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Chapter 1

Introduction

�Something else an academic education will do for you. If you go along with

it any considerable distance, it'll begin to give you an idea what size mind

you have. What it'll �t and, maybe, what it won't. After a while, you'll have

an idea what kind of thoughts your particular size mind should be wearing.

For one thing, it may save you an extraordinary amount of time trying on

ideas that don't suit you, aren't becoming to you. You'll begin to know your

true measurements and dress your mind accordingly�

J.D. Salinger, The catcher in the rye

Data-driven science is a rapidly growing area with the main goal being to extend

the use of computers, from data analysis to making hypotheses. New knowledge simply

emerges as plausible patterns found by mining data and related to these observed pat-

terns, a range of questions can be addressed and hopefully answered. In essence, the

aim is to generate knowledge from data. An analysis of the massive quantities of data

produced by and about people, machines, and their interactions have received enormous

attention by computer scientists, physicists, mathematicians, economists, political scien-

tists, sociologists and bio-informaticians, among others, for the past few years. The huge

amount of available data allows us to study complex systems that appear in such �elds

as biology, economics and the social sciences. Therefore, data mining, or knowledge dis-

covery in large databases, has become one of the most important challenges in scienti�c

�elds and in industry, including for instance the pharmaceutical industry and the online

social media organizations.

The development of �small-world� networks [183] has signi�cantly changed and ex-

tended the research directions of graph theory, a part of mathematics which provides the

theoretical toolkit for the study of complex systems. Alongside this, research on mining

graph and network data has been increasingly growing over the past few years, and it

has become the most promising approach for extracting knowledge from relational data

[64]) and investigating complex systems [8]. Complex systems can often be represented by

networks (or graphs), where nodes (also called vertices) stand for individuals or entities

of the system, while links (also called edges) represent the interaction between pairs of

these individuals (for some excellent reviews, see e.g. Newman, 2003 [145] and Boccaletti

et al, 2006 [18]). The network approach is not only useful for simplifying and visualizing

1
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enormous amounts of data, but it is also e�ective in identifying the most important ele-

ments and �nding their key interactions. In essence, the aim of data mining is to generate

knowledge from data by discovering common patterns and features in di�erent data sets,

while graph-based data mining, usually known simply as graph mining, is the extraction
of knowledge from a graph (i.e. a network) representation of the data.

Complex network modeling and analysis and data mining have similar goals; namely,

given the data representing a complex system, the goal is to extract (or synthesize)

information from it, by creating a model (either a complex network representation, or a

data mining model) on which successive steps of the analysis can be performed. The goal

of this dissertation is to present the author's work which focuses on the development and

application of network models and data mining tools for real-world problems.

In this dissertation, we commence with a brief introduction to the basics of graph

theory, the main concepts of network science and data mining tools that are needed to

understand later chapters.

Chapter 2 presents examples of real-life problems where the network approach is a

natural way of mathematical modeling. Firstly, the author proposes a local PageRank

algorithm, whose motivation comes from the area of �scientometics�, to measure the in-

�uence of scienti�c papers using their local citation network. Then, a comprehensive

analysis of public transportation systems will presented using various network models.

The study provides a �rst step small-scale study of complex transportation systems of

Hungarian cities by comparing their global and local characteristics. Lastly in this chap-

ter the author will introduce potential network representations of a real social system

based on educational data. Results of network analysis will also be presented.

Chapter 3 is concerned with economic networks, namely the international trade net-

work and stock correlation based �nancial networks. In the �rst part of the chapter

network analysis of the timely evolution of the trade network of the European Union is

discussed. Afterwards, correlation-based �nancial networks will be de�ned and applied

to the portfolio selection problem.

In Chapter 4, the task of rating nodes in networks is addressed and applied speci�cally

in ranking sport teams and players. A novel, time-dependent PageRank method to rank

players based on the results graph of a sport competition will be presented. Afterwards, a

new network-based probabilistic model is introduced for forecasting in sports and it will

be compared with the fundamental Bradley-Terry model and with experts' betting odds

based on measures of accuracy and predictive power.

In Chapter 5, we focus on complex systems that can be modeled by bipartite networks.

Firstly, a community detection methodology is presented using a statistically validated

one-mode projection approach. It will be shown how the link validation-based �ltering

procedure necessarily increases the precision of the community detection and it is able to

�nd the core of the communities even in the case of very noisy data. Then a generalized

version of the PageRank and HITS algorithms will be adapted to bipartite networks in

order to rank nodes in them. A case study for wine tasting events will then be discussed.

In Chapter 6, we summarize the dissertation both in English and in Hungarian.
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1.1 Brief (Hi)story of Network Science

Historically, the study of networks has been in the domain of graph theory, a branch

of discrete mathematics. Since 1736, when Leonhard Euler invented graph theory by

solving the Königsberg bridge problem (to �nd a round trip that crosses each bridge

of the city exactly once), graphs have been investigated from various perspectives and

applied to a wide-range of real-life problems. Graph theory has proved to be one of the

most powerful tools in mathematical modeling and the graph theoretical framework has

provided solutions to many di�cult practical questions. Such questions as to what the

maximum �ow is from the source to the sink in a network of pipes, how to assign n

people to n jobs with maximum utility, and how many colors are enough to color the

regions of a map without coloring two neighboring regions with the same color, etc. The

�rst book on graph theory was published in 1936, written by a Hungarian mathematician

named Dénes K®nig. Also in the �rst part of the 20th century, remarkable achievements

were made using graphs in some special context. For instance, in the social sciences in

the early 1920s, where studies focused on relationships among people, such as friendships

or communication between members of a group, and in economics, where trade and

other economic transactions among nations or �rms were investigated. Probability theory

became widely used for investigating graphs after the seminal contributions of Erd®s and

Rényi [58, 59]. Their eight papers on the topic gave rise to random graph theory, while
the probabilistic method became one of the most e�ective techniques in problem solving

in graph theory and combinatorics. Another direction of research concentrated on graphs

with very strict structures; these are the so-called perfect graphs [128]. These are far

from being random, and pop up in several applications and beautiful theorems.

However, later it turned out empirically that the �typical� structure of graphs that

model real relational data, i.e. the structure of real-world networks, is very di�erent

from the random graph de�ned by Erd®s and Rényi. In the last two decades, some

seminal papers gave rise to a new movement of direction, namely the study of complex
networks. They are networks with a highly irregular structure, dynamically evolving

over time and complex in the sense that their global properties and functioning are not

obvious from the properties of their individual parts. Namely, these are the works of Watts

and Strogatz (1998) [183] attempting to describe small-world networks1 mathematically,

and Albert and Barabási (1999) [9] describing a �preferential attachment� algorithm that

generates �scale-free� networks2 characterized by a power-law degree distribution. The
preferential attachment model has been rigorously analyzed by Bollobás and Riordan [20]

who cleared up and con�rmed the heuristics associated with the model. It should also

be added what Jackson points out ([93], Ch. 3), that many network degree distributions

exhibit �fat-tails�, like a power law, when compared to a Poisson random graph, but it is

not clear that these distributions really are power laws.

Besides to the power law degree distribution or small-world properties, the community
1Small-world networks are often characterized by a small average path length and high clustering

coe�cient (see Sec. 1.2.2)
2A scale-free network is a graph whose degree distribution (see Sec. 1.2.2) follows a power law; i.e.,

Pr(di = k) = ck−γ , where di is the degree of a node i, c is a normalizing constant and γ > 1.
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structure turned out to be a signi�cant and common feature of complex networks; see

e.g. [71] and [70] for a good introduction and survey, respectively. Practically speaking,

community detection in a graph is a partition of the nodes into disjoint sets (often

called communities, or clusters), such that nodes in the same community are more densely

connected to each other than to the rest of the graph. Sometimes the so-called overlapping

communities, where any node may be a member of more than one community, are in the

focus of interest [24, 148]. In general, the communities in networks re�ect the similarities

and common features of the nodes that they contain. Newman and Girvan introduced

the modularity optimization method to �nd communities in real-world networks [146].

Since then, a myriad of papers has appeared on the topic which became one of the

most important topics in network science. Similar structural studies uncovered important

core/periphery network structures [23], where the concept of the network core usually

refers to a central and densely connected set of network nodes, while the periphery of the

network denotes a sparsely connected, typically non-central set of nodes, which are linked

to the core. A Core/periphery structure has been detected in many complex systems

including biological networks, animal and human social networks and related networks,

such as the World Wide Web and Wikipedia; engineered networks (such as the Internet,

power-grids or transportation networks), as well as networks of the world economy. A

survey in the topic by the author of this thesis and co-authors can be found in [44].

In parallel with the investigation of global network properties, the problem of rating

and ranking nodes (representing real actors) in networks has also been extensively stud-

ied. One of the most important contributions from our perspective are those that at the

end of 1990s, Sergey Brin and Larry Page, founders of Google Inc., developed a special

random walk algorithm in networks that seeks to model the user behavior of Web graph

sur�ng [28]. PageRank is mostly used as a network centrality measure (see Sec. 1.2.3) and

utilizing PageRank can help us understand the complex network better by focusing on

what PageRank reveals as important. Independent of Brin and Page, Kleinberg proposed

a di�erent approach to measure the importance of a web page [103]. While PageRank

computes the pagerank scores on the entire graph, the Kleinberg's HITS algorithm (Hy-

perlink Induced Topic Search) tries to distinguish between hubs (nodes that link to many

authorities) and authorities (nodes that have in-coming links from hubs) within a sub-

graph of relevant pages. The mathematics of PageRank and HITS, however, is general

and can be applied to any graph or network in any domain, and it is successfully utilized

in social and information network analysis as well as in biology, chemistry, neuroscience,

and physics [79]. Modi�ed versions of them with various applications will be discussed in

di�erent parts of the thesis.

Very recently, complex network theory and data mining have been used together in

a variety of problems. Methods for extracting patterns from data have a long history

and providing merely a brief history and introduction to data mining is beyond the scope

of this study. It transpired that out that di�erences between network theory and data

mining may, in some situations, provide an added value when both of them are used

in combination [189]. The term data mining now mostly refers to the process of using
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methodologies and techniques taken from di�erent areas like statistics, probability theory,

database technology, machine learning and data visualization. Viewing data mining as

a tool for knowledge discovery/information extraction in a step-by step approach, from

problem understanding via (mathematical) modeling to evaluation and deployment, was

proposed in [185].

The road map of this thesis conceptually proceeds in the following way. Given a real-

world system and associated problems, a complex network model is created to represent

the system. Firstly, an analysis of the network (representing the system) can provide an

initial picture of the nature and fundamental features of it and di�culties of the problem

are addressed. However trying to solve special problems often leads to the development

of new network models, new tools and techniques that may be applicable to a broader

range of problems. This thesis seeks to present the author's work on the topic, but before

going into the details, some basic de�nitions and concepts need to be presented.

1.2 Characteristics of Real-world Networks

Now, we will give a brief introduction to graph theory and an overview of the main

de�nitions that characterize the structural properties of complex networks. Particular

attention will be paid to the community structure and core/periphery structure as global

characteristics of complex networks and stochastic graph algorithms like PageRank and

HITS as they are widely-used graph-based data mining tools.

1.2.1 Basic De�nitions

Formally, an undirected (directed) network or graph G = (V,E) consists of two sets V

and E, where V 6= ∅, while E is a set of unordered (ordered) pairs of elements of V .

The elements of V = {1, 2, . . . , n} are called nodes (or vertices) and the elements of E

are called links (or edges). A network is mathematically represented by its adjacency
matrix A = [aij]i,j=1,...,n, which is an n × n matrix with entries aij = 1 if there is an

edge (directed edge) between i and j and aij = 0 otherwise. For an undirected network

if the (i, j) edge exists, then aij = aji = 1, i.e. A is symmetric. If a function w : E → R
that assigns a real number wij to each edge (i, j) is given, then we say that the network

is weighted.
For a network G of n nodes the number of links lies between 0 (empty graph) and

n(n−1)/2 (complete graph). G is said to be sparse, if |E| ∼= cn and dense if |E| ∼= cn2

where c is a positive-valued constant.

The degree di of node i is the number links that are connected to i. If the network

is directed, we can de�ne the in-degree d+i and out-degree d−i of a node i, these being

the number of incoming links to i and the number of outgoing links from i, respectively.

The weighted degree of a node can be calculated in a similar way using wi =
∑

iwij
(i = 1, . . . , n), which is sometimes called the strength of i.

A subgraph G′ = (V ′, E ′) of G = (V,E) is a graph where V ′ ⊆ V and E ′ ⊆ E.

If it contains all links of G that connects two nodes in V ′, it is said to be the induced
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subgraph by V ′. A clique is a maximal complete subgraph of three or more nodes.

A walk (i, k1), (k1, k2), . . . , (km, j) between two nodes i and j is an alternating se-

quence of nodes and edges, starting and ending at i and j, resp., in which each edge in

the sequence is adjacent to its two endpoints. The length of the walk is the number of

edges on it. If all the nodes along the walk are distinct, then the walk is a path. The

shortest path between i and j is a path between them where the length of the path is

minimized. The (sub)graph is (strongly) connected if, for every pair of nodes i and j of

the subgraph, there is a (directed) path from i to j.

1.2.2 Global Characteristics

The number of links in a network, the average degree and the link density are computed

using the following formulas:

m =
1

2

n∑
i=1

di =
1

2

n∑
i=1

n∑
j=1

aij, d =
1

n

n∑
i=1

di =
2m

n
, ρ =

m(
n
2

) =
d

n− 1
, (1.1)

where the bar denotes the average.

Next, let `ij be the shortest path between nodes i and j. The diameter of the network
is de�ned as the maximum of the shortest paths among all pairs of nodes. That is,

D(G) = max
i

max
j 6=i

`ij, (1.2)

The average path length is de�ned as

` =
2

n(n− 1)

∑
i

∑
j 6=i

`ij, (1.3)

which exists only if there are no unconnected nodes in the network and Eq. (1.3) is

usually restricted to this case. In real (especially social) networks, the average path

length is usually small, typically less than log n.

The list of the node degrees is called the degree sequence of the network. The degree
distribution P(d), a key characteristic of real-world networks, is de�ned as the fraction

of nodes having degree d; or, equivalently, it is the probability that a uniformly randomly

chosen node has degree d. In the case of directed networks, we can distinguish the in-

degree and out-degree distributions. It has turned out that many real networks have a

�fat-tailed� or �heavy-tailed� degree distribution. More precisely, power-law distributions,

given in the form P(d) ∼ cd−γ , have been observed many times [10]. Networks with such

degree distribution are called scale-free3.
The clustering coe�cient is de�ned as

C =
3×#{triangles}

#{connected triples of nodes}
(1.4)

3The term scale-free originated from a branch of statistical physics called the theory of phase transi-
tions. The higher order moments of scale-free probability distributions are in�nite and hence �uctuations
around the average may be arbitrarily large. i.e. there is no meaningful internal scale.
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and measures how the connected triples of a network tend to form triangles, which is very

common e.g. in social networks emphasizing the paradigm that �two individuals with a

common friend are likely to know each other�.

Community structure

Another key property of complex networks is called the community structure. Finding
communities (also called clusters) in a network informally means �nding a way to partition

the nodes into disjoint sets (subgraphs) such that nodes in the same set are more densely

connected to each other than to the rest of the network. Typically, a community in a

network means the similarity and common features of the nodes that it contains.

Numerous di�erent algorithms have been developed to �nd communities in networks

(for a comprehensive work of the topic, see e.g. [70]). We should mention here a widely

used one called the �Leuven� method by Blondel et al. [17]. This is based on the modu-
larity maximization method developed by Girvan and Newman [78]. This is a heuristic

based on the idea that a null-model random graph is not expected to have a cluster struc-

ture like the original one. Given the network G, the modularity function which needs to

be maximized, is de�ned as

Q(G) =
1

2m

∑
i,j

(wij −
wiwj
2m

)δ(Ci, Cj), (1.5)

which is a scalar-valued function that takes values between −1/2 and 1; wij represents

the weight (or just presence, in the case of unweighted networks) of edge (i, j), wi is the

strength of node i (or just the degree), Ci is the community to which node i is assigned.

Here, δ(Ci, Cj) = 1 if Ci = Cj and δ(Ci, Cj) = 0 otherwise while m is the sum of the

weights over all edges (or simply the total number of links in the unweighted case).

It has been shown that modularity maximization is NP-complete [26]. For this reason,

several methods, ranging from simulated annealing to spectral optimization and greedy

methods have been developed providing that the partitioning of a graph which gains the

highest modularity value. In the case of the greedy Leuven method, initially each node

of the network forms a community. The �rst step consists of a sequential sweep over all

nodes. Given a node i, the gain in weighted modularity is computed. This gain comes

from putting i in the community of its neighbor node j and picks the community of the

neighbor that yields the largest increase of modularity, as long as it is positive. At the

end of the sweep, the �rst level partition is obtained. For the next step, communities are

condensed into single nodes, and two condensed communities (�supernodes�) are connected

if there is at least an edge between nodes of the corresponding communities. In this case,

the weight of the edge between the supernodes is the sum of the weights of the edges

between the given communities at a lower level. The two steps of the algorithm are

repeated, yielding new hierarchical levels and �supergraphs�.
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Core and periphery of a network

Informally, the concept of a network core usually means a central and densely connected

set of network nodes, while the periphery of the network represents a sparsely connected,

typically non-central set of nodes, which are linked to the core. The �and� is important in

the above informal de�nition, since all nodes of the core are mostly central, but certainly

not every set of central nodes forms a network core. The concept of a network core may

be approached from many directions (including various core de�ning algorithms; rich-

clubs referring to an interconnected set of network hubs; network nestedness; the bow-tie

structure of directed networks, as well as the highly robust onion network structures; for

a detailed survey on core-periphery network, see [44] ), and hence there are many possible

de�nitions for it. In this thesis, we only describe the �rst formal approach to deal with

core-periphery structure by Borgatti and Everett [23]. Their discrete approach was based

on a comparison of the adjacency matrix A of the network with an ideal core/periphery

network model consisting of a fully-linked core and a periphery that is fully connected to

the core, but there are no links between any two nodes in the periphery. If δ denotes the

(row) vector of length n with entries equal to one or zero, and if the corresponding node

belongs to the core or the periphery, respectively, then ∆ = δtδ is the adjacency matrix

of the ideal core-periphery network of n nodes, where ∆ij = 1 if δi = 1 and δj = 1,

and ∆ij = 0 otherwise. Determining how a core-periphery structure a network has is an

optimization problem that attempts to �nd the vector δ such that the expression

ρ =
∑
i,j

aij∆ij (1.6)

achieves its maximum value. The coe�cient ρ is maximal when the adjacency matrix A

and the matrix ∆ are identical. Eq. 1.6 is essentially an unnormalized Pearson correlation

coe�cient applied to matrices rather than vectors. A network exhibits a core-periphery

structure if the correlation between the ideal structure and the data is large. Of course, a

statistical test for the signi�cance of the core/periphery structures found by the algorithm

is needed. For weighted networks, the optimal core/periphery subdivision is a partition

obtained in a way that maximizes the weight of within core-group edges, and minimizes

the weight of within periphery-group edges. A detailed description of calculations and im-

plementations can be found in [23] and https://sites.google.com/site/bctnet/,

respectively.

1.2.3 Local Characteristics

In complex networks, centrality generally refers to the class of measures that represent

the most important and �central� nodes of the network from some given perspective.

Here, we shall mention only a few that turned out to be interesting for several reasons in

di�erent �elds.

The degree centrality is simply refers to the degree di of node i (in the case of directed

networks, the in- and out-degrees are distinct) and it tells us how large the neighborhood
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of i is. For example, it simply says that how many friends one has in her friendship

network.

The closeness centrality [164] of a node i is de�ned as

C(i) =
1∑
i 6=j `ij

. (1.7)

Here, in general, the greater the value, the smaller the length of the shortest paths to

all other nodes from i. The concept is important, for example, in the investigation of

road and transportation networks, and in the analysis of information di�usion in social

networks [22].

The eccentricity e of a node i is the longest distance between i and any other node

in the network. That is,

e(i) = max
j 6=i

`ij. (1.8)

Let σjk be the number of shortest paths between nodes j and k and let σjk(i) be

the number of shortest paths between them that pass through node i. The betweenness
centrality [73] of node i is de�ned as

BC(i) =
∑
j 6=i 6=k

σjk(i)

σjk
. (1.9)

In complex networks, the larger the number of paths that pass through a certain node

(or edge), the greater the betweenness of this node (or edge) and more central it is in this

viewpoint. Betweenness has similar importance as closeness in the investigation of social

(e.g. friendship), technological (e.g. transportation) and biological (e.g. protein-protein

interaction) networks.

PageRank

The PageRank algorithm [28] was originally developed to measure and provide a good

approximation of the importance of Web pages by considering their position in the Web

graph. The PageRank score of a node i ∈ V of graph G is de�ned as the recursion

PR(i) =
λ

n
+ (1− λ)

∑
j∈N+(i)

PR(j)

d−(j)
, (1.10)

where N+(i) = {j ∈ N : j → i exists}, which is the set of nodes having an edge to

node i, while λ ∈ [0, 1] is a free parameter (usually given a value between 0.1 and 0.2).

The PageRank recursion formula de�ned by Eq. 1.10 can be written in vector equation

form like so

PR = [
λ

n
11

T − (1− λ)AD−1]PR, (1.11)

where A is the adjacency matrix of G, D is a diagonal matrix such that dii =
∑n

`=1 ai`
and dij = 0, if i 6= j, I is the n × n identity matrix and �nally 1 is the n-dimensional

vector that has each component equal to 1. Eq. 1.11 shows that PR is the eigenvector of
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the matrix (λ/n)11T − (1−λ)AD−1. Due to the fact that the corresponding eigenvalue

of 1 is the largest eigenvalue of this matrix, which is a consequence of the Frobenius-
Perron theorem for row-stochastic matrices [147], PR is in fact the steady-state solution
a random walk on the nodes of the graph that can be described as follows. Starting

from a node i, a random surfer selects one of the node's outgoing edges uniformly at

random, moves to the end node j of that edge, and repeats this process from j, etc. The

parameter λ can be understood as a �damping factor� which guarantees that the random

walk restarts in some node of the graph, chosen uniformly at random, in every 1/λ-th

step, almost surely (i.e. with probability 1). This should guarantee that the process

would not stop by reaching a node with zero out-degree. If the surfer reaches a node, the

number of visits of that node increases by one. The damping factor ensures that each

node receives a contribution λ/N for each step.

Assuming that 1PR = 1, means that PageRank is a discrete probability distribution

over the nodes of the graph, and Eq. (5.14) implies that the PageRank vector PR can

be calculated as

PR =
λ

N
[I − (1− λ)AD−1]−11, (1.12)

and we can write

PR =
λ

N
1

∞∑
k=1

((1− λ)AD−1)k, (1.13)

whose form gives us a useful power method for PageRank calculation (Alg. 1).

HITS

Independent of Brin and Page, Kleinberg [18] proposed a di�erent approach to measure

the importance of a web page. While PageRank computes the PageRank scores on the

entire graph, the Kleinberg's HITS algorithm (Hyperlink Induced Topic Search) tries to

distinguish between hubs and authorities within a subgraph of relevant pages, where hub

scores and authority scores of the nodes are recursively calculated from each other. A

good hub is a node that is connected to many authorities, while a good authority is a

node that has in-coming links from good hubs. Mathematically speaking, the hub and

authority scores can be calculated recursively as

h(i) =
∑
j:i→j

a(j) and a(i) =
∑
j:j→i

h(j), (1.14)

where a(i) and h(i) are the authority and hub scores of node i, respectively (Alg. 2). The

scores converge starting from any initial scores of the nodes. Writing this in matrix form,

authority scores are calculated as a = ATh, while hub scores are calculated as h = ATa.

Combining them, we get a = ATa and h = AATh; hence it is apparent that they are

principal eigenvectors of matrices ATA and AAT , respectively.
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Algorithm 1: Power method for PageRank computation
Input : G directed graph
Output: PageRank vector PR
1: Initialize PR0 =

λ
N 1

2: k = 1
3: repeat

4: PRk+1 :=
λ
N 1+ λAD−1PRk

5: k = k + 1
6: until ||PRk+1 −PRk||1
7: return PRk+1

Algorithm 2: HITS algorithm
Input : G directed graph
Output: Hub and authority scores of the nodes
1: Initialize all (node) weights to 1
2: repeat

3: for all hub i ∈ H do

4: hi =
∑

j∈F (i) aj
5: end for

6: for all authority i ∈ A do

7: ai =
∑

j∈B(i) hj
8: end for

9: until the weights converge
10: normalize

1.2.4 Brief Summary of the Author's Contribution

[44] [125] [87] [126] [124] [140] [75, 127] [123] [21] [122]
I. · · · · · · · ·
II. · ·
III. ·
IV. · ·

Chapter 1, 2, 3 1 1 1 1 1 3 4 5 5

Table 1.1. Correspondence between the thesis points and publications/chapters

The following list summarizes the key points of the dissertation. Table 1.1 shows the

connection between the thesis points and the publications of the author.

I. The author points out that many real-world systems can be modeled by networks

and suggests using graph-based data mining and network analysis as a �rst step of

investigating such systems. Each case study explains that, after collecting appro-

priate data, how the network approach, especially network analysis and applying

rating methods, can be used to extract meaningful information from the system

being modeled. New methods are also developed by slightly modifying some widely-

used stochastic graph algorithms. In particular, a local PageRank approximation

method and a new version of the generalized co-HITS are constructed to rate nodes

in a network. The methods perform well in general and can be used for various
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real-life problems modeled by networks.

II. The question of quantifying the degree of statistical uncertainty (usually called

�noise�) presents in real systems is addressed from di�erent perspectives. Several

methods were de�ned and used to �lter the part of information which is robust

against statistical uncertainty (i.e. robust against errors in the data or other sources

of noise). In particular, network-based, random matrix theory-based and statistics

based, methods were applied to correlation networks used for portfolio optimization

and also used to detect cores of communities of bipartite networks. The results tells

us that using these techniques, the classical Markowitz solution can be outperformed

on the the one hand, and community cores can be found with high precision on the

other.

III. The author demonstrates that information present in a bipartite network could be

used to detect cores of communities of each set of bipartite system. Using Monte-

Carlo simulations, the results indicate that the cores found are very stable and

detecting them is very precise although the methodology may be not very accurate in

some cases. The key concept is to consider statistically validated networks obtained

by starting from the original bipartite network. The information carried by the

statistically validated network can highly informative and could be used to detect

communities of a given set that are robust with respect to the algorithm of detection

and to the presence of errors or missing entries in the given database. Experimental

results on real data are also presented. Staying with bipartite networks, the question

of rating nodes of a bipartite network is also addressed. A general framework of a

HITS type algorithm is presented for this purpose and a case study on a real data

set is presented in detail. Our experimental results con�rm that the method could

be readily applied for many real-life situations.

IV. The problem of rating and ranking sport players and teams is addressed from a net-

work analysis perspective. A time-dependent PageRank method is de�ned to rate

players using the graph of game results data. The method gives a better picture

than several broadly used methods and it is able to outperform them in terms pre-

dictive power. The author also proposes a novel rating-based forecasting framework.

Against the widely known Bradley-Terry model, the key idea behind the model is

that if a rating correctly re�ects the actual performance of teams considered, then

the smaller the changes in the rating vector, contains the ratings of the teams, after

a certain event (�nal result) in an upcoming single game, the higher the probability

of that event occurs. The results using several rating methods were compared to the

Bradley-Terry predictions and the betting odds predictions of experts in terms of

predictive accuracy. The authors showed that the new model outperforms the ad-

vanced versions of the Bradley-Terry model in many cases, even without �ne tuning

parameters and optimizing the implementation.



Chapter 2

Network Models for Some Real-life

Problems

In this chapter we present some examples of real-life problems that can be modeled by

complex networks. The analysis of these networks proved to be quite useful for gaining a

better understanding the system being modeled, extracting meaningful information and

answering certain speci�c questions.

First, following the network approach the main goal is to measure the in�uence of

a single article regardless of the characteristics of the academic subject. Based on the

previous results of [43] and by applying the experimental results of [37] that later mathe-

matically proved to be applicable for many classes of graphs in [7], we use a local PageRank

approximation for this purpose. It should be mentioned that we do not wish to attempt

to determine the scienti�c worth of the articles, which will probably be judged in the

future; rather we want to measure �the impact� of the papers in their �eld. We describe

how a local PageRank method can be applied to determine the in�uence of a research

paper. As a case study, we apply it to the co-citation graph of the well-known paper by

Jen® Egerváry [53] and highlight the main advantages of our approach in Scientometrics.

Afterward, we will study engineered networks; namely we will analyze public trans-

portation networks. We perform a comprehensive network analysis with the main goal

of identifying the similarities of, and di�erences between the transportation networks of

�ve Hungarian cities. In particular, we compare the global and local characteristics of

the networks to get a detailed picture of the di�erences in the organization of public

transport, which may have arisen for historical, geographical and economic reasons. As

a result, we will highlight inconsistencies, organizational problems and identify which are

the most sensitive routes and stations of the network.

Lastly in this chapter, we will introduce a novel example of a real social system, taken

from the world of public education, which is suitable for network representation. We

propose several network representations of certain educational data and show which are

the most appropriate graph mining tools for analyzing them and what kind of additional

information can be extracted by their usage. Depending on the construction of the un-

derlying graphs, we present four families of network models and describe a case study

using one of the models. We point out several advantages of graph-based data mining

13
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techniques in educational systems.

2.1 Citation Networks and Scientometrics

The relevance of Scientometrics � which seeks to measure the productivity and quality

of scienti�c research � has long been discussed in the academic domain. The most pop-

ular measures are the scienti�c citation indices due to their easy accessibility. Several

of these indices have been introduced such as the h-index (or Hirsch-index) proposed by

Hirsch [89], the g-index proposed by Egghe [54], the w-index and the maximum index

both proposed by Woeginger [186]. Each of them is based on the citation records of the

researchers. These indices have been extensively criticized since they are highly depen-

dent on the scienti�c �eld (like the number of active researchers and available journals,

popularity of the area and gender ratio etc.; see, e.g. [2, 107, 184]). Another drawback

of their usage is that they do not give a clear picture of the in�uence and quality of any

given paper.

Several studies have sought to address this problem using the network approach. Co-

citation networks � in which nodes represent single articles and a directed edge represents

a citation from a citing article to a cited article, describes the relation between citations

of di�erent papers � were widely studied previously [34, 97, 116]. Chen et al. [35] applied

the PageRank algorithm to co-citation networks. Later Raddichi et al. [156] de�ned an

iterative ranking method similarity to di�erent ranking algorithms such as PageRank,

CiteRank [180] and HITS in order to evaluate the in�uence of single articles by using

co-authorship networks. In these networks networks nodes represent publications and

weighted edges represent the number of common authors among them. Several modi�ca-

tions and variants of network models have been introduced in the context of Scientometrics

(see, e.g. [65, 121, 171, 188]).

More recently, the Eigenfactor Score and the Article In�uence Score [16] have been

developed to estimate the relative in�uence of single articles based on citation networks as

well. Besides this, we should mention that the underlying algorithms can also be applied

to journals, authors, and institutions.

2.1.1 A Local PageRank Approximation

Although in many applications PageRank scores need to be computed for all nodes of the

graph, there are situations where one is interested in computing PageRank scores only for

a small subset of the nodes. Chen et al. [37] developed an algorithm to approximate the

PageRank scores of target nodes of a graph with high precision. Their algorithm crawls a

small subgraph around the target node(s) and applies various heuristics to calculate the

PageRank scores of the nodes at the boundary of this subgraph. Then it computes the

PageRank of the target node(s) by just using the crawled subgraph and the estimates for

the boundary nodes. With simulations, they showed, on the one hand, that this algorithm

gives a good approximation on average. On the other hand, they also pointed out that

high in-degree nodes could make the algorithm very expensive and imprecise.
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From now on, we will use the same notions as in [7]. An algorithm is said to be an

ε-approximation of the PageRank, if for a graph G = (V,E), a target node i ∈ V and

a given error parameter ε > 0, the algorithm outputs a value PR′(i) satisfying

(1− ε)PRG(i) ≤ PR′(i) ≤ (1 + ε)PRG(i), (2.1)

where PRG(i) is the PageRank value of node i in the original graph. For a directed

path p = (k1, . . . , kt) from node k1 to kt, we de�ne w(p) =
∏t−1

i=1 1/d−i , that is the

reaching probability of kt from k1 in a given path, where the transition probability values

are proportional to the number of outgoing edges. Let pt(i, j) be the set of all directed

path of length t from i to j. Then the in�uence of node i on the PageRank of node j at

radius t is de�ned as

It(i, j) =
∑

p∈pt(i,j)

w(p), (2.2)

and hence, the total in�uence of i on j is

I(i, j) =
∞∑
t=0

It(i, j). (2.3)

Using the de�nition of in�uence, the PageRank of node j at radius r can be de�ned as

PRr
G(j) =

λ

n

r∑
t=0

∑
i∈V (G)

(1− λ)tIt(i, j). (2.4)

It can be proved that for every node j ∈ G, PRG(j) = limr→∞ PR
r
G(j) holds (whose

proof can be found in [7], say). An interesting question is that how small the radius r

can be such that the PageRank approximation would even be appropriate.

In [7], it was proved that the hardness and inappropriate nature of local approximation

of PageRank on certain graphs (constructed examples) is caused by two factors; namely,

the existence of high in-degree nodes and the slow convergence of the PageRank iteration

algorithm. We shall see that in our case (and in most of the co-citation graphs, along

with most real-world networks) these properties do not hold. It was also shown that the

several variants of the approximation algorithms proposed by Chen et al. are still e�cient

on graphs that have bounded in-degrees and admit fast PageRank convergence.

We are given a graph G = (V,E), a node j ∈ V and the approximation parameter

ε. The point-wise in�uence mixing time of j is de�ned as

T εG(j) = min{r ≥ 0 :
PRG(j)− PRr

G(j)

PRG(j)
< ε}. (2.5)

The algorithm we use computes PRr
G(j) for a given node j and it follows from the

de�nitions that it runs with r = T εG(j) and gives an ε-approximation of PR. To complete

the description of the theoretical background, we should examine the upper bound on

T εG(j) (i.e. on radius r).
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For graph G = (V,E) with j ∈ V and r ≥ 0 the crawl size at radius r is de�ned as

Cr
G(j) = #{i ∈ G : ∃pt(i, j) with t ≤ r}, (2.6)

which is the number of nodes within a distance r from j. It follows from the de�nition

that if the local PageRank algorithm runs for r iterations, its cost is Cr
G(u). A trivial

upper bound for the crawl size is that Cr
G(u) < dr, where d is the maximum in-degree

of G. It suggests that if both r and the maximum in-degree are low, the brute force

algorithm, which uses Eq. 2.4 by recursively calculating the in�uences, is e�cient. It can

be also proved that for any directed graph G, for the number of iterations that the local

PageRank algorithm needs to run, r = O(log(1/PRG(j))) is always su�cient (while in

practice, such as in our case, a much lower radius could be enough).

2.1.2 Reaching Probabilities

A possible simpli�cation of the PageRank method is just consider the reaching probability

values of the nodes in the network. We would like to know the probability of reaching

a node j starting from an arbitrarily chosen node i 6= j of the network. The reaching

probability, RP of a node j can be de�ned as the recursion

RP (j) =
∑

i∈N+(j)

pijRP (i), (2.7)

where pij is the reaching probability of node j from a neighbor node i. Now it is natural

to assume that reaching any neighboring node from i has the same probability, so we

can use pij = 1/d−(i) in Eq. 2.7. With this choice, Eq. 2.7 is the PageRank equation

without the damping factor. However, in contrast to the calculation of PageRank, we do

not wish to evaluate the vector RP in the steady state. Instead, we will only determine

the reaching probability of a given node j, which can be calculated as

RP (j) =
1

n

∑
i∈V

I(i, j) (2.8)

where I(i, j) is as de�ned in Eq. 2.3. For published articles, RP can be interpreted as

the probability that a given article found by someone (e.g. a scientist) starts to read an

article and �jumps� to another randomly chosen article cited by the current one.

2.1.3 A Case-study

A co-citation network is de�ned as a directed graph G = (V,E) of n nodes, where each

node i ∈ V refers to an article and there is a directed edge (i, j) ∈ E from node i to node

j if article j is cited in article i. Our method, which seeks to measure the �in�uence� of

a scienti�c article, is based on the following three steps:

1. Subgraph building : Start from a set of target nodes (articles) we are interested in

their scienti�c impact, expand backward in the reverse direction the nodes having
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out-going links to the target nodes. The procedure halts after a �xed number of

levels. This may be performed via an iteratively deepening depth-�rst search. In

this task, the graphs contain all nodes, from which the target nodes can be reached

in at most three steps and we consider the induced subgraph of these nodes.

2. Estimating PR of the boundary : We use a heuristic to estimate the individual

PR scores in the boundary. An extra term to the PR value of each boundary

node is added that represents the fraction of its in-coming edges to all edges in the

subgraph.

3. Calculating PR and RP : We run the PageRank algorithm on the subgraph. In

each step for the boundary nodes, the estimated PR value is used and the PageRank

damping factor value is added to each node. In addition, we also calculate the

reaching probability (RP ) of the target node(s) in the subgraph (using the same

values for the boundary nodes as in the case of PageRank).

Although the PageRank values cannot be calculated exactly without having to run the

algorithm on the full graph, the estimation heuristic we de�ned gives an acceptable ap-

proximation of them in the constructed subgraph. We also note that the convergence of

the PageRank is guaranteed by this method, unlike that de�ned by Csendes and Antal

for the same purpose [43]. Here, we set the radius size r = 3 from the target nodes for

two reasons. The �rst is that the number of nodes in the fourth layer is O(n) (here, n

is the number of nodes of the crawled graph G) and the in-degrees are bounded by a

constant, hence, it is su�cient to consider the number of in-coming links to the boundary

nodes from the fourth layer, and ignore the linking structure between them to get a good

approximation of the PR-scores. The second reason is we assume that for the articles at

a distance more than four, the target articles do not have much impact in any scienti�c

sense (which may be a reasonable assumption in Scientometrics).

Algorithm 3: The local PageRank approximation algorithm
Input : Seed article
Output: The PR-score of the article from its local co-citation network
1: Build the article's local co-citation network G with radius r
2: PR0

G(j) =
λ
n

3: layer0 = j
4: I0(j, j) = 1
5: for node i in layerr do
6: PR(i) = |N+(v)|/|E(G)|
7: end for

8: for t=1, . . . , r do
9: for i in layert do

10: It(i, j) =
1
d−i

∑
k:i→k It−1(k, j)

11: end for

12: PRtG(j) = PRt−1G (j) + λ
n

∑
i∈layert(1− λ)

tIt(i, j)
13: end for

14: return PRrG(j)
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Figure 2.1. Local co-citation network containing the famous paper of Egerváry marked by red square. The
blue diamond, the orange hexagon and the light blue circle represent Kuhn's paper, Ford and Fulkerson's
paper and Bellman's paper, respectively. The size of the nodes refers to the number of citations.

Egerváry's Paper and its Citation Network

As is known, Harold Kuhn developed an algorithm for solving the assignment problem

[106] and he called it the Hungarian method, acknowledging the contribution of Jen®

Egerváry and Dénes K®nig [53, 104]. The paper by Egerváry received just a few citations

(probably because it was written in Hungarian), while some of its citing papers received

many more: for Egerváry's paper 38 citations can be found in the ISI Web of Knowledge

database, while the article by K®nig and Kuhn received 215 and 726, respectively. In

contrast to classic scientometrics that only takes into account the direct number of cita-

tions, we shall see that the network-based methods provide a more realistic picture of the

importance of Egerváry's paper.

We constructed a network which contains the following articles as nodes: the famous

paper by Jen® Egerváry: On combinatorial properties of matrices (published in Hun-

garian, 1931), the three articles which are referred in Egerváry's paper, and citing articles

of these papers within the radius r = 3 in the network. We will now examine the network

that is induced by these nodes, as described in the �rst phase of our method; it contains
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Table 2.1. PR-score (with λ = 0.2), reaching probabilities and number of citations of the well-known
publications in the Egerváry co-citation graph. The PR value has been multiplied by 100.

Publication PR-Score PR-rank RP -score RP -rank #Cites Cite rank

Egervári [53] 0.891 4 0.009 2 39 65
Kuhn [106] 1.189 1 0.042 1 726 1
Ford, Fulkerson [67] 0.525 8 0.004 9 39 65
Bellman [14] 0.399 11 0.003 10 18 158

n = 1155 nodes and 1923 edges. Figure 5.7 shows the network, where the paper by

Egerváry is marked by red square. We applied the modi�ed local PageRank algorithm

(with λ = 0.1, 0.15, 0.2, 0.25) to this network and also calculated the reaching probabili-

ties of the nodes. We observed that the PageRank method is robust against the choice of

λ. The results (with λ = 0.2) are summarized in Table 2.1 for four notable publications

in the co-citation network.

Observations

First, we observe that the choice of the damping factor λ does not in�uence the �nal

ranking of the �rst ten publications; only small changes can be seen in the rest of the

rank list. The ranks and the relative values of the papers provide a more realistic picture

of their importance than the number of their citations. It is not surprising that Kuhn's

paper PR value is the highest by far, the 726 citations for this paper being extraordinary

in the �eld. The second and third articles in the PR ranking became D. K®nig: Graphs
and their applications for the theory of determinants and sets (1916, in Hungarian,

215 citations) and G. Frobenius: Über zerlegbare Determinanten (1917, 11 citation),

respectively. Both articles were cited in Egerváry's paper, which became the fourth high-

est ranked paper although it received only 39 citations and it comes 65th in the citation

ranking. The very high position of Frobenius's paper in the ranking is de�nitely due the

reputation it receives from Egerváry's article. It is worth stressing that Ford and Fulk-

erson's article, which received the same number of citations as Egerváry's article, was

ranked lower but it is still in the top ten. These two facts also tells us about advantages

of the network-based evaluation, since this paper was also quite important in the devel-

opment of Operations Research. We should also mention, that the important paper of

Bellman was ranked 11th (although it got just 18 citations), which o�ers a much clearer

picture of its impact (unlike its citation rank). It is also interesting to see that Egerváry's

article comes second in RP -ranking, which means that someone who comes across the

article at random and checks the articles in the �eld will �nd the Egerváry's paper with

the second highest probability.

2.2 Modeling Transportation Networks

A great deal of e�ort has been concentrated on investigating transportation systems for

many decades because of its practical importance. In the past decade, partly due to

the development of small-world networks and modern network theory, several studies
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have treated public transportation systems as complex networks, and several statistical

properties have been discovered, like the small-world property and scale-free distribution

of various graph parameters [50, 115, 163, 179]. In most of these studies, the public

transportation network (PTN) model represents nodes as stations and stops of a public

transportation system, and edges that connect consecutive stations along a route.

2.2.1 Data Collection and Modeling

We selected 5 Hungarian cities (Debrecen, Gy®r, Miskolc, Pécs, Szeged) to study their

urban public transportation systems. The choice of the cities was based on the following

criteria: (i) we are especially interested in cities with a population between 100,000 and

250,000; (ii) the characteristics (like land use and economic role) and the organization of

the public transportation of these cities are similar; but (iii) the geographical conditions

(landscape, hydrography, size of the area) are di�erent. The areas lie between 162 and

462 km2 (so these are medium-sized), but their urban morphology is di�erent. In Miskolc

and Pécs the land undulates, while in Gy®r and Szeged a river which crosses the city

is the main factor that determines the shape of the city. In Debrecen, there are no

restricting factors on the morphology. We should also mention that railway tracks may

have a similar role to that of the rivers on the morphology. This phenomenon appeared in

all the cities investigated. The above-mentioned characteristics have had a high impact

on the development of the cities and also on the organization of the public transportation

systems. Table 2.2 summarizes the basics characteristics of the cities and their PTN

network models. Here, �links-simple� refers to the number of links in the simpli�ed graphs

(no multiple edges), while �links-multiple� refers to the number of links in the model

where each line between two stations is represented by a link. In order to perform a

comprehensive network analysis of the public transportation network of these cities, the

�rst step was to generate the transportation networks (i.e the representing graphs). This

was done by modeling stations/stops as nodes and lines that connect them as directed

links. If a line runs between two stops in both directions, as is usually the case, we can

decompose the link that represents this line into two directed links due to the orientation.

Furthermore, we can also assign weights for each node and each edge by using the capacity

of the vehicles. This can be performed as follows:

1. Assign the lines to the stations where they stop by using the transport schedules.

2. Classify the stations that belong together.

3. Determine the morning peak hour capacity of each vehicle using the types of the

vehicles (the data provided by the public transport companies of the cities).

Table 2.2. The codes of the vehicle types are as follows: B: bus, E: electric trolleybus, T: tram

City Area (km2) Pop. (× 1000) Density (inhab./km2) Nodes Links�simple Links�multiple Lines Diameter Avg. path length Vehicle types
Debrecen 461 204 442.5 306 711 1772 53 41 11.7 BET
Gy®r 174 129 741.4 230 529 1391 43 30 10.8 B
Miskolc 236 161 682.2 257 535 977 35 45 14.5 BT
Pécs 163 147 901.8 256 569 1960 55 36 13 B
Szeged 281 162 576.5 242 558 1192 40 35 11.8 BET



2.2. Modeling Transportation Networks 21

0 10 20 30 40 50

0

1000

2000

3000

4000

5000

6000

7000

8000

 

 

 
Fr

eq
ue

nc
y

 Debrecen
 Gyõr
 Miskolc
 Pécs
 Szeged

Shortest path lenght

(a)

15 20 25 30 35 40 45

0

10

20

30

40

50

 

 

Fr
eq

ue
nc

y

Eccentricity

 Debrecen
 Gyõr
 Miskolc
 Pécs
 Szeged

(b)

Figure 2.2. a: Shortest path length distribution; solid lines show a �t to the function. b: Eccentricity
distribution.

Merging the stations into a single one was necessary for the following reasons. It frequently

occurs that stops belonging to the same node have di�erent names. In a special case, it

can happen that there are four di�erent names of the same stop in a 4-way crossroads.

On the one hand these stops can be viewed as just one stop, while on the other hand

this classi�cation allows us to unambiguously cover the road network of the city with the

PTN. In a big public transportation interchange or terminal where a high number of lines

intersect, usually the lines have di�erent stops. These stops were also merged. In the case

where a line makes two stops in two stations that were merged, we will treat it as just

one stop of the line for this node. In the case where the route of the line is a one-way

instead of a two-way between two consecutive stations, the stops were not merged.

A calculation of the maximal capacities of the di�erent lines was performed based on

the evaluation of the vehicle capacities1 in the morning peak hours (6-8 am). For each

single line, we collected the follow-up interval of it and multiplied it by the capacities

of the vehicles belonging to this line between 6-6:59 am and 7-7:59 am. By averaging

the two values, we obtained the average morning peak hour capacity (AMPHC) of the

line. For each node and link, we assigned the sum of AMPHCs of the lines that stop

at that node or pass through that link between two consecutive stations at least once.

By considering the morning peak hours, it can be seen that number of passengers that

go from the outer districts to the inner city area is signi�cantly higher than the number

passengers that go in the opposite direction. Based on this observation, we are able

to identify tra�c source and tra�c sink districts. We should also mention that all of

this data is available on http://www.epito.bme.hu/uvt/dolgozok/feltoltesek/

haznagy/ptncomplexanalysis.zip.

1The following types of vehicles are considered: mini bus: 30 persons; normal bus/trolleybus: 60
persons; articulated bus/trolleybus: 100 persons. In the case of trams, the situation is more complicated.
The types of trams are di�erent for every city; moreover the passenger capacities are calculated in
di�erent ways by the di�erent manufacturers. To calculate the tram capacities, we used the formula
3× (`w−sr2)/106, where ` is the length of the vehicle, w is the width of the vehicle (both in millimeters),
s is the number of seats and r2 is the are taken up by a single seat with r = 500 millimeter. Here, we got
the following results: Debrecen: Ganz KCSV6: 142 (persons), CAF Urbos 3: 227; Miskolc: Skoda 26T:
214, Tatra KT8D: 187; Szeged: Tatra T6A2: 81, Tatra KT4: 101, Pesa 120Nb: 187.
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Figure 2.3. Local network properties of �ve Hungarian PTNs

2.2.2 A Comprehensive Network Analysis

Global Network Characteristics

We performed an analysis of the networks both in the weighted and unweighted case2.

In practice, the diameter presents the longest route (i.e. number of stations along the

longest route) in the network if a passenger uses the optimal routes, which means that

she uses the shortest route between any two stations. In Table 2.2 we list the diameters

for the PTNs. It is interesting to note that the diameter does not correlate with the area

of the city.

The average path length corresponds to how many stations there are between two

stations on the shortest route on average, if we choose these stations randomly. We can

see in Table 2.2 that the the PTNs reveal a small-world feature from the average path

lengths point of view, since ¯̀ ∼ logN , i.e. the average distance between the nodes is

proportional to the logarithm of the number of nodes. The number of shortest paths

2An extension of the de�nition of the centrality measures to weighted networks can be performed
using the wij edge weights in the following way, say. The weighted degree of a node i is simply de�ned
as wi =

∑
j wij . In the case of PageRank, wij/wi is used d

−
j . The weighted closeness and betweenness

can be de�ned by using cij = 1/wij and dist(i, j) =
∑

(u,v)∈P cuv, where P is a path between i and j and

the weighted shortest path `wij is de�ned as the minimum of dist(i, j).
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from a node i is de�ned as `i =
∑

i 6=j `ij . Fig. 2.2(a) tells us that the distribution of the

shortest paths is close to a normal distribution with mean that varies between 10.8 and

14.5 (Table 2.2) and variance between 5.2 and 7.7.

The eccentricity tells us how far a stop/station is from the most distant stop in

the PTN. In Fig. 2.2(b) we plotted the eccentricity distribution of the �ve PTNs. The

shape of the function is quite di�erent in the case of Debrecen, due to its extensive

area and Miskolc, where many peripheral areas increase the distances between certain

stops/stations.

Fig. 2.3(a) shows the degree distributions in the unweighted case, where multiple links

are allowed, which has an exponential decay P(d) ∼ exp(−d/d̂), where d̂ is of the order

of the average node degree. In contrast, the weighted degree distribution (Fig. 2.3(e))

of the (weighted) networks has a power-law decay P(d) ∼ d−γ , where γ varies between

1.05 to 1.2.

In order to �nd communities, we use the Leuven modularity optimization method
described in Sec. 1.2.2. The communities of the PTNs are shown in �gures 2.4(b),

2.4(d), 2.4(f), 2.5(b) and 2.5(d). The results indicate the following common features

of the networks. On the one hand, for each city, the center of it contains one or two

communities and most of the peripheral lines have di�erent community classes. On the

other, we observed that if the city lies in a valley (Miskolc) or is bounded by mountains

on one side (Pécs) and hence the arrangement of the city is asymmetric, then it has some

special characteristics. The central core of the networks have been extended (�gs. 2.4(e)

and 2.5(a)) and this part of the transportation network can be partitioned into three or

four communities.

Local Network Characteristics

The degree di of node i (in the case of directed networks, the in- and out-degrees are

used) tells us how big the neighborhood of i is. The weighted in-degree centralities of the

�ve PTNs can be seen in Fig. 2.3(e). The distributions have a power-law decay, as we

noticed earlier.

Let Ni be the set of neighbors of u and G[Ni] be the subnetwork induced by the

nodes in Ni. The degree of a node j in the subnetwork G[Ni] is denoted by dG[Ni](j).

The local average connectivity [118] of node i is de�ned as

LAC(i) =
1

di

∑
j∈Ni

dG[Ni](j) (2.9)

and it describes how close its neighbors are. In a public transportation system it basically

means that if a stop/station cannot be used for some reason, the neighboring stops be-

come disconnected from each other. Nodes with high LAC values are the locally central

nodes. Fig. 2.3(d) shows the distribution of LAC for the 5 PTNs. We observed that

the distributions �t a power-law decay with degree exponent between 1.2 to 1.4. The

closeness centrality values for the unweighted case and weighted case can be seen in �g-

ures 2.3(b) and 2.3(f), respectively. The distributions display similar shapes for each city,
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4. Simple maps of the lines of the transportation system of the cities. The partition of the
PTNs into communities using the modularity optimization method. Nodes having the same color belong
to the same cluster; the bigger a node, the higher its in-degree is; and the thicker an edge, the greater its
capacity is.

but interesting observations can be made by comparing the the unweighted and weighted

closeness values for one city. The centrality values in the unweighted networks tell us

how central and important the nodes are according to the structure of the network. By
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(a) (b)

(c) (d)

Figure 2.5. Simple maps of the lines of the transportation system of Pécs and Szeged.

considering the schedules and capacities of lines in the PTN we need to assign weights

to the links, the nodes get closer to or farther from each other from a transportation

point of view. The unweighted and weighted C values for each city can be seen (plotted

on the same scale) in �gures 2.6(a)�2.6(e). In the case where the centrality value in the

unweighted network of a node is bigger than the value in the weighted case tells us that

although the node has central position in the network, the stop that represented by this

node may not be well exploited in the transportation sense. However, if the relation be-

tween the unweighted and weighted case is the opposite, the stop is overloaded according

to the network tra�c.

The betweenness centralities for the unweighted and weighted case can be seen in

�gures 2.3(b) and 2.3(f) and display similar shapes as in the case of closeness. The

unweighted and weighted BC values for each city can be seen (plotted on the same scale)

in �gures 2.6(f)�2.6(j). Similar to closeness, if the BC value of a node in the weighted

network is greater than its value in the unweighted case, the given stop may be overloaded

in the PTN. The opposite relation refers to a stop with spare capacity.

In [119], PageRank was used to identify the key nodes in a transportation system

and also for tra�c simulations [143] to �nd important nodes that have a high impact on
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 2.6. The unweighted and weighted betweenness and closeness centrality measures for each city.
The values are in decreasing order of the centrality values for the unweighted networks.

transportation e�ciency. It is interesting to observe that the PageRank distributions are

similar for all the �ve weighted PTNs (Fig. 2.3(h)), which is probably due to the fact that

organizational rules of the schedules are similar.

2.3 Educational Data Mining Aspects

Educational Data Mining [160] is concerned with the development, research and appli-

cation of computerized methods to �nd patterns and features in large collections of edu-

cational data. Such features are hard to analyze due to the huge amount of information

available and the high-level complexity of such databases. Data of interest is not restricted
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(a) (b) (c)

Figure 2.7. Toy examples for the network models. (a): a directed weighted graph of the students. (b): a
similarity-based weighted graph of the students with communities (c): a bipartite graph of students and
teachers

to interactions of individuals in an educational system (e.g., navigation behavior, input

to quizzes and interactive exercises), but they might also include data from collaborating

students (e.g. text chat), administrative data (like school, school district, teacher), and

demographic data (like gender, age, school grades). Some discussions on educational data

mining can be found in [88, 159, 160, 166]. Databases of educational institutes, where

the data is produced by complex administration systems, contain the administration of

the daily work of teachers and students, like descriptions of the lessons including the

equipment and educational methods that were used, the areas of competence that have

been developed, the students who participated and their marks and level, among other

things. Since a large amount of detailed data has become available via administration

activities and there is an opportunity to obtain more information about the participants

of the educational system than e.g. using classical questionnaire methods. Such relevant

issues, which have long been of interest, like measuring the progress and achievements

of the students, the e�ciency of the teacher's work, level of di�culty, data visualization

and the detection of incidental problems of the students (like drug or alcohol abuse, crisis

in the family) may be investigated and addressed using di�erent kinds of data mining

techniques.

Here, we discuss the possible application of the ubiquitous complex network approach

for information extraction from educational data. We de�ne several suitable network

representations of data available in such administration systems and present some possible

ways of how graph mining techniques can be used to get detailed information about them.

2.3.1 Graph-based Concepts on the Educational Sphere

Directed Graphs based on the Marks of the Students

The �rst network model of the students is a generalization of the one de�ned in [124]. In

this model, each node represents a student and a link between two students is de�ned in

the following way. We will assume that two students can be compared directly if they
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Figure 2.8. Community structure of a network of students (middle). The two subgraphs (left and right)
induced by the two communities were re-clustered.

received an end-of-year mark in at least one common subject. If the end-of-year marks

of the students i and j are (mi
1, . . . ,m

i
t) and (mj

1, . . . ,m
j
t), respectively, then we can

calculate the weight

wij =
t∑

k=1

ck(m
i
k −m

j
k), (2.10)

and add a directed link with weight |wij| between nodes i and j. The link goes from

j to i, if wij > 0, and it goes in the opposite direction if wij < 0. The constant

term ci refers to the level of di�culty of a subject, which can also be measured by a

network-based approach (see below) or by applying some statistical methods. As a short

concrete example, suppose Anne and Bob received the end-year marks (4, 5, 5, 5, 5) and

(5, 3, 3, 3, 4) for Mathematics, Literature, History, English and Art, respectively. Then

wAB = 6 with ck = 1,∀k, means that Anne is 6 points better than Bob, if all the subjects

have the same di�culty. Fig 2.7(a) shows a toy example for the model. One possible way

of determining the subject di�culty values is to use the average of the end-of-year marks

of each subject and assume that the higher the average, the less di�cult the subject is.

By using the cumulative distribution of the marks, one can de�ne an alternative way for

calculating the ck values by comparing these distributions. It is also possible to �nd out

how di�cult it is to a get a certain mark from a teacher and incorporate this parameter

into the formula that used to compute the edge weights.

Undirected Graphs based on Similarities of the Marks of the Students

The second network model is a family of undirected and weighted networks. As before,

the nodes represent students, while a weighted edge between two students is de�ned by

a similarity measure S of the lists containing the end-of-year marks of their common

subjects (that were not necessarily taught by the same teachers). For example, the

Jaccard similarity measure [92] is de�ned as the fraction of the marks that are the same

as all the marks in common for two students (a toy example can be seen in Fig. 2.7(b)).

One may use several similarity functions to de�ne the weight of similarity of two students.
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Figure 2.8 shows the community structure of the network of 255 students in their tenth

year in a Hungarian secondary school. The weights were de�ned by the Jaccard similarity

measure. We observed in our preliminary studies that the network contained two main

communities. The community of students who performed well in the school (Fig. 2.8,

middle, grey community) and community of students with a weaker academic performance

in school (Fig 2.8, middle, black community), respectively. We also found that the network

had a more re�ned structure by re-clustering the two main communities, and we identi�ed

clusters of students who were better in the natural sciences and students who were better

in the arts, respectively. We should also mention that while these studies were not too

detailed, such investigations might be the subject of a future study.

Bipartite Graphs of Students and Teachers

In order to evaluate how di�cult it is to get a good mark from a certain teacher, we

propose a family of bipartite graphs (see Sec. 5.1 for more details on bipartite graphs)

as network models based on the earlier results of [49] and [122]. We consider a bipartite

graph, G = (A,B,E). In the model, the elements of A are students from the same

school, while the set B stands for their teachers. We can de�ne a directed edge from a

node b ∈ B to a node a ∈ A with weight mb
a, if the teacher who is represented by node

b gave an end-of-year mark mb
a to student who is represented by node a. However, we

also de�ne a directed edge from a to b, based on the assumption that it is more di�cult

to get a good mark from this teacher if the mark he or she gave is lower than the average

of the student's marks (a toy example can be seen in Fig. 2.7(c)). Next, we can easily

construct a weighted directed graph of the teachers using the same technique as that

described in [122]. With this projection, a network of the teachers can be constructed

where a directed and weighted link from a teacher bi to another teacher bj shows how

much more �consistent� a teacher is than the other. The consistency is measured via

the average di�erence of the marks that the teacher gave to each of his or her students

and the average of the students' marks. Once this network is given, we can apply the

PageRank method, say, on it in order to assign scores to the teachers. These scores may

provide a realistic evaluation of the consistency of their marking habits; moreover, these

scores can be used to compare students by normalizing their marks using this evaluation

of the teachers.

Bipartite Graphs of Students and Subjects

Similar to the evaluation of the teachers, we can also evaluate how di�cult it is to a

get a good mark in a certain subject. For this purpose, we consider a bipartite graph of

students and subjects, i.e. we simply replace the set of teachers (de�ned above) by the

set of subjects. A directed and weighted link from a subject (say Maths) to a node a ∈ A
(which represents the student a) is de�ned with the weight mb

a if the student a got the

end-of-year mark mb
a. Then, from the student a weighted link to the subject Maths is

de�ned, where the weight represents, for instance, the di�erence between mark mb
a and

the average of the student's marks. A network of the subjects can be de�ned and by using
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some evaluation technique (like PageRank), a ranking of the subjects according to their

level of di�culty can be obtained. These scores can be used as weights for the calculation

of the students' performance and also for the evaluation of the teachers.

2.3.2 Student Evaluation based on Networks

With the intention of evaluating the achievements of students and generating a ranking be-

tween them, we de�ned a modi�ed PageRank algorithm as a data mining technique. The

Simple Network Work�ow for Schools system (SNW) which we investigated is a complex

administration software package of more than sixty institutes of public education (includ-

ing elementary schools, technical colleges, secondary schools and educational institutes of

arts) with electronic diaries, quality management, measurement, and evaluation systems.

Data set, Mathematical model and Experimental results

As a �rst step, we collected data from the database of the SNW-system. We used a dataset

of 283 students in the same (secondary) school in the same year and examined all their

end-year school reports. We de�ned a weighted and directed network of these students,

as described in the �rst model in Sec. 2.3.1. We used ck ≡ 1 in Eq. 2.10 and normalized

the weights as pij = wij/
∑

j:i→j wij in order to get a row stochastic adjacency matrix

with the transition probability values and applied the PageRank method to this network.

First, we checked the sensitivity of our method for di�erent values of the damping fac-

tor. We observed that the method is robust against the choice of λ, which was con�rmed

by the high correlation of the resulting PageRank vectors that contain the PR scores of

the students (the Pearson correlation was over 0.9 for each pair of result vectors). In

further studies, we chose λ = 0.2, which is usual in PageRank computations.

We used Kendall's τ correlation method [101] to quantify the rank correlation be-

tween the rankings obtained by the PageRank and the average method, which is simply

gives a ranking of students by comparing the average of their end year marks. Although

the correlation coe�cient was 0.68, which displays a positive correlation, many di�er-

ences can be seen between the two methods (see e.g. Fig. 2.9(a)). We normalized the

PR values, such that the values obtained from using the two methods are on the same

scale. We observed in general that if the end-year average of a student is high, but the

PR value of hers is relatively small, then the student has only a few subjects, where it is

�easy� to get a �ve mark. This assertion was justi�ed by checking all the marks of those

subjects. However, if a student i has a low average, but her PR value is high compared

to the others, it is normally true that most of the students taught by the same teachers

also have low marks such as i, but a high PR value of i means that she exceeded the

performance of their schoolmates.

We checked the relationship between the PR values (and ranks resulting from this;

the relation between the PR ranks and average ranks is shown in Fig. 2.9(b)) along with

the variance of the end-year marks. It can be seen in Fig. 2.9(a) that outstanding PR

values occur when the variance is high. Generally speaking, it was noticed that if the

variance of the marks of a student was high and their PR value was also high, then the
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(a) (b) (c)

Figure 2.9. (a) Relation between normalized PR scores and the average of the end-year marks; the
light grey area shows the variance domain of the marks. (b) Ranks of the students obtained by the
di�erent methods, ordered by the PR scores. (c) Relation between the variance of the end-year marks
and di�erence of the normalized PR scores and average values

student is talented in at least one subject. A high variance of the marks is due to the

large variety in the marks, but a large PR value must be caused by just one (or only a

few) subject (of the same teacher), where the student was signi�cantly better than her

classmates.

It is also interesting to examine the relationship between the di�erence of the nor-

malized PR scores and average values, and the variance of the end-year marks (see

Fig. 2.9(c)). It can be seen that the di�erence between the PR score and the average of

the marks is small in general regardless of whether the variance is high or low. It suggests

that we should be pay more attention to those students where this di�erence is high. In

such cases, we should also discover, what causes this big di�erence.

Applying this network-based method, the talents, the problematic students, the strict

or overly lenient teachers can be �ltered out. Examining students in the same class,

uniformly high or uniformly low PR scores (for instance) can also provide a fair picture

of the di�culty of each subject and/or the personality of the teacher of a certain subject as

well as the achievements of a class of students from a global point of view. The PageRank

method is also very e�ective in �nding the best students in the same year. After �ltering

out the �outliers� (e.g. students who have just a very few marks because, for example, they

moved to another school), PR scores provide a fairly good relative order of the students

with respect to their achievements. Such rankings can also be useful in deciding which

students need to be rewarded at the end of the year, and it is also useful for the teachers

and parents to follow the educational progress of the students and children, respectively.

2.4 Summary

In this chapter, we considered three real-world systems and presented some possible com-

plex network models for them. In each case, after data collection, a network of the

�actors� of the system was de�ned and analyzed using standard and, in some case, new

graph mining techniques.

Firstly, a new local PageRank approximation algorithm was applied to a co-citation

network on the citation environment of the seminal paper by Jen® Egerváry. It follows
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from the implementation of the PageRank algorithm that citations received from more

important papers contribute more to the ranking of the cited paper than those coming

from less important ones. Furthermore, simplicity and fast computability are advantages

of our method. However, co-citation networks provide more detailed contextual informa-

tion (compared to the number of citations) for evaluating the impact of an article. We

hope that network-based ranking methods will gain more space in Scientometrics since

they o�er a more objective picture of the impact of scienti�c publications. Now it seems

that one of the most challenging tasks in citation network based scientometics is to gen-

erate the local co-citation network of any article automatically, but hopefully these data

sets will be provided by the owners of such databases in the future.

Secondly, a comprehensive network analysis was performed on the public transporta-

tion network of �ve Hungarian cities. Although previous studies often used unweighted

networks, one novelty of our study was to consider directed and weighted edges, where

the weight of a link referred to the morning peak hour capacity of that link obtained

by using the capacities of the vehicles (bus, tram, trolleybus) and schedules of the lines

that go though that link. We should add that the modal split (that is, the percentage of

travelers using a particular type of transportation) and the real number of passengers in

the PT vehicles are the key descriptors of public transport systems from an optimization

point of view. However, we presented an alternative approach which requires a smaller

amount of data, but gives a ��rst glance� global picture of the PTNs. In the future, we

would like to analyze bigger cities and also cities in di�erent countries with similar layouts

(medium-sized, similar urban structure and land use) with network theoretic tools using

more detailed data (where in addition to the schedules and capacities, the geographical

distances are also given between the consecutive stations). We would also like to address

the question of transfers between routes. The results of this study accord well with the

earlier studies in the area of classical PTN modeling. We think that the kinds of methods

applied here could assist experts in the planning of urban public transportation systems

and they could be integrated into the classical PT organization methodology.

Thirdly, we proposed four di�erent suitable network representations of students, teach-

ers and subjects in public education and presented some possible ways of how graph min-

ing techniques could be used to provide more detailed information about them. Analyzing

these networks using real data sets might be a fruitful direction in the future. Then, we

de�ned a PageRank-based graph algorithm and applied it to a network of students in a

secondary school. By applying our method, the achievements and ranking of the students

are not only analyzed and determined by simple statistical techniques, but the use of

pairwise comparisons of the students to obtain a complex network representation of this

system was also considered. We observed that our method gave a better picture of the

students' relative performance, and it can also identify outstanding and relatively weak

students. In our experiments, the PageRank method gave an especially good picture of

the students in the case where we want to investigate whether the student is outstandingly

better than her schoolmates.



Chapter 3

Network Models applied in

Economics

Having presented complex network models of several real systems in the previous chapter,

we will now focus on networks that arise in the �eld of economics. Providing only a brief

introduction and survey on recent �ndings of the topic is out of the scope of this thesis,

instead we refer to [93] and [94] as a good textbook and a very recent survey of the topic,

respectively.

Firstly, we show how graphs can be used to model trade networks of countries. We

give a brief overview of possible network representations of the international trade and

present some approaches to extract information from the system using network analysis.

We present a brief case study that investigates the timely evolution of the trade network

of the European Union, focusing especially on the evolution of communities and di�erent

rankings of the countries and paying special attention to the former member countries of

the Council for Mutual Economic Assistance (Comecon).

Secondly, we discuss the concept of correlation-based �nancial networks. We show

how di�erent �noise� �ltering techniques can be applied on the correlation matrix (i.e.

correlation network) containing the pairwise correlations of stock time series. Then, we

examine the performance of the fundamental Markowitz portfolio optimization model

using stock time series data of various stock exchanges and investment period intervals.

The performance of the methods is compared using the estimated and realized returns

and risks, respectively. The results indicate, in accordance with previous studies, that

the estimated risk, in general, is closer to the realized risk using �ltering methods. We

also draw some conclusions according to the the expected return estimation, namely, our

results tells us that the use of the James-Stein �shrinkage� estimator the reliability of the

portfolio can be improved.

3.1 Trade Networks

Investigating trade systems and the world-trade is an important area of modern eco-

nomics. One of the most important indicators is the world-trade ranking of the countries,

which not only indicates the wealth of the countries, but implicitly contains information

33
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about the e�ciency of their economic relations with other countries. However, the ranking

is usually done according to their export/import volumes in US dollars. In this approach

the most developed and rich countries are at the top of the ranking, but not necessary due

to the fact that their trade network is e�cient, broad and competitive [105]. The usual

statistical indicators give a relatively objective picture of the countries' economy, but

they do not give much information either about the international trade as a continuously

evolving economic system or the relations each country has with other countries.

Complex networks analysis provides a detailed picture of complex trade systems and

their evolutionary dynamics. Trade networks can be studied in a simpli�ed, but com-

plexity preserving graph model, where the countries are represented by the nodes of the

graph, while edges represent the trading relation between any two countries, often using

export and import volumes in US dollars as weights. Thus, the model of the system is

a directed and weighted graph, where the direction and weight of an edge refer to the

direction and volume of the cash �ow, respectively.

It should be mentioned that from another aspect, international trade can be modeled

by a bipartite graph, where nodes represent countries and products, and a weighted edge

between a country and a product represents the ratio to the total amount of the product

imported or exported. The world trade web, if de�ned in this way is highly nested
[60], which informally means that small-degree nodes tend to be connected only with

high-degree nodes, resulting in a core-periphery like bipartite network. Such nestedness

remained constant between 1985 and 2009 [29], and most probably greatly contributes

to the stability of the world trade. (The stability of the international trade network

was recently con�rmed by applying a di�erent method [170].) Interestingly, distances of

countries did not play a crucial role in shaping the world trade network [152].

3.1.1 Structure and Evolution of Trade Networks

The earliest studies of trade networks dealt with undirected and static model graphs

(see, e.g. [168]), but recent results appeared based on the analysis of evolving directed

networks (see e.g. [5, 60, 63, 74, 151]). Analyzing the structure and the the temporal

dynamics of these networks has recently been used to con�rm the globalization of the

world economy [5, 91]. Although in [91] the authors claim that there is strong evidence for

the globalization of the world-trade, many studies highlight the co-existence of processes

opposite to globalization, sometimes referred as �regionalization� [5, 151]. Recently, by

investigating the International Trade Network, it has been found that the global changes

of the trade network are closely related to changes at the regional level [192].

3.1.2 Studies on Trade Network of the EU

Now we will we brie�y present, through an example, how the network approach can be

used to investigate trade networks; in particular, we will analyze the timely evolution

of the trade network of the European Union (for more details, see the author's paper

[140].) We used the import/export volumes data available in the United Nations Com-

trade Database [177]. The EU 28 countries together with non-EU countries, like the
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Figure 3.1. Communities of the trade network in 2004, 2007 and 2013 (top to bottom).

USA, Russia, China and Japan were included in the study in the period 1995-2013. We

especially focused on the membership expansion years. That is

1. 1995: the EU had �fteen members, namely Austria, Belgium, Finland, Nether-

lands, Luxemburg, Germany, France, Italy, Denmark, Ireland, the United Kingdom,

Greece, Spain, Sweden and Portugal

2. 2000: no enlargement

3. 2004: ten new members joined, namely: Cyprus, the Czech Republic, Estonia,

Poland, Latvia, Hungary, Malta, Slovakia and Slovenia

4. 2007: Bulgaria and Romania joined the EU

5. 2013: Croatia joined the EU

Communities in the trade network

For each country we considered the import/export trade volumes relative to the country's

GDP. It can be seen that each country's export volume (relative to the GDP) increased

after joining the EU. The fastest rate of growth was produced by the Central Euro-

pean countries (the Czech Republic, Hungary, Poland and Slovakia), but this growth was
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caused by the increasing trade between each other and the also with Russia and China.

During the period examined (1995�2013), the trade network was mainly characterized by

four communities, namely West Europe, East-Central Europe, North Europe and South

Europe (or Balkan) communities, respectively (Fig. 3.1). In these communities most of

the countries were stable members, but there were countries that belonged to di�erent

communities in di�erent periods and some of the communities merged for a short period

before splitting up again. The most stable community consisted of the Scandinavian

and Baltic countries. The West-Europe community displayed a higher �uctuation, but

the core countries, namely Benelux countries, France, Ireland, Spain and Portugal, were

stable. In the 2004 enlargement, Germany and Italy became the core members of the

East-Central European community by the increasing trade with the new countries that

had just joined to the EU.

It can also be seen that the former Comecon countries, and Cyprus and Greece did

not became stable members of any community perhaps due to their historical legacies.

While the Central-East European community contained the countries of the Habsburg-,

later Austrian-Hungarian, Monarchy, the Balkan community consisted of the countries of

the Ottoman Empire until the end of the 19th century [56]. Interestingly, in the latter

case Greece already joined the EU in 1981, it actually was in the community contained

Bulgaria, Cyprus and Romania. Temporary merging with and later separation from

the western clusters points out the integration challenges of these regions and con�rms

importance of regional e�ects � related to the historical and geographical conditions �

which can still not be altered by the concept of a customs union and aspirations for EU

integration.

In another aspect, we may de�ne the trade network of the same countries using the

total import/export volumes, instead of the volumes relative to GDP. In these networks a

central core appeared for each given year (see Fig. 3.2). The core-periphery classi�cation

was calculated using the weighted version of the Borgatti-Everett algorithm. In each

examined year the network core was formed by the leading West European countries

(France, Germany, Italy, Netherlands and UK) and the USA. Investigating the role of

China, Japan and Russia, we observe that in 1995 Japan was in the core but later it

dropped out. In contrast, China became a core member over time, and this is consistent

with the results in [192] which says that China took over the leading position of the Far

East region from Japan. The role of Russia is similar to that of China's, it moved to the

network core by 2013, which was probably caused by the growing trading relations with

the former Comecon countries that joined the EU.

Ranking countries

Usually the international trade ranking of countries is performed according to their export

and/or import volumes counted in US Dollar. Using this approach the rich and well-

developed countries lie at the top of the listing, not necessary due to the fact that their

trade network is e�cient, broad and competitive [61]. Since the PageRank and HITS

algorithms often work well in ranking nodes according to their network position, we used
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Figure 3.2. Total export network of the examined countries in 1995 and 2013. The thicker the link, the
higher the export volume between the countries

them to get a trade ranking of EU countries in the period examined. The results obtained

by the two algorithms are in general agreement with each other. The PageRank values

of the countries display a Pareto-like distribution (i.e. a power-law), which means that

the total export of the EU is transacted by a small proportion of the member countries

(France, Germany, Italy, Netherlands, UK). By comparing the PageRank scores with

the GDP, we can get a more detailed picture: countries with a lower export/GDP rank

than PageRank rank are more important in the export network than would simply be

expected based on their export volumes (like the Czech Republic and Hungary, Fig. 3.3,

left). Applying the HITS algorithm to the networks, the authority scores of the countries

reveal how big importing countries the export goes into, while hub scores show how big

exporting countries the import comes from. By comparing the in-degree (i.e. total import

relative to GDP) with the hub score, and the out-degree (i.e. total export relative to GDP)

with the authority score for each country we can draw the following simple conclusions.

Countries with higher rank according the hub scores than in-degree rank are the leading

economies of the EU (France, Germany, UK) and the Baltic and Central-East Europe

countries (including Hungary, see Fig. 3.3, middle). In the case of the leading economies

this is caused by the active and signi�cant trading between each other (in the network

core) since these countries have a high hub and authority score at the same time. The

smaller countries with higher hub scores than export relative to GDP, trade with the

big importing countries and this may result in signi�cant advantages during periods of

economic growth. Smaller out-degree rank than hub score rank implies that the exported

products utilized in countries with smaller authority scores (Fig. 3.3 right). For bigger

economies the large diversity of the trading partners is naturally better; however for

smaller economies the combination of small export volumes (relative to GDP) with low-

prestige trading partners may be risky especially in periods of economic crisis.
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Figure 3.3. Comparing di�erent rankings of the countries in 2013.

3.2 Networks based on Stock Correlations

After gaining certain insights from our analysis of trade networks, now we will introduce

the key concepts of using networks in �nance. In a �nancial market the performance

of a company is judged by the company's stock price, while the value of a company is

determined by the stock price multiplied by the number of shares outstanding (that is,

the company's stock currently held by all its shareholders). Though the exact nature of

the interactions among companies is not known in general, it is natural to think that

these interactions are re�ected in the equal-time correlations of their stock prices. These

correlations play a central role in investment theory and risk management, including the

classic Markowitz portfolio theory.
The interactions of companies, measured by stock price correlations, can be viewed

as an evolving complex system of stocks (as units of the system), and hence applying

network theory, which provides an approach to investigate complex systems, may be

useful here. Mantenga was the �rst who de�ned networks based on correlations [132] and

many articles have appeared on the topic since then (see, e.g. [174] for a good survey and

for more references).

Now let us consider the price time series of n given assets and let us denote the closure

price of asset i at time t (here it is a day) (t = 1, . . . , T ) by Pi(t). The daily logarithmic

return1 of i is de�ned as

ri(t) = log
Pi(t)

Pi(t− 1)
= logPi(t)− logPi(t− 1). (3.1)

The correlation coe�cient between stock i and j is de�ned as

Cij =
σij√
σiσj

, (3.2)

where σij is the covariance between stock i and j and σi is the standard deviation of

1This is common mainly because of the following reasons. (i) if we assume that prices are log-normally
distributed (which, may or may not be true for a given price series), then ri(t) is normally distributed;
(ii) when returns are very small (common for trades with short holding durations), the log-returns are
close in value to raw returns.
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stock i, calculated as

σij = rirj − ri rj and σi = σii = r2i − r2i . (3.3)

Above, the bar denotes the temporal average. That is,

ri =
1

T

T∑
t=0

ri(t), r2i =
1

T

T∑
t=0

r2i (t) and rirj =
1

T

T∑
t=0

ri(t)rj(t). (3.4)

We should note that, however, Cij , σij and σi are, in theory, calculated using the (joint)

probability distributions of {ri(t)}t=0,...,T and {rj(t)}t=0,...,T , which were de�ned as sam-

ple quantities (i.e. they are estimated using the realized values of the given time series).

Lastly, the correlation matrix is denoted by C = (Cij)i,j=1,...,n and the covariance matrix

is denoted by Σ = (σij)i,j=1,...,n.

3.2.1 Correlation Networks and Statistical Uncertainty

Recently, the analysis of the correlation coe�cient matrix of stock time series has become

the focus of interest [39, 55, 108, 109, 161, 172]. Many attempts have been made in

order to quantify the degree of statistical uncertainty present in the correlation matrix

and �lter information that is robust against this uncertainty [39, 84, 108, 109, 131].

The �ltered correlation matrices have been successfully used in portfolio optimization

in terms of risk reduction [109, 161, 172]. Below we describe two approaches used for

the correlation matrix �ltering, namely the random matrix theory approach and the

hierarchical clustering approach.

Random Matrix Theory

A simple random matrix is a matrix whose elements are random numbers from a given

distribution [137]. In the context of stock portfolios, random matrix theory (RMT) can be

useful to investigate the e�ect of statistical uncertainty in the estimation of the correlation

matrix [172]. Given the time series of length T of the returns of n assets and assuming

that the returns are independent Gaussian random variables with zero mean and unit

variance, in the limit n → ∞, T → ∞ such that Q = T/n is �xed, the distribution

Prm(λ) of the eigenvalues of the random correlation matrix (Crm) is given by

Prm(λ) =
Q

2πσ2

√
(λmax − λ)(λ− λmin)

λ
, (3.5)

where λmin and λmax are the minimum and maximum eigenvalues, respectively [167], and

they have the form

λmax,min = σ2(1 +
1

Q
± 2

√
1

Q
). (3.6)

Previous studies have pointed out that the largest eigenvalue of correlation matrices from

returns of �nancial assets is completely inconsistent with Eq. 3.5 and it refers to the

common behavior of the stocks in the portfolio [108, 153]. Since Eq. 3.5 is strictly valid
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Figure 3.4. Indexed hierarchical tree - obtained by the single linkage procedure - and the associated MST
of the correlation matrix of 40 assets of the Budapest Stock Exchange.

only for n → ∞, T → ∞, one can construct random matrices for the given n and T

values of the data sets used and compare the largest eigenvalues and the spectrum C and

Crm (i.e. compare the spectrum of the matrix constructed from real data and a random

matrix of the same size). Since Trace(C) = n, the variance of the part not explained

by the largest eigenvalue can be quanti�ed as σ2 = 1 − λlargest/n. Using this, we can

recalculate λmin and λmax in Eq. 3.6 and construct a �ltered diagonal matrix, using the

singular value decomposition, got by setting to zero all eigenvalues of C smaller than

λmax and transforming it to the basis of C by setting the diagonal elements to one.

Hierarchical clustering

The correlation matrix C has n(n−1)/2 ∼ n2 elements, hence it contains a huge amount

of information even for a small number of assets considered in the portfolio selection

problem. As shown by Mantegna and others [132], that the single linkage hierarchical

clustering algorithm (closely related to minimal spanning trees (MST) of graphs) provides

economically meaningful information using just n− 1 elements of the correlation matrix.

To construct the MST, the correlation matrix C is converted into a distance matrix D,

e.g. following [132, 133], using the dij =
√

2(1− ρij) ultrametric distance. Ultrametric

distances are the class of distances that satisfy the inequality dij ≤ max{dik, dkj}, which
is a stronger assumption that the standard triangular inequality. The distance matrix D

may be viewed as representing a fully connected graph of the assets with edge weights dij
representing a similarity between their time series. For this graph (matrix) we can use,

for example, the Kruskal algorithm in order to obtain the MST of n − 1 elements and

then construct the �ltered correlation matrix Cum using the n−1 correlation coe�cients

derived from the n− 1 distances in the MST.

Another widespread hierarchical clustering procedure is the average linkage algo-

rithm. While the single linkage clustering procedure basically follows the greedy Kruskal

MST method, the average linkage algorithm, for each iteration step, de�nes the distance

between an element and a cluster as the average distance between the element and each
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element in the cluster. For a detailed description, see e.g. [174].

3.2.2 Application to Portfolio Optimization

Portfolio optimization is one of the fundamental problems in asset management that seeks

to reduce the risk of an investment by diversifying it into assets expected to �uctuate

independently [57]. In his seminal work [134], Markowitz formulated the problem as a

quadratic programming task. Namely, given the expected return of the portfolio, the risk,

a quadratic function that is measured via the covariances of the asset time series, has to

be minimized. Formally, given n risky assets, a portfolio composition is determined by

the weights pi (i = 1, . . . , n), such that
∑n

i pi = 1, indicating the fraction of wealth

invested in asset i. The expected return and the variance of the portfolio p are

rp =
n∑
i=1

piri = prT (3.7)

and

σ2
p =

n∑
i=1

n∑
j=1

pipjσij = pΣpT , (3.8)

respectively, where ri is the expected return of asset i and Σ is the covariance matrix

contains the pairwise covariances of the asset time series in a given time interval. Vectors

here are now treated as row vectors.

In the classic Markowitz model [134] risk is measured by the variance providing a

quadratic optimization problem that consists in �nding vector a p which minimizes σp
for a given �minimal expected return� value of rp. Here, we will assume that short selling

is allowed and therefore pi can be negative. The solution of this problem, found by

Markowitz, is

p∗ = λΣ−11T + γΣ−1rT , (3.9)

with 1 = (1, . . . , 1); and the other parameters are

λ = (C − rpB)/D and γ = (rpA−B)/D,

where

A = 1Σ−11T , B = 1Σ−1rT , C = rΣ−1rT , D = AC −B2.

A possible RMT approach for portfolio optimization is to use Σrm (which can be readily

calculated from Crm) instead of Σ in the Markowitz model. Similarly, we can use Σsl

and Σal, instead of the empirical covariance matrix Σ, got by applying the single- and

average linkage procedures, respectively.
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3.2.3 Results

Estimators of the expected returns

In the case of stationary independent normal returns, themaximum likelihood estimator
is the sample mean of the past observations of ri(t) and it was de�ned as ri in Eq. 3.3.

Thus, for the portfolio we can de�ne

rML = (r1, . . . , rn), (3.10)

The maximum likelihood return estimation can be highly ine�cient since assets with

high past returns are likely to contain more positive estimation errors than others. The

positive part trimming could further reduce the risk, and the James-Stein estimator
[95] provides a constructive shrinkage estimator to do this. The James-Stein estimation

for the expected return for asset i is

rJS = (1− w)rML + wr01, (3.11)

where

r0 =
1Σ−1rTML

1Σ−11T
, w =

λ

λ+ T
and λ =

(n+ 2)(T − 1)

(rML − r01)Σ−1(rML − r01)T

In this calculation, each sample mean is shrunk toward the average return of the minimum

variance portfolio r0.

For a small sample size, usually below 50, it was observed that there is no evidence

that common asset expected returns are di�erent. If all expected returns are assumed to

be equal, the minimum-variance portfolio is e�cient and

rMV = r01. (3.12)

Data

To compare the performance of the methods, we decided to analyze the data set of n = 40

stocks traded in the Budapest Stock Exchange (BSE) in the period 1995-2016, using 5145

records of daily returns per stock. The second data set contained the stock time series of

n = 48 companies of the Information Technology sector (Hardware + Software), which

are available on Yahoo Finance (YF) (https://�nance.yahoo.com/), in the same period

as the BSE data with 5395 records of daily returns of each stock.

We considered t = t0 as the time when the optimization is performed. Since the

covariance matrix has ∼ n2 elements while the number of records used in the estimation

is nT , the length of the time series needs to be T >> n in order to get small errors

on the covariance. However, for large T the non-stationarity of the time series appears

likely. This problem is known as the curse of dimensionality. Because of this, we

computed the covariance matrix and expected returns using the [−T, 0] interval, i.e.

letting T = 50 ≈ n, T = 100 > n and T = 500 >> n days preceding the t = 0.



3.2. Networks based on Stock Correlations 43

Furthermore, applying �ltering techniques we tried to �lter the part of the covariance

matrix which is less a�ected by statistical uncertainty. To quantify and compare the

di�erent methods applied here, we will use the measures described below.

We should also mention here, that treating the Markowitz portfolio selection method

as a quadratic programming problem is particularly simple when Σ (in Eq. 3.8) is positive

semi-de�nite and the constraints are equalities (as in Eq. 3.7). It is not di�cult to see

that the positive semi-de�niteness is valid for the original covariance matrix and also for

the �ltered matrix got by using the RMT method. In [4] it was proved that the �ltered

correlation matrix obtained by the single linkage clustering procedure is always positive

de�nite if all the elements of the obtained �ltered correlation matrix are positive. This

is usually the case for correlations of stock time series and it was observed for all the

matrices we used. Moreover it was also proved there, that the �ltered correlation matrix

obtained by using the average linkage clustering method is also positive de�nite under

the same conditions as in the case of the single linkage procedure.

Performance evaluation

To measure the performance of the portfolios determined by the di�erent models, we use

the following quantities for the estimated return and risk at the time of investment and

the realized risk and returns after the investment period. For portfolio p, the ex-ante
Sharpe ratio measures the excess return per unit of risk:

Sp =
r̂p − rf
σp

, (3.13)

while the ex-post Sharpe ratio is de�ned by a similar equation, but with the realized

return rp. Here, rf is the risk-free rate of return. The portfolio risk, based on the

estimation of the correlation matrix, is calculated as

Rp =
|σ2
r − σ̂2

p|
σ̂2
p

, (3.14)

where σ̂2
p is the predicted risk, and σ2

r is the realized risk of the portfolio.

Simulation setup and results

We implemented our simulation environment in R. We are given a data set of stock

time series and the input parameters timeInverval T , the vector of startingTimes

t0 = (t10, . . . , t
k
0) and the rp = (r1p, . . . , r

`
p) vector of expectedReturns (equal steps

between the average return and the maximal return over all asset by default). The

simulation procedure is performed via the following steps:

1. For each starting time tj0, the asset.solve.Complete.R() subroutine checks

whether the portfolio optimization can be performed for the given starting time on

the interval [−T, tj0]:

• if yes, it calculates the optimal portfolio;
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• if not, it goes to the next starting time tj+1
0 ;

2. The subroutine stores portfolio weights and the data required for performance eval-

uation.

The subroutine asset.solve.Complete.R() works as follows:

1. It determines the expected returns using maximum likelihood, James-Stein and

minimum variance estimations.

2. It determines the covariance matrix of the stock time series.

3. It calculates the �ltered covariance matrices using the RMT, the single linkage and

average linkage procedures.

4. Portfolio optimization is performed for each return estimation.

• Using the Lagrange multipliers method of the 'Rsolnp' package [76], it calcu-

lates the optimal weights for each covariance matrix

• It calculates the portfolio risk according to the optimal weights.

• It determines the realized risk and Sharpe-ratio.

In order to improve the running times, the `doParallel' R package [31] was used (here

we will not go into the details of parallelization).

To check the robustness of the methods, a standard bootstrap experiment was per-

formed. We chose 50 starting times randomly and solved the optimization problem using

the time series on the intervals [−T, tj0] (T = 50, 100, 500, j = 1, . . . , 50). For each

portfolio, the predicted risk was calculated using Eq. 3.8 for �xed expected returns from

the average
∑n

i=1 ri/n to the maximum expected return max{ri : i = 1, . . . , n} with
equal spans. The Lagrange multiplier method, which is available in the 'Rsolnp' R pack-

age, was used for the optimization. In each case, the portfolios with realized returns in

the top and bottom 10% were dropped. The realized risk using the determined stock

weights at time tj0, the realized covariance matrix and realized returns were calculated on

[tj0, T ].

Figures 3.5 and 3.6 show the ratio of the realized risk σ2
p (continuous line) and the

predicted risk σ̂2
p (dashed line) as the function of the expected return rp obtained by using

the di�erent procedures for the BSE data set and Yahoo data set, respectively. For each

T , the time of the investment tj0 (j = 1, . . . , 50) and the set of stocks were the same.

For the BSE data set, the classic method and the RMTmethod provide similar realized

returns that are always higher using hierarchical clustering (single and average linkage).

In spite of this, the risk ratio Rp (i.e. the reliability of the portfolio) is also signi�cantly

decreased (see Fig. 3.5, and Tab. 3.1 �Risk Ratio� column), but the deviation of the

realized returns increased. The Sharpe ratio of the hierarchical clustering methods was

smaller than those got using the other methods, since the estimated risk was often higher

than that using the classic and the RMT methods. It can be seen that each method
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Figure 3.5. The ratio of the realized risk σ2
p and the predicted risk σ̂2

p as the function of expected portfolio
return (continuous line) and realized return (dashed line) for the di�erent procedures for T = 50, 100, 500
(top-down) using the maximum likelihood estimator (left panels) and the James-Stein estimator (right
panels). The data set contains 40 BSE stocks for the period 1995-2016.

provided better expected returns and a smaller risk ratio (i.e. higher reliability) for the

smaller values of T (T = 50, 100, see Tab. 3.1). The results tells us that the James-Stein

return estimation, although it increases the deviation of the realized returns, provides

a smaller risk ratio and an improvement on the Sharpe ratio. The Sharpe ratio of the

minimum variance portfolio (see Tab. 3.1 last four columns) was the highest due to the

very small expected risk that the method estimated, while its reliability is signi�cantly

smaller than those got using the other return estimators.

For the Yahoo data set, the same is true for the realized returns as in the case of

BSE data set. Here, the smallest risk ratio was obtained when T = 100 days (Fig. 3.6(c)

and Fig. 3.6(d)). It can also be seen that using the James-Stein return estimator pro-
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Figure 3.6. The ratio of the realized risk σ2
p and the predicted risk σ̂2

p as the function of expected portfolio
return (continuous line) and realized return (dashed line) for the di�erent procedures as T = 50, 100, 500
(top-down) using the maximum likelihood estimator (left panels) and the James-Stein estimator (right
panel). The data set contains 48 IT sector companies with available historical time series data in the
Yahoo �nance page in the period 1995-2016.

vided better results (realized returns, Sharpe ratio), while the usage minimum variance

estimator decreased the risk ratio in some cases.

3.3 Summary

In this chapter, we provided a brief insight into the network modeling in economic systems.

Firstly, we showed how network analysis could be applied to trade networks of countries.

We studied the trading data of the EU countries and the economic superpowers from

a network perspective, and we found that although the export, proportional to GDP,



3.3. Summary 47

has been growing in each European countries since joining the EU, the former Comecon

countries have not signi�cantly increased their GDP proportional exports to other EU

countries, but have increased in the direction of Russia and China. By applying di�erent

ranking algorithms (out-degree, PageRank, HITS) to the network, we learned that the

Pareto-principle (or Zipf-law, or �80-20�-law) prevails, meaning that a signi�cant percent-

age of the total export of the world is executed by just a few countries. Thereby, countries

where the export volume is relatively small, but have a high proportion of the GDP, are

in a strong economic dependence on the superpowers. We showed that such networks

have a strong core-periphery structure. We applied a modularity optimization method

to identify those communities in the network that change over time. We found that the

European countries in the periphery are contained in the clusters of Russia and China, in

contrast to the Western-European countries that are in clusters where the central nodes

are Germany and the USA, respectively, highlighting real economic dependencies among

the EU countries.

Next, we investigated the Markowitz portfolio selection problem using �ltered corre-

lation matrices (networks) got by using di�erent �ltering procedures, namely a random

matrix theory approach and hierarchical clustering approach. We used several estimators

to determine the expected return of a portfolio. A lot of experiments have shown that,

using �ltered covariance matrices, the classic Markowitz solution can be outperformed in

terms of realized returns and reliability, meaning that the realized risk and the estimated

risk are closer to each other in that case. Our simulations revealed that the di�erent �lter-

ing procedures provide di�erent portfolio optimization results. Namely, the most useful

methods may be di�erent depending on the risk level of the portfolio, the investment

period size and reliability of the risk and return estimation. We think that other �lter-

ing procedures combined with di�erent return estimators could also provide interesting

or better results with di�erent parameter settings (e.g. expected returns, portfolio size,

investment period length) of the optimization problem.
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Chapter 4

Network Models and Linear Algebra

for Rating and Prediction

The problem of assigning scores to a set of individuals based on their pairwise comparisons

appears in many areas and activities. For example in sports, players or teams are ranked

according to the outcomes of games that they played; the impact of scienti�c publications

can be measured using the relations among their citations. Web search engines rank

websites based on their hyperlink structure. The centrality of individuals in social systems

can also be evaluated according to their social relations. As we saw earlier, the ranking

of individuals based on the underlying graph that models their bilateral relations has

become the central ingredient of Google's search engine and later it appeared in many

areas from social network analysis to optimization in technical networks (e.g. road and

electric networks) [110].

In the previous chapters we presented models and examples for rating and ranking

based on network structure: in Chapter 2 we de�ned a network algorithm for rating

scienti�c papers; then we used a similar procedure to measure the performance of students

in public education based on their pairwise comparisons. In Chapter 3 countries were

ranked using the trade network of them. Now in this chapter we introduce see rating and

ranking methods of nodes of bipartite networks.

In this chapter we introduce more research and results of the author in the topic.

Firstly, we discuss how network models and related linear algebraic methods can be used

to rate the actors (players, agents) of the modeled system and we make predictions for the

future events, based on pairwise comparison graphs (or matrices, as we also refer to them

here). The �nal goal of this chapter is to present a new model for probabilistic forecasting

in sports based on linear algebraic rating methods which simply use the historical game

results data of the investigated sport competitions. In contrast to those techniques that

use the actual respective strength of the two competing teams, we provide a (complex)

system level approach. The assumption of our model is that if a rating of the teams after

a game day correctly re�ects the actual relative performance, i.e. the performance of

the system of teams in the competition, then the smaller the performance of the system's

changes after a certain event occurs in an upcoming single game the higher the probability

that that event will occur. We discuss several prediction methods including the widely-

49
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used Bradley-Terry model, the betting odds predictions and our proposed method in

detail. We present our initial empirical results obtained by measuring the accuracy and

the predictive power of the methods presented.

4.1 Rating and Ranking in Sports

Ranking in sports is important for those who are interested in the various professional

or amateur leagues as fans, managers, �nancial investors and for the growing number of

gamblers who bet on o�ine or online platforms [178]. Ranking and, in fact, performance

rating of athletes and sport teams play a crucial role in sports betting from both the

better's and the betting agency's point of view.

In many sports, only the win/loss ratio is considered (see e.g. the most popular sports

in the U.S.) for ranking the teams or players, i.e. a higher value indicates a higher position

in the ranking. In the case of equal win/loss rates, the result(s) of the head-to-head

matches between the players/teams in question and other simple statistics are considered

to determine the ranking positions. In many sports, instead of the round-robin system,

the type of the most relevant competitions is a single-elimination tournament (also called

knock-out or cup) maybe with a preceding group stage. Thus the players play just few

matches against only a small subset of their competitors. The o�cial ranking of the

players is usually determined by a sport speci�c rating system (e.g. see tennis, table

tennis, combat sports, etc.). In fact, in a tournament, in a regular season or in a given

period each player/team plays with only a subset of the others and a player/team who

plays against weaker opponents have a considerable advantage compared with those who

play against stronger ones.

Many approaches trace back the ranking problem to the solution of a system of linear

equations, where the entries of the coe�cient matrix refer in some way to the results of

the games played. From the study of this pairwise comparison scheme (for early studies

see e.g. [25, 46, 102]), several matrix-based ranking algorithm have appeared in sports

(see e.g. [42] for chess teams, [45, 155] for tennis players, and [19, 38, 83, 136, 142] for

American football teams). For a good mathematical guide to ranking in sports, see e.g.

[96], while some useful comprehensive studies are e.g. [82] and [136].

4.1.1 Some Linear Algebraic Rating Methods

Next, we give a short description of the ranking methods we will use. Hundreds of ranking

methods have been appeared in the long history of ranking in sports: for a more detailed

introduction on ranking methods, we refer to [12] and [111]. The selection of the methods

we used satisfy the following criterion: (1) each method is based on linear algebra, (2)

each method has been proved to be successful in real applications, and (3) each method

has a simple formulation with, in most cases, a closed solution. Before going into more

detail, some de�nitions and notations, that are consistent with the network terminology

are introduced.

Let V = (1, . . . , n) be the set of n teams (or players) and let R be the number of
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game days in a competition among the teams in V . A rating is a function φr : V → Rn

that assigns a score to each team after each game day r (r = 1, . . . , R). This is considered

as the quantitative �strength� of the teams. A ranking σr : V → V , after game day

r, is an ordering of the teams that is simply obtained by sorting the teams according

to the rating φr. For rating and ranking the teams we consider only the game result

information, i.e. win and loss or �nal result information. We note that the methods can

be easily extended to the case when ties are allowed. Furthermore the matrix contains

the �nal scores of the games can also be considered; for more details we refer to [12].

Let W be the n× n matrix with entries Wij = #{i won against j}. The elements

of the n× 1 vectors w = W1, l = W T
1 and t = (W +W T )1 are the number of wins,

losses and the total number of games played by team i (i = 1 . . . , n), respectively, where

1 is the n × 1 with all entries equal to 1. Since each game considered here is either a

win or a loss, thus t = w + l. We de�ne T = diag(ti), namely the diagonal matrix with

entries Tii = ti, (i = 1 . . . , n) and Tij = 0 if i 6= j. By using these notations, we can

describe some widely-used linear algebraic rating methods within uni�ed framework.

Winning percentage (WP)

The Winning Percentage of a team i after game day r is simply de�ned as φrWP,i = wi/ti.

The vector of winning percentages of the teams after game day r can be computed as

φrWP = T−1w. (4.1)

The advantage of the method is that it can be easily calculated and interpreted. The

main disadvantage is that it do not take into account the strength of the opponent teams,

only the outcomes of the single games.

Massey's least squares method (M)

Kenneth Massey in his bachelor's thesis (1997) applied the least squares method for

ranking sports and assumed that the rating di�erence between two teams was proportional

to the score di�erence of the game between them (if they played) [136]. Let Yr,i,j be a

random variable that denotes the score di�erence between i and j in an upcoming game

r. Then

E(Yr,i,j) = φrM,i − φrM,j. (4.2)

If Yr,i,j = yr,i,j after game r and X is the m × n (m is the number of all game played)

matrix with entries xr,i = 1 if i won in game r, xr,i = −1 if i defeated in game r and

xr,i = 0 otherwise, then the rating of the teams is given by the solution of the linear

system

XφrM = y, (4.3)

where y is the m×1 vector of the realized score di�erences. Multiplying 4.3 by XT from

the left we get XTXφrM = XTy and denoting XTX = M and XTy = p, the rating of
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the teams after game r can be obtained solving the linear system

MφrM = p, (4.4)

where M = T −W −W T contains the total number of games played by the teams in

the diagonal; if i 6= j then Mij = −Wij −Wji; that is, the number of games played

between teams i and j with a negative sign, while p contains the total score di�erences

of each team. By using A = W −W T the system 4.5 is equivalent to TφrM −AφrM = p,

and hence r = T−1AφrM + T−1φrM . It follows that

φrM,i =
1

Tii

∑
j

Aijrj +
pi
Tii
, (4.5)

where the �rst term is the average rating of teams against i has played, while the second

term is the average point spread of team i. In the case of competitions where there are

more than one game is played between some pair of teams we may use p = w− l. Since

rank(M) < n, the linear system Eq. 4.5 does not have a unique solution. To overcome

this problem, one possible solution is to replace any row in M with a row with all entry

equals to 1 and replace the corresponding entry of vector w − l with zero.

Colley's least squares method (C)

Colley's method [38] is also a modi�cation of the least squares method by using an ob-

servation called Laplace's rule of succession (see [162], page 148) which states that if one

observed k successes out of r attempts, then (k + 1)/(r + 1) is a better estimation for

the next event to be a success than k/r. Since ti = wi + li, we have

wi =
wi + ni − li

2
=
wi − li

2
+
ti
2
. (4.6)

Colley observed that the second term is the summation of all terms equal to 1/2, corre-

sponding to the default rating of a team with zero played games. Generalizing this using

the opponent's strength

ti
2

=

ti∑
j=1

φrC,j, (4.7)

it follows that

φrC,i =
wi + 1

ti + 2
=

(wi − li)/2 +
∑ti

j=1 φ
r
C,j + 1

ti + 2
. (4.8)

Rearranging and writing it in linear system form, we get

CφrC = b. (4.9)

The rating vector φrC of the teams is the solution of the linear system Eq. 4.9, where

C = M + 2I (here, I is the identity matrix) and b = 1 + (w − l)/2. It can be easily

seen that the linear system Eq. 4.9 always has a unique solution.
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Keener method (K)

Keener's method [100] is a so-called spectral rating method which uses the Perron-

Forbenius eigenvector for the rating and (after round r) it is given by the solution of

the eigenvalue equation

T−1WφrK = λφrK (4.10)

In Eq. 4.11, λ is the dominant eigenvalue of the matrix T−1W . This exists for a matrix

with non-negative entries, and any other eigenvalue is smaller in absolute value. The

corresponding eigenvector (which is called the Perron-Frobenius eigenvector) has non-

negative entries and it gives the rating of the teams. Originally, the method was de�ned

for the case where the �nal scores of the games are considered. The Keener matrix, also

based on the Laplace's rule of succession, is de�ned as Kij = (Wij +1)/(Wij +Wji+2).

Then, the Keener rating vector of the teams is given by the solution of the equation

KφrK = λφrK . (4.11)

PageRank method (PR)

In our result matrix representation of sports game outcomes, using the result matrix W

instead of adjacency matrix A and using l1t instead of D, the PageRank rating vector of

the teams de�ned as

φPR = Π =
λ

N
[I − (1− λ)W t(l1t)−1]−11. (4.12)

Assuming that 1PR = 1 Eq. 4.12 implies that

Π = [
λ

N
11

t − (1− λ)W t(l1t)−1]Π, (4.13)

which shows that Π, is the eigenvector of the matrix λ
N
11

t− (1−λ)W t(l1t)−1, belongs

to the eigenvalue 1, which is the largest (dominant) eigenvalue of this matrix by a conse-

quence of the Frobenius-Perron theorem for row-stochastic matrices (see e.g. [141], Ch.

8.) as we mentioned earlier.

Time-dependent PageRank method (tdPR)

We modi�ed the PageRank algorithm such that the weight (i.e the transition probability)

of each edge decreases whenever a new edge appears in the graph. Formally, the new

approach is that after the kth match was played in a given period, the weight of the

latest edge becomes 1, the second latest becomes 1/2, the ith latest becomes 1/i, the

oldest one becomes 1/k. We normalize the weights such that the matrix obtained become

row-stochastic (i.e. each row summing to 1) and we recalculate the ranking every time a

new result is registered in the database by solving the equation

φtdPR = Π =
λ

N
[I − (1− λ)W t

mod(l1t)−1]−11, (4.14)



4.1. Rating and Ranking in Sports 54

where the entries of Wmod are then the new transition probability values, calculated as

we described.

Network Representation of the Methods

We would like to emphasize, that several of the above-de�ned methods have an interpreta-

tion on a graph. Using the game results data set, one can de�ne a directed multigraph1,

where nodes represent players/teams, while links between them represent outcomes of

games they played. The links are directed and each of them is going from the loser team

to the winning team. If ties are also considered they can be represented by two directed

links with opposite directions and half weight. In this case, matrix W is the adjacency

matrix of the directed multigraph representation of the results, w and l contain the in-

and out-degrees of nodes, respectively. From a network science perspective, Massey's M

matrix is the graph Laplacian if the result matrix is treated as the matrix of a symmetric

undirected graph. The rating vector φM de�ned in Eq. 4.5 is then equivalent to the po-

tential vector over a resistor network de�ned W with supply vector w − l [72]. The PR

and td-PR methods are the modi�cations of the classic PageRank algorithms performed

on the results graph.

4.1.2 Experimental Results

We applied the methods described above to the table tennis competition of the Institute

of Informatics at the University of Szeged (the data set we used can be found in the web-

site http://www.inf.u-szeged.hu/~london/TableTennisResults.txt). In that

competition, there is no any rule for the selection of the opponents or the date of the

match. The only restriction is that 7 days must have elapsed between two matches of

the same players. Without considering the organizational rules and by considering the

results only in a given period, it can be seen that these features occurred in many sports

where the competition is not a round-robin.

In Table 4.1, we report the scores of the players obtained by the di�erent ranking

methods. In the case of the PR and the tdPR algorithms, we used λ = 0.1, 0.2, 0.3, 0.4,

respectively. We found that the td-PR score is robust against these variations of λ (the

Pearson correlation was more than 0.95 for each pair). Furthermore, the td-PR method

was proved to be very e�ective in �nding the top players of the competition that could

be justi�ed a posteriori by knowing the players skills.

We used Kendall's τ rank correlation [101] to quantify the correlation between the

di�erent methods. The rank correlation coe�cient is de�ned as τ = (nc−nd)/
(
n
2

)
, where

nc (nd) is the number of such pairs that have the same (opposite) order in both ranking

list. However, the td-PR score is positively correlated with the winning percentage,

di�erences can be seen by comparing the two methods. The relation between the td-PR

and the WP is shown in Fig. 4.1(a).

A relevant outlier on the list is player 14, having a win ratio 50%, who precedes

players 5, 23, 19 and 21, but the latter has a better WP than himself. He is placed at

1That is a graph where multiple links are allowed.
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(a) (b) (c)

Figure 4.1. (a) The scatter plot of the tdPR rank vs. the WP rank. (b) The results obtained by the
di�erent ranking methods. (c) The tdPR ranks of the players after 45, 90 and 180 played games.

position 4 and this is consistent with the fact that he was just defeated by players (player

10, player 12) who are ranked higher.

Fig. 4.1(b) shows the relation between td-PR and the other ranking methods. Despite

the high correlation between td-PR and the other methods, we observed that the time-

dependent method has a better predictive power. We considered the �rst half of the total

number matches that had been played since the start of the competition and calculated

the td-PR values of that period. Then we checked the results of the upcoming matches

and the changes in the ranking. It can be observed that the players with much a higher

td-PR score after the �rst half of the total matches played won a high proportion of their

matches against players with smaller td-PR values in the later part of the competition.

Our observations suggest that the di�erence between the td-PR values of the players can

provide a reliable prediction for the upcoming matches. Fig. 4.1(c) shows the td-PR ranks

of the players after 45, 90 and 180 played games. We should mention that Fig. 4.1(c) only

contains those players, who had already played at least one played match after the �rst

45 matches of the competition. Obviously, at that time we could not predict the results

of those players who joined later in the competition.
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Table 4.1. Ratings obtained by the di�erent methods; the ordering of the players is given by the decreasing
order of the td-PR values

Player #Plays #Wins Win ratio Massey Colley Keener PR td-PR
9 13 13 1.000 1.418 1.074 0.229 0.113 0.138
10 29 25 0.862 0.972 0.923 0.238 0.089 0.093
12 30 26 0.867 0.859 0.882 0.245 0.083 0.085
1 63 44 0.698 0.497 0.722 0.233 0.071 0.075
14 6 3 0.500 0.658 0.717 0.198 0.064 0.070
5 38 22 0.579 0.266 0.604 0.200 0.050 0.052
23 5 3 0.600 0.779 0.736 0.199 0.047 0.047
18 16 8 0.500 0.555 0.700 0.192 0.046 0.045
11 24 11 0.458 0.209 0.564 0.193 0.039 0.040
19 10 6 0.600 0.454 0.664 0.200 0.042 0.039
21 13 7 0.538 0.325 0.615 0.199 0.035 0.032
8 19 6 0.316 -0.338 0.354 0.181 0.031 0.032
26 1 0 0.000 -0.503 0.407 0.194 0.031 0.029
4 19 3 0.158 -0.474 0.265 0.172 0.025 0.026
6 10 5 0.500 0.269 0.586 0.194 0.030 0.025
2 17 3 0.176 -0.380 0.307 0.177 0.022 0.024
17 13 2 0.154 -0.437 0.286 0.178 0.019 0.020
3 13 1 0.077 -0.615 0.213 0.171 0.019 0.020
7 12 2 0.167 -0.650 0.219 0.176 0.018 0.018
16 2 0 0.000 -0.322 0.401 0.191 0.024 0.018
13 2 0 0.000 -0.322 0.401 0.191 0.024 0.018
22 14 1 0.071 -0.433 0.277 0.169 0.016 0.016
24 4 1 0.250 -0.507 0.349 0.191 0.023 0.016
15 5 1 0.200 -0.174 0.416 0.188 0.017 0.010
25 3 0 0.000 -1.060 0.186 0.191 0.015 0.007
20 5 0 0.000 -1.047 0.136 0.184 0.010 0.004

Table 4.2. Kendall's τ rank correlation between the di�erent methods.

Win/loss Lsm Colley Keener PR tdPR
Win/loss 1.000
MASSEY 0.705 1.000
COLLEY 0.748 0.895 1.000
KEENER 0.655 0.606 0.711 1.000
PR 0.723 0.735 0.803 0.662 1.000
tdPR 0.723 0.674 0.705 0.563 0.902 1.000

Further Ideas

We also ran a clustering algorithm (Leuven method) to see whether there exists a deeper

organizational pattern behind the evolution of the result network. Fig. 4.2 shows the

network with clusters that are shown in various colors. It depicts the contact graph of

the players after 90 played matches (up) and the state of the championship after more

than 180 matches (down). It is interesting to see the changes of the clusters in the two

graphs. First, we can observe that most of the newcomer players want to play against
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(a)

(b)

Figure 4.2. The contact graph of the players after 90 matches played (a) and the state of the championship
after more than 180 matches (b). Nodes having same color belong to the same cluster.

the current best players (in td-PR rank/a priori) and expect to jump to the top of the

ranking table. Second, it seems that players having closer td-PR values are more likely

to play with each other than players having a smaller td-PR value and lower ranking

position. Thus, we conjecture that the td-PR scores have a good explanatory power for

a self-organizing mechanism of free-time (and perhaps professional) sports as well. This

could explain the appearance of di�erent strength classes in most of the sports, where it

is more di�cult to predict results within a class than results between di�erent classes.

Furthermore, from a graph theoretical point of view, a new type of �regularity� (for details,

see [41]) can be de�ned on directed graphs, where the fraction of in/out edges of a node

is around 1/2 in the same class, and tends to 1 (or 0) between di�erent classes.
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4.2 Probabilistic Forecasting in Sports

In general, making predictions in sports is a di�cult task. Traditionally, predictions have

been made by experts like sports commentators, sports journalists, former players and

coaches based on their experience and intuition [69]. The predictions generally appear in

the form of betting odds, which, in the case of ��xed odds�, provide a fairly acceptable

source of expert's predictions regarding for the outcomes of sport games [154]. In the age of

information and high-performance computers, as a multimillion dollar market, the sports

betting market has been pervaded by a huge amount of statistics, produced after every

single game, aim to evaluate the performance of teams and players [129, 169]. Thanks

to the increasing quantity of available data the statistical ranking, rating and prediction

methods have became more dominant in sports in the last decade. A key question is

how accurate these evaluations are; more concretely, how accurately the outcomes of the

upcoming games can be predicted based on the statistics, ratings and forecasting models

in hand. In recent years, several statistics-based and machine learning methods have been

applied to the historical results data of sport competitions.

Statistics-based forecasting models are used to predict the outcome of games based

on some relevant information of the competing teams and/or players of the teams. As

a detailed survey of the scienti�c literature of rating and forecasting methods in sports

is beyond the scope of this dissertation, we will refer to only some important and recent

results in the topic. The celebrated Bradley-Terry model [25] (with several extensions

[47]) for data from paired-comparisons was developed to estimate the probability that

one object will be preferred to another. Applications of the model include sport com-

petitions as well, where the teams are the objects and the comparisons are the games

between them with preferences corresponding to wins and losses (and also ties, in many

sports). For some papers with a detailed literature overview and sport applications, see

e.g. [30, 33, 182]). In Sec. 4.2.2 we will give a detailed description of the Bradley-Terry

model. Other popular approaches are the Poisson goal distribution-based analysis (with

extensions of home-�eld e�ect and tie-e�ect), where the game results are predicted by

the number of points scored by the competing teams that are considered to be indepen-

dent Poissonian random variables with means determined by the respective o�ense and

defense abilities of the teams. For some references, see for instance [51, 99, 130]. A large

family of prediction models only consider the game results win, loss (and tie) and they

usually apply some probit regression model. For instance [68] and [80] consider team

quality, actual performance and match signi�cance and compare the statistical methods

to expert's views represented by the published betting odds. More recently, well-known

data mining techniques, like arti�cial neural networks, decision trees and support vector

machines, have also become very popular, and some references, without being exhaustive

include [40, 48, 98, 117]. A notable part of prediction models that use only the historical

data of game results contains the ranking and rating-based prediction methods. Some

recent articles on the topic are [12, 32, 77, 113, 173].
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4.2.1 Betting Odds

Bookmakers determine betting odds for the games according to their expectations of

outcome probabilities. Here we deal with �xed odds, means that they do not vary over

time depending on the betting volumes. These ��xed-odds� represent the predictions of

bookmakers [154]. Recent studies have pointed out that calculating probabilities from

betting odds is an appropriate forecasting method with increasing e�ciency [68, 169].

However, the e�ciency of betting markets has frequently been questioned and formerly

outperformed by statistical methods in some cases, see e.g. [51, 80].

From the technical point of view, if the betting odds for an upcoming game between

team i and team j are odds(i) and odds(j), respectively, it means that if one bets $1 to

i's win and it comes out, he wins odds(i) dollars, while if j wins, then the bettor loses

his $1 (similarly, one can bet to team j's win). We can calculate the probabilities of the

respective events as

Pr(odds)(i beats j) =
1/odds(i)

1/odds(i) + 1/odds(j)
(4.15)

and

Pr(odds)(j beats i) =
1/odds(j)

1/odds(i) + 1/odds(j)
. (4.16)

We should note here that odds provided by betting agencies do not represent the true

chances (as imagined by the bookmaker) that the event will or will not occur, but are

the amount that the bookmaker will pay out on a winning bet. The odds include a pro�t

margin which e�ectively means that the payout to a successful bettor is less than that

represented by the true chance of the event occurring. This means mathematically that

1/odds(i) + 1/odds(j) is more than one. This pro�t expected by the agency is known

as the �over-round on the book�.

4.2.2 The Bradley-Terry Model

The Bradley-Terry model [25] is a widely-used method to assign probabilities for the

possible outcomes when a set of n individuals are repeatedly compared with each other

in pairs. For two elements i and j, according to the model, the probability that i beats

j de�ned as

Pr(i beats j) =
πi

πi + πj
, (4.17)

where πi > 0 is a parameter associated to each individual i = 1, . . . , n, representing the

overall skill, or �intrinsic strength� of it. Equivalently, πi/πj represents the odds in favor

i beats j, therefore this is a �proportional-odds model�. Suppose that i and j played Nij

games against each other with i winningWij of them, and all games are considered to be

independent. The likelihood is given by

L(πi, . . . , πn) =
∏
i<j

[
πi

πi + πj

]Wij
[

πj
πi + πj

]Nij−Wij

. (4.18)
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Then the log-likelihood is

`(πi, . . . , πn) =
∑

1≤i 6=j≤n

[
Wij log πi −Wij log(πi − πj)

]
=

n∑
i=1

Wij log πi −
∑

1≤i<j≤n

Nij log(πi + πj) (4.19)

which need to be maximized.

One possible derivation of the model assumes team i produces an unobserved score

Si, no matter which is the opposing team, with the cumulative distribution function

Si ∼ Fi(s) = exp[−e−(s−log πi)]. (4.20)

It follows that distribution of the di�erence Si−Sj follows a logistic distribution function

Si − Sj ∼ Fij(s) =
1

1 + e−(s−(log πi−log πj)
, (4.21)

which implies that

Pr(Si > Sj) = Pr(Si − Sj > 0) = 1− 1

1 + elog πi−log πj
=

πi
πi + πj

. (4.22)

Extension with Home advantage and Tie

A natural extension of the Bradley-Terry model with �home-�eld advantage�, according

to [1], say, is to calculate the probabilities as

Pr(i beats j) =

{
θπi

θπi+πj
, if i is at home

πi
πi+θπj

, if j is at home
(4.23)

where θ > 0 measures the strength of the home-�eld advantage (or disadvantage).

Considering also a tie as a possible �nal result of a game, the following calculations,

proposed in [158], can be used :

Pr(i beats j) =
πi

πi + απj
, (4.24)

Pr(i ties j) =
(α2 − 1)πiπj

(πi + απj)(απi + πj)
(4.25)

where α > 1. Combining them is straightforward. In our experiments, we used the Mat-

lab implementations found at http://www.stats.ox.ac.uk/~caron/code/bayesbt/

using the expectation maximization algorithm described in detail in [33].

4.2.3 A Rating-based Model: a general framework

Now we will describe our model, which is a rating-based method, where the rating used

only deals with the win-lose or the �nal score statistics of the teams of the given com-
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petition. The crucial assumption of the model, unlike e.g. the Bradley-Terry model,

is that the rating of the teams evaluated after a given game day correctly re�ects the

actual performance, relative to each other, of the teams. Suppose that before game day

r (r = k, . . . , R − 1), for some k, the rating vector of the teams V = (1, . . . , n) in

a competition is φr−1(V ) = (φr−11 , . . . , φr−1n ). We assume, that this rating is a good

approximate of the performance the teams. The key idea for the predicting the outcome

of an upcoming match on game day r between teams i and j is the assumption that the

more probable an outcome is the less change it will cause in the rating vector φr−1(V ).

Mathematically, let us de�ne the distances

δr{i beats j} = dist
(
φr−1(V ), φr(V )

∣∣ {i beats j}) (4.26)

and

δr{j beats i} = dist
(
φr−1(V ), φr(V )

∣∣ {j beats i}
)
, (4.27)

by using some distance function dist : Rn×Rn → R. Practically speaking, δr{} measures

how the rating vector changes after a certain game outcome on game day r. Then we can

simply assign probabilities for the events {i beats j} and {j beats i}, such that

Pr({i beats j}) =
f(δr{i beats j})

f(δr{i beats j}) + f(δr{j beats i})
(4.28)

and

Pr({j beats i}) =
f(δr{j beats i})

f(δr{ beats j}) + f(δr{j beats i})
, (4.29)

respectively, by using some f : R → R non-increasing function. Within this framework

the rating function φ, the distance function δ and the non-increasing function f can be

chosen independently.

Considering ties as well in our rating based-model the probabilities can be calculated

as
f(δr{i beats j})

f(δr{i beats j}) + f(δr{i ties j}) + f(δr{j beats i})
, (4.30)

f(δr{i ties j})

f(δr{i beatsj}) + f(δr{i ties j}) + f(δr{j beats i})
. (4.31)

The home-�eld advantage may be de�ned in various ways. Since in our experiments

we used a time-dependent PageRank method, we will describe a possible way of de�ning

home-�eld advantage. Furthermore, we give a more detailed description of the model in

that case.
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Table 4.3. Accuracy results on football data sets. The values where the di�erence between the Bradley-
Terry method and the PageRank method was higher than 0.01 are shown in bold.

League Season Betting odds error Bradley-Terry error PageRank method error
2011/12 0.58934 0.60864 0.59653

Premier League 2012/13 0.56461 0.59744 0.58166

2013/14 0.54191 0.55572 0.59406
2014/15 0.55740 0.60126 0.60966
2011/12 0.58945 0.59994 0.59097

Bundesliga 2012/13 0.57448 0.59794 0.58622

2013/14 0.55724 0.57803 0.60125
2014/15 0.57268 0.60349 0.60604
2011/12 0.54598 0.57837 0.58736

La Liga 2012/13 0.56417 0.58916 0.60205
2013/14 0.57908 0.58016 0.60473
2014/15 0.52317 0.55888 0.56172

4.2.4 Experimental Results

Forecasting Accuracy

To measure the accuracy of the forecasting we calculate the mean squared error, which

is often called Brier scoring rule in the forecasting literature [27], described as follows.

The Brier score measures the mean squared di�erence between the predicted probability

assigned to the possible outcomes for event E and the actual outcome oE . Suppose that

for a single game g, between i and j, the forecast is pg = (pgw, p
g
t , p

g
l ) containing the

probabilities of i wins, the game is a tie and i loses, respectively. Let the actual outcome

of the game be og = (ogw, o
g
t , o

g
l ) where exactly one element is 1, the other two elements

are 0. Noting that the number of games played (and predicted) is N , BS is de�ned as

BS =
1

N

N∑
g=1

||pg − og||22 =
1

N

N∑
g=1

[(pgw − ogw)2 + (pgt − o
g
t )

2 + (pgl − o
g
l )

2]. (4.32)

The best score achievable is 0. In the case of three possible outcomes (win, lost, tie)

we can easily see that the forecast pg = (1/3, 1/3, 1/3) (for each game g and any N)

gives accuracy BS = 2/3 = 0.666. We consider this value as a worst-case benchmark.

One question of our investigation is that how better BS values can be achieved using our

method, and how close we can get to the good betting agencies' predictions.

Results on football data sets

We test our model using the following setup. For rating the teams, a time-dependent

PageRank method is used. The damping factor is λ = 0.1, while we use an exponential

function 0.98α for time-dependency, where α denotes the number of game days elapsed

between the last and the �rst game day that we consider for calculations. We de�ne each

day as a game day in which on a day at least one match is played. The construction of

the modi�ed PageRank matrix used in Eq. 4.14 is carried out as follows. For any game

day in which we make a forecast, we consider the results matrix that contains all the

results of the previous T = 40 game days. To take into account the home-�eld e�ect, for
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each team i we distinguish team home-i and team away-i. We de�ne a 2n × 2n results

matrix S, which, in fact, describes a bipartite graph where each team appears both in

the home team side and the away team side of the graph. Thus, a home team and an

away team PageRank values are calculated for each team. We would like to establish a

connection between team home-i and team away-i using the assumption that home-i is

not weaker than away-i. In our implementation we assume that home-i had a win 2-1

against away-i to give a positive bias for home-i at the beginning. In our experiments

this setup performed well, but it was not optimized precisely. For the 40 game days

time window, the entries of the results matrix S are de�ned as Sij = #{scores team

home-i achieved against team away-j}. Each entry is multiplied by the time-dependency

function, then the row stochastic PageRank matrix is constructed and PageRank scores

are calculated according Eq. 4.14.

Using the above-de�ned results matrix S and the PageRank rating vector φ, we assign

probabilities to the outcomes {home team win, tie, away team win} of an upcoming game

in game day r between team home-i and team away-j as follows. Before the game day

in which we make the forecast, let the calculated PageRank rating vector be φr−140 (V ).

Since now we use the results matrix S, we should consider �nal scores instead of win-

tie-loss outcomes considered in the model description above, to calculate the δr{} values

de�ned in Eq. 4.26 and Eq. 4.27. We use δrxy to measure how the rating vector of the teams

changes if the result of an upcoming game between teams i and j, denoted as x : y, where

x, y = 0, 1, . . . are the scores achieved by team i and team j, respectively2. We de�ne δrxy
as the Euclidean distance between φr−140 (V ) and φr40(V ) that is the rating vector for the

new results matrix obtained by adding x to Sij and y to Sn+j,i. In the results graph inter-

pretation this simply means that an edge from node away-j to node home-i with weight x

and an edge from node home-i to node away-j with weight y are added to the graph, re-

spectively. Our assumption is that if an outcome x : y has a high probability and it occurs,

then it causes a small change in the PageRank vector; hence δxy will be small. To simplify

the notations let {δ1, . . . , δm} be the distance values obtained by considering di�erent

results {E1, . . . , Em} of the upcoming game between team i and team j. The goal now is

to calculate the probability that a certain result occurs conditioned to {δ1, . . . , δm}. To
do this, we use the following simple statistics-based machine learning method. Let f+()

be the probability density function of δi random variable where the event (game result)

Ei occurred. In our implementation Ei ∈ {0 : 0, 1 : 0, 1 : 1, . . . , 5 : 5}, assuming that

the probability of other results equals 0. Similarly, let f−() be the probability density

function of δi random variable in which case the event (game result) Ei did not occur.

To approximate the f+() and f−() functions, for each game we use the training data set

contains all results and related δi (i = 1, . . . ,m) values of the preceding K = 40 game

days of that game. In our experiments, the gamma distribution (and its density function)

turned out to be a fairly good approximate for f+(δ) and f−(δ).

Assuming that δ1, . . . , δm are independent, using the Bayes theorem and the law of

2We should note here that if the result is 0 : 0, then x = y = 1/2 is used.
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total probability, we get

Pr(Ei|{δ1, . . . , δm}) =
Pr(δ1, . . . , δm|Ek)Pr(Ei)

Pr(δ1, . . . , δm)
=

∏
k Pr(δk|Ei)Pr(Ei)∑

` Pr(δ1, . . . , δm|E`)Pr(E`)
=

=

∏
k Pr(δk|Ei)Pr(Ei)∑

`

∏
k Pr(δk|E`)Pr(E`)

=
f+(δi)

∏
k 6=i f

−(δk)
1
m∑

` f
+(δ`)

∏
k 6=l f

−(δ`)
1
m

=

=
f+(δi)

∏
k 6=i f

−(δk)∑
` f

+(δ`)
∏

k 6=l f
−(δ`)

. (4.33)

We should note here that using Eq. 4.33 we assign probabilities to concrete game �nal

results, which is another novelty of our model. Then, for the upcoming game between i

and j, based on Eq. 4.33, the outcome probability of the event {i beats j} is calculated
as

Pr(i beats j) =
∑

k: Ek encodes a result
of team-i win

Pr(Ek|{δ1, . . . , δm}), (4.34)

where we sum over those Ek results for which team-i beats team-j (i.e. 1:0, 2:0, 2:1, 3:0,

3:1, etc.). The probabilities Pr(i ties j) and Pr(j beats i) can be calculated in a similar

way.

Our initial results are summarized in Table 4.3, which contain the accuracy scores

(i.e. Brier scores, using Eq. 4.32) of the di�erent forecasting methods applied in dif-

ferent seasons of various European football championships. To calculate the betting

odds probabilities we used the betting odds provided by bet365 bookmaker available at

http://www.football-data.co.uk/. We could see that these predictions gave the

best accuracy score (BS) in each case. We highlighted the values where the di�erence

between the Bradley-Terry method and the PageRank method was higher than 0.01. Al-

though we can see that slightly more than half of the cases the Bradley-Terry model gives

a better accuracy, the results are still promising considering the fact that the parameters

of the method and our implementation are far from being optimized.

4.3 Summary

In this study, we de�ned a time-dependent PageRank-based algorithm and applied it

for ranking players in a university table tennis competition. According to our tdPR

method, the ranking of a player is not only determined by the number of his or her

victories, but it depends on how good the players are he could beat or lose against. It

means that a good player is needed to beat for higher ranking position, but winning

many matches against weaker opponents does not lead anyone to the �rst position in

the ranking table. The time-dependency of weights of the matches guarantee that the

matches played a long time ago do not count as much in the ranking. Another aim of the

time-dependency is to pressure the players to play regularly or else their results would be

out of date; then they would count much less in the ranking. We also observed that our

method has good predictive power. This may be interesting in other aspects of sports, like

estimating the betting odds for games. We think that a self-organization pattern operates
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in the background of the evolution of the contact graph. Obviously, players who want

to enter matches are expected to be exciting, but the nature of such competitions can

be modeled and measured mathematically just by knowing the time-series of the results.

This observation suggest we should de�ne a special preferential attachment mechanism

where players having higher PageRank values are more likely to play (contact) with each

other and this is may be related to the emergence of an elite group in sports. Further

research is needed to evaluate this hypothesis, and testing our method for di�erent sports

and data sets is also another plan for the future.

Next, we presented a new model for probabilistic forecasting in sports based on rating

methods that simply use the historical game results data of the investigated sport compe-

tition. In contrast to those techniques that use the current respective strength, calculated

using the previous results of the two competing teams, like, the celebrated Bradley-Terry

model, we provided a �forward-looking� type network based approach. The assumption of

our model is that the rating of the teams after a game day is correctly re�ects their current

relative performance. We consider that the smaller the rating vector, which contains the

ratings of each team, and it changes after a certain event occurs in an upcoming single

game, the higher the probability that this event will occur. Performing experiments on

results data sets of European football championships, we observed that this model per-

formed well (it outperformed the advanced versions of the Bradley-Terry model in some

cases) in terms of predictive accuracy. However, we should note here, that parameter

�ne tuning and optimizing certain parts of our implementation are tasks that need to be

examined in the future.



Chapter 5

Bipartite Network Models of

Real-world Systems

In the previous chapters we saw examples of complex network models and their ap-

plications to real-life systems, from scientometrics through educational data mining to

economic modeling. A special, but rather important class of complex systems can be

represented by bipartite networks, in which the nodes of the network can be divided into

two classes, A and B, say, and links only connect nodes of the di�erent classes. In this

chapter, after introducing the main de�nitions, concepts and tools for analyzing bipartite

networks the author's results will be presented.

Firstly, a method for �nding the core of communities (in other words clusters) is

presented for bipartite networks using a one-mode projection method with statistical val-

idation. Cores of communities are highly informative and robust with respect to the

presence of errors and/or missing entries in the bipartite network. We assess the statis-

tical robustness of cores by investigating an arti�cial benchmark network. We will show

that this kind of �ltering procedure necessarily increases the precision of the community

detection, �nds highly stable cores (with high precision) and suggested uses, even with

the drawback that it decreases the level of accuracy in some situations. We also present

experimental results on real systems that can be modeled via bipartite networks.

Secondly, we describe how a generalized version of the PageRank and HITS algorithms

can be de�ned for bipartite networks and, as a case study, when applied on data sets of

wine tasting events in order to rank tasters according to their ability and professional

skill. In general, we will show that our ranking performs well due to our apriori knowledge

about the tasters, and it is able �lter out incompetent tasters, who, for example, gave

the average score of some other tasters (i.e. cheating in some way) for the wines tasted.

Furthermore, we point out that our method gives a clearer picture about the competence

of wine tasters than other statistical methods that can be readily applied.

5.1 Bipartite Networks

In this chapter, we will deal with the type of complex systems that can be modeled by

bipartite networks. Bipartite networks naturally appear in areas ranging from social to

66
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biological systems and examples include, among many others, the actors�movies network

(where the two classes of nodes represent actors and movies, and there is a link between

an actor and the movie if the actor played in that movie) [150], scientists�research papers

cooperation networks (a link exist if a scientist is one of the authors of the paper) [144],

diseases�genes networks (links represent gene-disease associations) [36], plants�pollinators

mutualistic networks (a link exists if a plant species is pollinated by a pollinator species)

[13], banks��rms money transfer networks (links represent loan relations between banks

and �rms) [135] and words co-occurrence networks (where the two classes of nodes are

words and sentences/texts, and there is a link between two nodes if a given word occurs in

the represented sentence) [149]. Although these types of networks contain a large amount

of information about the system, retrieving this information is generally hard.

Two fundamental approaches have been used to analyze bipartite networks. The �rst

is the so-called �direct� approach, where the bipartite network is analyzed directly by

jointly analyzing the two sets A and B via the linking structure between them. The

second approach is called the �projection� method, in which the network is converted into

two one-mode projections (i.e. two �unipartite� networks of set A and set B, respectively)

and then they are analyzed separately. There are several reasons for thinking that the

direct approach is better. A key idea is that important structural information may be

lost by using one-mode projections [114]. However, recent studies have pointed out that

data is not necessarily lost by using projections [62, 138]. A real advantage of using the

second approach is the availability of the arsenal of well-re�ned techniques present in the

literature for analyzing �unipartite� complex networks that usually cannot be used for

bipartite networks directly.

Formally, a bipartite network G = (A,B,E) is a triple where A = {a1, . . . an}
and B = {b1, . . . bm} represent the set of nodes of the two parts, respectively, while

E ⊆ A× B denotes the set of edges that only connect nodes of the di�erent parts. Let

M be the n × m bipartite adjacency matrix of G, where Mij = 1 if (ai, bj) ∈ E and

Mij = 0, otherwise.

Here, without being exhaustive, we mention two characterizations of bipartite net-

works. They are: (i) a network is bipartite if and only if it does not contain an odd

cycle1; (ii) a network is bipartite if and only if it is 2-colorable2 (see e.g. in [6], ps. 7-8.).

5.1.1 Communities in Bipartite Networks

The community structure in a bipartite network can be revealed in various ways depending

on questions of interest [11, 85, 139, 191]. Often, the communities of only one side is

analyzed by using a one-mode projection method. In recent years, according to di�erent

de�nitions of communities in bipartite networks, many methods have been proposed to

�nd them using both the direct [3, 11, 85, 187] and the projection approach [62, 112, 138],

but still many problems and questions arise in the topic. One of the main questions that

1A cycle is odd, if the number of its edges is odd.
2It means that the nodes of the graph can be colored by two colors such that no adjacent nodes have

the same color.
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we investigate here is the reliability of the adjacency projection based on the community

structure of the projected network.

5.1.2 One-mode Projections

Most of the existing approaches simply construct a one-mode projection by assigning a

weight to each pair of nodes in A (or B, respectively) based on the number of their

neighbors in B (or in A). We call these projections �adjacency projections�. The co-
occurrence matrix CA is de�ned as CA = MMT , where (CA)ij counts the number of

common neighbors of ai ∈ A and aj ∈ A. The simplest adjacency projection is the

undirected projected network GA de�ned by the weighted adjacency matrix CA, with the

weight nij = (CA)ij or, equivalently,

nij =
m∑
k=1

MikMjk. (5.1)

The co-occurrence matrix CB and the projected network of the B side can be de�ned

similarly. De�ning other types of weights (e.g. by using similarity measures, correlation

coe�cients [66]) leads to di�erent types of adjacency projections. Just to mention a few,

the Jaccard similarity [92] is de�ned as the fraction of the number of common neighbors

of ai and aj and the number of nodes in their common neighborhood. That is,

sJij =
nij

di + dj − nij
. (5.2)

Another frequently used similarity measure is one of the collaborative �ltering methods,

which is de�ned as

sCFij =
nij

min{di, dj}
, (5.3)

and it also referred as pairwise nestedness in the literature. The Pearson correlation
coe�cient can be also regarded as a similarity measure [175], which is de�ned by the

formula

sPij =
nij − didj/m√

di(1− di/m)dj(1− dj/m)
. (5.4)

5.2 Statistically Validated Projections

When one constructs a projected network from the original bipartite network, the network

heterogeneity (i.e. the heterogeneous degree distribution) of the original network makes

it di�cult to distinguish between (i) links whose presence in the projected network can-

not be explained in terms of random co-occurrence of neighbors in the original network

and (ii) links that are consistent with a random null hypothesis taking into account the

heterogeneity of the bipartite network [176]. Roughly speaking, when one works with just

a sample of a data set, the smaller the sample size, the higher the chance that it is not a

good representative of the real data set and it has a random nature. Nevertheless, many

real-world systems (viz. the data) are very noisy and/or the presence of many links in
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the system can statistically be regarded as random and the adjacency projection methods

may produce a signi�cant distortion. To avoid this, some projection methods which use a

�ltering procedure via link validation have been developed [120, 165, 176]. The main idea

is to verify whether a given (a possible) link in the projected network is consistent (or not)

with a null hypothesis of random connectivity between its nodes and their neighborhood

of the original bipartite network. If the answer is yes, then the link in the projection is

not validated, and hence not drawn in the projection. If the null hypotheses is rejected,

then the link is validated and drawn in the projection between the pair in question.

5.2.1 Hypotheses Testing

In order to validate statistically each link in the projected network, we can use the pro-

jection where two nodes ai and aj in A (and bk and b` in B) are connected only if the

number of neighbors that they share is not consistent with the null hypothesis of random

co-occurrence of the common neighbors. To test this hypothesis, the one-side hypergeo-
metric test is used. The null hypothesis is that nodes ai and aj are randomly connected

to the elements of set B; namely, the probability that nodes ai and aj share exactly x

neighbors in set B is given by the hypergeometric distribution,

H(x|m, di, dj) =

(
di
x

)(
m−di
dj−x

)(
m
dj

) . (5.5)

Then a p-value is assigned to each pair (ai, aj) like so

pij = 1−
nij−1∑
x=0

H(x|m, di, dj). (5.6)

To reject the null hypothesis, usually a �xed level of signi�cance is used; often it has a

value of α = 0.01 or α = 0.05. If the p-value is less than or equal to the signi�cance

level α, it suggests that the observed data is inconsistent with the assumption that the

null hypothesis is true and hence in this case the null-hypothesis is rejected. However,

the hypothesis tests that incorrectly reject the null hypothesis (i.e make type I error(s))

are more likely to occur when one considers a set of statistical tests simultaneously. To

try to avoid this, a multi-comparison test can be performed that associates a common

level of signi�cance to all links of the projected network. The most restrictive one is

the Bonferroni correction [52], that is, to set αB = α/Nt = 0.01/Nt, where Nt is

the number of tests performed. Now, Nt could be the number of all possible pairs of

nodes of the set A, i.e. n(n − 1)/2, or the number of links of the adjacency projection.

The Bonferroni correction minimizes the number of false positives (i.e. type I errors),

but it often does not guarantee su�cient accuracy (it usually provides a large number

of false negatives, i.e. type II errors). The FDR correction [15] reduces the number of

false negatives by controlling the expected proportion of rejected null hypothesis without

signi�cantly expanding the number of false positives. The control of the FDR is calculated

as follows: p-values from all the di�erent Nt tests are �rst arranged in increasing order
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(p1 < p2 < ... < pk < ... < pNt), and then the null hypothesis is rejected for links until

the p-value of rank kmax is such that pkmax < kmax αB. Here, we will mostly use the

statistical validation with FDR correction but results with the Bonferroni correction will

also be applied. It should be mentioned here that when the Bonferroni correction does

not provide any rejection, this is also the case for the FDR correction.

Comparing the di�erent partitions

For our comparison we shall apply two widely used indicators. The �rst is the adjusted

Rand index [157] and the second is an adjusted version of the Wallace index [181]. In

other words, the comparison is made by considering adjusted versions of the accuracy
and precision of the pairs of nodes observed in the given partition with respect to the

reference partition.

Let X and Y be two partitions (into communities) of the same projected network.

Here, we will use the following simple notations:

1. TP : True positives are the node pairs that are in the same community under X

and Y .

2. FP : False positives are the pairs that are in di�erent communities under X , but

in the same cluster under Y .

3. TN : True negatives are the pairs that are in di�erent communities under X and

Y .

4. FN : False negatives are the pairs that are in the same communities under X and

in di�erent ones under Y .

As for accuracy, it is usually referred to as the Rand index in the case of graph clustering.

This is the fraction of true results among the total number of cases examined. Namely,

RI =
TP + TN

TP + FP + TN + FN
. (5.7)

The Rand index varies between zero (absence of any accuracy in the given partition)

and one (total accuracy in the partitioning). However, also in the presence of random

partitioning a certain amount of accuracy may arise by chance. To take into account this

possibility an adjusted version of the Rand index has been introduced [90]. It is de�ned

as

ARI =
(TP + TN)− E(TP + TN)

(TP + FP + TN + FN)− E(TP + TN)
, (5.8)

where E(TP + TN) is the expected value of the true assessment between a random

partition and the reference partition. For a random partition compared with another

partition the value of ARI is on average close to zero. Negative values of the index

describe cases where the membership of the two partitions is very di�erent from that in

a random case. By considering a set of N elements, and two partitions of these elements

X = {X1, X2, . . . , Xr} and Y = {Y1, Y2, . . . , Ys} and by de�ning nij as the number of
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elements in common between partition Xi and Yj , the Adjusted Rand index can also be

written as

ARI =
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i,j
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2
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) , (5.9)

where ai =
∑s

j nij and bj =
∑r

i nij .

The precision of the pairwise classi�cation is de�ned as

P =
TP

TP + FP
. (5.10)

When two memberships are compared pairwise, the precision is usually referred to as

one of the Wallace indices. Also for the case of the Wallace index, one can consider an

adjusted version of it. Hereafter we provide the de�nition of an adjusted version of the

Wallace index that we call the Adjusted Wallace Index (AWI)

AWI =
TP − E [TP ]

TP + FP − E [TP ]
, (5.11)

where

E [TP ] =
(TP + FP )(TP + FN)

TP + FP + TN + FN
. (5.12)

We note that E(TN) can similarly be de�ned to calculate Eq. 5.8. It is also worth

mentioning that AWI varies between −∞ and one. A value of one indicates that the

partition obtained for a certain number of pairs is fully included in the reference partition.

In Fig. 5.1, we provide an illustrative example. The correct partition is indicated by the

di�erent boxes, i.e. the system has four communities of di�erent size. In each panel,

di�erent colors indicate an alternative partition relative to the reference one. In the

example, the alternative partition has eight communities. In panel a) of the �gure the

communities of the partition are always contained in the communities of the reference

partition and hence AWI is equal to one. In panel b) the communities shown by the

color attributes are only partially contained in the reference partition. For example the

red nodes are mainly in one box but two of them are associated with the largest and

the second largest community, respectively. In this example the AWI is equal to 0.88,

indicating a high but not perfect precision of the membership of pairs of nodes in the

given partition. In panel c) the identi�ed partition is quite di�erent from the reference

partition and almost all the boxes contain nodes of all colors. In this last case, AWI is

close to zero, i.e. the value of the Wallace index is close to the one expected by a random

null hypothesis.
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Figure 5.1. (a): AWI = 1.0 (b): AWI = 0.88 (c): AWI = 0.03

5.2.2 Performance Evaluation on Benchmark Networks

Synthetic Benchmark Networks

We will explain how our approach works by considering certain synthetic networks. To

be exact, we will generate bipartite networks with a well-de�ned community structure as

follows. Let q be a �xed integer and {sA1 , . . . , sAq } and {sB1 , . . . , sBq } be the partitions of
set A and B, having n and m nodes, respectively. For each set, the partitions are all of

the same size (namely SA and SB), thus n = qSA and m = qSB, respectively. We will

evaluate the e�ectiveness of modularity optimization by considering the e�ect of missing

or misclassi�ed links on the arti�cial benchmark network.

Our synthetic network is �rst obtained by connecting nodes of set sAi to corresponding

nodes (sBi ) of set B with probability pc. In this way with the parameter pc we control

the density of the links. This starting procedure leads to q disjoint bipartite components

of the bipartite network (see panels a) and b) of Fig. 5.2) as an example with q = 5,

n = 25, m = 16, and pc = 1).

With the aim of modeling possible sources of randomness, or errors present in the

original databases describing real systems, a second step in the generation of the arti�cial

benchmark is to perturb the network by using the following procedure. Let us call pr the

probability that a link is misplaced due to some randomness or error. For each node i

of set A with di links, a fraction prdi of links is selected and these links are randomly

distributed to all possible nodes of set B, avoiding multiple links. The probability pr
therefore quantifyies the uncertainty added to the generated arti�cial benchmark. In the

limiting case where pr = 0 we go back to the original network, while in the opposite

limit of pr = 1 we get a completely random bipartite network that destroys the original

community structure. In panel c) of Fig. 5.2, we show the arti�cial benchmark network

characterized by q = 5, SA = 5, SB = 16, pc = 1, and pr = 0.2.

Results on the synthetic networks

We investigate the arti�cial network benchmark described above by performing com-

munity detection on the projected networks of it (typically on set A). Speci�cally, the

community detection is performed on three benchmark networks. The �rst is the weighted

projected network, referred to as the FULL network, connoting the fact that in this case

we use all information available for all the actual links and their weights, obtained by
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Figure 5.2. (a) network. (b) Adjacency projection of the benchmark. (c) Benchmark bipartite with
pr = 0.2.

starting from the bipartite network. The second one is a statistically validated version

of the weighted network got with the procedure described in Section 5.2.1 when the mul-

tiple hypothesis test correction is the Bonferroni correction. We will call this network

the Bonferroni network. The third one is a statistically validated version of the weighted

network obtained with the control of the False Discovery Rate (FDR) correction. We will

call this last type of network the FDR network.

For all three types of networks we performed a community detection by using mod-

ularity optimization. To be precise, we used the Louvain algorithm. To investigate the

robustness of the partition obtained with this algorithm we repeated the community

detection by using di�erent starting sequences. With this approach the output of the

Louvain algorithm is stochastic and di�erent partitions can be obtained for close values

of the modularity.

In Fig. 5.3, we have plotted the ARI and AWI values measured between the partition

obtained by performing community detection of the three types of projected networks

and the reference partition. The di�erent settings of the benchmark were decided by

choosing SA = 50, SB = 50, pc = 0.8, q = 50 and several values of pr ranging from 0.3

to 0.9 in steps of 0.025. In the top panel of Fig. 5.3, we plotted the ARI as a function

of the probability of misplacement pr of a link in the bipartite network. For the FULL

network (green symbols), ARI is close to one for low values of pr and starts to decrease

for values of pr greater than 0.4. ARI has values close to zero when pr is greater than 0.9.

The failure of the community detection procedure in detecting the correct membership

is due to the fact that because of the misplacement of links, the algorithm is unable to

detect all the communities of the reference partition and it merges some of them. A

similar pattern of success is observed for the partitions obtained by SVNs. In fact, for

the FDR network (red symbols) we can observe a value of ARI close to one for low values
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Figure 5.3. ARI and AWI measured between the partition obtained by performing community detection
of the three type of projected networks (FULL (green symbols), FDR (red symbols) and Bonferroni (blue
symbols) and the reference partition of the arti�cial benchmark. The benchmark was set by choosing
SA = 50, SB = 50, pc = 0.8, q = 50. Simulations and community detection are performed for several
values of pr ranging from 0.3 to 0.9 in steps of 0.025. Error bars were obtained by performing 10
realizations of the arti�cial benchmark

of pr and it is close to zero for high values of pr. It is worth noting that for the speci�c

parameters of the benchmark there is an interval of pr (0.5 ≤ p ≤ 0.7) where ARI of

the FDR network is higher than the corresponding ARI value of the FULL network. The

Bonferroni network has a similar pattern, but a decrease of ARI is seen for smaller values

of pr (pr ≈ 0.5). The reason for the decrease of the ARI for the FDR and the Bonferroni

network is completely di�erent from that for the full network. In fact for the partitions

of these SVNs, ARI decreases because the statistical test loses power and the number of

nodes present in them decreases as a function of pr. This implies that the number of

disconnected subgraphs (present in the SVNs and/or detected by the Louvain algorithm)

increases, while the number of connected nodes decreases.

In the bottom panel of Fig. 5.3, AWI values for the three types of networks have been

plotted. For the FULL network, the pattern of AWI is similar to the pattern of ARI. It

starts very close to one and decreases to zero starting from pr ≈ 0.4. The behavior of

AWI of the SVNs is quite di�erent. In fact it remains very close to 1 until it abruptly

reaches zero when the SVNs become empty, i.e. all the nodes are isolated. In other

words, the precision of the classi�cation of pairs of nodes is always high for SVNs and

the problem they have in providing informative partitions is not precision but rather

accuracy. All the partitions provided by them are statistically veri�ed, but the level of

accuracy progressively decreases in the presence of high levels of link misplacement.

So far we have investigated the role of the link misplacement in the detection of com-

munities of the arti�cial benchmark. Another source of di�culty in community detection

in real systems may originate from an insu�cient coverage of the data. For this reason we

evaluated the performance of our approach on arti�cial benchmarks characterized by a

di�erent level of link coverage. In Fig. 5.4, we have plotted ARI and AWI for simulations

got by setting the same parameters used previously for pr = 0.6 and di�erent values of

pc ranging from 0 to 1 in steps of 0.05.

Panels (a) of Fig. 5.4 indicate that the ability of the community detection algorithm to

detect the underlying benchmark decreases with decreasing pc both for the FULL network



5.2. Statistically Validated Projections 75

0.0 0.2 0.4 0.6 0.8 1.0
pc

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

BONF
FULL
FDR

(a)

0.0 0.2 0.4 0.6 0.8 1.0
pc

0.0

0.2

0.4

0.6

0.8

1.0

AW
I

BONF
FULL
FDR

(b)

Figure 5.4. Homogeneous Set. All simulations were obtained by setting pr = 0.6 and q = 20. ARI values
between the obtained partition and the underlying benchmark for (a) di�erent values of pc ranging from
0 to 1 in steps of 0.05, SA = SB = 50, (b) SA ranging from 5 to 100 in step of 5. SB = 50 and pc = 0.8,
and (c) SB ranging from 0 to 1 in steps of 0.05, SA = 50 and pc = 0.8. In panels (d), (e) and (f) we have
AWI values obtained using the same parameters as those for the corresponding ARI. The average value
is obtained by performing ten di�erent realizations. The error bar indicates one standard deviation.

and also for the SVNs. However, in this case the reason for this failure is also di�erent

for the two approaches. In the case of the FULL network the algorithm fails to detect the

correct partition because it progressively merges several communities progressively when

pc decreases. Despite this, the major problem observed for the partitions got from SVNs

is due to the fact that the accuracy of the statistical validation decreases for values of pc
lower than 0.7. Again panel (b) of Fig. 5.4 tells us that the problem is, however, not so

much a problem of precision, as previously observed in our investigations, as a function

of pr.

In summary, both as a function of pr and as a function of pc the partitions observed

with the approach of SVNs are partitions which are very precise in classifying the mem-

bership of pairs of nodes, although they might present a poor accuracy in the presence

of high values of pr or low values of pc. The membership obtained by investigating the

SVNs can therefore be viewed as statistically validated cores of the communities present

in a given network.

5.2.3 A Case-study on Real Data

We will also investigate two widely studied real bipartite networks. The �rst is a the

bipartite network of scholars and papers posted in the cond-mat archive [144]. The

second is a classic bipartite network of actors and movies obtained by using information

present in the International Movie Data Base (IMDB).

Co-authorship network

We will �rst investigate a co-authorship bipartite network. This bipartite network was

constructed by Mark Newman based on preprints posted to the Condensed Matter section

of arXiv E-Print Archive between 1995 and 1999. The dataset is available on the web page

https://toreopsahl.com/datasets/ and it consists in 16, 726 authors and 22, 015

papers. Our analysis was limited to the largest connected component of 13, 861 authors
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and 19, 466 papers. We projected the bipartite network for the above set of authors.

We also evaluated the FDR projected SVN. The FULL network has 44, 619 links and

the FDR network has 7, 768 links. We performed community detection on them with

the Louvain algorithm. For each network, the community detection was performed by

applying the algorithm 1000 times with di�erent initial conditions.

The 1000 partitions obtained for the FULL network have modularity ranging from

0.864 to 0.867. To investigate the degree of similarity among partitions of top values

of modularity we selected partitions with modularity higher than the one of the 99 per-

centile of the 1000 outputs of Louvain algorithm. In particular, we selected 10 out 1000

partitions of highest modularity. We then estimated the ARI between all distinct pairs

of these 10 partitions. These 45 pairs have an average mutual ARI of 0.65 with values

ranging between a value of 0.59 (minimum) and 0.71 (maximum). As already noted in

previous studies [81, 190], these partitions are quite di�erent from each other in spite of

the fact that the modularity of the partitions is almost identical (bounded within the

interval 0.8666, 0.8670). We got a quite di�erent result when we considered the top 10

partitions obtained by performing community detection in the FDR SVN. In fact these

10 partitions are the same and the ARI among all of them is one. It worth noting that the

FDR partition is not fully contained in any partition obtained from the FULL network.

In fact, the interval of the AWI index is quite di�erent from one and it covers a relatively

limited interval of values (0.57, 0.66).

By investigating the links and the communities that are obtained with SVNs, we can

extract �cores" of the communities that are statistically robust. These �cores" are also

quite stable with respect to errors that might be present in the database. To make this

point explicit, we put some noise in the database by modifying it in a similar way to

what we did with our arti�cial benchmark networks when we used values of pr di�erent

from zero. In panel (a) of Fig. 5.5, we have plotted ARI values between the best partition

of the FULL, that we label as G0, and the 100 best partitions obtained for values of

pr ranging from 0.05 to 0.3. In the same panel we also show the results of an analog

investigation performed for the FDR SVN. The partitions obtained from FDR SVNs are

always signi�cantly more robust to noise that the ones obtained by performing community

detection in the FULL network. In panel (b) of Fig. 5.5 we show the AWI for the same

investigations. It is worth noting that similar to what we observed for the arti�cial

benchmark networks, the cores of communities detected by investigating the FDR SVN

show a decreasing similarity (i.e. ARI values) with the uncorrupted partition G0, not due

to decrease of precision but rather due to decrease of accuracy. In fact, the AWI value of

FDR does not go below 0.85 for all values of pr, whereas we observed values of the AWI

as low as 0.1 of the partitions obtained from the FULL network when pr = 0.3. In other

words, the informativeness of the detected cores of communities is robust with respect to

noise added to the database. This behavior is similar to that observed for the arti�cial

benchmark.
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Figure 5.5. Co-authorship database. (a) The average ARI value between 100 partitions of the FULL
network (blue symbols), the Bonferroni SVN (Green symbols), and FDR SVN (red symbols) obtained
for di�erent values of pr and the uncorrupted best partition G0. Di�erent partitions of high modularity
are obtained with the Louvain algorithm using di�erent initial conditions. (b) The average AWI of the
same partitions.

IMDB

The second dataset we investigated was the classic bipartite system of actors and movies.

We downloaded data about this system from the International Movie Data Base (IMDB)

(http://www.imdb.com/interfaces). From the information given in the database we

constructed several bipartite networks. A link between an actor and a movie is considered

if the actor played in that movie, during a selected period of time. For our study we chose

all movies present in the database during the time period from 1950 to 2015, with the

exception of TV series, talk shows, animation �lms, short and adult movies.

An analysis for di�erent periods of time was de�ned by a time-window of 5 years

starting from 1950. Within each selected time interval, we constructed the bipartite

network that lists movies released in that period and all the actors that played in these

movies. As for the previous system, an analysis was performed on the largest connected

component of the period in question. The bipartite networks were projected onto the

movie side. The results of our investigations are summarized in Table 5.1 later on. Each

row of the table refers to a di�erent time period of investigation labeled by the �rst year

of the chosen time period. The size of the investigated projected networks varied over

time from the lowest value of 9,143 nodes and 686,398 links to the highest value 127,911

nodes and 1,487,598 links for the periods 1950-1954 and 2010-2014, respectively. The link

density for the FULL projected network of movies varied from 1.82 10−4 (for 2010-2014)

to 1.64 10−2 (for 1950-1954), i.e. in all cases the projected networks are quite sparse. The

Bonferroni and FDR SVNs are signi�cantly sparser than the FULL network. Actually,

the percentage of the all links observed in them never exceeds 13.5 % for FDR and 2.6 %

for Bonferroni SVNs (see the third and fourth columns of Table 5.1).

For each period of time and for the FULL, the Bonferroni, and the FDR SVNs we

obtained 1000 output partitions using the Louvain algorithm with di�erent initial condi-

tions.To evaluate the di�erences observed between pairs of partitions obtained we com-

puted the ARI among the 10 partitions of the 99 percentile of the 1000 best outputs. The

average value of ARI is reported in the sixth, seventh, and eight column of Table 5.1 for
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Figure 5.6. IMDB database. Time period 1990-1994. (a) The average ARI value between 100 partitions
of the FULL network (blue symbols), the Bonferroni SVN (green symbols), and FDR SVN (red symbols)
obtained for di�erent values of pr and the uncorrupted best partition G0. Di�erent partitions of high
modularity are obtained with the Louvain algorithm using di�erent initial conditions. (b) The average
AWI of the same partitions.

the FULL, the Bonferroni, and the FDR networks, respectively. The values of ARI are

always above 0.9 for all types of networks, suggesting that for this database the modu-

larity optimization of the FULL network provides quite reliable results in most cases. In

fact, values of the ARI lower than 0.97 are observed only for the last three time periods,

suggesting that the reliability of the modularity optimization is very high for several time

periods except the last three. The partitions obtained with the SVNs networks are rather

stable for all time periods including the last three indicating that, for this database as

well, SVNs detect cores of communities. This conclusion is also supported by the observed

AWI values between the Bonferroni and the FULL network (ninth column of Table 5.1),

and between the FDR and the FULL network (tenth column of Table 5.1). In both cases

the AWI is very close to one for all time periods except the last three, when the modularity

optimization of the FULL network becomes less reliable.

As for the IMDB bipartite networks of the period 1990-1994 we included noise in the

bipartite network by modifying it in a similar way to that with our arti�cial benchmark

networks and with the co-authorship database. In panel (a) of Fig. 5.6 we have plotted

the average value of ARI between 100 partitions of the FULL network obtained for values

of pr ranging from 0.05 to 0.3 and the best partition G0 observed in the absence of

noise. In the same panel we also show the results of an analogous investigation performed

for the Bonferroni and FDR SVNs. The partitions obtained from FDR SVNs are for a

large interval of pr signi�cantly more similar and therefore more robust to noise than

those obtained by performing community detection in the FULL network. In panel (b)

of Fig. 5.6, we have plotted the AWI values for the same investigations. Again the AWI

value is close to one for the partitions of the SVNs, con�rming once again the high degree

of precision of the method in the detection of cores of communities. As for the previous

cases, by combining the two measurements, we �nd that the decreasing values of the ARI

with the uncorrupted partition G0 for the Bonferroni and the FDR SVNs are not due

to a decrease in precision, but are rather it is due to a decrease in accuracy of the SVN

method.
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Table 5.1. Summary of IMDB investigations.

Time Nodes Links Bonf % FDR % AVG(ARI) AVG(ARI) AVG(ARI) AWI AWI
period of links of links Full Bonf FDR (Bonf,Full) (FDR,Full)

1950-54 9143 686398 1.4 8.2 0.992 (0.985,0.999) 0.994 (0.987,1.0) 0.92 (0.857,0.987) 1.00 0.98
1955-59 11253 519240 1.8 9.1 0.994 (0.984,1.0) 1.0 (1.0,1.0) 1.0 (1.0,1.0) 1.00 0.97
1960-64 12392 506639 1.9 10.7 0.997 (0.994,1.0) 1.0 (1.0,1.0) 0.998 (0.991,1.0) 1.00 0.97
1965-69 14782 633135 2.1 10.7 0.979 (0.958,0.995) 0.995 (0.989,1.0) 0.992 (0.979,1.0) 1.00 0.98
1970-74 15958 620634 2.2 11.1 0.982 (0.963,0.996) 0.993 (0.982,1.0) 0.978 (0.944,1.0) 0.99 0.97
1975-79 14996 522389 2.6 13.3 0.981 (0.971,0.995) 0.998 (0.997,1.0) 0.988 (0.971,0.998) 0.99 0.95
1980-84 15401 485082 2.5 13.5 0.991 (0.978,0.998) 1.0 (1.0,1.0) 0.984 (0.964,0.999) 1.00 0.95
1985-89 16846 569253 2.1 13.2 0.99 (0.983,0.997) 1.0 (1.0,1.0) 0.989 (0.974,1.0) 1.00 0.94
1990-94 17001 458604 1.9 10.2 0.977 (0.94,0.996) 0.998 (0.997,1.0) 0.984 (0.969,0.998) 0.99 0.98
1995-99 20311 402736 1.4 7.1 0.982 (0.974,0.989) 1.0 (1.0,1.0) 0.996 (0.982,1.0) 1.00 0.97
2000-04 31231 470828 1.4 7.2 0.961 (0.934,0.975) 1.0 (1.0,1.0) 0.96 (0.838,1.0) 0.98 0.93
2005-09 62496 788713 1.5 5.7 0.956 (0.937,0.969) 1.0 (1.0,1.0) 0.995 (0.986,1.0) 0.93 0.72
2010-14 127911 1487598 1.1 4.4 0.908 (0.859,0.96) 0.991 (0.984,1.0) 0.972 (0.933,0.997) 0.88 0.70

5.3 Rating and Ranking Nodes in Bipartite Networks

In the previous section we dealt with community detection in bipartite network. Now

we will continue with the analysis of bipartite networks and in this section we will de�ne

a generalized version of the HITS algorithm that can be applied to weighted bipartite

networks for rating and raking purposes. Although, it is a case-study, here we use this

HITS based algorithm only for evaluating the quality of wine tasters, such rating and

ranking methods are well suited for the investigation of user-item type rating databases

that form the basis of recommendation systems, say.

5.3.1 A Generalized co-HITS Algorithm

Consider a bipartite graph G = (A,B,E) where A = {a1, a2, . . . , an} and B =

{b1, b2, . . . , bm} are the two independent sets of n andm nodes and E is the set of edges.

Now G is a weighted directed graph. Given ai ∈ A and bj ∈ B, let w(aibj) > 0 and

w(bjai) > 0 denote the weights of the directed edges (ai, bj) and (bj, ai), respectively;

otherwise let w(aibj) = w(bjai) = 0. We assume, that the weights are normalized such

that
∑

bj∈Y w(aibj) = 1 and
∑

ai∈Aw(bjai) = 1 (this can be assumed without loss of

generality, e.g let w(aibj) = w′(aibj)/
∑

j∈Y w
′(aibj), where w

′ was the original weight

of the link without normalization). The weight w can be viewed as the transition prob-

ability from a node in A (or in B) to a node in B (in A) of a random walk process.

On the nodes of this bipartite graph a random walk can be naturally de�ned, where
−→
W = W (AB) = (w(aibj))ij ∈ Rn×m denotes the transition matrix from A to B and
←−
W = W (BA) = (w(bjai))ji ∈ Rm×n denotes the transition matrix from B to A. For

the nodes on one side, a �hidden� transition probability w(aiak) from ai to ak can be

de�ned as

w(aiak) =
∑
bj∈B

w(aibj)w(bjak), (5.13)

and using this de�nition
∑

ak∈Aw(aiak) = 1 will also hold.

Note thatWA = W (AA) =
−→
W
←−
W = w(aiak)ik ∈ Rn×n is a hidden transition probability

matrix over A; the WB matrix over B can be obtained in a similar way.

The generalized co-HITS algorithm can be applied on such directed weighted bipar-
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tite graphs like that de�ned above. The algorithm assigns scores to the nodes of the graph

via an iterative procedure as follows. Let p0i and q
0
j be the initial scores of the nodes ai

and bj , respectively. The algorithm is described by the following recursion equations:

pi = (1− λA)p0i + λA
∑
bj∈B

w(bjai)qj, (5.14)

and

qj = (1− λB)q0j + λB
∑
ai∈A

w(aibj)pi, (5.15)

where λA ∈ [0, 1] and λB ∈ [0, 1] are real-valued parameters. By substituting Eq. 5.15

for qj in Eq. 5.14 we see that

pi = (1− λA)p0i + λA(1− λB)
∑
bj∈B

w(bjai)q
0
j +

+λAλB
∑
ak∈A

w(akai)pk. (5.16)

It can be easily seen that the HITS algorithm, and the personalized PageRank algorithm

[86] are just special cases of the Co-HITS algorithm. If λA = λB = 1, then Eq. 5.16

becomes

pi =
∑
ak∈A

w(akai)pk, (5.17)

which is one part (e.g. for hubs) of the original HITS recursion. It is worth noting here,

that this is the stationary state of the Markov chain de�ned by a random walk on the

weighted graph de�ned above [147]. And if λB = 1, then

pi = (1− λA)p0i + λA
∑
ak∈A

w(akai)pk, (5.18)

which is the recursion formula of the personalized PageRank algorithm.

5.3.2 A Case-study: Wines and Tasters

We investigated how the generalized co-HITS algorithm can be used to determine the

quality of wine tasters. However, there are several methods available for evaluating the

quality of wines, often by using the scores that a wine received in a wine tasting event,

but it is still an open question that how to evaluate the competence and professional

skills of the tasters, also mentioned in the article of Csendes and Antal [43]. Here we

applied the generalized co-HITS algorithm for the datasets of two wine tasting events

and compared the results with two simple statistical methods. The experimental results

show that co-HITS algorithm produced promising results, and they seem to con�rm our

apriori knowledge about the tasters involved. Furthermore it proved to be more sophisti-

cated than the statistical methods: both of them produced unreasonably large di�erences

between the tasters and ranked those tasters too high who (perhaps due to their incom-
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petence) gave the average of the scores of some other tasters for the wines.

Usually, wine tasting is a personal and subjective procedure for determining the quality

of wines. Di�erent wines are scored in an anonymous way called blind tasting (i.e. the

tasters do not know which wine is being tasted). Each taster scores the wines she or he

tasted and the wines are ranked according to these scores. Before we apply the co-HITS

algorithm to provide a ranking of the tasters according to their competencies, we shall

consider the following natural assumptions:

1. First of all, the wines are sorted by the points they received (i.e. there is no reference

value for them).

2. Tasters are sorted by only considering the scores that the wines received from the

tasters.

3. There is no cheater among the tasters (i.e. they score more or less on the �same

scale�).

Now, we will describe how the Co-HITS algorithm can be applied on the wine tasting

data. Let A and B (de�ned previously) be the set of wine tasters and wines, respectively.

We start from the same p0i value for each ai ∈ A taster. Let w′(aibj) be the score

that wine bj obtained from taster ai and let w(aibj) = w′(aibj)/
∑

bj∈B w
′(aibj) be its

normalization. To be consistent to our �rst assumption, we de�ne the q0j value (for wine

bj) as the average of the scores that the wine received. Then, we de�ne the weight w(bjai)

in the following way. Let us suppose that wine bj was tasted by ` di�erent tasters and

let us de�ne

D(bj) =
∑
ai∈A

∣∣q0j − w′(aibj)∣∣ , (5.19)

which is the sum of di�erences from the average score received by wine bj . Finally, let

w(bjai) =

∣∣D(bj)−
∣∣q0j − w′(aibj)∣∣∣∣

(`− 1)D(bj)
. (5.20)

Note that
∑

ai∈Aw(bjai) = 1, hence each weight w(bjai) can be regarded as a transition

probability from bj to ai. Fig. 5.7 shows an example for the calculation of the weights. The

weight between two tasters ai and ak can be de�ned as the hidden transition probability

de�ned by Eq. 5.13. Then the solution p = (p1, p2, . . . , pm) of the HITS equation

p = WAp provides the evaluation and ranking of the tasters.

We tested our model in the selected data of two wine tasting events. The �rst event

was the Szeged Wine Fest in 2009, where 104 wines were blind tasted by four groups of

�ve tasters. Each group tasted 33-34 di�erent wines. The second dataset is a bit more

speci�c: only red wines from the wine region of Villány were blind tasted by seven groups,

each containing six tasters. Each group tasted 40-48 di�erent wines. In both events, each

wine was scored in accordance with the widely used and accepted international 100 point

rating system.

We compared the results obtained by using the Co-HITS algorithm with two simple

statistical methods which seems natural to use for our purpose. The �rst statistics-based
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Figure 5.7. Weights of the graph when taster 1 assigns the scores 20, 30 and 70 for wine1, wine2, and
wine3, respectively (up) and when wine 1 received the scores 20, 30, and 70 from taster 1, taster 2 and
taster 3, respectively (down).

ranking method (SM1) evaluates the sum of di�erences, Si, from the average score that

each wine received for each taster ai. Then, the tasters are ranked according to the

increasing order of the Si values. Formally,

Si =
∑
bj∈B

|q0j − w′(aibj)|. (5.21)

We consider the normalized points (1 + minai∈A Si)/(1 + Si) for all ai, (thus, the score

of the taster with minimal Si value will be 1).

The second statistical method (SM2) we used was the Pearson correlation coe�cient

between the scores that a taster asssigned to a wine and the average score that wine

received. In other words, we are interested in how the scores of a taster correlate with

the average scores of the wines received. The calculated values are normalized such that

tasters with the highest correlation get 1. Table 5.2 and Table 5.3 show the detailed

results obtained by applying the three di�erent methods on the Szeged Wine Fest data

and wine tasting data from the wine region of Villány, respectively. The calculated values

can be interpreted as normalized merit values where the larger is the better. For each

method the best taster of each group is shown in bold.

For better illustration, Fig. 5.8 shows the summarized results on the Szeged Wine Fest

data. For each taster, the three di�erent colored bars from the left to the right refers to

the methods used for calculations, namely Co-HITS, SM1, and SM2, respectively. The

results show that the Co-HITS algorithm produces more sophisticated results than SM1

and SM2. The stochastic process calculates closer values between the tasters. Consistent

with this fact, much larger di�erences that the statistical methods produced can hardly

be justi�ed based on the concrete dataset. It should be mentioned that all three methods
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Table 5.2. Test results on the 2009 Szeged Wine Fest data

Team 1 Team 2
Taster co-HITS SM1 SM2 co-HITS SM1 SM2
1 1.000 1.000 1.000 1.000 1.000 1.000

2 0.963 0.870 0.999 0.824 0.489 0.919
3 0.960 0.753 0.984 0.917 0.677 0.942
4 0.938 0.743 0.969 0.925 0.687 0.955
5 0.948 0.743 0.719 0.977 0.940 0.998

Team 3 Team 4
Taster co-HITS SM1 SM2 co-HITS SM1 SM2
1 1.000 1.000 1.000 0.987 0.709 1.000

2 1.000 0.470 0.955 1.000 0.856 0.932
3 1.000 0.496 0.884 0.999 0.713 0.738
4 1.000 0.475 0.961 0.992 0.735 0.917
5 1.000 0.510 0.924 0.992 1.000 0.988

Table 5.3. Test results on the Villány data

Team � co-HITS
Taster 1 2 3 4 5 6 7

1 0.843 0.908 0.890 1.000 1.000 0.969 0.958
2 0.970 0.941 0.980 0.985 0.994 0.984 0.961
3 0.894 0.986 0.941 0.967 0.955 1.000 0.933
4 0.957 1.000 0.977 0.946 0.944 0.982 1.000

5 0.966 0.899 1.000 0.978 0.938 0.944 0.932
6 1.000 0.901 0.870 0.950 0.966 0.945 0.944

Team � SM1
Taster 1 2 3 4 5 6 7

1 0.491 0.556 0.495 0.991 0.901 0.891 0.746
2 0.779 0.672 0.932 1.000 1.000 0.932 0.760
3 0.478 0.794 0.625 0.872 0.839 1.000 0.870
4 0.638 1.000 0.892 0.665 0.644 0.919 1.000

5 0.781 0.613 1.000 0.781 0.651 0.822 0.705
6 1.000 0.492 0.505 0.856 0.829 0.739 0.678

Team � SM2
Taster 1 2 3 4 5 6 7

1 0.939 0.954 0.965 0.982 1.000 0.983 0.898
2 0.971 0.933 0.943 0.998 0.999 1.000 1.000

3 0.829 0.961 0.804 1.000 0.997 0.947 0.963
4 0.949 1.000 0.966 0.913 0.934 0.952 0.981
5 0.958 0.951 1.000 0.921 0.964 0.935 0.928
6 1.000 0.917 0.850 0.999 0.997 0.923 0.962

produced the same results for the best taster in many cases and the di�erences mostly

appeared in the rest of the ranking lists. It can be observed that SM1 prefers the �closeness

to the average" (due to its de�nition) and SM2 is better if the scores co-movement with

the average is higher. It follows from these observations that both statistical methods can



5.4. Summary 84

(a) Szeged-Team 1 (b) Szeged-Team 2

(c) Szeged-Team 3 (d) Szeged-Team 4

Figure 5.8. Evaluation of the tasters by the di�erent methods on the Szeged Wine Fest data

o�er an opportunity for cheating, while the stochastic nature and iterative calculation of

co-HITS scores is able the detect the outliers. The network-based algorithm considers the

wine tasting data not only as a database that contains the scores of individual tasters,

but also as a complex network that shows each tasters' relationship to one another. The

relation between the tasters can be de�ned well for the purpose of this investigation.

Therefore, the Co-HITS algorithm may give a better picture about the quality of tasters

and as a byproduct it may give a better picture about the wines as well. Moreover, one

of the main advantages of the graph-based method is that it also works on incomplete

datasets, where not all the wines are tasted by a taster, or a taster tastes just a portion

of all wines.

5.4 Summary

In this chapter, after introducing bipartite networks and some concepts for analyzing

them, we showed that information present in a bipartite network can be used to detect

cores of communities of each set de�ning the bipartite system. Simulation results revealed

that the detected cores are highly stable and their detection is very precise although the

methodology may, in same cases, be not so accurate. The cores of communities are found

by considering statistically validated networks obtained by starting from the original



5.4. Summary 85

bipartite network. The information carried by these statistically validated network is

highly informative and could be used to detect the membership of the investigated sets

that are robust with respect to the algorithm of detection and to the presence of errors

or missing entries in the database. The usefulness of the statistical validation approach

can be assessed by a measure of similarity between pairs of partitions that are obtained

by a stochastic community detection algorithm and that di�er between them only for

a tiny value of the function of the quality of a clustering. Here, we used the Adjusted

Rand Index (ARI) and an adjusted version of the Wallace Index (AWI). In the presence

of partitions characterized by very similar values of the quality function and presenting

low values of ARI between them, one should consider it informative only on subsets of

those partitions that are statistically stable. We suggest that in such cases investigations

should focus on cores of the partitions obtained by performing community detection on

SVNs. In this study, we considered an algorithm based on modularity optimization, but

we think that our results are general and not strictly related to the chosen algorithm.

They should be valid for any algorithm based on the maximization of a quality function.

Next, we de�ned a generalized version of the HITS algorithm that can be applied

to weighted bipartite networks that, for instance, were obtained from user-item rating

databases. However, as a case study, we used the HITS based algorithm to evaluate

the quality of wine tasters, which may also be applicable in areas where people evaluate

someone or something, such as sports that include �gure skating, diving and synchronized

swimming; social events that include singing contests and other tasting events such as a

cooking competition or beer tasting. We observed that our ranking method performed

well. It was able to �lter out incompetent users, who, for example, gave the average

score of the others for the items. Furthermore, our method can provide a clearer picture

about the competence of users. In future work, we plan to re�ne the HITS algorithm

for various applications: it would be interesting to use other modi�cations of HITS, and

di�erent rules for the weights of the network. We could analyze suitable null models and

arti�cially generated data sets, and discuss the advantages and drawbacks of applying

rating algorithms like this.



Chapter 6

Summary

Research on mining graph and network data has been continuously growing over the past

few years, and it has become the most promising approach for extracting knowledge from

relational data and investigating complex systems. It has become natural to represent

such data and systems by means of graphs, where nodes stand for individuals or enti-

ties of the system, while edges represent the interaction or some relationship between

pairs of these individuals or entities. Network theory, often combined with data mining

tools, attempts to understand the origins and characteristics of networks that unify the

components in various complex systems. This dissertation provides a summary of the

author's work and results in the area of complex networks modeling and analysis. The

main focus of this dissertation was to present general concepts of modeling with net-

works, network analysis and also present the author's results concentrating on the aim of

extracting meaningful information from the modeled systems.

6.1 Characteristics of Real-world networks

The algorithms and methods developed and described in this thesis are de�ned on graphs

that seek to model real-world complex systems. The �rst chapter of the dissertation

provided a brief introduction to graph theory and an overview of the main de�nitions that

characterize the structural properties of complex networks. We paid special attention to

the community structure and core/periphery structure as global characteristics of complex

networks and stochastic graph algorithms, namely PageRank and HITS since they are

widely-used graph-based data mining tools.

6.2 Network Models for Some Real-life Problems

In Chapter 2 we presented several examples of real-world systems that can be modeled

by networks. We highlighted the use graph-based data mining and network analysis as

a �rst step to investigating such systems. Each case study explains, that after collecting

appropriate data, how the network approach, especially concerning community detection

and rating algorithms, can be used to extract meaningful information from the system we

modeled. New methods are developed by slightly modifying some widely-used stochastic

86
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graph algorithms. The results were published in a journals [44, 125] and conference

proceedings [87, 124, 126]. The following paragraphs brie�y summarize the main results

of the chapter.

A local PageRank approximation with a case study

Although in many applications PageRank values need to be computed for all nodes of the

graph, there are situations where we are interested in or capable of computing PageRank

scores only for a small subset of the nodes. A local PageRank approximation method

was developed based on the one proposed in [37] to assign �scientometrical� scores to

research publications based on their local co-citation networks. We de�ned a �reaching

probability� score for the same reason. As a case study, the local co-citation network

of Egerváry's famous paper was examined and we saw that the network-based methods

provided a more realistic picture of the importance of that paper than other scientometric

indices.

Analyzing public transportation networks

Several network models were de�ned for a public transportation network (PTN) and a

comprehensive analysis involving the PTN of �ve Hungarian cities was carried out. We

were the �rst who performed a comprehensive network analysis (using modern network

theoretic tools) of the public transportation systems of these cities. Our study examined

directed and weighted edges, where the weight of a link referred to the morning peak hour

capacity of the represented line, got by using the capacities of the vehicles (bus, tram,

trolleybus) and schedules of the lines that go though that link. We compared the global

and local characteristics of the networks and showed that they reveal a small-world feature

(in terms of diameter and average path lengths) and scale-free distribution of various node

centrality measures. We got a detailed picture of the di�erences in the organization of

public transport, which may have arisen for historical, geographical and economic reasons.

As a result, we highlighted some inconsistencies, organizational problems and identi�ed

which are the most sensitive routes and stations of the network justi�ed by transportation

engineers.

Introduce networks for educational data mining

We introduced a novel example of a real social system taken from the world of public

education that can be modeled by networks. We proposed di�erent network represen-

tations of relational educational data and mentioned several appropriate graph mining

tools that could be used to analyze them. We discussed what kind of information could

be extracted by their usage. Depending on the construction of the underlying graphs,

we introduced four families of network models and performed a case study using one

of them. With the intention of evaluating the achievements of students and generating

a ranking among them, we de�ned a modi�ed PageRank algorithm. We observed that

the PageRank scores provide a fairly good relative order of the students with respect
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to their achievements. Moreover, their progression can be monitored continuously using

this method. Lastly, we pointed out several advantages of using graph-based data mining

techniques in educational systems.

6.3 Network Models in Economics

In Chapter 3, we discussed various network models applied in economics and presented

case studies including the analysis of the timely evolution of an international trade network

and portfolio optimization using correlation-based �nancial networks. The results were

published in a journal [140] and a conference proceeding [75] and another paper submitted

to a journal [127]. The following paragraphs brie�y summarize the main results of the

chapter.

Case-study on a trade network

We demonstrated how network analysis could be applied to the trade networks of coun-

tries. As a case study, we investigated the timely evolution of the trade network of the

European Union, focusing in particular on the evolution of communities and di�erent

trade rankings of the countries. We found in the EU that there is a core (with Germany,

France and UK as leading economies) and a periphery (containing e.g. the former Come-

con countries and the Balkans). In the trade network, peripheral countries are contained

in the clusters of Russia and China, in contrast with the Western-European core coun-

tries that lie in clusters where the central nodes are Germany and the USA, respectively,

highlighting real economic ties among he EU countries.

Financial networks and portfolio optimization

The question of quantifying the degree of statistical uncertainty (usually called �noise�)

presents in correlation-based �nancial systems was addressed. We applied di�erent �lter-

ing techniques on the covariance matrix (in fact, on the correlation matrix obtained by

normalization) to �lter out the part of information that is robust against statistical un-

certainty, and decrease the number of di�erent elements in it. We used a Random Matrix

Theory approach, and two versions of hierarchical clustering methods. Moreover, to de-

termine the expected return of the assets we applied di�erent statistical estimations. The

methods were �rst applied to correlation matirces (networks) and then used for portfolio

optimization. A large set of experiments revealed that using �ltered correlation matrices,

the classic Markowitz solution can be outperformed in terms of realized returns and reli-

ability, which means that the realized risk and the estimated risk are closer to each other

using �ltering procedures.
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6.4 Network Models and Linear Algebra for Rating and Pre-

diction

In Chapter 4, the problem of rating and ranking sport players and teams was addressed

from a network analysis perspective. A time-dependent PageRank method was designed

to rate players with the graph de�ned using the game results data. Our algorithm was

compared to several widely-used rating methods and it transpired that it provided a better

ranking and predictive power in some situations. We also proposed a novel rating-based

forecasting framework. The results were published in part in a journal [123] and some of

them will be published. The following paragraphs brie�y summarize the main results of

the chapter.

Rating and Ranking in Sports

A novel ranking method which may be useful in sports like tennis, table tennis and

American football, especially where players or teams play only a subset of opponents,

was introduced and analyzed. In order to rank the players or teams, a time-dependent

PageRank method was developed and applied on the directed and weighted graph rep-

resenting players and game results in a sport competition. The method was tested on

the results dataset of the table tennis competition of the researchers of the Institute of

Informatics at the University of Szeged. The results obtained using our method were

compared with several popular ranking techniques. We found that our approach worked

well in general and that it had a good predictive power.

Forecasting in sports

We also proposed a novel rating-based forecasting framework. Against e.g. the well-

known Bradley-Terry model, the main idea behind the model is that if a rating correctly

re�ects the actual relative performance of the teams in question, then the smaller the

change in the rating vector, containing the rating of the teams, and after a certain event

(e.g. win/loss) in an upcoming single game, the higher the probability will be that that

event will occur. The results using a time-dependent PageRank rating method were

compared to the Bradley-Terry predictions and the predictions of experts' betting odds

based on their accuracy and predictive power. We found that our method outperforms

the Bradley-Terry model in some cases, but in the future we would like to carry out a

more systematic analysis of this.

6.5 Bipartite Network Models of Real-world Systems

In Chapter 5, we dealt with bipartite network models of complex systems. Such networks

include, for instance, diseases-genes networks, plants-pollinators mutualistic networks,

scientists-research papers cooperation networks and actors-movies networks. First of all,

a methodology was presented in order to �nd the core of communities in bipartite networks

and it was tested on synthetic benchmark networks and real bipartite systems. Then, we
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discussed how a generalized version of PageRank and HITS algorithms could be de�ned

for bipartite networks and, in a case study, we applied it on wine tasting datasets in order

to rank tasters based on their ability and professional skills. The results were published

in a journal [21] and appeared in conference proceeding [122]. The following paragraphs

brie�y summarize the main results of the chapter.

Statistical validation and the core of communities in bipartite networks

We demonstrated that information present in a bipartite network could be used to detect

cores of communities of each set of the bipartite system being modeled. Using Monte-

Carlo simulations, the results indicated that the cores found are very stable and detecting

them is very precise although the methodology may not always be very accurate in a

statistical sense. The key concept was to consider statistically validated networks obtained

by starting from the original bipartite network. The identi�ed communities of a given

set are robust against the algorithm of detection and to the presence of errors or missing

entries in the given database. Case studies on real data sets were also presented.

Rating nodes in bipartite networks

The question of rating nodes of a bipartite network was also addressed. A general frame-

work of a HITS-type algorithm was presented for that purpose and a case study on a

real data set was elaborated. We demonstrated that our method gives a clearer picture

about the competence of wine tasters than other available statistical methods that can

be readily applied here. Another important advantage of network-based methods is that

not each wine should be rated by each taster to calculate the ratings. This allows us to

use such methods for ranking users in a continuously evolving user-item rating database.
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6.6. Összefoglaló

A hálózattudomány valamint a gráf alapú adatbányászat valós komplex rendszerek ta-

nulmányozásának, illetve relációs adatokból való információ kinyerés f® eszközeivé váltak.

Jelent®ségük rendkívüli mértékben megn®tt az utóbbi két évtizedben, köszönhet®en a

rendelkezésre álló adatok robbanásszer¶ megnövekedésének, továbbá annak, hogy a gráf

a matematikai modellezés egyik leghasznosabb eszköze. Komplex rendszerek és relációs

adatok grá�al való modellezése - mely gráf csúcsai a rendszer entitásai, míg élei az en-

titás párok közti valamilyen kapcsolatot, illetve hasonlóságot reprezentálnak - kézenfek-

v®vé vált. A hálózattudomány, adatbányászati eszközökkel kombinálva, valós rendszerek

gráf modelljei szerkezetének és fejl®dési dinamikájának tanulmányozását célozza. Ezen

disszertáció a szerz® munkájának és eredményeinek összefoglalása a hálózatos modellezés

és hálózatkutatás területén. A f® hangsúlyt általános módszerek alkalmazására és új ötle-

tek bemutatására helyeztük, melyek célja mindig a modellezett valós rendszer vizsgálata

és információ kinyerési lehet®ségek feltárása.

Valós hálózatok jellemz®i

A dolgozatban bemutatott algoritmusok és módszerek gráfokon, illetve gráfokat leíró mát-

rixokon értelmezettek. Az els® fejezet egy rövid bevezet®, mely tárgyalja az gráfelméleti

alapfogalmakat és áttekintést ad komplex hálózatok strukturális tulajdonságainak vizs-

gálatáról. Itt tárgyaltuk többek közt a hálózatok közösség szerkezete és mag-periféria

szerkezete fogalmakat, mint globális tulajdonságok, illetve a PageRank és a HITS szto-

chasztikus gráf algoritmusokat, mint széles körben használt gráfos adatbányászati eszkö-

zöket.

Valós rendszerek hálózatos modelljei

A disszertáció második fejezetében különböz® valós rendszerek hálózatos modelljeire lát-

tunk példákat. Általános konklúziónk, hogy gráfos adatbányászati módszerek alkalmazása

javasolt mintegy els® lépés a gráfokkal modellezhet® komplex rendszerek vizsgálatában,

majd az elemzés eredményeinek segítségével megfogalmazható hipotézisek tesztelése mély

statisztikai eszköztárral egy következ® lépcs®fok lehet. Mindhárom bemutatott esetta-

nulmány (hivatkozási hálózat, tömegközlekedési hálózatok, oktatási adatok vizsgálata)

jól szemlélteti a gráf-bányászati elemzés legfontosabb lépéseit: releváns adatok össze-

gy¶jtése, a gráf modell(ek) megalkotása, globális tulajdonságok vizsgálata (mint például

fokszám eloszlás és közösség szerkezet), illetve a gráf pontjainak és/vagy éleinek értékelése-

rangsorolása. A elemzés segítségével információt kapunk a modellezett rendszerr®l, illetve

hipotéziseket fogalmazhatunk meg m¶ködésér®l, növekedésér®l és egyes részeinek, entitá-

sainak rendszerbeli szerepér®l. Ismert gráf algoritmusok módosításával új módszereket

fejlesztettünk és teszteltünk különböz® problémákra. Az eredmények nemzetközi folyó-

iratokban [44, 125] és konferencia kiadványokban [87, 124, 126] jelentek meg. A következ®

pontokban összegezzük a fejezet f® eredményeit.
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Lokális PageRank közelít® algoritmus bemutatása és egy esettanulmány

Számos alkalmazás esetén szükséges a gráfpontok PageRank értékének kiszámítása, ugyan-

akkor vannak olyan szituációk, amikor csak egy részgráf estén tudjuk és/vagy szeretnék

kiszámítani azokat. Egy lokális PageRank közelít® algoritmust adtunk meg a [37]-ban ja-

vasolt módszer egy változataként, továbbá de�niáltuk az �elérési valószín¶ség� értéket is,

els®sorban tudományos publikációk értékelésének céljából. Esettanulmányunkban Eger-

vári Jen® híres cikkének [53] hivatkozási környezetét vizsgáltuk a tárgyalt gráfos adatbá-

nyászati módszerekkel. Rámutattunk, hogy a hálózatos megközelítés objektívebb képet

ad a m¶ fontosságáról, mint más tudománymetriai indexek.

Tömegközlekedési hálózatok elemzése

Több hálózatos modellt mutattunk be tömegközlekedési hálózatok vizsgálatára. Eset-

tanulmányunkban öt magyar város tömegközlekedésének átfogó hálózatelemzését adtuk

meg. Els®ként végeztünk átfogó összehasonlító hálózatelemzést (a modern hálózatkutatás

eszközeivel) magyar városok tömegközlekedési hálózatain. A modellünkben gráf csúcsai a

megállókat reprezentálják, élei irányítottak és súlyozottak: az irány a két csúcs közti járat

irányát mutatja. A súlyokat pedig a közleked® járatok reggeli csúcsidei kapacitásait és

menetrendjét felhasználva de�niáltuk. A hálózatok globális és lokális tulajdonságait ha-

sonlítottuk össze, és láttuk, hogy a kisvilág tulajdonság megjelenik mind az úthossz, mind

pedig egyes csúcs centralitási értékek eloszlása esetén. A hálózatok topológiája és egyes

lokális tulajdonságai közti különbségek f®leg történeti, földrajzi és gazdasági okokból fa-

kadnak. Rá tudtunk világítani néhány inkonzisztenciára és szervezésbeli problematikára,

továbbá közlekedés mérnökök által is meger®sített érzékenynek t¶n® csomópontokat és

útvonalakat határoztunk meg.

Hálózatos modellek oktatási adatok vizsgálatához

Új példát mutattunk hálózattal modellezhet® társadalmi rendszerre oktatási adatokat

vizsgálva. Oktatási adminisztrációs rendszerekb®l kinyerhet® adatok különböz® gráfos

reprezentációit mutattuk be és sorra vettük a legkézenfekv®bb hálózatelemzési és gráfbá-

nyászati lehet®ségeket. Tárgyaltuk, hogy milyen típusú és mélység¶ információ nyerhet®

ki ezen módszerek segítségével. Négy modellcsaládot mutattunk be, az egyiket részletes

esettanulmányban is vizsgáltuk rangsorolási céllal. A tanulók fejl®désének vizsgálatához

és rangsorolásukhoz egy módosított PageRank algoritmust adtunk meg. Azt kaptuk, hogy

a tanulók páronkénti összehasonlításával nyert hálózaton a a tanulókhoz rendelt PageR-

ank értékek alapján egészen jó sorrendet tudunk felállítani a tanulók között a tanulmányi

teljesítményükre vonatkozóan és folyamatosan követni tudjuk a tanulmányi fejl®désüket.

Végül rámutattunk a gráfos adatbányászat használatának további el®nyeire és lehet®sé-

geire oktatási rendszerekben.
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Hálózatos modellek a közgazdaságtanban

A harmadik fejezetben a közgazdaságtan területén alkalmazható hálózatos modelleket is-

mertettünk. Két esettanulmányt mutattunk be. Els®ként egy nemzetközi kereskedelmi

hálózat id®beli fejl®dését vizsgáltuk, majd korreláció alapú pénzügyi hálózatok alkalma-

zását néztük meg optimális részvényportfólió összeállítása céljából. Az eredmények hazai

folyóiratban [140] és nemzetközi konferencia kiadványban jelentek meg [75], továbbá nem-

zetközi folyóiratban [127] kerülnek publikálásra. A következ® pontokban összegezzük a

fejezet f® eredményeit.

Az európai kereskedelmi hálózat vizsgálata

Bemutattuk hogyan alkalmazható a gráfos adatbányászat országok kereskedelmi háló-

zatának vizsgálatára. Esettanulmányunkban az Európai Unió országai és a gazdasági

nagyhatalmak id®ben változó kereskedelmi hálózatát tanulmányozzuk, fókuszálva a kö-

zösségszerkezet változásaira és a kereskedelmi (import/export) rangsorok kialakulására.

Megmutattuk, hogy a vizsgált hálózatok er®s mag-periféria szerkezetet mutatnak. Kö-

zösség keres® eljárást alkalmazva láttuk, hogy a periférián lév® országok jellemz®en az

Oroszország, illetve Kína által fémjelzett klaszterekbe esnek. Ezzel szemben a magban

lév® országok a német és amerikai központú klaszterekben helyezkednek el. A közös-

ségszerkezet és gráfalgoritmusok által kereskedelmi rangsorok együttesen objektív képet

adnak az EU országai közti gazdasági (függ®ségi) viszonyokra.

Pénzügyi hálózatok és portfólió optimalizálás

A fejezet második részében korreláció alapú pénzügyi hálózatokkal foglalkoztunk. Ezen

hálózatok pontjai részvényeket reprezentálnak, két részvény között pedig az árfolyam

id®soraik közti Pearson korrelációs együttható teremt kapcsolatot. Az így modellezett

rendszerben jelen lev® statisztikai bizonytalanság (melyet gyakran zajnak is hívnak) mé-

résének és sz¶résének lehet®ségeit tárgyaltuk. Különböz® technikákat alkalmaztunk, hogy

leválasszuk a mátrix azon részét, mely robusztus a statisztikai bizonytalansággal (véletlen-

szer¶séggel) szemben, illetve, hogy csökkentsük a benne lév® elemek számát. A használt

módszerek a véletlen mátrixok elméletén, illetve hierarchikus klaszterezési eljárásokon

alapulnak. A sz¶rési eljárásokon túl a várható hozamok számításához is több statisztikát

kipróbáltunk. A módszereket a Markowitz portfólió optimalizálási problémára alkalmaz-

tuk, melynek célfüggvényében implicit módón jelenik meg a részvények közti korreláció

alapú hálózat. Bootstrap szimulációs eredményeink azt mutatják, összhangban korábbi

teszteredményekkel, hogy a klasszikus Markowitz megoldás javítható az elért hozamok,

illetve a portfólió megbízhatósága, azaz a becsült és realizált kockázat eltérése tekinteté-

ben.
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Értékelés és rangsorolás hálózatokban

A negyedik fejezetben sportolók és sportcsapatok értékelésén-rangsorolásán keresztül mu-

tattunk be további hálózat alapú értékelési modelleket. Egy új, id®függ® PageRank mo-

dellt de�niáltunk és alkalmaztunk meccsvégeredmény adatok által de�niált, úgynevezett

eredmény gráfokra. Szintén ebben a fejezetben egy új el®rejelzésre használható modellt

mutattunk be. Módszereinket több, széles-körben elterjedt eljárással hasonlítottuk össze.

Az eredmények nemzetközi folyóiratban [123] jelentek meg, tovább egy részük kés®bb

kerül publikálásra. A következ® pontokban összegezzük a fejezet f® eredményeit.

Sportolók és sportcsapatok értékelése és rangsorolása

Egy új, els®sorban sportokra kifejlesztett használható rangsoroló módszert mutattunk

be és vizsgáltunk valós sporteredmény adatokon. A játékosok, illetve csapatok rangso-

rolásához egy id®függ® PageRank módszert adunk meg és alkalmazunk a sportverseny

eredményeit reprezentáló irányított és súlyozott gráfon. Az eljárást az SZTE Informatika

Intézet bels® asztalitenisz bajnokságénak adatain teszteltük összehasonlítva számos elter-

jedt rangsoroló módszerrel Eredményeink azt mutatják, hogy módszerünk általánosan jól

m¶ködik rangsorolási célra és jó predikciós er®vel rendelkezik.

Sporteredmények el®rejelzése

Bemutattunk egy új, hálózat alapú modellt sporteredmények el®rejelzése céljából. Szem-

ben a széles körben elterjedt Bradley-Terry féle páronkénti összehasonlításokon alapuló

modellel, a mi módszerünk alapötlete az, hogy ha egy értékel® módszer pontosan tükrözi

a csapatok közti aktuális er®viszonyokat, akkor egy következ® mérk®zés egy adott kimene-

tele annál valószín¶bb, minél kevésbé változtatja meg ezt a relatív er®sorrendet. Egy id®-

függ® PageRank értékel®t használva hasonlítottuk össze eredményeinket a Bradley-Terry

valószín¶ségekkel és a fogadási irodák által adott oddsok alapján számolt valószín¶ségek-

kel. Megmutattuk, hogy több esetben a módszerünk pontosabb és jobb predikciós er®vel

rendelkezik a Bradley-Terry modellnél, ugyanakkor megjegyezzük, hogy a modell alapos

tanulmányozása jöv®beni kutatások tárgyát képezi.

Valós rendszerek páros gráf modelljei

Az ötödik fejezetben komplex rendszerek páros (szerencsésebb, de kevésbé elterjedt elneve-

zésben kétrészes) gráf modelljeivel foglalkoztunk. Ilyen hálózatok például a betegség-gén,

növény-beporzó, kutató-publikáció, vagy a színész-�lm hálózatok. Els®ként egy módszer-

tant mutattunk be kétrészes hálózatok közösségeinek, illetve közösségei magjának meg-

határozására. Ezután a PageRank és HITS algoritmusok egy általánosítását tárgyaltuk,

majd bemutattuk egy lehetséges új alkalmazását borkóstolási adatokra. Az eredmények

egy nemzetközi folyóiratban [21] kerülnek publikálására, illetve egy nemzetközi konfe-

rencia kiadványban [122] jelentek meg. A következ® pontokban összegezzük a fejezet f®

eredményeit.
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Statisztikai validáció és közösségek magja páros gráfokban

Megmutattuk, hogy egy kétrészes hálózat szerkezetében rejl® információ használható kö-

zösségek magjának meghatározására, mindkét színosztályban. Monte-Carlo szimulációk-

kal kapott eredményeink mutatják, hogy ezen magok er®sen stabilak és precízen megta-

lálhatók (kevés els®fajú hiba), bár néhány esetben a módszer nem túl pontos (másodfajú

hiba fellép). A kulcsötlet az, hogy az eredeti hálózatból kapott statisztikailag validált

hálózatokat hozunk létre, majd azon végzünk közösségkeresést. A detektált közösségek

robusztusak abban az értelemben, hogy nem függenek közösségkeres® algoritmustól, il-

letve az hiányzó vagy hibás adatokra sem érzékenyek. Végül bemutattuk valós adatokon

való vizsgálódásaink eredményeit is.

Csúcsok értékelése páros gráfokban

A dolgozat utolsó részében kétrészes hálózat pontjaink értékelési lehet®ségeit vizsgáltuk.

A HITS módszer páros gráfokra vett általánosítását mutattuk be és alkalmaztuk borverse-

nyek adain borkostolók szakértelmének és értékeléseik konzisztenciájának meghatározása

céljából. Megmutattuk, hogy, a priori tudásunk szerint, a módszer objektív képet mutat a

kostolók hozzáértésér®l szemben más természetes módon alkalmazható statisztikai elem-

zésekkel. Fontos el®nye a hálózat alapú módszernek, hogy akkor is jól m¶ködik, amikor a

kóstolók nem minden bort kóstolnak meg, így egy folyamatosan változó online kóstolási

adatbázis esetén is képes lehet objektív rangsorolást adni a kóstolókról és a borokról is.



Bibliography

[1] A. Agresti. Categorical data analysis. John Wiley & Sons, New York, 1996.

[2] S. Alonso, F. J. Cabrerizo, E. Herrera-Viedma, and F. Herrera. H-index: A review
focused in its variants, computation and standardization for di�erent scienti�c �elds.
Journal of Informetrics, 3(4):273�289, 2009.

[3] T. Alzahrani, K. J. Horadam, and S. Boztas. Community detection in bipartite
networks using random walks. In Complex Networks V, pages 157�165. Springer,
2014.

[4] M. R. Anderberg. Cluster analysis for applications: probability and mathematical
statistics: a series of monographs and textbooks, volume 19. Academic press, 2014.

[5] I. Arribas, F. Perez, and E. Tortosa-Ausina. Measuring globalization of international
trade: theory and evidence. World Development, 37(1):127�145, 2009.

[6] A. S. Asratian, T. M. Denley, and R. Häggkvist. Bipartite graphs and their appli-
cations. Cambridge University Press, 1998.

[7] Z. Bar-Yossef and L.-T. Mashiach. Local approximation of PageRank and reverse
PageRank. In Proceedings of the 17th conference on Information and knowledge
management, pages 279�288. ACM, 2008.

[8] A.-L. Barabási. The network takeover. Nature Physics, 8(1):14�16, 2012.

[9] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509�512, 1999.

[10] A.-L. Barabási and E. Bonabeau. Scale-free networks. Scienti�c American,
288(5):50�59, 2003.

[11] M. J. Barber. Modularity and community detection in bipartite networks. Physical
Review E, 76(6):066102, 2007.

[12] D. Barrow, I. Drayer, P. Elliott, G. Gaut, and B. Osting. Ranking rankings: an
empirical comparison of the predictive power of sports ranking methods. Journal
of Quantitative Analysis in Sports, 9(2):187�202, 2013.

[13] J. Bascompte and P. Jordano. Plant-animal mutualistic networks: the architecture
of biodiversity. Annual Review of Ecology, Evolution, and Systematics, pages 567�
593, 2007.

[14] R. Bellman. Mathematical aspects of scheduling theory. Journal of the Society for
Industrial & Applied Mathematics, 4(3):168�205, 1956.

[15] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the royal statistical society.
Series B (Methodological), pages 289�300, 1995.

96



Bibliography 97

[16] C. T. Bergstrom, J. D. West, and M. A. Wiseman. The eigenfactorTM metrics. The
Journal of Neuroscience, 28(45):11433�11434, 2008.

[17] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

[18] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex
networks: Structure and dynamics. Physics Reports, 424(4):175�308, 2006.

[19] V. Boginski, S. Butenko, and P. M. Pardalos. Matrix-based methods for college
football rankings. Economics, Management and Optimization in Sports, pages 1�
13, 2004.

[20] B. Bollobás and O. M. Riordan. Mathematical results on scale-free random graphs.
Handbook of graphs and networks: from the genome to the internet, pages 1�34,
2003.

[21] C. Bongiorno, A. London, S. Miccichè, and R. N. Mantegna. Core of commu-
nities in bipartite networks (submitted to Physical Review E). arXiv preprint
arXiv:1704.01524, 2017.

[22] S. P. Borgatti. Centrality and network �ow. Social networks, 27(1):55�71, 2005.

[23] S. P. Borgatti and M. G. Everett. Models of core/periphery structures. Social
Networks, 21(4):375�395, 2000.

[24] A. Bóta, M. Krész, and A. Pluhár. Dynamic communities and their detection. Acta
Cybernetica, 20(1):35�52, 2011.

[25] R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3-4):324�345, 1952.

[26] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wag-
ner. On �nding graph clusterings with maximummodularity. In International Work-
shop on Graph-Theoretic Concepts in Computer Science, pages 121�132. Springer,
2007.

[27] G. W. Brier. Veri�cation of forecasts expressed in terms of probability. Monthly
Weather Review, 78(1):1�3, 1950.

[28] S. Brin and L. Page. Reprint of: The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 56(18):3825�3833, 2012.

[29] S. Bustos, C. Gomez, R. Hausmann, and C. A. Hidalgo. The dynamics of nestedness
predicts the evolution of industrial ecosystems. PloS One, 7(11):e49393, 2012.

[30] K. Butler and J. T. Whelan. The existence of maximum likelihood estimates in the
Bradley-Terry model and its extensions. arXiv preprint math/0412232, 2004.

[31] W.-S. Calaway, Rich and D. Tenenbaum. Foreach Parallel Adaptor for the `parallel'
Package, 2015. R package version 2.14.

[32] T. Callaghan, P. J. Mucha, and M. A. Porter. Random walker ranking for NCAA
division IA football. American Mathematical Monthly, 114(9):761�777, 2007.

[33] F. Caron and A. Doucet. E�cient bayesian inference for generalized Bradley�Terry
models. Journal of Computational and Graphical Statistics, 21(1):174�196, 2012.



Bibliography 98

[34] C. Chen. Visualising semantic spaces and author co-citation networks in digital
libraries. Information Processing & Management, 35(3):401�420, 1999.

[35] P. Chen, H. Xie, S. Maslov, and S. Redner. Finding scienti�c gems with Google's
PageRank algorithm. Journal of Informetrics, 1(1):8�15, 2007.

[36] W. Chen, J. Lu, and J. Liang. Research in disease-gene network based on bipartite
network projection. Complex System and Complexity Science, 6(1):13�19, 2009.

[37] Y.-Y. Chen, Q. Gan, and T. Suel. Local methods for estimating PageRank values.
In Proceedings of the 13th International conference on Information and knowledge
management, pages 381�389. ACM, 2004.

[38] W. N. Colley. Colley's bias free college football ranking method: the Colley matrix
explained. http://www.colleyrankings.com/matrate.pdf, 2002.

[39] T. Conlon, H. J. Ruskin, and M. Crane. Random matrix theory and fund of
funds portfolio optimisation. Physica A: Statistical Mechanics and its Applications,
382(2):565�576, 2007.

[40] A. C. Constantinou, N. E. Fenton, and M. Neil. Pi-football: A bayesian network
model for forecasting association football match outcomes. Knowledge-Based Sys-
tems, 36:322�339, 2012.

[41] B. Csaba and A. Pluhár. A weighted regularity lemma with applications. Interna-
tional Journal of Combinatorics, 2014.

[42] L. Csató. Ranking by pairwise comparisons for Swiss-system tournaments. Central
European Journal of Operations Research, 21(4):783�803, 2013.

[43] T. Csendes and E. Antal. Pagerank based network algorithms for weighted graphs
with applications to wine tasting and scientometrics. In Proceedings of the 8th
International Conference on Applied Informatics, pages 209�216, 2010.

[44] P. Csermely, A. London, L.-Y. Wu, and B. Uzzi. Structure and dynamics of
core/periphery networks. Journal of Complex Networks, 1(2):93�123, 2013.

[45] G. Dahl. A matrix-based ranking method with application to tennis. Linear Algebra
and its Applications, 437(1):26�36, 2012.

[46] H. A. David. Ranking from unbalanced paired-comparison data. Biometrika,
74(2):432�436, 1987.

[47] R. R. Davidson and P. H. Farquhar. Bibliography on method of paired comparisons.
Biometrics, 32(2):241�252, 1976.

[48] D. Delen, D. Cogdell, and N. Kasap. A comparative analysis of data mining meth-
ods in predicting NCAA bowl outcomes. International Journal of Forecasting,
28(2):543�552, 2012.

[49] H. Deng, M. Lyu, and I. King. A generalized co-hits algorithm and its application
to bipartite graphs. In Proceedings of the 15th SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 239�248. ACM, 2009.

[50] S. Derrible. Network centrality of metro systems. PloS One, 7(7):e40575, 2012.

[51] M. J. Dixon and P. F. Pope. The value of statistical forecasts in the UK association
football betting market. International Journal of Forecasting, 20(4):697�711, 2004.



Bibliography 99

[52] O. J. Dunn. Multiple comparisons among means. Journal of the American Statistical
Association, 56(293):52�64, 1961.

[53] J. Egerváry. Mátrixok kombinatorikus tulajdonságairól. Matematikai és Fizikai
Lapok, 38:16�28, 1931.

[54] L. Egghe. An improvement of the h-index: The g-index. ISSI Newsletter, 2(1):8�9,
2006.

[55] M. El Alaoui. Random matrix theory and portfolio optimization in Moroccan stock
exchange. Physica A: Statistical Mechanics and its Applications, 433:92�99, 2015.

[56] A. Éltet®. Versenyképesség a közép-kelet-európai külkereskedelemben. Közgazdasági
Szemle (Economic Review), L évfolyam, pages 269�281, 2003.

[57] E. J. Elton, M. J. Gruber, S. J. Brown, and W. N. Goetzmann. Modern portfolio
theory and investment analysis. John Wiley & Sons, 2009.

[58] P. Erd®s and A. Rényi. On random graphs I. Publicationes Mathematicae (Debre-
cen), 6:290�297, 1959.

[59] P. Erd®s and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17�60, 1960.

[60] L. Ermann and D. L. Shepelyansky. Ecological analysis of world trade. Physics
Letters A, 377(3):250�256, 2013.

[61] L. Ermann and D. L. Shepelyansky. Google matrix analysis of the multiproduct
world trade network. The European Physical Journal B, 88(4):84, 2015.

[62] M. G. Everett and S. P. Borgatti. The dual-projection approach for two-mode
networks. Social Networks, 35(2):204�210, 2013.

[63] G. Fagiolo, J. Reyes, and S. Schiavo. World-trade web: Topological properties,
dynamics, and evolution. Physical Review E, 79(3):036115, 2009.

[64] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge
discovery in databases. AI Magazine, 17(3):37, 1996.

[65] D. Fiala, F. Rousselot, and K. Jeºek. Pagerank for bibliographic networks. Scien-
tometrics, 76(1):135�158, 2008.

[66] A. Fiasconaro, M. Tumminello, V. Nicosia, V. Latora, and R. Mantegna. Hybrid
recommendation methods in complex networks. arXiv preprint arXiv:1412.3697,
2014.

[67] L. R. Ford and D. Fulkerson. Solving the transportation problem. Management
Science, 3(1):24�32, 1956.

[68] D. Forrest, J. Goddard, and R. Simmons. Odds-setters as forecasters: The case of
English football. International Journal of Forecasting, 21(3):551�564, 2005.

[69] D. Forrest and R. Simmons. Forecasting sport: the behaviour and performance of
football tipsters. International Journal of Forecasting, 16(3):317�331, 2000.

[70] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75�174,
2010.



Bibliography 100

[71] S. Fortunato and C. Castellano. Community structure in graphs. In Computational
Complexity, pages 490�512. Springer, 2012.

[72] M. Franceschet and E. Bozzo. The Massey's method for sport rating: a network
science perspective. arXiv preprint arXiv:1701.03363, 2017.

[73] L. C. Freeman. Centrality in social networks conceptual clari�cation. Social Net-
works, 1(3):215�239, 1979.

[74] D. Garlaschelli and M. I. Lo�redo. Structure and evolution of the world trade
network. Physica A: Statistical Mechanics and its Applications, 355(1):138�144,
2005.

[75] I. Gera, B. Bánhelyi, and A. London. Testing the Markowitz portfolio optimization
method with �ltered correlation matrices. In Proceedings of the Middle-European
Conference on Applied Theoretical Computer Science, pages 44�47, 2016.

[76] A. Ghalanos and S. Theussl. `Rsolnp': General Non-linear Optimization Using
Augmented Lagrange Multiplier Method, 2015. R package version 1.16.

[77] R. Gill and J. Keating. Assessing methods for college football rankings. Journal of
Quantitative Analysis in Sports, 5(2), 2009.

[78] M. Girvan and M. E. Newman. Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences, 99(12):7821�7826, 2002.

[79] D. F. Gleich. Pagerank beyond the web. SIAM Review, 57(3):321�363, 2015.

[80] J. Goddard and I. Asimakopoulos. Forecasting football results and the e�ciency of
�xed-odds betting. Journal of Forecasting, 23(1):51�66, 2004.

[81] B. H. Good, Y.-A. de Montjoye, and A. Clauset. Performance of modularity maxi-
mization in practical contexts. Physical Review E, 81(4):046106, 2010.

[82] A. Y. Govan. Ranking theory with application to popular sports. PhD dissertation,
North Carolina State University, Raleigh, North Carolina, 2008.

[83] A. Y. Govan, A. N. Langville, and C. D. Meyer. O�ense-defense approach to ranking
team sports. Journal of Quantitative Analysis in Sports, 5(1):1�19, 2009.

[84] T. Guhr and B. Kälber. A new method to estimate the noise in �nancial correlation
matrices. Journal of Physics A: Mathematical and General, 36(12):3009, 2003.

[85] R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral. Module identi�cation in bipartite
and directed networks. Physical Review E, 76(3):036102, 2007.

[86] T. Haveliwala, S. Kamvar, and G. Jeh. An analytical comparison of approaches to
personalizing pagerank. Technical report, Stanford University, 2003.

[87] A. Háznagy, I. Fi, A. London, and T. Németh. Complex network analysis of public
transportation networks: a comprehensive study. In 4th International Conference
on Models and Technologies for Intelligent Transportation Systems, pages 371�378.
IEEE, 2015.

[88] C. Heiner, N. He�ernan, and T. Barnes. Educational data mining. In Supplemen-
tary Proceedings of the 12th International Conference of Arti�cial Intelligence in
Education, 2007.



Bibliography 101

[89] J. E. Hirsch. An index to quantify an individual's scienti�c research output. Pro-
ceedings of the National academy of Sciences, pages 16569�16572, 2005.

[90] L. Hubert and P. Arabie. Comparing partitions. Journal of Classi�cation, 2(1):193�
218, 1985.

[91] D. Hummels. Transportation costs and international trade in the second era of
globalization. The Journal of Economic Perspectives, 21(3):131�154, 2007.

[92] P. Jaccard. A comparative study of the �oral distribution in alps and jura. Bull.
Walden Soc. Nat. Sci, 37:547�579, 1901.

[93] M. O. Jackson. Social and economic networks. Princeton University Press, 2010.

[94] M. O. Jackson, B. Rogers, and Y. Zenou. Networks: An economic perspective.
Oxford Handbook of Social Network Analysis, R. Light and J. Moody (Eds.), 2016.

[95] W. James and C. Stein. Estimation with quadratic loss. In Proceedings of the
4th Berkeley symposium on mathematical statistics and probability, volume 1, pages
361�379, 1961.

[96] T. Jech. The ranking of incomplete tournaments: A mathematician's guide to
popular sports. The American Mathematical Monthly, 90(4):pp. 246�264+265�266,
1983.

[97] H. Jeong, Z. Néda, and A.-L. Barabási. Measuring preferential attachment in evolv-
ing networks. Europhysics Letters, 61(4):567, 2003.

[98] A. Joseph, N. E. Fenton, and M. Neil. Predicting football results using bayesian nets
and other machine learning techniques. Knowledge-Based Systems, 19(7):544�553,
2006.

[99] D. Karlis and I. Ntzoufras. Analysis of sports data by using bivariate Poisson mod-
els. Journal of the Royal Statistical Society: Series D (The Statistician), 52(3):381�
393, 2003.

[100] J. P. Keener. The Perron-Frobenius theorem and the ranking of football teams.
SIAM Review, 35(1):80�93, 1993.

[101] M. G. Kendall. A new measure of rank correlation. Biometrika, 30:81�93, 1938.

[102] M. G. Kendall and B. Babington Smith. On the method of paired comparisons.
Biometrika, 31(3/4):324�345, 1940.

[103] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM, 46(5):604�632, 1999.

[104] D. König. Über graphen und ihre anwendung auf determinantentheorie und men-
genlehre. Mathematische Annalen, 77(4):453�465, 1916.

[105] P. Krugman, M. Obstfeld, and M. Melitz. International Economics: Theory and
Policy. Addison-Wesley, 2011.

[106] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1-2):83�97, 1955.

[107] M. J. Kumar. Editorial: Evaluating scientists: Citations, impact factor, h-index,
online page hits and what else? IETE Technical Review, 26(3):165�168, 2009.



Bibliography 102

[108] L. Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters. Noise dressing of �nancial
correlation matrices. Physical Review Letters, 83(7):1467, 1999.

[109] L. Laloux, P. Cizeau, M. Potters, and J.-P. Bouchaud. Random matrix theory and
�nancial correlations. International Journal of Theoretical and Applied Finance,
3(03):391�397, 2000.

[110] A. N. Langville and C. D. Meyer. Google's PageRank and beyond: The science of
search engine rankings. Princeton University Press, 2011.

[111] A. N. Langville and C. D. Meyer. Who's #1?: the science of rating and ranking.
Princeton University Press, 2012.

[112] D. B. Larremore, A. Clauset, and A. Z. Jacobs. E�ciently inferring community
structure in bipartite networks. Physical Review E, 90(1):012805, 2014.

[113] J. Lasek, Z. Szlávik, and S. Bhulai. The predictive power of ranking systems in
association football. International Journal of Applied Pattern Recognition, 1(1):27�
46, 2013.

[114] M. Latapy, C. Magnien, and N. Del Vecchio. Basic notions for the analysis of large
two-mode networks. Social Networks, 30(1):31�48, 2008.

[115] V. Latora and M. Marchiori. Is the Boston subway a small-world network? Physica
A: Statistical Mechanics and its Applications, 314(1):109�113, 2002.

[116] S. Lehmann, B. Lautrup, and A. Jackson. Citation networks in high energy physics.
Physical Review E, 68(2):026113, 2003.

[117] C. K. Leung and K. W. Joseph. Sports data mining: Predicting results for the
college football games. Procedia Computer Science, 35:710�719, 2014.

[118] M. Li, J. Wang, X. Chen, H. Wang, and Y. Pan. A local average connectivity-based
method for identifying essential proteins from the network level. Computational
Biology and Chemistry, 35(3):143�150, 2011.

[119] G. Lianxiong, W. Jianping, and R. Liu. Key nodes mining in transport networks
based in pagerank algorithm. In Control and Decision Conference, 2009. CCDC'09.
Chinese, pages 4413�4416. IEEE, 2009.

[120] G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-to-item
collaborative �ltering. IEEE Internet Computing, 7(1):76�80, 2003.

[121] X. Liu, J. Bollen, M. L. Nelson, and H. Van de Sompel. Co-authorship networks
in the digital library research community. Information Processing & Management,
41(6):1462�1480, 2005.

[122] A. London and T. Csendes. Hits based network algorithm for evaluating the pro-
fessional skills of wine tasters. In 8th International Symposium on Applied Compu-
tational Intelligence and Informatics, pages 197�200. IEEE, 2013.

[123] A. London, J. Németh, and T. Németh. Time-dependent network algorithm for
ranking in sports. Acta Cybernetica, 21(3):495�506, 2014.

[124] A. London and T. Németh. Student evaluation by graph based data mining of
administrational systems of education. In Proceedings of the 15th International
Conference on Computer Systems and Technologies, pages 363�369. ACM, 2014.



Bibliography 103

[125] A. London, T. Németh, A. Pluhár, and T. Csendes. A local pagerank algorithm for
evaluating the importance of scienti�c articles. Annales Mathematicae et Informat-
icae, 44:131�141, 2015.

[126] A. London, Á. Pelyhe, C. Holló, and T. Németh. Applying graph-based data min-
ing concepts to the educational sphere. In Proceedings of the 16th International
Conference on Computer Systems and Technologies, pages 358�365. ACM, 2015.

[127] I. London, András and and B. Bánhelyi. Testing portfolio selection models us-
ing various estimators of expected returns and �ltering techniques for correlation
matrices (submitted). 2017.

[128] L. Lovász. Perfect graphs. Selected topics in graph theory, 2:55�87, 1983.

[129] S. Luckner, J. Schröder, and C. Slamka. On the forecast accuracy of sports predic-
tion markets. In Negotiation, Auctions, and Market Engineering, pages 227�234.
Springer, 2008.

[130] M. J. Maher. Modelling association football scores. Statistica Neerlandica,
36(3):109�118, 1982.

[131] Y. Malevergne and D. Sornette. Collective origin of the coexistence of apparent
random matrix theory noise and of factors in large sample correlation matrices.
Physica A: Statistical Mechanics and its Applications, 331(3):660�668, 2004.

[132] R. N. Mantegna. Hierarchical structure in �nancial markets. The European Physical
Journal B-Condensed Matter and Complex Systems, 11(1):193�197, 1999.

[133] R. N. Mantegna and H. E. Stanley. Introduction to econophysics: correlations and
complexity in �nance. Cambridge University Press, 1999.

[134] H. Markowitz. Portfolio selection: E�cient diversi�cation of investments. Cowles
foundation monograph no. 16, 1959.

[135] L. Marotta, S. Miccichè, Y. Fujiwara, H. Iyetomi, H. Aoyama, M. Gallegati, and
R. N. Mantegna. Bank-�rm credit network in Japan: An analysis of a bipartite
network. PLoS One, 10(5):e0123079, 2015.

[136] K. Massey. Statistical models applied to the rating of sports teams. Blue�eld College
(Master thesis), 1997.

[137] M. L. Mehta. Random matrices. Academic Press, 2004.

[138] D. Melamed. Community structures in bipartite networks: A dual-projection ap-
proach. PLoS One, 9(5):e97823, 05 2014.

[139] D. Melamed, R. L. Breiger, and A. J. West. Community structure in multi-mode
networks: Applying an eigenspectrum approach. O�cial Journal of the Interna-
tional Network for Social Network Analysts, 33:18�23, 2013.

[140] Á. Merza, A. London, I. M. Kiss, A. Pelle, J. Dombi, and T. Németh. On the possible
use of network science in the analysis of world trade (in Hungarian). Közgazdasagi
Szemle (Economic Review) LXIII. évfolyam, pages 79�98, 2016.

[141] C. D. Meyer. Matrix analysis and applied linear algebra, volume 2. SIAM, 2000.

[142] S. Motegi and N. Masuda. A network-based dynamical ranking system for compet-
itive sports. Scienti�c Reports, 2:904, 2012.



Bibliography 104

[143] N. Mukai. Pagerank-based tra�c simulation using taxi probe data. Procedia Com-
puter Science, 22:1156�1163, 2013.

[144] M. E. Newman. The structure of scienti�c collaboration networks. Proceedings of
the National Academy of Sciences, 98(2):404�409, 2001.

[145] M. E. Newman. The structure and function of complex networks. SIAM review,
45(2):167�256, 2003.

[146] M. E. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(2):026113, 2004.

[147] J. R. Norris. Markov chains. Cambridge University Press, 1998.

[148] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping commu-
nity structure of complex networks in nature and society. Nature, 435(7043):814�
818, 2005.

[149] M. Patel, J. A. Bullinaria, and J. P. Levy. Extracting semantic representations from
large text corpora. In 4th Neural Computation and Psychology Workshop, London,
9�11 April 1997, pages 199�212. Springer, 1998.

[150] T. P. Peixoto. Parsimonious module inference in large networks. Physical Review
Letters, 110(14):148701, 2013.

[151] C. Piccardi and L. Tajoli. Existence and signi�cance of communities in the world
trade web. Physical Review E, 85(6):066119, 2012.

[152] F. Picciolo, T. Squartini, F. Ruzzenenti, R. Basosi, and D. Garlaschelli. The role of
distances in the world trade web. In 8th International Conference on Signal Image
Technology and Internet Based Systems (SITIS), pages 784�792. IEEE, 2012.

[153] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, and H. E. Stanley.
Universal and nonuniversal properties of cross correlations in �nancial time series.
Physical Review Letters, 83(7):1471, 1999.

[154] P. F. Pope and D. A. Peel. Information, prices and e�ciency in a �xed-odds betting
market. Economica, pages 323�341, 1989.

[155] F. Radicchi. Who is the best player ever? A complex network analysis of the history
of professional tennis. PloS One, 6(2):e17249, 2011.

[156] F. Radicchi, S. Fortunato, B. Markines, and A. Vespignani. Di�usion of scienti�c
credits and the ranking of scientists. Physical Review E, 80(5):056103, 2009.

[157] W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66(336):846�850, 1971.

[158] P. Rao and L. L. Kupper. Ties in paired-comparison experiments: A generaliza-
tion of the Bradley-Terry model. Journal of the American Statistical Association,
62(317):194�204, 1967.

[159] C. Romero and S. Ventura. Educational data mining: A survey from 1995 to 2005.
Expert Systems with Applications, 33(1):135�146, 2007.

[160] C. Romero, S. Ventura, M. Pechenizkiy, and R. S. Baker. Handbook of educational
data mining. CRC Press, 2010.



Bibliography 105

[161] B. Rosenow, V. Plerou, P. Gopikrishnan, and H. E. Stanley. Portfolio optimization
and the random magnet problem. Europhysics Letters, 59(4):500, 2002.

[162] S. M. Ross. Introduction to probability models. Academic Press, Ninth edition, 2007.

[163] C. Roth, S. M. Kang, M. Batty, and M. Barthelemy. A long-time limit for world
subway networks. Journal of The Royal Society Interface, page rsif20120259, 2012.

[164] G. Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581�603, 1966.

[165] F. Saracco, R. Di Clemente, A. Gabrielli, and T. Squartini. Grandcanonical pro-
jection of bipartite networks. arXiv preprint arXiv:1607.02481, 2016.

[166] O. Scheuer and B. M. McLaren. Educational data mining. In Encyclopedia of the
Sciences of Learning, pages 1075�1079. Springer, 2012.

[167] A. M. Sengupta and P. P. Mitra. Distributions of singular values for some random
matrices. Physical Review E, 60(3):3389, 1999.

[168] M. A. Serrano and M. Boguná. Topology of the world trade web. Physical Review
E, 68(1):015101, 2003.

[169] M. Spann and B. Skiera. Sports forecasting: a comparison of the forecast accuracy
of prediction markets, betting odds and tipsters. Journal of Forecasting, 28(1):55,
2009.

[170] T. Squartini and D. Garlaschelli. Stationarity, non-stationarity and early warning
signals in economic networks. Journal of Complex Networks, 3(1):1, 2015.

[171] C. Su, Y. Pan, Y. Zhen, Z. Ma, J. Yuan, H. Guo, Z. Yu, C. Ma, and Y. Wu. Prestig-
erank: A new evaluation method for papers and journals. Journal of Informetrics,
5(1):1�13, 2011.

[172] V. Tola, F. Lillo, M. Gallegati, and R. N. Mantegna. Cluster analysis for portfolio
optimization. Journal of Economic Dynamics and Control, 32(1):235�258, 2008.

[173] J. A. Trono. Rating/ranking systems, post-season bowl games, and 'the spread'.
Journal of Quantitative Analysis in Sports, 6(3), 2010.

[174] M. Tumminello, F. Lillo, and R. N. Mantegna. Correlation, hierarchies, and
networks in �nancial markets. Journal of Economic Behavior & Organization,
75(1):40�58, 2010.

[175] M. Tumminello, S. Miccichè, L. J. Dominguez, G. Lamura, M. G. Melchiorre,
M. Barbagallo, and R. N. Mantegna. Happy aged people are all alike, while ev-
ery unhappy aged person is unhappy in its own way. PloS One, 6(9):e23377, 2011.

[176] M. Tumminello, S. Miccichè, F. Lillo, J. Piilo, and R. N. Mantegna. Statistically
validated networks in bipartite complex systems. PLoS One, 6(3):e17994, 03 2011.

[177] UNComtrade. United Nations commodity trade statistics database.
http://comtrade.un.org, 2010.

[178] N. Vlastakis, G. Dotsis, and R. N. Markellos. How e�cient is the european foot-
ball betting market? Evidence from arbitrage and trading strategies. Journal of
Forecasting, 28(5):426�444, 2009.



Bibliography 106

[179] C. Von Ferber, T. Holovatch, Y. Holovatch, and V. Palchykov. Public transport
networks: empirical analysis and modeling. The European Physical Journal B-
Condensed Matter and Complex Systems, 68(2):261�275, 2009.

[180] D. Walker, H. Xie, K.-K. Yan, and S. Maslov. Ranking scienti�c publications using a
model of network tra�c. Journal of Statistical Mechanics: Theory and Experiment,
2007(06):P06010, 2007.

[181] D. L. Wallace. Comment. Journal of the American Statistical Association,
78(383):569�576, 1983.

[182] C. Wang and M. L. Vandebroek. A model based ranking system for soccer teams.
Research report, available at SSRN 2273471, 2013.

[183] D. J. Watts and S. H. Strogatz. Collective dynamics of `small-world' networks.
Nature, 393(6684):440�442, 1998.

[184] M. C. Wendl. H-index: however ranked, citations need context. Nature,
449(7161):403�403, 2007.

[185] R. Wirth and J. Hipp. Crisp-dm: Towards a standard process model for data mining.
In Proceedings of the 4th International Conference on the Practical Applications of
Knowledge Discovery and Data Mining, pages 29�39. Citeseer, 2000.

[186] G. J. Woeginger. An axiomatic characterization of the Hirsch-index. Mathematical
Social Sciences, 56(2):224�232, 2008.

[187] Y. Xu, L. Chen, B. Li, et al. Density-based modularity for evaluating community
structure in bipartite networks. Information Sciences, 317:278�294, 2015.

[188] E. Yan and Y. Ding. Discovering author impact: A pagerank perspective. Infor-
mation Processing & Management, 47(1):125�134, 2011.

[189] M. Zanin, D. Papo, P. A. Sousa, E. Menasalvas, A. Nicchi, E. Kubik, and S. Boc-
caletti. Combining complex networks and data mining: why and how. Physics
Reports, 635:1�44, 2016.

[190] P. Zhang and C. Moore. Scalable detection of statistically signi�cant communities
and hierarchies, using message passing for modularity. Proceedings of the National
Academy of Sciences, 111(51):18144�18149, 2014.

[191] P. Zhang, J. Wang, X. Li, M. Li, Z. Di, and Y. Fan. Clustering coe�cient and
community structure of bipartite networks. Physica A: Statistical Mechanics and
its Applications, 387(27):6869�6875, 2008.

[192] Z. Zhu, F. Cerina, A. Chessa, G. Caldarelli, and M. Riccaboni. The rise of China in
the international trade network: a community core detection approach. PloS One,
9(8):e105496, 2014.


