information only a
little away from the critical point, Very near the critical point it gives only a qualitative
picture about the character of the phase transition as it could not allow for the long-
range fluctuations because of the divergency of the correlation length.

The breakthrough in the area of the second order phase transitions was the adop-
fation of the previously known renormalization in field theories, which through the
renormalization group transformation maps the original system onto a system with
less degrees of freedom, but with the same features such as the same symmetry in the
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Hamiltonian. The parameters in the Hamiltonian shows scaling properties along the
maps with the appropriate scaling dimensions, from which the critical exponents of va-
rious physical properties can be determined. The renormalization group transforma-
tion gave also the explanation why there are universality classes, i.e. why completely
different physical systems have the same critical indices with different order parame-
ters as well. Furthermore it gave an explanation for the relations between the critical
exponents, the scaling laws and the observed phenomenon that the concrete values of
the microscopic parameters does not affect the universality classes.

The Ising model examined in the thesis also by virtue of its simplicity is one of
the most fundamental model that describes cooperative phenomena as there is a two-
valued spin variable associated with each site of a lattice. While previously the inter-
molecular interactions between the spins appeared to be rather oversimplified and in
this way the model was thought of as an inappropriate model for describing a real
system, nowadays learning the renormalization group transformation it is clear that
the microscopic details in the short—range interactions apparently do not affect the co-
operative properties especially the critical behavior. Along the years the Ising model
became one of the most studied model of statistical physics which by virtue of univer-
sality it describes the liquid-gas phase transition, the previously mentioned magnetic
phase transition, the order-disorder transition in binary alloys or the phase separation
in liquid mixtures.

Investigation of systems with disorder or containing certain inhomogeneities (sur-
faces, linedefects, etc.) also started based on the results of the investigation of the criti-
cal behavior of homogeneous systems. The first of these investigations were the peri-
odically and the randomly layered two-dimensional Ising model (McCoy-Wu model)
and the investigation of the critical behavior of the directed walk in inhomogeneous or
random media.

To study the effects of inhomogeneities has fundamental importance as we cannot
find perfectly pure system or perfectly periodic crystal lattice without dislocations and
point defects in nature.

One of the main topics of the thesis is the examination of the critical behavior of the
inhomogeneous (bond-diluted) Ising model. According to the criterion worked out by
Harris the relevance-irrelevance of perturbation caused by inhomogenities depends on
specific heat exponent of the homogeneous system. This is zero in the case of the two-
dimensional Ising model and in this way this is the marginal case of the criterion. In
this case the critical behavior of the of the diluted system can only be determined by
detailed study.
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Quasicrystals discovered in 1984 can be considered as an intermediate between
pure (periodic) and disordered (diluted) systems. These are deterministic but non-
periodic structures whose Fourier spectrum can be described as a superposition of
discrete, finite, irrationally relating peaks, so it does not have a pointsymmetry cor-
respondig to a periodic structure. Along the discovery of quasicrystals the production
of multilayers with aperiodic structures that can be produced artificially gave a new
impulse to the examination of inhomogeneous systems. By virtue of molecular beam
epitaxy quasiperiodic or more generally aperiodic structures were produced, whose
theoretical investigation is also very interesting, like for example the Fibonacci super-
lattice structure consisting of GaAs — Al As alternating layers. The special properties of
the new structure were confirmed by X-ray and Raman scattering examinations.

The hierarchical system I examine in the dissertation is a similar special structure,
in which the coupling constants between the spins shows such a self-similar order. Re-
cently such structures were observed in several artificial or natural systems such as, re-
laxation processes of disordered systems (spinglasses) or proteins. Some more distant
examples are computer architectures, geological processes before large earthquakes
and in the everyday life various economic organizations or stock market exchange ra-
tes show similar tendency. Various numerical and exact results showed that diffusion
can be anomolous in a hierarchical “potential”, which is called ultradiffusion.

A relevance-irrelevance criterion similar to the Harris criterion for random mag-
nets was found by Luck for phase transitions of general aperiodic structures. In this
case the sign of the crossover exponent consisting of the correlation length exponent of
the non-perturbed system and the wandering exponent of the aperiodic sequence de-
cides the type of the phase transition of the inhomogeneous system. The perturbation
is marginal if the crossover exponent is zero. Critical exponents continously varying
with the value of the coupling and anisotropic scaling were observed in several such
systems, in which exact results are also known. In case of anisotropic scaling correla-
tion lengths measured paralell to the layers and perpendicular to them diverge with
different exponents in the critical point. The hierarchically layered Ising model also
belongs to this special type of systems as our investigations showed it.

Methods of investigation

TRANSFER MATRIX METHOD
With the aid of the method, which was first used by Kramers and Wannier in 1941
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for investigating the Ising model the partition function of a system can be figured out
as a trace of powers of matrices. The transfer matrix connects the states of consecu-
tive layers in the direction of translational symmetry. To calculate the free energy and
the correlation length of a system the two largest eigenvalues of the transfer matrix is
needed (in the thermodynamic limit). In case of the two-dimensional N-layered Ising
model an eigenvalue problem of a 2V x 2% matrix must be solved, which is equivalent
in the extreme anisitropic case with the eigenvalue problem of the Hamilton operator
of the one-dimensional quantum Ising chain. To solve the Hamiltonian we transform
the spin operators to fermionic operators with a Jordan-Wigner transformation and
than after a Bogoliubov transformation on the latters we get a free fermionic system.
In the latter step of the calculation the solution of an eigenvalue problem of an N x N
matrix is needed. The first excitations of the quantum problem are in a one-one re-
lationship with the correlation length of the two-dimensional problem, so examining
that makes possible the investigation of the phase transition of the two-dimensional
system.

The problem of interface fluctuation can also be investigated by the transfer matrix
method. In this case the problem is less difficult comparing to the Ising model since
the dimension of the transfer matrix is N. It can be shown that this transfer matrix is
equivalent with the matrix in the Ising model got after the Bogoliubov transformation.
RENORMALIZATION GROUP TRANSFORMATION

The transformation with which one can confirm the scaling and the universality hy-
pothesis is an important (numerical) calculational method as well. Through changing
the length scale the renormalization is generally performed on the Hamiltonian in the
partition function. The hierarchical system discussed in the thesis naturally provide
the opportunity of performing the renormalization throught its self-similarity. In our
case we perform the transformation not on the Hamiltonians, but on the elements and
eigenvalues of the matrices occuring in the problems. The equivalence of the matrices
in the problem of the spin system and the interface fluctuation makes it possible to
discuss them in the same framework. The two problems belong to two different non-
trivial fixpoints of the transformation. The fixpoint describing the lower edge of the
spectrum controls the critical behavior of the Ising model, while the other one desc-
ribing the higher edge of the spectrum controls the critical behavior of the interface
fluctuation.

MONTE CARLO METHODS

In the dissertation I applied various classical (Metropolis algorithm) and modern

(Swendsen-Wang and Wolff algorithms) computational methods. Among these I app-
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lied the Metropolis algorithm mainly for domains away from the critical point since
this method as generally the one-spinflip methods cannot be applied at temperatures
nearby the critical state because of the phenomenon of critical slowing-down. A great
result of the end of the '80-ies is the work-out of such clusterflip algorithms, in which
the critical slowing down practically disappears, so the greater and greater system si-
zes because of the divergency of the correlation length do only cause problems in the
numerical calculations. The Swendsen-Wang and Wolff’s clusterflip algorithms more-
over needs even less CPU time in various diluted systems than in the homogeneous
case since they are the fastest in the percolation limiting case.

Results

My results can be summarized in the following six points:

1. I investigated the bulk magnetization of the bond diluted two-dimensional Ising
model with Wolff’s clusterflip Monte Carlo method. I verified that the effective ex-
ponent of the magnetization goes higher in some range of temperature than the field
theoretically predicted asymptotic value, which phenomena called “overshooting” dis-
puted in the literature gets stronger with dilution [86].

2. I determined the surface magnetic critical exponents of the diluted Ising model
for different dilutions, both for the (11) and the (10) surfaces. I found out that in both
cases the surface critical exponents of the diluted models coinside the counterpart ex-
ponent of the pure system, i.e. the dilution is (marginally) irrelevant. The effective
value of the surface exponents changes only slightly for stronger dilutions, i.e. it is
more robust than the similar bulk exponents in which there are strong logarithmic cor-
rections [86][35].

3. Imade the magnetization profiles and the corresponding effective exponent pro-
files for the diagonal lattice and studied the crossover behavior between the bulk and
the surface. Examining the thickness of the surface layer I determined the change in
the correlation length with dilution [86][35].

4. I'studied the surface critical behavior of the two-dimensional hierarchically laye-
red Ising model and in the extreme anisotropic limit that of the corresponding one-
dimensional quantum Ising chain. I found analitic relation between the surface magne-
tization critical exponent and the hierarchical parameter in different hierarchical struc-
tures. I found out that in the case of the generalized hierarchical series weakening the
fluctuation in the couplings causes marginally irrelevant perturbation, i.e. only loga-
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rithmic corrections occure. At the same time, strenghtening the fluctuations the per-
turbation becomes marginally relevant, i.e. the surface phase transition is first order
or the magnetization decays faster than any power law depending on the hierarchical
parameter [36].

5. Fixing the spins oppositely in the two distant surfaces of the two-dimensional
hierarchically layered Ising model I investigated the fluctuation properties of the in-
terface separating the two phases. I found out that the interface fluctuations behave
anomalously, the wandering (fluctuation) exponents are a continuously changing func-
tion of the hierarchical parameter, which I determined numerically applying transfer
matrix method [39].

6. I applied for hierarchically coupled systems the previously elaborated exact re-
normalization group transformation for aperiodic systems, which discusses the prob-
lem of the interface fluctuation of the two-dimensional Ising lattice and the quantum
Ising chain in the same framework of renormalization group. The two non-trivial fix-
point of the renormalization group transformation built up correspond to the interface
fluctuation and the Ising model. From the analysis of the transformation at the fixpoint
I calculated analitically the critical behavior of the two models [39][42].



Koszonetnyilvanitas

Legels6 helyen szeretném megemliteni témavezetémet, Dr. Igléi Ferencet, a fizikai
tudoméanyok doktorat, akinek a modern statisztikus fizikai médszerek terén szerzett
tudasomat kiiszonhetem. Koszénom, hogy mindamellett, hogy a kutatémunka soran
mindenben tdmogatott, az 6néllé6 gondolkodasra és tevékenységre is lehet6séget biz-
tositott, és mindig hatékony munkéra sarkallt.

Koszonetet szeretnék mondani tanszékvezetémnek, Dr. Gyémént Ivannak is, aki
végig figyelemmel kisérte miikodésemet és megértden viszonyult hozz4, tovdbba a
tanszék tobbi tagjanak is hasonléan kedvez6 hozzaallasukért, kiilondsképpen Lajko
Péternek, aki egy évvel tobb tapasztalattal rendelkezvén a PhD-s tevékenység tertiletén
sziikség esetén tanacsokkal latott el.

Halas vagyok még Prof. Walter Selkének, akinek segitségével a Monte Carlo-méd-
szer terén szerzett tuddsomat mélyithettem el, valamint az Aacheni Mftiszaki Egye-
temnek, hogy magas szinvonali eszkozok és megfeleld koriilmények biztositdsaval
segitették a minél eredményesebb munkat.

Sokat jelentett szdamomra a Soros Alapitvany tamogatasa, mely tobbszor lehet6sé-
get teremtett arra, hogy ismereteimet kiilf6ldon is bévithessem. Koszéném a disszer-
tacié megirdsadhoz nyujtott anyagi segitségét.

Végiil, de nem utols6 sorban koszonettel tartozom sziileimnek, akik érdeklédéssel
kovették munkamat és feleségemnek, aki mindig mellettem &llt és batoritott.

77



Irodalomjegyzék

[1] Aarao Reis F. D. A., de Queiroz S. L. A. és dos Santos R. R., Phys. Rev. B56, 6013
(1997)

[2] Andreichenko V. B., Dotsenko VL. S., Selke W., Wang J. S. Nucl. Phys. B344, 531
(1990)

[3] Austin R. H., Berson K. W., Eisenstein L., Frauenfelder L. H. és Gunsalus I. C.,
Biochem 14,5355 (1975)

[4] Bariev R. Z. Teo. Mat. Fiz. 40, 95 (1979)

[5] Barkema G. T. és Newman M. E. J., Monte Carlo Methods in Chemical Physics, szerk.:
Ferguson D., Siepmann J. I. és Truhlar D. G., Wiley, New York (1997)

[6] Berche B., Berche P. E., Henkel M., Igl6i E., Lajké P, Morgan S. és Turban L., J. Phys.
A 28 1165 (1995)

[7] Berche P. E. Berche B. Turban L., J. Phys. I France 6, 621 (1996)

[8] Binder K. Phase Transitions and Critical Phenomena vol. 8 ed. C. Domb és J. L. Lebo-
witz (Academic Press London) (1983)

[9] Bogoljubov N. N., Nuov. Cimen. 7, 794 (1958)

[10] Cardy J., Phase Transitions and Critical Phenomena vol. 11 ed. C. Domb és J. L. Lebo-
witz (Academic Press London) (1987)

[11] Cardy J., J. Phys. A29, 1897 (1996)
[12] Compagner A. Am. J. Phys. 59,700 (1991), J. Stat. Phys 63, 883 (1991)
[13] Doria M. M., Satija L. L., Phys. Rev. Lett. 60, 444 (1988)

[14] Dotsenko Vik. S., Dotsenko VL. S., Sov. Phys. JETP Lett. 33,37 (1981), Adv. Phys. 32,
129 (1983)

78



IRODALOMJEGYZEK 79

[15] Feigenbaum J. A., Freund P. G. A., cond-mat/9509033

[16] Fischer M. E., Physics 3, 255 (1967)

[17] Fischer M. E., |. Phys. Soc. Jpn. Suppl. 26, 87 (1968)

[18] Fortuin C. M. és Kasteleyn P. W., Physica 57, 536 (1972)

[19] Garg A., Levine D., Phys. Rev. Lett. 59, 1683 (1987)

[20] Giacometti A., Maritan A. és Stella A. L., Int. |. Mod. Phys. B5, 709 (1991)
[21] Guggenheim E. A., ]. Chem. Phys., 13, 253 (1945)

[22] Harris A. B., J.Phys. C7, 1671 (1971)

[23] Heisenberg W., Z. Phys. 49, 619 (1928)

[24] Henkel M. és Schiitz G., J. Phys. A20,2617 (1988)

[25] Henley C. L., Lipowsky R., Phys. Rev. Lett. 59, 1679 (1987)

[26] Hilhorst H.J., Schick M. és van Leeuwen J. M. J., Phys. Rev. B19, 2749 (1979)
[27] Hilhorst H. J. és van Leeuwen J. M. J., Phys. Rev. Lett. 47 1188 (1981)

[28] Hiramoto H. és Kohmoto M., Int. . Mod. Phys. B6, 281 (1992)

[29] Hornreich R. M., Luban M., Shtrikman S., Phys. Rev. Lett. 35, 1678 (1975)
[30] Huang Y., Saleur H., Sammis C. G., Sornette D., cond-mat/9612065

[31] Huberman B. A. és Hogg T., Phys. Rev. Lett. 52, 1048 (1984)

[32] Huberman B. A. és Kerszberg M., ].Phys A 18, 1331 (1985)

[33] Igléi E, J.Phys. A 26,1703 (1993)

[34] Igloi E. és Lajko P, J. Phys A 29, 4803 (1996)

[35] IGLOI F.,, LAJKO P., SELKE W., SZALMA F., J. Phys. A 31, 2801-2813 (1998)
[36] IGLOI F.,, LAJKO P., SZALMA F., Phys. Rev. B 52, 7159-7165 (1995)

[37] Igléi E., Peschel 1., Turban L., Adv. Phys. 42, 683 (1993)



IRODALOMJEGYZEK 80

[38] Igloi E, Rieger H., Phys. Rev. B56, 11031 (1997)

[39] IGLOI E., SZALMA F., Phys. Rev. E 54, 1106-1110 (1996)
[40] Igléi F. és Turban L., Europhys. Lett. 27, 91 (1994)

[41] Igléi F. és Turban L., Phys. Rev. Lett. 77 1206 (1996)

[42] IGLOI F.,, TURBAN L., KAREVSKI D., SZALMA E., Phys. Rev. B 56, 11031-11050
(1997)

[43] Ising E., Z. Phys. 31, 253-8 (1925)

[44] Janssen T. és Los J., Phase Transitions 32,29 (1991)

[45] Jordan P. és Wigner E., Z. Phys. 47, 631 (1928)

[46] Kadanoff L. P., Physics 2, 263 (1966)

[47] Kadanoff L. P. et al., Rev. Mod. Phys. 39, 395 (1967)

[48] Kim ]. K. és Patrascioiu A., Phys. Rev. Lett. 72, 2785 (1994)
[49] Kihn R., Phys. Rev. Lett. 73,2268 (1994)

[50] Kirkpatrick S. és Stoll E. P, J. Comput. Phys. 40, 517 (1981)

[51] Knuth D., The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading MA
(1969)

[52] Kogut J. B., Rev. Mod. Phys. 51, 659 (1979)

[53] Kramers H. A. és Wannier G. H., Phys. Rev. 60, 252 (1941)
[54] Lajko P, PhD értekezés (1998)

[55] Landau L. D., Phys. Zs. USSR, 11, 26 (1937)

[56] Landau L. D., Lifsic E. M., Statisztikus fizika 1., Elméleti fizika V. kot., Tankonyvki-
adé6 (1981)

[57] Lehmer D. H., Proc. 2nd Symposium on Large-Scale Digital Computing Machinery
(Harvard University, Cambridge 1951) p. 142

[58] Levin D., Steinhardt P. J., Phys. Rev. Lett. 53, 2477 (1984)



IRODALOMJEGYZEK 81

[59] Lieb E. H., Schultz T. D. és Mattis D. C. Ann. Phys. NY 16, 406 (1961)

[60] Lin Z. és Goda M. Phys. Rev. B51, 6093 (1995)

[61] Lipowsky R., Fischer M. E., Phys. Rev. Lett. 56, 472 (1986)

[62] Luck J. M., J. Stat. Phys. 72, 417 (1993)

[63] Luck J. M., Europhys. Lett 24, 359 (1993)

[64] Ludwig A. W. W. Phys . Rev. Lett. 61, 2388 (1988), Nucl. Phys. B330, 639 (1990)
[65] Maritan A., Stella A. L., ]. Phys. A 19, 1L.269 (1986)

[66] McCoy B. M. és Wu T. T., Phys. Rev. 176, 631, (1968)

[67] Merlin R., Bajema K., Clarke R., Juang F-Y., és Bhattacharya P. K., Phys.Rev. Lett.
55,1768 (1985)

[68] Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller E. . Chem.
Phys. 21, 1087 (1953)

[69] Mézard M., Parisi G., Sourlas N., Toulouse G. és Virasoro M., Phys. Rev. Lett. 52,
1156 (1984)

[70] Onsager L. Phys. Rev. 65, 117 (1944)

[71] Peschel I. Phys.Rev. B30, 6783 (1984)

[72] Peschel I. Phys. Lett. 110A, 313 (1985)

[73] Pfeuty P., Annals of Physics 57,79 (1970)

[74] Pfeuty P., Phys. Lett. 72A, 245 (1979)

[75] Pleimling M., Selke W. Eur. Phys. ]. B1, 385 (1998)
[76] Potts R. B., Proc. Camb. Phil. Soc. 48,106 (1952)

[77] Privman V. és Svrakic N. M., Directed Models of Polymers, Interfaces and Clusters:
Scaling and Finite-Size Properties, Lecture Notes in Physics vol. 338 (Springer, Berlin,
1989)

[78] de Queiroz S. L. A. és Stinchcombe R. B., Phys. Rev. E54, 190 (1996)



IRODALOMJEGYZEK 82

[79] Schechtman D., Blech I., Gratias D. és Cahn J. W., Phys. Rev. Lett. 53, 1951 (1984)
[80] Schultz T. D., Mattis D. C. és Lieb E. H. Rev. Mod. Phys. 36, 856 (1964)

[81] Shalaev B. N. Sov. Phys. Solid State 26, 1811 (1984), Physics Reports 237, 129 (1994)
[82] Shankar R. Phys. Rev. Lett. 58,2466 (1987), 61, 2390 (1988)

[83] Shchur L. N. és Blote H. W. J., Phys. Rev. E 55 4905 (1997)

[84] Selke W., magin beszélgetés (1997)

[85] Selke W., Schur L. N., Talapov A. L., Monte Carlo Simulations of Dilute Ising
Models, in Annual Reviews of Computational Physics, ed. Stauffer D., World Scientific,
Singapore (1994)

[86] SELKE W., SZALMA F., LAJKO P., IGLOI F,, ]. Stat. Phys. 89, 1079-1085 (1997)
[87] Simon H. A., Ando A., Econometrica 29, 111 (1961)

[88] Stauffer D., Aarao Reis F. D. A., de Queiroz S. L. A. és dos Santos R. R., Int. . Mod.
Phys. (1997) megjelenés alatt

[89] Stella A. L., Swift M. R., Amar J. G., Einstein T. L., Cole M. W., Banavar J. R., Phys.
Rev. Lett. 71, 3818 (1993)

[90] Stinchcombe R. B., in Phase Transitions and Critical Phenomena, vol. 7., eds. C. Domb
és]. L. Lebowitz, Academic Press, Ney York (1983)

[91] Swendsen R. H., Wang J. S. Phys. Rev. Lett. 58, 86 (1987)

[92] Talapov A. L., Schur L. N., Critical point correlation function for the 2D random
bond Ising model, Preprint 9404001@hep-lat.

[93] Talapov A. L., Schur L. N., Critical region of the random bond Ising model, Prep-
rint 9404011@hep-lat.

[94] Teitel S., Kutasov D. és Domany E., Phys. Rev. B 36, 684 (1987)
[95] Turban L., Igléi F. és Berche B., Phys. Rev. B49, 12695 (1994)
[96] van der Waals J. D., Doktori disszertacio, (1873)

[97] Wang J. S., Selke W., Dotsenko V1. S., Andreichenko V. B. Europhys. Lett. 11, 301
(1990), Physica A164,221 (1990)



IRODALOMJEGYZEK 83

[98] Wang]. S. és Swendsen R. H., Physica A 167, 565 (1990)

[99] Wannier G. H., Rev. Mod. Phys. 17, 50 (1945)

[100] Weiss P, J. de Phys. 6, 660 (1907)

[101] Widom B., J.Chem. Phys. 43, 3892 (1965)

[102] Widom B., ].Chem. Phys. 43,3898 (1965)

[103] Wilson K. G., Phys. Rev. B4, 3074 (1971)

[104] Wolff U., Phys. Rev. Lett. 60, 1461 (1988)

[105] Wolff U., Phys. Rev. Lett. 62 361 (1989)

[106] Yang C. N., Phys. Rev. 85, 808 (1952)

[107] Ziegler K., Nucl. Phys. B344, 499 (1990), Europhys. Lett. 14, 415 (1991)

[108] Zobin D., Phys. Rev. B18, 2387 (1978)





