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Chapter 1

Introduction

“Something else an academic education will do for you. If you go along with
it any considerable distance, it’ll begin to give you an idea what size mind
you have. What it’ll fit and, maybe, what it won’t. After a while, you’ll have
an idea what kind of thoughts your particular size mind should be wearing.
For one thing, it may save you an extraordinary amount of time trying on
ideas that don’t suit you, aren’t becoming to you. You’ll begin to know your

true measurements and dress your mind accordingly”’

J.D. Salinger, The catcher in the rye

Data-driven science is a rapidly growing area with the main goal being to extend
the use of computers, from data analysis to making hypotheses. New knowledge simply
emerges as plausible patterns found by mining data and related to these observed pat-
terns, a range of questions can be addressed and hopefully answered. In essence, the
aim is to generate knowledge from data. An analysis of the massive quantities of data
produced by and about people, machines, and their interactions have received enormous
attention by computer scientists, physicists, mathematicians, economists, political scien-
tists, sociologists and bio-informaticians, among others, for the past few years. The huge
amount of available data allows us to study complex systems that appear in such fields
as biology, economics and the social sciences. Therefore, data mining, or knowledge dis-
covery in large databases, has become one of the most important challenges in scientific
fields and in industry, including for instance the pharmaceutical industry and the online
social media organizations.

The development of “small-world” networks [183] has significantly changed and ex-
tended the research directions of graph theory, a part of mathematics which provides the
theoretical toolkit for the study of complex systems. Alongside this, research on mining
graph and network data has been increasingly growing over the past few years, and it
has become the most promising approach for extracting knowledge from relational data
[64]) and investigating complex systems [8]. Complex systems can often be represented by
networks (or graphs), where nodes (also called vertices) stand for individuals or entities
of the system, while links (also called edges) represent the interaction between pairs of
these individuals (for some excellent reviews, see e.g. Newman, 2003 [145] and Boccaletti

et al, 2006 [18]). The network approach is not only useful for simplifying and visualizing



enormous amounts of data, but it is also effective in identifying the most important ele-
ments and finding their key interactions. In essence, the aim of data mining is to generate
knowledge from data by discovering common patterns and features in different data sets,
while graph-based data mining, usually known simply as graph mining, is the extraction
of knowledge from a graph (i.e. a network) representation of the data.

Complex network modeling and analysis and data mining have similar goals; namely,
given the data representing a complex system, the goal is to extract (or synthesize)
information from it, by creating a model (either a complex network representation, or a
data mining model) on which successive steps of the analysis can be performed. The goal
of this dissertation is to present the author’s work which focuses on the development and
application of network models and data mining tools for real-world problems.

In this dissertation, we commence with a brief introduction to the basics of graph
theory, the main concepts of network science and data mining tools that are needed to
understand later chapters.

Chapter 2 presents examples of real-life problems where the network approach is a
natural way of mathematical modeling. Firstly, the author proposes a local PageRank
algorithm, whose motivation comes from the area of “scientometics”, to measure the in-
fluence of scientific papers using their local citation network. Then, a comprehensive
analysis of public transportation systems will presented using various network models.
The study provides a first step small-scale study of complex transportation systems of
Hungarian cities by comparing their global and local characteristics. Lastly in this chap-
ter the author will introduce potential network representations of a real social system
based on educational data. Results of network analysis will also be presented.

Chapter 3 is concerned with economic networks, namely the international trade net-
work and stock correlation based financial networks. In the first part of the chapter
network analysis of the timely evolution of the trade network of the European Union is
discussed. Afterwards, correlation-based financial networks will be defined and applied
to the portfolio selection problem.

In Chapter 4, the task of rating nodes in networks is addressed and applied specifically
in ranking sport teams and players. A novel, time-dependent PageRank method to rank
players based on the results graph of a sport competition will be presented. Afterwards, a
new network-based probabilistic model is introduced for forecasting in sports and it will
be compared with the fundamental Bradley-Terry model and with experts’ betting odds
based on measures of accuracy and predictive power.

In Chapter 5, we focus on complex systems that can be modeled by bipartite networks.
Firstly, a community detection methodology is presented using a statistically validated
one-mode projection approach. It will be shown how the link validation-based filtering
procedure necessarily increases the precision of the community detection and it is able to
find the core of the communities even in the case of very noisy data. Then a generalized
version of the PageRank and HITS algorithms will be adapted to bipartite networks in
order to rank nodes in them. A case study for wine tasting events will then be discussed.

In Chapter 6, we summarize the dissertation both in English and in Hungarian.
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1.1 Brief (Hi)story of Network Science

Historically, the study of networks has been in the domain of graph theory, a branch
of discrete mathematics. Since 1736, when Leonhard Euler invented graph theory by
solving the Konigsberg bridge problem (to find a round trip that crosses each bridge
of the city exactly once), graphs have been investigated from various perspectives and
applied to a wide-range of real-life problems. Graph theory has proved to be one of the
most powerful tools in mathematical modeling and the graph theoretical framework has
provided solutions to many difficult practical questions. Such questions as to what the
maximum flow is from the source to the sink in a network of pipes, how to assign n
people to n jobs with maximum utility, and how many colors are enough to color the
regions of a map without coloring two neighboring regions with the same color, etc. The
first book on graph theory was published in 1936, written by a Hungarian mathematician
named Dénes Kénig. Also in the first part of the 20th century, remarkable achievements
were made using graphs in some special context. For instance, in the social sciences in
the early 1920s, where studies focused on relationships among people, such as friendships
or communication between members of a group, and in economics, where trade and
other economic transactions among nations or firms were investigated. Probability theory
became widely used for investigating graphs after the seminal contributions of Erdgs and
Rényi [58, 59]. Their eight papers on the topic gave rise to random graph theory, while
the probabilistic method became one of the most effective techniques in problem solving
in graph theory and combinatorics. Another direction of research concentrated on graphs
with very strict structures; these are the so-called perfect graphs [128]. These are far
from being random, and pop up in several applications and beautiful theorems.

However, later it turned out empirically that the “typical” structure of graphs that
model real relational data, i.e. the structure of real-world networks, is very different
from the random graph defined by Erdés and Rényi. In the last two decades, some
seminal papers gave rise to a new movement of direction, namely the study of complex
networks. They are networks with a highly irregular structure, dynamically evolving
over time and complex in the sense that their global properties and functioning are not
obvious from the properties of their individual parts. Namely, these are the works of Watts
and Strogatz (1998) [183] attempting to describe small-world networks' mathematically,
and Albert and Barabasi (1999) [9] describing a “preferential attachment” algorithm that
generates “scale-free” networks? characterized by a power-law degree distribution. The
preferential attachment model has been rigorously analyzed by Bollobas and Riordan |20]
who cleared up and confirmed the heuristics associated with the model. It should also
be added what Jackson points out ([93], Ch. 3), that many network degree distributions
exhibit “fat-tails”, like a power law, when compared to a Poisson random graph, but it is
not clear that these distributions really are power laws.

Besides to the power law degree distribution or small-world properties, the cormmunity

!Small-world networks are often characterized by a small average path length and high clustering
coefficient (see Sec. 1.2.2)

2A scale-free network is a graph whose degree distribution (see Sec. 1.2.2) follows a power law; i.e.,
Pr(d; = k) = ck™7, where d; is the degree of a node ¢, c is a normalizing constant and v > 1.
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structure turned out to be a significant and common feature of complex networks; see
e.g. [71] and [70] for a good introduction and survey, respectively. Practically speaking,
community detection in a graph is a partition of the nodes into disjoint sets (often
called communities, or clusters), such that nodes in the same community are more densely
connected to each other than to the rest of the graph. Sometimes the so-called overlapping
communities, where any node may be a member of more than one community, are in the
focus of interest |24, 148|. In general, the communities in networks reflect the similarities
and common features of the nodes that they contain. Newman and Girvan introduced
the modularity optimization method to find communities in real-world networks [146].
Since then, a myriad of papers has appeared on the topic which became one of the
most important topics in network science. Similar structural studies uncovered important
core/periphery network structures [23], where the concept of the network core usually
refers to a central and densely connected set of network nodes, while the periphery of the
network denotes a sparsely connected, typically non-central set of nodes, which are linked
to the core. A Core/periphery structure has been detected in many complex systems
including biological networks, animal and human social networks and related networks,
such as the World Wide Web and Wikipedia; engineered networks (such as the Internet,
power-grids or transportation networks), as well as networks of the world economy. A
survey in the topic by the author of this thesis and co-authors can be found in [44].

In parallel with the investigation of global network properties, the problem of rating
and ranking nodes (representing real actors) in networks has also been extensively stud-
ied. One of the most important contributions from our perspective are those that at the
end of 1990s, Sergey Brin and Larry Page, founders of Google Inc., developed a special
random walk algorithm in networks that seeks to model the user behavior of Web graph
surfing [28]. PageRank is mostly used as a network centrality measure (see Sec. 1.2.3) and
utilizing PageRank can help us understand the complex network better by focusing on
what PageRank reveals as important. Independent of Brin and Page, Kleinberg proposed
a different approach to measure the importance of a web page [103]. While PageRank
computes the pagerank scores on the entire graph, the Kleinberg’s HITS algorithm (Hy-
perlink Induced Topic Search) tries to distinguish between hubs (nodes that link to many
authorities) and authorities (nodes that have in-coming links from hubs) within a sub-
graph of relevant pages. The mathematics of PageRank and HITS, however, is general
and can be applied to any graph or network in any domain, and it is successfully utilized
in social and information network analysis as well as in biology, chemistry, neuroscience,
and physics [79]. Modified versions of them with various applications will be discussed in
different parts of the thesis.

Very recently, complex network theory and data mining have been used together in
a variety of problems. Methods for extracting patterns from data have a long history
and providing merely a brief history and introduction to data mining is beyond the scope
of this study. It transpired that out that differences between network theory and data
mining may, in some situations, provide an added value when both of them are used

in combination [189]. The term data mining now mostly refers to the process of using
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methodologies and techniques taken from different areas like statistics, probability theory,
database technology, machine learning and data visualization. Viewing data mining as
a tool for knowledge discovery/information extraction in a step-by step approach, from
problem understanding via (mathematical) modeling to evaluation and deployment, was
proposed in [185].

The road map of this thesis conceptually proceeds in the following way. Given a real-
world system and associated problems, a complex network model is created to represent
the system. Firstly, an analysis of the network (representing the system) can provide an
initial picture of the nature and fundamental features of it and difficulties of the problem
are addressed. However trying to solve special problems often leads to the development
of new network models, new tools and techniques that may be applicable to a broader
range of problems. This thesis seeks to present the author’s work on the topic, but before

going into the details, some basic definitions and concepts need to be presented.

1.2 Characteristics of Real-world Networks

Now, we will give a brief introduction to graph theory and an overview of the main
definitions that characterize the structural properties of complex networks. Particular
attention will be paid to the community structure and core/periphery structure as global
characteristics of complex networks and stochastic graph algorithms like PageRank and

HITS as they are widely-used graph-based data mining tools.

1.2.1 Basic Definitions

Formally, an undirected (directed) network or graph G = (V, E') consists of two sets V'
and E, where V' # (), while E is a set of unordered (ordered) pairs of elements of V.
The elements of V' = {1,2,...,n} are called nodes (or vertices) and the elements of F
are called links (or edges). A network is mathematically represented by its adjacency
matric A = [aij}i,jzl’m,n, which is an n X n matrix with entries a;; = 1 if there is an
edge (directed edge) between ¢ and j and a;; = 0 otherwise. For an undirected network
if the (4, j) edge exists, then a;; = a;; = 1, i.e. A is symmetric. If a function w : £ — R
that assigns a real number w;; to each edge (7, j) is given, then we say that the network
is weighted.

For a network G of n nodes the number of links lies between 0 (empty graph) and
n(n—1)/2 (complete graph). G is said to be sparse, if |E| = cn and dense if | E| & cn?
where c is a positive-valued constant.

The degree d; of node % is the number links that are connected to . If the network
is directed, we can define the in-degree d; and out-degree d; of a node 4, these being
the number of incoming links to ¢ and the number of outgoing links from %, respectively.
The weighted degree of a node can be calculated in a similar way using w; = ZZ (o
(1 =1,...,n), which is sometimes called the strength of i.

A subgraph G' = (V' E') of G = (V, E) is a graph where V' C V and E' C FE.
If it contains all links of G that connects two nodes in V", it is said to be the induced
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subgraph by V'. A clique is a maximal complete subgraph of three or more nodes.

A walk (i,ky), (k1,k2), ..., (kmn,Jj) between two nodes ¢ and j is an alternating se-
quence of nodes and edges, starting and ending at ¢ and j, resp., in which each edge in
the sequence is adjacent to its two endpoints. The length of the walk is the number of
edges on it. If all the nodes along the walk are distinct, then the walk is a path. The
shortest path between 7 and j is a path between them where the length of the path is
minimized. The (sub)graph is (strongly) connected if, for every pair of nodes 7 and j of
the subgraph, there is a (directed) path from ¢ to 7.

1.2.2 Global Characteristics

The number of links in a network, the average degree and the link density are computed

using the following formulas:

1 n 1 n n _ 1 n 2
m:§;di:§zzaija dzﬁzdi:%v P:(TTrL):n_la (1-1)

=1 j=1 =1

where the bar denotes the average.
Next, let £;; be the shortest path between nodes ¢ and j. The diameter of the network

is defined as the maximum of the shortest paths among all pairs of nodes. That is,

D(G) = maxmax (;;, (1.2)

% j#i

The average path length is defined as

- 2
(= mzzglﬁ (13)

1 jFi

which exists only if there are no unconnected nodes in the network and Eq. (1.3) is
usually restricted to this case. In real (especially social) networks, the average path
length is usually small, typically less than logn.

The list of the node degrees is called the degree sequence of the network. The degree
distribution P(d), a key characteristic of real-world networks, is defined as the fraction
of nodes having degree d; or, equivalently, it is the probability that a uniformly randomly
chosen node has degree d. In the case of directed networks, we can distinguish the in-
degree and out-degree distributions. It has turned out that many real networks have a
“fat-tailed” or “heavy-tailed” degree distribution. More precisely, power-law distributions,
given in the form P(d) ~ cd~7, have been observed many times [10]. Networks with such
degree distribution are called scale-free®.

The clustering coefficient is defined as

3 x #{triangles}
#{connected triples of nodes}

O = (1.4)

3The term scale-free originated from a branch of statistical physics called the theory of phase transi-
tions. The higher order moments of scale-free probability distributions are infinite and hence fluctuations
around the average may be arbitrarily large. i.e. there is no meaningful internal scale.
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and measures how the connected triples of a network tend to form triangles, which is very
common e.g. in social networks emphasizing the paradigm that “¢wo individuals with a

common friend are likely to know each other”.

Community structure

Another key property of complex networks is called the community structure. Finding
communities (also called clusters) in a network informally means finding a way to partition
the nodes into disjoint sets (subgraphs) such that nodes in the same set are more densely
connected to each other than to the rest of the network. Typically, a community in a
network means the similarity and common features of the nodes that it contains.
Numerous different algorithms have been developed to find communities in networks
(for a comprehensive work of the topic, see e.g. [70]). We should mention here a widely
used one called the “Leuven” method by Blondel et al. [17]. This is based on the modu-
larity maximization method developed by Girvan and Newman [78|. This is a heuristic
based on the idea that a null-model random graph is not expected to have a cluster struc-
ture like the original one. Given the network (G, the modularity function which needs to

be maximized, is defined as

QG = 5 > vy = 520G (15
which is a scalar-valued function that takes values between —1/2 and 1; w;; represents
the weight (or just presence, in the case of unweighted networks) of edge (i, ), wj is the
strength of node ¢ (or just the degree), C; is the community to which node ¢ is assigned.
Here, 6(C;,C;) = 1if C; = C; and 6(C;, C;) = 0 otherwise while m is the sum of the
weights over all edges (or simply the total number of links in the unweighted case).

It has been shown that modularity maximization is NP-complete [26]. For this reason,
several methods, ranging from simulated annealing to spectral optimization and greedy
methods have been developed providing that the partitioning of a graph which gains the
highest modularity value. In the case of the greedy Leuven method, initially each node
of the network forms a community. The first step consists of a sequential sweep over all
nodes. Given a node ¢, the gain in weighted modularity is computed. This gain comes
from putting ¢ in the community of its neighbor node j and picks the community of the
neighbor that yields the largest increase of modularity, as long as it is positive. At the
end of the sweep, the first level partition is obtained. For the next step, communities are
condensed into single nodes, and two condensed communities (“supernodes”) are connected
if there is at least an edge between nodes of the corresponding communities. In this case,
the weight of the edge between the supernodes is the sum of the weights of the edges
between the given communities at a lower level. The two steps of the algorithm are

repeated, yielding new hierarchical levels and “supergraphs”.
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Core and periphery of a network

Informally, the concept of a network core usually means a central and densely connected
set of network nodes, while the periphery of the network represents a sparsely connected,
typically non-central set of nodes, which are linked to the core. The “and” is important in
the above informal definition, since all nodes of the core are mostly central, but certainly
not every set of central nodes forms a network core. The concept of a network core may
be approached from many directions (including various core defining algorithms; rich-
clubs referring to an interconnected set of network hubs; network nestedness; the bow-tie
structure of directed networks, as well as the highly robust onion network structures; for
a detailed survey on core-periphery network, see [44] ), and hence there are many possible
definitions for it. In this thesis, we only describe the first formal approach to deal with
core-periphery structure by Borgatti and Everett [23]. Their discrete approach was based
on a comparison of the adjacency matrix A of the network with an ideal core/periphery
network model consisting of a fully-linked core and a periphery that is fully connected to
the core, but there are no links between any two nodes in the periphery. If § denotes the
(row) vector of length n with entries equal to one or zero, and if the corresponding node
belongs to the core or the periphery, respectively, then A = §'9 is the adjacency matrix
of the ideal core-periphery network of n nodes, where A;; = 1if §; = 1 and §; = 1,
and A;; = 0 otherwise. Determining how a core-periphery structure a network has is an

optimization problem that attempts to find the vector ¢ such that the expression

p= ayly (1.6)

i3

achieves its maximum value. The coefficient p is maximal when the adjacency matrix A
and the matrix A are identical. Eq. 1.6 is essentially an unnormalized Pearson correlation
coefficient applied to matrices rather than vectors. A network exhibits a core-periphery
structure if the correlation between the ideal structure and the data is large. Of course, a
statistical test for the significance of the core/periphery structures found by the algorithm
is needed. For weighted networks, the optimal core/periphery subdivision is a partition
obtained in a way that maximizes the weight of within core-group edges, and minimizes
the weight of within periphery-group edges. A detailed description of calculations and im-
plementations can be found in [23] and https://sites.google.com/site/bctnet/,

respectively.

1.2.3 Local Characteristics

In complex networks, centrality generally refers to the class of measures that represent
the most important and “central” nodes of the network from some given perspective.
Here, we shall mention only a few that turned out to be interesting for several reasons in
different fields.

The degree centrality is simply refers to the degree d; of node ¢ (in the case of directed

networks, the in- and out-degrees are distinct) and it tells us how large the neighborhood
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of 7 is. For example, it simply says that how many friends one has in her friendship
network.

The closeness centrality [164] of a node 7 is defined as
1
Zi;ﬁj gij.

Here, in general, the greater the value, the smaller the length of the shortest paths to

Oi) = (1.7)

all other nodes from 7. The concept is important, for example, in the investigation of
road and transportation networks, and in the analysis of information diffusion in social
networks [22].

The eccentricity e of a node 7 is the longest distance between ¢ and any other node
in the network. That is,

e(i) = max £, (18)
JF#

Let 0j; be the number of shortest paths between nodes j and k and let 0;4(4) be
the number of shortest paths between them that pass through node 7. The betweenness
centrality [73] of node 7 is defined as

BC(i)= Y UJU’“—S) (1.9)
j#itk Y

In complex networks, the larger the number of paths that pass through a certain node
(or edge), the greater the betweenness of this node (or edge) and more central it is in this
viewpoint. Betweenness has similar importance as closeness in the investigation of social
(e.g. friendship), technological (e.g. transportation) and biological (e.g. protein-protein

interaction) networks.

PageRank

The PageRank algorithm [28] was originally developed to measure and provide a good
approximation of the importance of Web pages by considering their position in the Web

graph. The PageRank score of a node ¢ € V' of graph G is defined as the recursion

. A PR(j)
PR(i) = — 1—A , 1.10
O=5+0-Y 3 55 (1.10)
where NT(i) = {j € N : j — i exists}, which is the set of nodes having an edge to
node i, while A € [0, 1] is a free parameter (usually given a value between 0.1 and 0.2).
The PageRank recursion formula defined by Eq. 1.10 can be written in vector equation
form like so
PR = [%]1]1T — (1-M\AD PR, (1.11)
where A is the adjacency matrix of G, D is a diagonal matrix such that d;; = Z?:l Qg
and d;; = 0, if ¢ # 7, I is the n X n identity matrix and finally 1 is the n-dimensional
vector that has each component equal to 1. Eq. 1.11 shows that PR is the eigenvector of
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the matrix (A/n)117 — (1 —X)AD~!. Due to the fact that the corresponding eigenvalue
of 1 is the largest eigenvalue of this matrix, which is a consequence of the Frobenius-
Perron theorem for row-stochastic matrices [147], PR is in fact the steady-state solution
a random walk on the nodes of the graph that can be described as follows. Starting
from a node 7, a random surfer selects one of the node’s outgoing edges uniformly at
random, moves to the end node j of that edge, and repeats this process from j, etc. The
parameter A can be understood as a “damping factor” which guarantees that the random
walk restarts in some node of the graph, chosen uniformly at random, in every 1/A-th
step, almost surely (i.e. with probability 1). This should guarantee that the process
would not stop by reaching a node with zero out-degree. If the surfer reaches a node, the
number of visits of that node increases by one. The damping factor ensures that each
node receives a contribution A/N for each step.

Assuming that TPR = 1, means that PageRank is a discrete probability distribution
over the nodes of the graph, and Eq. (5.14) implies that the PageRank vector PR can

be calculated as

A

PR = N[I —(1—=MNAD Y11, (1.12)
and we can write
)\ o0
PR= 21 1—MNAD H 1.13
1= NADTY, (1.13)

whose form gives us a useful power method for PageRank calculation (Alg. 1).

HITS

Independent of Brin and Page, Kleinberg [18] proposed a different approach to measure
the importance of a web page. While PageRank computes the PageRank scores on the
entire graph, the Kleinberg’s HITS algorithm (Hyperlink Induced Topic Search) tries to
distinguish between hubs and authorities within a subgraph of relevant pages, where hub
scores and authority scores of the nodes are recursively calculated from each other. A
good hub is a node that is connected to many authorities, while a good authority is a
node that has in-coming links from good hubs. Mathematically speaking, the hub and

authority scores can be calculated recursively as

h(i)= > a(j) and a(i)= > h(j), (1.14)

Jii—jg Jig—1

where a(i) and h(7) are the authority and hub scores of node 7, respectively (Alg. 2). The
scores converge starting from any initial scores of the nodes. Writing this in matrix form,
authority scores are calculated as a = ATh, while hub scores are calculated as h = ATa.
Combining them, we get a = ATa and h = AATh; hence it is apparent that they are

principal eigenvectors of matrices AT A and AAT, respectively.
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Algorithm 1: Power method for PageRank computation

Input : G directed graph
Output: PageRank vector PR

1
2
3
4:
5
6
7

Initialize PRo = 4 1

k=1
: repeat

PRy 1 = 21+ AAD PRy
k=k+1

. until |[PRy1 — PRy||1
: return PRy

Algorithm 2: HITS algorithm

Input : G directed graph
Output: Hub and authority scores of the nodes

1: Initialize all (node) weights to 1

2: repeat

3:  for all hub i € H do

o hi=)era 9

5 end for

6: for all authority i € A do

7 ai = jen(i) i

8 end for

9: until the weights converge
10: normalize

1.2.4 Brief Summary of the Author’s Contribution
[44] | [125] | [87] | [126] | [124] | [140] | [75, 127] | [123] | [21] | [122]

:[‘ L] L] L] L] L] L] L] L]
II. . .

I11. .

Iv.

Chapter | 1,2,3 | 1 1 1 1 1 3 4 5 5

Table 1.1. Correspondence between the thesis points and publications/chapters

The following list summarizes the key points of the dissertation. Table 1.1 shows the

connection between the thesis points and the publications of the author.

I. The author points out that many real-world systems can be modeled by networks

and suggests using graph-based data mining and network analysis as a first step of

investigating such systems. Each case study explains that, after collecting appro-

priate data, how the network approach, especially network analysis and applying

rating methods, can be used to extract meaningful information from the system

being modeled. New methods are also developed by slightly modifying some widely-

used stochastic graph algorithms. In particular, a local PageRank approximation

method and a new version of the generalized co-HITS are constructed to rate nodes

n

a network. The methods perform well in general and can be used for various
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IT.

I11.

Iv.

real-life problems modeled by networks.

The question of quantifying the degree of statistical uncertainty (usually called
“noise”) presents in real systems is addressed from different perspectives. Several
methods were defined and used to filter the part of information which is robust
against statistical uncertainty (i.e. robust against errors in the data or other sources
of noise). In particular, network-based, random matrix theory-based and statistics
based, methods were applied to correlation networks used for portfolio optimization
and also used to detect cores of communities of bipartite networks. The results tells
us that using these techniques, the classical Markowitz solution can be outperformed
on the the one hand, and community cores can be found with high precision on the
other.

The author demonstrates that information present in a bipartite network could be
used to detect cores of communities of each set of bipartite system. Using Monte-
Carlo simulations, the results indicate that the cores found are very stable and
detecting them is very precise although the methodology may be not very accurate in
some cases. The key concept is to consider statistically validated networks obtained
by starting from the original bipartite network. The information carried by the
statistically validated network can highly informative and could be used to detect
communities of a given set that are robust with respect to the algorithm of detection
and to the presence of errors or missing entries in the given database. Experimental
results on real data are also presented. Staying with bipartite networks, the question
of rating nodes of a bipartite network is also addressed. A general framework of a
HITS type algorithm is presented for this purpose and a case study on a real data
set is presented in detail. Our experimental results confirm that the method could

be readily applied for many real-life situations.

The problem of rating and ranking sport players and teams is addressed from a net-
work analysis perspective. A time-dependent PageRank method is defined to rate
players using the graph of game results data. The method gives a better picture
than several broadly used methods and it is able to outperform them in terms pre-
dictive power. The author also proposes a novel rating-based forecasting framework.
Against the widely known Bradley-Terry model, the key idea behind the model is
that if a rating correctly reflects the actual performance of teams considered, then
the smaller the changes in the rating vector, contains the ratings of the teams, after
a certain event (final result) in an upcoming single game, the higher the probability
of that event occurs. The results using several rating methods were compared to the
Bradley-Terry predictions and the betting odds predictions of experts in terms of
predictive accuracy. The authors showed that the new model outperforms the ad-
vanced versions of the Bradley-Terry model in many cases, even without fine tuning

parameters and optimizing the implementation.



Chapter 2

Network Models for Some Real-life

Problems

In this chapter we present some examples of real-life problems that can be modeled by
complex networks. The analysis of these networks proved to be quite useful for gaining a
better understanding the system being modeled, extracting meaningful information and
answering certain specific questions.

First, following the network approach the main goal is to measure the influence of
a single article regardless of the characteristics of the academic subject. Based on the
previous results of [43] and by applying the experimental results of [37] that later mathe-
matically proved to be applicable for many classes of graphs in [7], we use a local PageRank
approximation for this purpose. It should be mentioned that we do not wish to attempt
to determine the scientific worth of the articles, which will probably be judged in the
future; rather we want to measure “the impact” of the papers in their field. We describe
how a local PageRank method can be applied to determine the influence of a research
paper. As a case study, we apply it to the co-citation graph of the well-known paper by
Jens Egervary [53] and highlight the main advantages of our approach in Scientometrics.

Afterward, we will study engineered networks; namely we will analyze public trans-
portation networks. We perform a comprehensive network analysis with the main goal
of identifying the similarities of, and differences between the transportation networks of
five Hungarian cities. In particular, we compare the global and local characteristics of
the networks to get a detailed picture of the differences in the organization of public
transport, which may have arisen for historical, geographical and economic reasons. As
a result, we will highlight inconsistencies, organizational problems and identify which are
the most sensitive routes and stations of the network.

Lastly in this chapter, we will introduce a novel example of a real social system, taken
from the world of public education, which is suitable for network representation. We
propose several network representations of certain educational data and show which are
the most appropriate graph mining tools for analyzing them and what kind of additional
information can be extracted by their usage. Depending on the construction of the un-
derlying graphs, we present four families of network models and describe a case study

using one of the models. We point out several advantages of graph-based data mining

13
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techniques in educational systems.

2.1 Citation Networks and Scientometrics

The relevance of Scientometrics — which seeks to measure the productivity and quality
of scientific research — has long been discussed in the academic domain. The most pop-
ular measures are the scientific citation indices due to their easy accessibility. Several
of these indices have been introduced such as the h-index (or Hirsch-index) proposed by
Hirsch [89], the g-index proposed by Egghe [54], the w-index and the maximum index
both proposed by Woeginger [186]. Each of them is based on the citation records of the
researchers. These indices have been extensively criticized since they are highly depen-
dent on the scientific field (like the number of active researchers and available journals,
popularity of the area and gender ratio etc.; see, e.g. [2, 107, 184]). Another drawback
of their usage is that they do not give a clear picture of the influence and quality of any
given paper.

Several studies have sought to address this problem using the network approach. Co-
citation networks — in which nodes represent single articles and a directed edge represents
a citation from a citing article to a cited article, describes the relation between citations
of different papers — were widely studied previously [34, 97, 116]. Chen et al. [35] applied
the PageRank algorithm to co-citation networks. Later Raddichi et al. [156] defined an
iterative ranking method similarity to different ranking algorithms such as PageRank,
CiteRank [180] and HITS in order to evaluate the influence of single articles by using
co-authorship networks. In these networks networks nodes represent publications and
weighted edges represent the number of common authors among them. Several modifica-
tions and variants of network models have been introduced in the context of Scientometrics
(see, e.g. [65, 121, 171, 188|).

More recently, the Eigenfactor Score and the Article Influence Score [16] have been
developed to estimate the relative influence of single articles based on citation networks as
well. Besides this, we should mention that the underlying algorithms can also be applied

to journals, authors, and institutions.

2.1.1 A Local PageRank Approximation

Although in many applications PageRank scores need to be computed for all nodes of the
graph, there are situations where one is interested in computing PageRank scores only for
a small subset of the nodes. Chen et al. [37] developed an algorithm to approximate the
PageRank scores of target nodes of a graph with high precision. Their algorithm crawls a
small subgraph around the target node(s) and applies various heuristics to calculate the
PageRank scores of the nodes at the boundary of this subgraph. Then it computes the
PageRank of the target node(s) by just using the crawled subgraph and the estimates for
the boundary nodes. With simulations, they showed, on the one hand, that this algorithm
gives a good approximation on average. On the other hand, they also pointed out that

high in-degree nodes could make the algorithm very expensive and imprecise.
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From now on, we will use the same notions as in [7]. An algorithm is said to be an
e-approximation of the PageRank, if for a graph G = (V, ), a target node i € V' and

a given error parameter € > 0, the algorithm outputs a value PR'(i) satisfying
(1—¢e)PRg(i) < PR'(i) < (1+¢)PRg(i), (2.1)

where PR;(7) is the PageRank value of node ¢ in the original graph. For a directed
path p = (ki,...,k;) from node k; to k;, we define w(p) = Hf;i 1/d; , that is the
reaching probability of k; from kq in a given path, where the transition probability values
are proportional to the number of outgoing edges. Let p;(7,j) be the set of all directed
path of length ¢ from i to j. Then the influence of node ¢ on the PageRank of node j at
radius ¢ is defined as

Ii(i, j) = Z w(p), (2.2)

PEP:(4,)

and hence, the total influence of 7 on j is

)= L(i,j). (2.3)

Using the definition of influence, the PageRank of node j at radius r can be defined as

PRL(j Z Z (1= N (i, 7). (2.4)

t=0 eV (G

It can be proved that for every node j € G, PRg(j) = lim, o PR{,(j) holds (whose
proof can be found in [7], say). An interesting question is that how small the radius r
can be such that the PageRank approximation would even be appropriate.

In |7], it was proved that the hardness and inappropriate nature of local approximation
of PageRank on certain graphs (constructed examples) is caused by two factors; namely,
the existence of high in-degree nodes and the slow convergence of the PageRank iteration
algorithm. We shall see that in our case (and in most of the co-citation graphs, along
with most real-world networks) these properties do not hold. It was also shown that the
several variants of the approximation algorithms proposed by Chen et al. are still efficient
on graphs that have bounded in-degrees and admit fast PageRank convergence.

We are given a graph G = (V| F), anode j € V and the approximation parameter
. The point-wise influence mizing time of j is defined as

PRg(j) — PR;(j)
PRa(5)

T&(j) = min{r > 0: < e} (2.5)
The algorithm we use computes PRy, (j) for a given node j and it follows from the
definitions that it runs with r = T&(j) and gives an e-approximation of PR. To complete
the description of the theoretical background, we should examine the upper bound on

TE(j) (i-e. on radius 7).
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For graph G = (V, E') with j € V and r > 0 the crawl size at radius 7 is defined as
Ch(y)=4#{i € G : 3p(i,5) with t <r}, (2.6)

which is the number of nodes within a distance 7 from j. It follows from the definition
that if the local PageRank algorithm runs for r iterations, its cost is Cf(u). A trivial
upper bound for the crawl size is that C,(u) < d", where d is the maximum in-degree
of G. Tt suggests that if both r and the maximum in-degree are low, the brute force
algorithm, which uses Eq. 2.4 by recursively calculating the influences, is efficient. It can
be also proved that for any directed graph G, for the number of iterations that the local
PageRank algorithm needs to run, 7 = O(log(1/PR¢g(j))) is always sufficient (while in

practice, such as in our case, a much lower radius could be enough).

2.1.2 Reaching Probabilities

A possible simplification of the PageRank method is just consider the reaching probability
values of the nodes in the network. We would like to know the probability of reaching
a node j starting from an arbitrarily chosen node 7 # j of the network. The reaching

probability, RP of a node j can be defined as the recursion

RP(j)= ) pyRP(), (2.7)

iENT(J)

where p;; is the reaching probability of node j from a neighbor node 7. Now it is natural
to assume that reaching any neighboring node from ¢ has the same probability, so we
can use p;; = 1/d™ (i) in Eq. 2.7. With this choice, Eq. 2.7 is the PageRank equation
without the damping factor. However, in contrast to the calculation of PageRank, we do
not wish to evaluate the vector RP in the steady state. Instead, we will only determine

the reaching probability of a given node 7, which can be calculated as

RPG) =+ 3716, j) 2.9

eV

where (i, j) is as defined in Eq. 2.3. For published articles, RP can be interpreted as
the probability that a given article found by someone (e.g. a scientist) starts to read an

article and “jumps” to another randomly chosen article cited by the current one.

2.1.3 A Case-study

A co-citation network is defined as a directed graph G = (V, E) of n nodes, where each
node i € V refers to an article and there is a directed edge (¢, 7) € E from node i to node
g if article j is cited in article 2. Our method, which seeks to measure the “influence” of

a scientific article, is based on the following three steps:

1. Subgraph building: Start from a set of target nodes (articles) we are interested in

their scientific impact, expand backward in the reverse direction the nodes having
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out-going links to the target nodes. The procedure halts after a fixed number of
levels. This may be performed via an iteratively deepening depth-first search. In
this task, the graphs contain all nodes, from which the target nodes can be reached

in at most three steps and we consider the induced subgraph of these nodes.

2. Estimating PR of the boundary: We use a heuristic to estimate the individual
PR scores in the boundary. An extra term to the PR value of each boundary
node is added that represents the fraction of its in-coming edges to all edges in the

subgraph.

3. Calculating PR and RP: We run the PageRank algorithm on the subgraph. In
each step for the boundary nodes, the estimated PR value is used and the PageRank
damping factor value is added to each node. In addition, we also calculate the
reaching probability (RP) of the target node(s) in the subgraph (using the same

values for the boundary nodes as in the case of PageRank).

Although the PageRank values cannot be calculated exactly without having to run the
algorithm on the full graph, the estimation heuristic we defined gives an acceptable ap-
proximation of them in the constructed subgraph. We also note that the convergence of
the PageRank is guaranteed by this method, unlike that defined by Csendes and Antal
for the same purpose [43]. Here, we set the radius size r = 3 from the target nodes for
two reasons. The first is that the number of nodes in the fourth layer is O(n) (here, n
is the number of nodes of the crawled graph (G) and the in-degrees are bounded by a
constant, hence, it is sufficient to consider the number of in-coming links to the boundary
nodes from the fourth layer, and ignore the linking structure between them to get a good
approximation of the P R-scores. The second reason is we assume that for the articles at
a distance more than four, the target articles do not have much impact in any scientific

sense (which may be a reasonable assumption in Scientometrics).

Algorithm 3: The local PageRank approximation algorithm
Input : Seed article
Output: The PR-score of the article from its local co-citation network

1: Build the article’s local co-citation network G with radius r
2 PRLG) = 2

3: layery = j

4: IO(]v]) =1

5: for node 7 in layer, do

6:  PR(i) = |N"(0)|/|E(G)

7: end for

8: for t=1, ..., r do

9: for i in layer, do

10: L(i,§) = 3= g Le-1(k, )

11:  end for '

12: PRL(j) = PRG ' (5) + 2 ictager, (1 — N 1e(i, §)
13: end for

14: return PR{(j)
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Figure 2.1. Local co-citation network containing the famous paper of Egervary marked by red square. The
blue diamond, the and the light blue circle represent Kuhn’s paper, Ford and Fulkerson’s
paper and Bellman’s paper, respectively. The size of the nodes refers to the number of citations.

Egervary’s Paper and its Citation Network

As is known, Harold Kuhn developed an algorithm for solving the assignment problem
[106] and he called it the Hungarian method, acknowledging the contribution of Jend
Egervary and Dénes Kénig [53, 104]. The paper by Egervary received just a few citations
(probably because it was written in Hungarian), while some of its citing papers received
many more: for Egervary’s paper 38 citations can be found in the ISI Web of Knowledge
database, while the article by Kénig and Kuhn received 215 and 726, respectively. In
contrast to classic scientometrics that only takes into account the direct number of cita-
tions, we shall see that the network-based methods provide a more realistic picture of the
importance of Egervary’s paper.

We constructed a network which contains the following articles as nodes: the famous
paper by Jens Egervary: On combinatorial properties of matrices (published in Hun-
garian, 1931), the three articles which are referred in Egervary’s paper, and citing articles
of these papers within the radius 7 = 3 in the network. We will now examine the network

that is induced by these nodes, as described in the first phase of our method; it contains
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Table 2.1. PR-score (with A = 0.2), reaching probabilities and number of citations of the well-known
publications in the Egervary co-citation graph. The PR value has been multiplied by 100.

Publication PR-Score PR-rank RP-score RP-rank #Cites Cite rank
Egervari [53] 0.891 4 0.009 2 39 65
Kuhn [106] 1.189 1 0.042 1 726 1
Ford, Fulkerson [67] 0.525 8 0.004 9 39 65
Bellman [14] 0.399 11 0.003 10 18 158

n = 1155 nodes and 1923 edges. Figure 5.7 shows the network, where the paper by
Egervary is marked by red square. We applied the modified local PageRank algorithm
(with A = 0.1,0.15,0.2,0.25) to this network and also calculated the reaching probabili-
ties of the nodes. We observed that the PageRank method is robust against the choice of
A. The results (with A = 0.2) are summarized in Table 2.1 for four notable publications

in the co-citation network.

Observations

First, we observe that the choice of the damping factor A\ does not influence the final
ranking of the first ten publications; only small changes can be seen in the rest of the
rank list. The ranks and the relative values of the papers provide a more realistic picture
of their importance than the number of their citations. It is not surprising that Kuhn’s
paper PR value is the highest by far, the 726 citations for this paper being extraordinary
in the field. The second and third articles in the PR ranking became D. Kénig: Graphs
and their applications for the theory of determinants and sets (1916, in Hungarian,
215 citations) and G. Frobenius: Uber zerlegbare Determinanten (1917, 11 citation),
respectively. Both articles were cited in Egervary’s paper, which became the fourth high-
est ranked paper although it received only 39 citations and it comes 65th in the citation
ranking. The very high position of Frobenius’s paper in the ranking is definitely due the
reputation it receives from Egervary’s article. It is worth stressing that Ford and Fulk-
erson’s article, which received the same number of citations as Egervary’s article, was
ranked lower but it is still in the top ten. These two facts also tells us about advantages
of the network-based evaluation, since this paper was also quite important in the devel-
opment of Operations Research. We should also mention, that the important paper of
Bellman was ranked 11th (although it got just 18 citations), which offers a much clearer
picture of its impact (unlike its citation rank). It is also interesting to see that Egervary’s
article comes second in RP-ranking, which means that someone who comes across the
article at random and checks the articles in the field will find the Egervary’s paper with
the second highest probability.

2.2 Modeling Transportation Networks

A great deal of effort has been concentrated on investigating transportation systems for
many decades because of its practical importance. In the past decade, partly due to

the development of small-world networks and modern network theory, several studies
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have treated public transportation systems as complex networks, and several statistical
properties have been discovered, like the small-world property and scale-free distribution
of various graph parameters [50, 115, 163, 179]. In most of these studies, the public
transportation network (PTN) model represents nodes as stations and stops of a public

transportation system, and edges that connect consecutive stations along a route.

2.2.1 Data Collection and Modeling

We selected 5 Hungarian cities (Debrecen, Gy6r, Miskolc, Pécs, Szeged) to study their
urban public transportation systems. The choice of the cities was based on the following
criteria: (i) we are especially interested in cities with a population between 100,000 and
250,000; (ii) the characteristics (like land use and economic role) and the organization of
the public transportation of these cities are similar; but (iii) the geographical conditions
(landscape, hydrography, size of the area) are different. The areas lie between 162 and
462 km? (so these are medium-sized), but their urban morphology is different. In Miskolc
and Pécs the land undulates, while in Gy&ér and Szeged a river which crosses the city
is the main factor that determines the shape of the city. In Debrecen, there are no
restricting factors on the morphology. We should also mention that railway tracks may
have a similar role to that of the rivers on the morphology. This phenomenon appeared in
all the cities investigated. The above-mentioned characteristics have had a high impact
on the development of the cities and also on the organization of the public transportation
systems. Table 2.2 summarizes the basics characteristics of the cities and their PTN
network models. Here, “links-simple” refers to the number of links in the simplified graphs
(no multiple edges), while “links-multiple” refers to the number of links in the model
where each line between two stations is represented by a link. In order to perform a
comprehensive network analysis of the public transportation network of these cities, the
first step was to generate the transportation networks (i.e the representing graphs). This
was done by modeling stations/stops as nodes and lines that connect them as directed
links. If a line runs between two stops in both directions, as is usually the case, we can
decompose the link that represents this line into two directed links due to the orientation.
Furthermore, we can also assign weights for each node and each edge by using the capacity

of the vehicles. This can be performed as follows:
1. Assign the lines to the stations where they stop by using the transport schedules.
2. Classify the stations that belong together.

3. Determine the morning peak hour capacity of each vehicle using the types of the

vehicles (the data provided by the public transport companies of the cities).

Table 2.2. The codes of the vehicle types are as follows: B: bus, E: electric trolleybus, T: tram

City Area (km®) Pop. (x 1000) Density (inhab./km®) | Nodes Links-simple Links-multiple Lines Diameter Avg. path length | Vehicle types
Debrecen 461 204 442.5 306 711 1772 53 41 11.7 BET

Gyor 174 129 741.4 230 529 1391 43 30 10.8 B

Miskole 236 161 682.2 257 535 977 35 45 14.5 BT

Pécs 163 147 901.8 256 569 1960 55 36 13 B

Szeged 281 162 576.5 242 558 1192 40 35 11.8 BET
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Figure 2.2. a: Shortest path length distribution; solid lines show a fit to the function. b: Eccentricity
distribution.

Merging the stations into a single one was necessary for the following reasons. It frequently
occurs that stops belonging to the same node have different names. In a special case, it
can happen that there are four different names of the same stop in a 4-way crossroads.
On the one hand these stops can be viewed as just one stop, while on the other hand
this classification allows us to unambiguously cover the road network of the city with the
PTN. In a big public transportation interchange or terminal where a high number of lines
intersect, usually the lines have different stops. These stops were also merged. In the case
where a line makes two stops in two stations that were merged, we will treat it as just
one stop of the line for this node. In the case where the route of the line is a one-way
instead of a two-way between two consecutive stations, the stops were not merged.

A calculation of the maximal capacities of the different lines was performed based on
the evaluation of the vehicle capacities® in the morning peak hours (6-8 am). For each
single line, we collected the follow-up interval of it and multiplied it by the capacities
of the vehicles belonging to this line between 6-6:59 am and 7-7:59 am. By averaging
the two values, we obtained the average morning peak hour capacity (AMPHC) of the
line. For each node and link, we assigned the sum of AMPHCs of the lines that stop
at that node or pass through that link between two consecutive stations at least once.
By considering the morning peak hours, it can be seen that number of passengers that
go from the outer districts to the inner city area is significantly higher than the number
passengers that go in the opposite direction. Based on this observation, we are able
to identify traffic source and traffic sink districts. We should also mention that all of
this data is available on http://www.epito.bme.hu/uvt/dolgozok/feltoltesek/
haznagy/ptncomplexanalysis.zip.

'The following types of vehicles are considered: mini bus: 30 persons; normal bus/trolleybus: 60
persons; articulated bus/trolleybus: 100 persons. In the case of trams, the situation is more complicated.
The types of trams are different for every city; moreover the passenger capacities are calculated in
different ways by the different manufacturers. To calculate the tram capacities, we used the formula
3 x (fw—sr?)/10°, where £ is the length of the vehicle, w is the width of the vehicle (both in millimeters),
s is the number of seats and r? is the are taken up by a single seat with = 500 millimeter. Here, we got
the following results: Debrecen: Ganz KCSV6: 142 (persons), CAF Urbos 3: 227; Miskolc: Skoda 267T:
214, Tatra KT8D: 187; Szeged: Tatra T6A2: 81, Tatra KT4: 101, Pesa 120Nb: 187.
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Figure 2.3. Local network properties of five Hungarian PTNs

2.2.2 A Comprehensive Network Analysis

Global Network Characteristics

We performed an analysis of the networks both in the weighted and unweighted case?®.

In practice, the diameter presents the longest route (i.e. number of stations along the
longest route) in the network if a passenger uses the optimal routes, which means that
she uses the shortest route between any two stations. In Table 2.2 we list the diameters
for the PTNs. It is interesting to note that the diameter does not correlate with the area
of the city.

The average path length corresponds to how many stations there are between two
stations on the shortest route on average, if we choose these stations randomly. We can
see in Table 2.2 that the the PTNs reveal a small-world feature from the average path
lengths point of view, since 0~ log N, i.e. the average distance between the nodes is

proportional to the logarithm of the number of nodes. The number of shortest paths

2An extension of the definition of the centrality measures to weighted networks can be performed
using the w;; edge weights in the following way, say. The weighted degree of a node i is simply defined
as w; = _; wi;. In the case of PageRank, w;;/w; is used d; . The weighted closeness and betweenness
can be defined by using c;; = 1/wi; and dist(i, j) = 3, ,)ep Cuv, where P is a path between ¢ and j and
the weighted shortest path £;} is defined as the minimum of dist(3, j).
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from a node 7 is defined as ¢; = E#j l;;. Fig. 2.2(a) tells us that the distribution of the
shortest paths is close to a normal distribution with mean that varies between 10.8 and
14.5 (Table 2.2) and variance between 5.2 and 7.7.

The eccentricity tells us how far a stop/station is from the most distant stop in
the PTN. In Fig. 2.2(b) we plotted the eccentricity distribution of the five PTNs. The
shape of the function is quite different in the case of Debrecen, due to its extensive
area and Miskolc, where many peripheral areas increase the distances between certain
stops/stations.

Fig. 2.3(a) shows the degree distributions in the unweighted case, where multiple links
are allowed, which has an exponential decay P(d) ~ exp(—d/d), where d is of the order
of the average node degree. In contrast, the weighted degree distribution (Fig. 2.3(e))
of the (weighted) networks has a power-law decay P(d) ~ d~7, where 7y varies between
1.05 to 1.2.

In order to find communities, we use the Leuven modularity optimization method
described in Sec. 1.2.2. The communities of the PTNs are shown in figures 2.4(b),
2.4(d), 2.4(f), 2.5(b) and 2.5(d). The results indicate the following common features
of the networks. On the one hand, for each city, the center of it contains one or two
communities and most of the peripheral lines have different community classes. On the
other, we observed that if the city lies in a valley (Miskolc) or is bounded by mountains
on one side (Pécs) and hence the arrangement of the city is asymmetric, then it has some
special characteristics. The central core of the networks have been extended (figs. 2.4(e)
and 2.5(a)) and this part of the transportation network can be partitioned into three or

four communities.

Local Network Characteristics

The degree d; of node ¢ (in the case of directed networks, the in- and out-degrees are
used) tells us how big the neighborhood of 7 is. The weighted in-degree centralities of the
five PTNs can be seen in Fig. 2.3(e). The distributions have a power-law decay, as we
noticed earlier.

Let N; be the set of neighbors of u and G[V;] be the subnetwork induced by the
nodes in N;. The degree of a node j in the subnetwork G[N;] is denoted by dG[Ni](j).

The local average connectivity [118] of node 7 is defined as

LAC(i) = dl S devi) (2.9)

b jEN;
and it describes how close its neighbors are. In a public transportation system it basically
means that if a stop/station cannot be used for some reason, the neighboring stops be-
come disconnected from each other. Nodes with high LAC values are the locally central
nodes. Fig. 2.3(d) shows the distribution of LAC' for the 5 PTNs. We observed that
the distributions fit a power-law decay with degree exponent between 1.2 to 1.4. The
closeness centrality values for the unweighted case and weighted case can be seen in fig-

ures 2.3(b) and 2.3(f), respectively. The distributions display similar shapes for each city,
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Figure 2.4. Simple maps of the lines of the transportation system of the cities. The partition of the
PTNs into communities using the modularity optimization method. Nodes having the same color belong
to the same cluster; the bigger a node, the higher its in-degree is; and the thicker an edge, the greater its
capacity is.

but interesting observations can be made by comparing the the unweighted and weighted
closeness values for one city. The centrality values in the unweighted networks tell us

how central and important the nodes are according to the structure of the network. By
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Figure 2.5. Simple maps of the lines of the transportation system of Pécs and Szeged.

considering the schedules and capacities of lines in the PTN we need to assign weights
to the links, the nodes get closer to or farther from each other from a transportation
point of view. The unweighted and weighted C' values for each city can be seen (plotted
on the same scale) in figures 2.6(a)-2.6(e). In the case where the centrality value in the
unweighted network of a node is bigger than the value in the weighted case tells us that
although the node has central position in the network, the stop that represented by this
node may not be well exploited in the transportation sense. However, if the relation be-
tween the unweighted and weighted case is the opposite, the stop is overloaded according
to the network traffic.

The betweenness centralities for the unweighted and weighted case can be seen in
figures 2.3(b) and 2.3(f) and display similar shapes as in the case of closeness. The
unweighted and weighted BC' values for each city can be seen (plotted on the same scale)
in figures 2.6(f)-2.6(j). Similar to closeness, if the BC' value of a node in the weighted
network is greater than its value in the unweighted case, the given stop may be overloaded
in the PTN. The opposite relation refers to a stop with spare capacity.

In [119], PageRank was used to identify the key nodes in a transportation system

and also for traffic simulations [143] to find important nodes that have a high impact on
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Figure 2.6. The unweighted and weighted betweenness and closeness centrality measures for each city.
The values are in decreasing order of the centrality values for the unweighted networks.

transportation efficiency. It is interesting to observe that the PageRank distributions are
similar for all the five weighted PTNs (Fig. 2.3(h)), which is probably due to the fact that

organizational rules of the schedules are similar.

2.3 Educational Data Mining Aspects

Educational Data Mining [160] is concerned with the development, research and appli-

cation of computerized methods to find patterns and features in large collections of edu-

cational data. Such features are hard to analyze due to the huge amount of information

available and the high-level complexity of such databases. Data of interest is not restricted
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Figure 2.7. Toy examples for the network models. (a): a directed weighted graph of the students. (b): a
similarity-based weighted graph of the students with communities (c): a bipartite graph of students and
teachers

to interactions of individuals in an educational system (e.g., navigation behavior, input
to quizzes and interactive exercises), but they might also include data from collaborating
students (e.g. text chat), administrative data (like school, school district, teacher), and
demographic data (like gender, age, school grades). Some discussions on educational data
mining can be found in [88, 159, 160, 166]. Databases of educational institutes, where
the data is produced by complex administration systems, contain the administration of
the daily work of teachers and students, like descriptions of the lessons including the
equipment and educational methods that were used, the areas of competence that have
been developed, the students who participated and their marks and level, among other
things. Since a large amount of detailed data has become available via administration
activities and there is an opportunity to obtain more information about the participants
of the educational system than e.g. using classical questionnaire methods. Such relevant
issues, which have long been of interest, like measuring the progress and achievements
of the students, the efficiency of the teacher’s work, level of difficulty, data visualization
and the detection of incidental problems of the students (like drug or alcohol abuse, crisis
in the family) may be investigated and addressed using different kinds of data mining
techniques.

Here, we discuss the possible application of the ubiquitous complex network approach
for information extraction from educational data. We define several suitable network
representations of data available in such administration systems and present some possible

ways of how graph mining techniques can be used to get detailed information about them.
2.3.1 Graph-based Concepts on the Educational Sphere

Directed Graphs based on the Marks of the Students

The first network model of the students is a generalization of the one defined in [124]. In
this model, each node represents a student and a link between two students is defined in

the following way. We will assume that two students can be compared directly if they
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Figure 2.8. Community structure of a network of students (middle). The two subgraphs (left and right)
induced by the two communities were re-clustered.

received an end-of-year mark in at least one common subject. If the end-of-year marks
of the students 7 and j are (m!,...,m!) and (m3,...,mJ), respectively, then we can

calculate the weight
t
w;; = ch(mi —my), (2.10)
k=1

and add a directed link with weight |w;;| between nodes ¢ and j. The link goes from
J to ¢, if w;; > 0, and it goes in the opposite direction if w;; < 0. The constant
term ¢; refers to the level of difficulty of a subject, which can also be measured by a
network-based approach (see below) or by applying some statistical methods. As a short
concrete example, suppose Anne and Bob received the end-year marks (4,5,5,5,5) and
(5,3,3,3,4) for Mathematics, Literature, History, English and Art, respectively. Then
wyap = 6 with ¢, = 1, Vk, means that Anne is 6 points better than Bob, if all the subjects
have the same difficulty. Fig 2.7(a) shows a toy example for the model. One possible way
of determining the subject difficulty values is to use the average of the end-of-year marks
of each subject and assume that the higher the average, the less difficult the subject is.
By using the cumulative distribution of the marks, one can define an alternative way for
calculating the ¢ values by comparing these distributions. It is also possible to find out
how difficult it is to a get a certain mark from a teacher and incorporate this parameter

into the formula that used to compute the edge weights.

Undirected Graphs based on Similarities of the Marks of the Students

The second network model is a family of undirected and weighted networks. As before,
the nodes represent students, while a weighted edge between two students is defined by
a similarity measure S of the lists containing the end-of-year marks of their common
subjects (that were not necessarily taught by the same teachers). For example, the
Jaccard similarity measure [92] is defined as the fraction of the marks that are the same
as all the marks in common for two students (a toy example can be seen in Fig. 2.7(b)).

One may use several similarity functions to define the weight of similarity of two students.



2.3. Educational Data Mining Aspects 29

Figure 2.8 shows the community structure of the network of 255 students in their tenth
year in a Hungarian secondary school. The weights were defined by the Jaccard similarity
measure. We observed in our preliminary studies that the network contained two main
communities. The community of students who performed well in the school (Fig. 2.8,
middle, grey community) and community of students with a weaker academic performance
in school (Fig 2.8, middle, black community), respectively. We also found that the network
had a more refined structure by re-clustering the two main communities, and we identified
clusters of students who were better in the natural sciences and students who were better
in the arts, respectively. We should also mention that while these studies were not too

detailed, such investigations might be the subject of a future study.

Bipartite Graphs of Students and Teachers

In order to evaluate how difficult it is to get a good mark from a certain teacher, we
propose a family of bipartite graphs (see Sec. 5.1 for more details on bipartite graphs)
as network models based on the earlier results of [49] and [122]. We consider a bipartite
graph, G = (A, B, FE). In the model, the elements of A are students from the same
school, while the set B stands for their teachers. We can define a directed edge from a
node b € B to a node a € A with weight mz, if the teacher who is represented by node
b gave an end-of-year mark mg to student who is represented by node a. However, we
also define a directed edge from a to b, based on the assumption that it is more difficult
to get a good mark from this teacher if the mark he or she gave is lower than the average
of the student’s marks (a toy example can be seen in Fig. 2.7(c)). Next, we can easily
construct a weighted directed graph of the teachers using the same technique as that
described in [122]. With this projection, a network of the teachers can be constructed
where a directed and weighted link from a teacher b; to another teacher b; shows how
much more “consistent” a teacher is than the other. The consistency is measured via
the average difference of the marks that the teacher gave to each of his or her students
and the average of the students’ marks. Once this network is given, we can apply the
PageRank method, say, on it in order to assign scores to the teachers. These scores may
provide a realistic evaluation of the consistency of their marking habits; moreover, these
scores can be used to compare students by normalizing their marks using this evaluation

of the teachers.

Bipartite Graphs of Students and Subjects

Similar to the evaluation of the teachers, we can also evaluate how difficult it is to a
get a good mark in a certain subject. For this purpose, we consider a bipartite graph of
students and subjects, i.e. we simply replace the set of teachers (defined above) by the
set of subjects. A directed and weighted link from a subject (say Maths) to anode a € A
(which represents the student a) is defined with the weight mg if the student a got the
end-of-year mark mg. Then, from the student a weighted link to the subject Maths is
defined, where the weight represents, for instance, the difference between mark mg and

the average of the student’s marks. A network of the subjects can be defined and by using
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some evaluation technique (like PageRank), a ranking of the subjects according to their
level of difficulty can be obtained. These scores can be used as weights for the calculation

of the students’ performance and also for the evaluation of the teachers.

2.3.2 Student Evaluation based on Networks

With the intention of evaluating the achievements of students and generating a ranking be-
tween them, we defined a modified PageRank algorithm as a data mining technique. The
Simple Network Workflow for Schools system (SNW) which we investigated is a complex
administration software package of more than sixty institutes of public education (includ-
ing elementary schools, technical colleges, secondary schools and educational institutes of

arts) with electronic diaries, quality management, measurement, and evaluation systems.

Data set, Mathematical model and Experimental results

As a first step, we collected data from the database of the SNW-system. We used a dataset
of 283 students in the same (secondary) school in the same year and examined all their
end-year school reports. We defined a weighted and directed network of these students,
as described in the first model in Sec. 2.3.1. We used ¢ = 1 in Eq. 2.10 and normalized

the weights as p;; = wij/ > w;; in order to get a row stochastic adjacency matrix

i
with the transition probabilit;f Vajlues and applied the PageRank method to this network.

First, we checked the sensitivity of our method for different values of the damping fac-
tor. We observed that the method is robust against the choice of A, which was confirmed
by the high correlation of the resulting PageRank vectors that contain the PR scores of
the students (the Pearson correlation was over 0.9 for each pair of result vectors). In
further studies, we chose A\ = 0.2, which is usual in PageRank computations.

We used Kendall’s T correlation method [101] to quantify the rank correlation be-
tween the rankings obtained by the PageRank and the average method, which is simply
gives a ranking of students by comparing the average of their end year marks. Although
the correlation coefficient was 0.68, which displays a positive correlation, many differ-
ences can be seen between the two methods (see e.g. Fig. 2.9(a)). We normalized the
PR values, such that the values obtained from using the two methods are on the same
scale. We observed in general that if the end-year average of a student is high, but the
PR value of hers is relatively small, then the student has only a few subjects, where it is
“easy” to get a five mark. This assertion was justified by checking all the marks of those
subjects. However, if a student ¢ has a low average, but her PR value is high compared
to the others, it is normally true that most of the students taught by the same teachers
also have low marks such as ¢, but a high PR value of 7 means that she exceeded the
performance of their schoolmates.

We checked the relationship between the PR values (and ranks resulting from this;
the relation between the PR ranks and average ranks is shown in Fig. 2.9(b)) along with
the variance of the end-year marks. It can be seen in Fig. 2.9(a) that outstanding PR
values occur when the variance is high. Generally speaking, it was noticed that if the

variance of the marks of a student was high and their PR value was also high, then the
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Figure 2.9. (a) Relation between normalized PR scores and the average of the end-year marks; the
light grey area shows the variance domain of the marks. (b) Ranks of the students obtained by the
different methods, ordered by the PR scores. (c) Relation between the variance of the end-year marks
and difference of the normalized PR scores and average values

student is talented in at least one subject. A high variance of the marks is due to the
large variety in the marks, but a large PR value must be caused by just one (or only a
few) subject (of the same teacher), where the student was significantly better than her
classmates.

It is also interesting to examine the relationship between the difference of the nor-
malized PR scores and average values, and the variance of the end-year marks (see
Fig. 2.9(c)). It can be seen that the difference between the PR score and the average of
the marks is small in general regardless of whether the variance is high or low. It suggests
that we should be pay more attention to those students where this difference is high. In
such cases, we should also discover, what causes this big difference.

Applying this network-based method, the talents, the problematic students, the strict
or overly lenient teachers can be filtered out. Examining students in the same class,
uniformly high or uniformly low PR scores (for instance) can also provide a fair picture
of the difficulty of each subject and/or the personality of the teacher of a certain subject as
well as the achievements of a class of students from a global point of view. The PageRank
method is also very effective in finding the best students in the same year. After filtering
out the “outliers” (e.g. students who have just a very few marks because, for example, they
moved to another school), PR scores provide a fairly good relative order of the students
with respect to their achievements. Such rankings can also be useful in deciding which
students need to be rewarded at the end of the year, and it is also useful for the teachers

and parents to follow the educational progress of the students and children, respectively.

2.4 Summary

In this chapter, we considered three real-world systems and presented some possible com-
plex network models for them. In each case, after data collection, a network of the
“actors” of the system was defined and analyzed using standard and, in some case, new
graph mining techniques.

Firstly, a new local PageRank approximation algorithm was applied to a co-citation

network on the citation environment of the seminal paper by Jend Egervary. It follows
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from the implementation of the PageRank algorithm that citations received from more
important papers contribute more to the ranking of the cited paper than those coming
from less important ones. Furthermore, simplicity and fast computability are advantages
of our method. However, co-citation networks provide more detailed contextual informa-
tion (compared to the number of citations) for evaluating the impact of an article. We
hope that network-based ranking methods will gain more space in Scientometrics since
they offer a more objective picture of the impact of scientific publications. Now it seems
that one of the most challenging tasks in citation network based scientometics is to gen-
erate the local co-citation network of any article automatically, but hopefully these data
sets will be provided by the owners of such databases in the future.

Secondly, a comprehensive network analysis was performed on the public transporta-
tion network of five Hungarian cities. Although previous studies often used unweighted
networks, one novelty of our study was to consider directed and weighted edges, where
the weight of a link referred to the morning peak hour capacity of that link obtained
by using the capacities of the vehicles (bus, tram, trolleybus) and schedules of the lines
that go though that link. We should add that the modal split (that is, the percentage of
travelers using a particular type of transportation) and the real number of passengers in
the PT vehicles are the key descriptors of public transport systems from an optimization
point of view. However, we presented an alternative approach which requires a smaller
amount of data, but gives a “first glance” global picture of the PTNs. In the future, we
would like to analyze bigger cities and also cities in different countries with similar layouts
(medium-sized, similar urban structure and land use) with network theoretic tools using
more detailed data (where in addition to the schedules and capacities, the geographical
distances are also given between the consecutive stations). We would also like to address
the question of transfers between routes. The results of this study accord well with the
earlier studies in the area of classical PTN modeling. We think that the kinds of methods
applied here could assist experts in the planning of urban public transportation systems
and they could be integrated into the classical PT organization methodology.

Thirdly, we proposed four different suitable network representations of students, teach-
ers and subjects in public education and presented some possible ways of how graph min-
ing techniques could be used to provide more detailed information about them. Analyzing
these networks using real data sets might be a fruitful direction in the future. Then, we
defined a PageRank-based graph algorithm and applied it to a network of students in a
secondary school. By applying our method, the achievements and ranking of the students
are not only analyzed and determined by simple statistical techniques, but the use of
pairwise comparisons of the students to obtain a complex network representation of this
system was also considered. We observed that our method gave a better picture of the
students’ relative performance, and it can also identify outstanding and relatively weak
students. In our experiments, the PageRank method gave an especially good picture of
the students in the case where we want to investigate whether the student is outstandingly

better than her schoolmates.



Chapter 3

Network Models applied in

Economics

Having presented complex network models of several real systems in the previous chapter,
we will now focus on networks that arise in the field of economics. Providing only a brief
introduction and survey on recent findings of the topic is out of the scope of this thesis,
instead we refer to [93] and [94] as a good textbook and a very recent survey of the topic,
respectively.

Firstly, we show how graphs can be used to model trade networks of countries. We
give a brief overview of possible network representations of the international trade and
present some approaches to extract information from the system using network analysis.
We present a brief case study that investigates the timely evolution of the trade network
of the European Union, focusing especially on the evolution of communities and different
rankings of the countries and paying special attention to the former member countries of
the Council for Mutual Economic Assistance (Comecon).

Secondly, we discuss the concept of correlation-based financial networks. We show
how different “noise” filtering techniques can be applied on the correlation matrix (i.e.
correlation network) containing the pairwise correlations of stock time series. Then, we
examine the performance of the fundamental Markowitz portfolio optimization model
using stock time series data of various stock exchanges and investment period intervals.
The performance of the methods is compared using the estimated and realized returns
and risks, respectively. The results indicate, in accordance with previous studies, that
the estimated risk, in general, is closer to the realized risk using filtering methods. We
also draw some conclusions according to the the expected return estimation, namely, our
results tells us that the use of the James-Stein “shrinkage” estimator the reliability of the

portfolio can be improved.

3.1 Trade Networks

Investigating trade systems and the world-trade is an important area of modern eco-
nomics. One of the most important indicators is the world-trade ranking of the countries,

which not only indicates the wealth of the countries, but implicitly contains information

33
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about the efficiency of their economic relations with other countries. However, the ranking
is usually done according to their export/import volumes in US dollars. In this approach
the most developed and rich countries are at the top of the ranking, but not necessary due
to the fact that their trade network is efficient, broad and competitive [105]. The usual
statistical indicators give a relatively objective picture of the countries’ economy, but
they do not give much information either about the international trade as a continuously
evolving economic system or the relations each country has with other countries.

Complex networks analysis provides a detailed picture of complex trade systems and
their evolutionary dynamics. Trade networks can be studied in a simplified, but com-
plexity preserving graph model, where the countries are represented by the nodes of the
graph, while edges represent the trading relation between any two countries, often using
export and import volumes in US dollars as weights. Thus, the model of the system is
a directed and weighted graph, where the direction and weight of an edge refer to the
direction and volume of the cash flow, respectively.

It should be mentioned that from another aspect, international trade can be modeled
by a bipartite graph, where nodes represent countries and products, and a weighted edge
between a country and a product represents the ratio to the total amount of the product
imported or exported. The world trade web, if defined in this way is highly nested
[60], which informally means that small-degree nodes tend to be connected only with
high-degree nodes, resulting in a core-periphery like bipartite network. Such nestedness
remained constant between 1985 and 2009 [29], and most probably greatly contributes
to the stability of the world trade. (The stability of the international trade network
was recently confirmed by applying a different method [170].) Interestingly, distances of

countries did not play a crucial role in shaping the world trade network [152].

3.1.1 Structure and Evolution of Trade Networks

The earliest studies of trade networks dealt with undirected and static model graphs
(see, e.g. [168]), but recent results appeared based on the analysis of evolving directed
networks (see e.g. |5, 60, 63, 74, 151]). Analyzing the structure and the the temporal
dynamics of these networks has recently been used to confirm the globalization of the
world economy [5, 91]. Although in [91] the authors claim that there is strong evidence for
the globalization of the world-trade, many studies highlight the co-existence of processes
opposite to globalization, sometimes referred as “regionalization” [5, 151]. Recently, by
investigating the International Trade Network, it has been found that the global changes

of the trade network are closely related to changes at the regional level [192].

3.1.2 Studies on Trade Network of the EU

Now we will we briefly present, through an example, how the network approach can be
used to investigate trade networks; in particular, we will analyze the timely evolution
of the trade network of the European Union (for more details, see the author’s paper
[140].) We used the import/export volumes data available in the United Nations Com-
trade Database [177]. The EU 28 countries together with non-EU countries, like the
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Figure 3.1. Communities of the trade network in 2004, 2007 and 2013 (top to bottom).

USA, Russia, China and Japan were included in the study in the period 1995-2013. We

especially focused on the membership expansion years. That is

1. 1995: the EU had fifteen members, namely Austria, Belgium, Finland, Nether-
lands, Luxemburg, Germany, France, Italy, Denmark, Ireland, the United Kingdom,

Greece, Spain, Sweden and Portugal
2. 2000: no enlargement

3. 2004: ten new members joined, namely: Cyprus, the Czech Republic, Estonia,

Poland, Latvia, Hungary, Malta, Slovakia and Slovenia
4. 2007: Bulgaria and Romania joined the EU

5. 2013: Croatia joined the EU

Communities in the trade network

For each country we considered the import/export trade volumes relative to the country’s
GDP. It can be seen that each country’s export volume (relative to the GDP) increased
after joining the EU. The fastest rate of growth was produced by the Central Euro-
pean countries (the Czech Republic, Hungary, Poland and Slovakia), but this growth was
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caused by the increasing trade between each other and the also with Russia and China.
During the period examined (1995-2013), the trade network was mainly characterized by
four communities, namely West Europe, East-Central Europe, North Europe and South
Europe (or Balkan) communities, respectively (Fig. 3.1). In these communities most of
the countries were stable members, but there were countries that belonged to different
communities in different periods and some of the communities merged for a short period
before splitting up again. The most stable community consisted of the Scandinavian
and Baltic countries. The West-Europe community displayed a higher fluctuation, but
the core countries, namely Benelux countries, France, Ireland, Spain and Portugal, were
stable. In the 2004 enlargement, Germany and Italy became the core members of the
East-Central Furopean community by the increasing trade with the new countries that
had just joined to the EU.

It can also be seen that the former Comecon countries, and Cyprus and Greece did
not became stable members of any community perhaps due to their historical legacies.
While the Central-East European community contained the countries of the Habsburg-,
later Austrian-Hungarian, Monarchy, the Balkan community consisted of the countries of
the Ottoman Empire until the end of the 19th century [56]. Interestingly, in the latter
case Greece already joined the EU in 1981, it actually was in the community contained
Bulgaria, Cyprus and Romania. Temporary merging with and later separation from
the western clusters points out the integration challenges of these regions and confirms
importance of regional effects — related to the historical and geographical conditions —
which can still not be altered by the concept of a customs union and aspirations for EU
integration.

In another aspect, we may define the trade network of the same countries using the
total import/export volumes, instead of the volumes relative to GDP. In these networks a
central core appeared for each given year (see Fig. 3.2). The core-periphery classification
was calculated using the weighted version of the Borgatti-Everett algorithm. In each
examined year the network core was formed by the leading West Furopean countries
(France, Germany, Italy, Netherlands and UK) and the USA. Investigating the role of
China, Japan and Russia, we observe that in 1995 Japan was in the core but later it
dropped out. In contrast, China became a core member over time, and this is consistent
with the results in [192] which says that China took over the leading position of the Far
East region from Japan. The role of Russia is similar to that of China’s, it moved to the
network core by 2013, which was probably caused by the growing trading relations with

the former Comecon countries that joined the EU.

Ranking countries

Usually the international trade ranking of countries is performed according to their export
and/or import volumes counted in US Dollar. Using this approach the rich and well-
developed countries lie at the top of the listing, not necessary due to the fact that their
trade network is efficient, broad and competitive [61]. Since the PageRank and HITS

algorithms often work well in ranking nodes according to their network position, we used
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Figure 3.2. Total export network of the examined countries in 1995 and 2013. The thicker the link, the
higher the export volume between the countries

them to get a trade ranking of EU countries in the period examined. The results obtained
by the two algorithms are in general agreement with each other. The PageRank values
of the countries display a Pareto-like distribution (i.e. a power-law), which means that
the total export of the EU is transacted by a small proportion of the member countries
(France, Germany, Italy, Netherlands, UK). By comparing the PageRank scores with
the GDP, we can get a more detailed picture: countries with a lower export/GDP rank
than PageRank rank are more important in the export network than would simply be
expected based on their export volumes (like the Czech Republic and Hungary, Fig. 3.3,
left). Applying the HITS algorithm to the networks, the authority scores of the countries
reveal how big importing countries the export goes into, while hub scores show how big
exporting countries the import comes from. By comparing the in-degree (i.e. total import
relative to GDP) with the hub score, and the out-degree (i.e. total export relative to GDP)
with the authority score for each country we can draw the following simple conclusions.
Countries with higher rank according the hub scores than in-degree rank are the leading
economies of the EU (France, Germany, UK) and the Baltic and Central-East Europe
countries (including Hungary, see Fig. 3.3, middle). In the case of the leading economies
this is caused by the active and significant trading between each other (in the network
core) since these countries have a high hub and authority score at the same time. The
smaller countries with higher hub scores than export relative to GDP, trade with the
big importing countries and this may result in significant advantages during periods of
economic growth. Smaller out-degree rank than hub score rank implies that the exported
products utilized in countries with smaller authority scores (Fig. 3.3 right). For bigger
economies the large diversity of the trading partners is naturally better; however for
smaller economies the combination of small export volumes (relative to GDP) with low-

prestige trading partners may be risky especially in periods of economic crisis.
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Figure 3.3. Comparing different rankings of the countries in 2013.

3.2 Networks based on Stock Correlations

After gaining certain insights from our analysis of trade networks, now we will introduce
the key concepts of using networks in finance. In a financial market the performance
of a company is judged by the company’s stock price, while the value of a company is
determined by the stock price multiplied by the number of shares outstanding (that is,
the company’s stock currently held by all its shareholders). Though the exact nature of
the interactions among companies is not known in general, it is natural to think that
these interactions are reflected in the equal-time correlations of their stock prices. These
correlations play a central role in investment theory and risk management, including the
classic Markowitz portfolio theory.

The interactions of companies, measured by stock price correlations, can be viewed
as an evolving complex system of stocks (as units of the system), and hence applying
network theory, which provides an approach to investigate complex systems, may be
useful here. Mantenga was the first who defined networks based on correlations [132] and
many articles have appeared on the topic since then (see, e.g. [174] for a good survey and
for more references).

Now let us consider the price time series of n given assets and let us denote the closure
price of asset i at time ¢ (here it is a day) (t = 1,...,T) by P;(t). The daily logarithmic

return® of 7 is defined as

Bi(t)

-1 = log F(t) — log P;(t — 1). (3.1)

ri(t) = log

The correlation coefficient between stock ¢ and j is defined as
Oij
\/0i03j ’

where 0;; is the covariance between stock ¢ and j and o; is the standard deviation of

Cij = (3.2)

!This is common mainly because of the following reasons. (i) if we assume that prices are log-normally
distributed (which, may or may not be true for a given price series), then r;(¢) is normally distributed;
(ii) when returns are very small (common for trades with short holding durations), the log-returns are
close in value to raw returns.



3.2. Networks based on Stock Correlations 39

stock 7, calculated as

0y =T —T; 75 and 0; = 0y =12 —T1. (3.3)

9 o T ) o T
o= T Zri(t)’ r? = T Zri (t) and T = T Zri(t)’l"j(t)~ (3.4)

We should note that, however, Cj;, 0;; and o; are, in theory, calculated using the (joint)
probability distributions of {r;(t) }+—o,... 7 and {7;(¢) }+=o,... 7, which were defined as sam-
ple quantities (i.e. they are estimated using the realized values of the given time series).
Lastly, the correlation matrix is denoted by C = (Cj;); j=1,..» and the covariance matrix

is denoted by X = (Oij)i,j:L...,n-

3.2.1 Correlation Networks and Statistical Uncertainty

Recently, the analysis of the correlation coefficient matrix of stock time series has become
the focus of interest [39, 55, 108, 109, 161, 172]. Many attempts have been made in
order to quantify the degree of statistical uncertainty present in the correlation matrix
and filter information that is robust against this uncertainty [39, 84, 108, 109, 131].
The filtered correlation matrices have been successfully used in portfolio optimization
in terms of risk reduction {109, 161, 172|. Below we describe two approaches used for
the correlation matrix filtering, namely the random matriz theory approach and the
hierarchical clustering approach.

Random Matrix Theory

A simple random matrix is a matrix whose elements are random numbers from a given
distribution [137]. In the context of stock portfolios, random matrix theory (RMT) can be
useful to investigate the effect of statistical uncertainty in the estimation of the correlation
matrix [172]. Given the time series of length 7' of the returns of n assets and assuming
that the returns are independent Gaussian random variables with zero mean and unit
variance, in the limit n — 0o, 7" — o0 such that Q = T'/n is fixed, the distribution

Prm(A) of the eigenvalues of the random correlation matrix (C,,,) is given by

’Prm()\> — Q \/<)‘max - )‘> (/\ _ )‘min)

- 2702 A ’

(3.5)

where Apin and Ay .y are the minimum and maximum eigenvalues, respectively [167], and

Amaxmin = 02 (1 + é + 2\/5). (3.6)

Previous studies have pointed out that the largest eigenvalue of correlation matrices from

they have the form

returns of financial assets is completely inconsistent with Eq. 3.5 and it refers to the

common behavior of the stocks in the portfolio [108, 153|. Since Eq. 3.5 is strictly valid
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Figure 3.4. Indexed hierarchical tree - obtained by the single linkage procedure - and the associated MST
of the correlation matrix of 40 assets of the Budapest Stock Exchange.

only for n — 00, T" — 00, one can construct random matrices for the given n and T
values of the data sets used and compare the largest eigenvalues and the spectrum C and
C, (i.e. compare the spectrum of the matrix constructed from real data and a random
matrix of the same size). Since Trace(C) = n, the variance of the part not explained
by the largest eigenvalue can be quantified as 02 = 1 — )xlargest/n. Using this, we can
recalculate Apin and Apax in Eq. 3.6 and construct a filtered diagonal matrix, using the
singular value decomposition, got by setting to zero all eigenvalues of C smaller than

Amax and transforming it to the basis of C by setting the diagonal elements to one.

Hierarchical clustering

The correlation matrix C has n(n—1)/2 ~ n? elements, hence it contains a huge amount
of information even for a small number of assets considered in the portfolio selection
problem. As shown by Mantegna and others [132], that the single linkage hierarchical
clustering algorithm (closely related to minimal spanning trees (MST) of graphs) provides
economically meaningful information using just n — 1 elements of the correlation matrix.
To construct the MST, the correlation matrix C is converted into a distance matrix D,
e.g. following [132, 133|, using the d;; = \/Z(Tpm) ultrametric distance. Ultrametric
distances are the class of distances that satisfy the inequality d;; < max{d;, dj;}, which
is a stronger assumption that the standard triangular inequality. The distance matrix D
may be viewed as representing a fully connected graph of the assets with edge weights d;;
representing a similarity between their time series. For this graph (matrix) we can use,
for example, the Kruskal algorithm in order to obtain the MST of n — 1 elements and
then construct the filtered correlation matrix C,,, using the n — 1 correlation coefficients
derived from the n — 1 distances in the MST.

Another widespread hierarchical clustering procedure is the average linkage algo-
rithm. While the single linkage clustering procedure basically follows the greedy Kruskal
MST method, the average linkage algorithm, for each iteration step, defines the distance

between an element and a cluster as the average distance between the element and each
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element in the cluster. For a detailed description, see e.g. [174].

3.2.2 Application to Portfolio Optimization

Portfolio optimization is one of the fundamental problems in asset management that seeks
to reduce the risk of an investment by diversifying it into assets expected to fluctuate
independently [57|. In his seminal work [134|, Markowitz formulated the problem as a
quadratic programming task. Namely, given the expected return of the portfolio, the risk,
a quadratic function that is measured via the covariances of the asset time series, has to
be minimized. Formally, given n risky assets, a portfolio composition is determined by
the weights p; (i = 1,...,n), such that Z? p; = 1, indicating the fraction of wealth

invested in asset i. The expected return and the variance of the portfolio p are

Tp = me' =pr’ (3.7)
i=1

and
n o n
o) = Z Zpipjaij =p¥p’, (3.8)
i=1 j=1
respectively, where 7; is the expected return of asset ¢ and X is the covariance matrix
contains the pairwise covariances of the asset time series in a given time interval. Vectors
here are now treated as row vectors.

In the classic Markowitz model [134] risk is measured by the variance providing a
quadratic optimization problem that consists in finding vector a p which minimizes o,
for a given “minimal expected return” value of r,. Here, we will assume that short selling
is allowed and therefore p; can be negative. The solution of this problem, found by

Markowitz, is

p* =217 44T (3.9)

with 1 = (1,...,1); and the other parameters are
A= (C—-r,B)/D and v = (r,A— B)/D,

where

A=13""1" B=12"4" C=r2 T, D = AC — B

A possible RMT approach for portfolio optimization is to use 2., (which can be readily
calculated from C,,,) instead of 3 in the Markowitz model. Similarly, we can use X
and X, instead of the empirical covariance matrix 3, got by applying the single- and

average linkage procedures, respectively.
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3.2.3 Results
Estimators of the expected returns

In the case of stationary independent normal returns, the mazimum likelihood estimator
is the sample mean of the past observations of 7;(t) and it was defined as 7; in Eq. 3.3.

Thus, for the portfolio we can define
Ty = (T1, ..., Tn), (3.10)

The maximum likelihood return estimation can be highly inefficient since assets with
high past returns are likely to contain more positive estimation errors than others. The
positive part trimming could further reduce the risk, and the James-Stein estimator
[95] provides a constructive shrinkage estimator to do this. The James-Stein estimation

for the expected return for asset ¢ is

Trs = (1 —w)Typ +whol, (3.11)
where
1'%, 2)(T — 1
o = rML,w: and \ = — (_n—l— I — ) —
13-117 A+T (Tymr —Tol)X (T — Tol)?

In this calculation, each sample mean is shrunk toward the average return of the minimum
variance portfolio 7.

For a small sample size, usually below 50, it was observed that there is no evidence
that common asset expected returns are different. If all expected returns are assumed to

be equal, the minimum-variance portfolio is efficient and
Tyy = Tol. (3.12)

Data

To compare the performance of the methods, we decided to analyze the data set of n = 40
stocks traded in the Budapest Stock Exchange (BSE) in the period 1995-2016, using 5145
records of daily returns per stock. The second data set contained the stock time series of
n = 48 companies of the Information Technology sector (Hardware + Software), which
are available on Yahoo Finance (YF) (https://finance.yahoo.com/), in the same period
as the BSE data with 5395 records of daily returns of each stock.

We considered t = ty as the time when the optimization is performed. Since the
covariance matrix has ~ n? elements while the number of records used in the estimation
is nT', the length of the time series needs to be 7' >> n in order to get small errors
on the covariance. However, for large T' the non-stationarity of the time series appears
likely. This problem is known as the curse of dimensionality. Because of this, we
computed the covariance matrix and expected returns using the [—T7,0] interval, i.e.
letting 7' = 50 =~ n, T" = 100 > n and T' = 500 >> n days preceding the t = 0.
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Furthermore, applying filtering techniques we tried to filter the part of the covariance
matrix which is less affected by statistical uncertainty. To quantify and compare the
different methods applied here, we will use the measures described below.

We should also mention here, that treating the Markowitz portfolio selection method
as a quadratic programming problem is particularly simple when X (in Eq. 3.8) is positive
semi-definite and the constraints are equalities (as in Eq. 3.7). It is not difficult to see
that the positive semi-definiteness is valid for the original covariance matrix and also for
the filtered matrix got by using the RMT method. In [4] it was proved that the filtered
correlation matrix obtained by the single linkage clustering procedure is always positive
definite if all the elements of the obtained filtered correlation matrix are positive. This
is usually the case for correlations of stock time series and it was observed for all the
matrices we used. Moreover it was also proved there, that the filtered correlation matrix
obtained by using the average linkage clustering method is also positive definite under

the same conditions as in the case of the single linkage procedure.

Performance evaluation

To measure the performance of the portfolios determined by the different models, we use
the following quantities for the estimated return and risk at the time of investment and
the realized risk and returns after the investment period. For portfolio p, the ex-ante

Sharpe ratio measures the excess return per unit of risk:

S, = u7 (3.13)

Op
while the ex-post Sharpe ratio is defined by a similar equation, but with the realized
return r,. Here, 7 is the risk-free rate of return. The portfolio risk, based on the
estimation of the correlation matrix, is calculated as
2 _ 22
ol
, = ——

) )
Up

(3.14)

where 612, is the predicted risk, and JZ is the realized risk of the portfolio.

Simulation setup and results

We implemented our simulation environment in R. We are given a data set of stock
time series and the input parameters timeInverval 7', the vector of startingTimes
to = (t§,...,t() and the rp, = (r},...,rf) vector of expectedReturns (equal steps
between the average return and the maximal return over all asset by default). The

simulation procedure is performed via the following steps:

1. For each starting time tg, the asset.solve.Complete.R() subroutine checks
whether the portfolio optimization can be performed for the given starting time on
the interval [—T, t}]:

e if yes, it calculates the optimal portfolio;
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e if not, it goes to the next starting time té“;

2. The subroutine stores portfolio weights and the data required for performance eval-

uation.
The subroutine asset.solve.Complete.R() works as follows:

1. It determines the expected returns using maximum likelihood, James-Stein and

minimum variance estimations.
2. It determines the covariance matrix of the stock time series.

3. It calculates the filtered covariance matrices using the RMT, the single linkage and

average linkage procedures.

4. Portfolio optimization is performed for each return estimation.

e Using the Lagrange multipliers method of the 'Rsolnp’ package [76], it calcu-

lates the optimal weights for each covariance matrix
e It calculates the portfolio risk according to the optimal weights.

e It determines the realized risk and Sharpe-ratio.

In order to improve the running times, the ‘doParallel’ R package [31] was used (here
we will not go into the details of parallelization).

To check the robustness of the methods, a standard bootstrap experiment was per-
formed. We chose 50 starting times randomly and solved the optimization problem using
the time series on the intervals [T, té] (T = 50,100,500, = 1,...,50). For each
portfolio, the predicted risk was calculated using Eq. 3.8 for fixed expected returns from
the average > .,
equal spans. The Lagrange multiplier method, which is available in the 'Rsolnp’ R pack-

ri/n to the maximum expected return max{r; : ¢ = 1,...,n} with

age, was used for the optimization. In each case, the portfolios with realized returns in
the top and bottom 10% were dropped. The realized risk using the determined stock
weights at time t) , the realized covariance matrix and realized returns were calculated on
), T].

Figures 3.5 and 3.6 show the ratio of the realized risk O']% (continuous line) and the
predicted risk (312) (dashed line) as the function of the expected return r, obtained by using
the different procedures for the BSE data set and Yahoo data set, respectively. For each
T, the time of the investment té (j =1,...,50) and the set of stocks were the same.

For the BSE data set, the classic method and the RMT method provide similar realized
returns that are always higher using hierarchical clustering (single and average linkage).
In spite of this, the risk ratio 2, (i.e. the reliability of the portfolio) is also significantly
decreased (see Fig. 3.5, and Tab. 3.1 “Risk Ratio” column), but the deviation of the
realized returns increased. The Sharpe ratio of the hierarchical clustering methods was
smaller than those got using the other methods, since the estimated risk was often higher
than that using the classic and the RMT methods. It can be seen that each method
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Figure 3.5. The ratio of the realized risk ag and the predicted risk &i as the function of expected portfolio
return (continuous line) and realized return (dashed line) for the different procedures for 7' = 50, 100, 500
(top-down) using the maximum likelihood estimator (left panels) and the James-Stein estimator (right
panels). The data set contains 40 BSE stocks for the period 1995-2016.

provided better expected returns and a smaller risk ratio (i.e. higher reliability) for the
smaller values of 1" (1" = 50, 100, see Tab. 3.1). The results tells us that the James-Stein
return estimation, although it increases the deviation of the realized returns, provides
a smaller risk ratio and an improvement on the Sharpe ratio. The Sharpe ratio of the
minimum variance portfolio (see Tab. 3.1 last four columns) was the highest due to the
very small expected risk that the method estimated, while its reliability is significantly
smaller than those got using the other return estimators.

For the Yahoo data set, the same is true for the realized returns as in the case of
BSE data set. Here, the smallest risk ratio was obtained when T = 100 days (Fig. 3.6(c)

and Fig. 3.6(d)). It can also be seen that using the James-Stein return estimator pro-
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Figure 3.6. The ratio of the realized risk ai and the predicted risk &g as the function of expected portfolio
return (continuous line) and realized return (dashed line) for the different procedures as 7' = 50, 100, 500
(top-down) using the maximum likelihood estimator (left panels) and the James-Stein estimator (right

panel).

Yahoo finance page in the period 1995-2016.

The data set contains 48 IT sector companies with available historical time series data in the

vided better results (realized returns, Sharpe ratio), while the usage minimum variance

estimator decreased the risk ratio in some cases.

3.3 Summary

In this chapter, we provided a brief insight into the network modeling in economic systems.

Firstly, we showed how network analysis could be applied to trade networks of countries.

We studied the trading data of the EU countries and the economic superpowers from

a network perspective, and we found that although the export, proportional to GDP,
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has been growing in each European countries since joining the EU, the former Comecon
countries have not significantly increased their GDP proportional exports to other EU
countries, but have increased in the direction of Russia and China. By applying different
ranking algorithms (out-degree, PageRank, HITS) to the network, we learned that the
Pareto-principle (or Zipf-law, or “80-20"-law) prevails, meaning that a significant percent-
age of the total export of the world is executed by just a few countries. Thereby, countries
where the export volume is relatively small, but have a high proportion of the GDP, are
in a strong economic dependence on the superpowers. We showed that such networks
have a strong core-periphery structure. We applied a modularity optimization method
to identify those communities in the network that change over time. We found that the
European countries in the periphery are contained in the clusters of Russia and China, in
contrast to the Western-European countries that are in clusters where the central nodes
are Germany and the USA, respectively, highlighting real economic dependencies among
the EU countries.

Next, we investigated the Markowitz portfolio selection problem using filtered corre-
lation matrices (networks) got by using different filtering procedures, namely a random
matrix theory approach and hierarchical clustering approach. We used several estimators
to determine the expected return of a portfolio. A lot of experiments have shown that,
using filtered covariance matrices, the classic Markowitz solution can be outperformed in
terms of realized returns and reliability, meaning that the realized risk and the estimated
risk are closer to each other in that case. Our simulations revealed that the different filter-
ing procedures provide different portfolio optimization results. Namely, the most useful
methods may be different depending on the risk level of the portfolio, the investment
period size and reliability of the risk and return estimation. We think that other filter-
ing procedures combined with different return estimators could also provide interesting
or better results with different parameter settings (e.g. expected returns, portfolio size,

investment period length) of the optimization problem.
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Chapter 4

Network Models and Linear Algebra
for Rating and Prediction

The problem of assigning scores to a set of individuals based on their pairwise comparisons
appears in many areas and activities. For example in sports, players or teams are ranked
according to the outcomes of games that they played; the impact of scientific publications
can be measured using the relations among their citations. Web search engines rank
websites based on their hyperlink structure. The centrality of individuals in social systems
can also be evaluated according to their social relations. As we saw earlier, the ranking
of individuals based on the underlying graph that models their bilateral relations has
become the central ingredient of Google’s search engine and later it appeared in many
areas from social network analysis to optimization in technical networks (e.g. road and
electric networks) [110].

In the previous chapters we presented models and examples for rating and ranking
based on network structure: in Chapter 2 we defined a network algorithm for rating
scientific papers; then we used a similar procedure to measure the performance of students
in public education based on their pairwise comparisons. In Chapter 3 countries were
ranked using the trade network of them. Now in this chapter we introduce see rating and
ranking methods of nodes of bipartite networks.

In this chapter we introduce more research and results of the author in the topic.
Firstly, we discuss how network models and related linear algebraic methods can be used
to rate the actors (players, agents) of the modeled system and we make predictions for the
future events, based on pairwise comparison graphs (or matrices, as we also refer to them
here). The final goal of this chapter is to present a new model for probabilistic forecasting
in sports based on linear algebraic rating methods which simply use the historical game
results data of the investigated sport competitions. In contrast to those techniques that
use the actual respective strength of the two competing teams, we provide a (complex)
system level approach. The assumption of our model is that if a rating of the teams after
a game day correctly reflects the actual relative performance, i.e. the performance of
the system of teams in the competition, then the smaller the performance of the system’s
changes after a certain event occurs in an upcoming single game the higher the probability

that that event will occur. We discuss several prediction methods including the widely-
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used Bradley-Terry model, the betting odds predictions and our proposed method in
detail. We present our initial empirical results obtained by measuring the accuracy and

the predictive power of the methods presented.

4.1 Rating and Ranking in Sports

Ranking in sports is important for those who are interested in the various professional
or amateur leagues as fans, managers, financial investors and for the growing number of
gamblers who bet on offline or online platforms [178]. Ranking and, in fact, performance
rating of athletes and sport teams play a crucial role in sports betting from both the
better’s and the betting agency’s point of view.

In many sports, only the win/loss ratio is considered (see e.g. the most popular sports
in the U.S.) for ranking the teams or players, i.e. a higher value indicates a higher position
in the ranking. In the case of equal win/loss rates, the result(s) of the head-to-head
matches between the players/teams in question and other simple statistics are considered
to determine the ranking positions. In many sports, instead of the round-robin system,
the type of the most relevant competitions is a single-elimination tournament (also called
knock-out or cup) maybe with a preceding group stage. Thus the players play just few
matches against only a small subset of their competitors. The official ranking of the
players is usually determined by a sport specific rating system (e.g. see tennis, table
tennis, combat sports, etc.). In fact, in a tournament, in a regular season or in a given
period each player/team plays with only a subset of the others and a player/team who
plays against weaker opponents have a considerable advantage compared with those who
play against stronger ones.

Many approaches trace back the ranking problem to the solution of a system of linear
equations, where the entries of the coefficient matrix refer in some way to the results of
the games played. From the study of this pairwise comparison scheme (for early studies
see e.g. [25, 46, 102]), several matrix-based ranking algorithm have appeared in sports
(see e.g. [42] for chess teams, [45, 155] for tennis players, and [19, 38, 83, 136, 142] for
American football teams). For a good mathematical guide to ranking in sports, see e.g.

[96], while some useful comprehensive studies are e.g. [82] and [136].

4.1.1 Some Linear Algebraic Rating Methods

Next, we give a short description of the ranking methods we will use. Hundreds of ranking
methods have been appeared in the long history of ranking in sports: for a more detailed
introduction on ranking methods, we refer to [12] and [111]. The selection of the methods
we used satisfy the following criterion: (1) each method is based on linear algebra, (2)
each method has been proved to be successful in real applications, and (3) each method
has a simple formulation with, in most cases, a closed solution. Before going into more
detail, some definitions and notations, that are consistent with the network terminology
are introduced.

Let V = (1,...,n) be the set of n teams (or players) and let R be the number of
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game days in a competition among the teams in V. A rating is a function ¢" : V' — R"
that assigns a score to each team after each game day r (r = 1, ..., R). This is considered
as the quantitative “strength” of the teams. A ranking o” : V. — V, after game day
T, is an ordering of the teams that is simply obtained by sorting the teams according
to the rating ¢". For rating and ranking the teams we consider only the game result
information, i.e. win and loss or final result information. We note that the methods can
be easily extended to the case when ties are allowed. Furthermore the matrix contains
the final scores of the games can also be considered; for more details we refer to [12].
Let W be the n X n matrix with entries W;; = #{i won against j}. The elements
of the n X 1 vectors w = W1,1=W7T1 and t = (W + W7)1 are the number of wins,
losses and the total number of games played by team 7 (¢ = 1...,n), respectively, where
1 is the n X 1 with all entries equal to 1. Since each game considered here is either a
win or a loss, thus t = w + 1. We define 7' = diag(¢;), namely the diagonal matrix with
entries Tj;; = t;, (1 =1...,n) and T;; = 0if i # j. By using these notations, we can

describe some widely-used linear algebraic rating methods within unified framework.

Winning percentage (WP)

The Winning Percentage of a team 7 after game day 7 is simply defined as ¢, pi = Wi /t;.

The vector of winning percentages of the teams after game day 7 can be computed as
Oop =T 'w. (4.1)

The advantage of the method is that it can be easily calculated and interpreted. The
main disadvantage is that it do not take into account the strength of the opponent teams,

only the outcomes of the single games.

Massey’s least squares method (M)

Kenneth Massey in his bachelor’s thesis (1997) applied the least squares method for
ranking sports and assumed that the rating difference between two teams was proportional
to the score difference of the game between them (if they played) [136]. Let Y,.;; be a
random variable that denotes the score difference between 7 and j in an upcoming game
r. Then

]EO/;%J) = ¢§\41 - TM,j- (4-2)

If Y ; = yrs; after game r and X is the m X n (m is the number of all game played)
matrix with entries x,; = 1 if ¢ won in game 7, x,; = —1 if 7 defeated in game 7 and
z,; = 0 otherwise, then the rating of the teams is given by the solution of the linear

system
Xoy =y, (4.3)

where y is the m X 1 vector of the realized score differences. Multiplying 4.3 by X7 from
the left we get X7 X¢", = XTy and denoting X7 X = M and X'y = p, the rating of
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the teams after game r can be obtained solving the linear system
M¢h, =p, (4.4)

where M = T — W — W7 contains the total number of games played by the teams in
the diagonal; if ¢ # j then M;; = —W;; — Wj;; that is, the number of games played
between teams ¢ and j with a negative sign, while p contains the total score differences
of each team. By using A = W — W7 the system 4.5 is equivalent to T'¢}, — Adh, = p,
and hence r = T~1 A}, + T~ ¢4, It follows that

. 1 Di
M, = T_“ Zj:AijTj + T_Z_Z_v (4.5)

where the first term is the average rating of teams against ¢ has played, while the second
term is the average point spread of team 7. In the case of competitions where there are
more than one game is played between some pair of teams we may use p = w — 1. Since
rank(M) < n, the linear system Eq. 4.5 does not have a unique solution. To overcome
this problem, one possible solution is to replace any row in M with a row with all entry

equals to 1 and replace the corresponding entry of vector w — 1 with zero.

Colley’s least squares method (C)

Colley’s method [38] is also a modification of the least squares method by using an ob-
servation called Laplace’s rule of succession (see [162], page 148) which states that if one
observed k successes out of r attempts, then (k + 1)/(r + 1) is a better estimation for
the next event to be a success than k/r. Since t; = w; + [;, we have

wl—i-nz—ll wi—li t;

w 5 5 —|—2 (4.6)

Colley observed that the second term is the summation of all terms equal to 1/2, corre-
sponding to the default rating of a team with zero played games. Generalizing this using

the opponent’s strength
t.
t; -
Yo (47)
j=1

it follows that .
cowi+ 1l (wi =) /24 300 0+ ]
Ca ™ ti + 2 - ti + 2 '

Rearranging and writing it in linear system form, we get

(4.8)

Cdt = b. (4.9)

The rating vector ¢ of the teams is the solution of the linear system Eq. 4.9, where
C' = M + 21 (here, [ is the identity matrix) and b = 1 4+ (w — 1)/2. It can be easily

seen that the linear system Eq. 4.9 always has a unique solution.
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Keener method (K)

Keener’s method [100] is a so-called spectral rating method which uses the Perron-
Forbenius eigenvector for the rating and (after round 7) it is given by the solution of

the eigenvalue equation

T Wl = A\l (4.10)

In Eq. 4.11, X is the dominant eigenvalue of the matrix 7~ 'W. This exists for a matrix
with non-negative entries, and any other eigenvalue is smaller in absolute value. The
corresponding eigenvector (which is called the Perron-Frobenius eigenvector) has non-
negative entries and it gives the rating of the teams. Originally, the method was defined
for the case where the final scores of the games are considered. The Keener matrix, also
based on the Laplace’s rule of succession, is defined as K;; = (W;; +1)/(W;; +W;; +2).

Then, the Keener rating vector of the teams is given by the solution of the equation
K¢y = APl (4.11)

PageRank method (PR)

In our result matrix representation of sports game outcomes, using the result matrix W
instead of adjacency matrix A and using 11° instead of D, the PageRank rating vector of

the teams defined as

ppr =11 = %[I — (1= WAt~ (4.12)

Assuming that IPR =1 Eq. 4.12 implies that

A
1= [Nut — (1 — W11, (4.13)
which shows that IT, is the eigenvector of the matrix 211 — (1 — A\)W*(11*)~!, belongs
to the eigenvalue 1, which is the largest (dominant) eigenvalue of this matrix by a conse-
quence of the Frobenius-Perron theorem for row-stochastic matrices (see e.g. [141], Ch.

8.) as we mentioned earlier.

Time-dependent PageRank method (tdPR)

We modified the PageRank algorithm such that the weight (i.e the transition probability)
of each edge decreases whenever a new edge appears in the graph. Formally, the new
approach is that after the kth match was played in a given period, the weight of the
latest edge becomes 1, the second latest becomes 1/2, the ith latest becomes 1/i, the
oldest one becomes 1/k. We normalize the weights such that the matrix obtained become
row-stochastic (i.e. each row summing to 1) and we recalculate the ranking every time a

new result is registered in the database by solving the equation

Orapr = I = %[[ — (1= NWhea(1H) ™71, (4.14)
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where the entries of Wy0q are then the new transition probability values, calculated as

we described.

Network Representation of the Methods

We would like to emphasize, that several of the above-defined methods have an interpreta-
tion on a graph. Using the game results data set, one can define a directed multigraph®,
where nodes represent players/teams, while links between them represent outcomes of
games they played. The links are directed and each of them is going from the loser team
to the winning team. If ties are also considered they can be represented by two directed
links with opposite directions and half weight. In this case, matrix W is the adjacency
matrix of the directed multigraph representation of the results, w and 1 contain the in-
and out-degrees of nodes, respectively. From a network science perspective, Massey’s M
matrix is the graph Laplacian if the result matrix is treated as the matrix of a symmetric
undirected graph. The rating vector ¢, defined in Eq. 4.5 is then equivalent to the po-
tential vector over a resistor network defined W with supply vector w — 1 [72]. The PR
and td-PR methods are the modifications of the classic PageRank algorithms performed
on the results graph.

4.1.2 Experimental Results

We applied the methods described above to the table tennis competition of the Institute
of Informatics at the University of Szeged (the data set we used can be found in the web-
site http://www.inf .u-szeged.hu/~london/TableTennisResults.txt). In that
competition, there is no any rule for the selection of the opponents or the date of the
match. The only restriction is that 7 days must have elapsed between two matches of
the same players. Without considering the organizational rules and by considering the
results only in a given period, it can be seen that these features occurred in many sports
where the competition is not a round-robin.

In Table 4.1, we report the scores of the players obtained by the different ranking
methods. In the case of the PR and the tdPR algorithms, we used A = 0.1,0.2,0.3,0.4,
respectively. We found that the td-PR score is robust against these variations of A (the
Pearson correlation was more than 0.95 for each pair). Furthermore, the td-PR method
was proved to be very effective in finding the top players of the competition that could
be justified a posteriori by knowing the players skills.

We used Kendall’s T rank correlation [101] to quantify the correlation between the
different methods. The rank correlation coefficient is defined as 7 = (n.—ng)/ (g), where
ne (ng) is the number of such pairs that have the same (opposite) order in both ranking
list. However, the td-PR score is positively correlated with the winning percentage,
differences can be seen by comparing the two methods. The relation between the td-PR
and the WP is shown in Fig. 4.1(a).

A relevant outlier on the list is player 14, having a win ratio 50%, who precedes
players 5, 23, 19 and 21, but the latter has a better WP than himself. He is placed at

!That is a graph where multiple links are allowed.
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Figure 4.1. (a) The scatter plot of the tdPR rank vs. the WP rank. (b) The results obtained by the
different ranking methods. (c) The tdPR ranks of the players after 45, 90 and 180 played games.

position 4 and this is consistent with the fact that he was just defeated by players (player
10, player 12) who are ranked higher.

Fig. 4.1(b) shows the relation between td-PR and the other ranking methods. Despite
the high correlation between td-PR and the other methods, we observed that the time-
dependent method has a better predictive power. We considered the first half of the total
number matches that had been played since the start of the competition and calculated
the td-PR values of that period. Then we checked the results of the upcoming matches
and the changes in the ranking. It can be observed that the players with much a higher
td-PR score after the first half of the total matches played won a high proportion of their
matches against players with smaller td-PR values in the later part of the competition.
Our observations suggest that the difference between the td-PR values of the players can
provide a reliable prediction for the upcoming matches. Fig. 4.1(c) shows the td-PR ranks
of the players after 45, 90 and 180 played games. We should mention that Fig. 4.1(c) only
contains those players, who had already played at least one played match after the first
45 matches of the competition. Obviously, at that time we could not predict the results

of those players who joined later in the competition.
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Table 4.1. Ratings obtained by the different methods; the ordering of the players is given by the decreasing
order of the td-PR values

Player +#Plays #Wins Win ratio Massey Colley Keener PR td-PR
9 13 13 1.000 1.418 1.074  0.229 0.113 0.138
10 29 25 0.862 0.972 0.923  0.238 0.089 0.093
12 30 26 0.867 0.859 0.882  0.245 0.083 0.085
1 63 44 0.698 0.497 0.722  0.233 0.071  0.075
14 6 3 0.500 0.658 0.717  0.198 0.064 0.070
5 38 22 0.579 0.266 0.604  0.200 0.050 0.052
23 5 3 0.600 0.779 0.736  0.199 0.047 0.047
18 16 8 0.500 0.555 0.700  0.192 0.046 0.045
11 24 11 0.458 0.209 0.564  0.193 0.039  0.040
19 10 6 0.600 0.454 0.664  0.200 0.042 0.039
21 13 7 0.538 0.325 0.615  0.199 0.035 0.032
8 19 6 0.316 -0.338  0.354  0.181 0.031 0.032
26 1 0 0.000 -0.503  0.407  0.194 0.031 0.029
4 19 3 0.158 -0474  0.265  0.172 0.025 0.026
6 10 5 0.500 0.269 0.586  0.194 0.030 0.025
2 17 3 0.176 -0.380  0.307  0.177 0.022 0.024
17 13 2 0.154 -0.437  0.286  0.178 0.019  0.020
3 13 1 0.077 -0.615  0.213  0.171 0.019  0.020
7 12 2 0.167 -0.650  0.219  0.176 0.018 0.018
16 2 0 0.000 -0.322 0401  0.191 0.024 0.018
13 2 0 0.000 -0.322 0401 0.191 0.024 0.018
22 14 1 0.071 -0.433  0.277  0.169 0.016 0.016
24 4 1 0.250 -0.507  0.349  0.191 0.023 0.016
15 5 1 0.200 -0.174  0.416  0.188 0.017 0.010
25 3 0 0.000 -1.060  0.186  0.191 0.015 0.007
20 5 0 0.000 -1.047  0.136  0.184 0.010 0.004

Table 4.2. Kendall’s 7 rank correlation between the different methods.

Win/loss

MASSEY
COLLEY
KEENER

PR
tdPR

Win/loss

1.000
0.705
0.748
0.655
0.723
0.723

Lsm

1.000
0.895
0.606
0.735
0.674

Colley

1.000
0.711
0.803
0.705

Keener

1.000
0.662
0.563

PR

1.000
0.902

tdPR

1.000

Further Ideas

We also ran a clustering algorithm (Leuven method) to see whether there exists a deeper

organizational pattern behind the evolution of the result network. Fig. 4.2 shows the

network with clusters that are shown in various colors. It depicts the contact graph of

the players after 90 played matches (up) and the state of the championship after more

than 180 matches (down). It is interesting to see the changes of the clusters in the two

graphs. First, we can observe that most of the newcomer players want to play against
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Figure 4.2. The contact graph of the players after 90 matches played (a) and the state of the championship
after more than 180 matches (b). Nodes having same color belong to the same cluster.

the current best players (in td-PR rank/a priori) and expect to jump to the top of the
ranking table. Second, it seems that players having closer td-PR values are more likely
to play with each other than players having a smaller td-PR value and lower ranking
position. Thus, we conjecture that the td-PR scores have a good explanatory power for
a self-organizing mechanism of free-time (and perhaps professional) sports as well. This
could explain the appearance of different strength classes in most of the sports, where it
is more difficult to predict results within a class than results between different classes.
Furthermore, from a graph theoretical point of view, a new type of “regularity” (for details,
see [41]) can be defined on directed graphs, where the fraction of in/out edges of a node

is around 1/2 in the same class, and tends to 1 (or 0) between different classes.
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4.2 Probabilistic Forecasting in Sports

In general, making predictions in sports is a difficult task. Traditionally, predictions have
been made by experts like sports commentators, sports journalists, former players and
coaches based on their experience and intuition [69]. The predictions generally appear in
the form of betting odds, which, in the case of “fixed odds”, provide a fairly acceptable
source of expert’s predictions regarding for the outcomes of sport games [154]. In the age of
information and high-performance computers, as a multimillion dollar market, the sports
betting market has been pervaded by a huge amount of statistics, produced after every
single game, aim to evaluate the performance of teams and players [129, 169]|. Thanks
to the increasing quantity of available data the statistical ranking, rating and prediction
methods have became more dominant in sports in the last decade. A key question is
how accurate these evaluations are; more concretely, how accurately the outcomes of the
upcoming games can be predicted based on the statistics, ratings and forecasting models
in hand. In recent years, several statistics-based and machine learning methods have been
applied to the historical results data of sport competitions.

Statistics-based forecasting models are used to predict the outcome of games based
on some relevant information of the competing teams and/or players of the teams. As
a detailed survey of the scientific literature of rating and forecasting methods in sports
is beyond the scope of this dissertation, we will refer to only some important and recent
results in the topic. The celebrated Bradley-Terry model [25] (with several extensions
[47]) for data from paired-comparisons was developed to estimate the probability that
one object will be preferred to another. Applications of the model include sport com-
petitions as well, where the teams are the objects and the comparisons are the games
between them with preferences corresponding to wins and losses (and also ties, in many
sports). For some papers with a detailed literature overview and sport applications, see
e.g. [30, 33, 182]). In Sec. 4.2.2 we will give a detailed description of the Bradley-Terry
model. Other popular approaches are the Poisson goal distribution-based analysis (with
extensions of home-field effect and tie-effect), where the game results are predicted by
the number of points scored by the competing teams that are considered to be indepen-
dent Poissonian random variables with means determined by the respective offense and
defense abilities of the teams. For some references, see for instance [51, 99, 130]. A large
family of prediction models only consider the game results win, loss (and tie) and they
usually apply some probit regression model. For instance [68] and [80] consider team
quality, actual performance and match significance and compare the statistical methods
to expert’s views represented by the published betting odds. More recently, well-known
data mining techniques, like artificial neural networks, decision trees and support vector
machines, have also become very popular, and some references, without being exhaustive
include [40, 48, 98, 117]. A notable part of prediction models that use only the historical
data of game results contains the ranking and rating-based prediction methods. Some
recent articles on the topic are [12, 32, 77, 113, 173].
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4.2.1 Betting Odds

Bookmakers determine betting odds for the games according to their expectations of
outcome probabilities. Here we deal with fixed odds, means that they do not vary over
time depending on the betting volumes. These “fixed-odds” represent the predictions of
bookmakers [154]. Recent studies have pointed out that calculating probabilities from
betting odds is an appropriate forecasting method with increasing efficiency [68, 169].
However, the efficiency of betting markets has frequently been questioned and formerly
outperformed by statistical methods in some cases, see e.g. [51, 80].

From the technical point of view, if the betting odds for an upcoming game between
team ¢ and team j are odds(z) and odds(j), respectively, it means that if one bets $1 to
i’s win and it comes out, he wins odds(¢) dollars, while if j wins, then the bettor loses
his $1 (similarly, one can bet to team j’s win). We can calculate the probabilities of the

respective events as

: : 1/odds(7)
P beat = 4.1
Fodas) (1 beats j) 1/0dds(i) 4+ 1/odds(j) (4.15)
and 1 Jodds(4
Pr(oads)(j beats i) = /0dds(j) (4.16)

~ 1/odds(i) + 1/odds(j)
We should note here that odds provided by betting agencies do not represent the true
chances (as imagined by the bookmaker) that the event will or will not occur, but are
the amount that the bookmaker will pay out on a winning bet. The odds include a profit
margin which effectively means that the payout to a successful bettor is less than that
represented by the true chance of the event occurring. This means mathematically that
1/odds(i) + 1/0dds(j) is more than one. This profit expected by the agency is known

as the “over-round on the book”.

4.2.2 The Bradley-Terry Model

The Bradley-Terry model [25] is a widely-used method to assign probabilities for the
possible outcomes when a set of n individuals are repeatedly compared with each other

in pairs. For two elements ¢ and 7, according to the model, the probability that ¢ beats

j defined as
. . T
Pr(: beats j) = , 4.17
( N= - (4.17)
where m; > 0 is a parameter associated to each individual 2 = 1, ..., n, representing the

overall skill, or “intrinsic strength” of it. Equivalently, 7;/7; represents the odds in favor
i beats j, therefore this is a “proportional-odds model”. Suppose that ¢ and j played N;;
games against each other with ¢ winning W;; of them, and all games are considered to be

independent. The likelihood is given by

T M,
L(mi, ..., m) = :
m ) H LT@'+7TJ} [Wi+7fj

i<j

} o (4.18)
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Then the log-likelihood is

Uiy yma) = Y [Wijlogm; — Wi log(m — ;)]

1<i#j<n
= ZWW IOgT{'i — Z Nij log(m +7Tj> (419)
i=1 1<i<j<n

which need to be maximized.
One possible derivation of the model assumes team % produces an unobserved score

S, no matter which is the opposing team, with the cumulative distribution function
S; ~ Fy(s) = exp[—e~(57108m)], (4.20)

It follows that distribution of the difference S; — S follows a logistic distribution function

1
- 1+ e—(s—(logmi—log;)’

Si — Sj ~ Ej(S) (421)

which implies that

Pr(S; > S;) = Pr(Si — §; > 0) = 1 — ! _ T 42

1 + elogm—logrrj ™+ ;

Extension with Home advantage and Tie

A natural extension of the Bradley-Terry model with “home-field advantage”, according

to [1], say, is to calculate the probabilities as

. , gomi_if i is at home
Pr(i beats j) = i (4.23)

™ e
o if j is at home

where 6 > 0 measures the strength of the home-field advantage (or disadvantage).
Considering also a tie as a possible final result of a game, the following calculations,
proposed in [158], can be used :

Uy

Pr(i beats j) = (4.24)

)
T + QT

2
S
Pr(i ties j) = (a ),

(m; + am;)(am; + 7)) (4.25)

where o > 1. Combining them is straightforward. In our experiments, we used the Mat-

lab implementations found at http://www.stats.ox.ac.uk/“caron/code/bayesbt/
using the expectation mazimization algorithm described in detail in [33].

4.2.3 A Rating-based Model: a general framework

Now we will describe our model, which is a rating-based method, where the rating used

only deals with the win-lose or the final score statistics of the teams of the given com-
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petition. The crucial assumption of the model, unlike e.g. the Bradley-Terry model,
is that the rating of the teams evaluated after a given game day correctly reflects the
actual performance, relative to each other, of the teams. Suppose that before game day
r(r =k,...,R—1), for some k, the rating vector of the teams V' = (1,...,n) in
a competition is ¢""1(V) = (¢77',...,¢""1). We assume, that this rating is a good
approximate of the performance the teams. The key idea for the predicting the outcome
of an upcoming match on game day r between teams ¢ and j is the assumption that the
more probable an outcome is the less change it will cause in the rating vector ¢" (V).

Mathematically, let us define the distances

07 beats j} = dist(¢" " (V),¢" (V) | {i beats j}) (4.26)

and

U beats oy = dist (6" (V), ¢"(V) | {j beats i}), (4.27)

by using some distance function dist : R” x R™ — R. Practically speaking, 52’} measures
how the rating vector changes after a certain game outcome on game day 7. Then we can

simply assign probabilities for the events {i beats j} and {j beats i}, such that

f(éj[nz beats ]})
f((sgz beats ]}) + f(67{“] beats z}>

Pr({i beats j}) = (4.28)

and

f( Ej beats z})
f(ég beats j}) + f((;?{”] beats z}) ’

respectively, by using some f : R — R non-increasing function. Within this framework

Pr({j beats i}) = (4.29)

the rating function ¢, the distance function d and the non-increasing function f can be
chosen independently.

Considering ties as well in our rating based-model the probabilities can be calculated

as -
f( {i beats ]}) (430)
f(&{ﬂz beats j}> + f(dzz ties j}) + f<5gj beats z’})
o
f( {3 ties ]}> (431)

F O vearsiy) + SO ties 1) + F (07 veass i)

The home-field advantage may be defined in various ways. Since in our experiments

we used a time-dependent PageRank method, we will describe a possible way of defining
home-field advantage. Furthermore, we give a more detailed description of the model in

that case.
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Table 4.3. Accuracy results on football data sets. The values where the difference between the Bradley-
Terry method and the PageRank method was higher than 0.01 are shown in bold.

League Season | Betting odds error | Bradley-Terry error | PageRank method error
2011/12 0.58934 0.60864 0.59653
Premier League | 2012/13 0.56461 0.59744 0.58166
2013/14 0.54191 0.55572 0.59406
2014/15 0.55740 0.60126 0.60966
2011/12 0.58945 0.59994 0.59097
Bundesliga 2012/13 0.57448 0.59794 0.58622
2013/14 0.55724 0.57803 0.60125
2014/15 0.57268 0.60349 0.60604
2011/12 0.54598 0.57837 0.58736
La Liga 2012/13 0.56417 0.58916 0.60205
2013/14 0.57908 0.58016 0.60473
2014/15 0.52317 0.55888 0.56172

4.2.4 Experimental Results
Forecasting Accuracy

To measure the accuracy of the forecasting we calculate the mean squared error, which
is often called Brier scoring rule in the forecasting literature [27], described as follows.
The Brier score measures the mean squared difference between the predicted probability
assigned to the possible outcomes for event F and the actual outcome og. Suppose that
for a single game g, between 7 and j, the forecast is p? = (p2,pf, plg ) containing the
probabilities of ¢ wins, the game is a tie and ¢ loses, respectively. Let the actual outcome
of the game be 07 = (09, 0}, Olg ) where exactly one element is 1, the other two elements

are 0. Noting that the number of games played (and predicted) is N, BS' is defined as

N N
1 1
BS = =3 IIp? = ol = = >[04 — oh)* + (o — of)? + (o — o). (4.32)
g=1

g=1

The best score achievable is 0. In the case of three possible outcomes (win, lost, tie)
we can easily see that the forecast p? = (1/3,1/3,1/3) (for each game g and any N)
gives accuracy BS = 2/3 = 0.666. We consider this value as a worst-case benchmark.
One question of our investigation is that how better B.S values can be achieved using our

method, and how close we can get to the good betting agencies’ predictions.

Results on football data sets

We test our model using the following setup. For rating the teams, a time-dependent
PageRank method is used. The damping factor is A = 0.1, while we use an exponential
function 0.98“ for time-dependency, where « denotes the number of game days elapsed
between the last and the first game day that we consider for calculations. We define each
day as a game day in which on a day at least one match is played. The construction of
the modified PageRank matrix used in Eq. 4.14 is carried out as follows. For any game
day in which we make a forecast, we consider the results matrix that contains all the

results of the previous T' = 40 game days. To take into account the home-field effect, for
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each team ¢ we distinguish team home-7 and team away-i. We define a 2n X 2n results
matrix S, which, in fact, describes a bipartite graph where each team appears both in
the home team side and the away team side of the graph. Thus, a home team and an
away team PageRank values are calculated for each team. We would like to establish a
connection between team home-7 and team away-7 using the assumption that home-1 is
not weaker than away-:z. In our implementation we assume that home-¢ had a win 2-1
against away-z to give a positive bias for home-¢ at the beginning. In our experiments
this setup performed well, but it was not optimized precisely. For the 40 game days
time window, the entries of the results matrix S are defined as S;; = #{scores team
home-i achieved against team away-j}. Each entry is multiplied by the time-dependency
function, then the row stochastic PageRank matrix is constructed and PageRank scores
are calculated according Eq. 4.14.

Using the above-defined results matrix S and the PageRank rating vector ¢, we assign
probabilities to the outcomes {home team win, tie, away team win} of an upcoming game
in game day 7 between team home-i and team away-j as follows. Before the game day
in which we make the forecast, let the calculated PageRank rating vector be ¢y (V).
Since now we use the results matrix S, we should consider final scores instead of win-
tie-loss outcomes considered in the model description above, to calculate the 535} values
defined in Eq. 4.26 and Eq. 4.27. We use 5;,7; to measure how the rating vector of the teams
changes if the result of an upcoming game between teams 7 and j, denoted as x : y, where
x,y =0,1,... are the scores achieved by team 7 and team j, respectively?. We define 5;y
as the Euclidean distance between ¢ ' (V) and ¢,(V) that is the rating vector for the
new results matrix obtained by adding @ to S;j and y to S, ;,;. In the results graph inter-
pretation this simply means that an edge from node away-j to node home-i with weight x
and an edge from node home-7 to node away-j with weight y are added to the graph, re-
spectively. Our assumption is that if an outcome x : y has a high probability and it occurs,
then it causes a small change in the PageRank vector; hence d,,, will be small. To simplify
the notations let {d1,...,0,,} be the distance values obtained by considering different
results { F'1, ..., F,, } of the upcoming game between team i and team j. The goal now is
to calculate the probability that a certain result occurs conditioned to {41, ..., d,,}. To
do this, we use the following simple statistics-based machine learning method. Let ()
be the probability density function of ¢; random variable where the event (game result)
E; occurred. In our implementation £; € {0:0,1:0,1:1,...,5: 5}, assuming that
the probability of other results equals 0. Similarly, let f~() be the probability density
function of d; random variable in which case the event (game result) F; did not occur.
To approximate the f*() and f~() functions, for each game we use the training data set
contains all results and related d; (¢ = 1,...,m) values of the preceding K = 40 game
days of that game. In our experiments, the gamma distribution (and its density function)
turned out to be a fairly good approximate for f*(d) and f~(0).

Assuming that d1,...,0,, are independent, using the Bayes theorem and the law of

2We should note here that if the result is 0 : 0, then = y = 1/2 is used.
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total probability, we get

Pr(d1,...,0m|En)Pr(E;)  TL,Pr(ouE)Pr(E;)
Pr(E;[{61,...,0m}) Pr(31,....0,) ~ S, Pr(0y, ..., 0| E0)Pr(E,)
[LPr(slEDPr(E)  F7(0) [T £ (00) %

> Ik Pkl Ee)Pr(Ee) 30, f+(00) Tt £~ (00) 3, -
. f+(5z) Hk;&i fﬁ (5k)
T S ) T /- (00) (4.33)

We should note here that using Eq. 4.33 we assign probabilities to concrete game final

results, which is another novelty of our model. Then, for the upcoming game between 4
and 7, based on Eq. 4.33, the outcome probability of the event {i beats j} is calculated
as

Pr(i beats j) = > Pr(EL|{01,...,0m}), (4.34)

k: Ej encodes a result
of team-i win

where we sum over those Fj, results for which team-i beats team-j (i.e. 1:0, 2:0, 2:1, 3:0,
3:1, etc.). The probabilities Pr(i ties j) and Pr(j beats i) can be calculated in a similar
way.

Our initial results are summarized in Table 4.3, which contain the accuracy scores
(i.e. Brier scores, using Eq. 4.32) of the different forecasting methods applied in dif-
ferent seasons of various European football championships. To calculate the betting
odds probabilities we used the betting odds provided by bet365 bookmaker available at
http://www.football-data.co.uk/. We could see that these predictions gave the
best accuracy score (BS) in each case. We highlighted the values where the difference
between the Bradley-Terry method and the PageRank method was higher than 0.01. Al-
though we can see that slightly more than half of the cases the Bradley-Terry model gives
a better accuracy, the results are still promising considering the fact that the parameters

of the method and our implementation are far from being optimized.

4.3 Summary

In this study, we defined a time-dependent PageRank-based algorithm and applied it
for ranking players in a university table tennis competition. According to our tdPR
method, the ranking of a player is not only determined by the number of his or her
victories, but it depends on how good the players are he could beat or lose against. It
means that a good player is needed to beat for higher ranking position, but winning
many matches against weaker opponents does not lead anyone to the first position in
the ranking table. The time-dependency of weights of the matches guarantee that the
matches played a long time ago do not count as much in the ranking. Another aim of the
time-dependency is to pressure the players to play regularly or else their results would be
out of date; then they would count much less in the ranking. We also observed that our
method has good predictive power. This may be interesting in other aspects of sports, like

estimating the betting odds for games. We think that a self-organization pattern operates
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in the background of the evolution of the contact graph. Obviously, players who want
to enter matches are expected to be exciting, but the nature of such competitions can
be modeled and measured mathematically just by knowing the time-series of the results.
This observation suggest we should define a special preferential attachment mechanism
where players having higher PageRank values are more likely to play (contact) with each
other and this is may be related to the emergence of an elite group in sports. Further
research is needed to evaluate this hypothesis, and testing our method for different sports
and data sets is also another plan for the future.

Next, we presented a new model for probabilistic forecasting in sports based on rating
methods that simply use the historical game results data of the investigated sport compe-
tition. In contrast to those techniques that use the current respective strength, calculated
using the previous results of the two competing teams, like, the celebrated Bradley-Terry
model, we provided a “forward-looking” type network based approach. The assumption of
our model is that the rating of the teams after a game day is correctly reflects their current
relative performance. We consider that the smaller the rating vector, which contains the
ratings of each team, and it changes after a certain event occurs in an upcoming single
game, the higher the probability that this event will occur. Performing experiments on
results data sets of European football championships, we observed that this model per-
formed well (it outperformed the advanced versions of the Bradley-Terry model in some
cases) in terms of predictive accuracy. However, we should note here, that parameter
fine tuning and optimizing certain parts of our implementation are tasks that need to be

examined in the future.



Chapter 5

Bipartite Network Models of
Real-world Systems

In the previous chapters we saw examples of complex network models and their ap-
plications to real-life systems, from scientometrics through educational data mining to
economic modeling. A special, but rather important class of complex systems can be
represented by bipartite networks, in which the nodes of the network can be divided into
two classes, A and B, say, and links only connect nodes of the different classes. In this
chapter, after introducing the main definitions, concepts and tools for analyzing bipartite
networks the author’s results will be presented.

Firstly, a method for finding the core of communities (in other words clusters) is
presented for bipartite networks using a one-mode projection method with statistical val-
idation. Cores of communities are highly informative and robust with respect to the
presence of errors and/or missing entries in the bipartite network. We assess the statis-
tical robustness of cores by investigating an artificial benchmark network. We will show
that this kind of filtering procedure necessarily increases the precision of the community
detection, finds highly stable cores (with high precision) and suggested uses, even with
the drawback that it decreases the level of accuracy in some situations. We also present
experimental results on real systems that can be modeled via bipartite networks.

Secondly, we describe how a generalized version of the PageRank and HITS algorithms
can be defined for bipartite networks and, as a case study, when applied on data sets of
wine tasting events in order to rank tasters according to their ability and professional
skill. In general, we will show that our ranking performs well due to our apriori knowledge
about the tasters, and it is able filter out incompetent tasters, who, for example, gave
the average score of some other tasters (i.e. cheating in some way) for the wines tasted.
Furthermore, we point out that our method gives a clearer picture about the competence

of wine tasters than other statistical methods that can be readily applied.

5.1 Bipartite Networks

In this chapter, we will deal with the type of complex systems that can be modeled by

bipartite networks. Bipartite networks naturally appear in areas ranging from social to
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biological systems and examples include, among many others, the actors—movies network
(where the two classes of nodes represent actors and movies, and there is a link between
an actor and the movie if the actor played in that movie) [150], scientists—research papers
cooperation networks (a link exist if a scientist is one of the authors of the paper) [144],
diseases—genes networks (links represent gene-disease associations) [36], plants—pollinators
mutualistic networks (a link exists if a plant species is pollinated by a pollinator species)
[13], banks—firms money transfer networks (links represent loan relations between banks
and firms) [135] and words co-occurrence networks (where the two classes of nodes are
words and sentences/texts, and there is a link between two nodes if a given word occurs in
the represented sentence) [149]. Although these types of networks contain a large amount
of information about the system, retrieving this information is generally hard.

Two fundamental approaches have been used to analyze bipartite networks. The first
is the so-called “direct” approach, where the bipartite network is analyzed directly by
jointly analyzing the two sets A and B via the linking structure between them. The
second approach is called the “projection” method, in which the network is converted into
two one-mode projections (i.e. two “unipartite” networks of set A and set B, respectively)
and then they are analyzed separately. There are several reasons for thinking that the
direct approach is better. A key idea is that important structural information may be
lost by using one-mode projections [114|. However, recent studies have pointed out that
data is not necessarily lost by using projections [62, 138]. A real advantage of using the
second approach is the availability of the arsenal of well-refined techniques present in the
literature for analyzing “unipartite” complex networks that usually cannot be used for
bipartite networks directly.

Formally, a bipartite network G = (A, B, E) is a triple where A = {aq,...a,}
and B = {by,...b,,} represent the set of nodes of the two parts, respectively, while
E C A x B denotes the set of edges that only connect nodes of the different parts. Let
M be the n x m bipartite adjacency matrix of G, where M;; = 1 if (a;,b;) € E and
M;; = 0, otherwise.

Here, without being exhaustive, we mention two characterizations of bipartite net-
works. They are: (i) a network is bipartite if and only if it does not contain an odd

cycle!; (ii) a network is bipartite if and only if it is 2-colorable? (see e.g. in [6], ps. 7-8.).

5.1.1 Communities in Bipartite Networks

The community structure in a bipartite network can be revealed in various ways depending
on questions of interest [11, 85, 139, 191|. Often, the communities of only one side is
analyzed by using a one-mode projection method. In recent years, according to different
definitions of communities in bipartite networks, many methods have been proposed to
find them using both the direct 3, 11, 85, 187] and the projection approach |62, 112, 13§|,

but still many problems and questions arise in the topic. One of the main questions that

LA cycle is odd, if the number of its edges is odd.
2Tt means that the nodes of the graph can be colored by two colors such that no adjacent nodes have
the same color.
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we investigate here is the reliability of the adjacency projection based on the community

structure of the projected network.

5.1.2 One-mode Projections

Most of the existing approaches simply construct a one-mode projection by assigning a
weight to each pair of nodes in A (or B, respectively) based on the number of their
neighbors in B (or in A). We call these projections “adjacency projections”. The co-
occurrence matriz Cga is defined as Cy = MM?™, where (Ca);; counts the number of
common neighbors of a; € A and a; € A. The simplest adjacency projection is the
undirected projected network (7 4 defined by the weighted adjacency matrix C'4, with the
weight n;; = (C4);; or, equivalently,

k=1

The co-occurrence matrix C'g and the projected network of the B side can be defined
similarly. Defining other types of weights (e.g. by using similarity measures, correlation
coefficients [66]) leads to different types of adjacency projections. Just to mention a few,
the Jaccard similarity [92] is defined as the fraction of the number of common neighbors

of a; and a; and the number of nodes in their common neighborhood. That is,

J Mij

K dl + dj — Ny ( )
Another frequently used similarity measure is one of the collaborative filtering methods,
which is defined as

CF i

S . = — Y 53

* min{d;, d;} (5:3)
and it also referred as pairwise nestedness in the literature. The Pearson correlation
coefficient can be also regarded as a similarity measure [175], which is defined by the

formula
P nij — did;/m

KA \/di(l —d;i/m)d;(1 — dj/m).

5.2 Statistically Validated Projections

(5.4)

When one constructs a projected network from the original bipartite network, the network
heterogeneity (i.e. the heterogeneous degree distribution) of the original network makes
it difficult to distinguish between (i) links whose presence in the projected network can-
not be explained in terms of random co-occurrence of neighbors in the original network
and (ii) links that are consistent with a random null hypothesis taking into account the
heterogeneity of the bipartite network [176]. Roughly speaking, when one works with just
a sample of a data set, the smaller the sample size, the higher the chance that it is not a
good representative of the real data set and it has a random nature. Nevertheless, many

real-world systems (viz. the data) are very noisy and/or the presence of many links in
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the system can statistically be regarded as random and the adjacency projection methods
may produce a significant distortion. To avoid this, some projection methods which use a
filtering procedure via link validation have been developed [120, 165, 176]. The main idea
is to verify whether a given (a possible) link in the projected network is consistent (or not)
with a null hypothesis of random connectivity between its nodes and their neighborhood
of the original bipartite network. If the answer is yes, then the link in the projection is
not validated, and hence not drawn in the projection. If the null hypotheses is rejected,

then the link is validated and drawn in the projection between the pair in question.

5.2.1 Hypotheses Testing

In order to validate statistically each link in the projected network, we can use the pro-
jection where two nodes a; and a; in A (and by and by in B) are connected only if the
number of neighbors that they share is not consistent with the null hypothesis of random
co-occurrence of the common neighbors. To test this hypothesis, the one-side hypergeo-
metric test is used. The null hypothesis is that nodes a; and a; are randomly connected
to the elements of set I3; namely, the probability that nodes a; and a; share exactly

neighbors in set B is given by the hypergeometric distribution,

) (%)

()

Then a p-value is assigned to each pair (a;, aj) like so
ng;—1
=0

To reject the null hypothesis, usually a fixed level of significance is used; often it has a
value of & = 0.01 or = 0.05. If the p-value is less than or equal to the significance
level «, it suggests that the observed data is inconsistent with the assumption that the
null hypothesis is true and hence in this case the null-hypothesis is rejected. However,
the hypothesis tests that incorrectly reject the null hypothesis (i.e make type I error(s))
are more likely to occur when one considers a set of statistical tests simultaneously. To
try to avoid this, a multi-comparison test can be performed that associates a common
level of significance to all links of the projected network. The most restrictive one is
the Bonferroni correction [52|, that is, to set ap = a/N; = 0.01/Ny, where Ny is
the number of tests performed. Now, N; could be the number of all possible pairs of
nodes of the set A, i.e. n(n — 1)/2, or the number of links of the adjacency projection.
The Bonferroni correction minimizes the number of false positives (i.e. type I errors),
but it often does not guarantee sufficient accuracy (it usually provides a large number
of false negatives, i.e. type II errors). The FDR correction [15] reduces the number of
false negatives by controlling the expected proportion of rejected null hypothesis without
significantly expanding the number of false positives. The control of the FDR is calculated

as follows: p-values from all the different V; tests are first arranged in increasing order
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(p1 < p2 < ... <pg <..<pn,),and then the null hypothesis is rejected for links until
the p-value of rank k4, is such that pg, .. < kmee ap. Here, we will mostly use the
statistical validation with FDR correction but results with the Bonferroni correction will
also be applied. It should be mentioned here that when the Bonferroni correction does

not provide any rejection, this is also the case for the FDR correction.

Comparing the different partitions

For our comparison we shall apply two widely used indicators. The first is the adjusted
Rand index [157] and the second is an adjusted version of the Wallace index [181]. In
other words, the comparison is made by considering adjusted versions of the accuracy
and precision of the pairs of nodes observed in the given partition with respect to the
reference partition.

Let X and Y be two partitions (into communities) of the same projected network.

Here, we will use the following simple notations:

1. T'P: True positives are the node pairs that are in the same community under X
and Y.

2. I'P: False positives are the pairs that are in different communities under X, but

in the same cluster under Y.

3. T'N: True negatives are the pairs that are in different communities under X and

Y.

4. F'N: False negatives are the pairs that are in the same communities under X and

in different ones under Y.

As for accuracy, it is usually referred to as the Rand index in the case of graph clustering.

This is the fraction of true results among the total number of cases examined. Namely,

B TP +TN
TP+ FP+TN+ FN’

RI (5.7)
The Rand index varies between zero (absence of any accuracy in the given partition)
and one (total accuracy in the partitioning). However, also in the presence of random
partitioning a certain amount of accuracy may arise by chance. To take into account this
possibility an adjusted version of the Rand index has been introduced [90]. It is defined

as

(TP+TN)—E(TP+TN)
(TP+FP+TN+FN)—E(TP+TN)’

ARI = (5.8)

where E(T'P + T'N) is the expected value of the true assessment between a random
partition and the reference partition. For a random partition compared with another
partition the value of ARI is on average close to zero. Negative values of the index
describe cases where the membership of the two partitions is very different from that in
a random case. By considering a set of N elements, and two partitions of these elements
X ={X1,Xo,..., X, }and Y = {¥1,Y5,...,Y;} and by defining n;; as the number of
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elements in common between partition X; and Y}, the Adjusted Rand index can also be

written as

> () =[S0 2 ()] /()

ARI = . b 5 , (5.9)
LS @)+ B - 2@ sG] /0)
where a; = Zj N and bj = Z: Nij.
The precision of the pairwise classification is defined as
TP
e Nl
TP+ FP (5.10)

When two memberships are compared pairwise, the precision is usually referred to as
one of the Wallace indices. Also for the case of the Wallace index, one can consider an

adjusted version of it. Hereafter we provide the definition of an adjusted version of the
Wallace index that we call the Adjusted Wallace Index (AW )

TP —E[TP]

AWT = 5.11
TP+ FP—E[TP| (5.11)
where (TP + FP)(TP + FN)
+ +
E[TP] = . 12
TP = G T FP+ TN L FN (5.12)

We note that E(T'N) can similarly be defined to calculate Eq. 5.8. It is also worth
mentioning that AWI varies between —oo and one. A value of one indicates that the
partition obtained for a certain number of pairs is fully included in the reference partition.
In Fig. 5.1, we provide an illustrative example. The correct partition is indicated by the
different boxes, i.e. the system has four communities of different size. In each panel,
different colors indicate an alternative partition relative to the reference one. In the
example, the alternative partition has eight communities. In panel a) of the figure the
communities of the partition are always contained in the communities of the reference
partition and hence AWT is equal to one. In panel b) the communities shown by the
color attributes are only partially contained in the reference partition. For example the
red nodes are mainly in one box but two of them are associated with the largest and
the second largest community, respectively. In this example the AWI is equal to 0.88,
indicating a high but not perfect precision of the membership of pairs of nodes in the
given partition. In panel c) the identified partition is quite different from the reference
partition and almost all the boxes contain nodes of all colors. In this last case, AWI is
close to zero, i.e. the value of the Wallace index is close to the one expected by a random

null hypothesis.
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Figure 5.1. (a): AWI = 1.0 (b): AWI = 0.88 (c): AWI = 0.03

5.2.2 Performance Evaluation on Benchmark Networks
Synthetic Benchmark Networks

We will explain how our approach works by considering certain synthetic networks. To
be exact, we will generate bipartite networks with a well-defined community structure as
follows. Let ¢ be a fixed integer and {s{', ..., 8214} and {sP ..., SqB} be the partitions of
set A and B, having n and m nodes, respectively. For each set, the partitions are all of
the same size (namely Sy and Sg), thus n = ¢S4 and m = ¢Sp, respectively. We will
evaluate the effectiveness of modularity optimization by considering the effect of missing
or misclassified links on the artificial benchmark network.

Our synthetic network is first obtained by connecting nodes of set sf‘ to corresponding

B

nodes (s;

) of set B with probability p.. In this way with the parameter p. we control
the density of the links. This starting procedure leads to g disjoint bipartite components
of the bipartite network (see panels a) and b) of Fig. 5.2) as an example with ¢ = 5,
n =25, m = 16, and p. = 1).

With the aim of modeling possible sources of randomness, or errors present in the
original databases describing real systems, a second step in the generation of the artificial
benchmark is to perturb the network by using the following procedure. Let us call p, the
probability that a link is misplaced due to some randomness or error. For each node ¢
of set A with d; links, a fraction p,d; of links is selected and these links are randomly
distributed to all possible nodes of set B, avoiding multiple links. The probability p,
therefore quantifyies the uncertainty added to the generated artificial benchmark. In the
limiting case where p, = 0 we go back to the original network, while in the opposite
limit of p,., = 1 we get a completely random bipartite network that destroys the original
community structure. In panel ¢) of Fig. 5.2, we show the artificial benchmark network
characterized by ¢ =5, S4 =5, Sp =16, p. = 1, and p, = 0.2.

Results on the synthetic networks

We investigate the artificial network benchmark described above by performing com-
munity detection on the projected networks of it (typically on set A). Specifically, the
community detection is performed on three benchmark networks. The first is the weighted
projected network, referred to as the FULL network, connoting the fact that in this case

we use all information available for all the actual links and their weights, obtained by
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Figure 5.2. (a) network. (b) Adjacency projection of the benchmark. (c¢) Benchmark bipartite with
pr = 0.2,

starting from the bipartite network. The second one is a statistically validated version
of the weighted network got with the procedure described in Section 5.2.1 when the mul-
tiple hypothesis test correction is the Bonferroni correction. We will call this network
the Bonferroni network. The third one is a statistically validated version of the weighted
network obtained with the control of the False Discovery Rate (FDR) correction. We will
call this last type of network the FDR network.

For all three types of networks we performed a community detection by using mod-
ularity optimization. To be precise, we used the Louvain algorithm. To investigate the
robustness of the partition obtained with this algorithm we repeated the community
detection by using different starting sequences. With this approach the output of the
Louvain algorithm is stochastic and different partitions can be obtained for close values
of the modularity.

In Fig. 5.3, we have plotted the ARI and AWI values measured between the partition
obtained by performing community detection of the three types of projected networks
and the reference partition. The different settings of the benchmark were decided by
choosing S4 = 50, S = 50, p. = 0.8, ¢ = 50 and several values of p, ranging from 0.3
to 0.9 in steps of 0.025. In the top panel of Fig. 5.3, we plotted the ARI as a function
of the probability of misplacement p, of a link in the bipartite network. For the FULL
network (green symbols), ARI is close to one for low values of p, and starts to decrease
for values of p, greater than 0.4. ARI has values close to zero when p, is greater than 0.9.
The failure of the community detection procedure in detecting the correct membership
is due to the fact that because of the misplacement of links, the algorithm is unable to
detect all the communities of the reference partition and it merges some of them. A
similar pattern of success is observed for the partitions obtained by SVNs. In fact, for

the FDR network (red symbols) we can observe a value of ARI close to one for low values
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Figure 5.3. ARI and AWI measured between the partition obtained by performing community detection
of the three type of projected networks (FULL (green symbols), FDR (red symbols) and Bonferroni (blue
symbols) and the reference partition of the artificial benchmark. The benchmark was set by choosing
Sa =50, Sg = 50, p. = 0.8, ¢ = 50. Simulations and community detection are performed for several
values of p, ranging from 0.3 to 0.9 in steps of 0.025. Error bars were obtained by performing 10
realizations of the artificial benchmark

of p, and it is close to zero for high values of p,. It is worth noting that for the specific
parameters of the benchmark there is an interval of p, (0.5 < p < 0.7) where ARI of
the FDR network is higher than the corresponding ARI value of the FULL network. The
Bonferroni network has a similar pattern, but a decrease of ARI is seen for smaller values
of p, (pr = 0.5). The reason for the decrease of the ARI for the FDR and the Bonferroni
network is completely different from that for the full network. In fact for the partitions
of these SVNs, ARI decreases because the statistical test loses power and the number of
nodes present in them decreases as a function of p,.. This implies that the number of
disconnected subgraphs (present in the SVNs and/or detected by the Louvain algorithm)
increases, while the number of connected nodes decreases.

In the bottom panel of Fig. 5.3, AWI values for the three types of networks have been
plotted. For the FULL network, the pattern of AWI is similar to the pattern of ARI. It
starts very close to one and decreases to zero starting from p, ~ 0.4. The behavior of
AWTI of the SVNs is quite different. In fact it remains very close to 1 until it abruptly
reaches zero when the SVNs become empty, i.e. all the nodes are isolated. In other
words, the precision of the classification of pairs of nodes is always high for SVNs and
the problem they have in providing informative partitions is not precision but rather
accuracy. All the partitions provided by them are statistically verified, but the level of
accuracy progressively decreases in the presence of high levels of link misplacement.

So far we have investigated the role of the link misplacement in the detection of com-
munities of the artificial benchmark. Another source of difficulty in community detection
in real systems may originate from an insufficient coverage of the data. For this reason we
evaluated the performance of our approach on artificial benchmarks characterized by a
different level of link coverage. In Fig. 5.4, we have plotted ARI and AWI for simulations
got by setting the same parameters used previously for p, = 0.6 and different values of
P ranging from 0 to 1 in steps of 0.05.

Panels (a) of Fig. 5.4 indicate that the ability of the community detection algorithm to
detect the underlying benchmark decreases with decreasing p. both for the FULL network
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Figure 5.4. Homogeneous Set. All simulations were obtained by setting p, = 0.6 and ¢ = 20. ARI values
between the obtained partition and the underlying benchmark for (a) different values of p. ranging from
0 to 1 in steps of 0.05, Sy = Sp = 50, (b) Sa ranging from 5 to 100 in step of 5. S = 50 and p. = 0.8,
and (c) Sp ranging from 0 to 1 in steps of 0.05, S4 = 50 and p. = 0.8. In panels (d), (e) and (f) we have
AWT values obtained using the same parameters as those for the corresponding ARI. The average value
is obtained by performing ten different realizations. The error bar indicates one standard deviation.

and also for the SVNs. However, in this case the reason for this failure is also different
for the two approaches. In the case of the FULL network the algorithm fails to detect the
correct partition because it progressively merges several communities progressively when
P decreases. Despite this, the major problem observed for the partitions got from SVNs
is due to the fact that the accuracy of the statistical validation decreases for values of p.
lower than 0.7. Again panel (b) of Fig. 5.4 tells us that the problem is, however, not so
much a problem of precision, as previously observed in our investigations, as a function
of py.

In summary, both as a function of p, and as a function of p. the partitions observed
with the approach of SVNs are partitions which are very precise in classifying the mem-
bership of pairs of nodes, although they might present a poor accuracy in the presence
of high values of p, or low values of p.. The membership obtained by investigating the
SVNs can therefore be viewed as statistically validated cores of the communities present

in a given network.

5.2.3 A Case-study on Real Data

We will also investigate two widely studied real bipartite networks. The first is a the
bipartite network of scholars and papers posted in the cond-mat archive [144]. The
second is a classic bipartite network of actors and movies obtained by using information
present in the International Movie Data Base (IMDB).

Co-authorship network

We will first investigate a co-authorship bipartite network. This bipartite network was
constructed by Mark Newman based on preprints posted to the Condensed Matter section
of arXiv E-Print Archive between 1995 and 1999. The dataset is available on the web page
https://toreopsahl.com/datasets/ and it consists in 16, 726 authors and 22,015

papers. Our analysis was limited to the largest connected component of 13,861 authors
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and 19,466 papers. We projected the bipartite network for the above set of authors.
We also evaluated the FDR projected SVN. The FULL network has 44,619 links and
the FDR network has 7,768 links. We performed community detection on them with
the Louvain algorithm. For each network, the community detection was performed by
applying the algorithm 1000 times with different initial conditions.

The 1000 partitions obtained for the FULL network have modularity ranging from
0.864 to 0.867. To investigate the degree of similarity among partitions of top values
of modularity we selected partitions with modularity higher than the one of the 99 per-
centile of the 1000 outputs of Louvain algorithm. In particular, we selected 10 out 1000
partitions of highest modularity. We then estimated the ARI between all distinct pairs
of these 10 partitions. These 45 pairs have an average mutual ARI of 0.65 with values
ranging between a value of 0.59 (minimum) and 0.71 (maximum). As already noted in
previous studies [81, 190], these partitions are quite different from each other in spite of
the fact that the modularity of the partitions is almost identical (bounded within the
interval 0.8666,0.8670). We got a quite different result when we considered the top 10
partitions obtained by performing community detection in the FDR SVN. In fact these
10 partitions are the same and the ARI among all of them is one. It worth noting that the
FDR partition is not fully contained in any partition obtained from the FULL network.
In fact, the interval of the AWI index is quite different from one and it covers a relatively
limited interval of values (0.57,0.66).

By investigating the links and the communities that are obtained with SVNs, we can
extract “cores" of the communities that are statistically robust. These “cores" are also
quite stable with respect to errors that might be present in the database. To make this
point explicit, we put some noise in the database by modifying it in a similar way to
what we did with our artificial benchmark networks when we used values of p, different
from zero. In panel (a) of Fig. 5.5, we have plotted ARI values between the best partition
of the FULL, that we label as GO, and the 100 best partitions obtained for values of
p, ranging from 0.05 to 0.3. In the same panel we also show the results of an analog
investigation performed for the FDR SVN. The partitions obtained from FDR SVNs are
always significantly more robust to noise that the ones obtained by performing community
detection in the FULL network. In panel (b) of Fig. 5.5 we show the AWI for the same
investigations. It is worth noting that similar to what we observed for the artificial
benchmark networks, the cores of communities detected by investigating the FDR SVN
show a decreasing similarity (i.e. ARI values) with the uncorrupted partition GO, not due
to decrease of precision but rather due to decrease of accuracy. In fact, the AWI value of
FDR does not go below 0.85 for all values of p,, whereas we observed values of the AWI
as low as 0.1 of the partitions obtained from the FULL network when p, = 0.3. In other
words, the informativeness of the detected cores of communities is robust with respect to
noise added to the database. This behavior is similar to that observed for the artificial

benchmark.
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Figure 5.5. Co-authorship database. (a) The average ARI value between 100 partitions of the FULL
network (blue symbols), the Bonferroni SVN (Green symbols), and FDR SVN (red symbols) obtained
for different values of p, and the uncorrupted best partition GO. Different partitions of high modularity
are obtained with the Louvain algorithm using different initial conditions. (b) The average AWI of the
same partitions.

IMDB

The second dataset we investigated was the classic bipartite system of actors and movies.
We downloaded data about this system from the International Movie Data Base (IMDB)
(http://www.imdb.com/interfaces). From the information given in the database we
constructed several bipartite networks. A link between an actor and a movie is considered
if the actor played in that movie, during a selected period of time. For our study we chose
all movies present in the database during the time period from 1950 to 2015, with the
exception of TV series, talk shows, animation films, short and adult movies.

An analysis for different periods of time was defined by a time-window of 5 years
starting from 1950. Within each selected time interval, we constructed the bipartite
network that lists movies released in that period and all the actors that played in these
movies. As for the previous system, an analysis was performed on the largest connected
component of the period in question. The bipartite networks were projected onto the
movie side. The results of our investigations are summarized in Table 5.1 later on. Each
row of the table refers to a different time period of investigation labeled by the first year
of the chosen time period. The size of the investigated projected networks varied over
time from the lowest value of 9,143 nodes and 686,398 links to the highest value 127,911
nodes and 1,487,598 links for the periods 1950-1954 and 2010-2014, respectively. The link
density for the FULL projected network of movies varied from 1.82 10~ (for 2010-2014)
to 1.64 1072 (for 1950-1954), i.e. in all cases the projected networks are quite sparse. The
Bonferroni and FDR SVNs are significantly sparser than the FULL network. Actually,
the percentage of the all links observed in them never exceeds 13.5 % for FDR and 2.6 %
for Bonferroni SVNs (see the third and fourth columns of Table 5.1).

For each period of time and for the FULL, the Bonferroni, and the FDR SVNs we
obtained 1000 output partitions using the Louvain algorithm with different initial condi-
tions.To evaluate the differences observed between pairs of partitions obtained we com-
puted the ARI among the 10 partitions of the 99 percentile of the 1000 best outputs. The

average value of ARI is reported in the sixth, seventh, and eight column of Table 5.1 for
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Figure 5.6. IMDB database. Time period 1990-1994. (a) The average ARI value between 100 partitions
of the FULL network (blue symbols), the Bonferroni SVN (green symbols), and FDR SVN (red symbols)
obtained for different values of p, and the uncorrupted best partition GO. Different partitions of high
modularity are obtained with the Louvain algorithm using different initial conditions. (b) The average
AWT of the same partitions.

the FULL, the Bonferroni, and the FDR networks, respectively. The values of ARI are
always above 0.9 for all types of networks, suggesting that for this database the modu-
larity optimization of the FULL network provides quite reliable results in most cases. In
fact, values of the ARI lower than 0.97 are observed only for the last three time periods,
suggesting that the reliability of the modularity optimization is very high for several time
periods except the last three. The partitions obtained with the SVINs networks are rather
stable for all time periods including the last three indicating that, for this database as
well, SVNs detect cores of communities. This conclusion is also supported by the observed
AWT values between the Bonferroni and the FULL network (ninth column of Table 5.1),
and between the FDR and the FULL network (tenth column of Table 5.1). In both cases
the AWT is very close to one for all time periods except the last three, when the modularity
optimization of the FULL network becomes less reliable.

As for the IMDB bipartite networks of the period 1990-1994 we included noise in the
bipartite network by modifying it in a similar way to that with our artificial benchmark
networks and with the co-authorship database. In panel (a) of Fig. 5.6 we have plotted
the average value of ARI between 100 partitions of the FULL network obtained for values
of p, ranging from 0.05 to 0.3 and the best partition (GO observed in the absence of
noise. In the same panel we also show the results of an analogous investigation performed
for the Bonferroni and FDR SVNs. The partitions obtained from FDR SVNs are for a
large interval of p, significantly more similar and therefore more robust to noise than
those obtained by performing community detection in the FULL network. In panel (b)
of Fig. 5.6, we have plotted the AWI values for the same investigations. Again the AWI
value is close to one for the partitions of the SVNs, confirming once again the high degree
of precision of the method in the detection of cores of communities. As for the previous
cases, by combining the two measurements, we find that the decreasing values of the ARI
with the uncorrupted partition GO for the Bonferroni and the FDR SVNs are not due
to a decrease in precision, but are rather it is due to a decrease in accuracy of the SVN
method.
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Table 5.1. Summary of IMDB investigations.

Time | Nodes Links Bonf % FDR % AVG(ARI) AVG(ARI) AVG(ARI) AWI AWI
period of links  of links Full Bonf FDR (Bonf,Full) (FDR,Full)
1950-54 | 9143 686398 1.4 8.2 0.992 (0.985,0.999) 0.994 (0.987,1.0)  0.92 (0.857,0.987) 1.00 0.98
1955-59 | 11253 519240 1.8 9.1 0.994 (0.984,1.0) 1.0 (1.0,1.0) 1.0 (1.0,1.0) 1.00 0.97
1960-64 | 12392 506639 1.9 10.7 0.997 (0.994,1.0) 1.0 (1.0,1.0) 0.998 (0.991,1.0) 1.00 0.97
1965-69 | 14782 633135 2.1 10.7 0.979 (0.958,0.995)  0.995 (0.989,1.0) 0.992 (0.979,1.0) 1.00 0.98
1970-74 | 15958 620634 2.2 11.1 0.982 (0.963,0.996) 0.993 (0.982,1.0) 0.978 (0.944,1.0) 0.99 0.97
1975-79 | 14996 522389 2.6 13.3 0.981 (0.971,0.995) 0.998 (0.997,1.0) 0.988 (0.971,0.998) 0.99 0.95
1980-84 | 15401 485082 2.5 135 | 0.991 (0.978,0.998) 1.0 (1.0,1.0)  0.984 (0.964,0.999) 1.00 0.95
1985-89 | 16846 569253 2.1 13.2 0.99 (0.983,0.997) 1.0 (1.0,1.0) 0.989 (0.974,1.0) 1.00 0.94
1990-94 | 17001 458604 1.9 10.2 0.977 (0.94,0.996)  0.998 (0.997,1.0) 0.984 (0.969,0.998) 0.99 0.98
1995-99 | 20311 402736 1.4 7.1 0.982 (0.974,0.989) 1.0 (1.0,1.0) 0.996 (0.982,1.0) 1.00 0.97
2000-04 | 31231 470828 1.4 7.2 0.961 (0.934,0.975) 1.0 (1.0,1.0) 0.96 (0.838,1.0) 0.98 0.93
2005-09 | 62496 788713 1.5 5.7 0.956 (0.937,0.969) 1.0 (1.0,1.0) 0.995 (0.986,1.0) 0.93 0.72
2010-14 | 127911 1487598 1.1 4.4 0.908 (0.859,0.96)  0.991 (0.984,1.0) 0.972 (0.933,0.997) 0.88 0.70

5.3 Rating and Ranking Nodes in Bipartite Networks

In the previous section we dealt with community detection in bipartite network. Now
we will continue with the analysis of bipartite networks and in this section we will define
a generalized version of the HITS algorithm that can be applied to weighted bipartite
networks for rating and raking purposes. Although, it is a case-study, here we use this
HITS based algorithm only for evaluating the quality of wine tasters, such rating and
ranking methods are well suited for the investigation of user-item type rating databases

that form the basis of recommendation systems, say.

5.3.1 A Generalized co-HITS Algorithm

Consider a bipartite graph G = (A, B, E) where A = {a,ay, ..

{b1,ba, ...
Now G is a weighted directed graph. Given a; € A and b; € B, let w(a;b;) > 0 and
w(bja;) > 0 denote the weights of the directed edges (a;,b;) and (bj, a;), respectively;

,ap,} and B =

, by, } are the two independent sets of n and m nodes and F is the set of edges.

otherwise let w(aibj) = w(bjai) = 0. We assume, that the weights are normalized such
that ijeY w(abj) = 1 and ) ,w(bja;) = 1 (this can be assumed without loss of
generality, e.g let w(a;b;) = w'(a;b;)/ oy w'(aib;), where w’ was the original weight
of the link without normalization). The weight w can be viewed as the transition prob-
ability from a node in A (or in B) to a node in B (in A) of a random walk process.
On the nodes of this bipartite graph a random walk can be naturally defined, where
W/ = W(AB) = (w(a;b;));; € R™™ denotes the transition matrix from A to B and

= W(BA) = (w(b;a;));i € R™™ denotes the transition matrix from B to A. For
the nodes on one side, a “hidden” transition probability w(aiak) from a; to a; can be
defined as

w(aiar) = Y wlab;)w(bjar),

bjEB

(5.13)

and using this definition ) aned w(a;ay) = 1 will also hold.
%
Note that W4 = W(AA) = WW

matrix over A; the Wpg matrix over B can be obtained in a similar way.

= w(a;ar);x € R™ ™ is a hidden transition probability

The generalized co-HITS algorithm can be applied on such directed weighted bipar-
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tite graphs like that defined above. The algorithm assigns scores to the nodes of the graph
via an iterative procedure as follows. Let p,? and q? be the initial scores of the nodes a;

and bj, respectively. The algorithm is described by the following recursion equations:

pi= (1= Xa)p) +Aa Z w(bja;i)g;, (5.14)
bjEB
and
g = (1= Ap)g) + A5 Y wlaib;)p;, (5.15)
a;EA

where A4 € [0,1] and Ap € [0, 1] are real-valued parameters. By substituting Eq. 5.15
for g; in Eq. 5.14 we see that

pi = (1=2a)p) +Aa(1=Xp) Y w(bjai)g) +

b]'EB

+AaAp Z w(aka;)p. (5.16)

ap€A

It can be easily seen that the HITS algorithm, and the personalized PageRank algorithm
[86] are just special cases of the Co-HITS algorithm. If Ay = A = 1, then Eq. 5.16
becomes

P = Z w(ara;)pe, (5.17)

ax€A

which is one part (e.g. for hubs) of the original HITS recursion. It is worth noting here,
that this is the stationary state of the Markov chain defined by a random walk on the
weighted graph defined above [147]. And if Ap = 1, then

pi=(1=Aa)p) +Aa Y wlarai)ps, (5.18)

ar€A

which is the recursion formula of the personalized PageRank algorithm.

5.3.2 A Case-study: Wines and Tasters

We investigated how the generalized co-HITS algorithm can be used to determine the
quality of wine tasters. However, there are several methods available for evaluating the
quality of wines, often by using the scores that a wine received in a wine tasting event,
but it is still an open question that how to evaluate the competence and professional
skills of the tasters, also mentioned in the article of Csendes and Antal [43]. Here we
applied the generalized co-HITS algorithm for the datasets of two wine tasting events
and compared the results with two simple statistical methods. The experimental results
show that co-HITS algorithm produced promising results, and they seem to confirm our
apriori knowledge about the tasters involved. Furthermore it proved to be more sophisti-
cated than the statistical methods: both of them produced unreasonably large differences

between the tasters and ranked those tasters too high who (perhaps due to their incom-
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petence) gave the average of the scores of some other tasters for the wines.

Usually, wine tasting is a personal and subjective procedure for determining the quality
of wines. Different wines are scored in an anonymous way called blind tasting (i.e. the
tasters do not know which wine is being tasted). Each taster scores the wines she or he
tasted and the wines are ranked according to these scores. Before we apply the co-HITS
algorithm to provide a ranking of the tasters according to their competencies, we shall

consider the following natural assumptions:

1. First of all, the wines are sorted by the points they received (i.e. there is no reference

value for them).

2. Tasters are sorted by only considering the scores that the wines received from the

tasters.

3. There is no cheater among the tasters (i.e. they score more or less on the “same

scale”).

Now, we will describe how the Co-HITS algorithm can be applied on the wine tasting
data. Let A and B (defined previously) be the set of wine tasters and wines, respectively.
We start from the same p{ value for each a; € A taster. Let w’(a;b;) be the score
that wine b; obtained from taster a; and let w(a;b;) = w'(a;b;)/ EbjeB w'(a;b;) be its
normalization. To be consistent to our first assumption, we define the q? value (for wine
b;) as the average of the scores that the wine received. Then, we define the weight w(b;a;)
in the following way. Let us suppose that wine b; was tasted by ¢ different tasters and
let us define

D(b) = |q? — (b))

a; €A

, (5.19)

which is the sum of differences from the average score received by wine b;. Finally, let

| D)) = [ — w'(aidy)]]

Note that ), ., w(bja;) = 1, hence each weight w(b;a;) can be regarded as a transition
probability from b; to a;. Fig. 5.7 shows an example for the calculation of the weights. The
weight between two tasters a; and aj can be defined as the hidden transition probability
defined by Eq. 5.13. Then the solution p = (p1,p2,...,Pm) of the HITS equation
p = Wap provides the evaluation and ranking of the tasters.

We tested our model in the selected data of two wine tasting events. The first event
was the Szeged Wine Fest in 2009, where 104 wines were blind tasted by four groups of
five tasters. Each group tasted 33-34 different wines. The second dataset is a bit more
specific: only red wines from the wine region of Villany were blind tasted by seven groups,
each containing six tasters. Each group tasted 40-48 different wines. In both events, each
wine was scored in accordance with the widely used and accepted international 100 point
rating system.

We compared the results obtained by using the Co-HITS algorithm with two simple

statistical methods which seems natural to use for our purpose. The first statistics-based
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Taster 1

Wine 1 Wine 2 Wine 3
Taster 1 Taster 2 Taster 3
4 512 32
Wine 1

Figure 5.7. Weights of the graph when taster 1 assigns the scores 20, 30 and 70 for winel, wine2, and
wine3, respectively (up) and when wine 1 received the scores 20, 30, and 70 from taster 1, taster 2 and
taster 3, respectively (down).

ranking method (SM1) evaluates the sum of differences, S;, from the average score that
each wine received for each taster a;. Then, the tasters are ranked according to the

increasing order of the S; values. Formally,

Si= ) lg) — w'(aiby)]. (5.21)

bjeB

We consider the normalized points (1 + mingea.S;)/(1 4 S;) for all a;, (thus, the score
of the taster with minimal S; value will be 1).

The second statistical method (SM2) we used was the Pearson correlation coefficient
between the scores that a taster asssigned to a wine and the average score that wine
received. In other words, we are interested in how the scores of a taster correlate with
the average scores of the wines received. The calculated values are normalized such that
tasters with the highest correlation get 1. Table 5.2 and Table 5.3 show the detailed
results obtained by applying the three different methods on the Szeged Wine Fest data
and wine tasting data from the wine region of Villany, respectively. The calculated values
can be interpreted as normalized merit values where the larger is the better. For each
method the best taster of each group is shown in bold.

For better illustration, Fig. 5.8 shows the summarized results on the Szeged Wine Fest
data. For each taster, the three different colored bars from the left to the right refers to
the methods used for calculations, namely Co-HITS, SM1, and SM2, respectively. The
results show that the Co-HITS algorithm produces more sophisticated results than SM1
and SM2. The stochastic process calculates closer values between the tasters. Consistent
with this fact, much larger differences that the statistical methods produced can hardly
be justified based on the concrete dataset. It should be mentioned that all three methods
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Table 5.2. Test results on the 2009 Szeged Wine Fest data

Team 1 Team 2
Taster || co-HITS SMI1 SM2 co-HITS SM1 SM2
1 1.000 1.000 1.000 | 1.000 1.000 1.000
2 0.963 0.870 0.999 | 0.824 0.489 0.919
3 0.960 0.753 0.984 | 0.917 0.677 0.942
4 0.938 0.743 0.969 | 0.925 0.687 0.955
5 0.948 0.743 0.719 | 0.977 0.940 0.998
Team 3 Team 4
Taster || co-HITS SMI1 SM2 co-HITS SM1 SM2
1 1.000 1.000 1.000 | 0.987 0.709 1.000
2 1.000 0.470 0.955 | 1.000 0.856 0.932
3 1.000 0.496 0.884 | 0.999 0.713 0.738
4 1.000 0.475 0.961 | 0.992 0.735 0.917
5 1.000 0.510 0.924 | 0.992 1.000 0.988
Table 5.3. Test results on the Villany data
Team - co-HITS
Taster 1 2 3 4 5 6 7
1 0.843 0.908 0.890 1.000 1.000 0.969  0.958
2 0.970 0.941 0980 0.985 0.994 0.984 0.961
3 0.894 0.986 0.941 0.967 0.955 1.000 0.933
4 0.957 1.000 0.977 0.946 0.944 0.982 1.000
5 0.966 0.899 1.000 0.978 0.938 0.944 0.932
6 1.000 0.901 0.870 0.950 0.966 0.945 0.944
Team - SM1
Taster 1 2 3 4 5 6 7
1 0.491 0.556 0.495 0.991 0.901 0.891 0.746
2 0.779 0.672 0.932 1.000 1.000 0.932 0.760
3 0.478 0.794 0.625 0.872 0.839 1.000 0.870
4 0.638 1.000 0.892 0.665 0.644 0.919 1.000
5 0.781 0.613 1.000 0.781 0.651 0.822 0.705
6 1.000 0.492 0.505 0.856 0.829 0.739 0.678
Team - SM2
Taster 1 2 3 4 5 6 7
1 0.939 0.954 0.965 0.982 1.000 0.983 0.898
2 0.971 0.933 0.943 0.998 0.999 1.000 1.000
3 0.829 0.961 0.804 1.000 0.997 0.947 0.963
4 0.949 1.000 0.966 0.913 0.934 0.952  0.981
5 0.958 0.951 1.000 0.921 0.964 0.935 0.928
6 1.000 0.917 0.850  0.999 0.997 0.923 0.962

produced the same results for the best taster in many cases and the differences mostly

appeared in the rest of the ranking lists. It can be observed that SM1 prefers the “closeness

to the average" (due to its definition) and SM2 is better if the scores co-movement with

the average is higher. It follows from these observations that both statistical methods can
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Figure 5.8. Evaluation of the tasters by the different methods on the Szeged Wine Fest data

offer an opportunity for cheating, while the stochastic nature and iterative calculation of
co-HITS scores is able the detect the outliers. The network-based algorithm considers the
wine tasting data not only as a database that contains the scores of individual tasters,
but also as a complex network that shows each tasters’ relationship to one another. The
relation between the tasters can be defined well for the purpose of this investigation.
Therefore, the Co-HITS algorithm may give a better picture about the quality of tasters
and as a byproduct it may give a better picture about the wines as well. Moreover, one
of the main advantages of the graph-based method is that it also works on incomplete
datasets, where not all the wines are tasted by a taster, or a taster tastes just a portion

of all wines.

5.4 Summary

In this chapter, after introducing bipartite networks and some concepts for analyzing
them, we showed that information present in a bipartite network can be used to detect
cores of communities of each set defining the bipartite system. Simulation results revealed
that the detected cores are highly stable and their detection is very precise although the
methodology may, in same cases, be not so accurate. The cores of communities are found

by considering statistically validated networks obtained by starting from the original
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bipartite network. The information carried by these statistically validated network is
highly informative and could be used to detect the membership of the investigated sets
that are robust with respect to the algorithm of detection and to the presence of errors
or missing entries in the database. The usefulness of the statistical validation approach
can be assessed by a measure of similarity between pairs of partitions that are obtained
by a stochastic community detection algorithm and that differ between them only for
a tiny value of the function of the quality of a clustering. Here, we used the Adjusted
Rand Index (ARI) and an adjusted version of the Wallace Index (AWI). In the presence
of partitions characterized by very similar values of the quality function and presenting
low values of ARI between them, one should consider it informative only on subsets of
those partitions that are statistically stable. We suggest that in such cases investigations
should focus on cores of the partitions obtained by performing community detection on
SVNs. In this study, we considered an algorithm based on modularity optimization, but
we think that our results are general and not strictly related to the chosen algorithm.
They should be valid for any algorithm based on the maximization of a quality function.

Next, we defined a generalized version of the HITS algorithm that can be applied
to weighted bipartite networks that, for instance, were obtained from user-item rating
databases. However, as a case study, we used the HITS based algorithm to evaluate
the quality of wine tasters, which may also be applicable in areas where people evaluate
someone or something, such as sports that include figure skating, diving and synchronized
swimming; social events that include singing contests and other tasting events such as a
cooking competition or beer tasting. We observed that our ranking method performed
well. It was able to filter out incompetent users, who, for example, gave the average
score of the others for the items. Furthermore, our method can provide a clearer picture
about the competence of users. In future work, we plan to refine the HITS algorithm
for various applications: it would be interesting to use other modifications of HITS, and
different rules for the weights of the network. We could analyze suitable null models and
artificially generated data sets, and discuss the advantages and drawbacks of applying

rating algorithms like this.



Chapter 6
Summary

Research on mining graph and network data has been continuously growing over the past
few years, and it has become the most promising approach for extracting knowledge from
relational data and investigating complex systems. It has become natural to represent
such data and systems by means of graphs, where nodes stand for individuals or enti-
ties of the system, while edges represent the interaction or some relationship between
pairs of these individuals or entities. Network theory, often combined with data mining
tools, attempts to understand the origing and characteristics of networks that unify the
components in various complex systems. This dissertation provides a summary of the
author’s work and results in the area of complex networks modeling and analysis. The
main focus of this dissertation was to present general concepts of modeling with net-
works, network analysis and also present the author’s results concentrating on the aim of

extracting meaningful information from the modeled systems.

6.1 Characteristics of Real-world networks

The algorithms and methods developed and described in this thesis are defined on graphs
that seek to model real-world complex systems. The first chapter of the dissertation
provided a brief introduction to graph theory and an overview of the main definitions that
characterize the structural properties of complex networks. We paid special attention to
the community structure and core/periphery structure as global characteristics of complex
networks and stochastic graph algorithms, namely PageRank and HITS since they are
widely-used graph-based data mining tools.

6.2 Network Models for Some Real-life Problems

In Chapter 2 we presented several examples of real-world systems that can be modeled
by networks. We highlighted the use graph-based data mining and network analysis as
a first step to investigating such systems. Each case study explains, that after collecting
appropriate data, how the network approach, especially concerning community detection
and rating algorithms, can be used to extract meaningful information from the system we

modeled. New methods are developed by slightly modifying some widely-used stochastic

86
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graph algorithms. The results were published in a journals [44, 125] and conference
proceedings [87, 124, 126]. The following paragraphs briefly summarize the main results
of the chapter.

A local PageRank approximation with a case study

Although in many applications PageRank values need to be computed for all nodes of the
graph, there are situations where we are interested in or capable of computing PageRank
scores only for a small subset of the nodes. A local PageRank approximation method
was developed based on the one proposed in [37] to assign “scientometrical” scores to
research publications based on their local co-citation networks. We defined a “reaching
probability” score for the same reason. As a case study, the local co-citation network
of Egervary’s famous paper was examined and we saw that the network-based methods
provided a more realistic picture of the importance of that paper than other scientometric

indices.

Analyzing public transportation networks

Several network models were defined for a public transportation network (PTN) and a
comprehensive analysis involving the PTN of five Hungarian cities was carried out. We
were the first who performed a comprehensive network analysis (using modern network
theoretic tools) of the public transportation systems of these cities. Our study examined
directed and weighted edges, where the weight of a link referred to the morning peak hour
capacity of the represented line, got by using the capacities of the vehicles (bus, tram,
trolleybus) and schedules of the lines that go though that link. We compared the global
and local characteristics of the networks and showed that they reveal a small-world feature
(in terms of diameter and average path lengths) and scale-free distribution of various node
centrality measures. We got a detailed picture of the differences in the organization of
public transport, which may have arisen for historical, geographical and economic reasons.
As a result, we highlighted some inconsistencies, organizational problems and identified
which are the most sensitive routes and stations of the network justified by transportation

engineers.

Introduce networks for educational data mining

We introduced a novel example of a real social system taken from the world of public
education that can be modeled by networks. We proposed different network represen-
tations of relational educational data and mentioned several appropriate graph mining
tools that could be used to analyze them. We discussed what kind of information could
be extracted by their usage. Depending on the construction of the underlying graphs,
we introduced four families of network models and performed a case study using one
of them. With the intention of evaluating the achievements of students and generating
a ranking among them, we defined a modified PageRank algorithm. We observed that

the PageRank scores provide a fairly good relative order of the students with respect
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to their achievements. Moreover, their progression can be monitored continuously using
this method. Lastly, we pointed out several advantages of using graph-based data mining

techniques in educational systems.

6.3 Network Models in Economics

In Chapter 3, we discussed various network models applied in economics and presented
case studies including the analysis of the timely evolution of an international trade network
and portfolio optimization using correlation-based financial networks. The results were
published in a journal [140] and a conference proceeding [75] and another paper submitted
to a journal [127]. The following paragraphs briefly summarize the main results of the

chapter.

Case-study on a trade network

We demonstrated how network analysis could be applied to the trade networks of coun-
tries. As a case study, we investigated the timely evolution of the trade network of the
European Union, focusing in particular on the evolution of communities and different
trade rankings of the countries. We found in the EU that there is a core (with Germany,
France and UK as leading economies) and a periphery (containing e.g. the former Come-
con countries and the Balkans). In the trade network, peripheral countries are contained
in the clusters of Russia and China, in contrast with the Western-European core coun-
tries that lie in clusters where the central nodes are Germany and the USA| respectively,

highlighting real economic ties among he EU countries.

Financial networks and portfolio optimization

The question of quantifying the degree of statistical uncertainty (usually called “noise”)
presents in correlation-based financial systems was addressed. We applied different filter-
ing techniques on the covariance matrix (in fact, on the correlation matrix obtained by
normalization) to filter out the part of information that is robust against statistical un-
certainty, and decrease the number of different elements in it. We used a Random Matrix
Theory approach, and two versions of hierarchical clustering methods. Moreover, to de-
termine the expected return of the assets we applied different statistical estimations. The
methods were first applied to correlation matirces (networks) and then used for portfolio
optimization. A large set of experiments revealed that using filtered correlation matrices,
the classic Markowitz solution can be outperformed in terms of realized returns and reli-
ability, which means that the realized risk and the estimated risk are closer to each other

using filtering procedures.
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6.4 Network Models and Linear Algebra for Rating and Pre-

diction

In Chapter 4, the problem of rating and ranking sport players and teams was addressed
from a network analysis perspective. A time-dependent PageRank method was designed
to rate players with the graph defined using the game results data. Our algorithm was
compared to several widely-used rating methods and it transpired that it provided a better
ranking and predictive power in some situations. We also proposed a novel rating-based
forecasting framework. The results were published in part in a journal [123] and some of
them will be published. The following paragraphs briefly summarize the main results of

the chapter.

Rating and Ranking in Sports

A novel ranking method which may be useful in sports like tennis, table tennis and
American football, especially where players or teams play only a subset of opponents,
was introduced and analyzed. In order to rank the players or teams, a time-dependent
PageRank method was developed and applied on the directed and weighted graph rep-
resenting players and game results in a sport competition. The method was tested on
the results dataset of the table tennis competition of the researchers of the Institute of
Informatics at the University of Szeged. The results obtained using our method were
compared with several popular ranking techniques. We found that our approach worked

well in general and that it had a good predictive power.

Forecasting in sports

We also proposed a novel rating-based forecasting framework. Against e.g. the well-
known Bradley-Terry model, the main idea behind the model is that if a rating correctly
reflects the actual relative performance of the teams in question, then the smaller the
change in the rating vector, containing the rating of the teams, and after a certain event
(e.g. win/loss) in an upcoming single game, the higher the probability will be that that
event will occur. The results using a time-dependent PageRank rating method were
compared to the Bradley-Terry predictions and the predictions of experts’ betting odds
based on their accuracy and predictive power. We found that our method outperforms
the Bradley-Terry model in some cases, but in the future we would like to carry out a

more systematic analysis of this.

6.5 Bipartite Network Models of Real-world Systems

In Chapter 5, we dealt with bipartite network models of complex systems. Such networks
include, for instance, diseases-genes networks, plants-pollinators mutualistic networks,
scientists-research papers cooperation networks and actors-movies networks. First of all,
amethodology was presented in order to find the core of communities in bipartite networks

and it was tested on synthetic benchmark networks and real bipartite systems. Then, we
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discussed how a generalized version of PageRank and HITS algorithms could be defined
for bipartite networks and, in a case study, we applied it on wine tasting datasets in order
to rank tasters based on their ability and professional skills. The results were published
in a journal [21] and appeared in conference proceeding [122]. The following paragraphs

briefly summarize the main results of the chapter.

Statistical validation and the core of communities in bipartite networks

We demonstrated that information present in a bipartite network could be used to detect
cores of communities of each set of the bipartite system being modeled. Using Monte-
Carlo simulations, the results indicated that the cores found are very stable and detecting
them is very precise although the methodology may not always be very accurate in a
statistical sense. The key concept was to consider statistically validated networks obtained
by starting from the original bipartite network. The identified communities of a given
set are robust against the algorithm of detection and to the presence of errors or missing

entries in the given database. Case studies on real data sets were also presented.

Rating nodes in bipartite networks

The question of rating nodes of a bipartite network was also addressed. A general frame-
work of a HITS-type algorithm was presented for that purpose and a case study on a
real data set was elaborated. We demonstrated that our method gives a clearer picture
about the competence of wine tasters than other available statistical methods that can
be readily applied here. Another important advantage of network-based methods is that
not each wine should be rated by each taster to calculate the ratings. This allows us to

use such methods for ranking users in a continuously evolving user-item rating database.
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6.6. Osszefoglal6

A hélozattudomény valamint a graf alapi adatbanyaszat valés komplex rendszerek ta-
nulmanyozasanak, illetve relacios adatokbol valé informécid kinyerés f§ eszkozeivé valtak.
Jelentdségiik rendkiviili mértékben megnétt az utobbi két évtizedben, koszénhetfen a
rendelkezésre all6 adatok robbanésszerd megnovekedésének, tovabba annak, hogy a graf
a matematikai modellezés egyik leghasznosabb eszkoze. Komplex rendszerek és relaciés
adatok graffal valo6 modellezése - mely graf csiicsai a rendszer entitésai, mig élei az en-
titds parok kozti valamilyen kapcsolatot, illetve hasonlosagot reprezentalnak - kézenfek-
véve valt. A halozattudomany, adatbanyaszati eszkozokkel kombinélva, valos rendszerek
graf modelljei szerkezetének és fejlddési dinamikajanak tanulméanyozasit célozza. Ezen
disszertacié a szerzé munkijanak és eredményeinek dsszefoglaldsa a halézatos modellezés
és halézatkutatas teriiletén. A f6 hangsulyt altalanos modszerek alkalmazasara és 4j 6tle-
tek bemutatasara helyeztiik, melyek célja mindig a modellezett valos rendszer vizsgalata

és informacio kinyerési lehetdségek feltarasa.

Valés halézatok jellemzbi

A dolgozatban bemutatott algoritmusok és mddszerek gréafokon, illetve grafokat leiré mét-
rixokon értelmezettek. Az elsé fejezet egy rovid bevezets, mely targyalja az grafelméleti
alapfogalmakat és attekintést ad komplex halézatok strukturalis tulajdonsigainak vizs-
galatarol. Itt targyaltuk tobbek koézt a haldzatok kozosség szerkezete és mag-periféria
szerkezete fogalmakat, mint globalis tulajdonsigok, illetve a PageRank és a HITS szto-
chasztikus graf algoritmusokat, mint széles kérben hasznalt grafos adatbanyédszati eszko-

zoket.

Valo6s rendszerek hal6zatos modelljei

A disszertacié mésodik fejezetében kiilonbozé valds rendszerek halézatos modelljeire 14t-
tunk példakat. Altalanos konkluzionk, hogy grafos adatbanyaszati modszerek alkalmazéasa
javasolt mintegy elsg 1épés a grafokkal modellezheté komplex rendszerek vizsgalataban,
majd az elemzés eredményeinek segitségével megfogalmazhato hipotézisek tesztelése mély
statisztikai eszkoztarral egy kovetkezd 1épcséfok lehet. Mindharom bemutatott esetta-
nulmény (hivatkozasi halozat, tomegkozlekedési halozatok, oktatési adatok vizsgilata)
jol szemlélteti a graf-banyaszati elemzés legfontosabb lépéseit: relevans adatok Ossze-
gytjtése, a graf modell(ek) megalkotasa, globalis tulajdonsagok vizsgalata (mint példaul
fokszam eloszlas és kozosség szerkezet), illetve a graf pontjainak és/vagy éleinek értékelése-
rangsorolasa. A elemzés segitségével informéciot kapunk a modellezett rendszerrdl, illetve
hipotéziseket fogalmazhatunk meg miikodésérsl, novekedésérsl és egyes részeinek, entita-
sainak rendszerbeli szerepérél. Ismert graf algoritmusok moédositisaval 4j moédszereket
fejlesztettiink és teszteltiink kiillénbozg§ problémakra. Az eredmények nemzetkdzi folyd-
iratokban [44, 125] és konferencia kiadvanyokban [87, 124, 126] jelentek meg. A kovetkezd

pontokban Osszegezziik a fejezet f6 eredményeit.
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Lokalis PageRank kézelitd algoritmus bemutatéisa és egy esettanulmany

Szamos alkalmazas esetén sziikséges a grafpontok PageRank értékének kiszamitasa, ugyan-
akkor vannak olyan szituaciok, amikor csak egy részgraf estén tudjuk és/vagy szeretnék
kiszamitani azokat. Egy lokalis PageRank kozelitd algoritmust adtunk meg a [37]-ban ja-
vasolt modszer egy valtozataként, tovibba definialtuk az ,elérési val6szintiség” értéket is,
elsgsorban tudomanyos publikiciok értékelésének céljabol. Esettanulmanyunkban Eger-
vari Jend hires cikkének [53| hivatkozasi kornyezetét vizsgaltuk a targyalt grafos adatbé-
nyaszati modszerekkel. Ramutattunk, hogy a halézatos megkozelités objektivebb képet

ad a mi fontossdgarél, mint més tudoméanymetriai indexek.

Tomegkozlekedési halézatok elemzése

To6bb halézatos modellt mutattunk be tomegkozlekedési halézatok vizsgalatara. FEset-
tanulmanyunkban 6t magyar varos tomegkozlekedésének atfogd haldzatelemzését adtuk
meg. Elssként végeztiink atfogod dsszehasonlité halozatelemzést (a modern halézatkutatas
eszkizeivel) magyar varosok tomegkozlekedési halozatain. A modelliinkben graf csucsai a
megalloékat reprezentaljak, élei iranyitottak és stlyozottak: az irany a két cstics kozti jarat
iranyat mutatja. A silyokat pedig a kozlekedd jaratok reggeli csicsidei kapacitésait és
menetrendjét felhasznédlva definidltuk. A halézatok globalis és lokélis tulajdonsigait ha-
sonlitottuk Gssze, és lattuk, hogy a kisvilag tulajdonsig megjelenik mind az Gthossz, mind
pedig egyes cstcs centralitisi értékek eloszldsa esetén. A haldzatok topologidja és egyes
lokalis tulajdonsagai kozti kiilonbségek f6leg torténeti, foldrajzi és gazdasagi okokbol fa-
kadnak. Ra tudtunk vilagitani néhany inkonzisztenciira és szervezésbeli problematikara,
tovabba kozlekedés mérnckdk Aaltal is megerdsitett érzékenynek ting csomépontokat és

dtvonalakat hatdroztunk meg.

Halozatos modellek oktatasi adatok vizsgalatahoz

Uj példat mutattunk halézattal modellezhets tarsadalmi rendszerre oktatasi adatokat
vizsgalva. Oktatasi adminisztracios rendszerekbdl kinyerhetd adatok kiilonbozé grafos
reprezentacioit mutattuk be és sorra vettiik a legkézenfekvébb hélézatelemzési és grafba-
nyészati lehetGségeket. Targyaltuk, hogy milyen tipusa és mélységii informacié nyerhets
ki ezen modszerek segitségével. Négy modellcsalddot mutattunk be, az egyiket részletes
esettanulmanyban is vizsgaltuk rangsorolasi céllal. A tanuldk fejlédésének vizsgalatahoz
és rangsorolasukhoz egy modositott PageRank algoritmust adtunk meg. Azt kaptuk, hogy
a tanul6k paronkénti 6sszehasonlitdsaval nyert hélézaton a a tanulékhoz rendelt PageR-
ank értékek alapjan egészen j6 sorrendet tudunk felallitani a tanulék kozott a tanulmanyi
teljesitményiikre vonatkozoan és folyamatosan kévetni tudjuk a tanulmanyi fejlgdésiiket.
Végiil ramutattunk a grafos adatbanyaszat hasznalatanak tovabbi elényeire és lehetésé-

geire oktatési rendszerekben.
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Hal6zatos modellek a kozgazdasagtanban

A harmadik fejezetben a kézgazdasagtan teriiletén alkalmazhaté halozatos modelleket is-
mertettiink. Két esettanulmanyt mutattunk be. Els6ként egy nemzetkozi kereskedelmi
halozat id6beli fejl6dését vizsgaltuk, majd korrelacio alapi pénziigyi halézatok alkalma-
zasat néztiik meg optimalis részvényportf6lié osszedllitasa céljabol. Az eredmények hazai
folyoiratban [140] és nemzetkozi konferencia kiadvanyban jelentek meg [75], tovabba nem-
zetkozi folyodiratban [127] keriilnek publikalasra. A kovetkezd pontokban Gsszegezziik a

fejezet f6 eredményeit.

Az eurdpai kereskedelmi halozat vizsgalata

Bemutattuk hogyan alkalmazhat6 a grafos adatbanyészat orszagok kereskedelmi halé-
zatdnak vizsgalatdra. Esettanulmanyunkban az Eurdpai Unidé orszdgai és a gazdasagi
nagyhatalmak idében valtozé kereskedelmi halézatat tanulményozzuk, fékuszalva a ko-
z0sségszerkezet valtozasaira és a kereskedelmi (import/export) rangsorok kialakulasara.
Megmutattuk, hogy a vizsgalt halézatok erds mag-periféria szerkezetet mutatnak. Ko-
z06sség keres$ eljarast alkalmazva lattuk, hogy a periférian 1év6 orszagok jellemzéen az
Oroszorszag, illetve Kina altal fémjelzett klaszterekbe esnek. Ezzel szemben a magban
1év6 orszagok a német és amerikai kozponta klaszterekben helyezkednek el. A kdzos-
ségszerkezet és grafalgoritmusok dltal kereskedelmi rangsorok egyiittesen objektiv képet

adnak az EU orszagai kozti gazdaséagi (fliggdségi) viszonyokra.

Pénziigyi haldzatok és portfélié optimalizalas

A fejezet mésodik részében korrelaci6 alapt pénziigyi hélézatokkal foglalkoztunk. Ezen
halézatok pontjai részvényeket reprezentalnak, két részvény kozott pedig az arfolyam
idGsoraik kozti Pearson korrelacios egyiitthatd teremt kapcsolatot. Az igy modellezett
rendszerben jelen levs statisztikai bizonytalansag (melyet gyakran zajnak is hivnak) mé-
résének és sziirésének lehet&ségeit targyaltuk. Kilonbozé technikikat alkalmaztunk, hogy
levalasszuk a matrix azon részét, mely robusztus a statisztikai bizonytalansaggal (véletlen-
szertiséggel) szemben, illetve, hogy csokkentsiik a benne 1év6 elemek szamat. A hasznélt
modszerek a véletlen matrixok elméletén, illetve hierarchikus klaszterezési eljarasokon
alapulnak. A szirési eljarasokon tal a varhato hozamok szamitasahoz is tObb statisztikat
kiprobaltunk. A mddszereket a Markowitz portfolié optimalizaldsi probléméara alkalmaz-
tuk, melynek célfiiggvényében implicit médén jelenik meg a részvények kozti korrelacio
alapu halézat. Bootstrap szimulaciés eredményeink azt mutatjak, osszhangban korabbi
teszteredinényekkel, hogy a klasszikus Markowitz megoldas javithato az elért hozamok,
illetve a portfélio meghizhatosaga, azaz a becsiilt és realizalt kockizat eltérése tekinteté-

ben.
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Ertékelés és rangsorolas halézatokban

A negyedik fejezetben sportolok és sportcsapatok értékelésén-rangsorolasan keresztiil mu-
tattunk be tovabbi haldzat alapu értékelési modelleket. Egy 4j, idéfiiggs PageRank mo-
dellt definialtunk és alkalmaztunk meccsvégeredmény adatok altal definidlt, dgynevezett
eredmény grafokra. Szintén ebben a fejezetben egy 1j elérejelzésre hasznalhato modellt
mutattunk be. Mdédszereinket t&bb, széles-korben elterjedt eljaréssal hasonlitottuk Gssze.
Az eredmények nemzetkozi folyoiratban [123] jelentek meg, tovibb egy résziik késsbb

keriil publikilasra. A kovetkezs pontokban dsszegezziik a fejezet f§ eredményeit.

Sportolék és sportcsapatok értékelése és rangsorolasa

Egy 1j, els6sorban sportokra kifejlesztett hasznalhatoé rangsorold médszert mutattunk
be és vizsgaltunk valos sporteredmény adatokon. A jatékosok, illetve csapatok rangso-
rolasdhoz egy idofliggs PageRank modszert adunk meg és alkalmazunk a sportverseny
eredményeit reprezentalo irdnyitott és silyozott grafon. Az eljarast az SZTE Informatika
Intézet belss asztalitenisz bajnoksidgénak adatain teszteltiik 6sszehasonlitva szdmos elter-
jedt rangsorolé médszerrel Eredményeink azt mutatjak, hogy modszeriink altalanosan jol

miikédik rangsorolasi célra és j6 predikcids erével rendelkezik.

Sporteredmények elérejelzése

Bemutattunk egy 1j, hal6zat alapt modellt sporteredmények elérejelzése céljabol. Szem-
ben a széles korben elterjedt Bradley-Terry féle paronkénti Gsszehasonlitasokon alapuld
modellel, a mi médszeriink alapdtlete az, hogy ha egy értékeld modszer pontosan tiikrozi
a csapatok kozti aktualis erdviszonyokat, akkor egy kdvetkezd mérkézés egy adott kimene-
tele annal valésziniibb, minél kevésbé valtoztatja meg ezt a relativ erésorrendet. Egy id6-
fiiggs PageRank értékel6t hasznalva hasonlitottuk dssze eredményeinket a Bradley-Terry
valészintiségekkel és a fogadési irodék altal adott oddsok alapjan szamolt valészintségek-
kel. Megmutattuk, hogy tobb esetben a médszeriink pontosabb és jobb predikciés erével
rendelkezik a Bradley-Terry modellnél, ugyanakkor megjegyezziik, hogy a modell alapos

tanulméanyozasa jovébeni kutatasok targyat képezi.

Val6s rendszerek paros graf modelljei

Az 6t6dik fejezetben komplex rendszerek paros (szerencsésebb, de kevésbé elterjedt elneve-
zésben kétrészes) graf modelljeivel foglalkoztunk. Tlyen hélozatok példaul a betegség-gén,
novény-beporzo, kutato-publikicio, vagy a szinész-film halozatok. Els6ként egy modszer-
tant mutattunk be kétrészes halozatok kozosségeinek, illetve kozosségei magjanak meg-
hatarozasara. Ezutan a PageRank és HITS algoritmusok egy altalanositasat targyaltuk,
majd bemutattuk egy lehetséges 1j alkalmazasat borkdstoldsi adatokra. Az eredmények
egy nemzetkozi folyoiratban [21] keriilnek publikdldséra, illetve egy nemzetkozi konfe-
rencia kiadvanyban [122] jelentek meg. A kovetkezd pontokban sszegezziik a fejezet {6

eredményeit.



6.6. Summary in Hungarian 95

Statisztikai validacio és kozo6sségek magja paros grafokban

Megmutattuk, hogy egy kétrészes haldzat szerkezetében rejls informécié hasznalhato ko-
z0sségek magjanak meghatarozésara, mindkét szinosztalyban. Monte-Carlo szimulaciok-
kal kapott eredményeink mutatjak, hogy ezen magok erésen stabilak és precizen megta-
lalhatok (kevés els6faju hiba), bar néhany esetben a modszer nem tul pontos (masodfaji
hiba fellép). A kulcsotlet az, hogy az eredeti hélozatbol kapott statisztikailag validalt
halozatokat hozunk létre, majd azon végziink kozosségkeresést. A detektalt kozosségek
robusztusak abban az értelemben, hogy nem fliggenek kozosségkeresd algoritmustol, il-
letve az hidnyz6 vagy hibas adatokra sem érzékenyek. Végiil bemutattuk valés adatokon

valé vizsgaldodésaink eredményeit is.

Cstcsok értékelése paros grafokban

A dolgozat utolsd részében kétrészes halozat pontjaink értékelési lehetségeit vizsgaltuk.
A HITS moédszer paros grafokra vett altalanositdsat mutattuk be és alkalmaztuk borverse-
nyek adain borkostolék szakértelmének és értékeléseik konzisztencidjanak meghatarozasa
céljabol. Megmutattuk, hogy, a priori tudasunk szerint, a médszer objektiv képet mutat a
kostolok hozzaértésérsl szemben mas természetes moédon alkalmazhato6 statisztikai elem-
zésekkel. Fontos elénye a hélézat alapt modszernek, hogy akkor is jol miikddik, amikor a
késtolok nem minden bort kostolnak meg, igy egy folyamatosan valtozé online kdstolasi

adatbazis esetén is képes lehet objektiv rangsorolast adni a kdstolokrol és a borokrol is.
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