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B E V E Z E T Ő 

Sokan leszögezték már, hogy ha az oktatás mesterei akarunk lenni, 

akkor a célhoz vezető utat, az oktatás módszerét alaposan kell is-

mernünk. A most bemutatásra kerülő ut az eddig ismertekből sokban 

eltérő sajátos ut, amely az eddigi főleg pedagógiai és pszichológiai 

mesgyókről kissé letérve, olyan területeket is érint, mint a halmaz-

elmélet, a matematikai logika, a valószinüség-számitás, a gráf-el-

mélet, kibernetika, automatika, 	 Ezt a még igen nehezen járha- 

tó utat fogjuk algoritmikus utnak nevezni. Magát a diszciplinát pe-

dig, mivel a didaktika területéről indul ki és ide is tér vissza: 

didaktikai algoritmusoknak. 

Mint általában a határterületeket érintő diszciplináktól sem, ugy et- 

1 től sem várhatjuk el, hogy valamelyik irányban is elmélyüljön. Tár-

gyalásunk menetét éppen ezért szigoru iránytényezőnek kell meghatá-

roznia. Ezt a szerepet itt egy általános algoritmus definició fogja 

betölteni, amely mint iránytü, vezet bennünket végig a fenti labi-

rintuson. 

Természetesen nem ez az első kisérlet ennek a problémának a megoldá-

sára. Az eddig elismert legeredményesebb munkát L.N.LANDA, a kiváló 

- nyugati szakmai körökben is uttörőnek elismert - szovjet tudós vé-

gezte ezen a téren. Idevágó főműve az "Oktatás és az algoritmusok" 

e disszertáció irásával egyidőben jelent meg, s igy nagy sajnálat-

tal le kellett mondanom arról, hogy e szerény kis munkát az abban 

szereplő értékes anyaggal gazdagitsam. 

LANDÁN kivül mások is foglalkoztak ezzel a kerdéssel, de csak egy- 



egy tanulmány erejéig. Nagyobb összefogó munkát egy—egy részterüle-

ten G.MEYER munkájában és K.ELSNER doktori disszertációjában érté-

kelhetünk. 

Az eléggé elszórt és elszigetelt jellegii tanulmányok sok esetben nem 

a rendszerezés irányában, hanem ellenkezőleg, a terminológiai zűrza-

var fokozása irányában hatottak. 

Ezek egyensulyának megteremtőse e disszertáció másik feladata, ame-

lyet ugy kivánok megoldani, ho gy  a definiciók szigoru rendje után há-

rom szinten: 

formális, 

konstruktiv, és 

strukturális 

szinten kivánom az anyagot tárgyalni, hogy ezzel is a fejlődés dia— 

lektikus folyamatát bizUositsam. 

/A formális és konstruktív elemek cimü részben felhasznált matemati-

kai apparátus elemeit ismertetni fogom./ 



I . 

AZ ALGORITMUS FOGALOM KLASSZIKUS ÉS MODERN ÉRTELMEZÉSE. 



Az arab Al Kvarizmi nevéből keletkezett több, esetleg végtelen sok, 

egymástól csak bizonyos adatokban /kiindulási/ eltérő matematikai prob-

léma megoldására szolgáló általános eljárás /430:119/. A legközismer-

tebb ilyen algoritmus az ugynevezett "euklideszi algoritmus", amely 

két szám legnagyobb közös osztójának a meghatározására szolgál, pl.: 

72 és 40 legnagyobb közös osztójának meghatározásánál: 

72 : 40 = 1 
32 

40 : 32 = 1 
8 

32 : 8 = 4 
0 

A legnagyobb közös osztó tehát: 8. 

A matematikai bizonyitást mellőzve látható, hogy az algoritmus az a-

lábbi eljárást absztrahálja: 

1./ Oszd el a nagyobbik számot a kisebbikkel. 

2./ Az első osztót oszd el ezután az első maradékkal. 

3./ Ezt  folytasd, és a második osztót oszd el a második maradékkal. 

4./ Ezt az eljárást mindaddig folytatod, arcig a maradék "0" nem lesz. 

Ebben az esetben az utolsó osztó lesz a keresett legnagyobb közös 

osztó. 

A most bemutatott al goritmus megadása "szóbeli leirással" történt. 

A matematika fejlődése során keletkeztek ujabb definiciók is, igy: 

"Algoritmus = eljárás azonos tipusú feladatok megoldására". Eme túl 

egyszerű definiciók sok esetben nem bizonyultak teljes értékűnek, s 



igy szigorúbb megkötések is keletkeztek, melyek szerint: Valamilyen 

előírás csak akkor algoritmus, ha teljesen meghatároz valamilyen fo-

lyamatot, tevékenységet és bizonyos azonos kiinduló adatokból mindig 

azonos végeredményekre vezet. A.I.POPOV /106:176/ szerint algoritmus-

nak bizonyos matematikai feladatok megoldási receptjét nevezik, amely 

pontosan megadja a megoldás megkeresésére szolgáló szabályokat, még-

pedig olyan alakban, hogy a megoldást úgyszólván mechanikusan megkap-

juk, ha lépésről lépésre követjük az algoritmus útmutatásait. Jó p' 

dak nt emlithető itt az ugynevezett FIBONACCI-féle számok sorozata, 

ahol adva van Uo  = 0; U 1  = 1; a továbbiakban pedig a sorozat bármely 

három egymásután következő tagja az alábbi algoritmus szerint képez-

hető: 

U2 = U 1 +Uo = 1 + 0 = 1 

U3 = U2 + U 1 = 1 + 1 = 2  

U4 =U3+ U2  = 2 + 1 = 3  

Általánosságban: 

Un+2 - Un+l + Un  

Ez az algoritmus matematikai modellje. 

Az algoritmus  fogalom  sok más klasszikus terminológiához hasonlóan ki-

nőtte eredeti kereteit, s általánossá vált. Igy ma már a modern also-

ritmus definiciók nem beszélnek tovább "matematikai feladatok megoldá-

si receptjeiről", hanem az algoritmus által meghatározott tevékenysé-

gek körét ma már egyre több tudományágban értelmezik. Igy pl. A.A.MAR-

KOV /31: / szerint az algoritmus fogalmának általánosságban tulaj- 



Bonképen nincs szigorú matematikai meghatározása, s ezért körül kell 

határolni. Adott esetben pl. az ugynevezett normális algoritmus fogal-

mát vezetik be; ennek egészben véve azok a számitási eljárások felel-

nek meg, amelyeket manapság rekurzivoknak szoktak nevezni. Ezeknek e-

lemi lépésekre kell tagolódnia, amelyek mindegyikét egyértelmü és fél-

reérthetetlen szabályok szerint hajthatjuk végre. A lépések "integrá-

lis" jellegüek lehetnek, s ez esetben az objektum jelentős részére, 

vagy egészére kihatnak, de lehetnek lokális tipusúak is, t.i. amikor 

csak eleve korlátozott helyi változásokat haznak létre. A normális al-

goritmusoknak lehetővé kell tenniök az integrális lépéseknek véges szá-

mú elemi lokális müveletre való visszavezetését. Erre é,dti A.A.CSEN- 

COB /16 : ' / tömörebb definicióját, amikor az algoritmust a szabályok 

és tevékenységek olyan rendszerének tekinti, amelyek szerint a  mega-

dott feladatot a leggazdaságosabban lehet elvégezni. Ez a definició 

már az optimalitásra is utal, bár megállapitása még csak horizontális 

jellegű. A későbbiek során már egyazon algoritmuson belül vertikális 

metszetben fogjuk az optimális algoritmust meghatározni. Igen mélyen 

hatolt a modern algoritmus-elmélet definicióinak felkutatásába H.THIE-

LE /13.1:111-146/, aki szerint a modern algoritmus fogalom, a régi prak-

tikus számtani algoritmusok /négyzetgyökvonás; regula falsi/ definició-

iból olyképpen adódott, hogy a "számolás fogalmát" először az "aritme-

tikai müveletek" fogalmával, majd végezetül az általános "kalkulusok 

/itóletkalkulus, automatizált nyelvi forditás/operációival" helyette-

sitették. A nyelvtudományok területén is nélkülözhetetlen algoritmus fo-

galmát ANTAL LÁSZLÓ / '1 :—/  a következőképpen vezeti be: A modern 

strukturalista nyelvtudomány a nyelvtant mondatok keltésére, generálá-

sára szolgáló szabályok összességének tekinti, mely szabályok lényegé-

ben algoritmusoknak tekinthetők. 



A fogalom további kiterjesztésének eklatáns megoldását adta A.MÜLLER 

/9g:  6/: Ahogy az ember képes az automaták jelzéseit a megadott he-

lyen leolvasni, előre megadott módon jeleket hozzárendelni, ezeket a 

jeleket a meghatározott helyen elhelyezni, és egy előre megadott fel-

tétel teljesülése vagy nem teljesülése esetén a leolvasási folyamatot 

egy másik meghatározott helyen folytatni, vagy ezt a folyamatot megál-

litani, úgy ezt a munkát egy automata is képes elvégezni. Ezt a folya-

matot egy tevékenység algoritmusának nevezhetjük. Közel jutott ehhez a 

megállapitáshoz F.MALIR /22: 81/, amikor az algoritmus fogalma alatt 

az egymásután következő operációknak azt a szigorúan meghatározott sor-

rendjét érti, amelynek segitségével  az ember vagy gép  egy előre megha- 

tározott eredményt /célt/ elérhet. Életközelségbe hozza ezt az alábbi 

"hétköznapi" példával: 

Valaki egy nyilvános telefonállomáson akar telefonálni. 2nnek érdeké-

ben az alábbi operációkat kell elvégeznie: 

1./ A "hallgatót" kézbe kell vennie. /H/ 

2./ A telefonérmét be kell dobnia. /D/ 

3./ A meghivandó állomás számjegyeit a meghatározott sorrendben tárcsáz-

nia kell. /T/ 

Elméletileg a három operáció segitségével: 

3! = 3 . 2 . 1 - 6 

müvelet végezhető: 

HDT 	HTD 	DHT 

DTH 	TDH 	THD 

Valójában azonban csak akkor fog tudni telefonálni, ha a "helyes algorit-

must" 	HDT 

ismeri. 



Az agy fiziológiai aspektusából A.V.NAPALKOV /402,:—/ adja az alábbi 

algoritmus definiciót: "Azok az algoritmusok tehát, amelyek lehetővé 

teszik, hogy az agy önállóan a leggazdaságosabban dolgozza ki uj, bo-

nyolult munkaprogrammját /anélkül, hogy sorra venné az emlékezetében 

tárolt összes adatokat/, a következőkben foglalhatók össze: A válogatás 

egyfelől irányitottan, célszerüen, másfelől pedig a külső konkrét kö-

rülményekkel szigorú összhangban folyik. Mindkettő egy sajátos fizioló-

giai mechanizmus, a "kettős fenekü" idegsejtek müködése révén válik le-

hetővé." 

A jelenleg legáltalánosabb definició szerint /430:120/ algoritmus leg-

általánosabb értelemben bármiféle szabatosan előirt eljárás/matematikai  

modellje/ Átvitt értelemben az ilyen eljárásokat is algoritmusnak neve-

zik. A továbbiakban erre a definicióra ét;itjük fel vizsgálódásainkat. 

A következőkben már a didaktikai algoritmusokat definiáljuk: 

J.R.H.DEUTSCH /0: 11/ szerint "A tanulási folyamat vezérlésének algo-

ritmusa a viselkedések valószinüségeinek lépésről—lépésre történő válto-

zásainak figyelembevételével fejleszthető ki. — Az oktatási folyamat al-

goritmizálhatóságának meghatározása szerint: Az oktatási algoritmus egy 

olyan módszeres tanitási eljárás, amely szerint minden egyes oktatási 

lépésnek az egész rendszeren belül olyan meghatározott helye van, hogy 

bármelyik pontból egy meghatározott döntés alapján minden esetben el le-

het jutni a következő oktatási lépéshez 	. H.FRANK  

szerint egy oktatási algoritmus egy olyan speciális törvényszerüség, 

mely szerint egy oktatási rendszer /tanár, vagy oktatógép/ egy tanulási 

rendszertől /tanuló, vagy tanuló—automata/ előre megadott jeleket /vála— 

szok, kérdések, kérések — röviden; betáplálandó jeleket/ vesz át és ezt 
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követően jelzéseket /értékelő, ujabb kérdések, utasitásokat/ ad le, 

vagy helyez úgy el, hogy az a tanuló-rendszer részére a leolvasható 

/hallható, vagy látható/ legyen. 

r.MALI? 

 

/82: 81/ a pszichológiai algoritmus fogalmát definiálva meg- 

állapitja, hogy ez a tanulók által szigorú sorrendben elvégzendő pszi-

chikai operációk sorrendje. Ugyanitt megadja a metodikai algoritmus 

fogalmát is, mely alatt azokat a szigorú sorrendben egymást követő 

lépéseket érti, amelyeket úgy a tanárnak, mint a tanulónak el kell vé-

geznie az oktatási cél elérése érdekében. 

$z előbbiek során megismert legáltalánosabb algoritmus fogalom szerint 

bármiféle szabatosan előirt eljárás/matematikai modellje/algoritmus. 

Evidens, hogy azok a didaktikai folyamatok, amelyek a fenti követelméey-

nek eleget tesznek, algoritmikusan leirhatók, s .hozzájuk ren-

delhető egy matematikai modell is. Ezek a didaktikai algoritmusok azon-

ban  az alábbiakban eltérnek a matematikai feladatok megoldására alkalma- 

j zott átalakitási algoritmusoktól /86 ip/: 

1./ A matematikában minden átalakitási müvelet mindig egyértelmü ered-

ményre vezet /pl. egy konkrét müvelet egy konkrét számot mindig u-

gyanazzá a másik konkrét számmá alakit át/, a didaktikában viszont 

az átalakitási müveletek többnyire nem egyértelmü, hanem valószinü- 

ségi eredményekre vezetnek /pl. ugyanaz az oktatási ráhatás külön-

böző reakciókat vált ki más-más tanulóból, sőt eltérő időben eset-

leg ugyanabból a tanulóból is/. 

2./ A didaktikában a kezdő érték is legtöbbnyire valószinüségi érték, 

mivel a tanuló ismereteinek foka is csak megközelitőleg határozha-

tó meg. 
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Az oktatási algoritmusban ezért tekintetbe kell venni azokat a külön-

böző reakciókat, amelyeket ugyanaz az oktatási ráhatás a tanulókból ki-

válthat és előre meg kell tervezni az ezekre történő reagálás módját. 

ha egy más szempontból, mondjuk a "kibernetikus pedagógia" aspektusá-

ból akarnók az "oktatási algoritmust" definiálni, akkor / t18;.---/: 

az uj ismeretek rendezetlensége = entrópia, 

az uj ismeretek elrendezése = információs entrópia, 

az uj ismeretek rendezettsége = negativ entrópia 

megfeleltetések bevezetése után az oktatási algoritmust az információs 

entrópia e gyik absztrakt modelljének is tekinthetjük. 

A programorozott oktatásnak elvitathatatlan érdeme, hogy először tüzte 

ki a neveléstudomány elé a didaktikai folyam  t algoritmikus leirásának 

feladatát. Ugyanis, amii; kizárólag csak ember, pedagógus végezte az ok-

tatást, be lehetett érni hozzávetőleges leirásokkal, általános és nem 

minden esetben határozott útmutatásokkal /pl. megfeleltek az efajta e-

lőirások is, hogy magas szinten kell tartani az osztály aktivitását; el 

kell érni az ismeretek tudatos elsajátitását, stb./. A tanár értelmes 

és gondolkodó lény, igy tapasztalatai ás intuíciói alapján feltétlenül 

meg tudja határozni, hogy mikor magas az aktivitás, mikor alacsony, és 

mennyire kell fokozni; mikor szereztek a tanulók tudatos ismereteket és 

mikor nem eléggé tudatosak# ismereteik, s akkor hogyan kell eddigi mód-

szerén változtatnia, a tudatosság erősebb érvényesitése érdekében. Az 

ilyen természetü útmutatások hasznavehetetlenek a programmozott okta-

tásban, amely programmozott tankönyvek, vagy oktatógépek segitségével 

folyik. A gép nem tudja szabályozni a tanulók aktivitását, ha először 

nem  adjuk  meg részére azokat a szigorúan regisztrálható külső formákat, 

amelyekben  az  aktivitás megnyilvánul, vagy ha nem adjuk meg az aktivi- 
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tás magas, illetve alacsony szintjének abszolut pontos kritériumait. 

A gép ezeknek a mutatóknak a segitségével változtathat az addigi ok-

tatási stratégián. Ezek az okok indokolják a programmozásra kerülő 

tananyag algoritmikus leirásának feltétlen szükségszerűségét, amelyre 

ÁGOSTON GYÖRGY / 1. :499/ a következőkben utal: "Az algoritmusok kidol-

gozása egy-egy tantárgyban a programmkészités sokkal szolidabb tudomá-

nyos-logikai alapját teremti meg, mint amilyennel ma az amerikai prog-

rammkészitők dolgoznak. Az amerikai programmkészitők ugyanis - lega- 

lábbis az általunk ismert tanulmányok szerint - csupán "próbálgatással" 

közelitik meg a tananyag optimális logikai strukturáltságát. Ez az in-

duktiv kisérleti módszer egyesitve LANDA dediaktiv módszerével, tehát a 

programm logikájának a matematikai logika felől történő megközelitésé-

vel, megbizhatóbb tudományosabb eljárás lehet egy programm szakaszokra 

bongásának, felépitésének megállapitásához. 

Tisztázandó az a kérdés is, hogyan viszonyulnak egymáshoz az "oktatási 

programm" és az "oktatási algoritmus" fogalmak. Az elméletieskedést 

most mellőzve, megállapithatjuk, hogy gyakorlatilag azonosak. Az okta- 

tás programorjának - a prograrmozott oktatás értelmében való - kidolgo-

zása pontosan azt jelenti, hogy elkészitjük az oktatás algoritmusát, 

vagyis kidolgozzuk azt az előirást, amelyben meghatározzuk az oktatás 

tartalmát ós célját, s ebben az oktatóinak, illetve az oktatottnak a 

tevékenységét egyes müveletekre, komponensekre tagoljuk. Igy előre de-

termináljuk az oktató, illetve az oktatott által végzendő műveleteket, 

melyek egyuttal reagálnak az utóbbi által elvégezhető müveletekre is. 

Egyben előirjuk az adott algoritmus szerinti oktatás befejezését is. 

Az eddig ismertetett fogalmak helyét az "oktatás" rendszerében igen jól 

szemlélteti az alábbi L.N.LANDA-tól származó elrendezés /86 : /1/: 
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oktatás 

f 
algoritmikus programm 	algoritmikus programra 
szerint folyó oktatás 	nélkül folyó oktatás 

1  

programmozott 	nem programmozott 
oktatás 	oktatás 

Jól látható erről a sémáról, hogy az algoritmikus programm szerint 

folyó oktatás fogalma általánosabb a programmozott oktatás fogalmá- 

nál és magában foglalja a tanár, vagy oktató—gépek által vezetett prog-

rammozott oktatást. 

Az elrendezés után közvetlen adódik az osztályozás problémája, s itt 

megállapíthatjuk, hogy célszerüségi okokból a didaktikai algoritmusok 

három nagy főcsoportba oszthatók: 

a./ Amelyekben a visszacsatolás hiányzik /ilyenek rendszerint azok a 

mintaóra—vázlatok, amelyek pontosan előirják, mit kell tennie az 

oktatás folyamán a tanárnak, de nem jelölik meg, mit kell tenniök 

a tanulóknak, és hogyan kell a tanárnak a tanulók megnyilatkozása-

ira reagálnia/. 

b./ Amelyekhez hozzátartozik az operativ visszacsatolás /lásd a kiber-

netikai részt!/, az oktató és a tanuló között /az utóbbi számára 

feltétlenül/. 

c./ Amelyek speciális didaktikai célok miatt késleltetett visszacsato-

lással rendelkeznek. 

Pedagógus olvasónk részére ezek a megállapitások nem ujak, ugyanis az 

a./ tipust óratervekben tudatosan alkalmazza, a b./ tipust pedig az i-

dő függvényeként, többnyire ösztönösen használja. A didaktikai irodalom 
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ismerői pedig mindkét tipussal /gyakrabban az a./—val/ lépten—nyomon 

találkoznak. Ebből kifolyólag természetes a kérdés felvetése: Ninek 

foglalkozunk akkor ezzel ilyen részletesen? Az előbbiek során már u-

taltunk erre, de itt egy ujabb aspektusból szeretnénk az előbbieket 

összefoglalni. 

Az a./ tipusú oktatási algoritmus fajták feldolgozása a hagyományos 

pedagógus—tanuló /ember—ember/ rendszerben feltétlenül elegendő volt, 

a b./ tipusú a "pedagógus—vénában" van! Az oktatógépekkel  /programmo-

zott munkalapok, programorozott tankönyvek, egyszerü mechanikájú okta-

tógépek, bonyolultabb audio—vizuális berendezéssel működő oktatógépek, 

és végül elektronikus számológépek, mint oktatógépek/ történő pktatás-

nál a programttozó—oktatógép—diák /ember—gép—ember/ rendszerben a b./ 

tipusú algoritmus is a müködés nélkülözhetetlen alapfeltétele. Ennek 

a hiánya az Iskola—televíziónál mutatkozik meg a legerősebben. 
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II. 

A DIDAKTIKAI FOLYAMATOK ALGORITMIKUS LEIRÁSÁNAK MÓDSZEREI ÉS A  LEG-

ÁLTALÁNOSABB DIDAKTIKAI ALGORITMUSOK. 
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A folyamatok, és ezen belül a különböző tevékenységi formák algorit-

mikus leirásának első, és legelterjedtebb módja a szóbeli lairás. Ezt 

a módszert az a./ tipusú algoritmusoknál /főleg a hagyományos oktatás 

keretein belül/ alkalmazzák. Hazánkban NAGY SÁNDOR /101:303/ ezzel 

kapcsolatban a következőket irja: "Az ismeretszerzés, mint az oktatá-

si folyamat egyik nagy átfogó fázisa, a me-oldási módok variációinak 

egész sorát mutatja, melyekből azonban bizonyos jellegek /"modellek"/ 

jól kiemelhetők". Ezek a "modellek" átirhatók a./ tipusú didaktikai 

algoritmusokká. NAGY SÁNDOR ezt követően hét didaktikai algoritmust 

/modellt/ mutat be. Ezekből itt néhányat az első algoritmikus folya-

matleirás módszere /"szóbeli utasitás"/ alapján fogunk tárgyalni: 

Témakör: fémek fizikai és kémiai tulajdonságai /Ált.isk.8.oszt./. A 

tárgyalás algoritmusa: 

1./ Célkitűzés. Egy adott fém fizikai és kémiai tulajdonságainak megis-

merése. 

2./ Fizikai tulajdonságok felsorolása. 

3./ Fizikai tulajdonságok elemzése. 

4./ A fizikai tulajdonságok felsoroltatása a tanulókkal. 

5./ A 2. és 3. összefoglalása. 

6./ Kémiai tulajdonságok felsorolása. 

7./ A kémiai tulajdonságokkal kapcsolatos kisérletek bemutatása. 

8./ A kémiai tulajdonságokkal kapcsolatos kisérletek elemzése. 

9./ A kémiai tulajdonságokkal kapcsolatos kisérletek elemzéséből levon- 

ható következtetések megszövegezése. 

10./A kémiai tulajdonságok felsoroltatása a tanulókkal. 

11./A kémiai tulajdonságokkal kapcsolatos kisérletek elemzéséből le-

vonható következtetések felsoroltatása a tanulókkal. 

12./A 6.-9. összefoglalása. 



-.17 .. 

13./ Annak megállapitása, hogy mire teszik alkalmassá az adott fémet 

fizikai és kémiai tulajdonságai. 

X 

Témakör: egy nagyobb költemény tárgyalásának megkezdése /gimn.I.o/. 

1./ Ugyanennek a szerzőnek az ált.iskola 8.osztályában ismertetett ki- 

sebb költeményei alapján az "emléket" felidéztetjük a tanulókkal. 

2./ A megtárgyalásra kerülő költemény "Bevezető" cimü részének a bemu- 

tatása. 

3./ A "Bevezető" részletekben történő elemzése. 

4./ Az egyes részek lényeges összefüggéseinek kiemelése. 

5./ Az elemzés feldolgoztatása a tanulókkal. 

6./ A lényeges részek kiemelésének elvégeztetése a tanulókkal. 

7./ A "Bevezető" rész formai elemzése. 

8./ Általánositások a tanulók bevonásával. 

9./ A költemény második részének bemutatása. 

10./Összefoglalás és feladatként annak megtárgyalása, hogy a most be-

mutatott második részt a korábbi elemzések szempontjaira támasz-

kodva, otthon ki-ki saját maga végezze /el. 

x 

Témakör: a hajszálcsövesség tárgyalása /falusi ált.isk.8.oszt./. 

1./ A talajnedvesség megőrzésére irányuló tavaszi mezőgazdasági munkák 

idején szerzett megfigyelési adatok gyűjtése a tanulóktól. 

2./ A probléma felvetése a tanulók felé: vajjon miért szükségesek ezek 

a műveletek? 

3./ A tanulók hipotéziseinek összegyüjtése. 

4./ A hajszálcsövességgel kapcsolatos egyszerű kisérletek elvégzése. 
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5./ A kísérletek eredményeinek elemzése. 

6./ Az elemzés feldolgoztatása a tanu1ó':'7.-.1. 

7./ A 3. és 5. egybevetése. 

8./ A tanultak gyakorlati alkalmazására tvrténő utalás során vissza-

térés 1.—re. 

Ugyanezt a témakört NAGY SÁNDOR más helyen az alábbi algoritmus sze-

rint mutatja be: 

1.-2.-3./ azonos az előbbivel. 

4./ Első kisérlet. 

5./ Elemzés. 

6./ Elsődleges általánositás. 

7./ Rögzités. 

8./ Alkalmazás. 

g./ Második kisérlet. 

10./Elemzés. 

11./Elsődleges általánositás. 

12./Rögzités. 

13./Alkalmazás. 

14./Harmadik kisérlet. 

15./Elemzés. 

16./Elsődleges általánositás. 

17./Rögzités. 

18./Alkalmazás. 

19./Befejező általánositás. 

20./Összefoglalás /összesitő szóbeli rögzités/. 

Az egy és ugyanazon témakörön belül alkalmazható algoritmusok differen- 
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ciáltsá&ára mutat, hogy NAGY SÁNDOR ugyanitt a hajszálcsövesség tárgya-

lására még három másik algoritmust is bemutat. 

A második változat: 

1.-2.-3./ azonos az előbbivel. 

4./ Első kisérlet. 

5./ Elemzés. 

6./ Második kisérlet. 

7./ Elemzés. 

8./ Harmadik kisérlet. 

9./ Elemzés. 

10./Általánositás. 

11./Högzités. 

12./Alkalmazás. 

A harmadik változat: 

1.-2.-3./ azonos az előbbivel. 

4./ Első kisérlet. 

5./ Elemzés. 

5./ Elsődleges általánositás. 

7./ Második kisérlet. 

8./ Elemzés. 

9./ Elsődleges általánositás. 

10./Harmadik kisérlet. 

11./Elemzés. 

12./Elsődleges általánositás. 

13./Összefoglaló általánositás. 

14./A megértés ellenőrzése, és rögzités. 

15./Alkalmazás. 
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A negyedik változat: 

1.-2.-3./ azonos az előbbivel. 

4./ Első kisérlet. 

5./ Elemzés. 

6./ Elsődleges általánositás. 

7./ Rögzités. 

8./ Második kisérlet. 

9./ Elemzés. 

10./Elsődleges általánositás. 

11./Rögzités. 

12./Harmadik kisérlet. 

13./Elemzés. 

14./Elsődleges általánositás. 

15./Rögzités. 

16./Összefoglaló általánositás. 

17./Alkalmazás. 

E négy változat a fő mozzanatok egymáshoz való viszonyának, elhelyez—

kelésének, kölcsönös kapcsolatának "ábrázolása", /Algoritmusa — kieme-

lés tőlem!/,Valamennyi változat ugyanannak az anyagrész oktatási fo-

lyamatának a "szóródásai". A II.változat viszonylag a legegyszeribb, 

a III.változatnál a tulajdonképpeni általánositáshoz három egymáshoz 

kapcsolódó indukció utján jutnak el. A IV.válcozatnál a III.—tól csak 

a "szakaszos rögzitésben" tér el. Az I.változatban a "szakaszos rögzi- 

tés" mellett a "szakaszos alkalmazás" is szei•epel. Összefoglalva a négy 

változat eklatáns példája az egy és ugyanazon anyagrészt feldolgozó 

didaktikai algoritmusok sokféleségének. 

E tudományág kezdeti stádiumához mérten a didaktikai algoritmusok fel- 
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dolgozásában teljességre törekedett G. MEYER /9S :96-156/. A korszerü 

feldolgozást, mely strukturális differenciáltsága alapján a didaktika 

igen tekintélyes területét átfogja, az alábbi részletezésben ismerte-

tem. 

I. Az analitikus—szintetikus módszer algoritmusa: 

1./ Tekintsd mindenekelőtt az egészet, és törekedj a teljes átte-

kintésre! 

2./ Bontsd részeire és elemeire! 

3./ Vedd az elemek funkcióit, mint e gyedi objektumokat az egészben! 

4./ Irányitsd figyelmedet a legfontosabb részekre! 

5./ Vizsgáld a lényeges részek kölcsönös kapcsolatait és  hatásait! 

6./ Épitsd ismét fel az egészet! 

7./ Hasonlitsd össze hasonló esetekkel és keresd meg a legrövidebb 

formát az egész megragadásához! 

8./ Használd fel az uj információkat a gyakorlatban! 

II. Az induktiv módszer algoritmusa. /Galilei mutatott rá először, ho-

gyan juthatunk el az egyes esetektől a törvényig, vagyis addig, ho gy  

általános érvényü kijelentést tehessünk a természetről. Ő mutatta meg, 

hogy a természetnek kisérletek segitségével olyan kérdéseket tehetünk 

fel, amelyekre maga a természet ad választ./ 

1./ Keresd az egyes eseteket, az egyes konkrét jelenségeket és ana-

lizáld őket! 

2./ Kutasd fel az egyes  kapcsolatokat,  a befolyásoló tényezőket! 

3./ Mindenekelőtt a minőségi, majd a mennyiségi egyedi viszonyokat 

figyeld meg! 

4./ Rakd össze az egyedi viszonyokat! /Esetleg táblázatos formába 

rendezve./ 

5,/ Fogd össze ás általánositsd az egyedi viszonyokat egy törvény- 

ben, egy szabályban, vagy egy formulában! 
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6./ Vizsgáld meg eredményeid helyességét példákon! Kisérletek segitsé-

gével és végül a gyakorlatban! 

III. A deduktiv módszer algorítmusa: 

1./ Indulj ki egy általános törvényből, vagy egy általános érvényű té-

telből! 

2./ Állíts fel eg y  uj itéletet! 

3./ Keresd meg a szükséges feltételeket és sorakoztasd fel az egyes ité-

leteket, definiciókat ős bizonyitásokatl 

4./ Általánosits, ős fogd össze az eddigieket! 

5./ Vond le a deduktiv végkövetkeztetést! Erősitsd meg a kiindulási el-

veket, vagy bizonyitsd be helytelenségieket! 

6./ Vizsgáld meg a deduktiv uton kapott végkövetkeztetéseid helyessé-

gét példákon, kisérletek segitségével, és végül a gyakorlatban! 

IV. A történeti kifejlődés algoritmusa: 

1./ Tekintsd a legrégibb, legeredetibb kifejlődést! 

2./ Taglald a közbeeső fejlődési szakaszokat! Mutasd meg a fejlődés 

fő irányvonalait! 

3./ Tekintsd a végső szakaszt, vagy a fejlődés további fokozatait /a 

perspektivákat/! 

4./ Értékeld az egész kifejlődési szakaszt és vond le belőle a tanulsá-

bot! 

V. A logikai kifejlődés algoritmusa: 

1./ Magyarázd meg a kiindulási helyzetet! Ábrázold az alapvető elemeket 

és jelenségeket! 

2./ Vonj be uj tényezőket! Mutass be más véleményeket, ábrázolásokat 

és összefüggéseket is, és analizáld ezeket! 
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3./ Az analizisből és az összefüggések átgondolásából vonj le vég-

következtetéseket! 

4./ Vonj be uj tényezőket és végkövetkeztetéseket mindaddig, amig a 

kivánt célt el nem éred! 

VI. Az analógiás módszer algoritiusa: 

1./ Ird le az ujat a korábbiaknak megfelelő analógia alapján! 

2./ Mutass rá az azonosságokra, hasonlóságokra, de az eltérésekre is! 

3./ Juss el igy uj ismeretekhez, amelyeket más uton és a gyakorlatban 

is ellenőrizz! 

VII. A modell—módszer algoritmusa: 

1./ Tervezd meg a tárgy, vagy jelenség leegyszerüsitett nyers modell-

jét! 

2./ Ismerd fel a lényegest, az alapszerkezetet és az alapfunkciókat 

a "modell vázában"! 

3./ Bővitsd tovább és javitsd a modell bemutatását, mutasd be több ol-

dalról és nézőpontból! 

4./ Ezt a bővitést addig csináld, amig a valóságot kellően meg nem kö— 

zelitetted! 

VIII. A "fekete doboz" módszerének és a "trial and error" módszernek 

az algoritmusa: 

1./ Figyeld meg a  tárgyat  és a jelenséget pontosan! Ismerkedj meg ve-

le behatóan! 

2./ Kutass, a "bemenet", kisérlet és az azt követő "kijövet", vagy a 

vizsgálandó tárgy tulajionságainak és magatartásának reakciói se— 

Bitségével! 

3./ Javitsd a "bemeneteket" és tedd megfontolás tárgyává az előző ki- 
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sérletek pozitiv vagy negativ tapasztalatait. 

4./ Menj fokozatosan előre a helyes uton, egészen a tudatos alkalmazá-

sig! 

IX. A problémamódszer algoritmusa: 

1./ Irányitó és magyarázó analizis. Analizáld a problémahelyzetet, ösz-

szetevőit és a közöttük lévő kapcsolatot! Formulázd meg a kulcskér-

dést, vagy próbáld meg legalább az értelmét, a vezérgondolatot fel-

fogni! 

2./ Keresés és próbálgatás! A megoldás céljából elevenitsd fel tapasz-

talataidat és meglévő ismereteidet! Használd a hasonlóságokat /ana— 

lógiákat/, hangsulyokat, az átalakitási lehetőségeket! Próbáld ki 

a már leegyszerüsitett és felkutatott vonatkozásokat, a legkülön-

bözőbb irányokban! Állits fel hipotéziseket! 

3./ A megoldás programmozása. Határozd meg a lebontandó programmot! 

Fontold meg a szakaszok sorrendjét, a megoldandó részproblémákat, 

valamint azt, hogy milyen segitséget kell itt igénybe venned! Az 

egyes problémákat próbáld analitikus—szintetikus uton megoldani. 

/Lásd az I. algoritmust — IX. kiegészitve I.—el = algoritmusok al-

goritmusa, — erről későbbiekben részletesen!/ 

4./ A problémák megoldása. Nehézségeknél, ellentmondásoknál fuss át az 

1.-3. utasitásokon és keress jobb feltételeket! Ha szükséges, ke- 

ress párhuzamos megoldásokat és ezek közül válaszd ki a legész-

szerűbbet! 

5./ Eredmények és kontroll. Indulj ki az eredményekből és vizsgáld meg, 

hogy a kulcs—kérdést megoldottad—e?! Ellenőrizd a megoldást a gya-

korlatban és a tapasztalatban! Egyszerüsitsd le a megoldás menetét 

és figyeld meg, hogy ez milyen kihatással van az eredményre! 
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A következő algoritmus már eklatáns példaként szolál az előbb "záró-

jelben" emlitett algoritmusok algoritmusa fogalom bemutatására és tisz-

tázására. Mint ahogy L.N.LANDA /A>:  34/ is megállapitotta, hogy ha bo-

nyolult, összetett müveleteket elemibb müveletekre /algoritmusokra/ 

kell bontanunk, abból a célból, hogy megadható legyen a bonyolult mü-

veletek végrehajtásának algoritmusa, akkor ezt az algoritmust az algo-

ritmusok algoritmusának, illetve egy magasabbfokú algoritmusnak tekint-

jük. Nevezzük a továbbiakban ezt G.MEYER /9 :116/ szerint "fő—algorit-

musnak" és a részalgoritmusokat pedig "al—algoritmusoknak". Ez az el-

járás szükség esetén tovább folytatható ujabb algoritmusok bontására. 

Ezek után a 

X. Az információnyerés algoritmusa: 

Fő-algoritmus: 

1./ Alkoss a tárgyakról és jelenségekről képet megfigyelés, irodalom 

tanulmányozás, előadások hallgatása, kérdések, és elgondolások a-

lapján! /Ez az algoritmusforma hozzárendelt al—algoritmusok nélkül 

nem mond sokat, — részletes értékelést lásd később az univerzális 

algoritmusoknál!/ 

2./ Keresd az információk értelmét és a lényeges dolgokat elkülönitve 

mutass rá az ujonnan feltünt fogalmakra, a kapcsolatokra, a kölcsö-

nös kapcsolatokra és összefüggésekre, és vond le a végső következ-

tetéseket! Itt az analitikus—szintetikus módszert is használhatod! 

Fordits különös figyelmet arra, hogy a lényegest megszabaditsd a 

lényegtelentől! Kutasd igy az egész lényeges jegyeit, strukturáját 

és funkcióit!!! Sorold be az ujat a meglévő ismeretrendszeredbe! 

1/1. Al—algoritmus = a megfigyelés algoritmusa: 

1./ Állitsd be magadat a világos, pontos megfigyelésre! 
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2./ 'é3zits olyan megfigyelési tervet, aely a részfeladato-

kat is átfogja! 

3./ Törekedj a lehető legnagyobb figyelemre! Megfigyeléseid 

eredményét fokozd aktiv tev5kenységgel is! 

1/2. Al—algoritmus = a megfelelő szakirodalom felkutatásának algo-

ritmusa: 

1./ Keresd az első támpontot az enciklopédiák, lexikonok és 

dokumentációk területén! 

2./ Az első információk után keress ujabb irodalmi forráso-

kat! 

3.1 Nézd át a könyvtárak recenzió— és szerzők jegyzékét! 

4./ Kérj a könyvtárakban felvilágositást! 

1/3. A1—algoritmus = A szakkönyv áttanulmányozásának algoritmusa: 

1./ Szerezz gyors áttekintést a tartalomjegyzék áttanulmányo-

zása révén! 

2./ Tégy fel kérdéseket minden egyes fejezetnél! Rekapitu-

láld a már meglévő ismereteidet! 

3./ Olvasd át és dolgozd fel a könyvet! Jegyzetelj és alkal-

mazz egyéni röviditéseket ős jeleket! 

4./ Az egyes fejezeteket röviden foglald ös s ze! 

5./ Az egyes fejezetek összefoglalásait süritve készits egy 

átfogó összefoglalást! Kerüld a félreérthetőséget! 

1/4. Al—algoritmus = a vázlatkészités algoritmusa: 

1./ Add meg az információk lényeges gondolatmenetét! 

2./ Elsősorban szigorúan a tényekhez /fogalmak, törvények, 

struktura, funkció/ txxxx tartsd magad! 
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3./ 2ögzitsd rövid mondatokban a lényeges gondolatokat és 

gondolatmeneteket! 

4./ Füzd hozzá saját gondolataidat, mint utalásokat más in- 

formációforrásokra! 

1/5. Al-algoritmus = az előadás-hallgatás algoritmusa: 

1./ Gondold át azokat, amiket az előadás témájából már is-

mersz! 

2./ Koncentráltan figyelj és kövesd az előadó gondolatait! 

3./ Jegyezd le a lényeges dolgokat vezérszavakban! Tartsd be 

az előadás beosztását! 

4.1 A főproblémát megalapozva kapcsolatokkal és végkövetkez-

tetésekkel együtt kisérd figyelemmel! 

5./ Készits egyszerű vázlatokat, ábrákat, diákat, stb./ 

b./ A későbbiek során a lehetőségekhez képest egészítsd ki 

jegyzeteidet! 

x 

2/l. Al-algoritmus = a kisérletezés algoritmusa: 

1./ Határozd meg a kisérlet célját! 

2./ Indulj ki egy elképzelt kisérletből és úgy tervezd meg a 

kisérlet felépitését! Ügyelj a mérések pontosságára! 

3./ Vezesd le a kisérletet! Szerezz áttekintést a ható ténye- 

zők nagysá tráról és variációs lehetőségeiről! 

4./ Diszkutáló az eredményeket és hasonlitsd össze más kisér-

letekkel! Általánositsd az eredményeket! 

5./ Add meg a leegyszerüsités lehetőségeit! 

2/2. Al-algoritmus = a fogalomképzés algoritmusa: 

1./ Gyüjtsd össze tapasztalataidat és elképzeléseidet! 
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2./ Elemezz, hasonlits össze és fedj fel azonosságokat és különb-

ségeket! 

3./ Emeld ki a lényeges /használati, strukturális és funkcionális/ 

ismertetőjegyeket! 

4./ Alakits ki a lényeges jegyekből tömör, szakszerű fogalom—meg-

határozást! 

5./ Sorold be az uj fogalmat egy fogalom—rendszerbe! Keresd meg a 

főfogalmat! 

2/3,' A következtetés al—algoritmusa. 

1./ Szemléid a jelenségeket mindig uj összefüggésekben! 

2./ Fogalmazd őket át és csatolj hozzájuk "kis" előfeltevéseket. Á1-

lits fel uj következményeket! 

3./ Képezz ezekhez közbenső következtetéseket ős bizonyitó tétele-

ket! 

4./ Bizonyitsd be a felállitott következményeket, vagy vezesd őket 

ad absurdum! 

5./ Végezd el az összefoglaló és lezáró következtetést! 

2/4. Az összefüggések megragadásának al—algoritmusa. 

1./ Keress egy jelenségben okozati vagy funkcionális összefüggése-

ket. 

2./ A legkevésbbé elágazó összefüggésekből kiindulva emeld ki a 

lényeges és lényegtelen kapcsolatokkal bírókat. 

3./ Különitsd el meghatározó mozzangtaikat! 

4./ Foglald össze a legfőbb, leglényegesebb összefüggéseket a jelen-

ség meghatározó kapcsolat együttesévé, törvényszerűségévé. 

KI. Az információnyerés algoritmusa. 

1./ Válaszd ki a rendszerezés szempontjait! 
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2./ Keresd meg a tárgyak és jelenségek ismertetőjegyeit, összefüggéseit, 

és emeld ki őket! 

3./ Gondold meg, hogy milyen formában lehetne ezeket szemléletesen, átte-

kinthetően rendezni: táblázatosan, grafikusan, sematikusan, szimboli-

kusan! 

4./ Próbálj ki több ábrázolási formát és válaszd a legelőnyösebbet! 

XII. Általános besorolási és felismerési algoritmus. 

1./Keresd meg a lebontó és felépitő módszerrel /analizis—szintézis/ egy 

tárgy lényeges jegyeit és kapcsolatait, különösen strukturáit és funk-

cióit. Emeld ki a jellemző szimptómákat, a struktura—, funkció— vagy 

viselkedés—együttest! 

2./ Hasonlitsd össze ezeket a lényeges ismertetőjegyeket ama besorolási 

rendszer osztályának ismertető—jegyeivel, amelybe a vizsgált tárgyat 

be kellene sorolni! 

3./ Hasonlitsd össze a tárgynak, vagy jelenségnek az emlékezetedben tárolt 

belső modelljét a valóságos tárggyal! 

4./ Állapitsd meg az emlékképpel való megegyezést, vagy meg nem egyezést. 

XIII. Probléma—megoldás algoritmusa. 

1./ A probléma tisztázása. 

2.1 A segédeszközök összeállitása. 

3./ Keresés és próbálgatás. 

4./ Egy megoldási terv felállitása. 

5./ A megoldás végrehajtása. 

6./ A megoldási nehézségek megállapitása. 

7./ Uj kisérlet a felismert nehézségek tekintetbevételével. 

8./ Ellenőrzés és javitás. 

9./ Gyakorlási. 
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10./ Alkalmazás. 

XIV. A feladatmegoldás algoritmusa. 

1./ A feladat tisztázó s -. Át iekintés a meglévő /adott/ és keresett dolgok-

ról. 

2./ A segédeszközök összeállitása. Saját tudásunk számbavétele, a gyakorlat 

megkérdezése, kézikönyvek, lexikonok, különleges szakművek segítségül 

vétele. A keresés és próbálgatás sejtéseken és hipotéziseken át vezet 

a megoldás utjára. 

3./ A megoldási tervnek, vagy a megoldás menetének megállapitása. Megálla-

pitjuk az ut szakaszait. Ismert eljárásokat vairálunk, átalakitunk, a 

feladatokhoz alkalmazunk. E gy  jól elkészitett vázlat /amely az ábrázo-

lás és feliratozás tekintetében világos/ döntően befolyásolja a tanuló 

gondolkodási folyamatát. 

4./ A megoldás keresztülvitele. A sikerélmények pozitivan hatnak a megoldás-

hoz vezető további erőfeszitésekre. 

5./ Ellenőrzés és javitás. Számot adunk arról, hogy mi sikerült és mi nem. 

Az itt felsorolt öt lépés messzemenően egyezik a probléma-módszer algorit-

musával is. A feladatok megoldásánál tehát  mindig  is egy általános algorit-

must alkalmaztunk. 

XV. Az elméleti ismeretek gyakorlatba való átvitelének és alkalmazásának 

algoritmusa. 

l./ Emeld ki azokat a szempontokat, amelyeket a gyakorlatban meg kell való-

sitani. 

2./ Hámozd ki a helyzet elvileg, elméletileg lényeges mozzanatait. 

3./ Tervezd meg a megvalósitandó dolog egyszerü gondolati modelljét, amelyet 

fokozatosan tökéletesitesz, és a gyakorlati felhasználáshoz alkalmazolt 

4./ Fontold meg, hogyan kell az elvégzendő munkát részleteiben lefolytatni, 
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milyen elméleti gyakorlatokat és törvényeket kell sorjában megvalósita-

ni. Eközben légy tekintettel az anyag tulajdonságaira, valamint a gya-

korlati tárgy strukturájára, funkciójára és rendeltetésére. Vizsgáld 

meg az előállitás legkedvezőbb formáját! 

;./ Végezz ujra meg ujra ellenőrzéseket az elméleti ismeretek átvitele és 

alkalmazása során! Hasonlitsd össze a tényleges és az előirt állapotot! 

N/A. A gyakorlattól az elmélethez vezető algoritmus. 

L./ Tekintsd át a fennálló helyzetet! 

?./ Emeld ki a tárgy, vagy a jelenség lényegét, strukturáját, funkcióját! 

3./ Rendeld hozzá ezt a lényeget egy osztályhoz, egy együtteshez! 

+./ Idézd fel a megfelelő elméleti alapot! 

j./ Hasonlitsd és rendeld hozzá az elméleti ismereteket a gyakorlati ese- 

ményhez. 

XVI. Kutatási algoritmus. 

1./ Állits fel sejtéseket, hipotéziseket, hogy milyen lehetne az uj dolog! 

Rögzitsd ezeket a vázlatokon rövid feljegyzésekben. 

2./ Gyűjts anyagot, hogy feltevésedet pontosabbá tehesd. Gyűjts: tényanyagot, 

megfigyeléseket, kisérleti eredményelvet, irodalmi tanulmányokat, kérde— 

z4ködések eredményeit, saját— és idegen tapasztalatokat, film—, fény-

kép— és hangszalagfelvételeket! 

3./ Tisztázd ós alakitsd át feltevésedet ujra meg ujra! Eközben alkalmazd 

az analizist és a szintézist, a sokféle kapcsolatok teljességét, a gon-

dolatok, módszerek és dolgok variálását, a gondolati kisérleteket, az 

analógiákat, hasonló megoldási eljárásokkal ás változó összefüggésekkel! 

4./ Valósitsd meg a kiérlelt feltevést. Számits, vázolj, készits modelleket, 

vagy rajzokat, dolgozd ki a részleteket. 



-32- 

CVII. Algoritmusok a gyakorlati munkához.  

ryakorlati 

aunkák.  

Házi fel- 

adatok. 

Szóbeli  

előadások.  

Irásbeli  

előadások.  

L./ Az elvégzen- A feladat tisz- 

iő munka tisztá- tázása. 

,ása. 

Az előadás témá-

jának tisztázása,  

megragadása.  

A probléma-fel-

vetés tisztázá-

sa.  

2./ A műveletek 

tézise a teljes 

Folyamat szem  
alőtt tartása. 

Egyes cselekvé- 

osztás, a cél 

szem előtt tar-

tása. 

Durva felosztás  

szakaszokra.  

Durva felosztás,  

a részfeladatok  

mérlegelése.  

inalizise és szin- sekre való  fel- 

3./ A munka me g-

tervezése, segéd-  
eszközök, időter-

vezés, munkamód-

szerek. 

Tervezés, szaka-

szokra osztás, 

segédeszközök,  

munkamódszer, ha-

táridők az egyes  

részekre vonat- 

kozólag. 

Tervezés, szaka-

szokra osztás,  

segédeszközök,  

tények összegyüj-

tése, saját és  

idegen gondola-

tok.  

Tervezés, szaka-

szokra osztás,  

segédeszközök,  

tények gyüjtése,  

saját és idegen  

gondolatok. /A  

cédulák egyik ol-

dalára irjunk  

csak!/  

+./ Kivitelezés,  
3z utánzó próbál-

.Tatástól a biz-

tos tudásig. Mun-

kaellenőrzés az 

egyes szakaszok-

ban, vagy közben-

ső állapotokban. 

Kivitelezés, vé-

gig kell menni az  

egyes műveleteken.  

Megfogalmazás t  

finom tagolás,  

világosan, átte-

kinthetően, logi-

kusan. Vezérsza-

vak megadása,  ta-

láló példák, ké- 

pek, vázlatok,stb.  

vé~izl rövid ösz-  
szefotilalás.  

Megfogalmazás,  

finoman tagolás,  

rövid, világos  

mondatok, találó  

példák, képek,  

vázlatok, a szö-

veg leirása, egy-

szerű kifejezésmód,  

a levezetést  utol-
jára irjuk meg.  



Ellenőrzés. Ez 

magában foglal-

ja a fejtegetés 

és a téma össze- 

Ellenőrzés. El- 

végzendő a tár- 

gyalás és a té- 

ma összehasonli- 

hasonlitását, va- tása. 

lamint a magya- 

rázó példákat. 
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Gyakorlati 

munkák. 

Házi fel-

adatok. 

Szóbeli 

előadások. 

Irásbeli 

előadások. 

5./ Az elvégzett 	Ellenőrzés, a 

munkák ellenőrzé- 	tényleges és e- 

se, a tényleges 	lőirt állapot ál- 

és az előirt ál- 	landó összehason- 

lapot összehason- 	litása, valamint 

litása, a nehézsé-- 	végső ellenőrzés. 

gek felfedése. 

6./ A munka kija-

vitása, helyesbí-

tés, kiegészités, 

a munka szervezé-

si és technológiai 

megkönnyitése. 

Javitás. Kiegé- 	Javitás. Átte - 	Javit ás. Felépi- 

szités vázlatok- leinthető tago- 	tés, tagolás, tar- 

kal, rajzokkal, 	lás. 	taloni, gazdagság, 

külalak. 	 forma, a stilus 

gördülékenysége. 

G.  MEYER:  Didaktikai algoritmusainak áttekintő összefoglalása. 

Algoritmusok a tanitási módszerek számára.  

I. Az analitikus-szintetikus módszer. 

Az algoritmus e gy  tárgy, vagy jelenség teljes áttekintésétől a lebontó mód-

szer segitségével a lényeg kiemeléséhez, és végül a felépitő módszer segitsé-

gével az egésznek a fogalmához vezet. 

II.-III. Az induktiv-deduktiv módszer.  

Az induktiv módszer algoritmusa egyes esetektől és azok kapcsolataitól az 

induktiv következtetési eljárás során történő általánositáson keresztül ve-

zet egy általános törvényhez, egy szabályhoz. A deduktiv módszer algoritmu- 

sa megmutatja  az  utat az általános törvénytől az egyes itéleteken és bizonyi-

tó tételeken keresztül a deduktiv következtetéshez ás az uj kijelentéshez, 
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a speciális törvényhez. 

IV. A genetikus módszer. 

A történeti-kifejlesztő szemlélet esetében az algoritmus az eredeti, leg- 

régibb fejlődési fokoktól a közbenső fejlődésen keresztül vezet a végső ál-

lapothoz, vagy a perspektivához. 

V. A logikai-szisztematikus kifejlesztő eljárás alaphelyzetekből indul ki, 

ehhez további tényeket és következtetéseket füz, és igy éri el a kivánt vég-

célt. 

VI. Az analógia módszere. 

Az algoritmus itt a korábbi, már ismert dolgok vizsgálatából vezet uj felis-

merésekhez. A gyakorlatban ezeket az uj felismeréseket feltétlenül felül kell 

vizsgálni. 

VII. A modell-módszer. 

Egy durva, leegyszerüsitett modellből indulunk ki, amelyen a lényegeset, az 

alapvetőt felismerjük, egyre ujabb oldalakat adunk hozzá és igy az algorit-

musnak megfelelően végül a valóság egyre jobb mejközelitéséhez jutunk el. 

VIII. A fekete doboz módszere és a próba és tévedés módszere.  

Az algoritmus a bevitel állandó javitása, vagy irányitása utján egyre gól-

zottabb eredményekhez vagy reakciókhoz vezet. Közben egy bizonyos straté-

gia fejlődik ki. 

IX. A probléma-módszer. 

Az algoritmus szerint itt a probléma kulcskérdéséből kell kiindulni ós ke-

reséssel és próbálgatással kell a megoldás utját megtalálni. Eközben meg kell 

állapitani a segédeszközöket és az eljárási szakaszokat, és végül meg kell 
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birkózni a problémával. A munka közben végzett és a végső ellenőrzés teszi 

lehetővé, hogy az elért eredményeket a kitűzött céllal összehasonlitsuk és 

megfelelő irányitással helyesbitsük a megkezdett utat. 

X. Az információnyerés algoritmusai. 

1/1. A megfigyelés al-algoritmusa. Ez kimutatja, hogy világos feladatkitii-

zésből és megfigyelési tervból kell kiindulni. A sokoldalu kapcsolatok 

és a tárgy kiemelése, valamint az előzetes ismeretek hatékony megfigye-

léséhez vezetnek. 

1/2. Az irodalomkeresés al-algoritmusai. Enciklopédiákból, lexikonokból és 

dokumentációkból kiindulva tovább keresünk a könyvtárak vezérszó- és 

szerző-jegyzékeiben. A szakkönyvek minden irodalmi adata további foráée-

sokat tár fel. 

1/3. A könyvtanulmányozás al-algoritmusa. Eszerint először áttekintést kell 

szereznünk /tartalomjegyzék/. Minden fejezethez kérdéseket teszünk fel. 

Ezek elősegítik az olvasást és a feldolgozást. Jegyzetek, valamint az 

egyes fejezetek ős az egész mü összefoglalása tömöritik az olvasotta-

kat. 

1/4. A kivonatkészités al-algoritmusa. Ez kimondja, hogy lényeges gondolat- 

meneteket, i fonle abb tér_ -e1-et, gondolati összefüggőseket kell rög-

ziteni és ehhez saját gondolatainkat is fel kell jegyezni. 

1/5. Az előadás-hallgatás al-algoritmusa. Az előadás tárgyáról már meglévő 

tudás előzetes átgondolásából kiindulva vezet az átgondolt hallgatás 

a lényeg, a központi problémák és a tagolás feljegyzéséhez. Rögziteni 

kell az indokolásokat, a vonatkozásokat, az összefüggéseket, a tovább-

fejlesztéseket és az alkalmazásokat is. Egyszerü vázlatok egészithetik 

ki a feljegyzést. A jegyzeteket az előadás után minél előbb ki kell 

egésziteni. 

2/1. A kisérletezés al-algoritmusa. Ez az előkészitéstől, a kisérlet céljá-

nak kifejtésétől, az eljárás módszerének megállapitásán ős a végrehaj- 
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táson keresztül vezet az eredményhez. Az eredmény megvitatása általá-

nositáshoz és egyszerüsitéshez vezet. 

2/2. A fogalomalkotás al—algoritmusa. Ez az élettapasztalatokból, vagy kor-

látozott, de kielégitő mennyiségű tárgyból és folyam  tból indul ki, és 

az elemzésen, az összehasonlitáson, az absztrakción keresztül vezet a 

lényeges ismertetőjegyekhez és a fogalom meghatározásához. 

2/3. A következtetés al—algoritmusa. Analizis és szintézis által a tárgya-

kat ős folyamatokat egyre ujabb összefüggésekben vizsgáljuk. Kis elő-

feltevések hozzáadásával vagy bizonyitások és következtetések segitsé-

gével uj tételeket lehet igazolni, vagy ad absurdum vezetni. 

2/4. Az összefüggések megragadásának, al—algoritmusa. Itt is szerepel az ana-

lízis ős a szintézis. Ezek segitenek kapcsolatokat, összefüggéseket 

felderiteni. Differenciálással emeljük ki a lényeges összefüggéseket, 

ős a meghatározó mozzanatokat és összefoglalás, valamint általánositás 

segitségével találjuk meg az alapjukat képező törvényt. 

Az információfeldolgozás algoritmusai. 

XI. A rendszerezés algoritmusa.  

Ez egy rendszerezési szemponttól a megfelelő ismertetőjegyek és összefüggé-

sek megkeresésén át a szemléletes, áttekinthető elrendezéshez vezet. 

XII. A besorolás és felismerés algoritmusa.  

Az analitikus—szintetikus eljárással kiemeljük a struktura vagy a funkció 

jellemző jegyeit ős összehasonlitjuk őket a tárgynak, vagy a jelenségnek 

emlékezetünkben rögzitett belső modelljével. Az osztályozásnál is hasonló-

an járunk el és összehasonlitásokat végzünk az oszt:ly, a nem és a faj je-

gyeivel. Számitás, vagy grafikus ábrázolás támasztja alá a speciális felis-

merési algoritmusok felépitését. 
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z algoritmusok és az információ alkalmazása.  

:III. A problémamegoldás algoritmusa.  

már a probléma—módszernél megtárgyaltuk. 

A feladatmegoldás algoritmusa. 

L feladatnak, az adott és keresett vonatkozásoknak a tisztázásából kiindul—

ra jutunk el a segédeszközök összeállitásához és a megoldási tervhez. Ezt 

cöveti a végrehajtás, valamint az ellenőrzés és javitás. 

CIV. Az elméleti ismeretek gyakorlatba való átvitelének és alkalmazásának  

algoritmusa.  

A helyzet tisztázása és elemzése után az elméletet át kell vinni a gyakorlat'+ 

ba. Ez azt jelenti, hogy egy gondolati modelltől haso itás, konkretizálás ut-

ján eljutunk a gyakorlat tárgyához. Az ellenőrzés az előirt és a tényleges 

állapotot hasonlitja össze. 

%V. Az elmélet egy gyakorlati tárgyból való kihámozásának. algoritmusa.  

A fennálló helyzet tisztázása és analitikus—szintetikus vizsgálata utján ki 

kell emelni a lényeget. Az absztrakció és az elméleti alapokhoz történő hoz—

zárendelés vezet a végcélhoz. 

XVI. A kutatási algoritmusa 

Ez arra utal, hogy szükség van a feladat világos kitűzésére. Ezt követi az 

anyaggyüjtés, valamint a koncepció tisztázása és az eszme kimunkálása, végül 

a kikeresés és a megvalósitás. 

XVII. Az ismételten végrehajtandó munkák algoritmusa.  

A gyakorlati tevékenységek algoritmusa magában foglalja a gyakorlati munká-

kat, a házifeladatokat, a szóbeli és irásbeli előadásokat. Az alapot az el-

végzendő munka világos elképzelése alkotja. Analizis és szintézis révén kap- 
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juk meg az  egyes  műveleteket, amelyeket egymás után kell sorakoztatnunk. A  

folyamatos munkaellenőrzés, valamint a végső ellenőrzés vezet a munka kija-

vitásához. 

AlgoritmusIAMMOW formájrí.amr.  

Az  eddig  ismertetett a./ tipusu didaktikai algoritmusok korántsem merítették 

ki a felsorolás lehetőségeit. célunk nem is a teljességre való törekvés volt, 

mindössze a legváltozatosabb példákkal akartuk bemutatni ennek a tipusnak a 

legeklatánsabb egyedeit. A formában és témában egyaránt differenciált tipu-

sok megmutatták, hogy itt szó sincs az oktatási folyamat formalizmusba siklá- 

sának a veszélyéről, mindössze a didaktikai folyamat kimeri -chet•elen tar .omá- 

nyán belül a már ismert azonos elemek kiemeléséről és absztrakciójáról azzal  

a céllal, hogy a konkrét alkalmazás minél szélesebb körben biztositható le— 

Tyen. ~  

Felvetődhet a kérdés, hogy vajjon algoritmus—szerű didaktikai szabályok elő-

fordulásai csak a jelenkor termékei—e? részletes didaktika—történeti elemzés  

nélkül me gállapithatjuk, hogy már Comenius: "Didactica magna" magyar fordi-

tásában /1't :120/ a következőket olvashatjuk: "Miután a tanitó valamely tan-

órán a tananyagot röviden előadta, a szavak  jelentését  világosan megérttette, 

s a dolog használatát nyilván megmutatta, felszólitja a tanitványok egyikét, 

hogy a tanitó által mondottakat ugyanazon rendben /mintha a többiek tanitó-

ja lenne/ ismételje, a szabályokat ugyanazon szavakkal világositsa, s azok 

alkalmazását ugyanolyan példák által mutassa be, ha valamiben hibázik, ki-

igazitandó. Majd másikat szólit a tanitó, s ez is azt cselekszi a többiek 

odafigyelése közben. Aztán harmadikat, negyediket, va gy  ahány szüksé'es, hogy 

kitünjék, hogy már mind helyesen megértették, s felujitani, tanitani tudják..." 

Igy a fenti kérdés megválaszolása igen egyszerű, hisz Comenius eljut a már 

fejlettebb b./ tipusu didaktikai algoritmusok szóbeli leirásához. /A formá- 

lis elemek cimü részben ujra tárgyaljuk./ 
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Az eddigiekben következetesen didaktikai algoritmusokról beszéltünk. A jövő-

ben ezen belül meg kell különböztetnünk az oktatás algoritmusának és az algo-

ritmus oktatásának a fogalmát. /ó(,: 22/ Az oktatás algoritmusai a tanuló irá-

nyitására szolgáló programmok, amelyekben az oktató müveletei az operátorok-

nak, a tanuló müveleteinek eredményei pedig a logikai feltételeknek a szere-

pét töltik be /fogalmak tisztázása a későbbiek során/. Az oktatás algoritmu- 

sa tehát utmutatást ad az oktatónak, hogy a tanuló különböző müveleteitől 

függően milyen müveleteket kell végeznie. Az algoritmus oktatása viszont o- 

lyan programra oktatása, amely utmutatást ad a tanulónak, hogy milyen müvele- 

tek végzendők el az adott müveleti objektumokkal, a különböző müveleti ered- 

mények függvényeként. /L.N.LANDA szerint ezek két tipusra bonthatók, ugymint: 

felismerési algoritmusokra /XII./ ós megoldási algoritmusokra /PITT././ 

E két fogalomnak ilyen merev elválasztása helytelen. Nem vonható a kettő kö-

zött olyan éles határvonal, amellyel a diszjunkt /közös elemmel nem rendelke-

ző/ fogalmi halmazokat /egyértelmüen meghatározott dolgok összessége: F.M. 

REZA /RI0: 33/,/ egymástól elválaszthatjuk. Ez a tanári tevékenységnek és a 

tanulói  tevékenységnek merev elválasztásához vezetne. A két algoritmus—tipus 

ábrázolása közös elemü halmazokkal oldható meg: 

Oktatás al-

goritmusa 

Megtanulandó 

algoritmus 

Csak a tanári tevé— 	Csak a tanuló által elsa— 

kenységet irja le. 	játitandó tevékenységre utal. 

Mind  a két tevékenységre egyaránt jellemző. 
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Beszélhetünk még /konstruktiv és strukturális szinten/ az oktató program--

mok készitésének algoritmusáról  /RULEG—FLOW—rendszer; H.FRANK, H.STACHOVIAK, 

— a IV. és V.fejezetben/, a Tantervek és az oktatási folyamat megtervezésének  

algoritmusa /I.B.MORGUNOV — a IV.fejezetben/. 

Esen kivül bevonjuk rendszerezésünkbe a :: oldalon ismertetett algoritmu-

sok algoritmusa fogalmat is, hogy összehasonlitási alapként szolgáljon az u.n. 

fél—algoritmus /H.FRANK /-S: 61/ fogalmának meghatározásánál. Amig az al-

goritmusok algoritmusa olyan szabatosan leirható eljárás, amelynek részmü-

veletei is külön—külön egy—egy szabatosan leirható eljárások, addig a fél—

algoritmus által azok a folyamatok irhatók le, amelyekben a szabatosan leir-

ható eljárás szabatosan le nem irható eljárásokkal keveredik /RULEG—FLOW—rend— 

szer, Bausteinmethode, MECHNERS—eljárás — a IV.fejezetben./. 

Az eddigi fogalmakat elrendezve az oktatás folyamatában, megállapithatjuk, 

hogy ha az oktatónak az algoritmus oktatására pontos előirás áll rendelkezé-

sére, akkor az algoritmus oktatásának algoritmusáról beszélünk. /Az oktatás 

algoritmusa és az algoritmus oktatása fogalmak egyesitéséből keletkezett a 

speciális algoritmusok algoritmusa./ Adódhat azonban egy másik eset, amikor 

nem rendelkezik az előbbi pontos előirással, hanem tapasztalataira és intui-

ciójára támaszkodva végzi az oktatást, esetleg az oktatás folyamán eszébe 

ötlő gondolatok és feltevések alapján változtat az oktatás menetén. Ebben az 

esetben az algoritmus oktatása nem didaktikai algoritmus szerint történik. 

Csak a teljesség kedvéért emlitjük meg, hogy nem algoritmikus folyamat okta-

tására is lehet didaktikai algoritmust szerkeszteni. Végül a leggyakoribb e-

set,  amikor nem algoritmikus folyamatot oktatnak didaktikai algoritmus nél-

kül. Természetesen ezek az esetek sokszor a jelenség és a lényeg összefüggé-

sében vizsgálandók, u.i. sok tanár, tanitó nemcsak tapasztalatai és intuició-

ja alapján, próbálgatások és keresések alapján tevékenykedik, hanem ha sza-

bad igy kifejeznünk, nem tudatosult algoritmusok alapján is /4G;102.o.30.j./ 
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azt jelenti, hogy a didaktikai feladatok általuk végrehajtott megoldása 

illandó és törvényszerü, tehát algoritmikus jellegű folyamat, viszont nem 

tudatositják ezeket a szabályokat. Tudományos és gyakorlati szempontból 

egyaránt nagyon értékes volna azoknak a nem tudatosult algoritmusoknak a 

relderitése, amelyek szerint a tapasztalt pedagógusok a didaktikai feladato-

irat megoldják. Tekintél yes részben épp ez lenne a pedagógiai tapasztalatok 

tudományos tanulmányozásának a feladata. Ezeknek a tapasztalatoknak nem 

egyszerü leirására, hanem algoritmikus leirására gondolunk, ugyanis csak 

ez tárja fel a pedagógus tevékenységének törvényszerüségeit. 

Az algoritmusok és a formalizmus.  

Az algoritmusok alkalmazása szellemi rutinmunkától való mentesitést jelent. 

Bizonyos ismétlődő folyamatokat formalizálnak. Ezáltal sok feladatot köny-

nyen, gyorsan  és  nagyon csekély erőráforditással oldhatunk meg. Ez azonban 

egyet jelent a racionalizálással, tehát egy munkaeljárás segédeszközök ál-

tal való egyszerüsitésével és gyorsitásával, idő megtakaritása céljából. 

Formalizálni annyit jelent, mint formába önteni, és ezzel tehermentesiteni. 

Formalizmus ezzel szemben akkor áll fenn, ha valamit cél nélkül öntünk for-

mába. /A "formalizmus" fogalmát itt pedagógiai értelemben, mint a "formá-

lis" gondolkodás negatív eredményét értjük. Itt nem a logikai müveletek 

formalizmusára goddolunk./ 

Az algoritmusok felállitása és a velük való dolgozás azonban mélyebb megér-

tést igényel, tehát soha sem jelenthet formalizmust. Ha önállóan, vagy kö- 

zös munkával algoritmusokat állitunk fel, ez az önálló alkotó gondolkodá-

si tevékenységek egész sorát igényli. Az algoritmusok egyes  értelmi művele-

teket, közbenső tagokat tesznek feleslegessé. A gondolkodási folyamatok ez-

által megrövidülnek. Az al_,oritmus tagjai egy egészet alkotó cselekvéssé 

egyesülnek. Igy vezetnek az algoritmusok gondol'__ot'-i módszerekhez. Vezér- 
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Fonalakat adnak meg, amelyeket nem kell mereven alkalmazni, hanem alkotó 

módon a mindenkori helyzethez kell alakitani, :isiközben gyakran az e,yes lépé-

seket is értelmük szerint kell összekapcsolni. Ha az algoritmusokat nem ilyen 

alkotó módon és értelmesen alkalmaznánk, akkor egy "recept-pedagógiához" jut- 

Iánk, amivel az eleven és érdekes tanitásnak éppen az ellenkezőjét érnénk el. 

algoritmusok kidolgozása által tudatosithatjuk a tanulóban a szükséges gon-

lolkodási folyamatokat. Ez a gondolkodás egész menetének önállóbb, célratö-

rőbb kialakitásához vezet. Az algoritmusok megkeresése és felállitása az is-

neretek jobb minőségéhez, gondolkodási módszerek elsajátitásához és nagyobb 

képességekhez és készségekhez vezet. 

Ra az algoritmusok hozzájárulnak is az oktatás racionalizálásához és ha i-

lyen cselekvési utasitásokat sok vonatkozásban lehet is találni és felálli-

tani, mégis helytelen lenne mindenáron algoritmusokat kidolgozni, vagy ta- 
~ 

isitani. Egy algoritmus, amely a  tanulók  egy csoportja számára alkalmasnak 

látszik, idősebb, vagy fiatalabb emberek egy másik csoportja számára alkal- 

matlannak bizonyulhat. 

Itt kutató munkát kell végezni és meg kell keresni azokat az algoritmusokat, 

amelyek egy bizonyos életkor számára kedvezőek, vagy pedig fel kell állita- 

punk olyan algoritmusokat is, amelyeknek jelentősége az élet és a gyakorlat 

számára való általános érvényükben van. Az itt adott ösztönzések bizonyára 

hozzájárulnak az oktatási folyamat még messzebbmenő átgondolásához és tö-

kéletesitéséhez. 





44 

Az előző fejezet záró gondolatai bizonyos mértékig alátámasztják annak 

a törekvésnek a jogosságát, amely ma már a humán tudományok egy részének 

/strukturális nyelvészet, orvostudomány, pszichológia, történelem/ is cél-

kitüzése, azaz a nagyszámú faktorok által determinált folyamatok leirása 

szimbolikus jelek és formulák segitségével. Ezen törekvések ma már a di- 

daktikai kutatók müveiben is gyakran fellelhetők. Különös létjogosultság-

ra azonban csak a didaktikai algoritmusok megjelenése adott okot. 

A továbbiak elfogadását meg kell hogy előzze itt is a szigorú definició 

igénye. Épp ezért a "formula" szigorú meghatározását kell szélesebb tar-

tományban értelmeznünk. "Formula" /131:692/ matematikai jeleknek egy meg- 

határozott sorozata, rendszerint a matematikai szöveg egy mondatának ki-

fejezése. A matematikai logikában: matematikai jelek fis szimbolumok olyan 

véges sorozata, amely rögzitett, vagy egy, vagy több változótól függő ité- 

letet jelent, va gy  ítélet-logikai szerkezetet adja meg. Mivel a didaktikai 

folyamatokhoz az I.fejezetben megadott definició alapján mindig hozzáren-

delhető egy matematikai modell is, igy az előbbiek alapján triviálisan a-

dódik egy formula is. 

A továbbiakban a fejlődés jelenlegi relaciójában bemutatom a leglényege- 

sebb algoritmus formákat. Ezek bemutatása során már áttérünk a b./ és c./ 

tipusú didaktikai algoritmusok tárgyalására is, amelyet az ismétlésbe esés 

vádja ellenére is, azzal a lényegbevágó megállapitással kezdjük, hogy ezek-

nél a didaktikai algoritmus tipusoknál az alapvető eltérés az operativ 

visszacsatolásban rejlik, ami pedig az egyes oktatási részfolyamatok eset-

leges gépesitésének nélkülözhetetlen előfeltétele. 

I. Az első ismertetésre kerülő ilyen algoritmus forma/szerzője B.I.LJAPUNOV,/ 

mint /szimbolikus/ operátor-séma ismert a szakirodalomban. Tekintettel ar- 

ra, hogy a későbbiek során jelentős szerepe lesz, igy most kitérünk az is- 

mertetésére: 
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Felépitésének menete:  

a./ Logikai feltételek: a, b, /Az ember cselekedeteit itéletek előzik meg,  

illetve követik. Ezeket az itéleteket, amelyek alapján eldöntjük, hogy  

mit cselekedjünk, nevezzük logikai feltételeknek./  

b./ Operátorok: A, B, C, D, /A logikai feltételektől függő cselekedeteket  

^ jelentik./  

c./ A logikai séma /operátor séma/.'/Egy cselekvési mozzanatot szimbolizá-

16 utasitás /programra/./  

1 	2 	1 	2 	2  

a T Bb 1 C* ~ ABb 	Ci~ W  D  

Az algoritmus által leirt műveletek: 

1./  a 	Bb 	C *  

/ * = megállitó /stop/ jel./ 

	

1 	1  

2./ 	a fi 	ABb 	C lk  

/az azonos számozású nyilak a müvelet menetét ttirányitjáktt./ 

2 	 2  

3./ 	a 	Bb 	 D lk  

1 	1 	22 

4,/ 	a  fi \1(  j,A3b 	D 

Ugyanezek tömörebb formában: 

1./ 	/aBbC/  

2./ 	/a A B b C/ 

3./ 	/a BbD  

4./ 	/a A B b D/  



E /szimbolikus/ operátor séma formula látszólagos komplikáltsága ellené-

re is azzal a pozitiv előnnyel rendelkezik, hogy a legösszetettebb didak-

tikai algoritmus "lineáris" /egy sor elrendezésben/ leirhatóságát bizto-

sitja.  

S.EISNER al): /t* ismertet egy olyan LJAPUNOV—féle szimbolikus algorit-

must, amelyben az operátorok és logikai feltételek mellett itéleteket is  

beépit egy "tejfeldolgozó ipari ismeretek betanitását" szolgáló programm  

algoritmusába. A részletes ismertetést mellőzve, megelégszünk pusztán az  

algoritmus bemutatásával:  

10 	1 9 	2 5;8 	3 6 	2,3,GO 	4

/1\ 1  /a/ 	L° 2  /b/ 	1/ 16143  /e/ 	YE  lc<  4  /f/  

4  

a ~ 
5 	6 	7  

5  /a/\ b/ 	0( 6  /a/\ e/ 	O( 7 /a /\ b/  

1 	? 	8 	9 	10  

FSV U.i 	A 8 /b/ 	oC 9  /C/ 	CX 10  /d/  

itt:  

az operátorok c L, A, E, F, H, S, V,  

a logikai feltételek  =W  '°(2'°(  3'°(  4'  

az itéletek = a, b, c, d, e, f,  

10'  

/Az aAb; aAe; a/1b szimbolumok értelmezésére a későbbiek során a mate-

matikai logikai alapfogalmak tisztázásánál visszatérünk./  

M.N.ROZENBERG /441 :  67/ a meghibásodott TV—készülék átvizsgálására szol- 

gáló algoritmust prezentál ugyanebben a formátumban:  
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AA1B 1m 

ahol: 

A2B2m A3B3m 

7 

A4B4m 

4 

(3, 

5 	6 

AA5m 
D  

A = a szignálgenerátor bekapcsolása a szükséges frekvenciával és belső 

modulációval, 

Al  = 1 V—os kimenőfeszültség beállitása, 

A2  

A3  

= 200 IV—os feszültség beállitása, 

= 40 MV-os 	" 	 " 

A4  = 10 TV—os 	" 

A5  = 1-2 MV—os 	" 

B 1  = a generátor kimenetének rákapcsolása az UP 4—es sorozatú 4—es csőre, 

B2  = a generátor kimenetelének rákapcsolása az UP 4-es sorozatú 3—as csőre, 

B3  = a generátor kimenetének rákapcsolása az UP 4-es sorozatú 2—es csőre, 

B4  = a generátor kimenetének rákapcsolása az UP 4—es sorozatú 1—es csőre, 

C = Voltméter bekapcsolása, 

D = pontatlansági fok /eltérések/ megállapitása. 

II. A második algoritmus leirási forma  az ugynevezett gráf—séma  /egyes  ese-

tekben fa—diagramra/. Ennek ismertetését a gráf—elmélet alapfogalmainak be-

mutatásával kezdem. 

x. 

A legkülönbözőbb tudományokban sok olyan probléma adódik, amelyeket pontok 

és e pontokat összekötő vonalak,  azaz gráfok felrajzolásával lehet áttekint-

hetőbbé tenni, és ezek révén megoldani /84:902/. A gráf—elmélet ilyen pon-

tokból és vonalakból álló alakzatok általános tulajdonságait vizsgálja, az 

egyes tudományok speciális fogalmaitól elvonatkoztatva. A felvett pontok 

/a gráf szögpontjai — ábrázolásuk ponttal, körrel, négyzettel, paralello— 

grammával, vagy háromszöggel történik/, jelképezhetik például egy ország 



városait, egy vegyület atomjait, egy elektromos hálózat elágazási pont-

jait, egy üzem müveleti részeit, egy embercsoport egyedeit, egy térkép 

országait, egy feladat megoltási menetének részeredményeit, egy didakti-

kai folyamat egyes stádiumait. A szögpárokat összekötő vonalak /a gráf 

élei, — ábrázolásuk általában egy egyenessel történik/ jelenthetik a vá— 

ro:,okat összekötő vasutvonalakat, az atomok közti vegyi kapcsolatokat, 

a hálózat ágait, a nyersanyag, ill. a munkadarab utját az üzemben, jelent-

hetik azt, hogy az embercsoport két—két egyede ismeri egymást, ill, hogy 

bizonyos rokoni kapcsolatban vannak, hogy a térkép két—két országának van 

közös határvonala, a feladat megoldásának további utját, a didaktikai rá-

hatások vagy visszahatások utjait, stb. 

A gráfokhoz vezető le'több problémában csak azt vesszük szemügyre, hogy 

bizonyos dolgok közül melyik kettő között van adott tipusu kapcsolat. Ek-

kor a gráfot pusztán kombinatórikus értelemben tekintjük és a gráf élei 

csak a tekintett kapcsolat jelzésére szolgálnak. Ilyenkor mellékes, hogy 

a szögpontokat és éleket ho gyan helyezzük el a sikban, ill. a térben. Az 

áttekinthetőség érdekében rendszerint arra törekszünk, hogy sikbeli el— 

helyezésnél az élek ne messék egymást. Didaktikai problémák ábrázolásá-

nál néha elkerülhetetlen, — igy pl: F.KOPSTEIN / ?y: 1O / által ismerte-

tett "paragráfoknál": 

.i.sz.ábra. 
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/A "Strukturális elemek" cimü részben részletesebben ismertetem./ 

E kivánságnak nem mindig lehet eleget tenni, vannak "sikba nem rajzolha- 

tó"  gráfok, pl:  

2 .sz.ábra.  

Más problémáknál az élek ős szögpontok elhelyezkedésének is van bizonyos  

jelentősége /egyes didaktikai problémáknál is/. Ilyenkor a gráfokat több-

nyire mint topalógiai alakzatokat vizsgálják. Ha a gráfokkal szemlélte-

tett kapcsolat nem "szimmetrikus", akkor az élek irányitásával a kapcso-

lat "irányát" is jelezhetjük. Pl.  a szülő és utód közötti kapcsolatnál az  

éleket ugy irányitjuk, hogy azok a szülőknek megfelelő szögpontokból az  

utódoknak megfelelő szögpontokba vezessenek; egy feladat megoldása során  

a probléma—helyzetnek megfelelő szögpontokból a valamennyi lehetséges so-

ron következő me óoldási helyzetnek megfelelő szö,;pontokba vezessenek. Pl.:  

Egy derékszögű háromszög megoldásánál két adott befogóból indulunk ki: A  

probléma—helyzet "F" felismerése után a meL,oldás vezethet a tangens, co-

tangens összefüggések, ill. a Pythagoras—tétel felismeréséhez, majd innen  

az elvégzendő műveletek /osztás "d"; táblázat használata "t b"; ill. "tb";  
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hatványoz- "r'', F7r7eadLs "ö"; gyökvonás "q"/ során át az ujabb prob-

lénia—helyzet megoldásához /fa—diagramm módszer/. 

Gi  

..̀~~.. sz.ábra.  

Bizonyos esetekben hurokéteket is célszerű szerey'eltetni. P1. az egyes  

lépésekhez visszairányitó programmok algoritmusainál:  

.j.sz.ábra.  

Ha a gráfban a szögpontok vagy élek száma végtelen, a gráfot végtelennek  

mondjuk /a véges didaktikai folyamatoknál nem használjuk/.  

A részletekbe való elmélyedést mellőzve, kizárólag már csak azokat a  

gráf—formákat és tételeket emlitem, amelyek nélkülözhetetlenek céljaink  
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eléréséhez. A matematikai bizonyitásokról is lemondunk. iammemoit 

2  
./ Egy gráfhoz többféleképpen rendelhetünk gráfot. Különösen egyszerit  

a hozzárendelés olyan páros g-ráfok esetében, amelyekben két szög-

pontot legfeljebb egy él köt össze. Ha P 1 , 	, Pn  ós Al 	, Am  

alkotják a "G" páros gráf szögpontjainak két osztályát, akkor G-hez 

azt az "n" sorból és "m" oszlopból álló /C ij / mátrixot rendeljük, a- 

melyben  Cij  = 1, vagy Cij  = 0, aszerint, hogy  P.  össze  van—e  kötve 

A—vel, vagy nincs. Mátrixnak fogjuk nevezni az olyan paralellogram-

ma  alakú táblázatot, melynek a következő formája van: 

C 11 	C 12 	c13 	... 	Clm  

C21 	C22 	C~3 	41•0 	C2m  

C 31 	C32 	C33 	... 	C3m  

•  

•  

• •  

• •  

... 	 •  

... 	 •  

Cnl Cn2  Cn3 	... C nin  

1. sz.r:iátrix.  

ahol "n" a sorok száma, "m" pedig az oszlopok száma. Néha a mátrixot a 

fenti C = /C ij / — vel jelölik a tömörség kedvéért. 

2./ I.B.MORGUNOV /e(o; 3/ szerint a gráf—szerkezeteknél "kontur"—nak fog-

juk nevezni azt az utat, amelynél a kiindulási csúcs egybeesik a végső 

csúccsal. 

C 
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3./ "Fá"-nak nevezzük azt az összefüggő gráfot, amelyben nincs kontur. 

3/a. A "Fa-gráf" egy  speciális formája az előbbi "fa-diagramm", melynek 

az algoritmusok ábrázolásánál jelentős szerepe van. 

x. 

Az algoritmusok szóbeli leirására, operátor sémával történő szimbolizá-

lására és az uj gráf-sémával /fa--diagrammal/ történő ábrázolására szol-

gáljon az alábbi műszaki jellegü példa: 

Tegyük fel, hogy egy dolgozó munkája megkezdése előtt ledllenőrzi munka-

gépét, hogy üzemképes-e, az ellenőrzés során meggyőződik arról, hogy a 

gép be van-e kapcsolva a hálózatba, ha nincs, akkor bekapcsolja. Hd be 

van kapcsolva, akkor benyomja az inditógombot és ellenőrzi, hogy kigyul-

lad-e a piros lámpa, ha igen, akkor a készülék üzemképes, ha nem, akkor 

szerelőt kell hivnia, mert a piros lámpa felvillanása jelzi a gép üzem-

képességét. Ha jól megfigyeljük, akkor rögtön feltűnik, hogy a feltéte-

lek és a műveletek között kényszerkapcsolat van, ugyanis bizonyos felté-

telek szerint /pl. kigyullad-e a piros lámpa, vagy  nem/ t  bizonyos munkát 

kell végezni /megkezdeni a géppel a munkát, vagy szerelőt hivni/. A te-

vékenység nem volna algoritmikus jellegü, ha az ember a piros lámpa ki-

gyulladására válaszul űitletszerüen hol az egyik, hol a másik cselekvést 

végezné el. Ezek után az irásbeli utasitásokra felépülő algoritmus: 

1./ Ellenőrizd, be van-e kapcsolva a készülék a hálózatba! 

Ha igen, akkor térj át a 3.utasitásra! 

Ha nem, akkor: 

2./ Kapcsold be a hálózatba! 

3./ Nyomd be az inditógombot! 

4./ Ellenőrizd, ki gyulladt-e a piros lámpa! 

Ha  igen,  akkor térj át az 5. utasitásra! 

Ha nem, akkor térj át a 6. utasitásra! 

5./ Kezdd meg a munkát! 
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6./ Hivj szerelőt!  

Az 5. és 6. müvelet befejező inüvelet, ugyanis ezek valamelyikével zárul  

az algoritmus szerinti tevékenység aszerint, hogy fennáll—e az előző fel-

tétel vagy sem.  

B.I.LJAPU,IOV által bevezetett ugynevezett szimbolikus algoritmikus folya-

mat leirás módszer szerint, mint ismeretes, a tevékenység folyamatát ele-

mi müveletek sorára bontjuk és az elemi müveleteket operátoroknak nevez-

zük és A, B, C, .... betükkel jelöljük; a feltételeket logikai feltéte-

leknek nevezzük ős a, b, c, .... betükkel jelöljük. A feltételek ellen-

őrzésének és a müveletek végrehajtásának sorrendjét logikai sémának ne-

vezzük, mely meghatározott sorrendben elhelyezett operátorokból, logikai  

feltételekből és számozott nyilakból áll. Jelen esetben:  

Logikai feltételek:  

a = a készüléknek a hálózatba bekapcsolt állapota,  

b = a piros lámpa kigyulladása.  

Operátorok:  

A = a készülék bekapcsolása a hálózatba,  

B = az inditógomb benyomása  

C = a munka megkezdése,  

D = szerelő hivása.  

Az operátorok utáni 	jel az algoritmikus tevékenység beszüntetését  

jelentő "stop" jel.  

Az algoritmus:  

~ 
a 	Bb  

2  

   

  

C  ABb  C .YE-  

       

és az általa leirt munkamenet:  

1./ A betli logikai feltétel /a/. Itt két változat adódhat:  

a./ Ha fennáll a logikai feltétel, akkor a nyiltól függetlenül átté- 
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rönk a jobbra következő betlire /aB/, 

b./ ha nem áll fenn a lo6ikai feltétel, akkor  megnézzük a nyil fe-

lett á116 számot és arra ~etüre térünk át, amelyre a nyíl mut 

2.,' A betű operátor. Ebben az esetben végrehajtjuk az operátort, s azu-

tán áttérünk a jobbra következő betűre /aBb/, vagy /aABb/. Az algo-

ritmus szerinti munkát addig vértezzük, amíg nem jutunk a "stop" /meg 

állitó/ jelig /aBbC 1# / vagy /aABbCr / vagy /aABbD * / vagy /aBbD1/.  

Ugyanez az algoritmikus folyamatok leirásának "gráf—séma" /fa—diagramm/  

módszere alapján: 

a 

+'  
B 	A  

b  

C * 	D  

.5.sz.ábra.  

A sémán a nyilak a sajátságok és a műveletek ellenőrzésének sorrendjét  

prezentálják, a + és — jelek a sajátság meglétét vagy hiányát, a 3j'c  pe-

dig a befejező müveleteket.  



—55— 

Az előző fejezetben ismertetett COMENIUS-tót származó elv egy klasszi- 

kus b./ tipusu didaktikai algoritmus. Ezek szerint felépithető: 

logikai feltételekből, 

operátorokból, ós a 

hozzájuk tartozó logikai sémával. 

A logikai feltételek:  

a 	= a tanuló a tananyagot; röviden előadta, 

b = a tanuló a szavakat megértette, 

c = a tanuló a dolgok használatát bemutatta. 

Az operátorok:  

A - a tananyag rövid előadása, a szavak jelentéseinek megérttetése, a 

dolgok használatának bemutatása, 

B = a tananyagnak a tanulóval történő elmondatása, 

C 	= a szavak jelentésének a tanuló által történő megérttetése, 

D 	= a dolgok használatának a tanuló által történő bemutattatása, 

E = a tanuló hibáinak kijavitása, 

F = a második tanuló felszólitása. 

Az ehhez tartozó "gráf-séma" /fa-diagramm/: 



ABa Cb Dc f  F • 	EF3fr EDC 	F4t EF*-  ECb  

és az ehhez tartozó szimbolikus algoritmus:  

1 	2 	3 	2 	2 	2 	1  
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A  

a.  

+  

E  

b 	 C  

\E  
+Z \— 

+/ 	1/ 	 / 

" 

	C  

+ .~ w  

F * E F ~ 

+ 

C 

w  
F  F 	F  E  

F ~- 

6.sz.iLra.  

4 	4 	1 	1 	1  

C 	F .~ EF • EDC It F  

~ 
F* 
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Kissé anaktronisztikus, de ha Kempelen Farkas sakkozógép helyett oktató-

gépet szerkesztett volna, akkor ez lehetett volna a működési algoritmusa. 

A párhuzam sakk és didaktika között formális szinten indokolt, ugyanis 

egy mesteri fokon kidolgozott játszma szintén valamilyen algoritmust rea-

lizál. A sakk-irodalomban kidolgozott különböző 'csel", "kezdő" és "vég-

játékok" szintén speciális tevékenységi /átalakitási/ algoritmusoknak te-

kinthetők. 

Ezt követően planimu 	 riai idomok tárgyalására szolgáló L.N.LANDA-tél /86 : 
a/ származó /modern/ didaktikai algoritmust mutatunk be egy K.ELSNER-fé-

le 1/9 : —/ ugynevezett "szöveges elrendezésben", mely lényegében a má-

sodik fejezetben megismert módszer specifikus változatának tekinthető. 

1./ Meghatározzuk  a  fogalmat  és ábrát készitünk. 

2./ Soroltassuk fel a tanulókkal a meghatározásban megadott sajátosságokat: 

I  

Ha kérdezett tanuló Ha a kérdezett tanuló nem sorolta fel mindegyik 

mindegyik sajátos- sajátosságot, akkor 

ságot felsorolta, 

akkor 	3./ Rajzoljunk olyan sikidomot, amely rendelkezik 

a tanuló által emlitett sajátosságokkal, de nem 

3./ Nevezze meg azt felel meg a helyes meghatározásnak és az adott 

a logikai kapcsola- ábrának. 

tot, amely ezeket a 	I 	I 
sajátosságokat ösz- Ha a tanuló kijavitot- Ha a tanuló nem javitotta 

szeköti. ta hibáját, akkor 	Ici hibáját, akkor 

4./ Irjuk fel vala- 4.1 Nevezze meg azt a 	4./ Szólitsunk fel egy 

mennyi sajátosságot logikai kapcsolatot, 	másik tanulót. 

a logikai kapcsola- amely ezeket a sajá- 

tokkal együtt. /E- 	tosságokat összeköti. 	5./ Ez javitsa ki a hibát. 



tósának ellenőrié-- 

sére./ 
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zek után áttérünk 

a fogalom alkalma- 5./ Irjuk fel valameny-  6./ Nevezze meg azt a 

zásának gyakorolta- nyi sajátságot a logs-- 	logikai kapcsolatot, 

tására  és  elsajáti- kai kapcsolatokkal e- 	amely ezeket a saját- 

gyütt. /Ezek után át-

térünk a fogalom alkal-

mazásának gyakoroltatá-

sára és elsajátitásának 

ellenőrzésére./ 

ságokat összeköti. 

7./ Irjuk fel valameny-

nyi sajátságot a logi-

kai kapcsolatokkal e-

gyütt. /Ezeti után át-

térünk a fogalom alkal-

mazásának gyakoroltatá-

sára ős elsajátitásának 

ellenőrzésére./ 

Ugyanennek az algoritmusnak a gráf-sémája /fa-diagramm/: 

Logikai feltételek:  

a 	= a tanuló valamennyi sajátosságot felsorolta, 

b 	= a tanuló aijavitotta hibáját. 

Operátorok: 

A = a fogalom meghatározásának megfogalmazása, ábra bemutatása *  

B 	= a meghatározásban megadott sajátosságok felsorolása, 

C 	= a sajátosságokat összekötő logikai kapcsolat .hegneveztetése, 

D = az ellenábra eljárásának alkalmazása, 

E 	= a másik tanuló felszólitása, 

F = a hiba kijavitása, 

I 	= a sajátosságok felirása a kapcsolatokkal együtt. 



~ 
b 

:'  

V  

...sz.ábra.  

Végül a hozzátartozó szimbolikus algoritmus:  

1 
	

1 	2 	2  

ABa CI 	Db 	CI iE- 	EFCI  

~ 

 

Az idegen nyelvi oktatásban ezeket az algoritmus formákat jelentős  szerep-

hez juttatta O.HERMENAU /58:425/ akkor, amikor a legrövidebben leirható 

algoritmusformaként az elrendezést 1= operátorok/, megfontolást /=feltéte-

lek/, lefolyást /a munkalépések összessége — a Ljapunov—rendszerben megfe-

lel a logikai sémának/ aj(nlctta Llkotóelemenként.  
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A fa—diagramm algoritmus leirási módszer érdekes változatát találjuk M.  

N.i0ZENBERG—nél /ill : 68/, amikor az általa operátor—sémában leirt algo-

ritmust /lásd_  6g.  oldal/ az alábbiakban átrendezi: 

Konkrét kisérleti adatokat közöl G.CLAUSS /43 :371-•373/ a "Mondattagolás" 

cimü nyelvtani algoritmusával elért eredményekről. 

A LJAPUNOV — operátor séma algoritmus  — :  

ahol az operátorok:  

A = határozd meg a mondat állitmányát!  

U = huzd alá szinessel!  

G = Határozd meg a mondat tárgyát!  

04  = Határozd meg a tárgyát a 4. esetben! stb.  .... 

K = Képezz tőmondatot A—ból és G—ből.  

Logikai feltételek:  

q = a kérdezett mondatrész megléte,  

p = a tőmondat önállóan is értelmes,  

z = meghatározott valamennyi mondatrész  



Kisérloti osztály átlagos hibaszáma: 10,75 

Kontroll osztály létszáma: 66 

6  9 	2 5 
2  5  8 11 14 17 20 23 26  29  32  55  38  41 44 47 

h ibák 	száma  

16 

14 

12 

10 

8 

6 

4 

2 
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— alapján oktatott kisérleti osztály eredményeit összehasonlitotta egy 

algoritmus nélkül oktatott kontroll—osztály eredményeivel.   A hibapontok 

alapján történő összehasonlitást az alábbi 	demonstrálja: 

Kontroll osztály átlagos hibaszáma:17,50 	 

Az algoritmus alapján történő oktatás eredményesebb voltát ennek alapján 

igazolta. 
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Gráf—elméleti alapon osztályozza az algoritmusokat H.FRANK /3.T:108/. 

Szerinte egy algoritmus makrostrukturája /a "Strukturális elemek"  cimü 

részben e fogalmat részletesen ismertetem/ akkor és csak akkor egyér-

telmű, ha irányitható gráfokkal ábrázolható. Ezek a gráfok három "meg+-

különböztető jegy" alapján /rendezési elvek/ irhatók le. 

1./ Egy gráfot kör nélkülinek /mi MORGUNOV alapján a "kontur nélküli" 

fogalmat fogjuk használni/ nevezhetünk, ha nem tartalmaz olyan atat, 

amelynek első lépése és utolsó lé ése megegyezne. Ellenkező esetben  

a gráf "konturos". 

2./ Egy gráf lineáris, ha az oktatási lépések rendezettek. Ellenkező e-

setben elágazó. 

3./ Egy gráf direktiv, ha minden egyes lépéshez csak egy olyan irány tar-

tozik, amelyik egy másik lépéshez vezet.` Ellekaznkező esetben adap— 

tiv.  

Ezek kombinációja alapján nyolc algoritmus—tipus állitható elő. 

Konturos — lineáris — direktiv 

Konturos — lineáris — adaptiv 

Konturos — elágazó — direktiv 	x. 

Konturos — elágazó — adaptiv  

Konturnélküli — lineáris — direktiv 

Konturnélküli — lineáris — adaptiv 

Konturnélküli — elágazó, direktiv 	x. 

Konturnélküli — elk;az6 — adaptiv 

Ezek közül a xx.-»el jelölt két esetben logikai ellentmondás van, ugyanis 

az elágázriéiTéiele magában tartalmazza azt a követelményt, hogy legyen 

legalább egy olyan lépés, amelyhez legalább két olyan irány tartozik, a» 

melyek másik lépésekhez vezetnek. Ez pedig 3./—nak ellentmond, s igy az 

elágazó algoritmus nem lehet direktiv is. A megmaradó hat algoritmus ti-

pust a fenti elrendezésben a ..-~r.. sz.táblán találhatjuk meg, ahol "(A"  



a startjel  és "uJ" a stop-jel. 

Köt speciális algoritmust részletes KORANB as u f Mealy.algoritmust 

/35- :105/ és a Moore-•algoritmust /3s  s11©á Mind a köt  esetben a táblái• 
li latban feltUntetett r  bályozó algoritmusról"  van' - - Itt  a 

‘‚P1467) 

svábra: 

konturos gráfot a Mealy04lgoritmusnál az alábbi módon rendezi: 

6 :.  a: rá; 



S1  T~ 
SO  
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H.THIELE /1136--13?/ a Mealy— algoritmus leirására különleges /szímbo• 

likus/ operátor—sémát alkalmaz: 

0 0 0  1 2 0 	2 0  

   

  

  

 

2  

 

  

Ha egybevetjük a korábban ismertetett LJAPUNOV—féle operátor—sémával,  

akkor a következő eltéréseket regisztrálhatjuk:  

a./ A Ljapunov—nál , . —al jelölt "stop"—jelnek itt  "c c"  felel meg.`  

b./ THIELE—nél van ":" start—jel,az előző formulánál ez külön nincs fel—  

tüntetve.  

c./ A "nyilak" alatt található számok jelentése nem egyezik a LJAPUNOV-

sómánál a nyilak felett található számok jelentésével, ugyanis itt  

It  A  

so  

  

Sl  

 

   

     

     

     

1 2 0  

azt jelenti, hogy az  30—b61  áttérhetünk az S 1—re, vagy S2—re, de  

visszatérhetünk az S
0 
 —ra is /amint az a gráfoknál a szemlélet alap-

ján is megállapitható/.  

d./ Itt egyik stádiumból /:// a másik stádiumba /So/ több parallel étté--  

rés is lehetséges:  

► ~ 	 /  

SO  

.. ■ ....  
0 0 0  

A Mealy—algoritmust realizálja a GEROMAT—II. oktatógép.  

A Moore—algoritmus a Mealy—algoritmusból, mint annak speciális esete a- 



dódik r3')":110/. Ennél az algoritmusnál a Kezdő ős végállapot is "lé— 

pésnek" számit. /Részletes elemzőse a "Strukturális elemek" cimü rósz—

ben./ Az algoritmus gráf-sémája: 

   

Qi 

  

  

   

I() s z.  ábra . 

Ez az algoritmus pl. az ismert AUTOTUTOR—II. automatában realizálható, 

ahol az "a i " állapot a filmszalag lehetséges helyzeteit adja meg. Ez azt 

jelenti, hogy a vetitendő filmkép egyidejUleg az aktuális "oktatási 16-• 

pést" is determinálja. 

A Frank-.féle klasszifikációs kisérlet feltétlen érdeme, hogy elsőnek ad 

áttekintést a kfilánfóle algoritmus tipusokról /lásd .i-..sz.'°táblát/. A 

teljesség igényét azonban nem elégiti ki. Ugyanis a rendszerezés alapját 

képező "megkülönböztető jeyek" nem tartalmazzák a "felelet—választás" 

kritériumát. Igy D.TOLLINGEROVA /4 13:1?3/ által ismertetett feleletvá- 
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lasztós rendszerű algoritmushoz tartozó gráf 

i 
• ;1. sz.ábra. 

már nem helyezhető el a Frank-déle rendszerben. Legközelebb az "iterá-

ciós algoritmus"-hoz áll, de ugyanakkor ellentmond a "direktivitás" kri-

tériumának. Hasonló nehézségbe ütközik egy V.SVAJCER-től származó /+? x :65/ 

elágazó pro gramm algoritmusát leíró gráf  elhelyezése az e^,litett rendszer- 

ben: 

.1.1:. sz ■ ábra 

ahols 

8n 	= lépések /step/ 
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Ki  = a hipatétikus lépések 

_ _ _ — = a hipot$zis fránya 

	 = a hipotézisek kontrollja. 

K.J.KLAUER /f(, : 14/ a didaktikai algoritmusokat "Flussdiagramm"-pk a-

lapján rendszerezte. Ezek formális szempontból lényegében gráfot:., igy e 

bemutatásuknak feltétlenül itt a helye. Rendszerének kidolgozásánál nem 

követte a H.FRANK-nál látható meghatározott feltételek kombinációiból 

adódó szigoru egzaktságra törekvő utat, de mivel tényanyaga az előbbi 

relációjában némileg eltérő, igy feltétlen érdemes vele foglalkoznunk. 

A. Lineáris programmok algoritmus-tipusai. 

1./ E gyszerii lineáris algoritmusa teljesen analóg az előbbi rendszerezés 

Skinner-algoritmusával. 

z. ábra. ' 

2./ Konverzációs-láncu /Konversationele Verkettuna/ aleoritmus. 

.'. : . s z.abra. 

Ez nem hei:fezhető el a H.FRANK féle rendszerben, mivel a  Skinner-al-

goritmustól eltér ugyan, de ugyanakkor hiányzik belőle a lépés meg-

ismétlésére utaló utasitás,` s igy nem tesz eleget az "iterációs al- 
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goritmus" követelményének sem. A többi FRANK—nál tárgyalt algorit-

mus tipusokkal pedig az adantivitás hiánya miatt nem parallellizál-

ható. 

3./ Az e,yszerü visszavezetésfi algoritmus /einfache RUckführung/ 

z.Abra:"  

a FRANK.féle rendezési elv alapján ez az S 2S3 , ill-az S 3S2  irányok 

miatt egyrészt konturos de nem direktiv gráf /algorítmus/. Mivel 

azonban az 53  nem vezet be egy uj utat, igy nem lehet elágazó algo— 

ritmus sem. Ezek után már csak az vizsgálandó, hogy megfelel-e a 

"szabályozó algorit ~aus" követelményeinek.' A gráfok egybevetése után 

azonban megállapíthatjuk, hogy ez sem helyezhető el FRANK rendsze-

rében.-  

4./ Átugrásos /überspringung/ algoritmus:  

Ennek az algoritmusnak a gráfja analóg a FRANK—féle rendszerben a  

konturnélküli — lineáris -- adaptiv gráffal.  
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B. Variált /Variablen/ programmok algoritmustipusai. 

1./ Visszavezető /rUckführende/ algoritmus: 

~ . ~ 

....sz.abra. 

Ez az I/3 "variált" változata, igy az ott elmondottak értelemszerü-

en erre is  vonatkoznak.  

2./ Közbeiktatott /zwischen geschaltete/ algoritmus: 
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3./ Továbbvezető /weiterführende/ segitő algoritmus: 

.... sz . ábra.  

A II/2. és II/3. a FRANK—rendszerben a konturnélküli — elágaz6 — 

adaptiv algoritmusok gráfjaival megfeleltethetők. 

4./ Ugró /spring/ algoritmus: 

Ennek gráfja analóg a FRANK—féle konturnélküli 	lineáris — adaptiv 

algoritmus gráfjával. 

Ha most a két rendszer egybevetéséből további következtetéseket kívá-

nunk levonni a didaktikai algoritmusok gráfjaik alapján történő osztá-. 

lyozására vonatkozóan, akkor célszerü az eddigi összehasonlitások ered-

ményeit egy könnyen áttekinthető táblázatban összefouniz, ahol: 

Y. 	= J.K.KLAUER féle algoritmusok gráfjainak helye H.FRANK rendszeré- 

ben /a vastagon keretezett rész/. 
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F = a Frank—féle algoritmusok gráfjai  

T = D.TOLLINGEROVA által ismertetett algoritmus gráfjának helye  

Frank rendszerében  

S = V.SVEJCER algoritmusához tartozó gráf helye a Frank—féle  rend-

szerben.  

Konturnélkűli Konturos  
• 

 

K1  T 

tn 
•1- + 

c,  
. c.i  
m  

~ 

_ 

F1  K F 

>  .,,  
~ 
co  Lr 

.1.4  
v  

K 

1  

F1  K1K 
>~  

F 
Ia  
.,a  

43  
R,  

ai  
'0

0  

K 1K 

S 1  
N 

~ 
r-i  
m  

F1 K 1K 

NO 
 

F 

S 1K 1K1T  

A Frank—rendszerit kívül elhelyezkedő K, T, S pontok mutatják, hogy H. 

FRANK gráf—elméleti alapon felépitett algoritmus klasszifikációja nem al-

kalmas valamennyi ismert algoritmus—típus gráfjának elrendezésére. Ennek 

a hiányossáTnak az oka a három "rendező elv" elégtelenségében keresendő. 

Eklatáns példa erre a KLAUER—féle klasszifikáció II/3.—as /algoritmus/ 

gráfja, valamint az ezt generalizáló D.TOLLINGEROVA féle /algoritmus/ 
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gráfja, melyeket a baloldalon található K,T jelzések mutatnak, te-

kintettel arra, hogy ezek az algoritmus—gráfok lineárisak, nem di-

rektivek, de nem is adaptivek. Az algoritmus formák kvalitativ ós 

kvantitativ ugrásszerű fejlődése nem indokolja még a végérvényes 

klasszifikáció igényét. L.N.LANDA /%6 : 25/ szerint az oktatás al-

goritmizálhatósága minden adott történelmi pillanatban közvetlenül 

az addig felismert pedagógiai—pszichológiai törvényszeriiségek függ-

vénye. Bbből következik a "rendező elvek" változásának szükségszerű. 

sége is, amint azt a fenti "szórás" /a Frank—rendszeres kívül eső 

S, K, T/ is  mutatja.  

H.FRANK /33:114/ a ±ickka Skinner—algoritmus kibernetika—pedagógiai 

elemzését az "automata—elméletre" épülő tanulómodell /adversaten-

modell/ alapján végzi. Ehhez használja az . ..sz.táblán láthat6 

gráfot, ahol a pontok ismét a lehetséges "állapotokat" /zustkinde/ 

jelölik. A bemenő jeleket /Bingabealphabet/ 0;1 /bináris/ rendszer 

képezi. A szaggatott élek a "0", a folyamatos vonallal jelölt élek 

pedig az "E" által eszközölt átviteleket jelentik. Az A l  és A2  két 

különböző tanulónak ugyanazon "tanuló—modellhez" tartozó állapotai-

hoz tartozó halmazait jelölik. Ezek diszjunkt halmazok /nines  közös 

elemkük/: 

Al  n A2  = 0 

diagrammon: 

A sz.ábra. 



Az Al  és A2  halmazokat "makroállapotok"—nak /makrozustande/, a gráf 

pontjai által szimbolizált állapotokat pedig mikroállapotoknak /mik-

rozustHnde/ nevezik. A tanulási cél a tanulók eljuttatása a "Z" mak— 

roállapotba. /Részletesebb tárgyalás a 4Konstruktiv elemek" cimü fe-

jezetben./ 

IV. H.FRANK is /36- :106/ és D.TOLLINGEROVA /4jt:l77/ is kisérletez-

nek az algoritmus formák mátrixokkal történő leirásával. Ezt megelő-

zően a "gráfok éleit", mint irányvektorokat definiálják, s ennek se-

gitségével szerkesztik meg az u.n. "átalakitási mátrixaikat". 

H.FRANK a Moore—algoritmus mátrixos formájának szer kesztésénél a kö-

vetkező utat választotta: 

a./ Kiindul a THIELE—féle szimbolikus operátor—sémából és képezi az 

alábbi átalakitási mátrixot: 

so 	H1 

0 	r1N/ r2 y r3 	0 	0 0 

S0 0 r3  rl  r2  0 

Sl  0 r2 r3 rl  0 

S2  0 0 0 rl  

0 0 0 0 r1  V r2  V r3  

. sz.mátrix. 

ahol: "r1  J r2 \l  r3" jelenti, hogy az " (A" /start/ és az S O  között az 

ri  vektor, vagy az r2  vektor, vagy az r3  vektor képez összekittetést, 
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de ugyancsak jelentheti azt is, hogy az "a,"  /stop/ lépést ezer. utak  

valamelyikén meg kell ismételni.  

Az "r2V r3" prezentálja azt a két utat, amely az S 2  —től az "Lj"—ba  

átvisz.  

Az "r l" azokat a ve}vtorokat jelzi, amelyek az S0 —1)61  az S 1  —be, ill. 

az S i  —ből az S2  —be, vagy az S 2  —ből az S2  —be  visznek.  

~ C -ket 	/nem  
A tov6.bbiakban H.FRANK a bemutatott mátrixból képez egy "WOW mát- 

rixot". Eljárása az alábbi matematikai logikai meggondoláson alapul:  

/alapfogalmak tisztázása később a matematikai logikai bevezetőben/  

r1  r2 V  r3  
az összetett itélet  

igazságértéke  

o 0 0  0 

1 0 0  1  

o  1 0  1  

1 1 0  1  

o 0 1  1 

1 0 1  1  

o 1 1  1  

1 1 1  1  

/ha rl  létezik, akkor "1", ha nem létezik, akkor "0"./  

Ennek alapján az ", " és "Se" közötti összeköttetés igazságértéke "1", 

mig az "(1"  és "S i"  közötti összeköttetés igazságértéke "0". Értelem-

szerűen, ahol összeköttetés van 1r 1 , r2 , r3 , ill. r2 \/ r3/, ott ennek 

az igazságértéke "1", mig ahol nincs, annak az igazságértéke "0". 

,2cs11 F1rl 
Ezek után a Moore—algoritmus 	mátrixa:  



w 

a0 S 1 

o 1 0 

o 1 1 

0 1 1 

o 0 0 

0 0 0 

so  

S1  

S2

q  co 
 

S2 	L~ 

0 	0  

1 	0  

1 	0  

1 	1  

0 	0  
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ck 	so 	S 1 	
82  

o 1 	0 	0 
	

0 

o 1 	1 	1 
	

0 

o 1 	1 	1 
	

0 

o 0 	0 	1 
	

1  

o 0 	0 	0 
	

1  

3.~ z .m~itrix: 

A Mealy-.algoritmus mátrixa: 

4.sz.mátrix ' 

Mivel a mátrix formák legalkalmasabbak a tömör és átfogó regisztrá-

lásra, igy az előzőek során tárgyalt algoritmusok gráfjait a fenti  

elv alapján felírjuk mátrix alakban is. Majd kisérletet teszünk e-

gyetlen mátrix diszkutálásával a felsorolt algoritmus tipusokat jel-

lemezni. Ezt a célt szolgálja az alábbi /algoritmus/ mátrixokban a  

szignifikáns elemek kiemelése /bekeretezett számokt/.'  
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1./ A lineáris — direktiv — konturnélküli "Skinner algoritmus": 

So 	$1 	S2 	S 3 	S4  

1 	0 	0 	0 	0 	0 

S©  0 0 1 0 0 0 0 

S1  0 0 0 1 0 0 0 

S2  0 0 0 0 1 0 0 

S3  0 0 0 0 0 1 0 

S4  0 0 0 0 0 0 1 

CO  0 0 0 0 0 0 0 

5.sz.mátrix. 

2./ A lineáris .. direktiv » konturos "Iterációs algoritmus": 

So 	S1 	S2 	3
3 
	S4  

0 1 0 0 0 0 0 

0 1 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 1 0 0 

o 0 0 0 1 1 0 

o 0 0 0 0 0 1 

o o 0 0 0 0 0 

6.sz.mátrix. ' 
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3./ Lineáris — adaptiv — konturnélkUli /Umveg/ algoritmus:  

so S
1 

 s2  
S3 

s4  

0 1  0 0 0 o 0 

so  o 0 o 1  o o 

S i  o 0 0 1  0 o 0 

S2  o 0 0 0 1 0 0  

5 3  o o 0 0 0 1 0  

S4  o  o 0 0 0 0 1  

o 0 0 0 0 0 0  

7.sz.mátrix.  

4./ Lineáris — adaptiv — konturos Yszabályozó /Regetung/ algoritmus: 

So  Si  S2 S3 S4  ~ 

0 1  0 0 0 0 0 

so  0  1 1 1  0 0 0 

Si  
o  0 1 1 1 0 0  

S2  o 0 0 1 1 1 0  

3
3  

o o 0 0 1 1 1  

S4  o 0 0 0 0 1 1  

o  o 0 0 0 0 0  

8 sz matrix  
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5./ Elágazó - adaptiv - konturnélküli "több utas" /Mehrweg/ algorit- 

mus : 

So 	S i 	 2 	S3 	
84  

0 	1 	0 	0 	v 

so 	0 	0 	1 	0 	1  

S 1 	0 	0 	0 	1 	0 

S2 	0 	0 	0 	0 	0 

S 3 	0 	0 	0 	0 	0 

S4 	0 	0 	0 	0 	0 

(,( j 	0 	0 	0 	0 	0 

© 0 

1 0 

1 0 

o 1 

v 0 

s 9.sz.matrix. 

6.1 Elágazó - adaptiv - konturos "Crowder"- algoritmus: 

So  8
1 

0 1 0 

o 0 1 

o 0 v 

o o 1 

0 0 0 

o 0 0 

o 0 0 

S3  S4  

0 0 0 

1 I  v v 
0 o 0 

0 1 0 

1 1 0 

0 0 1 

0 o o 

so  
S i  

S2  

8
3  

54  

C6 

S2  

10.sz.mátrix. 
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7./ A Kopstein—féle "paragráf algoritmus":  

II. III. IV. V. VI. VII. VIII. IX. 	X. 

I: 0 1 1 0 0 0 0 0 0 	0  

I1~ o  0 0 1 1 0 0 0 0 	0  

IIIitt  0  o  0 1 1 0 0  o o o  

IV.  o  0 0 0 0  1  1  0  O  0  

V ~ 0 0 0 0 0  1  1  O  O  0  

VI.  o  0 0 0 0 0 0 1 1 0 

VII.~ 0 0 0 0 0 0 0 1 1 0  

VII~~ 0 0 0 0 0 0 0 0 0 	1 

0 0 0 0 0 0 0 0 0 	0 

X.~ 0 0 0 0 0 0 0 0 0 	0 

11.sz.mátrix.  

8./ A D.TOLLINGEROVA által bemutatott "felelet—választós — direktiv"  

algoritmus:  

8A 	12B 6r 131I lOB 6B 10A 18A 

8A  0  0 0 0 

128  0 O 0 -  O 0 0 0 

6A  1  0 0 0 0 0 0 0 

13A  0  0 0 0 0 1 1 1 

10B  1  0 0 0 0 0 0 0 

6B 	0 	0 0 1 0 0 0 0 

10A 	0 	0 0 1 0 0 0 0 

18A 	0 	0 0 0 0 0 0 0 

12.sz.mátrix.  
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/Itt a 8A, 12B, 6A, 13A, 10B, 6B, l0A és 18A a gráf pontjait je-

lölik, lásd a !, ' 	.ábrát./ 

V.  Az algoritmusok formális elemeinek áttekintésére szolgáló "nyilt"  

klasszifikációhoz /nem zárt rendszer, a fejlődés során változhat/  

használt első "fő rendezési elv" alapja az "algoritmus, mint egy át-

alakitási eljárás modellje". Erre a szerepre utal L.N.LANDA / , (; : 44/  

is, amikor kifejti, hogy egyedi esetben az oktatási ráhatásoknak a  

rendszerét olyan algoritmussal irhatjuk le és adhatjuk meg, amely a  

tanuló kiindulási állapota végállapottá való átalakitásának az algo-

ritmusa. Ezzel analóg H.FRANK /47 2 :113/ előbb érintett koncepciója,  

mely szerint az algoritmus feladata a tanuló "ismeret—állapotának"  

az  

Ai  /ahol i = 1, 2, 	 n/ makroállapotből 

a 	Z makroállapotba való átala]-:itása. 

Kiemeli az átalakitási szerepet F.MALIR /.92 : 81/ i s'. 

Ezek után vegyük a gráf—elméleti bevezetőből ismert l.sz.mátrixot: 

C11 	C12 	C13 	.".. 	Clm  

C21 C22 C23 :.. 	C2m 
 

C  C31 C32  C33 	... 	C3m  

. 	••• 	~ 
= /Cij/  

•  •  ...  ~ 
C 	C 	C  nl 	n2 	n3 	Cnm  

1./ A "linearitás" feltétele, hogy a /C 11 /—ben érvényesüljön a /lásd 

az 5.sz.mátrix bekeretezett részét!/ 

Ci, i+l = 1  
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2./ A "konturosság" feltétele, hogy a /C ij /-ben legyenek: /lásd a 

6.sz.mátrix bekeretezett részét!/ 

C 	= 1 értékek. 

3./ A "direktivitás" feltétele, hogy /Cij/-ben /lásd a 7.sz.mátrix 

bekeretezett részét/ 

Ci, i+k 
/"k" = két 0-tó1 különböző esetben/ 111 1 

4./ Az elágaztatás feltétele, hogy a /C ij /-ben legalább egy esetben 

érvényesüljön: /lásd a 9.sz.mátrix bekeretezett részét!! 

Ci 1+1 _ 0i,i+k /ahol 
k A 0 és k A 1/ = 1 

és 

C1_1, j = Cj-k, j  /ahol k A 0 és k A 1/ 	= 1 

5./ A "konturnélküliség" feltétele, hogy a /C ij/-ben minden /vesd 

egybe a 9.sz. és 10.sz.mátrixok keretezett részeit!! 

C
, i-k /ahol k = 0, 1, 2, ..../ 	_ 0 legyen. 

6./ Az adaptivitás feltétele, hogy a /C ij /-ben legyen /lásd a 3.sz. 

mátrix bekeretezett részét/ 

Ci i+k r Ci•  1+1  /ahol k A  0 és 1.-  k/ = 1 

7./ A több felelet választás feltétele, hogy a /Cij /-ben legyen leg-

alább egy olyan elrendezés, ahol /lásd a 12.sz.mátrix bekerete-

zett részét!! 

Cij  /j A 0 ás j i eseteiben "j", "k" különböző értékeinél/ = 1 

ás 

Cji  /j A 0 ás j i eseteiben "j", "k-1" különböző értékeinél/ = 1 

8./ A "paragráf-algoriti us" feltétele, hogy a /C i j /-ben érvényesüllift 

a /lásd a ll.sz.mátrix bekeretezett részét!! 

Ci,  i+l = Ci, i+2 = Ci+1, i+3 =  C. 	i+4 = 1  

VT. Végső formájában ugyancsak mátrixos megoldist fog nyujtani a di- 
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daktikai algoritmusok következő u.n. matematikai—logikai uton törté-

nő megközelitése is. Ezt megelőző kitérőnkben a matematikai logika 

bevezető elemeivel ismerkedünk. 

x, 

A matematikai logika a logikai tudománynak részem melyről KALMÁR 

LÁSZLÓ /e,<:: 3/ az alábbi megállapitást teszi: 

"A gondolkodás a legmagasabb fejlettségi fokra jutott anyagnak, az 

emberi agynak sajátos működése, amellyel tudatunk a tőlünk függetle-

nül létező anyagi világot tükrözi. Gondolkodásunk akkor helyes, ha 

kiien tükrözi a valóságot: hogy igy van—e, azt a tapasztalat dönti 

el. Nagyon sok tapasztalat kellett ahhoz, hogy az ember rájöjjön, 

hogyan gondolkodjék, hogy gondolatai helyesek legyenek: köztük olyan 

tapasztalatok is, hogy a gondolkodás bizonyos módjai, amelyeket he-

lyesnek vélt, hibás eredményre vezettek. Ahhoz pedig, hogy a helyes 

gondolkodás általános forrásait rendszerezze és a helyes gondolkodás 

törvényeit megfogalmazza, az ember nagybku absztrakciójára volt 

szükség. Valóban, hogy a gondolkodás formáit a maguk tisztaságában 

vizsgálhassuk, el kellett tekintenünk a gondolatok tartalmától; s 

hogy a helyes gondolkodás általános, tehát különböző konkrét körül-

mények között egyaránt érvényes törvényeit felismerjük, el kellett 

tekintenünk azoktól a konkrét körülményektől, melyek között ezek a 

törvények az egyes konkrét esetekben érvényesülnek". 

A matematikai logika legelemibb fejezete, az itéletkalkulus a logikai 

müveletekkel foglalkozik. A továbbiakban fontosak lesznek számunkra 

az olyan müveletek, amelyeket itéleteken végrehajtva, ismét itélete-

ket kapunk eredményül, mégpedig ezek közül azok a műveletek, amelyek 

eredményének logikai értéke csak azon itéletek logikai értékétől 

függ, amelyeken a müveletet végrehajtottuk. Az ilyen tulajdonságu 

Witzutatetkort 
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mUveleteket logikai m'.veleteknek nevezzük. Minden logikai művelet-

nek megfeleltetünk egy olyan műveletet, amelyet logikai értékeken 

végre hajtva, logikai értéket kapunk eredményiil.  

Az első ilyen művelet a konjunkció, amelyet az "és" szóval jelölünk 

Ha A és B két itélet, akkor e művelet eredménye "A" és "B" itélet, 

melyet igy jelölünk:  

A A  B 

Ennek logikai értéke valóban csak az A és B itéletek logikai ér-

tékétől T.i. az "A AB" itélet akkor és csak akkor igaz, ha "A" 

is és "B" is igaz.  

A továbbiakban az "igaz = 1" és "hamis = 0" logikai értékjelek be-

vezetése után a konjunkciót igy definiáljuk: 

"A  /\B"  akkor és csak akkor igaz ~ ,ha Aa l és B=l; atöbbi  

esetekben, tehát ha A = 1 és B = 0; vagy ha A = 0 és B = 1; vagy 

ha A = 0 és B = 0, akkor "A .^ B" hamis. 
Értéktáblázatos /igazságérték mátrix/ formában: 

A A  

A második ilyen művelet a diszjunkció, melyet a "vagy" szóval jelö-

lünk. Ha A és B két itélet, akkor e művelet eredménye az "A vagy 

B" itélet /amelyet gyakran "vagy A, vagy B" alakban mondunk/, s ame-

lyet igy jelölünk: 

A ti/  
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Ennek logikai értéke csak az A és B logikai értökétől függ, és akkor, 

és csak akkor igaz  T o  ha A és B közül legalább az e 

leg mind a kettő. Tehát akkor és csak akkor hamis, 0 

Értéktáblázatos /igazságérték mátrix/ formában: 

;yik i az, eset- 

, ha A = B = 0, 

 

A 	V B 

  

   

A harmadik il yen müvelet az implikáció, melyet a "ha...akkor..." kö-

tőszavakkal jelölünk. Az A és B logikai értékeken végrehajtott 

letet, melyre'_ jele: 

A 	` B 

/olvasd A nyíl B/ úgy definiáljuk, hogy akkor és csak akkor hamis, ha 

A = 1 és B = 0; a többi három esetben /vagyis ha A = 1 és B = 1; vagy 

haA=Oés B = 1; vagy  ha A  =  O ós  B=0/igaz. 

Értéktáblázatos /igazságmátrix/ formában: 

A  =t  B 

1 	r  

CI 0 

0 11 

0 n 0 

Megjegyzendő: hogy valamely "ha A o , akkor B o" /Ao 	Bo/ alakú íté- 

let, ahol A o  és Bo  határozott logikai értékű itéletek, igaz, eszerint 

pusztán azt jelenti, hogy vagy Aois és B o  is igaz, vagy mindkettő ha-

mis, vagy Ao  hamis és B o  igaz, de nem jelenti azt, hogy Ao  és B o  között 

valamilyen "logikai kapcsolat" van. 

/A matematikai logikával foglalkozni kivánók VARGA TAMÁS "Matematikai 
1 

logika" I.-II. cimü művéből a további alapokat megismerhetik./ 

x./ 



1./ Az eddigi ismeretek alapján már felépithetjük egy adaptiv korrepe-

táló algoritmus matematikai logikai modelljét. Ezek adaptiv okta-

tási programmokban realizálódnak, s úgy működnek, mint egy tapasz-

talt tanár, vagy még inkább mint egy instruktor, aki úgy fog egy-

egy konkrét tanuló oktatásához, hogy csak a lehetséges fejlettség 

gól van elképzelése és az oktatás folyamán tisztázza az illető 

konkrét tanuló konkrét fejlettségi szintjét és egyéni sajátossága-

it, és ennek alapján szabja az oktatás tartalmát és módját ehhez 

a tanulóhoz. 

Tegyük fel, hogy a tanulókkal egy Bo  feladat önálló megoldását 

szeretnénk elérni. A feladat  egy  egyszerű stereotyp készségfokon 

elsaj átitandó feladat, amelynek megoldása nem  igényel  heuriszti-

kus gondolkodást. Pl.:  Alakitsd át szorzattá 100a2b2c2d2-1 kifeje-

zést! 

A feladat megoldását ehhez hasonló, fokozatosan növekvő tényező-

számu feladatsoron keresztül közelithetjük meg az alapazonosság 

/azonosságok/ ismeretéből kiindulva: 

P1.: a2  - b2  = /a + b// a - b/ 

a2  -- 1 = a2  - 12  = /a + 1//a - 1/ 

a2c2  = /ac/
2  

100a2  - 1 = 102a2  - i = /10a/2-1 = /10a + 1//10a -1/ 

Ugyanakkor gondolnunk kell arra is, hogy a tanuló esetleg az 

a2  - b2  = /a + b//a - b/ illetve az 

2 2 	2 
a c = /ac/ va gy az 

100 = 102  esetleg az 

i = 12  összefüggéseket sem ismeri.' 
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Ezek után le:;yen a feladatsor /még kisérleti anyaj: 

E o  = a tanuló az /a + b//a - b/ szorzást el tudja végezni. 

E 1  = a tanuló az a2  + ab - ab - b2  eredményt össze tudja vonni. 

E2  = a tanuló az /a + b//a - b/ azonosságot ismeri. 

Ao  = a tanuló az a2  - b2  kifejezést szorzattá tudja alakitani. 

Al  = a tanuló a b 2  -1 kifejezésből a "b" értéket meg tudja hatá- 

rozni. 

= a tanuló az a2  - 1 kifejezést szorzattá tudja alakitani. 

= a tanuló meg tudja állapitani, hogy 100 melyik számnak a 

négyzete. 

A4  = a tanuló a 100a2  kifejezést az x2y2  = /xy/2  mintájára át 

tudja alakitani. 

A5  = a tanuló a 100a2-1 kifejezést szorzattá tudja alakitani. 

A6  = a tanuló a 100a2b2  kifejezést az x2y2 z2  = /xyz/2  mintájá- 

A?  

A8  

ra át tudja alakitani. 

= A tanuló a 100a2b2-1 kifejezést szorzattá tudja alakitani. 

= a tanuló a 100a2b2c2  kifejezést az x2y2 z2v2  = /xyzv/2  min- 

tájára át tudja alakitani. 

A9  = a tanuló a 100a 2b2c2-1 kifejezést szorzattá tudja alakitani. 

A10  = a tanuló a 100a2b2c2d2  kifejezést az x2y2 z2v2w2  = /xyzvw/2  

mintájára át tudja alakitani. 

Bo  = a tanuló a 100a 2b2c2d2-1 kifejezést szorzattá tudja alaki-

tani. 

Le:yen a feladatsornak a fentiek szerint rendezett  halmaza:  

E 0 ;E 1' E2' Ao' Al' A2 ;A3 ;A4 ;A5 ;A6 ;A7 ;A8 ;A9 ;A10 ;B o 

Amennyiben ez a Bo  feladat megoldásához szükséges összes elképzel-. 

hető információt tartalmazza, abban az esetben az alábbi algorit- 

A2  

A3  
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mus minden esetben elvezet a didaktikai célhoz. Az ilyen tipusú 

feladatsorok kidolgozása még a jövő feladata. Az algoritmusok ki-

vitelezéséhez pedig nélkülözhetetlennek látszanak az elektronikus 

berendezéssel ellátott oktatógépek. 

Ezek után tételezzük fel, hogy ha a tanuló megoldja 

a2  — b2  = /a + b//a — b/ 

szorzattá alakitását, akkor megoldja a 

• 
100a2b2c2d2  — 1 

szorzattá alakitását is, azaz: 

Ao  

 

	3 Bo  

 

Ennél a feltevésnél csak az implikáció részére az előbbiek során 

megállapitott definicióban megengedetteket tételezzük fel, ugya-

nis nem tételezzük fel, hogy A o  ós Bo  között valamiféle "logikai 

kapcsolat" lenne. Hiszen ezt a feladatmegoldások folyamatát be— 

folyásoló pszichológiai tényezők sem indokolnák.' 
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Ai  Aj  Bo  Ai--Si  Aj .B0  'bevetéséből levon  

ható itélet:  

/Ai–//1/Ai  ~Ai )B0/'Ai_3B0  

1 1 és i=0 1 % stop  

1 0 w 0 tov`íbb:  

/A-A1 //1/A --AB  0/ 
ahol: 	i=0 ás 1. -;-0  

0 1 " 1 "Aha" effektus  

stop  

0 0 " 1 tovább: Ei—, Ao  
ahol: k=0  

1 1 1 1 1 1 1 . 	1 ) stop  

2  1 1 0 1 0 0 0 tovább:  

/A  j–*A  j+1 /A/Aj-  
majd  ha 	11 akkor  

stop, ha IOJ akko  

Aj +2 –vel 

3. 1 0 0 1 0 1 "Aha" effektus  

stop  

4' 1 0 0 0 1 0 0 tovább:  

/A- 	A 1-1  /i\/Aj  
majd ha 	11 vissz 

2./–höz, ha 	IO)ak 

kor u.a. /A1-2/–v  

5. 0 1 1 1 1 1 1 "Aha" effektus 

stopiE  

6: 0 1 0 1 0 0 1 tovább mint 2./  

7. 0 0• 1 1 1 1 "Aha" effektus  

stop A.  

8 0 0 0 1 1 1 1 tovább E i-- 'Ao  

A  

e  

Az algoritmus f$lépitése: 4111  

Logikai séma és feltéte-
lek /0;1/  

VI.  VII.~ 

Operátorok  

A VI. és VII.et;y- 

B~ 

r 
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E i  Ej  Ao  ,E f--E3  Es --A0  /Ej-oEi/'./EpAo/  E 1.—.3A0 
 

1 1 és 1=0 1 	vissza az előbbihez  

1 0 " 0 (tovább /E i,E1 /i;/E--~Ao/ 
ahol 1=0 és j>0  

0 1 " 1 "Aha" effektus, vissza 

az előbbihez. 

0 0 " 1 információ 

1 1 1 1 1 1 1 vissza az előbbihez 

"Aha" effektus = a megoldandó probléma hirtelen felismerésének tényező- 

je.  

A továbbiakban az algoritmus—folyamat ismétlődik.  

I., II., III. az itéletek igazságértékeit tartalmazzák.  

IV., V. a rész összetett itéletek igazságértékeit mutatja.  

VI., és VII. az algoritmus elemeit képező itéletek.  

Ennek az algmritmusnak a gyakorlati értékéről 166 tanuló segitségével  

végzett kisérlet alkalmával meggyőződtünk. A részletes értékelés /17-:  

/_  

a./ A résztvevő 166 fő közül a korrepetálást megelőzőleg egy sem tud-

ta me go ldani Bo—t.  

b./ A kisérlet ugy folyt le, hogy a tanulók papirszalagokon kapták az  

előbbi rendezett halmaz sorrendjében a szükséges információkat  

és a következő információ tartalmára utaló kérdéseket.  

c./ Vannak olyan, csak információkat tartalmazó halmazelemek, ahol  

kérdést nem tettünk fel.  

d./ A válaszadás után kapták meg a következő szalagot.  

e./ Igy sikerült egy adaptiv oktatóberendezés szimulációja.  
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f./ A következő táblázatban a halmaz elemeihez rendelt számok mutat-

ják azon tanulók számát, akik a halmazelemben lévő kérdésre he-

lyes választ adtak. 

g./ Ebből a táblázatból kihagytuk a csak informativ jellegi,i halmaz-

elemeket, de kiegészitettük egy végső tesztvizsgálattal. 

A kérdést tartal- 
mazó halmazelemek Ao A2 A4 A5 A6 

A
7 A8 w9 ®10 Bo T  

A helyes  választ 
adók száma 51% 41% 4816 5916  72% 69% 8096 74% 79% 80lt 59%  

A következő grafikon ezt ábrázolja: 

100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

0 6` Ao A2 A4 A5 A6 A7 A8 A9 A10 Bo T  

1.sz.grafikon. 

A halmazérték rendszer, valamint a grafikon egyaránt igazolják az al- 

goritmus "íizemképességét". 



A leirt cselekvés menete 
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2./  A  matematikai logika szimbolikáját alkalmazza K. ELSNER is /21 :  

66-67/ akkor, amikor egy ILJAPUNOV-féle operátor-sémával felirt  
w,3  

/\ 	 ~^ 	 A 

EA 	B  

 

K 

 

L 

 

A  

       

       

       

algoritmust a logikai feltételekhez / ‚ '3 	/ rendelt igazságérté- 

kek segitségével is leirja: 

O 0 0  

O 0 1  

O 1 0  

O 1 1  

1 0 0  

1 0 1  

1 1 0  

E A /B/ 

E ABL  

E A /B/  

E ABL  

E A 	B /AB/ 

E A 	B /AB/ 

E ABK  

  

1 1 1 	 E A 	B K  

A zárójelben lévő operátorok /B/ a megismétlendő cselekvési cikluso-

kat jelzik. Igy például 

E A/B/=EABBBB 	 ; 

E AB/AB/=EABABAB ABA 	•  

3./ Az adaptivitás egy másik formáját biztositja az alábbi, ugyancsak 

matematikai-logikai kijelentés-kalkulussal leirt algoritmus is. 

Az algoritmus alapja egy rekurziv formula, amely a kijelentés-logikában 

exportáció törvénye" néven ismert összefüggésből vezethető le. Legyen 

itt a cél "E" egyenlet rendszer tipus biztos algebrai megoldásának az 
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elérése. Mint a matematikából ismert, az egyenlet—rendszer megoldása  

egyszerübb egyenletrendszerekre történő visszavezetésén it  fokozato-

san egysze4rüsödő egyenleteken kereszttel történik. Ezek után jelölje  

az egyszerübb egyenletrendszerek, ill. egyenletek /bonyolultsági fok  

alapján/ rendezett halmazát az  

E1' E2 ; E3 ; E4 halmaz. 

Képezzük a következő itéleteket:  

E 	= a tanuló meg tudja oldani az E' egyenlet—tipust.  

E 1  = a tanuló meg tudja oldani az Ei — ennek az egyenletnek megoldá-

sa során előálló — igen egyszerü egyenletet.  

E2  = A tanuló meg tudja oldani az EZ /előbbi feltételnek megfelelő/  

egyenletrendszert.  

E3  = A tanuló meg tudja oldani az E3 /előbbi feltételnek megfelelő/ 

valamivel bonyolultabb egyenletrendszert.  

E4  = a tanuló meg tudja oldani az E4 /ugyancsak az előbbi feltétel—

nek megfelelő/ még bonyolultabb egyenletrendszert.  

A megoldás kritériumát kirejcző összetett itélet:  

/E l  /\  E2 /\E 3 /\E4/  

Alkalmazzuk az exportáció törvényét /51 32/  

/E 1 /\ E2 /\ E 3  /\E4/  	= E l ~ /E2—/E3 4 —. E///.  

/Bizonyítás az idézett irodalomban található./  
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Igy az adaptivitás a következő algoritmusban realizálódott:  

1./ E4  ---=,-E 	itt a VI/1. algoritmus táblázatának első négy /nem szá- 

mozott/ sorának megfelelő  átalakitásával kapott formula  

utasitásai szerint kapjuk a megállitó /stop/ jelet, vagy  

pedig a további utasitást az  

2./ E3  —/E4  ---~E/ vé rehaj tására. A folyamat ismétlődése adja az al-  

goritmus további szakaszait.  

3./ E2  --4/E3  /E4  - - E// illetve az  

4./ E 1—WE2  ---/E 3—*/E4 	E/// elvégzendő müveletsort.  

Az algoritmus adaptivitását az 1., 2., 3., 4. al-algoritmusok fokozata  

biztositja.  

Például: 

11 	18  

	

2x- 3y + 3x - 	
= 13  

E'  

3x - 2y - 2x - 3y  
27 	2 	 1  

11 a + 18 b = 13  

E4 -  
27 b - 2 a = 	1  

	

E' - 	27 b 	2~ 13 - 18b  

	

3 - 	 11  = 1  
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amely az előzőből az 
2X1— 

3y 	
a és 3X1— 2y = b helyettesítés, 

illetve az "a" kifejezése és behelyettesitése után triviálisan adó-

dik. 

Az algoritmus használatát az alábbi, az oktatási gyakorlatban elég 

gyakran előforduló esetek indokolják: 

a./ Vannak olyan, főleg gyenge tanulók, akikre az uj információk fel-

vétele olyan erősen hat, hogy ez gátolja a feladat megoldásához 

szükséges régebben tárolt információk asszociációját. Röviden a 

törtes egyenletrendszert még át tudja alakitani a két paraméter 

segitségével nem törtes alaku egyenlet—rendszerre, de utána nem 

jut eszébe a megoldás további menete. 

Vagy tudja, hogy a most tanult német melléknév ragozásánál a mel- 

léknév egy adott esetben erősen ragozandó, de nem jut eszébe a 

főnév neme. 

Egy következő esetben megemlitik a tanulóknak egy bizonyos vegyi 

anyag mezőgazdasági alkalmazásának előnyeit, de ugyanakkor akadnak 

olyan tanulók, akiknek nem jut eszükbe a kérdéses anyag fizikai, 

kémiai tulajdonságai. 

b./ 	ixxs  a  gyakorlati eredményre jutunk annál a tanulónál, aki 

nem szokta meg munkájában a huzamosabb ideig tartó és folyamato-

san megismétlődő koncentrációt. 

c./ Ugyancsak erre a jelenségre vezet az az eset is, amikor a tanuló 

az al—algoritmusokban lévő megtanulandó algoritmusokat még nem 

fejlesztette a készség, ill. jártasság fokára. 

Eme egy és ugyanazon jelensében rejlő különböző — a lényeget alkotó — 
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gát16 okok feloldására célravezető ennek az adaptiv algoritmusnak az 

alkalmazása. 

A matematikai logika segítségével tört-nő algoritmus szerkesztés uttö-

rő példáját találjuk meg NAGY JENŐ 	-r/ "Nevelési tervében". 

XII. A "matematikai logikai" formákkal szimbolizálható algoritmusok 

tárgyalása hiányos lenne, ha nem térnénk ki olyan esetekre is, amelyek 

csak az "absztrakt automaták" elméletének keretein belül érvényesek, 

de talán ezért a gépi programmozás terén /amikor a programmok egyes 

részeinek kOszitése mechanizálható/ perspektívát mutatnak: 

1./ H.FRANK / 35' :107/ a Moore—algoritmus lo;;ikai mátrixából /G/ logi- 

kai transzformációs mátrixokkal végzett szorzások segítségével 

előállit egy kompoziciós mátrixot /GX/. 

A T transzformációs mátrixot a 2.sz.mátrix alapján, mint kód-

mátrixot irjuk fel: 

i.7)( to  S i  S2 
(.e. 

1 0 0 0 0 

S  0 1 0 0 0 

S i  0 0 1 0 0 

S2  0 0 0 1 0 

(t o o 0 0 1 

13.sz.mátrix. 

Az S 1 ás S2  sorok cseréje után kapjuk a T' transzformációs mát- 

rixot: 
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1 0 0 0 0  

o 1 0 0 0  

T' o 0 0 1 0  

o 0 1 0 0  

o 0 0 0 1  

14.sz.mátrix.  

Ezek után H.FRANK az alábbi mátrix szorzatot képezi:  

Gx  ~ 	T' 	. G . T  ~ 

1 0 0 0 0  0 1 0 0 0  1 0 0 0 0  

0 1 0 0 0  0 1 1 1 0  0 1 0 0 0  

Gx  =  0 0 0 1 0  e 0 1 1 1 0  0 0 0 1 0  

0 0 1 0 0  0 0 0 1 1  0 0 1 0 0  

0 0 0 0 1  0 0 0 0 1  0 0 0 0 1  

x.  x  

A müveletek elvégése előtt ismerkedjünk a mátrixok szorzásának fogal-

mával és technikájával LOVASS—NAGY VIKTOR /r : 20/ alapján: 

a./ Adott "A" mátrixnak adott "B" mátrixszal való "A.B" szorzata csak 

akkor értelmezhető, ha "A"—nak /a baloldali tényezőnek/ ugyanannyi 

oszlopa van, mint ahány sora van "B"—nek /a jobboldali tényezőnek/. 

b./ A szorzást ezek után a következő szabály szerint végezzük /!/el: 

1./ Vesszük a baloldali mátrix első sorának első elemét, s ezt 

megszorozzuk a középső mátrix első oszlopának első elemével, 

majd a baloldali mátrix első sorának második elemét megszoroz- 
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zuk a jobboldali mátrix első oszlopának második elemével ós 

igy tovább ... végezetül ezeket a szorzatokat összeadva meg- 

kapjuk  a szorzat mátrix első sorának és oszlopának közös el 
léc" 

ső elemét, majd az első sor elemét a második oszlop első ele- 

mével; utána az első sor második elemét a második oszlop má-

sodik elemével szorozzuk, s ezt folytatva az összegük a szor- 

zat mátrix első sorának második, ill. a második oszlop első 

elemét kapjuk mint közös elemet. Az eljárás a továbbiakban 

analóg módon követhető: 

1.0+0.0+0.0+0.0+0.0;1.1+0.1 +6.4+0.0+0 .0 • 	  

0.0+1.0+0.0+0.0+0.0; 	  

0.0+0.0+0.0+1.0+0.0; 	  

o 1 

X. X 

o 0 0 

o  1 1 1 0 

T' 	.` G = o o  0 1 1 

o 1 1 1 0 

o o  0 0 1 

15.sz.mátrix. 

Következő lépésként a 15.sz.mátrixot ismételten megszorozzuk T'—el, 

s ekkor 

Gx  _ 	T' . e . T' 



majd a 

~ 

mutatja az uj gráf  
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0 1 0 0 0  1 0 	0 0 0  

0 1 1 1 0  0 1 	0 0 0  

(#  0 0 0 1 1  e  0 0 	0 1 0  

0 1 1 1 0  0 0 	1 0 0  

0 0 0 0 1  0 0 	0 0 1  

o 1 0 0 0  

0 1 1 1 0  

Ox 	
MID 0 0 1 0 1  

0 1 1 1 0  

0 0 0 0 1  

16.sz.mátrix. 

Az ehhez tartozó gráf felirásához nélkülözhetetlen táblázat; 

04 S  o  
S 1  S2  c_A)  

0 1  0 0 0 

So  0 1 1 1 0  

S i  o  o 1 0 1  

S2  0 1 1 1 0  

o o 0 0 1  



-98- 

Ha ezt egybevetjük a ..e.sz.ábrán látható gráffal, akkor láthatjuk 

hogy az S 1  és S2  helyet cseréltek. /A most elmondottaknak nem sza-

bad több jelentőséget tulajdonitani, mint amennyi az "automaták el-

méletének" megfelel. Eszerint ugyanis bármely automata a 

jelsorozatok valamely halmazának a jelsorozatok egy más halmazába 

való leképzését adja meg, ahol e jelsorozatok a bemenő, ill. a ki-

menő információ hordozói. 

2./ H.FRANK ugyanittemlitést tesz egy olyan "Gn" mátrix-hatványról, ame-

lyiknek %Gin/" eleme megadja azon "n lépéses " utaknak a számát, ame-

lyek az S i-ből az Sj -be vezetnek. Mivel a szerző ennek a különben 

igen érdekes megállapításnak konkrét tárgyalását mellőzte, Igy az 

alábbiakban kivánom ezt pótolni. 

a./  A  mátrix-aritmetika /8L: 27/ a kvadratikus-mátrixok hatványo-

zását igy definiálja: "Több tényezős mátrix-szorzat speciális 

esete, valamely kvadratikus mátrix természetes egész kitevőjíi 

hatványa: 

An 	= A . A . A . 	 A 

ahol #A# kvadratikus mátrixot jelent. 

b./ Mivel G /lásd 3.sz.mátrix/ valamennyi e munkában eddig szereplő 

összes átalakitási mátrixszal együtt kvadratikus, igy: 

Gn  = G. G. G. 	G 

többszörös mátrix-szorzat értelmezhető. 

c./ A G /Moore-algoritmus/ mátrix négyzete ezek szerint: 

G2  = G . G 



O 1 0 0 0 

O 1 1 1 0 

O 1 1 1 0 

O 0 0 1 1 

O 0 0 0 1 

O 1 0 0 

O 1 1 1 

O 1 1 1 

O 0 0 1 

O 0 0 0 

G2  0 
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a mátrixok szorzásával ismertetett eljárás alapján: 

Táblázatos formában átirva: 

So  S 1 S2 

0 0 1 1 1 0 

0 0 2 2 3 1 

0 0 2 2 3 1 

1 0 0 0 1 2 

1 0 0 0 0 1 

Lt/ 

O 1 1 	1 	0 

O 2 2 3 	1 

O 2 	2 	3  I  1 
 

0 0 0 1 	2 

O 0 0 0 	1 

17.sz.mátrix. 

Vegyük észre, hogy az S 1—ből S2—be vezető két lépéses átmenetek 

számát a "bekeretezett" 3—as mutatja. Ha ezt összevetjük a 

ábra gráfjával, akkor a mátrixból leolvasható három kétlépéses ut 

az 

S 1 	 So 	 S2  

S 1 	 S 1 	 S2  

S l 	 S2 	 *S2  

utakban könnyen felismerhetők. 

Ha a háromlépéses utak számát meghatározó mátrixot 

G3  _ G2 	 . 	 G 

So  

S i 

S2  

(A) 
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összefüggés alapján kiszámitjuk: 

0 1 1 1 0 0 1 0 0 0 0 3 2 3 1 

0 2 2 3 1 0 1 1 1 0 0 4 4 7 4 

a3 = 	022 31 	0 1110 	= 	0 4474 

0 0 0 1 2 0 0 0 1 1 

0 0 0 0 1 0 0 0 0 1 

0 0 0 1 3 

0 0 0 0 1 

és az ismert "átalakitási táblázatba" felirjuk: 

So  S 1 

0 3 2 

So  0 4 4 

Si  0 4 4  

S2  o 0 0 

CO  o 0 0 

S2 

3 	1 

4 	4 

I 77 1 	4 

1 	3 

0 	1 

18.sz.mátrix. 

akkor az S 1—ből S2—be vezető 7 különböző három—lépéses átmenetet 

az előbbi 3ráfon az 

S 1  —S1  —S1  —S2  

S 1  — 	S1  — 	So  — 	S2  

S 1  — 	S1  — 	S2  — 	S2  

S 1  — 	So  — 	So  — 	S2  

S 1  — 	So  — 	S2  — 	S2  

S 1  — 	S2  — 	S2  — S2  

S 1  — 	So — 	S1  — 	S2  

utakban felismerhetjük. 



— 101 — 

Jogosan felvetődhet a kérdés, hogy ez a szabály nem—e csak 

a Moore—algoritmus mátrixaira érvényes? A következőkben meg—

kisérelem az összefüggés kiterjesztését más algoritmus—tipus-

ra is, mint pl. a Skinner—algoritmusra, majd végül az általá-

nos érvényü igazolást. 

d./ Vegyük a Skinner—algoritmus mátrixát /5.sz.mátrix/: 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 0 

S as 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

0 0 0 0 0 0 1 

0 0 0 0 0 0 0 

Képezzük ennek a kvadratikus mátrixnak a négyzetét az 

S2  

összefüggés alapján: 

= 	S  • S 

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

2 S 	— 0 0 0 0 1 0 0 • 0 0 0 0 1 0 0 _ 0 0 0 0 0 1 0 

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Majd átirva az átalakitási táblázatba, kapjuk: 
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e% 
 so  

Si 
 S2  S3  84 

0 0 1 0 0 0 

So  0 0 0 1 0 0 

S 1  0 0 0 0 1 0 

S2  0 0 0 0 0 1 

S 3  o 0 0 0 0 0 

S4  o  0  0  0  0  0  

~v 0  0  0  0  0  0  

19.sz.mátrix- 

ot, melyet egybevetve az  -- 'sz.tábla baloldali felső gráfjá-

val, vegyük észre, hogy két lépéses átmenetet valóban csak a  

mátrix által definiált  

e4 	S o  — S 1  

So  — S 1 —  S2  

S 1 	S2  — S3  

S2  — s3  — S
4 

 

utak adhatnak. Továbbá a kissé hosszadalmas számitási eljárás  

mellőzésével közvetlenül felirjuk az  

S 6  = s5  . S = /s4 .s/s = /83 . 5/.8 .8 = /S 2 .S/.S .s .8  

f,C  

0  

0  

0  

0  

1  

0  

0  

mátrixát: 
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o o 0 0 0 0 1 

o 0 0 0 0 0 0 

o 0 0 0 0 0 0 

o 0 0 0 0 0 0 

o 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

20.sz.mátrix. 

Majd a hozzátartozó átalakítási táblázatból: 

So S1 S2 S3 S4 0 

0 0 0 0 0 0 1 

So  0 0 0 0 0 0 0 

Si  0 0 0 0 0 0 0 

S2  0 0 0 0 0 0 0 

S3  0 0 0 0 0 0 0 

S4  0 0 0 0 0 0 0 

4k) 0 0 0 0 0 0 0 

Az előbbi gráffal történő egybevetés után látható lesz, hogy 

6 lépéses átalakitást csak az egyetlen 

S o 	S1 	S2 	S 3 	S4  — CL 

ut képvisel. 

s6 

Mint érdekesség, emlitésre méltó, hogy az: 
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0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

S?  IMO 
Oat 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

21.sz.mátrix. 

minden eleme "0", mivel a szóbanforgó gráfon is látható egyet-

len hétlépéses átalakitási ut sincs. 

d./ Az általános igazolásnál ismételten tekintetbe mix kell ven-

nünk a mátrixok szorzási szabályát. 

P1. 

G2  mátrix Gij
/2/ 

 eleme a 

"G" "i—edik" sorának és "j—ik" oszlopának megfelelő elemei 

szorzatainak az összege. Mivel az "i—edik" sor megadja mind-

azokat az átalakitási utakat, amelyek az S i—ből indulnak ki; 

mig az "j—ik" oszlop prezentálja mindazokat az utakat, amelyek 

Az 3.—be vezetnek. Ennek alapján a 

Gij
/2/ 

   + Gik  . Gkj  + 	 

összegben a Gik .  Gkj  szorzat me gadja mindazon utak számát, 

amelyek az S i —ből az Sk—n át az  Si —be  vezetnek "két lépés"—ben. 

/Mivel a Gik  az S—ből Sk  ba vezető utak száma és G kj  az Sk-

bó1 az Sj —be vezető utak száma./ S igy a Gij/2/  elemben lévő 

összeg az összes lehetséges "két lépéses" átmenetek lehetősé- 
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geinek az összegét adja meg. Igy a H.FRANK—féle szabály általá- 

nos igazolást nyertl 

Az olvasóban joggal felvetődhet a kérdés: vajjon mi értelme van 

ennek a bonyolult mátrix—aritmetikai eljárásnak? Nem—e valami ön-

cólu matematikai eljárás "eleganciájának divatbemutatóját" kell—e 

itt megcsodálnunk? — Kétségtelen, hogy a matematikai apparátus sze-

repe korunkban igen megnőtt, s bonyolult összefüg géseket sokszor 

feltünő müveleti egyszerüségben tárgyal. Az eljárás célszerüsége 

azonban mélyebben keresendő. A nemzetközi tudományos világ nagy 

szaktekintélyei közül egyre többen nyilatkoznak az elektronikus 

számológépek didaktikai szerepéről. Igy többek között A.I.BERG 

/ f- : 68/ akadémikus, aki szerint a jövő oktatása elképzelhetetlen 

nagyteljesitményü adaptiv elektronikus számológépek alkalmazása 

nélkül. Ha ezt magunkévá tudjuk tenni, akkor be kell azt is lát-

nunk, hogy az ilyen eszközöknek az oktatás folyamatának minden té-

nyezőjéről pontos adatokkal kell rendelkeznie, hisz a tanulók mun-

kájának regisztrálásához ez nélkülözhetetlen. Igy a folyamatban 

előforduló lépések számát ismernie kell. /A konstruktiv elemek c. 

fejezetben részletesebben tár , yaljuk./ 

3./ A 	sz.ábra fa—diagrammjával ábrázolt algoritmust az aláb- 

biakban matematikai logikai igazságértékekből képzett "sor—mátrix"-

ok /olyan mátrixok, amelyek egy sort tartalmaznak csak/ összeadá-

sával fogjuk leirni. Itt mindenek előtt két uj fogalmat vezetünk 

be: 

a./ Mátrixok összeadása és kivonása csak ugyanannyi sort és oszlo- 

pot tartalmazó mátrixokra van értelmezve /3b :67/. A mátrixok 

Maa összege alatt igy a megfelelő elemek összegeiből képzett mát- 

rixot értjük. 
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b./ I.I.ZSEGALKIN /ii':103/ meghatározásában, mely szerint a mate-

matikai logikai alapműveletek aritmetikai alapműveletekkel szim-

bolizálhatók, a logikai összeadás a kizáró vagylagosságnak fe-

lel meg, tehát x + y nála akkor ős csakis akkor egyenlő 1-el, 

vagyis akkor és csakis akkor igaz, ha vagy "x" vagy "y", de nem 

mind a kettő "igaz". 

Igy ennek megfelelően a "matematikai lo;ikai" bevezetőben is-

mertetett "diszjunkció" értéktáblázata módosul: 

x + y 

1 + 1 0 modulo 2 

1 + 0 1 " 2 

0 + 1 1 It  2 

0 + 0 0 it 2 

ahol a "modulo 2 " azt jelenti, hogy az 1+1 = 2 eredménye, mint 

a *2-vel" történő osztás utáni maradék értelmezendő. 

Ezek ski szerint: 

x + y eredeti összeg osztva 2-vel maradék 
"modulo 2" 

1 + 1 2 2 : 2 = 1 0 mod.2. 

1 + 0 1 1 : 2 _ 0 1 mod. 2 

0 + 1 1 1 : 2 _ 0 1 mod.2. 

0 + 0 0 0 : 2 = 0 0 mod.2?  

c./ Ezt követően abból az alapfeltevésből indulunk ki, hogy az ope-

rátor munkája mckezdésének az előfeltétele a készüléknek a 

hálózatba történő bekapcsolása ős a piros lámpa felvillanása. 

Ezt a kijelentés-logika itéleteinek a segitségével is felir-

hatj uk: 



1  

1  

1  

Vi  
1 

1  

1  

1  
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/a A b/ 	› C 	
az összetett itélet  

értéke  

0 0 0 

1 0 0 

0 1 0 
X  

~ 1 1 0 .r-J  
x 
.~ , 0 0 1 

s .~, 1 0 1 

0 1 1 

1 1 1  

A továbbiakban előrebocsájtjuk:  

d./ Az itélet értékmátrixának bármelyik sora kettős értelemmel bir:  

statikus értelmezésben logikai feltétel, és dinamikus értelme-

zésben operátor. Pl.:  

 

C  

 

0 	1 	1 	~b 

0.1110 	 ros 

szerint a baloldalon álló "B" jelenti, hogy végrehajtottuk a  

"gépüzem beinditását", a jobboldalon álló "b" az uj logikai  

feltételre utal, mely szerint a munka megkezdhető!  

e./ Az algoritmus által leirt tevékenység optimális esetben a  

0 	 0 	 0 	-a  
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logikai feltételből indul ki és elvezet az  

C 	1 	1 	1 	b  

logikai feltételhez, vagy kevésbbé optimális esetben az  

D 	1 	1 	0 	—b  

logikai feltételhez. Az algoritmus által meghatározható megoldá-

sok száma eyenlő azon lehetséges összegek számával /mátrix—arit-

metikai értelmezési, amely a /0,0,0/ állapotbál az /1,1,1/ vagy  

/1,1,0/ állapotba vezet.  

f./ A megállimititó (stop/ jelet itt az összetett itélet megfelelő  

értékei:  fl vagy 	jelentik.  

Ezek után az algoritmus a következőképpen alakul:  

össze—  
adás!  

e  redm.  
mod.2.  

A 

B 

0 

1 

0 

0 

0 

1 

0  

0  

1  

—a  

b 

sor—mátrixok  

megfelel az  
/aABbC 	/—ne  !  

megfelel az 
/aABbD/-.nekt  

megfelel az  
/aBbC '.-/—nek!  

C 

A 

B 

1 

0 

1 

0 

1 

0 

0 

1 

1 

0  

0  

0  

X11 

—a  

D 

B 

1 

1  

0 

1 

0 

1 

0  

0 

1  

(~ 
"~  

a  

b 

C 1 1 1  



— 109 — 

1 	0 	0 

B 	0 	1 	0 

a 

—b 

 

D 	1 	1 	 0 

 

megfelel az 
/aBbD)F /—nek ! 

3/a. Ennek az al;oritmusnak egy speciális változata, mint felismeré-

si fél—algoritmus egyes összefüggések diszkutálására is alkalmazható. 

Ezzel a rész—algoritmussal végzett speciális gondolkodás—lélektani 

vizsgálatok /5-11 :-- / alapgondolata M.LIEBING—/'g :563/—től szárma-

zik, aki az algoritmusok tudatos elsajátitásában felismeri annak szük— 

ségszerüsé ,ét, hogy a tanulók képesek legyenek a logikai strukturák 

felismerésére és alkalmazására. Szerinte ennek azonban nemcsak egy 

speciális szakterületen, hanem a természeti jelenségek széles terüle-

tein kell érvényesülnie. Ugyanis a különböző jelenségeknek egy— és 

ugyanazon logikai strukturájuk lehet, amelyek azonos gondolkodási 

folyamat segitségével tárulhatnak fel. 

Ezek a didaktikai kutató munka jövőjét előrevetitő meglátások feltét-

lenül csak a pedagógiai pszichológia egzakt vizsgálaódásainak szürő-

in keresztül juthatnak el a széleskörű alkalmazás gyakorlatához. En-

nek keretében vizsgálatokat folytattam, amelynek célja annak megál-

la itása volt ho 	a 1618 éves II.—IV, imnazista tanulók e 	"ha 

A és B, akkor C" formáju itélet ismeretében az alant ismertetésre  

kerülő mátrix 2., 3. és 4.soraira utaló kérdésekre adott válaszaik-

ban milyen mértékben ismerik fel az eredeti itélet specifikus alkal-

mazását. A vizsgálatokba 452 II.—IV.osztályos gimnazista tanulót von-

tam be. Ezek a koedukáció arányában oszlanak meg nemek szerint. A 

területi elosztásnál az általános mintavétel elve alapján Pest megye 

városi és falusi gimnáziumai /Na> ykőrös, Aszód, Ócsa, Gödöllő, Rác-

keve, Nagykáta, Monor, Szentendre és Szob/ szerepeltek. A témaköri 
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megoszlásnál 65—en az algebrai, 278—an a sztereometriai és 109—en 

a planimetriai vizsgálatokban vettek részt. 

A következőkben a matematikai logika alkalmazásának lehetőségein 

belül az elemi itélet—kalkulusok igazság—mátrixainak, ill. az álta-

luk kapott, ill. alkotott kombinatórikus rendszerek pedagógiai—pszi-

chológiai szerepére szeretnék utalni. Ezen belül — mint emlitettem — 

kizárólag az összetett előtagú implikációkkal foglalkoztam. 

A matematikai logika értele zése sz.:rint az, hogy valamely "ha A, 

akkor C" alakú itélat, ahol "A" és "C" határo^r>tt Joginai értékü 

itéletek, igaz, eszerint pusztán azt jelenti, hogy vagy "A" is és 

"C" is igaz, vagy mindkettő hamis; vagy "A" hamis ős "C" igaz, de 

nem jelenti azt, hogy "A"  ós "C" között valamilyen logikai kapcso-

lat van, mii; ettől függetlenül az "A" igaz és "C" hamis állitás 

minden esetben hamis. /G.KLAUS / fit•: 71/ ezt a következő példán mu-

tatja be: "Ha az eső esik, akkor az uttest nem nedves". Vagy A.I. 

POPOV /lQ': 97/ példája szerint: "Ha Péter prémiumot kap, akkor 

televiziót vásárol" itélat az előzőhöz hasonlóan csak akkor hamis, 

"ha Péter prémiumot kap, akkor nem vásárol televiziót"./ Az impli— 

káció értelmezése egyébként sokszor nem esik egybe a köznyelv "ha... 

akkor..." kijelentőseivel. LEWIS és LANGFORD matematikai logikusok 

megpróbáltak egy olyan "szigoru implikációnak" nevezett müveletet 

levezetni, melynek az lett volna a feladata, hogy az "A" és "C" 

itéletek szigoru implikációjának igazsága ne csak azt fejezze ki, 

hogy az az eset, hogy "Az igaz", "C mégis hamis" nem áll fenn, ha-

nem azt is, hogy ez valamely "A" és "C" közötti kapcsolat folytán 

szükségképpen igy van. Ez a próbálkozás azonban nem vezetett ered-

ményre. G.KLAUS a fentiek figyelembevételével az implikációt két 
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nagy csoportra osztotta ős azokat az implikációkat, melyek az "A" 

és "C" közötti kapcsolatot tartalmilag is kifejezik, materiális isp— 

likációknak nevezte. 

Tekintsük a "ha A ős B, akkor C" összetett materiális implikációt. 

Alkalmazzuk ennek igazság—mátrixát az itélettel kifejezett tétel 

diszkutálására: 

/A' ) C B/ 

1 1 1 1 

2.  0 1 1 1 

3.  1 0 1 1 

4.  0 0 1 1 

5.  1 1 0 0  !!!  

6.  0 1 1 0 

?. 1 0 1 0 

8. 0 0 1 0 

Nevezzük ezt az eljárást specifikus diszkutáló aloritmusnak, mely-

nek l.sora szerint: "ha A igaz ős B is igaz, akkor C is igaz". Ez 

maga  a  tétel. A 2.sor szerint, ha "A" hamis, ős "B" igaz, akkor a-

dódhat egy olyan speciális eset, amikor "C" is igaz. A 3.sor sze-

rint, ha "A" igaz, de "B" hamis, akkor adódhat egy másik speciális 

eset, amikor "C" is igaz. A 4.sor szerint, ha "A" is hamis és "B" is 

hamis, akkor is előfordulhat egy eset /lehet, hogy fügetlenségi e-

set.../, amikor "C" igaz. Az 5.sor szerint, ha "A" igaz és "B" igaz, 

akkor "C" hamis — ez az állitás helytelen. Ez a mátrix egyetlen ha-

mis tétele. A 6.-.8.sorokra — bár igaz itóletek — de mivel az alábbi 

vizsgálatoknál nem játszottak lényeges szerepet, nem törek ki. 
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A vizsgálat egy algebrai, egy sztereometriai és egy planimetriai 

témában folyt. Igy például: 

Ha A = hatványalapok egyenlők, 

B = a hatványkitevők egyenlők, 

C = a hatványok is egyenlők. 

Ebben az esetben az exponenciális egyenletek egy tipusa megoldásá-

nak alapjául szolgáló igen ismert összefüggéshez jutunk, mely sze-

rint: ha a hatványok alapjai és kitevői egyenlők, akkor a hatvány-

mennyiségek is egyenlők. Most a mátrix első sora a tétel. A 2.sor 

szerint, ha az alapok nem egyenlők, de a kitevők igen, akkor a hat-

ványok, mint például a /-2/4  = 24 , vagy 13 °  = 456 °  speciális esetek-

ben mégis egyenlőek. /Ez a páros kitevőjű és "0" kitevőjű hatványok 

törvényeinek a jelismerése./ A 3.sor szerint: ha az alapok egyenlők, 

de a kitevők nem, akkor a hatványok, például az 1 5  = 143 , vagy 0
7 

 

0215  esetekben mégis egyenlőek.  /Ez a felismerése annak, hogy a "0" 

bármelyik hatványa "0", 1—nek pedig l.1 

Ha az egyenes és sikok merőlegességének feltételét kimondó CAUCHY-

tétel ábrázoló—geometriai változatára alkalmazzuk a mátrixot, akkor 

A = az egyenes első képe merőleges a sik első nyomvonalára, 

B = az egyenes második képe merőleges a sik második nyomvonalára, 

C = az egyenes merőleges a sikra. 

Itt a mátrix l.sora szerint, ha az egyenes első képe merőleges a 

sik első nyomvonalára és második kéke a második nyomvonalra, akkor 

az egyenes merőleges a sikra. A 2.sor szerint, ha az egyenes első 

képe nem merőleges a sik első nyomvonalára, de második képe merőle-

ges a sik második nyomvonalára, akkor az egyenes egy, az első kép-

sikkal párhuzamos speciális helyzetű sikra merőleges. A 3.sor sze-

rint, ha az egyenes első képe merőleges a sik első nyomvonalára, és 

második képe nem merőleges a második nyomvonalra, akkor az egyenes 

egy,  a második képsikkel párhuzamos speciális helyzetű sikra merőle- 
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ges. 

Planimetriai alkalmazásként vettük a háromszögek hasonlóságának e-

gyik esetét. Legyen: 

A = két héromszögben megadom egy szög egyezőségét. 

B = ugyanazon két háromszögben megadom az egyező szöget 

közrefogó megfelelő oldalak arányát, 

C = a két háromszög hasonló. 

A mátrix 1.sora az a hasonlósági eset. A 2.sor szerint, ha két há— 

romszö,7né1 nem adom meg az egy szögben való egyezőséget és megadom 

a két megfelelő oldal arányát, akkor a speciális háromszögek közül 

az egyenlőszáru háromszög hasonló. A 3.sor szerint, ha két három- 

szögben megadom egy szög egyez5s6g6' , de nin adom meg egy megfelelő 

oldalpór arány-át, akkor a speciális háromszögek közül a derékszögü 

háromszög hasonló. A 4.sor szerint, ha sem a szögek egyezőségét, 

sem a megfelelő oldalpórok arányát nem adom meg, akkor a speciális 

háromszögek közül az egyenlőoldalu és az egyenlőszáru derékszögü 

háromszögek hasonlóságát definiáltam. 
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Következtetések:  

1./ Az algebrai ős sztereometriai vizsgálatokban résztvett 343 ta- 

nuló közül a helyes választ adók átlaga 32,5 fő — azaz 9,4 %.  

Ez arra mutat, hogy a tanulók ebben a két tómában nem tudnak  

diszkutálni. Összevetve a planimetriai példa relative magas  

— 46%—os — felismerési átlagával, feltétlenül kitünik, hogy az  

eddigi oktatási gyakorlat alapján a diszkutálás főleg a plani-

metriai problémákkal kapcsolatban fordult elő.  

2./ Az algebrai ős sztereometriai témáknál a legnagyobb százalékban  

/43-37-44/ a helytelen logikai következtetést használók tünnek  

ki. Ezekből egy—két reprezentáns idézetet bemutatok: "Ha egyen- 

lők az alapok és a hatványok, akkor egyenlőknek kell lenni a  

kitevőknek is." ,.  "Ha az egyenes merőleges a sikra és első képe  

merőleges a sik első nyomvonalára, akkor ebből az következik,  

hogy a második képének is merőlegesnek kell lennie a második  

nyomvonalra".  

Ezekben az idézett itéletekben téves logikai azonosság ismerhető fel,  

ugyanis az idézetek azonosság—szerkezetéről:  

k(A '`~ B/ 	C) 
 A  Q7\  B/ 	A  =EF 1  

	

1 ,  1  1 1 Oi 1 rl .j 0 0 1 Ol 1 	51  
2. 0 0 1 

.O 
 i ,i a  i l  C)i 	f0  

3. 1  0 0 ,O  1 51 0 0 0 O i 	! i1  
4. 0  0 0 (:) 1 n 1 0 0  (i)  1 	n 

	

®oioo i o 	[ 

	

@ 01h1l ® 0 	To]  

	

íOo rJ 000 Oi o 	[3. l 

	

o o 	 0000 	n  (?) 
 

mint azt a jobboldali oszlopban található három "0" érték mutatja,  

5. 1 1 1  

6. 0 0 1  

7. 1 0 0  

8. 0 0 0  

nem azonosság.  
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Ebből megállapitható, hogy a mátrix diszkutáló algoritmusának szo-

katlansága olymérvü, hogy  téves logikai utakra vezethet. Részletez-

ve: 

Itt a tanulók előtt ismert volt az 

/A 	. 	B/ 	y  C 

j 

 

összefüggés. 

Ezután közöltem velük az 

//'\ B/ 	? C 

információt. 

Végül az ujonnan előállott helyzetet a két itélet összekapcsolásá-

ból  kellett megitélniük: 

L/A A B/ 

 

	 CI A  Vi A B/ 	 c  

 

A tanulók tekintélyes hányada itt az -K itélet lehetetlenségét vélte 

felismerni, s igy jutottak el a 

L/A 	B/ 	6-1 //\\ C__ / `. B/ 

komkluziáhpz. 

Ennek magyarázata abban kereshető, hogy az 

 

 

/A /\ B/ 

 

	 C 

 

tétel erős tulajdonsága álcázza és gátolja az eredeti probléma uj 

helyzetekben történő felismerését, s igy nagyjából e folyamatban a 

RUBINSTEIN-féle tetraéder- és a SZÉKELY-féle mérlegfeladatnál mutat-

kozó törvényszerűségek érvényesülnek. Ott az első esetnél a három-

szög sikot meghatározó tulajdonsága gátolta a térbeli elrendezést, 
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a második esetnél pedig a gyertya fényt—adó tulajdonsága gátolta az 

égés közben előálló súlyveszteség felismerését. 

An  eddigi pedagógiai gyakorlat sokszor megelé_edett elszietelt té-

telek puszta közlésével, tehát "ha A és B, akkor C" — jobbik esetben 

azt verifikálták, esetleg alkalmazták. Elenyésző esetben utaltak a 

mátrix 5-8. sorának megfelelő változatokra, és a 2-4. sorok által 

definiált eseteket általában mellőzték. A tanulók gondolkodásának 

fejlesztéséhez az utóbbiak nélkülözhetetlenek, ugyanis a mátrix ve-

zérelte dinamikus szemléletnek az eddigi statikus itélet—szemléletet 

feltétlenül ki kell egészitenie. A fentiekben ennek igazolására tet-

tem kisőrletet. 

Ez a kis "gondolkodás—l&lektani" kitérő csak példaként szolgálta az 

előbbiek során történt ismételt utalást, amely szerint az algorit-

mus—elmélet ma már a modern pszichológia bevett módszere. 

x. 

VIII. A következő bemutatásra kerülő didaktikai—algoritmus leirási 

forma csak az oktatási folyamat egy részét modellezi. Ennek alapja 

a Kombinatórika egyik fejezete: a"variáció—szái.itás". Ez a közismert 

matematikai eljárás mindennapossá vált a TOTO—elvben, ahol az l.szá-

mú mérkőzés három eleméhez /1;2;X/ a 2.számu mérkőzés ugyancsak 3 

eleme /1;2;X/ rendelhető, s igy két mérkőzés relációjában a lehet-

séges esetek száma: 

3. 3 = 32  

Mint ismeretes, ezen az uton számithatjuk ki a 13 mérkőzés összes 

variációinak a számát: 
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Ebből kifejezhető az egy szelvény találati valószinüségének a száma 

is: 
1  

Ptoto - 313 

A variációszámitásnak itt alkalmazott vállfaját "Ismétléses variáci-

ók" néven ismeri a szakirodalom. Ugyanis i`en könnyű belátni, hogy 

például az alábbi Toto-szelvényben 

1. 2. ` 3• 4.  5. 6. ?. 8 •  9. 10. 11.' 12' 13. 1 

X 1 2 2 X X 1 1 2 2 1 i ii!  

az "X" háromször, a "2" négyszer, mig az "1" pedig hatszor ismétlődő 

elem. 

Általában az "n" elem "k-adik" osztályu ismétléses variációinak szá-

mát a 

Vk  = nk  n 

fejezi ki. 

Didaktikai alkalmazásának bemutatása céljából tekintsük a következő 

párhuzamos szekvenciát. Legyen a./ b./ c./ d./ előre megadott szöve- 

ges feladatok ós A./ B./ C./ D./ a hozzájuk tartozó egyenletek /ahol 

az egyező betük nem jelentik a hozzáren:ielést/. Ebben az esetben a 

megadott négy a./ b./ c./ d./ elem bármelyikéhez hozzárendelhető a 

A./ B./ C./ D./ elemek bármelyike, és ha a a./ és A./ azonos elemek-

nek tekinthető,  akkor egy "négy-elemű" "másodosztdlyu" ismétléses 

variációt kapunk, ahol a megoldások száma: 

42  = 16. 



- 119 - 

A továbbiakban konkrét példaként ragadjunk ki egy ebben a formátum-

ban felé ; itett programm-részletet /50:N. Most megforditjuk az ed-

digi gyakorlás menetét. Ezután szövegeket és egyenleteket fogunk fel-

irni, s utána meg kell keresni, hogy melyik szöveghez melyik egyenlet 

tartozik. 

a./ Egy szám háromszorosából elveszek ötöt, akkor megkapom a szám 45-

el növelt értékét? Melyik ez a szám? 

b./ A januári hőmérséklet háromszorosa rné g 5 °-kal süllyedt, s ez 45 °- 

os lehülésnek felel meg. Mekkora volt az eredeti januári hőmérsék-

let? 

c./ Egy kőmüves csoport a naponta felrakandó téglasorok számát adago-

ló alkalmazásával először háromszorosára növelte, majd még felra-

kott 5 sort, igy az eredeti normáját napi 45 sorral emelte. Hány 

sort raktak fel naponta a gépesités előtt? 

d./ A  fékező rakéta az utolsó szakaszban az addigi időegységenkénti 

sebességváltoztatását a megelőző szakaszhoz viszonyitva háromszo-

rosára fokozta, majd ezt a sebességet ujra 5 egységgel növelte, 

s igy tulajdonképpen az eredeti sebességváltoztatását 45 egység-

gel csökkentette időegységenként. Mennyi volt az időegységenkénti 

sebességváltoztatása az utolsó előtti szakaszban? 

A most felsorolt szövegekhez tartozó egyenleteket az alábbiakban meg`" 

találjuk: 

A./ 3X + 	5 = X + 45 

B./ 3X + 	5 = X - 45 

C./ 3X - 	5 = X - 45 

D./ 3X - 	5 = X + 45 

Az alábbi összeállitásból válasszuk ki, hogy melyik szöveghez melyik 

egyenlet tartozik: 



- 120 - 

a - A  

a -  B 	 82.  

a - C 
	

>83.  

a - D 
 

	 84.  

b - A 
 

T 85. 

b - B 
	

~  86.  

b - C 
 

	87.  

b - D 
 

	> 88.  

 

> 89 .  

 

	'? 90. 

>91.  

>92.  

	> 93. 

	 94. 

	i 95. 

d - D --i = - i 96. 

c - A 

c - B 

c - C 

c - D 

d - A 

d - B 

81. Helytelen!!! ...elveszek ötöt /ennek kivonás felel meg/. 

82. Helytelen!!! ...elveszek őtöt /ennek kivonás felel meg/. 

83. Helytelen!!! ...45-el növelt /ennek összeadás felel meg/. 

84. Helyes! 

85. Helytelen!!! 

86. Helytelen!!! ...50-kal süllyedt /ennek kivonás felel meFg/.  

87. Helyes! 

88./Helytelent!! ...45 °-os lehülés /ennek kivonás felel meg/. 

89. Helyes! 

90. Helytelen!!! ...45 sorral emelték /ennek összeadás felel meg/. 

91. Helytelen!!! ...még felrakott 5 sort /ennek összeadás felel meg/. 

92. Helytelen!!! ...még felrakott 5 sort /ennek összeadás felel meg/. 

93. Helytelen!!! ...45 egységgel csökkentette /ennek kivonás felel med/. 

94. Belyes! 

95. Helytelen!!! ...5 egységgel növelte /ennek összeadás felel meg/. 

96. Helytelen!!! ...5 egységgel növelte /ennek összeadás felel meg/. 

/A szöveg-müveleti jelek reláció felismerési algoritmusa!/ 

IX. Az e,yik legelterjedtebb algoritmus leirási forma az ugynevezett  

"blokk-séma" módszer. Számos kutató használja, sőt L.N.LANDA /86 : 15/ 
 

külön kiemeli, hogy A.A.SZMIRNOV akadémikus /_! munkáiban külön  

• o 
. 5 -kal süllyedt /ennek kivonás felel meg/.  
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foglalkozik ezzel az eljárással. 

A blokk-sémák lényegében olyan speciális gráfok, ahol a gráfok pont-

jait jelentéseiknek megfelelően "formailag is" tovább differenciál-

juk, attól függően, hogy eldöntendő itéletet, problémát, az itélet 

értékét, információ+, F-egitő iüformációt, utasitást, diagnosztizá-

lást, önértékelést, részutasitást, teszt-vizsgálatot, kérdést, stb. 

jelentenek. Ezek a jelölések sem egységesek, hanem formában, jelen-

tésben és mennyiségben egyénileg mé;; tovább differenciálódhatnak. I-

lyen értelmü megnyilatkozással találkozunk H.KELBERT-nél / 6,5:41/ 

is. 

A továbbiakban megkiséreljük a legismertebb blokk-séma algoritmusok 

bemutatását. 

1./ D.TOLLINGEROVA /Á33:175old.17.ábra/ a .//.sz.ábrán és a 12.sz.  

mátrixban bemutatott algoritmusát az alábbi blokk-sémában tár-• 

gyalja:  
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Ebben még nem találunk differenciált blokk—jelzéseket. /A Kon-

struktiv elemek c. részben következik a részletes tárgyalás!! 

2./ G.BÖHME / ( : 17/ ismerteti egy oktatási célokra beprogrammo-

zott IBM.1620—as elektronikus számológép müködési algoritmusá-

nak blokk—sémáját. A Computer 16000 tárolóegységgel egyszerre 

99 tanulóval foglalkozott. A blokk—séma /gráfpontjai/ differen-

ciált jelrendszerrel dolgozik, ahol az egyes planimetria formák 

jelentései: 

információk, kérdés, 
_ felelet. 

utasitás /hiba esetén/ 

eldöntendő kérdés, hiba _  
/itélet alkotás/. 



szöveg-kimenet /tanulási egység/ 

feladat - kimenet 

feladat - bemenet /irógéppel/ 

hiba  
kii azitó 

3./ K.A.CZEMPER és H.BOSWAV a Plato— /Programmed Logic for Automatic 

Teaching Operation/ rendszerit oktatásra alkalmazott számológép 

blokk—séma algoritmusának /1;: 56/ leirásánál a következő gráf—

pont /blokk/ elemeket használja: 
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valamilyen utasitás 

/tovább, vissza, kioldani/ 

valamilyen tevékenység /itéletalkotás, 

segitségkérés, "Aha", /a probléma vá-

ratlan felismerése.//. 

a következő szöveg vagy  probléma. 

= segitő /szöveg, probléma/. 

= probléma, válasz. 

	 i = itélet értéke /helyes, nem helyes./ 



Segitő  
szöveg  

Segitő  
probléma  

V  
Válasz  

• 1;1", s  

• blAdesis s%tisiest • iLl.aa. Ltlbla ábedaol,la, ssisash es  
WMi 	wino  

bOePNIlbUii i  WS.  Sid iis ?./ soraival. dmi  !r  •ty bow.  
beilkialibes an, ibielbstas 441.00141 smeM, 	ail*  prob..  

410 a / ri was low a sum  /#moi1m411r.1 iaboratory  ia~r 

11111111111014 **ma  limiMUr 	 Ztt a wie..  
~i~ Sellasi1sM1ls liNwexiálllallas 	 totioiddiks  
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= közlemény 

= diagnosztika 

a tanuló teljesitményének analizise /hibák 

száma, téves kérdés feltevése, helyes kér-

dés feltevése./ 

= a tanuló által végzendő önértékelés. 

a 	 = ige;,nem 

értékelő 
itéletek 

hibákra vonatkozó megj e y-
_ zések 
/sok, csekély, közepes, 
esetle zies számszerei kife-
jezés: 0, 2, 3, stb./ 

A blokk—séma aigpritmus /lásd a ' v.sz.táblát/ alapján összeállitott 

programmokkal működő elektronikus berendezéssel /Computer/ ellátott 

oktatógépekkel végzett kisérletek célját a szerzők /15- :89-90/ az a- 
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lábbiakban fogalmazzák meg: 

1./ Azoknak a kulturális aspektusból hátrányos helyzetfi tanulók-

nak a felkutatása, akik az olvasásban és számolásban, lemarad-

tak. 

2./ A tanitás kezdetén mutatott viselkedésük pontos megfigyelése 

abból a célból, hogy pontos képet nyerjenek az előbbi nehéz-

ségeket előidéző okokról. 

3.1 Olyan berendezések tervezése és kipróbálása, amelyek tekintet-

be veszik az előbbi nehézségeket és a meglévő gátlásokat, hogy 

ezeket a tanulásnál mutatkozó magatartásból minél előbb kizár-

j  ák. 

a./ Ebből a célból keresni kell az individualizált tananyag 

készités lehetőségeit, 

b./ a tanulási folyamat további vizsgálata, különösen a mate-

matikai tanulás elméletek továbbfejlesztése, 

c./ azon módszerek felkutatása, amelyek segitségével a tanuló 

egyéni képességeihez tudjuk iazitani az elsajátitandó 

tananyagot. 

./ A gráf—pontok legdifferenciáltabb alkalmazását /az eddigiek 

relációjában/ K.ELSNER /2C.:103-104/ blokk—séma algoritmusa 

prezentálja, amely a .?:.oldalon található "tejfeldolgozó ipa-

ri ismeretek" LJAPUNOV—féle szimbolikus operátor—sémájával 

$analóg. 

= az elérendő cél 

= a 3.sz. parancs /a részfeladathoz tarto-

zó információ/. 
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= a 4.sz.teszt-kérdés, amely a technikai be-
rendezés üzemképességének felülvizsgálására 
vonatkozik. 

a teszt-kérdésre adott igenlő válasz 

O = a teszt-kérdésre adott  nemleges  válasz. 

= a 2.sz.vizsgakérdés, ahol 

a az erre adott helyes választ,  

= az erre adott helytelen választ jelenti.  

4.sz• információs egység  
/egyszerű ismeretközlés./  

5.sz. segitő információ /k.egészités, hamis  
válasznál adott információ./  

A blokk-séma a • ...sz.táblán látható. Mint érdekességet emlitem,  

hogy ugyanitt a 102.oldalon megtalálhatjuk ugyanennek az algoritmus- 

nak a differenciálatlan pontokból felépitett komparábilis gráfját is.  

Az ismertetett elemekből felépithető II.KvELBERT /bb:109/ blokk-sémá-

ja, mely a "serambled-book" kezelésének algoritmusát demonstrálja.  

/  ;//-~~sz. tábla./  
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Eddig terj4dt a blokk-séma algoritmusok ismertetése, amellyel csak a 

legeklatánsabb formák bemutatását kivántam elérni. A felsoroltak, ha 

a teljesség igényét nem is tudták kielégiteni, de minden esetben azt 

hiszem sikerült elérnünk két lényeges eredményt: 

a./ Teljes mértékben érthetővé válik H.ZEMANEK //y2: 23/ azon megál-

lapitása, amely szerint a "logikai-blokk diagrammok" /blokk-sé-

mák/ a legalkalmasabbak az algoritmusok általánositására. Ennek 

az oka abban keresendő, hogy jelölésmódja a legdifferenciáltabb, 

s igy a didaktikai folyamat legárnyaltabb részeit is modellezi. 

b./ A 2./ 3./ 4./ és 5./ alapján valamennyi előbbi b./ tipusu algo-

ritmus modellel történő egybevetés alapján kiemelhető az az egy 

komparábilis algoritmus elem, amely erre az algoritmus tipusra 

jellemző, s amely alapot ad a második algoritmus osztályozási 

módra. 

X. A második klasszifikációs szempont alapja az a tény, hogy valameny- 

nyi b./ tipusu aloritmus itéleteiben egy bináris rendszer ismer-

hető fel. Ennek  formai megoldása alapján megkülönböztethetünk olyan 

algoritmust, ahol a továbbhaladás irányát 

a./ az "igen" vagy "nem" /a verbálformáju és egyes  blokk-sémáju algo-

ritmus modelleknél/, 

b./ a "+" és "-" /a fa-diagramm "gráf" ill. a többi blokk-séma algo-

ritmus modelleknél/, 

c./ A "haladj tovább" vagy a "nyíl irányába" /a LJAPUNOV-féle szimbo-

likus operátor algoritmus modellnél/, 

d./ Az "1", ill. "0" itélet-értékek /a kijelentés logikai algoritmus 

modellnél/, 

e./ Az egymáshoz rendelt betük találkozása vagy nem találkozása /a 

kombinatórikus rész-aloritmus modellnél/ 

határozza meg. 
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A formális algoritmus elemek bemutatott két fő rendező elv /"átalaki-

tási" és "itélet" formák/ szerinti klasszifikációi nem tarthatnak i-

gényt a teljességre. Tekintettel arra, hogy a fejlődés további lehe-

tőségei a klasszifikáció részére determináló tényezők, s igy csak a-

zok az elemek tekinthetők rendező elveknek, amelyek időállóak és 

jól meghatározhatók, igy: 

a./ Az uj ismeretek megszerzésével kapcsolatban L.N.LANDA /c6 : 39/ 

kifejti, hogy az oktatás folyamata lényegében azt jelenti, hogy 

minden egyes didaktikai feladat kiindulási adatait /vagyis a ta-

nuló ismereteinek, jártasságainak és készségeinek kiindulási ál-

lapotát/ átalakitjuk az oktatás követelményei /célja/ által meg- 

határozott végállapottá. Az átalakitás, mint rendező elv tehát 

bármelyik tárgykörben és minden olyan tanulónál, akinek ismeretei-

ben bárminemü változás állott be, feltétlenül érvénnyel bir. Igy 

az átalakitási folyamat menetét modellező algoritmusok mátrixos 

klasszifikációja a feltételeknek megfelel. 

b./ A b./ tipusu algoritmus definitiv kikötése a visszacsatolás ténye 

igy az erre vonatkozó itéleteket alapul vevő rendező elv /V.pont/ 

érvénye immanens. 

c./ A formális elemek harmadik klasszifikációs lehetősége az I., II., 

IV., VI., VIII. IX. és XI.-ben található formai elemek megkülön- 

böztetése. Önkéntelenül felvetődhet a kérdés: Nem lenne-e ész-

szerű egy egységes nemzetközileg elfogadott didaktikai algorit-

mus forma kialakitása? 	/.52: 84/ szerint egy nemzetközi- 

leg  elismert szimbolum az algoritmusok ábrázolására nem lehet ön-

cél, hanem a metodikai eljárások preciz előállitásának és leirá- 

sának az eszköze '. A fődolog az optimális algoritmusok megtalá-

lása kellő elméleti megfontolás és kisérlet eredményeként, mig 

ezeknek az algoritmusoknak az ábrázolása csak másodlagos. /Erre 

a III.fejezetben, a Konstruktiv elemek cimü részben vissza fogok 
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még térni./ 

Mind a három klasszifikációs tartományon beliil elvileg korlátlan 

számban alakulhatnak ki ujabb algoritmus formák is. Nem zártuk ki 

annak a lehetősé;; -ét sem, hogy a didaktikai algoritmus formák továb-

bi fejlődése ujabb rendező elvek érvényét is indokolják. 

XI. Erősen eltér az eddigi didaktikai algoritmus formáktól az F.MALI1 

/ 'l:82-84/ által bevezetett "metodikai algoritmus" /egy tantárgyra 

- itt idegen nyelvoktatás - specializált didaktikai algoritmus, vagy 

ahogy NAGY SÁNDOR /4 0C:147/ mondja: "A pedagógus didaktikai tevékeny-

ségének célszerű eljárásai"/ formalizmus. Mivel operativ visszacsato-

lással nem rendelkezik, s igy nem sorolható sem a b./ sem a c./ tipu-

sá algoritmusok közé. 

Demonstrációja után látni fogjuk, hogy szimbolizált a./ tipusu algo-

ritmus /kombinatórikus elemekkel kiegészitve/. 

A szimbolum rendszere: 

U 	= tárgy és ábrázolása /universum/ 

U 1  = egy megadott tárgy /pl. egy asztal/ 

V 	= szó /általános szótári alak/ 

V 1  = egy megadott szó 

W 	= a szavak halmaza 

S 	= mondat /fogalma/ 

S 1  = axmaadatakxi[atzxx egy megadott mondat 

= a mondatok halmaza 

t 	= téma 

S
1  V

' = az első mondat, amelyik a "V 1" szót tartalmazza 

S t  = a mondatoknak az adott téma /szöveg/ szerinti rendezett 

halmaza. 
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A továbbiakban kisbetűvel jelöli a tanuló tevékenységét és nagy be-

tűvel a tanár tevékenységét. 

a 	= a tanuló figyel, a tanulók figyelnek /audire/. 

p 	= a tanuló beszél, a tanulók beszélnek /parler/. 

P 	= a tanár beszól. 

D 	= a tanár bemutat /demonstrare/. 

E 	= a tanár magyaráz /explicare/. 

Azok a jelek, amelyek a tanár, ill. a tanuló tevékenységét a nyelvi 

jelenségekkel összekötik: 

+ 	= és azután 

x 	= ós egyidejüleg 
k 

7—  - az összegezés jele, pl.: 7—  aj  = a l+a2+a3+...+ak  
1 

j, k, q, m = a nyelvi jelenségek száma. 

Az egyes szimbolumok összekötésével kifejezéseket kapunk, ami  az ok-

tatás folyamatában előforduló egyes operációkat igy rövid és áttekint-

hető formában ábrázolja: 

S i  . P 	= az első mondatot elmondja a tanár. 

S i  . p 	= az első mondatát elmondja a tanuló, vagy elmondják a 

tanulók. 

U 1  . D 	= az első tárgyat bemutatja a tanár. 

V 1  . E 	= az első szót megmagyarázza a tanár. 

S 1  . Pxa 	= az első mondatot elmondja a tanár és a tanulók figyel- 

nek. 
V 1 S 1 .  p 	= a tanuló arról az első mondatról beszél, amely az első 

megadott szót tartalmazza. 

F.MALIR szerint a metodikai szimbolumokkal hasonlóan Aárhatunk el, 
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mint a matematikai szimbolumokkal:  

S i  Pxa + S i  p= S  1  /Pxa + p/  

illetve  

k 

S 1  . p+ S2  . p+ 	 + Sk .  p = S 	Si  . p  
j=1  

A következőkben metodikai feladatokra felirt metodikai aloritmuso-

kat mutat be:  

Adottnak tekintendők:  

Az uj szavak halmaza:  

Egy adott témára megadott szöveg:  

!' V 1 , V2 , .. . , ~ > >r r 

St 	✓  

Szerkesztendő a generativ grammatikán /strukturális nyelvészeti ter-

minus technikus/ alapuló algorit:]us, amely a tanulók aktiv szótanulá-

sát bemutatja. Itt mindenekelőtt eldöntendő, hogy a tanuló előbb dol-

gozzon az uj szavakkal, s csak azt követően az egész szöveggel, vagy  

megforditva? A variációk formalizmusa:  

1./ /S t/ + /U/  

2./ /Y/ + /S t/  

/Az /S
t 
 / szimbolum itt a "t" téma, "S" mondatával való foglalkozást  

ugy a tanulóra és a tanárra egyaránt kiterjeszti/. F.MALIR a CSSR-

ben kialakult gyakorlat alapján a második variációt választja. A /Y/  

és /S t/ szimbolumok részletes kifejtéséhez bevezeti az "ahogyan ir-

ják" /rewrite as/ szimbolumot: "____÷" /nem analóg az implikáció je- 

lével!/.  
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Igy először a /W/-t dolgozza fel öt variációban:  

1./ 	+ /S W/ jelentése:  

izolált munka az uj szavakkal és ezt követően olyan mondatokkal,  

amelyekben előfordulnak az előbbiek során bevezetett uj szavak:  

2./ /w/---4/s/ + /W/  

3./ /w/ —3,/v/ + /SY1/ + yv2/ + /sV2/ +  .... 

4./ /W/ --› /SV1/ + /V 1/ + /SV2/ + /V2/ +  .... 

5./ /;l/ -->. /S 1V1/ + /V 1/ + /s2V1/ + /V 2/ +  .... 

Annak lerögzitése mellett, hogy további variációk is elképzelhetők, 

javasolja az 5./ variáció további feldolgozását a V 2 , V 3 , ...V 

halmaz által megadott szókészletre a továbbiakban az /S 1V1/; /1/ 1/ 

és /S 2V1/ szimbolumok kifejtésénél előálló variációkat mutatja be, 

de kiemeli ezek közül az  

/S 1V1/ 	 U 1 .D + S 1V1/P+p/ + S 2V2/P+p/ +...+SkVl/P+p/ _ 

k 	j 
= U

1  .D +  ?:: 

 SjV 
/P+p/ 

-'1
.E  

k+m  
/s V

1/ 	
~ Sk+1V1 'p + Sk+2vl.p ""

+ Sk+mVl 'p - j k+1 SjVl •P  

Végül az "uj szóval" végzendő munka teljes algoritmusa az 5./ variá- 

c i ó alapján:  
k 	

V 	
k+m 	V 

U 1 . D + ~  .Sj  1  . /P+p/ + V 1 .E + ~ S.  V1  .p 
j=1 	 j =k+l  
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Ezután diszkutálja a szerző az általa készitett algoritmust és meg-

állapitja, hogy érvényessége az alábbi két feltétel teljesülésétől 

függ: 

1./ Amennyiben a szó jelentése tárgy, tevékenység, vagy ezek ábrá-

zolása, 

2./ Amennyiben a szó fonetikai, merfológiai, vagy más nehézségeket 

nyujt. 

Ha az első feltétel nem áll fenn, akkor érvényesül az 

U 1  D_0 

ha a második feltétel nem teljesül, akkor pedig: 

V 1 . D0 

összefüggés.' 

Az előbbiek során kifejtett algoritmus tehát igy négy formát ölthet: 

1./ A teljes formát, 

2./ Az "U 1 .D" nélküli formát, 

3./ A "V 1 .D" nélküli formát, 

4./ Az "U 1.D" és "V 1 .D" nélküli formát. 

Hasonló módon diszkutálható az /S t/ szimbolum is. 

r.MALIR formalizmusának vannak határozottan elismerésre méltó előnyei, 

de vannak hátrányai is. 

Komoly segítséget jelenthetnek rövid, tömör, áttekinthető "képletei": 

a./ a gyakorló pedagógus munkájának megsegitése terén, azzal, hogy a 

fenti metodikai algoritmus óravázlatának elkészitésénél a szisz- 
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tematikus órafelépitést és a könnyii áttekinthetőséget egyaránt 

elősegiti. 

b./ A különböző metodikai eljárások tömör táblázatos elrendezésénél, 

c./ Az optimális algoritmus, formális elemeken alapuló meghatározá-

sában. 

Igen nagy hátránya, hogy a formális elemek szintjénél tovább nem 

jutott. Szimbolizmusa nem alkalmas sem a konstruktiv, sem pedig a 

strukturális problémák megragadására, s igy nem képes: 

1./ az átalakitási folyamat utjainak, 

2./ az itélet szerkezeti kérdéseknek, 

3./ az oktatás stratégiai lehetőségeinek, 

4./ az oktatási folyamat stochasztikus elemeinek, 

5./ az oktatási folyamatot befolyásoló faktorok e,yüttesének 

a modellezésére. 

J 
Sommázva F.MALIR rendszere semmivel sem ad többet annál, amit igért 

"a fundamentum alaprajzát", s igy nem várhatók sem a "kivitelezésre" 

sem a "felépitmény szerkezetére" vonatkozó elképzelések. 

XII. A c./ tipusu algoritmus forma demonstrálása előtt utalni sze-

retnék azokra a didaktikai me;gondolásokra, amelyek a késleltetett 

visszacsatolást indokolják: 

a./ Egy megtanitandó algoritmus bemutatása és közös begyakoroltatá-

sa után következne az egyéni gyakorlás. Itt már a folyamat egé-

szének szemléletélen van a hangsuly, amelyet nem kivánunk a lé-

pésenkénti visszacsatolás /életszerütlenségével/ kényszerével 

minduntalan megszakitani. Ennek érdekében a didaktikai algorit-

musban szakaszonkénti, vagy egyszeri utólagos visszacsatolást 

alkalmazunk. /Lásd a VIII.algoritmusban bemutatott feladatok to- 
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b./ Ilyen tipusu nyers programmok /kisérleti programmok, amelyek 

a végleges programm elkészitését megelőzik/ kipróbálása, ahol 

az előforduló hibalehetőségek sürüsödési pontjait kivánjuk meg— 

!A  1- öbbielelet—választás  elvén felépülő didaktikai algoritmusban sa-

játos összetevőként jutnak szerephez az entrópia, az információ—el-

mélet, a racionális algoritmusok szerkesztése és az elágaztatás el-

vei. /Lásd a ~//~  sz.t áblán./ /Az implikációnál megismert " ----.?>" 

jel itt má.s értelmet kapott, "folyamat—jel", akárcsak az operátor 

algoritmusnál használt " 	" jelek./ 

Itt az Al'  A2,  A3,  ..., An  a megtanitandó algoritmus lépései /step/. 

Az I2  Az A2  lépéshez tartozó információ, mely az A 2  lépés megértésé-

hez szükséges bizonytalanság /jelenleg ld 4 = 2/ feloldását bizto— 

sitja az AL1, A22,  A23  A24  előre megszerkesztett válaszok közül a 

helyes felkutatásával. A tanuló az általa helyesnek vélt feleletet 

/X/—el jelöli. Ha az I2—ben megadott információ nem &legendő a he-

lyes válasz megkereséséhez, akkor az "S 2" segitő megadja az elégsé-

ges információ mennyiséget /ez egyben a programm elágazó része/. A 

késleltetett visszacsatolás abban nyilvánul meg, hogy a tanuló a 

kontroll—lapot — amely a helyes feleletek megjelölését is tartal-

mazó, az eredeti munkalappal analóg felépitésü — csak a munkalap fel— 

dol,:ozása után kapja meg, s ehhez kap megerősitést, vagy korrigá-

lást. 

Szolgáljon példaként az előbb emlitett programm: 
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A megol-  

dandó e-  

gyenlet:  

A rende-  

zés után:  

Az "x"  

kifejezé-  

se :  

Az "x"  ér 

téke:  

Válaszolj  
a szöveg-
ben ta-
lálható  
kérdésre:  

3x+5=x+45  

2x=-40  

0 

3x-5=x-45  

2x=40  

-40  

3x+5=x-45  

2x=50  

-50 
 

3x-5=x+45  

2x.50  

_ 40 x -  

x = 25  

A fékező  
rakéta  
sebesség-
változása  
az idő-
egységben  

S 1' 

S4  

Segitők:  

S2  

s  x _ 	2  

x=-20  

Az is-
meret.4  
len  
szám  

x  = 	2  

x= -25  

A norma  
szerint  
felrakan-
dó tégla-
sorok szá-
ma.  

x  

x = 20  

A januári  
hideg  
C °-ban  

S e g i t ő k :  

S 1 	= az "x"-es tagokat /ismeretlent tartalmazókat/ a baloldalra,  

a csak számértékeket tartalmazó tagokat pedig a jobboldalra  

rendezed. /Figyelj az előjelekre!/  

S2 	= utána összevonsz mind a két oldalon!  

S 3 	= az "x" együtthatójával végigosztod az egyenlet mindkét olda- 

lát.  

S4 	= a 81.-96.-ig terjedő kapcsolatok alapján keresd vissza az  e- 

gyes egyenletekhez tartozó szövegeket és kérdéseket.  

Kontroll - lap  

	

1 3x+5=x+451 	;3x-5=x-451 	3x+5=x-45  

	

~ 	 - - 
~=- -- 	— — 

	

i2x _ _-40  1  	2x_ 40 
---f 

 2x _ 501 	2x = -50 t  

f 3x-5= x+451  



2  
x= 50  

Az isme-
retlen  
szám.  
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-40 ; 
~  x = 2 	I  
4_

- 

X = -25  

A norma 1 r  
szerint 	. 

	

I felrakan- I 	; 
dó tégla-  . 
Í sorok  

száma_ .~ 

-50 I 	40  

x  =  2 	x _ 
 

1 A fékező-
rakéta se- 
bességvál- 
tozása/idő 
egység. 

' 2Ó  
C 	- 

A januári 
hideg 
C _ban.  

~-- - -- — -~ 

x = 25  Í 

1964-ben ilyen tipusu algoritmusok alapján készült korrepetáló prog-

rammokkai  /  i 137/ a derékszögü háromszög trigonometriai megoldása  

cimü tárgykörben végeztem kisórleteket.  

Az elért eredményeket két kisérlet-sorozat alapján regisztráltam:  

a./ kisérlet-sorozat célja annak eldöntése, hogy lehet-e egyáltalán  

ezzel a módszerrel eredményesen korrepetálni. A kisérletek négy is-

kolatipusban folytak /gimnázium, közös-igazgatásu gimnázium, szakkö-

zépiskola, gimnázium levelező-tagozat/, - a kisérlet menete: hagyo-

mányos ismétlő-óra tanári magyarázattal; bra végén a gyakorolt fen-

ti témában egy dolgozat. Ennek értékelése után a leggyengébb ered-

ményt elérő 6-8 fő két órás programmozott korrepetálás után feldol-

gozta a 9 munkalapot. Ezt követően ismét egy dolgozat. Egy hét el-

teltével ismét egy dolgozat.  

Dolgozat átlaga az óra végén: 	 0,9 pont  

f, 

It 	if 

a programmozott korrepetálás után:  

egy héttel később: 

	

3,9 	" 

	

2,5 	"  

A dolgozatok azonos tipusu és nehézségü feladatokat tartalmaztak.  

b./  kisérlet-sorozat célja annak eldöntése, hogy a programmozott,  

vagy  a  hagyományos korrepetálás a hatékonyabb? Eltérése az a./ ki-

sérlettől: egyszerre két párhuzamos osztályban folyik a hagyományos  

ismétlő óra; a programmozott korrepetálással egyidőben azonos létszá-

mu, 14-14  fő, azonos félévi és dolgozati átlagu csoportban hagyomá- 
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nyos tanári korrepetálással dolgozták fel ugyanazt a kilenc felada- 

tot.  

Hagyományos 	Programorozott  

Dolgozat átlaga az óra végén: 	2,1 pont 	1,5 pont  

Dolgozat átlaga a korrepetálás után: 	2,63 " 	4,57 "  

Dolgozat átlaga egy héttel később: 	2,78 " 	3,22 "  

A reális értékeléshez feltétlenül megemlitem, hogy a hagyományos  

korrepetálás ideje másfél óra, mig a programorozott korrepetálás át-

lagideje két óra volt. Ezen kivül a programmozott korrepetáláson  

résztvevőket motiválta az a körülmény, hogy közöltem velük, hogy  

csak a kilenc munkalap feldol.,ozása után távozhatnak.  

Sommázva:  az a./ kisérlet alapján ugy látszik, hogy lehet ezzel a  

korrepetálási móddal is eredményt elérni. A b./ kisér! 

szólalt sejtteti, hogy ha egyenlőre lassubb is, de valamivel eredmé-

nyesebb a programmozott korrepetálás.  

Ha ezt az algoritmus—tipust értékelni akarjuk, akkor ismételten le  

kell rögzitenünk, amint már a fentiek során emlitettük:  

t / A c./ tipusu didaktikai algoritmusoknál a visszacsatolás késlel-

tetett. Ezért ezek uj isme ~'eteket folyamatosan közlő oktatási prog—  

rarsmok készitésére nem igen alkalmazhatók. Az eddigi gyakorlat azt  

látszik igazolni, hogy ezek az algoritmusok főleg algoritmusok okta-

tását és begyakoroltatását szolgáló programmokban realizálhatók. E-

lőnyként emlithetjük azt a tényt, hogy amig a többfelelet—választá-

sos módszerekre jellemző "próba—szerencse" elve alapján adott helyes  

válaszok valószinüséőe igen nagy /4 felelet—választás esetén 1/4 —/  

addig ennek a valószinüsóge ezzel a módszerrel ugrásszerüen csökkent  

/"n" lépés esetén //n./  
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Igen figyelembe veendő hátrány annak a veszélye, hogy esetleg a 

téves válaszok rögződnek, amire általában a többfelelet—választós 

módszerével kapcsolatban W.HOCHHEIMER // is rámutatott. 

Sommázva  a c./ tipusu algoritmus egy didaktikai részterületen a be-

gyakoroltatás területén a jártasságok és készségek kialakitásánál 

hasznos lehet. 

XIII. Minden előnye mellett komoly veszélyek forrása is lehet a for-

malizmusok alkalmazása. Itt mindenekelőtt azokra az "univerzális 

formális" elemekre kell gondolnunk, amelyeket a "mindenre érvényes 

képletek" alkotóelemeiként emlegetnek. Mivel ezek a torzitások u-

jabban a programmozott oktatással foglalkozó oktatás—lélektani és 

didaktikai munkákban is gyakran napvilágot látnak, szükségesnek 

tartjuk az algoritmus szó fogalmának helyes használatára ismétel-

ten utalni. Algoritmusnak nevezik egyes szerzők pl. valamely évfo-

lyam anyagának, vagy egy—egy fejezetnek a "tartalmát", az "évi anyag 

algoritmusa" a "fejezet algoritmusa", egy bizonyos anyagrész tankönyv-

beli kifejtésének a vázlatát, pl. "kifejtési algoritmusként" emle ge-

tik. Ez a helytelen szóhasználat nemcsak ennek a fontos, ós megle-

hetősen egzakt fogalomnak, hanem ezzel együtt az egzakt módszerek 

pedagógiai és pszichológiai alkalmazásának a diszkreditálásához ve-

zet, s ugyanakkor zavarja ós bizonytalanná teszi maguknak a pedagó-

giai problémáknak a megfogalmazását és megoldását is. Ez az utóbbi 

tény rendszelAnt nem ötlik mindjárt a szemünkbe, mivel az ilyen fej-

tegetéseket korszerü tudományos te minológiába öltöztetik a szerzők, 

sőt logikai és matematikai képleteket is alkalmaznak. Lássuk egy i-

lyen torz példán: Az algoritmus készitője célul tűzte ki az iskolai 

oktatás általános /univerzális/ algoritmusának a megszerkesztését. 

A problémát a következőképpen vélte megoldani: 
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Operátorok:  

A 	= az elsajátitandó információ közlésének operátora /előadás,  

a  tankönyv  hasábjai, oktatófilm, magnetofon—szalag, stb./  

S = a kapott információ elsajátitásának és bevésésének operátora  

/ismétlés kivonat, vagy tankönyv alapján, kiegészítő iroda-

lom olvasása, betanulás, kivonatkészités, stb./  

C 	= azon készségek kialakitásának operátora, amelyek az elsajáti- 

tott és bevésett információk gyakorlati alkalmazásához szük-

ségesek, a külvilág jelenségeinek magyarázatára, feladatok  

megoldására, stb./  

D 	= a jártasságok kialakitásának operátora.  

E 	= konzultációs operátor /utasitások, tanácsok, sugalmazások,  

stb./  

F 	= az oktatást beszüntető operátor.  

Logikai feltételek.  

p 	= az adott információ elsajátitásának ellenőrző logikai fel- 

tétele,  

q 	= az elsajátitott információ gyakorlati használatával kapcsola- 

tos készségek kialakitását ellenőrző logikai feltétel.  

r 	= a jártasság meglétét ellenőrző logikai feltétel.  

Az iskolai oktatás szimbolikus algoritmusa a fentiek alapján:  

2 3 	3  
Dr  

A formailag tökéletes algoritmus hibája, hogy semmi értelmük sincs 

az ilyen operátoroknak, mint "előadások tartása", "jártasságok ki-

alakitása", "a kapott információ elsajátitása és bevésése", stb. Nem 

elemi aktusok ezek, hanem igen bonyolult folyamatok, amelyek maguk 

  

1 2  

 

A  Bp  

   

Ecq  

   

   

~ 

  

      

F 
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is algoritmikus leirást igényelnek, ráadásul még az sem igazolt, 

hogy egyáltalán lehet—e némelyikükről ilyen leirást szerkeszteni. 

Az ilyen algoritmus: "Tarts előadást", "mutass be filmet", "ala-

kitsd ki a jártassá g ot", "tarts konzultációt" nem más, mint tar-

talom nélküli üres forma. A kérdés lényege az, hogyan é_,itsük fel 

és tartsuk meg az előadást, hogyan szerkesszük meg és használjuk 

fel az oktatási folyamatban az oktatófilmet, mi módon alakitsuk 

ki a jártasságokat, stb. Az algoritmus szerkesztője meg sem pró-

bálta elemezni és algoritmizálni ezeket a bonyolult folyamatokat. 

"Elemi müveletnek" tekintette ezeket, holott végeredményben a jó 

algoritmusnak az a feladata, hogy irányitsa azt a folyamatot, te— 

vékenységet, amelyet leir. A fenti algoritmus ezzel szemben semmit 

sem irányit, a szerkesztő egyszerűen 	-"n-, <ba leitta 

azt a szokásos közismert tétélt, hogy az oktatás folyamata előadá-

sok tartásából, filmek bemutatásából, jártasságok kialakitásából, 

konzultációk tartásából, stb. tevődik össze. Ez az algoritmus szer-

kesztő ugy járt, univerzális algoritmusával, mint LAPLACE a világ-

egyetem valamennyi mozgását meghatározó e gységes képletével: egyik 

sem valósitható meg. Univerzális algoritmust csak akkor szerkeszt-

hetnénk, ha abszolut ismernénk mindazokat a pszichológiai ős peda- 

gógiai jelenségeket és folyamatokat, amelyeknek az oktatás szempont-

jából jelentőségük van, ez viszont elvileg lehetetlen, mivel a  meg-

ismerés fejlődő és kimerithetetlen folyamat, s a külvilág tárgyaira 

és folyamataira, valamint önmagunkra vonatkozó ismereteink minden 

adott pillanatban hiányosak. Másszóval univerzális oktatási algo-

ritmus nincs, szerkesztése éppugy lehetetlen, mint minden matemati-

kai feladat me'oldására érvényes univerzális algoritmus szerkesztése. 

Legjobb ellenpélda erre a CHURCH—hipotézis, mely szerint van abszo-

lut megoldhatatlan probléma /00:689/, s igy még a természetes.szá-

mok aritmetikáját sem lehet teljesen formalizálni. Sommázva megálla- 



— 144 —  

pithatjuk, hogy az oktatás algoritmizálhatósága egy adott törté-

nelmi pillanatban az oktatás törvényszerüségeire vonatkozó megis-

merés függvénye. /8É.: 	/ Kétségtelen az elmondottak megcáfolha- 

tatlansága. Azonban LANDA egyes megállapitásai mégis vitathatók. 

Szerinte az "évfolyam anyagának" az "évi anyagnak" algoritmusáról 

beszélni értelmetlenség,, üres formalizmus. Ennek a megállapitás-

nak feltétlenül helyt kell adni a "formális elemek tárgyalásának" 

söntjén. Ugyanis e téren a formalizmus nem dönt el és nem határoz 

meg semmit. Azaz formális szimbolumok puszta bevezetésével nem fog-

juk tudni az "évfolyam anyagát" szerencsésebben kiválasztani és  

jobban elrendezni. Ezzel szemben elképzelhető egy olyan szabatosan 

leirható eljáráshoz tartozó /matematikai modell/ algoritmus, amely- 

nek a segítségével már tudunk olyan számitásokat végezni, melyek op-

timális megoldásokhoz vezetnek. Ez feltétlenül több, mint üres ab— 

sztrakció. Talán szerencsésebb lenne ennek a fejtegetésnek a lezá- 

rása olymódon, hogy amit formlis szinten nem érdemes algoritmizál-
t c~ t'cri7 

ni, azt konstruktiv szinten 'érdemes. 

A "Formális elemek" cimü fejezet végére értünk. Bélunkat, a didak-

tikai algoritmusok szimbolizálását elősegitő apparátus bemutatá-

sát, a jelenleg kialakult forma—készlet tartományán belül egy—két 

esettől eltekintve /melyekre a konstruktiv, illetve a strukturális 

elemek ismertetése közben térünk ki/ megközelitőleg elértük. Bemu-

tattuk tehát a didaktikai algoritmusok épületéhez tartozó fundamen-

tum alaprajzának elkészitéséhez szükséges eszközöket és módszereket. 

Ez azonban önmagában igen kevés. Legtöbben ma még az algoritmus—el-

mélet pedagógiai alkalmazásának perspektiváiban is itt vélik fel-

ismerni a végcélt, ugy gondolják, hogy ezzel elértünk egy "korszerü" 

formális módszerhez, amely ma divatos és segiteni tudja a didakti-

kai folyamatok egyes részesinek gépesitését. Mások épp ebbe kötnek 

bele és szemünkre vetik, hogy ez csak a régi hagyományos oktatás 
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uj jelrendszere, s igy nem sokkal visz előbbre a lényeges problé-

mák megoldásánál. A két álláspont cáfolatára szolgál majd a IV . és 

V. fejezetben kifejtésre kerülő koncepció, mely a III.fejezet "meny-

nyiségi" elemeiből "minőségi" perspektivába csap át, s prezentálja 

az oktatás hatékonyságának fokozását célzó modern utak mérhetőségé-

nek egzakt módszereit. 
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Felsorakoztattuk a fundamentum alaprajzának leirásához szükséges vala-

mennyi isme4rt eljárást. Most hozzá kellene kezdeni a megépitéséhez. Itt 

többnyire különböző kivitelezési lehetőségekkel találkozunk, amelyek kö-

zül a legoptimálisabbat szeretnénk kiválasztani. Igy jutunk el az algorit-

musok felépitésének problémáihoz, a konstruktiv elemekhez. Ebben a fejezet-

ben tovább lépünk a már meglévő formális apparátus segitségével, annak 

konstruktiv jellegű továbbfejaesztésével, az absztrakción tulmenve, e- 

gyes  folyamatokat magasabb szinten konkretizálunk. Minden egyes esetben 

szabatosan leirható /algoritmizálható/ eljárások segitségével próbálunk 

valamilyen didaktikai jellegii problémára választ adni, igy pl.: 

I. A megtanulandó algoritmusoknál el kell dönteni, hogy melyik algoritmus-

ban kisebb egy feladat megoldása során fellépő összes választási lehető-

ségek számának 6s az összes végső választási lehetőségek számának az ará-

nya, vagy melyik algoritmusnál találjuk meg a megoldáshoz vezető legrövi-

debb logikai utat, vagy melyik algoritmus vezet a legnagyobb valószinüsé-

gi értékkel biró eredményes megoldáshoz; vagy melyik algoritmus tartalmaz-

za a legnagyobb pragmatikai és szemantikai értékű információkat. 

II. A tanitás algoritmusánál eldöntendő, hogy melyik programmozási eljá-

rás /lineáris, elágazó, felelet—kiegészitéses, felelet—kiválasztós/ alkal-

mazása a legelőnyösebb, vagy egy "n" lépéses "átalakitási folyamatban" mi-

lyen "utakon" kell vezetni a tanulót, ha a végcél elérésének valószinüsé-

gét emelni kivánjuk. 

III. Az oktatóprogrammok készitésénél annak eldöntése, hogy lehet—e egy-

általán és  ha  igen, akkor milyen módon, algoritmizálni: 

a tanitandó anyag elemi részekre való bontását; 

ennek alapján az oktatóprogramm elkészitését; 

az igy elkészült programm kipróbálás utáni hibaértékelését és korrekcióját. 
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/Itt még felvetődhet az a kérdés is, hogy tekintettel e három folyamat 

igen magas munkaidő igényességére, mennyire lehet ezeknek elvégzését com-

puterekre bizni. E kérdés felvetése a programorozott oktatás jövője szem-

pontjából nem közömbös, s a részletes tárgyalás során megkiséreljük a vá-

laszadást./ 

IV. Végül általában megvizsgálandó, hogy az átfogóbb didaktikai kérdése-

ket, mint a tanterv készitést, s magának az oktatási folyamatnak a megter-

vezését lehet—e,egyértelmü szabályokba foglalva szabatosan leirni, s igy 

algoritmizálni. 

E bevezető gondolatok után áttérünk a felvetett problémák részletes vizs-

gálatára. 

I. A megtanulandó algoritmusok optimálisának kiszámitása.  

Itt feltétlenül észre kell vennünk, hogy a "Formális elemek" cimü részben 

bemutatott algoritmusokhoz viszonyitva, általában nem egy algoritmust 

vizsgálunk, hanem két, vagy több ugyanarra a témára felirt algoritmust 

hasonlitunk össze az optimális meghatározása céljából. 

1./ HELL GYÖRGY 45--- :411-414/ ismerteti Y.GENTILHOMME —tőm / 114.:13-31/, 

Y.BAR—HILLEL—től / 6:1-16/ és N.CHOMSKY illetőleg G.A.MILLE;—től 

AINIOWszármazó koncepciót, mely szerint az optimális algoritmus ki-

számitásának alapja  az algoritmusok gráfjaiból közvetlenül kiszámitható  

"bonyolultsági fok". 

A nyelvoktatás gyakorlatából vett példák bemutatását a következőkre ala-

pozzuk: 

a./ A nyelvoktatás gyakorlatából ismeretes, hogy ugyanazt a nyelvtani sza-

bályt néha többféle formában is lehet alkalmazni, azaz különböző gon- 
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dolatmenetekkel ugyanarra az eredményre lehet jutni. 

b./ Az eredményeknek sokszor szubjektiv értékelése helyett L.N.LANDA és 

Y.GENTILHOMME ugy gondolják, hogy az eltérő gondolatmenetek algorit-

musa objektiv értékelési alapot biztosithat. 

c./ Az összehasonlitás nem, szemmel látható felmérést jelent, hanem számi-

tásos ellenőrzést, melyhez a gráfok adnak alapot. 

Erre jó példát szolgáltat pl. a német melléknév ragozás. Az algoritmus 

összeállitásához a következőkre van szükség: 

a./ ismerni kell az anyag jellemző vonásait, az adott esetben felhasznál-

ható nyelvi tulajdonságokat, nyelvi kategóriákat, 

b./ meg kell keresni a jellemző tulajdonságok közötti logikus összefüg-

gést. 

A német melléknév ragozáshoz több nyelvi elemet szokás felhasználni, pl.: 

a./ határozott névelő, 

b./ határozatlan névelő, 

c./ birokos névmások, 

d./ a főnevek neme, 

e./ a főnevek száma, 

stb. 

Ezeket a mudy nyelvi elemeket a szabálynak megfelelően csoportositjuk. A 

hagyományos "erős", "gyenge" és "vegyes" ragozás csoportjai pl. a követ-

kezők: 

L 1 	= der, die, das, dieser, ,Ilener ... 

L2 	= ein, kein, mein, dein ... 

L3 	_ 0 

S 1 	= Tisch, Stuhl, Mann, ... 

S2 	= Wand, Hand, Stadt, ... 



— 150 — 

S3 	= Haus, Buch, Zimmer, ... 

S1  = alanyeset, 

K2  = tárgyeset, 

K3 	= birtokos eset, 

K4  _ részes eset, 

n1  = egyes—szám, 

n2 	_ többes—szám, 

A szabály alkalmazásának gondolatmenetét gráffal is megadhatjuk, melyben 

a rombuszok a csoportjelöléseknek megfelelő  eldöntendő kérdést, a tégla-

lapok megállapitást jelölnek. Lásd a  IX   sz.táblát, amely a melléknév 
ragozás első algoritmusának gráfját adja az ugynevezett "erős" ragozás 

nélkül. 

A második, bemutatásra kerülő algoritmus nem azt veszi alapul, hogy a 

melléknév előtt határozott, vagy határozatlan névelő van—e, hanem azt 

nézi csak, hogy a melléknév előtti jellemző szón /névmás, vagy névelő/ 

megtalálható—e a "der, die, das" valamilyen végződése /L 1  csoport/ vagy 

nem /L2  csoport/. A csoportok és szabályok alapján felállitható algorit-

mus képe: 
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Lehetséges azonban még egy csoportositás is: 

L 1 	= das 

L2 	= eine 

L3 	= ein, kein, mein, dein, ... 

L4 	= die, diese, soiche, jene, keine, meine, deine, ... 

L5 	= der, dieser, jener, solcher, einer, keiner, meiner, ... 

L6 	= den, des, dem; diesen, dieses, diesem; ... 

L7  = 
A táblázatban és az alkalmazásban is a "der, die, das" stb. olyan szó-

alakok, melyek nincsenek sem nemhez, sem számhoz, sem esethez kötve. Min-

den "der", "die", stb. a táblázatban ugyanaz a "der", "die", stb. szóa-

lak és az algoritmus további szabályai egyformán vonatkoznak mindegyik— 

re. 

Az igy megalkotható harmadik algoritmus képe: 



5 
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A kapott algoritmus gráfok alapján lehetőség adódik arra, hogy a szabá-

lyok közül kiválasszuk azt, amely a legmegfelelőbb. Kétségtelen, hogy a  

választásnak a legegyszerűbbre kell esnie, hiszen attól várhatjuk a leg-

jobb eredményt. Melyiket tekinthetjük azonban a legegyszerübbne::? B há-

rom algoritmus közül azonban nem könnyü a választás. GENTILHOMME kiber-

netikai számitásokhoz folyamodott és lényegében azt nézi, hány választá-

si lehetőséget tartalmaz egy gráf, és a választási lehetőségek hány végső  

válasz megfogalmazását segitik elő. A két szám viszonya adja a gráf bo-

nyolultsági fokát:  

B 
összes választási lehetőség  

összes végső válasz  

Ennek alapján:  

B 1  ~ ~ = 5 , 97 

B2  = 9 = 4,00 

B3  - ~ - 4,34 

E módszer erősen matematikai jellege az olvasó szemében könnyen mechani-

lusnak tünhet, és igy kétségesnek látszik, hogy alkalmazható-e a kitü-

zött cél elérésére. GENTILHOMME itt információ-elméleti alapon számol.  

Igy képletei, és egy ezen algoritmus alapján dolgozó elektronikus számo-

lógép számára teljesen mindegy, milyen sorrendben és egy elágazódó gráf-

rendszer által illusztrált kérdés-hálózatban hol kell egy kérdésre vála-

szolni. Az embernél azonban nem mindegy, hogy az eldöntendő kérdések egy  

bonyolult rendszer elágazásaivá válnak-e, vagy pedig egy felsorolásos  

felosztás egyik tagját képezik-e. /Erről részletesen a "Strukturális ele-

mek" cimü részben./ Ezen az alapon és a kisérletek /57 	is ezt lát- 
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szanak igazolni, nem kétséges, hogy a 

B2  

B 3  

eredményesebb, mint a B 1 , és 

It 	 It 
	

B=  

Nem ilyen egyértelmü a döntés azonban a B 2  és a B3  között. 

Sommázva már itt megállapitható, hogy 

a./ Az információ-elméleti számitás nem alkalmazható változtatás nélkül 

akkor, amikor az algoritmussal jelölt gondolatmenetet nem gép, ha-

nem ember végzi. 

b./ A gondolatmenetek algoritmikus ábrázolása nem tekinthető tisztán el-e 

méleti jellegü kérdésnek. A különböző szabályok összevetése, ha ezt 

a tisztán kibernetikai tipusu feladatoktól - az emberi gondolkodás 

jellegét számbavéve - eltérő módon végezzük, a didaktikai munkában 

is jól felhasználható, mert megkönnyitheti a tananyag elsajátítását. 

c./ Egyuttal észre kell vennünk ennek a módszernek szélesebbkgrti, nemcsak 

a nyelvtan-tanitás területére korlátozódó alkalmazhatóságát is. 

2./ A következő optimális algoritmus számitás alapján a legrövidebb, lo-

gikailag korrekt ut felkutatása képezi.  

Ennek demonstrálására vegyük egy derékszögű háromszög trigonometriai meg-

oldását, és vezessük be az alábbi szimbolumokat: 

A baloldalon a programra a./ tipusu algoritmusa /szöveges elrendezésben/; 

a jobboldalon a megfelelő szimbolumok. 

1./ A háromszög oldalaiból 
képzett felsorolt tör- 
tek közül melyikben 
nincs ismeretlen? 

To/X;i/ = szimbolikus jelölés, mely szerint 
a derékszögü háromszög oldalaiból 
képezhetünk törteket /T /, melyek 
ismeretlent /X/  is, és ?smerteket 
is /i/ tartalmaznak. 



— 156 — 

2./ Ennek számlálója és 	h/X;l/ = a háromszög egy meghatározott oldal- 
nevezője hogyan  he- 	párjának elhelyezkedése /h/ egy "X" 
lyezkedik el "X" 	szöghöz. 
csucshoz viszonyitva? 

3.1 Ez milyen szögfügg- 
vénye "X"-nek? 

f/i;X/ = szimbolikus jelölése a T /X;1/ tört-
höz rendelhető X szöghöz °tartozó 
f/i;X/ szögfüggvénynek. A T /X;1/ és 
f/i;X/-ben az "X" és "i" helycseréje 
azt jelenti, hogy ha a törtben van 
ismeretlen, akkor ehhez ismert szög 
választandó és megforditva. 

4./ Az 1./-ben kijelölt e 	szimbolizálja a müvelet eredményét. 
osztási műveletet vé- 
gezd el. Melyik az 
eredmény? 

5./ A megfelelő szögfügg- U/X/ = utasitás a szög visszakeresésére, 
vénytáblából keresd 	E/X/ = egyszerű egyenletátrendezés, melynek 
vissza. Mekkor az "X"? 	"X" oldal a megoldása. 

6./ Miből  kell kivonni 
	

U/Y/ = a 4./-ben ismertetett eljárás végre 
"X"-et, hogy meg- 	hajtására vonatkozó utasitás. 
kapjam az "Y"-t? 

7.1 Mekkora az "Y" szög? 

Az 1./-7/ algoritmus 1./-5./ szakaszát megkiséreljük fenti elv alapján 

leröviditeni: 

Az algoritmusban a következő kijelentés-logikai itéletek szerkeszthetők 

meg: 

Itt és a továbbiakban ismételten kihangsu-
To/X;i/-7> h/R;i/ 	lyozzuk /62: 32/, hogy az implikációban pl. 

To/X;i/ és h/X;i/ között itemialim logikai 
kapcsolat !4  

Ezek szerint, ha a derékszögei háromszög oldalaiból adott törtet képez- 



1 1 1  

0 1 1 

1 1 1 

0 1 1 

1 0 0 

0 1 0 

1 0 0 

0 1 0 

1 1 1 1 1 1 1  1 

1 1 1 0 1 1 r 1 1  

0 1 1 1 1 0 1 1 

0 1 1 0 0 0 1 1 

1 0 0 1 1 1 0 0 

1 0 0 0 1 1 0 0 

0 1 0 1 1 0 0 0 

0 1 0 0 0 0 1 0 

1 

0 

0 
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tünk, akkor meghatároztunk egy adott elhelyezkedést az "X" szöghöz vi-

szonyitva; illetve ha a derékszögű háromszög adott "X" szögéhez hozzá-

rendeltünk egy szögfüggvényt, akkor meghatároztunk egy elrendezést az 

adott "X" szSUhöz viszonyitva. 

A kettő együtt /a "Formális elemek" 	A/  alapján bizonyitva/ képezi 
az alábbi 

[/x;i/1/x; i,j   A  [f/i;x/_h/x;i- 
 - Lo

/X;i/yl/i;X/ 	h/X;i/ 

/1/ azonosságot /melyet az egy sorban lévő bekeretezett azonos értókü 

számok mutatnak%; 

Hasonlóképpen: 

T o/X;i/ 	  e 

f /i ;7C/ 	 > e 

Ha a derékszögű háromszög oldalaiból adott törtet képeztünk, akkor ki-

számitható egy "e" érték, illetőleg ha a derékszögit háromszög adott "X" 

szögéhez hozzárendeltünk egy szögfüggvényt, akkor kiszámitható egy "e" 

érték. 

Az előbbi megismétlésével kapjuk a 
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LT/x ; i/__ e1 ~ [C,/ia/___ 	_ LTX;u/ V  f/i;X /~ _÷ e  

/2/ azonosságát. 

[T-0/X;i/ /7\ f/i;X/] 	>  U/X/  

Ha a derékszögű háromszög oldalaiból képezünk egy adott törtet ós a de-

rékszögű háromszög-fi "X" szögéhez hozzárendelünk egy szögfüggvényt, 

akkor utasitást adtunk egy adott szög visszakereséséhez. 

LTo x ; u1 

	

f/i;X/1 	 E/X/  

Ha a derékszögü háromszög adott oldalaiból képezünk egy törtet és a de-

rékszögü háromszög adott "X" szögéhez hozzárendelünk egy szögfüggvényt,  

akkor utasitást adtunk egy adott egyszerű egyenlet átrendezésére.  

Ezekből az alábbi módon képezhető az alábbi azonosság:  

	

T o/X;i/ / 1 f/i;X/ 	—t a rövidség kedvéért jelöljük "A"—val, akkor  

	

/A 	}  U/X/  

vagy  

	

/A 	7 E/X/  

esetekből  



[A  U/x/]  

1 1 1  

0 1 1  

1 0 0  

0 1 0  

1 1 1  

0 1 1 

1 0  0 

0 1  0 

1 1 1 1  

0 1 1 0  

1 1 1 1  

0 1 1 0  

1 0 0 1  

0 1  0 0 

1 0 0 1  

0 1  0 0 

1 1 1  

1 1 1  

0 1 1  

0 1 1  

1 1 0  

1 1 0  

0 0  0 

0 0  0 

Y  CA -~ E/X/1 = A --~  íuixi V VIL J  

D 
e 
e 
~ n 
0  

e 

D 

e 
0  
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Az "A" helyébe az eredeti értéket beirva: 

Co/X'  i/  /  1 	 -J ~  I—/X/ \V/ E/112I  

kapjuk a /3/ azonosságot, ' 

A következő azonosságnál a  

px/ v $/x/~ n ] --> a  

kifejezést, mely szerint: "ha utasítást adunk egy adott szög visszake-

resésére, vagy egy adott egyenlet átrendezésére, és hozzárendeltünk egy  

adott "e" értéket, akkor kiszámithat6 egy meghatározott "X érték" az  

ugynevezett exportáció törvénye alapján átalakitjuk:  
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1 	1 	0 	1 	1 0  
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1 	0 

1 F 0 

0 
	

0 

0 
	

0 

1 
	

0 
	

1 

O n 1 

~ 1 

1 n 0 

1 n 0 

0 

0 

El 0 

0 

1  

1  

0  

0  

1 

1 

1 

1 
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1 
0 

1 

1 1 1 1 

1 1 1 1 

1 0 1 1 

0 0 0 1 

1 1 0 0 

1 1 0 0 

1 0 0 0 

0 0 0 

1 1 1 1 

1 	1 	0 	0 	0  

O 0 	0 	0 	0  

= 	[/7I/ ~  
1 1 

0 1 

1 1 

o 0 

1 1 

0 1 

1 1  

0 0  

1  1  

0 1 

1 1 

0 0  

1 

0 

1 

1 

1 1  

0 0  

E/X] --> /e 	g/  

1 1  

1 1  

1 1  

1 1  

1 1  

1 1  

1 1  

1 1  

0  0  

0 0  

0 0  

0 0  

1 

1  

0  

0 

1 0  

1 0  

TCu,xt V E/X,)  A 	X  

e ~ 

0 

és megkapjuk a /4/ azonosságo t. 

A /3/ és /4/ azonosságok alapján:  

[T0/x;i/  f/i ;X /1 --> I II/X/  ~ E/X/ 
J 	L 

 

CU/XÍ 	~ E/X 	/e 	 X/  ~ 
alkalmazzuk a "hipatetikus szillogizmus" törvényét, amelyből következik, 

az "implikáció tranzitivitása" G.KLAUS /74 : 82/ és KALMÁR LÁSZLÓ /  62; 

105/ Ezek szerint, ha:  
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To/X;i/ 	f/i;X/ 	= A 

U/X/ 	V E/X/ 	= B 

/e 	7 X/ 	= C 

egyszerübb jelöléseket alkalmazzuk, akkor az 

/A 	j  B/ n /B 	}  C/ = A 	̀2C  

kifejezés mindazon esetekben igaz lesz, amikor az "/A 	B/"; 

"/B 	Cl" illetve "/A 	::›C/"  három itélet mindegyike igaz, azaz: 

/A VA  /B 
, 

1 1 1 1 1 LAJ 

0 1 1 1 1 

1 0 0 

0 1 0 1 0 1  

1 1 1 

0 1 1 

1 0 0 

0 1 0 1 0 1 

0/ _ /A 	l  C/ 

i 
	

1 	11 1 

1 
	

0 	(1 	1 

1 	1 	1 

1 	0  51  1 

O 1 	0 

o o 	o 

O 1 	0 

O o n  o 

Ez a feltétel esetünkben elegendő, mivel a megoldás feltételét már az 

első /aláhuzott/ sor kielé;iti, ugyanis ahhoz, hogy magoldásról egyál-

talán beszélni lehessen, ahhoz: 

A _ 1 

azaz 

/2/0/X ;i/ / , f/i;X/ 	= 1 

mivel: 
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/To/X;1/ = f/i;X/ = 1  

elengedhetetlen, tekintettel arra, hogy feltétlenül léteznie kell egy,  

a derékszögű háromszög adott oldalaiból képezett törtnek és egy  adott  

"X" szöghöz /oldalhoz/ tartozó szögfüggvénynek.  

B = 1  

azaz  

U/X/  
	

E/X/ 	= 1  

mivel az "K" meghatározása minden esetben igényel egy szögfüggvénykere-

sést, vagy egy egyenlet megoldást.  

C = 1  

azaz  

/e --> X/ = 1  

mely az e = 1 és X = 0 logikai értékeket kizárja.  

Ezek után az "A 	C" formára  

LTIX ; j/ A f/i ; X/1 ~, /e 	X/ 
_l  

az előbb már igazolt "exportáció törvényét" alkalmazva, kapjuk a  

T o/X; i/ ) L/i;X/ —b /e —>X71  

az optimális algoritmus kijelentés–logikai itéletformáját. Ez tehát a  

feladat–megoldás loi-lag még korrekt legrövidebb utja, amelyet a  

"Formális elemek" :. !~ 	–ban  
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, R /Ai/ -vel 
4=1  

szimbolizáltunk, s amely az eredeti algoritmus  

iil /Ai/  ~ iRl /Ai/  

lépéshalmazának részhalmaza. Tehát az a logikai ut, amely valamennyi  

helyes megoldáshoz vezető utban bennefoglaltatik. LÉNÁRD FERENC  

243/ rámutat erre pszichológiai aspektusból, amikor megállapitAa, hogy  

"a logika az egyéni vonásoktól megisztitott gondolkodási folyamatot  

vizsgálja. A pszichológia pedig azt a gondolkodási folyamatot, amely  

egyéni vonásokkal, tévedésekkel, mellékutakkal terhes. Ez a megkülön-

böztetés magában rejti azt az azonosságot is, amely kifejezésre jut ab-

ban, hogy a problémák egyéni megoldási eljárása mindig tartalmazza az  

előbbi definiált gondolatmenetet is abban az esetben, ha a gondolkodó  

egyén a feladott problémát megoldotta". Sz:L.RUBiNSTEIN /413:149/ sze-

rint pedig: "A gondolkodás pszichológiai és logikai megközelitésének  

kérdésével kapcsolatban a következő álláspontot foglalta el: A logika  

a gondolkodás legáltalánosabb törvényeivel és m.iveleteivel foglalkozik,  

vagyis egy olyan "ideális" állásponttal, amely megmutatja, hogyan kell a  

gondolkodásnak "mintaszerüen" lefolynia. Ezzel szemben a pszichológia  

a "reális" állapotot vizsgálja, vagyis azt, hogy egy-egy ember gondol-

kodási tevékenysége hogyan megy végbe."  

Ezeknek megfelelően:  

Lr  /A./ = az egyéni vonásokkal mellékutakkal terhes, reális folya-
i=1  

mat algoritmusa, amig  
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Rk  /Ai/ = az egyéni vonásoktól megtisztitott, mintaszerü gondolat-
i=1 

menet algoritmusa, s végül: 

Lr  /A./ : 	Rk  /A./ = 	 a problémák egyéni mevoldási eljárása 
1=1 	1 	i=1 	1 

mindig tartalmazza az előbb definiált gondolatmenetet is abban az eset-

ben, ha a gondolkodó egyén a feladott problémát megoldotta. 

Az előbb bemutatott optimális algoritmust 14 tanuló bevonásával kipró-

báltuk olymódon, hogy a korrepetálást az 

Lr  /A./ - vel kezdtük és az 
i =1 

Rk  /A./ - vel fejeztük be. 
i=1 

Az értékelés% a ...sz.táblán látható, ahol a diagramm szaggatott vonalai 

a helytelen, a folyamatos pedig a jó megoldásokat ábrázolják.' A vonalak 

vastagsága a megoldók számával arányos. A diagramm "tanulók gondolatme-

netét" ábrázoló oszlopai közül a középsőn leolvasható, hogy 6 tanuló , 

azaz a vizsgált személyek 43 %-a elsajátitotta az optimális megtanulan-

dó algoritmust. 

Befejezésül felvetődhet a kérdés, hogy 

a./ érdemes-e két lépés megtakaritása érdekében ezen eléggé bonyolult 

eljárást követni, 

b./ nem adódna-e az Rk  /A./ az L r  /A./-ből közvetlenül, 
i=1 	1 	i=1 	1  

c./ hol és milyen feltételek mellett alkalmazható még ez az eljárás, 

d./ létezik-e "rövidebb ut" meghatározásának ettől eltérő módja. 
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A válasz az I.fejezet végén következik.  

3./ A 2.1—höz igen közelfflló véleményt képvisel A.A.CSENCOV, aki egyik  

munkájában /4b: 75/ az optimális algoritmus kiszámitását az elvégzen- 

dő müveletek számának csökkentésében látja. Véleménye szerint elmond-

hatjuk, hogy az algoritmus az azonosan bonyolult müveletek sorozata, s  

igy nyilvánvaló, hogy észszerüségének mércéje, kritériuma a müveletek  

száma. Minél kevesebb müveletre van szükség a feladat megoldásához, an-

nál gyorsabban jutunk az eredményhez, és igy annál jobb az algoritmus.  

A tanulóknál is arra van szükség, hogy magukévá tegyék ezt a gondolatot,  

és a tevékenység sorrendjét /algoritmus/ a müveletek számával kell érté-

kelniük. Igy a gyakorlati munkafeladat végrehajtása során is — ahol  

csak erre lehetőség nyilik — azt a sorrendet fogják választani, amely a  

legkevesebb műveletet tartalmazza. Például a VIII.osztályos laboratóri-

umi munka elvégzésekor az "Elektromos láncolat összeállitása és az egyes  

szakaszokban az áram irányának megváltoztatása" cimü feladatnál az am-

permérő átalakitásához általában nyolc müveletet szoktak elvégezni:  

.sz.ábra.  
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1./ Bonstuk az l.áramkört, válasszuk le az "A" vezetéket az ampermérők-

ről; 

2./ Bontsuk a 2.áramkört, válasszuk le a "B" vezetéket az ampermérőről. 

3./ Bontsuk a 8.áramkört, válasszuk le az "A" vezetéket a lámpáról; 

4./ Kossük be a "B" vezetéket a 8.áramkörbe; 

5./ Zárjuk be a láncot a 4.ponton /bontsuk az áramkört/; 

6./ Kössük be a "B" vezetéket az ampermérő egyik pólusához; 

7./ Kössük össze a felszabadult "A" vezetők egyik végét az ampermérő má-

sik pólusával; 

8./ Kössük az "A" vezetők másik végiét a ayilás—záróhoz. 

A műveletek számát azonban 6—ra csökkenthetjük, ha kezdetben összekötjük 

a vezetékeket a 2. és 8.pontban, illetőleg az 1. és 3.pontban, és az am-

permérőt az "A" vagy "B" vezetékkel egyidejűleg állitjuk át. Láthatjuk, 

hogy az egyszerű laboratóriumi munkát is meg lehet oldani kettővel keve-

sebb művelettel, vagyis a műveletek száma egy negyeddel csökkenthető: U— 

gyanakkor A.A.CSENCOV később egy másik helyen ugyancsak egy elektromos 

kapcsolás optimális algoritmusát kutatta, s kísérleti eredményei az elő-

ző véleményének módositására késztették:."Ez a következtetés viszont azt 

jelzi, hogy a műveletek száma nem fogadható el összehasonlitási alapként 

a módszerek kedvező volta tekintetében. A módszerek helyes elbirálása 

céljából azt kell megállapitanunk, hogy átlagosan mennyi az a minimális 

változtatás, mellyel a hibát meg lehet állapitani és csak azután lehet 

felállitani a változtatások észszerűségének. sorrendjét. Ez pedig az in-

formációs elmélet tételei alapján valósitható meg." 

Mivel a következő optimális kiszámitása az információ elméleten alapul, 

igy egy—két idevágó alapfogalom tisztázásra szorul. TARJÁN REZSŐ /42j : 

36/ az információ fogalmát a kibernetika egyik központi fogalmának te- 



kinti. Ugyanakkor az információelmélet alapját pedig az információ meny-

nyiség képezi, amelyet C.E.SHANNON /42t: 39/ vezetett be, majd S.HINCSIN 

/5'g : 39/ határozott meg kellő matematikai szabatosággal. Ennek a foga-

lomnak kvalitativ megfogalmazásához az alábbi meggondolások révén jut-

hatunk el: 

Minden közlés, akár irásbeli, szóbeli, vagy gépi közlésről van szó, vala-

miféle jelek, szimbolumok segitségével történik. Ezeket a jeleket jel-

ABC-nek vagy csak röviden ABC-nek nevezik. A beszélt nyelvnél ezek a 

jelek az egyes hangok, az irott nyelvnél a rendes ABC betüi, a táviró-

nál az alkalmazott Morse- vagy más rendszerü kódjelek, a TV-nél a kép-

pontok, stb. Bármely információt ugy lehet kifejezni, hogy kevés számu 

jelet, például az ABC betüit valamilyen módon kombináljuk, valamilyen 

formában elrendezzük. Magát az információt éppen ez az elrendezés, a 

konfiguráció reprezentálja. Az információ tehát végső soron rendezett-

séget jelent. Az elrendezés legtöbbször időbeli egymásután következés 

/például az egymásután következő beszédhangok, távirójelek, stb., de 

lehet térbeli elrendezés is, például az irott szöveg, vagy kép /a 4./-

ben következő vizsgálataink alapja/./ 

Az információ mennyiség fogalmának néhány elméletileg és gyakorlatilag 

egyaránt fontos követelményt is ki kell elégitenie: 

a./ Azonos kódolási mód esetében két különböző hosszuságu sorozat kö- 

zül a hosszabb jelsorozatnak több információt kell adnia. Hogy  a 

jelsorozatok különböző hosszuságából eredő különbségeket kiküszö-

böljük, célszerü az átlagos információ-mennyisé-ge1 dolgozni, amely 

már a jelsorozat hosszától független. 

b./ Az a. /-ból következik, hogy ha egy közlemény /jelsorozat/ hosszát 
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megkétszerezzük, akkor az általa közvetitett információ-mennyiség 

is közelitóleg kétszeres legyen. Gyakorlati szempontból azonban 

itt nem célszerű szigoru arányosságot megkövetelni, s az informá-

ció-mennyiséget ugy definiálják, hogy az információ-mennyiség las-

sabban növekedjék, mint az üzenet hossza. Ezt nevezik additivitási 

/összeadhatósági/ követelméynek. 

J.HINCSIN / ,313:  41/ kimutatta, hogy az információ-mennyiségnek egyet-

len olyan mértéke van, amely a fenti két plauzibilis követelményen ki-

vel az egyéb matematikai követelményeket is kielégiti, ez a 

n 
H 	- K 	 Pi  log-  Pi  

1 

összefüggés, ahol a "P i" az ABC egyes jeleinek az előfordulási való-

azinüségeit, "n" a sorozatban lévő jelek számát /az üzenet hosszát/, 

jelenti, "K" pedig egy önkényesen megválasztható numerikus állandó. Ez 

az információ-mennyiség. Hogy ezt mérni is tudjuk, megfelelő mérték-• 

egységet kell választani. A mértékegységet egy olyan igen egyszerü ABC 

alapján lehet definiálni, amely csak kétféle jelet, pl. a kettes szám-

rendszerben a 0-t és az 1-et tartalmaz, és ezek egyforma valószinüsé ;  

gel fordulnak elő. Az információ-mennyiség, amelyet az egyszerű alter-

nativa igen-nem jellegü eredménye szolgáltat az információ egysége, 

melyet a nemzetközileg kialakult szóhasználatnak megfelelően "bit"-nek 

neveznek /"bit" az angol "binarí digit" szavaknak összevonásából ke-

letkezett/. A fenti rendszart pedig lineáris rendszernek nevezzük /lásd 

a "Formális elemek" cimü fejezet 4/  pontjában található második klasz-

szifikációt, melynek ez az alapja/. ' 

A fentiekre szolgáljon a következő egyszerü példa, ahol egy előbbi ti- 
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pusu /lineáris/ "0" és "1" jeleket 1/2 - 1/2 valószinüséggel továb-

bitó forráshoz tartozó információmennyisé,:  

H = -/ 2  log-  ~ + 1  1o g2  / _ -/- 2 1o g2  2 - 2  log2  2/ = 

=—/—  1 -2/ 	1  

ahol "log2" a kettesalapu logaritmus jele.  

x x x  

4./ Amint az a 3.1-as pont végén idézett megállapitásból is kitünt, 

A.A.CSENCOV a magas információ nyerést biztositó algoritmusokban  

látja az optimalitás kritériumát. A szerző egy az észszerű /racioná-

lis/ al_,oritmusok feltárását egy kisérleti jellegü feladaton mutatja 

be, ugyanis ezek a feladatok különösen aktivizálják a tanulókat. A 

feladatban adva van egy mérleg 100; 200. 400 és 500 grammos sulyok-

kal. A mérleg egyik spsx serpenyőjén fekszik egy tárgy, sulya "R" 

gramm, amelyről tudjuk, hogy 

100 gr L  R 	1000 gr = 1 kg  

valamint azt, hogy az egész számot 100 grammban fejezzük ki. Feladat: 

Tudjuk meg a tárgy sulyát a lehető legkevesebb müvelet elvégzésével. 

Az algoritmus: Hogy megismerjük az egész sulyt,  

Következ-, 	IGEN  

tctés: a  

suly 500  

gramm.  

Helyezzünk a mérleg tányérjára 

500 grammot.' 

Nyom a suly 500 grammot? 



Köve tke z— .IGEN  

tetés: a  

suly 900  

gramm.  

Tegyünk  

a mérleg-

be 900 gr— 

ot. Nyom 

a suly 900 

grammo t ? 

.

y  

Következ-

tetés: a 

suly 600  

gramm. 

IGEN 

Következtetés; 

A suly 
	A suly 

400 gr. 	300 gr.  

I.  
Többet nyom a suly 

500 grammnál? 

IGEN  

d  

NEM  

NEM  

Következ— IGEN  

tetés: a 'N  

suly 700  

gramm  

Tegyünk a mérleg 

tányérjába 700 

grammot. Nyom a 

suly 700 gr—ot?  

Tegyünk a mérleg 	Következte- 

tányérjába 200 	tés: a suly 

grammot. Nyom a 	200 gramm 

suly 200 gr—ot? 

NEM  

II . Több 700 gr—nál? 

IGEN  NEM  

NEM 

(Több 200 gr—nál? 

IGEN  

Tegyünk a  

mérlegbe 

400 gr—ot.  

Nyom a 

suly 400 

grammot? 

NEM  

Következte-

tés: a suly 

100 gramm. 

NEM  
~ /  

Többet nyom, mint 

900 gramm?  

NEM  IGEN 

Következtetés: 

\_/  

A suly 

800 gr. 

A suly 

1 kg.  
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Illem nehéz felismerni, hogy az egész sulyt /a test sulyát, "R"-t/ három 

összefüggés határozza meg. Ez könnyen igazolható, ha a "következtetések 

rendszeréből"  indulunk ki, amelyet az alábbi gráfon szemléltetünk: 

I. 500  

II.  700 	200  

90'0 	600 	l00  

1 00 	800 	400 	300  

I 

 

Itt leolvashatók a következők: 

a./ 100-tól 1000-ig minden lehető olyan érték, amely a 100 gr-nak egész-

számu többszöröse szerepel. 

b./ A sulymegállapitáshoz három kérdésre kellett válaszolni. 

c./ Az a./-ban szereplő és a gráfon leolvasható lehetséges értékek szá- 

na  : 10.  

Ha most a bizonytalanság megszüntetéséhez az információ-elméleti ismerte-

tőben bemutatott képlet egyszerüsitett változatát felirjuk, akkor: 

= - 1o 2  P  

ahol P = l~ és igy 

I = -/- log2  10/  

ahonnan: 

e = 10  



Nyom a suly 

100 gr—ot? 

Következtetés: 

	%R = 100 gr 
igen 

nem 

Nyom a suly 

200 gr—ot? 

Következtetés: 

	":7- R = 200 gr 

em 

Következtetés: Nyom a suly 

300 gr—ot? 

nem 

›iR  = 300 gr. igen 
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majd továbbá: 

I . 10;;2 	= lo z 10 

I  _ lor 10,  _ 	1 	= 3,31 
—  lo g 2 	^  0,3010 

Ezek szetkint a legészszerübb /racionális/ algoritmus  felhasználásával: 

3,31 r\J 3 

információ segitségével a feladat megoldható, ami a fenti esettel ana-

lóg. Felvetődhet az ellenkérdés: Mennyiben nevezhető ez a legészszerübb 

algoritmusnak? Nem lehet—e  ennél egyszerübb megoldási utat találni? 

Vagy egyáltalán lehetséges—e ennél bonyolultabb megoldási ut? 

A válaszok: 

a./ Ennél rövidebb ut nem lehet, hisz valamennyi lehetséges érték fel-

sorolása a fenti gráfnál kevesebb szintű gráfban csak ugy lenne el-

képzelhető, ha egy szintre az igen—nem kérdés—változaton kivül még 

más adatok is felkerülnének. Ez pedig "bináris rendszer"—ben nem 

képzelhető el. 

b./ A bináris rendszeren belül elképzelhető egy másik algoritmus is. 

Pl.:  

II . 
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Következtetés: 
j  R - 400 gr. igen 

Nyom a suly 
400 gr-ot? 

nem 

Következtetés: 

R =500 gr. 

nem 

nem  

Nyom a suly 

600 gr-ot? R  = 600 gr. 'en 
Következtetés: 

Nyom a suly 

700  r.-ot? 

nem 

Nyom a suly 

900 gr-ot? 
igen 	'?R - 900 gr. 

igen 
Nyom a suly 

800  gr-ot? l R = 800 gr. 

nem 

Következtetés: 

R  = 700 gr. igen 
I 

Következtetés: 

Következtetés: 

nem 

IV.  

V.  

VI.  

VII.  

IX. 

Következ.e tés: 

R = 1000 gr  = 1 kg. 

Az itt látható 9 összefüggés és az előbbi három összefüggés egybevetése 

választ ad egyrészt arra a kérdésre, hogy van kevésbbé racionális al- 

,;oritmus is; de választ ad arra is, hogy a három összefüggést tartalma-

zó algoritmus valóban észszorü /racionális/. Egyben élesen kirajzolódik 

az algoritmusok optimális számitásának a tulajdonképpeni célja, a ra-

cionális algoritmus felkutatása is. 

A levezetett algoritmus egyben feltárja gondolkodási műveleteink bonyo-

lult összefüggéseit és nagy hatékonyságát is. Hisz az adott algoritmus 

gondolatban néhány másodperc alatt felállitható, sőt, néha ü másodperc 



.• 174 —  

töredéke alatt, mig irásban rögzitve legalább 5 percet vesz igénybe.  

Ha bonyolultabb feladatot kell megoldani, jőval több müvelet elvégzé-  

sére van szükség, igy az algoritmus meggyorsitja a feladat megoldását,  

és megkönnyiti a válasz megtalálását.  

Láthatjuk, hogy az al;oritmusok összeállitásánál azt az elvet kell  

alkalmazni, mely szerint egy müvelet megoldásának folyamatába be kell  

vonni az információk maximális mennyiségét. Ez az algoritmus a müvele-

tek olyan sorát alkotja, melyben minden művelet - a bőséges információ  

következtében - maximális mértékben segiti a határozatlanság megszünte-

tését.  

Meg kell mondanunk, hogy az ernlitett elv annyira általános, hogy sok  

esetben alkalmazható az észszerű algoritmusok pontos matematikai követ-

keztetéseihez.  

4/a. A most bemutatott felismerési algoritmus elmélyültebb tárgyalását  

és generalizációját mutatja be L.N.LANDA /r$ ~j :.—/. Szerinte, ha egy  

speciális jelenség számára kell egy algoritmust keresnünk, akkor meg  

kell gondolnunk, hogy ugyanaz a jelenség különböző, a felismerést elő-  

segitő jegyekkel birhat. Eljuthatunk külső /pl. alak/, de belső jegyek-

kel is /struktura ás funkció/ a felismeréshez. Különösen nagy mértékben  

járulnak hozzá az emlékezéshez az emlékezetünk tárolójában őrzött töb-

bi eseményekkel való kapcsolatok és asszociativ összeköttetések. Igy  

térbeli, időbeli, kauzális, finális, funkcionális, rnodális, valamint  

hasonlósági és kontrasztkapcsolatok elő tudják idézni az emlékezést.  

'iiszen gyakran elég egy személyt bizonyos körülmények között, tehát  

bizonyos összefüggésekben elképzelni, hogy felismerjük.  

A tárgyak ás jelenségek felismeréséhez esetleg több felismer é si al;o- 



—175— 

ritmus is adódik. Ki kell választani a legkedvezőbbet, az optimálisat. 

Egy jelenség "n" jegyére nézve /LANDA szerint/: 

J = . /n—i/ 
2i  

i=0 

J = n./n-1/2 . /n-2/4  . /n-3/8  

 

2 /n-2/ 
/n—/n-2/ 

 

Az algoritmusoknak ebből az ölsz—mennyiségéből választjuk ki a legelő-

nyösebbet, vagy a le;előnyösebbeket. Közben az összes lehetséges je-

gyeket információs tartalmukra nézve meg kell vizsgálni vagy ki kell 

számitani. Továbbá meg kell gondolnunk, hogy a jegyek felismerése vagy 

ujrafelismerése az előző információktól, a tudás szinvonalától, a szel-

lemi mozgékonyságtól ős nem utolsósorban az információk közvetités:inek 

módjától függ. Ezen kivül meg kell vizsgálni, hogy milyen sorrendben 

kell egymásután azonositani a legerősebben informatív jegyeket. E fo-

lyamatban lehet egy legrövidebb ut, amely azonban a tanulók számára nem 

mindig a legkedvezőbb.' Számukra gyakran könnyebb több, de egyszerűbb, 

áttekinthetőbb lépésben a cél felé haladni. Az össz—algoritmus a jegy-

csoportoknak egy kombinációjából áll, amely bizonyos részkijelentések 

megoldásához szükséges. Minthogy ezeket a jegycsoportokat mindig e gy— 

e gy algoritmus által lehet megragadni, az össz—algoritmus az egyes al—

algoritmusok kombinációjából fog állni. 

Felismerési algoritmus  

l.részkijelentés 2.részkijelentés 3.részkijelentés 4.részkijelentés 
/l.alalgoritmus/ /2.alalgoritmus/ /3.alalgoritmus/ /4.alalgoritmus/ 

l.ismertetőjegy 
igen 

2.ismertetőjegy 
igen 

H 3.ismertetőjegy 
nem 

1.ismertetőjegy 
nem 

4. ismertetőjegy 
igen  

l.ismertetőjegy 
nem 

$.ismertetőjegy 
igen 

3.ismertetőjegy 
nem 

l.ismertetőjegy 
nem 

2.ismertetőjegy 
igen 

5.ismertetőjegy 
igen 
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Ennél az eljárásnál előtérbe lépnek a már korábban ismertetett matemati-

kai logikai müveletek. Az l.ismertetőjegy a legnagyobb információs érték-

kel bir, mert meglététől vaüy hiányától további döntések függnek, és e-

zen kivül leszükiti a felismerés területét .  

A matematikai logika irásmódjával leirva, a fent megadott felismerési al-

goritmus a következő formát venné fel:  

/mi/\m2Am3/Vj1 Am4/ v/ y m5 .1\73/ 071i.' m2 7\m5/  

Itt világosan látjuk, milyen uralkodó szerepet játszik az m l  ismertető-

jegy. E szimbolika segitségével az ismertetőjegy kombinációk vagyis az  

egyes alalgoritmusok könnyen és szemléletesen áttekinthetők. Az ismerte-

tőjegyek elrendezése, összekapcsolása azonban lényeges szerepet játszhat.  

Egyáltalában nem közömbös, hogy egy ismertetőjegyet melyik helyen vizá`;-

lunk meg. Az m 1  ismertetőjegy az első helyen az m 3  a második helyen több  

információt adhat, mint az 	
d 

ml  A m2  A m3  

sorrend. L.N.LANDA /;(S :—/ számitását követve, fenti algoritmusunkra  

nézve a következő eredményeket kapjuk: A H l/  / szimbolummal e gy helyzet- 

nek a közlés vétele előtti bizonytalanságát jelöljük /kiindulási helyzet/.  

H2/(~j /—val jelöljük egy helyzet bizonytalanságát a m l  közlés vétele után. 

Akkor az információk:  

Ha egy közlés az egész bizonytalanságot megszünteti, akkor:  

H2/  

~ 1 

/ = ~ 0  és  

/1 , 
	 — D =  
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Most kiszámitjuk azt az információ—mennyiséget, amelyet minden egyes  

ismertetőjesy megad, ha a felismerés folyamatát vele kezdjük. Az m l  is-

mertetőjegy számára két kiindulás adódik: vagy megvan, vagy nincs meg.  

Ha m1  megvan, akkor az információ a következő:  

= H,/  H
2/ (/ _ —1g22 + 1g2

4 = 1 / 	bit 	
—ban/; szimbólum  

mert m1—re vonatkozólag összesen négy részkijelentés fordul elv.  

Ha m 1  nem fordul elő jl/,  akkor /3.részkijelentés/:  

) = 123 = 1,58  

Az információ tehát ml —re  vonatkozólag a következő:  

)9= 
 H1/~ 

bit  = —1g22 + 1g23 = 0,58 / szimbólum  

 

—ban/. 

   

Most megállapitjuk azt az átlagos információt, amely akkor adódik, ha az 

ml  ismertetőjeggyel kezdjük az eljárást.  

Annak valószinüsége, hogy 1 szimbólum  —ot kapunk 7  /egyszer 4 részki— 

bit  jelentésben/, annak valószinüsége, hogy 0.58 szimbolum ot kapunk i 

háromszor nincs meg 4 részkijelentésben/. Eszerint m l  ismertetőjegyre 

vonatkozólag az átlagos információ: 

 it 
= 1 . 1 + 	. 0,58 = 0.685 / szimbólum —ban/. 

Hasonló módon lehet megállapitani a többi ismertetőjegyekre vonatkozó 

információtartalmat is, ha első helyen alkalmazzuk őket. Ekkor megkapjuk, 
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hogy melyik ismertetőjegy tartalmazza a legnagyobb információ—mennyisé-

get,  és ezért kell az első helyen alkalmaznunk.  Hasonló módon állapit—

hatjuk meg azt is, hogy melyik ismertetőjegynek kell a 2. vagy a 3. he-

lyen megjelennie. 

LANDA itt ismertetett módszere az oktatás gyakorlatában valószinüleg 

ritkábban lesz alkalmazható. Ezért ő maga javasolt már egy grafikus mód-

szert. Ez,  kissé általánositva, a következőkben áll: 

1./ Először is megállapitjuk egy jelenség ismertetőjegyeit. 

2./ Megkeressük a legnagyobb információs értékkel biró jegyeket. Ezek 

általában azok az ismertetőjegyek, amelyeket a 1e'fontosabb, leglé-

nyegesebb jellemzőknek kell tekinten.ínk. 

3./ Az ismertetőjegyeket lo ikai strukturában, egy bizonyos sorrendbe hoz-

zuk, miközben a legnagyobb információtartalmu ismertetőjegyet állit-

juk a sor elejére. 

Felismerési algoritmus  

1./ 1.ismertetőjegy: 	 Megvan....? 

igen 	nem 

2./ 2.ismertetőjegy: 

Megvan az ismertetőjegy? 	Ha megvan, akkor....? 

igen 	nem 	igen 	nem 

Köve tkezte -,é s : ... Akkor ez 

igen 	nem 

Következtetés: 	 

Példa: rádióvevő készülék. 

Ismertetőjegyek: dobozszerű káva, kezelőgomboké antennacsatlakozás, föld-

csatlakozás, hálózati csatlakozás. 
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Lényeges feladatok, szembetűnő ismertetőjegyek: 

1./ elektromágneses hullámok felvétele az antennán át, 

2./ egy meghatározott, kivánt adóállomás kiválasztása /hangolás/, 

*Y7f Meghatározó alkatrész: a rezgőkör. 

3./ A felvett rádiójelek megerősitése. Nagyfrekvenciás erősités. 

4./ A nagyfrekvenciás rezgések átalakitása kisfrekvenciás rezgésekké /de—

moduláció/. ' 

Meghatározó alkatrész: az elektroncső. 

5./ A kisfrekvenciás rezgések megerősitése. ' 

Meghatározó alkatrész: az elektroncső. 

6./ A kisfrekvenciás rezgések átalakitása hanggá vagy beszéddé. Hanghul- 

lámok keltése.  

Meghatározó alkatrész: a hangszóró. 

Fő ismertetőjegyek: 

Nagyfrekvenciás rezgések /rádióhullámok átalakitása hanghullámokká. 

Felismerési algoritmus /rádióvevő készülék/.  

Li Ismertetőjegy: 

Nagyfrekvenciás rezgéseket vesz fel egy antennán keresztül? 

Igen 	 Nem 

Nagyfrekvenciás vevőkészü— 	Nem nagyfrekvenciás vevőkészü- 

lék. 	 lék. 

2. Ismertetőjegy: 

Nagyfrekvenciás rezgéseket hanghullámokká alakit át? 

Igen 	 Nem 

Rádióvevő készülék 	Nem rádióvevő készülék. 

A tekintetbevett ismertetőjegyek száma szerint az algoritmus hosszabb, 



vagy rövidebb lehet. A tanulandó anyagba való igen intenziv behatolás 

eltávolit a felületességtől, és a tanulókat jobban ösztönzi a gondolko-

dásra, mint egy betanult meghatározás. 

Egy másik módszer megfelel annak a gyakorlati eljárásnak, amelyet az 

életben alkalmazni szoktunk: Ha egy tárgyat vagy jelenséget meg akarunk 

vagy fel akarunk ismerni, akkor egy "valószinüséi modellt", egy "eljá-

rási sémát" állitunk fel. Ezzel bizonyos "metszéseket" vagy "szondákat" 

vezetünk a megfigyelési mezőn keresztül és besz'.ikitjUk azt. Eközben ana— 

lógiákat és azonosságokat használunk fel és egy osztagból indulu .)c i. 

Ekkor a kivetkező osztályozási algoritmus adódik: 

1./ Megvannak az A  /B, C, stb./ osztályhoz rendelt ismertetőjegyek? 

Igen 	 nem 

E;/ Megvannak az a /b, c, stb./ nemhez tartozó ismertetőjegyek? 

Igen 	 nem 

3.1 Megvannak az M,(, stb./ fajhoz rendelt ismertetőjegyek? 

Igen 	 nem 

4./ Megvannak az egyedi tárgyhoz, az egyedi jelenséghez tartozó ismerte-

tőjegyek? 

Igen 	 nem 

Lehet az algoritmuson forditva, tehát az egyeditől az általános felé halad-

va is végigmenni. Ez egy besorolási algoritmus lenne. 

Módszertani szempontok: A besorolási és osztályozása gyakorlatok haszno-

sak. Világos fogalmakhoz, a tárgyak és jelenségek pontos meghatározásához 

és jellemzéséhez, szigoru logikához és világosan megfogalmazott szabályok-

hoz vezetnek.' Igy pl. egy teljes össze—visszaságot a találós játékhoz ha- 

vat  
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sonlóan rendezni lehet. 

4/b. Igen lényeges szerepet játszhat az algoritmusok optimálisának ki-

számitásánál az L.P.ITELSON /b0:242-248/ által isme4tetett "folyamatos, 

összes, ill. általános informáltság" koncepció. 

ITELSON egy példából kiindulva vezeti le képletét /amely a  4./-es gon-

dolatkör legáltalánosabb megfogalmazását kivánja adni, de ugyanakkor 

igen érdekes gyakorlati eredményekre is utal. 

Adott egy négyszögről, amelyről ismert, hogy szembenfekvő szögei egyen-

lőek, meghatározandó, hogy ez paralellogramma, derékszögit négyszög, rom-

busz, vagy trapéz-e? A kezdeti bizonytalanság feloldásához, amely a 4 

lehetséges esetből adódik: 

H1  - - 	  7 log  7 = 2 bit 

információ szükséges, Vizsgáljuk először, hogy az oldalak egyenlőek-e? 

Tegyük fel, hogy azok. Ebben az esetben is két megoldás lehetséges: a 

négyzet, ill. a rombusz. 

2 

H2 -  	2 log 7; - 1bit 

1 

Ezután vizsgáljuk meg egyik teszőleges szögét, hogy vajjon derékszög-e? 

Legyen a megoldás nemleges. Ebben az esetben tehát a megoldás egyértel-

müen: a rombusz. Most rá kell mutatni az alábbi törvényszerüségre: "A 

növekvő ismeretek csökkentik az egyértelmű megoldáshoz még szükséges 

információk számát. Ennek alapján a továbbiakban felteszi ITELSON a 

kérdést: milyen kapcsolat áll fenn az előzetes és a még szükséges infor-

máltság között akkor, amikor valós objektumokról és rendszerekről aka- 

i 
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runk itéletet mondani. 

A választ a következő megfontolás alapján adja meg: Ha semminemü elő-

zetes ismerettel nem rendelkezünk, a vizsgált eset, vagy objektumról, 

akkor a választás lehetőségének valószinüsége: 

P  
i ~ n 

Ebben az esetben az egyértelmü kiválasztáshoz szükséges információ: 

n 

Ho  = 	z-  n log- = log n 
1 

/Lásd az előbbi konkrét esetet!/ 

Nevezzük ennek a "log a"--nek értékét: "potenciális kezdeti informált-

ságnak". Amennyiben bármilyen előismerettel rendelkezünk, akkor ez 

már veszit ebből a kezdeti értékből. Ezen ismeretek alapján tekint-

sük az egyik lehetőséget valószinübbnek, mint a másikat. /Például az 

előbbi esetben az "oldalak egyenlőségének" ismeretében valószinütle-- 

nebbekkp váltak a "paralellogramma" és "derékszögű négyszög" feltevé-

sek és valószinübbek lettek a "rombusz," ill. "négyzet" alternativák. 

Tételezzük fel, hogy az informáltság növekedését egy "K" mennyiség 

fejezi ki, amely részünkre a "helyzet bizonytalanságát" csökkenti: 

H1  - log n - K 

Az eddig megismert összefüggés alapján:  

H 1 = 	)~  Pi  log Pi  
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mutatja a "Pi" valószinüségét, az "i—ik" kiválasztás után feltéve, hogy  

az informáltság növekszik.  

A baloldalak egyenlőségéből adódik a jobboldalak egyenlősége:  

log Pi  = log n  —  K 

ahonnan:  

s végül:  

K _ log n+  Pi  log Pi  

n 
•~ -- 

K = Z.-  Pi  log n Pi  
1  

ahol:  

n = a kiindulási adatok /megoldások, választási lehetőségek száma.  

A H 1  = log n — K-•bó1 adódik a  

H+K = log n  

összefüggés, amely szerint az aktuális információ és az informáltság  

összege minden adott feladatra egy konstans, mely nem más, mint a po-

tenciális kezdeti informáltság. 

A fentiekkel érdemes L.M.FRIDMAN /.?3 :20-21/ idevágó vizsgálódásainak  
eredményeit egybevetni.  

FRIDMAN számitásai szerint a tanulók a VI.osztályos geometria könyv.. 

ben  és a hozzátartozó feladatgyüjteményben 62—szer találkoznak egy  

tetszés szerinti háromszög hegyesszögével és csak 12—szer tompaszög-

gel. Arcig ugyanebben a könyvben 366—szor találkoznak különböző szögek-

kel háromszögeken belül. Ebből adódóan az első esethez a 0,169—es, mig  
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a második esethez csak a 0, 033-as valószinüségi értékek rendelhetők. 

Ezek után magától érthető, hogy a tanuló, amikor egy háromszög szögei-• 

ről beszél, először a hegyesszögű variációra utal. 

5./ A. A. CSENCOV-nál másutt / !L :12-.20/ és JAKUBOVICS ELEK-nél / c: l : — 

/ az algoritmus elemeit képező itéleteknek és ezek tagadásainak elő-

fordulási valószinüségeiből képezett különbségek szolgálnak a felismeré 

si algoritmus optimálisa kiszámitásához alapként. CSENCOV egy VII.osztá-

lyos "Hiba feltárása összetett elektromos láncolatban" cimü fizikai té-

mában; JAKUBOVICS a "Gyengeáramu jelzőberendezések" cimü villanyszerelő 

szakmai témában dolgoztak ki racionális felismerési algoritmusokat. 

C88NCOV számitásait azzal a megállapitással kezdi, hogy a tanulók a fenti 

esetben gyakran azt sem tudják, hol kezdjék a lánc ellenőrzését és ren-

geteg időt elvesztegetnek az alkatrészek szétszedésével és összeállitá-

sával. Miután a feladat megoldása a fizika tanárok szempontjából igen 

jelentős kérdés, levezet néhány algoritmust, melyeket azoknak az alap» 

elveknek figyelembevételével állitott össze, amelyeket L.N.LANDA /8y : 

j fejtett ki. A feltevés szerint a VII.osztályban laboratóriumi munka 

folyik. "Vezetékek folyamatos egyesitésének tanulmányozása". A tanuló 

összeállit egy láncot, wely 1rc_m`cz '.sl;f 1 , ampermérőből, két ellenál-

lásból és két lámpából áll. / 	sz.ábra/ Megállapitja, hogy a lánc 

nem müködik, az ampermérő nem mutat semmit, a lámpa nem ég. Hogy ta-

lálja meg a láncban a hibát? Szét lehet szedni a láncot és ellenőrizni 

lehet minden alkatrészt. Ez azonban rengeteg időt vesz igénybe. Ujra 

össze kell állitani a láncot, öt müveletet kell elvégezni ahhoz, hogy 

az alkatrészeket ellenőrizzék. Nyilvánvaló, hogy ez a módszer nem ész-- 

szerű. Másként is lehet a láncot ellenőrizni. Ha nem szedik szét, a lán-

cot, hanem kizárják pl. a "b" és "e" pontot, ugy ha a lánc müködik, meg.- 
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állapitható, hogy az R 1  volt a hibás. Ilyen módszerrel bármely hibás 

rész felderithető. 

....sz.ábra. 

Ám kérdés, milyen sorrendben kell a csatlakozásokat kiiktatni ahhoz, 

hogy a hibát minimális számu müvelet elvégzésével megtaláljuk. Hogy 

erre a kérdésre válaszolhassunk, elemezni kell a különböző miiveletek 

eredményeit. /A következő megállapitások mind abból a feltevésből in-

dulnak ki, hogy: 

a,/ csak egy alkatrész lehet hibás, 

b./ a különböző alkatrészek hibásodási esélye egyenlő, 

c./ minden müvelet egyenlően bonyolult./ 

Állitsuk össze a következő táblázatot: 
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Müvele t 
	

k i j a v i t a t l a n 

No. 
megne- 
vezés 

elem 
E 

appermérő 
A 

ellenállás 
Rl  

, 

lámpa 
Ll  

ellenállás 
R2  

, 

1,' ab -• + .. «, . 

2,` ac - + + - .- 

3.-  ad - .. - .. .. 

4,' bc .» .. + - » 

W be .. - + + .. 

6. de - - + + + 

7:=  cd .. .. « + .. 

8i' ce - - - + + 

9.  de .. - - - + 

10.  ae -► - » - - 

A táblázatban az "Ab" müvelet az "A" és "b" pont vezetékes kapcsolatát 

jelenti, az "ac" müvelet az "a" és "c" pontokét, stb. A "+" jel az ára-

mot a láncban /ég a lámpa, ill. müködik az ampermérő/, a "-" jel az á-

ram  működésének a hiányát. Ha az elem hibás, ugy áram egyik müveleténél 

sem jelentkezik, ezért az "E" /elem hibás/ rubrikában minden müvelet "-" 

jellel szerepel. 

Ha pl. az ampermérő hibás, ugy az "ab" és "ac" müveletek a lámpák bekap-

csolása nélkül levezethetők, ám az összes többi müveletnél sikertelen 

lesz az áram fejlesztésére irányuló próbálkozás. Ezért az "A" rubriká-

ban /hibás az ampermérő/ az "ab" és "ac" müveleteknél "+" jel szerepel, 

az összes többieknél 

Ha az R 1  ellenállás hibás, ugy csak az "ac", "ab" és "be" müveletekkel 
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lehet áramot fejleszteni, stb. A lánc ellenőrzését a müveletek megfelelő 

sorrendjével lehet elvégezni. Miután az "a" művelet nem fejleszt áramot 

a láncban, ám a "be" és az "ac" müvelet tilos /a "be" müvelet esetén pe-

dig rövidzárlat áll elől, igy ezek a müveletek nem maradhatnak el. 

Hagyjuk el a 3., 6., és 10. müveletet a 	sz.báblázatból. A hibás al- 

katrész felkutatásánál megvalósithatjuk az 1 	 , 2., 4., 5., 7., 8., 9. mű- 

veleteket és azok kimenetelétől függően - van áram, vagy nincs áram - von-

juk le a következtetést. 

Ám nem minden müveleti sorrend jelent észszerü ellenőrzési módot. Az el-

lenőrzés lehetséges módjai közül - az algoritmusok közül - ki kell válasz-

tani a legészszerübbet, vagy néhányat a legészszerübbek közül. 

Jelöljük a müveleteket számokkal és irjuk őket a következő sorrendben, 

amint látni fogjuk a 	sz.táblázat észszerübb leirásával állunk szem- 

ben /a 3., 6. és 10.müveletek kimaradtak/: 

i E: 	1 	2 	T+ 	5 	7 	8  

A: 	1 	2 	T+ 	5 	V 	8 	9 

Rl : 	T 	2 	4 	5 	V 	8 	9 

L: 	T 	7 	T+ 	5 	7 	8 	9 

R2 : 	T 	7 	z 	5 	V 	8 	9 

A rubrikákat itt igy olvassuk: 

1.sor: Ha az E elem hibás, ugy az 1., 2., 4., 5., 7., 8., és 9. müvelet 

nem fejleszt áramot a láncban /a számok .. (: _ ( , t " 	E 

L.sor: Ha az A ampermérő hibás, ugy áram csak az 1, és 2.müvelet során 

fejleszthető, a 4., 5., 7., 8., és 9. müveletek azt nem teszik lehetővé. 

/Az 1. és 2. számok felett a "+" jelet az egyszerüség kedvéért elhagytuk./ 
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A továbbiakban a táblázatokban a számok fölé csak a "-" jelet tesszük 

ki, a "+" jelet elhagyjuk. A rubrikák irásos magyarázatában azonban e-

zek a jelek szerepelni fognak a számok előtt, igy: -1., +1., stb. 

Ezután már elszakadhatunk a sémától és foglalkozhatunk a matematikai 

számitásokkal. Ahhoz, hogy megállapithassuk az ellenőrzés első láncsze-

mét, az első műveletet, abból az elvből indulunk ki, hogy maximális in-

formáció akkor nyerhető, ha a különböző azonos kimenetelni lehetőségü 

részeket külön választjuk és kiderítjük, hogy az adott jelenség melyik» 

hez tartozik. L.N.LANDA /O2 : / szerint "minél közelebb áll egymáshoz 

a megoldási lehetőségek szerint csoportositott részecskék valószinüsé» 

ge, annál inkább csökken a határozatlanság és annál több lesz a kapott 

információ. Ennél fogva elsőnek olyan műveletet kell kiválasztani, amely 

a nagyfoku határozatlanságot csökkenti. Ennek a müveletnek a meghatáro-

zása céljából ki kell számitani minden müvelet pozitiv és negativ kime-

netelének a valószinüségét. 

Pozitiv kimenetelnek azt tekintjük, ha áram keletkezik, negativnek, ha 

nem fejlődik áram. Ehhez pedig sorrendben át kell néznünk az oszlopba 

irt számokat. 

Ha a láncban valamely alkatrész hibás - és 5 ilyen alkatrész van - ugy 

az l.müveletnek csak egyik kimenetele lehet pozitiv, a másik 4 negativ 

lesz. A 2.müveletnek 2 pozitiv és 3 negativ megoldása van, stb. 

Az l.müvelet pozitiv kimenetelének lehetőségét P/1/-el jelöljük, a ne-

gativ kimenetelét pedig Pj/-el, stb. Igy: 

P/1/- 5 	'VT/ = 4 	AP1= P/1/-Pj/= - 5 
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p/2/= 5 	P/7/ =5 	AP2= P/2/-P/7/= 	5  

P/4/ = 
S 	P74/ = 5 	A P4  = P/4/ - PA/  = 5  

P/5/ - 5 	Pj/ =5 	AP5 = P/5/-Pj/=- i'-' 
 

P/?/= 5 PT/- ~ 	AP7 -P/7/-P/7/--- 5  

p/8/_ ~ 	P%7/_5 	AP8 = F/8/-•  PA/ M  

P/9/  = 5 	Pig/  = 5 	A P9  = P/9/ — PA/ = 
 

Láthatjuk, hogy legközelebb áll egymáshoz a P/2/ és  P/4 a P/5/ és  P/75/,  
valamint a P/8/ és P%/. Nyilvánvaló hogy a legtöbb információt akkor  

kapjuk, ho gy  ha a 2. 5. és 8. müvelettel kezdjük az ellenőrzést. Igy  

elsőnek a 2. 5. és 8. müveleteket választjuk.  

Az elsőként kiválasztott müvelet a a.számu. 

I. Nézzük a "+2" kimenetelt /az "a" és "c" pont bezárásakor megfigyelhe-

tő, hogy a láncban van áram./ A lehetséges esetek közül csak azokat emel-

jük ki, amelyeknél a "+2" előfordul. Ez a táblázat 2. és 3. rovata /X/:  

A 	T 	2 T+ 	5 	7 $ 9  

R1 	1 	2 	4 	5 	7 $ 9  

Ha a 2.müvelet pozitiv kimenetele után a 8., 8. és 9.müveleteket való.  

sitjuk meg, ugy nem tudjuk megállapitani a hibát, miután a +7., +8., ős  

+9. kimenetel nem felel meg a kiválasztott A és R 1  alkatrészeknek, a -7.,  

-8. ós —9. pedig nem teszi lehetővé a hibás alkatrész pontos megállapitá-. 

sát. Nyilvánvaló, hogy a Rx második müveletként olyan miiveletet kell ki-

választani, melynek pozitiv kimenetele megfelel e gy  alkatrész meghibáso- 

1 
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dásának, és a negativ pedig egy másik alkatrész hibájának. Ilyen müve- 

létek az 1., 4i és 5. Következésképpen a második müvelet lehet a "+23 
i  ' 	! 

után az 16;4,, és 5. 

Ha az 1.müveletnél áram keletkezik, ugy feltehető, hogy az ampermérő a 

hibás, ha áram nincs, ugy az R 1  ellenállás. A "-4" és "-5" esetében az 

ampermérő a hibás, a "+4" és "+5" esetekben az R 1.  

Következésképpen: 

a./ +1; -4; -5. esetében hibás az A 

b./ 	-1; +4; +5. 	" 

	 " 	" R
1 

II. Nézzük a "-2" kimenetelt /az "a" és "c" pont bezárásakor megfigyel-,  

hető, hogy áram van/, ehhez a táblázatból kiírjuk az /X/ -2 összes ro-

vatokat: 

E T  2 	 7 	9 

L T 	 5 	7 	8 	9 

R2 	T 2 'V 	5 	? 	 8 	9 

Kiszámitjuk minden egyes müvelet pozitiv, ill. negativ kimenetelének e- 

sélyét, a táblázat szerint: /44 2/ 

P/1/ = 0; Pj/ =1 

P/2/ = 0; 1/2/ = 1 

P/4/ _ 0; P/T+/ =

• 

 1 

P/5/=3' Pj/ =

• 

3 

P/7/ =3; Pj/ =

• 

3 
P/8/ - ; P/U/ = 
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P/9/ = 3 : 	PF9/= 3 

Anélkül, hogy az egyes esetekben kiszámitanánk a P-t, láthatjuk, hogy 

legközelebb állnak egymáshoz: 

P/5/ és  P%5/ 

P/7/ és P%7/ 

P/8/ és P/$/ 

P/9/ 

L 

 

és p%9/ 

Következésképpen a "-2" mellett a második művelet az 5., 7., 8. és 9. 

kiválasztása. 

1./ A második müvelet az 5. 

Irjuk ki a táblázatból / 12/ a "+5" rovatot: 

T  2 	r+ 	5 	7 	r 

Következtetés: +5 esetén az L hibás. 

Irjuk ki a táblázatból / "-5" rovatot: 

E 	T  2 r+ 	5 7 If  
R2 	T  7 	5 7 8 9 

Anélkül, hogy a valószinüsóget kiszámitanánk, láthatjuk, hogy a "-5" har-

madik müvelete a 8. és 9. lehet. 

Következtetés: 

a./ -8. és -9. esetén hibás az E , 

b./ +8. ós +9. " 

2./ A második művelet a 7. Irjuk ki a táblázatból / 4/ a "+7" rovatot. 



E  

R2  

T  
T 

2 
+ 
2 

7 
7 

5 
5 

7 	8 9 
w 
7 	8 	9 
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L 

 

T 	 5 7 8 9 

Következtetés: a "+7" esetében hibás az 

Irjuk ki a táblázatból /:!2/  a "-7" rovatot: 

Látható„ hogy a második müvelet lehet a 8., és 9. 

Következtetés: 

a./ —8, és -9. esetén hibás az E 

b./ +8. és +9. 
	

" 	If 
	

w R2  

5,/ A második müvelet a 8. Irjuk ki a táblázatból / 
	

a "+8" rovatot: 

L 	1 	5 

R2  T  2 r+ 5 
7 	8 	9 

V 8 9 

Látható, hogy második művelet lehet az 5., 7., és 9. 

Következtetés: 

a./  +5., +7., —9.° esetén hibás az L 

b./ -.5., —7., +9. 	" 	rt 	n R2 

Irjuk ki a táblázatból / !v{ 2/ a "-•8" rovatot:  

E 	T! 	5 7 $ 

Következtetés: -8 esetén hibás az E. 

11 
4./ A második müvelet a 9. Irjuk a táblázatból /,14/2/ a " +9" rovatot: 

R2  T 	7 7 V  8 9 
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Következtetés: +9 esetén hibás az R 2 . 

Irjuk ki a táblázatból 41'2/ a "-9" :cva'ot: 

E 	T 2 r 5 ? 	9 
L T 	 5 	7 	8 9 

Láthatjuk, hogy a harmadik müvelet lehet az 5., 7. ás 8. 

Következtetés: 

a./ -5., -7., -8., esetén hibás az E 

b./ +5., +7., +8., 	►• 	n 	n L . 

Igy ha a 2.-t vesszük első müveletként, ugy kiszámitottuk a lánc ellen-

őrzésének minden észszerű algoritmusát. A számitások azt mutatták, hogy 

három legészszerübb müvelettel számolhatunk, ami jóval kevesebb, mint 

amennyit ilyen esetben a tanulók alkalmaznak. 

Ugyanilyen módon lehet kialakitani az algoritmusokat, ha az 5. és 8. mű-

velettel kezdjük a munkát. Az algoritmusok kiszámitásánál feltételeztük, 

hogy csak egy alkatrész lehet hibás /vagy A, vagy E, vagy R l , vagy L, 

vagy R2/. 

Ha elfogadjuk annak , a lehetőségét, hogy egyidejüleg két alkatrész is hi-

bás lehet, ugy az l.táblázatba uj rovatok kerülnek. Az algoritmus kiszá-

mitása bonyolultabbá válik, megoldható. 

Első pillanatra ugy tünik, hogy az olyan egyszerü feladatok megoldásá-

hoz, mint az elektromos lánc meghibásodásának feltárása, nem érdemes 

ilyen bonyolult módszereket alkalmazni. Lehet, hogy az adott esetben 

ez igaz is. Ám bennünket elsősorban annak az elvi lehetősége érdekelt, 
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fel lehet-e használni a matematikai szárvitások rendszerét az elektromos 

lánc hibásodásának megállapitásához. Ha a tanár képes megtalálni a meg-

felelő algoritmust, értékelni annak észszerüségét, ez segitségére lesz 

abban, hogy megtalálja az oktatás legészszerübb módjait. Az elektromos 

láncolat hibásodásával gyakran találkoznak a tanulók a laboratóriumi 

munkák és a frontális kisérletek során. Különösen sok váratlan problé.. 

mával találkozhatnak az "Egyszerü elektromontázs" cimü téma laboratóriumi 

munkálatai közben. Ezért ajánlatos, hogy a tanár előre dolgozza ki a lán-

colat általa ajánlott séma szerinti ellenőrzési algoritmusát /ebben az 

estben az érintkezések számitanak hibásnak/, és ezt az algoritmust ok-

tassa a tanulóknak. Természetesen nem kötelező minden algoritmus kidol-

gozása. Gyakorlatilag elég egy-kettőnek a kidolgozása, hogy ennek alap-

ján a tanulók észszerüen oldhassák meg a kapott meghatározott tipusu 

feladatokat. 

Általában a feladatok egy jelentős részének megoldását a matematikai 

számitásokoh alapuló racionális algoritmusok segitségével lehet elvé- . 

gezni. Az ilymódon nyert algoritmusok az összes közül a legészszerüb-

bek, ezért a velük folytatott munka a leggazdaságosabb és a legjobb 

eredményekhez vezet. 

6./ A következő optimális szárvitás egyes automatizálandó cselekvések 

megoldási algoritmusaira értelmezhető. Alapja az a lgoritmus szerint  

végzett eredményes munka várható valószinüségi értéke. Érvényességi 

körén belüli megkötések feltételezik: 

a./ hogy  az automatizálódó cselekvés megoldási algoritmusa már koráb- 

ban kialakitott készségeket /alap-.automatizmusokat/ használ fel. 

b./ A kialakitandó /automatizmus/ megoldási algoritmusok számos vari- 



- 195 - 

ációban előállithatók. 

c./ A már készségfokon feltételezett alap—automatizmusok ismeretére el-

fogadható nagyságrendben /N/ végrehajtott kisérleten alapuló valószi- 

nüségi értékek a rendelkezésre állanak. /A kisérlet időpontjául a 

tanév első hetét választottuk, hogy igy valóban csak a szilárdabb 

ismeretek legyenek mérhetők./ 

Ezek után bemutatjuk egy konkrét megoldási algoritmus optimálisának a 

fentiek alapján történő kiszámitását. ' 

A téma a derékszögü háromszög megoldási algoritmusának kialakitása abban 

az esetben, ha két befogó adott. 

Y 

z 
a 

b 

Amint azt a az ....sz.tábla mutatja, 38 ilyen megoldási algoritmus irható 

le. Ezek a táblán látható fa—diagrammról leolvashatók. 

Az itt található jelölések:  

F 	= feltétel /a két befogó adott/ 

t 	= ha a tangens összefüggést választottad /logikai feltétel/ 

dt 	= ha a cotangens összefüggést választottad /logikai feltétel/ 

s 	= ha a sinus összefüggést választottad /logikai feltétel/ 

cs 	= ha a cosinus összefüggést választottad /logikai feltétel/ 

Pt 	= ha a Phythagoras—tételt választottad /logikai feltétel/ 
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psz 	= ha a pótszög kiszámitását választottad /logikai feltétel/ 

tb 	= állapitsd meg a szöget a szögfüggvény táblázatból /operátor/ 

tb' 	= állapitsd meg a  szöget  a "pótszögfüggvény táblázatból" /operá- 

tor/, 

tb 	= keresd meg az ismert szög szögfüggvényértékét /operátor/, 

tb; 	= keresd meg az ismert szög "pótszögfüggvényértékét" /operátor/ 

d 	= végezd el a kijelölt osztást /operátor/, 

r 	= rendezd az egyenletet az ismeretlen kifejezése céljából /ope- 

tátor/, 

hi 	= emelj négyzetre /operátor/, 

ö 	= add össze a megfelelő tagokat /operátor/, 

q 	= vonj négyzetgyököt /operátor/, 

k 	= végezz kivonást /operátor/, 

és az operátorokból képezhető c./-ben definiált valószinüséi értékek:  

p/d/ = a jó eredményü osztás várható valószinüsége, 

p/hi/ = a jó eredményü négyzetreemelés várható valószinUsége, 

=  

.  

• • • • • • 	 

• 

	

, 	. 	 . 	. 	 . 	. 	.. . 	. 	. 	, 	.. 	. 	,   
•• • • • • • • • • • • • • • • • • • • • • • 

.2 . 	, 	•, 	•
• 	 • 	 . 	. 	. 	. 	. 	. 	. 	. 	o 	. 	o 	, 	. 

i 	
,  

• 

, 	i 	• 	. 	. 	. 	. 	. 	. 	 . 	 .  

p/tb '/ = 	• • • • • • • 	  

p/tb/ _ • • • • •. 	•r''' • • • • -• • • • • • • • • • • •  •  • • • . 
. 	 , 	, 	> • 	 . 	 .  

p~ ,/  _ a jó . eredményü pótszögfiiggvényérték  keresésének várható va- - • • • •  •  .,.  . P . • . 6 . •  .  . Y. • • • • • • • • • •  
lószinüsége.  

Ezek után alkalmazzuk a fai-diagrammra a fentieket olymódon, hogy az egy- 

szerűség kedvéért feltételezzük, hogy a lépésekben végrehajtásra kerülő  

müveletek falap-automatizmusok/, mint eseménye}: statisztikusan függet-

lenek. Majd ezek után alkalmazzuk a valószinüségek szorzási összefüggé- 



-197- 

sét. M.REZA /II): 61/. Ha ezt a feltevést egybevetjük a pszichológiában 

ismert automatizált cselekvés definiciójával /!05:118/, akkor a fenti 

valószinüségi érték értelmezés esetében nem kerülünk ellentmondásba. 

A logikai feltételekhez is tartoznak valószinüségi értékek. Itt azonban 

különbséget kell tenni a megoldási algoritmus optimálisának kijelölése 

előtti /E/ és utáni /U/ valószinüségi értékek között. Ugyanis a kitünte-

tett optimális algoritmus kiválasztása előtt a fa—diagrammon is leolvas-

ható valamennyi megoldási algoritmus kiválasztása egyformán esélyes, s 

igy a logikai feltételekhez tartozó valószinüségi értékek: 

p/t/ = 3 vagy 7 vagy 5 

p/ct/ = 3 vagy z  vagy 5 

p/s/ = 	vagy 3 vagy  5 
p/cs/ = z vagy 1 vagy 5 

p/pt/ = 3 

p/psz/ = 
3 

vagy 
 5 

melyek a 	/'sz.táblán látható fa—diagrammból közvetlenül adódnak. 

A kitüntetett algoritmus kiválasztása után a logikai feltételek valószi-

nüségi értékei értelemszerűen 

p/t/ = /p/c t/ = p/s/ = p/cs/ = p/pt/ = p/psz/ = 1 

értéket vesznek fel, mivel elméletileg mindegyikük lehet egy kitüntetett 

algoritmus meghatározója. Ebből is látható, hogy az optimális számitást 

a jelen esetben csak az alap—automatizmusok várható valószinüségi érté- 
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keire épitjük. A szárvitások ennek megfelelően két részből tevődnek 

össze /E/, ill. /U/ valószinüségi értékeiből. Gyakorlati szempont-

ból részünkre csak /U/ valószinüségi értékei fontosak: 

1./ p/d/.p/tb/.p/d/.p/tb/.p tb/.P/r/.p/d/ = p/d/ 3.p/tb/2.p tb/.p/r/ 

2./ p/d/.p/tb/.P/d/.p/tb/.p/h 1/.p/h2/.p/ö/.p/q/ = P/d2/.p/tb/2 .p/hi/ . 

•p/ö/.P/q/ 

3./ P/d/3.p/tb/2 .p bb'/.p/r/  

4./ p/d/2 .p/tb/.p tb/.p/k/.p/r/  

5./ P/d/.p/tb/•p/k/.P/h i/2 .p/ö/.p/g/  

6./ p/d/2.p/tb/.p/tb'/6/X/:p/r/  

?./ P/d/3.p/tb'/.'p tb/.p/r/  

84/ p/d/2.p/h i/2 .p/ö/.p/g/•P/tb/.p/tb'/  

9./ P/d/ 3.p/tb'/.p tb'/.p/r/  

10./ p/hi/2 . p/ö/.p/q/.p/d/ .P/tb/.p/d/ •~/tb/ = P/hi/ .p/tb/Z:p,/ 

11./ p/h i/2 .p/ö/.p/g/7P/d/2 .p/tb/.p/tb'/ 

12./ P/h i/2 .p/ö/.p/q/.p/d/.p/tb/.p/k/  

13./p/h il2 .p/a/7p/94p/d/2 .p/tb/2  

14./ p/h i/2 .p/ö/.p/q/.p/d/2 .p/tb/.p/tb'/  

	

2 	
2 15./ P/hi/.p/ö/:p/9/.P/d/•p/tb'/.P/tb/ 

16./ p/hi/2.p/ö/.p/q/.P/d/2.P/tb'/2  

P/ö/. p/q/.p/hiAlp/d/. p/tb'/.p/k/  

18./ P/hi/2 .p/ö/.p/q/.P/d/2.P/tb'/.P/tb/  

19./ p/hi/ .p/ö/.p/g/.p/d/2 .p/tb'/2  

E0./ p/hi/2.p/ö/.p/9/+p/d/2 .p/tb/2  

21./ p/hi/24/ö/.p/9/4/d/ •p/tb/.p/tb'/  

	

. 	. 	~ 

22./ p/hi/2.p/ö/:p/940/.p/tb/.p/k/  

23./ P/hi/2.p/ö/.p/q/.p/d/2 .p/tb/
2  

24./ p/hi/2 .~p/ö/.p/g/.p/d/ .P/tb/. p/tb'/  

, 
.r 	_. . 

~/ö.~/9t  
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25./ P/h i/2 .p,~ ;i/ .p/ ~3/.P/d/2 .p/tb'/.P/tb/ 

26./ P/hi/2 .P/ö/. p/9/•p/d/2 •p/tb'/2  

27.1 P/hi/
2
.P/ö/.p/g/.p/d/.p/tb'/.13/k/  

28;/ P/hi/2 .p/ö/.p
/q/:40

/d/2 . P/tb'/ .P/tb/  

29.1 P/hi/
2
.p/ö/.p/q/.p/d/2 .p/tb'/2  

30:/ p/d/3.P/r/.p/tb'/.p/tb/.OTT/  
.  	 , 

31./ P/d/2.p/tb/•P/tb/.p/hi/2.p/ö/.p/g/  

32./ P/d/3 . p/tb'/. p/tb/.p tb'/.p/r/  2 , 

33./ P/d/ .p/tb'/:p tb/.p/k/.p/r/ 

34./ P/d/.p/tb'/.P/k/.P/h /2.P/ö/.p/g/ 

35./ P/d/2 .p/tb'/.~/k/.p tb.P/r/ 
 '

/
, 

36./ P/d/ 3.p/tb'/2.p tb/.p/r/ 

37./ p/d/2 .P/tb'/2.p/hi/2 .p/ö/.P/01/ 

38./ p/d/ 3 .p/tb'/2.p tb'/.p/r/  

Ezeket az alábbi módon értelmezhetjük a gyakorlatban:  

P1. a 10.—esnél:  

P/pt/ = p/s/ = p/s/ = 1  

mivel amennyiben ezt a megoldási algoritmust fejlesztjük automatizmussá,  

akkor a fenti logikai feltételek már nem tartalmaznak eldöntendő kérdést.  

Ennek figyelembevételével a 10.—es esetében a következőképpen jártunk el:  

"N" tanuló közül, akik a 10.—es algoritmus szerint dolgoznak,  

To p/h4/ fog az első négyzetreemelésnél helyes eredményt elérni; majd ezen 

T.p/hi/ tanuló közül a második négyzetreemelésnél:  

T.p/hi/.p/h2/ = T.p/hi/2  fog helyes eredményt produkálni, majd ezek közül: 

T.p/hi/2 .p/ö/ tanuló fogja az összeadást is helyesen elvégezni, s igy to. 

vább:  

T.p/hi/2•P/o/•P/q/ jut a négyzetgyökvonásnál helyes eredményre, majd 



— 200 — 

T.p/hi/
2 
 .p/ö/.p/q/.p/d/ végzi el a sinus összefüggésből adódó kijelölt 

osztást, majd 

T.p/hi/
2 
 .p/ö/.p/q/.p/d/.p/tb/ tanuló fog helyes szögeredményt kapni a 

táblázatból; majd 

T.p/hi/
2 
 .p/ö/.p/q/.p/d/.p/tb/.p/d/ tanuló fogja a második sinus—össze-

függésből adódó osztást helyesen elvégezni; s végül 

T•P/hi/2 .P/ö/.p/q/.P/d/.P/tb/.p/d/.P/tb/ = 

= T.p/hi/2. p/ö/.p/q/.p/d/2 .p/tb/2 tanuló kap értékelhető teljes megol— 

dás t. 

T = 1 esetében, amint látjuk, az előbbi eredményhez jutunk. 

A továbbiakban a rövidség kedvéért bevezetjük az alábbi jelöléseket /va-

lamint az N = 1456, az általános mintavétel alapján kiválasztott /repre-

zentáns/ nagyságrendben végrehajtott kisérletből kapott valósziniiségi 

értékeket!: 

P/P/ 	= P/hi/2• P/ö/.P/q/ = 0,246 

pe = p/tb/2.p tb/ = 0,278 

p/ii!/ = p/tb/2 .p/tb/ = 0,228 

p/'!'„f 	= p/tb/.p tb/ = p tb/.p/tb/X  = 0,40 

P/Tl/ 	= P/tb/.p tb'/ = P tb'/.P/tb/x  = 0,32 

p/I/ 	= p/tb/.p/tb'/.p/tb/ = 0,201 

P/2.1/ 	= P/tb/.P/tb'/•P/tb'/ = 0,175 

p/T,/ 	= p/tb/.p/tb'/ = 0,396  

x = az érvényes kommutáció törvénye alapján. 
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P/kd/ 	= p/k/.p/d/ = 0;706  

p/T'/ 	= p/tb' f.p tb/ = 0,306  

p/Ti/ 	= p/tb'/.p tb'/ = 0;242  

p/T'2/ = p/tb'/24 tb/ =  0,167  

P/Ti2/ = p/tb'/Z.p tb'/ = 0+134  

P/kr/ 	= P/k/.p/r/ = 0:513  

Ezek után a valószinüségi értékek tömörebb formában:  

1./ p/d/3.p/T2/. 1)/r/  

2./ A/d/2.11/tb/2.Vp/  

3•/ p/d/3 . 'p/T•/2.p/r/  

4./ p/d/2•P/2/.p/kr/  

5•/ p/tb/.p/kd/.Q/p/  

6./ p/d/2.p/T,/.p/kr/  

7./ p/4/3.p/T'/4/r/  

8./ p/d/2 .17/1)/:13/T./  
,. 

9./ p/d/3:p/T• 9  /.p/r/  

	

10./ 
	2  

	

11 ./ 	
2  

12./ 2,4157470k*OvP060,4  

	

13./ 	2 
.  

14./ TOP74s104/47/GTT7F  

15./ TOpArpid~-2-spASTF  



20./  2 	2  

21./ 	
2  

30./ p/d/3 . p/r/. p/d/  

31./ 	
2  
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16./ p/p/.P/a/2 .p/tb'/  

17./ p/p/.p/kd/.p/tb'/  

18./ Y/1,/.r/4/2 /~ s/ 

19./ 	2 	2  

32./ p/d/3 .p/r/.p/,T,/  

33•/ 12/d/2•p/kr/.p/1'/  

34./  

35./ p/d/2 .p/kr/.p/,T,/  

36./ p/d/3 .p/T' 2/.p/r/  

37./ P/11/.p/d/2 •p/tb' /2  

38./ p/d/3 .p/T,' 2/.p/r/  
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Közvetlenül leolvasható, hogy a 

Ezz = 10./  =  13./ = 20./ = 23./ 

1,2:= 11./  =  14./ = 15./ = 18./ _ 21./ = 24./ = 25./ = 28./ = 31./ 

= 12./ = 22./ 

17.E  = 27./ = 34./ 

16./  _ 19./ = 26./ = 29./ = 37./ 

s igy a döntés mindössze a fennmaradó 17 eset vizsgálatára korlátozódik. 

Ez a megmaradt három tényezős szorzatokban előforduló valószinüségi érté-

kek: 

p/d/; p/d/2 ; p/d/3 ; P/p/; P/r4 P/tb/; p/r/; P/k/; p/kd/; P/kr/; P/tb'/; 

P/T2/; P/T, 2/; P/V; P/T,/; PIT'/; p/T,/; p/tb/2 ; P/tb'/ ; p/,T/; p/,T,/; 

PIT, ' 2/ 

nagyság szerint csökkenő sorrendben történő felirásával kezdődhet, majd ezt 

követi azoknak a háromtényezős szorzatoknak a kiválasztása, amelyek a  leg-

nagyobb értékü tényezőket tartalmazzák. A kiindulási definició alapján e-

zek lesznek az optimális megoldási algoritmusok. 

Konkretizálva:  

1./ P/d/3 .p/T
2
/.p/r/ = 0,7963 .0,278.0,577 = 0,0810 

2 ./ Fa  P/d/2 .P/tb/2 .P/P/ = 0,7962 .0,7212 .0,246 = 0,082 

3./  p/4/3.p/T, 2/.p/r/ = 0,7963 .0, 228.0.577 = 0,061 

4./ p/d/2 .p/2/.p/kr/ = 0,7962 .0,40.0,513 = 0,129 

5./ P/tb/.P/kd/.p/P/ = 0,721.0,706.0,246 = 0,125 

6./ p/d/2 .p/T,/.P/kr/ = 0,7962 .0,32.0,513 = 0,104 
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`T./ p/d/3.P/T'/.p/r/ = 0,7963.0,`306.0,577 = 0,089 

8 •/ P/d/2•P/p/•p/T,/ = 0.7962.0,246.0,396 = 0,062 

9./ p/d/3.P/T.'/.p/r/ = 0.7963.0,242 .0 ,377 = 0,049 

16./ P/P/.p/d/2.p/tb'/2  = 0,246.0,796.0,552  = 0,059 

17./ p/p/.p/xd/.P/tb •/ = 0,246:0,706:+0,55 = 0,096 

30./ p/d/3 .1)/r/. 1:/,1/ = 0,7963.0,577.0,201 = 0,059 

32./ P/d/3.P/r/.p/sT./ = 0.7963.0,5?7.0,175 = 0,051 

33./ p/d/2•P/kr/.p/T'/ = siggi 0 97962.0 9513 00o6 = o,loo 

35./ p/d/2:P/kr/.p4?./ = 0.7962.0,513.0,'175 = 0.057 

36./ p/d/3.p/T'2/.p/r/ = 0.7863,0,228.0577 = 0,066  

38./ P/d/3.P/T.'2/.p/r/ = 0.7963.0,134.0,577 = 0 ,039 

Az optimalitás sorrendje: 

P/M.// = 0,129 

05.',/ = p/12../ = p/22.,/ = 0,125 

p/6.,/ = 0,104 

p/33.,/ = 0,100 

P/17.,/ = p/2?.,/ = P/34.,/ = 0,096 

P/7../ = 0,089 

P/2.,/ = p/10 ./ = p/13../ = p/20../ = p/23.,/ = 0,082 

p/1.,/ = 0,081 

p/36. ,/ = 0,066 
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p/8.,/ = 01144/ = p/14.,/ = p/45.,/ = p/18.,/ = p/21.,/ = p/24 .,/ = 

= p/25.,/ = p/28.,/ = p/31.,/ = 0,062 

p/3.,/ = 0,061 

p/16.,/ = p/19.,/ = p/26.,/ = p/29.,/ = p/37.,/ = p/30.,/ = 0,059 

p/35.,/ = 0,057 

p/32.,/ = 0,051 

p/9.,/ = 0,049 

p/38.,/ = 0 , 039 

A fentiekben lerögzitett elv alapján várható legoptimálisabb algoritmus 

a 4.1—es, amely a fa—diagrammal egybevetve a következő lépésekből tevő-

dik össze: 

1./ tangens X 

2./ osztás 

3./ táblázatból történő visszakeresés eredménye = /X/ 

4./ pótszögszámitás 

5./ kivonás /eredménye = Y/ 

6./ sinus "X" 

7./ kikeresése a táblázatból 

8./ az egyenlet rendezése 

9./ osztás /eredménye = Z/ 

Ugyanakkor a legkisebb valószinUségU helyes megoldást adó algoritmus a 

38./—as. 
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Ezzel az eljárással kapcsolatban felmerülő kérdések, ellenvetések: 

1./ Mivel támasztható alá a'7, az állitás, hogy az alapautomatizmusok füg-

getlen ese,'ményeknek tekinthetők? Válaszul feltétlenül az idézett 

megállapitásból kell kiindulni: "A készségben az egymás után követ-

kező szakaszok közvetlenül meghatározzák egymást". Ez az alapautoma- 

tizmuson belüli részcselekvésekre érvényes. Az alapautomatizmusok 

egymástól való függetlenségének alapja az önálló valószinüségi ér-

téken kivül abból adódik, hogy az eredményesen elvégzett négyzetgyök-

vonást követheti egy rosszul végzett összeadás, vagy megforditva; a-

vagy egy jól végzett osztási müveletet követhet egy iwitaisx helyte-

len szögérték megállapitás a szögfüggvénytáblázatból és megforditva. 

Mindezek ellenére helyt kell adnunk annak az ellenvéleménynek, hogy  

a "feltételes valószinüségif fogalmán alapuló számitás az előbb ka-

pott eredményeket feltétlenül finomitaná. Az eltérés azonban jóval 

szerényebb, mint az a munka és terjedelem, amely velejárója. 

2./ Kézenfekvő ellenvetés a közismert aggály a tanulók gondolkodásának 

lemerevitése miatt.  Ebben az esetben arra kell utalnunk, hogy pl. az 

alapautomatizmusok egy magasabb szinten nem akadályozzák az alkotó 

gondolkodás kibontakozását. Hasonlóképpen egy magasabb automatizmus 

sem akadályozza a még magasabb szinten kialakitható alkotó probléma-

meglátást. Például egy sztereometriai, vagy planimetriai összetett 

feladattal kapcsolatban fellépő felismerési és megoldási algoritmus 

eredményességét nem akadályozhatja az a tény, hogy a feladatmegoldás 

során végső fokon a derékszögű háromszög megoldása automatizmus szin-

ten történik. 

Sommázva:  Megállapitható, hogy az automatizmusok kialakítása terén a kisebb 
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ellenállás felé tolódás időben és eredményben nem gátolja a probléma-

megoldó gondolkodás kibontakozását. Például. szr,'  ]jcn ere-e a didakti-

kai gyakorlat ama közismert jelensége, amikor a jó feladatmegoldó hely-

telen szárvitásai következtében rossz eredményre jut, s ez negative hat 

vissza a különben helyes gondolatmenetre. 

7./ Az optimalitás meghatározásának alapját képezheti a struktura is. 

Ennek részletes ismertetése az V. részben következik. 

8./ N.F.TALIZINA 	rámutat az eddig ismert megtanulandó algorit- 

musok közös hibájára, mely szerint ezek csak a végrehajtandó müvele-

teket adják me g, s nem biztúsitják az orientációs müveletek kialaki-

tását. TALIZINA az optimalitás alapját belső orientáció kialakításá-

ban látja. Szerinte az eddig kialakitott racionális algoritmusok sze-

rint végzett munka váratlan esemény bekövetkezésekor nem biztositja 

a folyamatos továbbhaladást és zürzavart is okozhat. Az általa kidol-

gozott, illetve kidolgozás alatt álló "orientációs algoritmusok" a 

tanulás belső törvényeihez igazodnak  ás lehetővé teszik a különböző 

megoldási algoritmusok közötti eligazodást. A cél: a tanulót képessé 

tenni arra, hogy saját maga keresse meg a racionális megoldási algo-

ritmust. Elgondolásait részleteiben még nem publikálta. 

A IV/I. értékelő sommázása során mindenekelőtt rögziteni szeretném, hogy 

az 1.-8./ pontokban bemutatott alapelvek a jelenleg ismert utak, ismér-

vek, amelyek: 

a./ csak annyit adnak, mint amennyit az alapdefiniciójuk ígér, 

b./ felhasználásuk módszereit és területeit tekintve még a fejlődés stá- 

diumában vannak, 

c./ a jövőben feltétlenül uj alapelvek alapján felépülő, uj utakkal kell 
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hogy gazdagodjanak, 

d./ sohasem metafizikusan, hanem dialektikusan, mint együttes komplexu-

mok tekintendők. 

Az egyenlőre még kidolgozatlan általános racionális me goldási algoritmu— 

soknak tehát egyaránt magukban kell foglalniok a bonyolultság /B/, a min-

taszerü logikai ut /L/, a legkevesebb lépés /S/, a maximális információ-

nyerés /MI/, a legjobb informáltság /JI/ a várható jó me„:o1JA3 Zugnagyobb 

valószinüségének /V/, a legjobban követhető struktura /SI/kritériumait. 

Tovább menve a legoptimálisabbnak tekinthetjük N.F.TALIZINA orientációs 

algoritmus /0/ elméletét, mely az 1.—?./ katalizátorának tekinthető. E-

zek szerint a megtanitandó algoritmus "L/A " az alábbi átalakitási folya-

maton keresztül juthat el a racionális algaritmushoz,"R/A/"—hoz. Tehát o-

rientációnak azt a folyamatot tekinthetjük, mely a tanuló figyelmét a B, 

14 	MI, JI, V, St, ....—re irányitja. 

 

RA/  

 

Korunk termelő tevékenységéhez az embert egyre inkább a racionális algo-

ritmusok szerint végzett munkája kapcsolja, ezért kell a jövő emberét e-

zek felismerésére képessé tenni. Ezzel együtt századunk tudományos forra- 
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dalma a természettudományok, a termeléssel kapcsolatos tudományok és a 

humán tudományok területén ugrásszerüen megnövelte a megismerendő tény-

anyagot. Ezek egyre szélesedő körben történő elsajátitása a kötött isko-

lai tanulási időn belül csak a legészszerübb megismerési utak /felismeré-

si és megoldási algoritmusok/ betartásával biztositható. 

II. Az oktatás /tanitás/ algoritmusainak összehasonlitásánál előtérbe ke-

rül a "Formális elemek" cimü részben részleteiben ismertetett "átalakitá-

si folyamat" szerepe, mely ott a klasszifikáció alapjaként is szerepelt. 

Erre épitjük a most következő részben az optimális tanitási algoritmusok  

felkutatását célzó számitási eljárásokat. Az ilyen tipusu szárvitásokat a 

szakirodalom legujabban az optimális stratégia meghatározásának  nevezi. 

E terület ujszerüségét a csekélyszámu rendelkezésre álló kidolgozott el- 

járás mutatja legjobban. 

1./ Az oktatási algoritmusokkal kapcsolatos stratégiai számitások terüle-

tén kiemelendő D.TOLLINGEROVA /(3;: 7/ uttörő munkássága. TOLLINGEROVA 

valószinüségi számitási alapon kutatja a feleletválasztós átalakitási al-

goritmusokon belül kialakitható optimális stratégiát. Kiindul a A .sz. 

ábrán már ismertetett gráfból: 

1 	+ 	4 	+ 3 	+ 	4 	+ 4 	 + 4 + 3 + 
	4=30 

*ah" 



23A 	 43 A ~` 	 48 A  8  

408  --►I 43 8 1-- 
 

42 B  
8 B  

A i 	 40A  

28 	 
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és q  sorok t számát "h"—val az ezekben elhelyezett választható felelet-

alternativák /az alternativa értelemszerUen két választ jelent csak, de 

a fogalmat a szerző általánosan használja/ számát pedig "ah"—val jelöli. 

Ezt követően felirja a fenti gráfból képezett "blokksémát",amely már a 

visszacsatolás irányait is  jelzi. Ezt a blokksémát mutattuk be a "Formális 

elemen" cimü 	:cos rész ' 	`
~~~~

` :ábráján.  

Ebből levezethető az átalakitási algoritmusra jellemző mátrix /amely u-

gyancsak az előző rész . Aszámu mátrixa alapján már ismert/.  
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8A 12B 6A 13A 10B 6B 10A 18A 2:1 

8A 0 1 	- 1 0 1 0 0 0 3 

12B 1  0 0 0 0 0 0 0  1  

6A 1  0  0 0 0 0 0 0 1 

13A 1 0 0 0 0 1 1 0 3 

10B 1 0 0 0 0 0 0 0 1 

6B 0 0 0 1 0 0 0 0 1 

10A 0 0 0 1 0 0 0 0 1 

18A 0 0 0 1 0 0 0 0 1 

j 4 1 1 3 1 1 1 0 1.43=1; 

Eszerint a 8A -ból 4 "kimenet" van. Ugyanakkor a 8A -ba mindössze 

csak 3 "bemenet" vezet. Ezt az összefüggést a mátrixon található " Z i" 

oszlop és "2 j" sor alapján mint a kiindulási szekvenciára jellemző ösz-

szefüggést az alábbi tömör formában szimbolizálhatjuk: 

.L\ 

Ezzel szemben a 18A -ból nincs "kimenet", de ugyanakkor van egy "beme-

net", amely mint a befejező szekvenciára jellemző összefüggess 

j 

szimbolizálható. 

Ugyanakkor az összes többi szekvenciákra a "kimenetek" és "bemenetek" 

számának teljes egyensulya jellemző: 
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mely összefüggés a fenti két egyenlőtlenség kiegyenlitődése következtében 

egy, az algoritmusra jellemző állandóval is kifejezhető: 

i = 	C 	= 	/12/ 

Továbbiakban "U"—val jelzi a szekvenciákban található összes egységek 

számát, amely a fentiekből közvetlenül adódó képletben is kifejezhető: 

U 
	

1 	ah  

jelen esetben ah  = 29, s igy: 

U = 1+29  = 30 

majd bevezeti az alternativák indexe fogalmát: 

U 
Ia _ 

 

jelen esetben U = 30, és h = 9, s igy: 

Ia  = 9 = 3,3 

Ennek segitségével állapitható meg az oktatási /tanulási/ algoritmus jel-

lege: 

Pl.: ha 4 > Ia 	3 akkor az algoritmus "3 alternativás" 

3 >la  ) 2 akkor "2 alternativás", és ha 
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2 >Ia 	 1 akkor az algoritmus már gyakorlatilag lineáris. 

Ezt követően térünk át a stratégiai számitásokra: 

Kiindulunk az előbbi gráf első és második szekvenciájából: 

Ezt követően kombinatórikai alapon elemzi az algoritmus különböző lépés- 

számu átalakitási 

következő átalakitási 

1 lépéses: 

szakaszainak 

variációk 

8A 

a számát, igy a 

vezetnek: 

8A 	-ból a 

= 1 

13A 	-hoz a 

13A 

3 lépéses: 8A 128 8A 13k 

8A 6A 8A 13A = 3 

8A 10B 8A =311 j 

5 lépéses: 8A 12B 8A 6A 8A 	13k - 
2 

8A 12B 8A lOB 8A 	13A 

8A 6A 8A 12B 8A 	13A  

2  
32=

6  8A 6A 8A 10B 8A 	13A 

8A 6A 8A 13A 8A 10B 
2 ] 

8A 108 8A 12B 8A 	13A — 

s végül a 
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V  lépéses:  

8A----12B -  8A --- 6A 	 8A 	--lOB 	 8A 	 13A •-  

8A --12B --8A 	10B 	 8A 	 6A 	8A —13A  

8A 	 6A -- 8A 	 12B 	 8A 	lOB 	8A 	3A  

8A 	6A 	8A 	l0B 	 8A 	 12B 	 8A 	13A  

8A —10B 	8A 	 6A 	8A 	12B 	 8A 	 13A  

8A 10B —8A —12B 	 8A 	 6A — 8A 	 13A  

 

3.2.1 = 6  

 

 

majd ezek összege:  

1 + 3 + 3.2 + 3.2.1 = 16  

ugyanez más formában:  

1 + 3 + 3 / 3-1 / + 3 / 3-1 / /3 -  2/ = 16  

ahonnan már leolvasható az alábbi kombina:órik:us összegezési forr_r.:  

3~~-.2/  43.1/  + 3 3-1 /3-2/  	1j3~-1/ /~/  + 3/3-1/ l3^2/ 
 

3-~2/ /3-1/ 	/3~1//3-2/  _ ., _ .  3-2 	0!  

= 1 + 3 + 3/3-1/ + 3/3-1/ /3-2/ = 16  

Mivel ez a 4 "alternativához"  tartozó lehetséges gyépések összegét fejezi  

ki, igy a következő formában is felirható:  

3/4/ =  j2,,12  + /4.24 + 
4-1

3 ! + /4-4/ !  

akol nem nehéz belátni, hogy például a  

/4-1/! 	 a 
 ~ 

~;n002/ /3-1/  	3/3-2/ /3~-1/ . 

/4--3/! 
_ 

1! 	, 	~ 	 ^ 	3-2  

Ugyanakkor és a következőkben mindig:  



215- 

5 = 4  

a négy alternativához tartozó stratégiák száma. Általában az "a" alterna-

tívához tartozó stratégiák száma: 

S/a/ _ /a-1l1  + /a-1/ I  + /a-1/!  _ 
/a-1/ 1 	/a-2/I 	/a-3/I +  

 

+ /a-1/  

 

Ugyanez más jelölési módban: 

S/a/ = V o/a-1/ + V 1/a-1/ + V2/a-1/ + 	 + Va-1/a-1/  

A különböző alternativákhoz tartozó stratégiák táblázata: 

a 1 2 3 4 5 6 7 8  

S/a/ 1 1 5 16 65 326 1957 13700  

W.SIX /122.:  /  képlete is ugyanezt fejezi ki:  

n 
n = 	4i.vt=  41/ 01  t ~/~ 1+//. 2 ! + 	 

V=0 

A következő lépésben TOLLINGEROVA a maximális lépések számát /k x/ foglal-

ja egy táblázatba; az alábbi képlet alapján:  

kmax =  2a - 1  

a 1 2 3 4 5 6 7 8  
~ . 

kmax  1 3 5 ? 9 11 13 15  

A továbbiakban egy segédképletet mutatunk be, amely egy alternativa osztály-

ba sorija a lehetséges lépések száma alapján a stratégiák összegét. A segéd-

képlet, mely az ea osztályon belüli stratégiák számát megadja:  

.nt  
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/a-1/I 	_ 	/a-1/!  Sk/a/ = Vk21  /a-1/ 
-  /a  - 

 k21/t  -  / 2a -2k -  1/I  

/A bizonyitást mellőzzük!/  

Az egy alternativa osztályon belüli stratégiák száma:  

a 1 2 3 4 5  

k 1 1 3 1 3 5 1 3 5 7 1 3 5 7 9  

skis/  1 1 1 1 2 2 1 3 5 6 1 4 12 24 24  

S 1 2 5 16 65  

Ezután bevezetünk egy valószinüségi hányadost, amely megmutatja egy stra-

tégia előfordulásának a valószinüségét "k" lépésnél:  

Sk/a/  
Ps
k ~ 

Ez a valószinüségi hányados lehetővé teszi az azonos "alternativák" osz-

tályán belül az optimális stratégia meghatározását. Ezt a célt szolgál-

ja az alábbi táblázat:  

A  1 2 3 4 5  

Sk/a/ 1 1 1 2 1 3 6 1 4 12 24  

S/a/ 1 2 5 5 16 16 16 65 65 65 65  

PS  
k  

1 0,5 0,2 0,4 0,06 0,18 0,3? 

• 

0,01 0,06 0,18 0137  

Amint látjuk ez a három-alternativa esetén 0,20 és 0,40 között, négy ese- 
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tétien 0,06 és 0,37 között, öt esetén pedig 0,01 és 0,37 között változhat. 

A négy—alternativa esetét ábrázolva: 

  

Psk  

  

0,40 

0,30 

0,20 

0,10 

   

 

döntések tere 

   

© 	8A 	a = 4 

Ha az eredeti algoritmus teljes folyamatára kidolgozzuk a /fenti táblá— 

zat alapján/ az előbbi grafikont, 

13A 

'7 #7 

  

0 ,40 

0 ,30 

0.20 

0,1 

8A /4/ 13A /3/ 18A /4/ 23A /4/ 19A /3/ 22B /4/ 30A /3/ 21A /4/ 26A 

  

a 	a 	a 	a 	a 	a 	a 	a 

akkor a döntések terének ingadozása látható. 

W.SIX /Á2,: / a "tanulást minősitő" táblázatnak nevezi az előző két 

táblázat egyesitéséből kapott táblázatot. 
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a 1 2 2 3 3 3 4 4 4 4 5 

k 1 1 3 1 3 5 1 3 5 7 1 

3/a/ 1 2 2 5 5 5 16 16 16 16 65 

Sk/a/ 1 1 1 1 2 2 1 3 6 6 1 

PS  
k 

1 0,5 0,6 0,2 0,4 (44 0,06 0,48 0,37 0,37 0,01 

Végül TOLLINGEROVA az eddigieket összefogva, bebizonyitja, hogy az opti— 

Alis stratégia szerint egy felelet-választós algoritmusmál a lépések szá-

mának növekedése forditott arányban áll az alternativák indexével, s igy 

gyakorlatilag átmegy egy lineáris algoritmusba. 

Az alábbi e célt szolgáló táblázatban: 

h = /mint ismert/ a sorok száma, 

V 	= ebből a "felelet—választás" nélküli sorok száma, 

ha  = pedig a fennmaradó "alternativ válaszokat" tartalmazó sorok száma. 

Érvényes tehát az alábbi összefüggés: 

V + ha  = h 

a 	= alternativák száma, 

za  = alternativák indexe, 

sk/a/ az egy osztályon belüli stratégiák száma  

PSk/
a/  _ 77a77—  az "a" alternativához tartozó stratégiák száma 

P
S k 

min = a fenti alsó határa, 

PS max = a fenti felső határa. 
k  

Az első sor kitöltése: 

h = 14; V = 3; akkor ha  = 14-3 = 11 
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A lehetséges alternativák száma: 

8 soron soronként 4 alternativa 

3 soron soronként 3 alternativa 

Ia  = 8.411 3•3  ~ 3 ,72 	3,7 

P min - 8.0 .06 + 3 .0 ,20  _ 1 	= 0,098 Sk 	11  0,09  

PS 
k 

max _ 8.0.37 + 3.0,40  	4.16 	0938 11 	- 	11. 	•  

Lépések 
jelölése 
szaka- 

h  v 
h 
a 

a  
PS  min 	PS  max 

k 	k 
T  
a 

szokban 4 3 2 1 

9A-26A 14 3 11 8 3 0 0 3,7 0,09 0,38  

27A-68A 32 3 29 2 10 3 14 2 0,60 0,69  

64A-1008 34 4 30 2 8 8 12 2 0,59 0,66  

106B-116A 12 1 11 0 1 4 6 1,3 0,74 0,76  

A táblázatról leolvashat6 egyrészt az  

Ia  

T a 
I 
a 

Ia  

= 

 = 

= 

= 

3,7  

2 

2  

1,3  

csökkenő tendenciáju indexekből az eredeti feltevés, vagyis az, hogy az  

optimális felelet-választós tanitási algoritmus kellőszámu lépés után li-

neáris algoritmusba megy át, másrészt még szemléletesebben mutatja ezt a:  
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PS  max 	- 	PS mi  n 
k  

által definiált döntések terének csökkenő tendenciája, és végül a való-

szinüségi értékek növekvő tendenciája. 

Ezek szemléltetésére szolgál az utolsó grafikon: 

0,80- 

0,70  

0,60— 

0,50  

0,40.- 

0,30- 

o.10~///////////~  . 	 <  

26A 	63A 	100B 	116B  

2./ A következő stratégiai számitás alapját F.KOPSTEIN %'zy : 10/ hipoté- 

zise /lásd  A(   sz.ábrát/ és a H.FRANK /J5-  i107/ által bemutatott "G n"  ,  

mátrixok /III,YVII-2., 17•-21. mátrixok/ képezik.  Célja az optimális átala-

kitási algoritmus kiszámitása az "átalakitási utak" számának nagysága a-

lapján.  

F.KOPSiEIN szerint feltehető, hogy az az oktatási struktura biztosabban 

vezethet eredményhez, ahol a kezdőpontbél több egyenlő hosszuságu /egyen-

lő lépésszámu/ megoldási ut vezet a végponthoz, mint az olyan struktura, 

ahol csak egy ilyen ut létezik /Manx kann, zum Beispiel, die Hypothese 

aufsetzen, dass eine Struktur in der mehrere Gleichwege - equipaths - 

von  einem Anfangspunkt zu einem Endpunkt führen leichter gemeistert wer- 
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den wird als eine Struktur in der nur ein oder zwei solcher Gleichwege 

existieren./ Ez a hipotézis azon az elven alapul, hogy amennyiben csak 

egy ilyen ut létezik, akkor ha a tanul& a tanulási folyamatban bárminemű 

zavaró hatás éri, azaz az egyetlen ut megtörik, akkor ez a tanuló a kezdő-

ponttól a végpontig vezető reakció—láncának kifejtését /a megoldást/lehe-

tetlenné teszi. /Diese Hypothese beruht darauf, dass eine Unterbrechung 

des Einzel*egs durch irgendeine Störung in der Reaktionskette — response 

chain — des empfangenden Schülers die abwicklung derselben vom Anfangspunkt 

bis zum Endpunkt unmöglich macht./ Röviden, ha néhány egyenlő megoldási 

utunk van, akkor emelkedik a végpont elérésének a valószinüsége. /Sind 

einige Gleichwege vorhanden so wird die Wahrscheinlichkeit der Erreichung 

des Endpunktes erhöht•/ 

KOPSTEIN hipotézisét kisérletei, amelyeket folyamatosan folytat, igazolni 

látszanak. Ehhez H.FRANK előbb emlitett megállapitását kapcsoljuk, mely 

szerint ha egy gráfalakban leirható átalakitási algoritmus mátrixa "G", 

akkor "Gn" mátrix—hatvány elemei megadják az összes "n" lépéses átalakitá-

sok számát. 

Ezt követően az előzőek során ismertetett /tanitási/ algoritmusok optimá-

lisait ezen elv alapján fogjuk meghatározni. 

1./ A Moore—algoritmus /G/ 

O 1 	0 0 0 

O 1 	1 1 0 

G= 	0 1 	1 1 0 

O 0 	0 0 1 

O 0 	0 0 1 



1 	0  

3 	1  

3 	1  

1 	2  

0 	1  

3 1  

7 4  

7 4  

1 3  

0 1  

7 4  

15 11  
,j,~_. 11  

1 4  

0 	1  

15 11  

31.
_,  26  

31; 26  

1 	5  

0 	1  

— 222 —  

o 1 1 

0 2 2 

o 2 2 

o 0 0 

o 0 0 

0 2 2 

o 4 4 

o 4 4 

o 0 0 

o 0 0 

o 4 4  

0 8 8 

o 8 8 

o 0 0 

o 0 0 

0 8 8 

0 16 16 

o 16 16 

0 0 0 

o o 0 

0 16 16 31 26  

o 32 32 63  57 

o 32 32 [63 3 57  

0 0 0 1 6  

0 0 0 0 1  
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A Moore—algoritmusnál tehát növekszik az "utak" száma. Vegyiik észre, 

hogy a piros kereten lévő számok a két algoritmus elem között előfor-

duló összekötő utak számának maximumát adják meg /továbbiakban U /2/max 

jelölést használjuk, amely két elem közötti "n" lépéses átalakitásnál 

előforduló maximális utak számát szimbolizálja /p1.: GU /6/max  = 63. 

A Crowder—algoritmus 10.sz.máitritának vizsgálatánál /jele: C/ 

• 

"91‘  

S o  

8 1  

C  = 	S2  

S3  

84  

tt%  

, 
	so 	s l 

o 1 	o 

o o 	1 

~ 	0 	0 

O o 	1 

O 0 	0 

o 0 	0 

o 0 	0  

o o 	1 

O 0 	0  

O 0 	1 

O 0 	0 

o o 	0 

o o 	0 

o o 	0 

0 	0  

O 0 	1  

O 0 	0  

o 0 	1 

o 0 	0 
o 0 	0  
O 0 	0  

S2 53  S4  ~L,)  

0 0 0 0  

0 1 0 0  

1 0 0 0  

0 0 1 0  

0 1 1 0  

0 0 0 1  

0  0  0  0  

0 1 0 0  

1 1 1 0  

0 0 1 0  

1 0 0 1  

0 1 1 1  

0 0 0 0  

0 0 0 0  

1  i  1  0  

0  1  (2 1 

1  0  0  1  

0 0 1 0  

0 1 1 1  
0  0  ©  0  
0  0  0  0  

C2  =  

c3  



2  

1  

O 0 1 0 1  

O 0 0 1 1 1  2  

2  1  

O 0 1 1 0 1 0  

O 0 0 0 0 0 1  

O 0 0 0 1 1 1  

O 0 0 0 0 0 0  

O 0 © 0 0 0 0  

O 0 0 1 1  

O 0 1 0 1  

O 0 1 1 
 

0 1 1  

O 0 0 0 0 0 0  

O 0 0 0 1 1 1  

O 0 0 0 0 0 0  

O 0 0 0 0 0 0  

= C  

C4  ~ 

C5  

O 0 1 0 1  

O 0 0 1 1  

O 0 1 1 0  

O 0 0 0 0 	0 0  

O 0 0 0 1 	1 1  

O 0 0 0 0 	0 0  

O 0 0 0 0 	0 0  

C6  _ c2 `  

Tehát:  CII/  max  

A Skinner.•algoritmus mátrixának vizsgálatánál /lásd 19-20-21.sz,mátr'xc+-  

kat /jele: S/  
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0 0 	1 	0 	0 0 0 

0 0 	0 	1 	0 0 0 

0 0 	0 	0 	1 0 0 

S2 	= 0 0 	0 	0 	0 1 0 

0 0 	0 	0 	0 0 1 

0 0 	0 	0 	0 0 0 

0 0 	0 	0 	0 0 0 

0 0 	0 	0 	0 0 1 

0 0 	0 	0 	0 0 0 

0 0 	0 	0 	0 0 0 

36 	= 0 0 	0 	0 	0 0 0 

0 0 	0 	0 	0 0 0 

0 0 	0 	0 	0 0 0 

0 0 	0 	0 	0 0 0 

Ugyanakkor amint láttuk az S már "0--mátrix". / : 19/ Igy 

/n/ SU/2/ max  = 1  

& KOPSTEIN féle paragráf algoritmus "mátrixának" /11.sz.mátrix/ /jele: 

rK"/, ahol  r  = a parallell utak száma: 
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0 1 1 0 0 0 0 0 0 0 

0 0 0 1 1 0 0 0 0 0 

0 0 0 1 1 0 0 0 0 0 

0 0 0 0 0 1 1 0 0 0 

0 0 0 0 0 1 1 0 0 0 

0 0 0 0 0 0 0 1 1 0 

0 0 0 0 0 0 0 1 1 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 

0 0 0 2 2 0 0 0 0 0 

o 0 0 0 0 2 2 0 0 0 

0 0 0 0 0 2 2 0 0 0 

0 0 0 0 0 0 0 2 2 0 

0 0 0 0 0 0 0 2 2 0 

0 0 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 4 4 0 0 0 

0 0 0 0 0 0 0 4 4 0 

0 0 0 0 0 0 0 4 4 0 

0 0 0 0 0 0 0 0 0 4 

0 0 0 0 0 0 0 0 0 4 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 8 8 0  

O 0 0 0 0 0 0 0 0 8  

O 0 0 0 0 0 0 0 0 8  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

  

K5  2  

O 0  0 0 0 0 0 0 01161  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0  

  

  

Nem nehéz belátni, hogy a "K 6" mar  "0—mátrix.", s igy:  

2KU~2~ 
max = 

16 

ami egyben az összes "I-X" közötti lehetséges utak száma.  

2K4  

A 8.sz.mátrix által leirt szabályozó /Regelung/ algoritmus mátrixának  
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/jele: R/ vizsgálatánál:  

0 1 1 1 0 0 0  

O 1 2  ~3  '2  1 0 
~  O 0 1 2 3  J2  1  

o 0 0 1 2  P2  
O 0 C 0 1 2 2  

O 0 0 0 0 1 1  

O 0 0 0 0 0 0  

O 1 2 3 2 1 0  

O 1 3 6 7 6 3  

O 0 1 3 67  15  

O 0 0 1 3 6 5  

O 0 0 0 1 3 3  

O 0 0 0 0 1 1  

O 0 0 0 0 0 0  

R2  

R3  

O 1 3 6 

O 1 4 10 

o o 1 4 

O 0 0 1 

O 0 0 0 

O 0 0 0 

O 0 0 0 

7 6 3  

16  19  13  

10 16 13  

4 10 9  

1 4 4  

0 1 1  

0 ü 0  

R4  

O 1 4101619 13 
O 1 5 15 30 45 135  

o 0 1 5 15 30 26  

o o 0 1 5 15 14  

O 0 0 0 1 5 5  

O 0 0 0 0 L 1  

O 0 0 0 0 0 0  

R5  



-229- 

R6  - 

o 1 5 15 30 45 35  

O 1 6 21 50 90175  

O 0 1 6 21 50 45  

O 0 0 1 6 21 20  

O 0 0 0 1 6 6  

O 0 0 0 0 1 1  

O 0 0 0 0 0 0  

  

  

az RU~2~  max =90.  

A 6.sz.mátrix által leirt iterációs—algoritmus /jele: I/ vizsgálatánál:  

0 1 1 0 0 0 0  

0 1 2 1 0 0 0  

0 0 1 1 1 0 0  

12 = 
 

0 0 0 0 1 1 0  

0 0 0 0 1 1 1  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 1 2 1 0 0 0  

o 13 2 10 0  

0 0 1 1 2 1 0  

13  =  0 0 0 0 1 1 1  

0 0 0 0 1 1 1  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  
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az r /7/  
/2/ max  

= 15  

A 7.sz.mátrix által leirt adaptiv /Umweg/ algoritmus /jele: U/ vizsgála- 

tánál:  

0 1 0 0  

1 0 1 0  

O 0 1 

O 0 0 

O 0 0 0 4 (l 0  

O 0 0 0 o4 a  
O 0 0 0 0 0 1  

O 0 0 0 0 0 0  

O 0 0 0 0 0 0  

O 0 0 1 0 1 0  

O 0 0 0 .i~  Q. 1  

O 0 0 0 0 A 0  
o 0 o o o o.4 

 

0 0  

0 0  

0 0  

01  
o o 0 o o .4 4)  

O 000004  

O 0 0 0 0 0 0  

O 0 0 0 0 0 0  

O 0 0 0 0 

O 0 0 0 0 

U2  —  

U3  =  

U4  

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 04 

0 0  

0 0  



0 0 0 0 0 0 1  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

U5  

C3 	0 0 0 0 1 1 1  

0 	1 1 1 1 0 0 0  

0 1 1 1 1 0 0 0  

0 0 0 2 0 0 0 0  

0 1 1 1 1 0 0 0  

0 0 0 0 0 1 1 1  

0 0 0 0 0 1 1 1  

0 0 0 0 0 0 0 0  

o 3  3_:513 0 0 0  

3 0 0 0 0 1 1 1  

3 0 0 0 0 1 1 1  

0 0 0 0 0 0 0 0  

3 0 0 0 0 1 1 1  

0 0 0 2 0 0 0 0  

0 0 0 2 0 0 0 0  
0 0 0 0 0 0 0 0  

T2  

T3  - 

látható, hogy a Skinner- algoritmus  mátrixához hasonlóan az U6  már "0-mát-

rix", és az UU~2/  max = 1-nél nagyobb értéket nem vesz fel. 

A 12.sz.mátrix által leirt felelet-választás Tollingerova-algoritmus /je-

le: T/ vizsgálatánál: 
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9 0 0 0 0 3 3 3 

O 3 3 5 3 0 0 0 

O 3 3 5 3 0 0 0 

O 0 0 2 0 0 0 0 

O 3 3 5 3 0 0 0 

O 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 

O 9 9 115J 9 0 0 0 

9 0 0 0 0 5 5 5 

9 0 0 0 0 5 5 5 

O 0 0 0 0 2 2 2 

9 0 0 0 0 5 5 5 

O 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 

T4  = 

T5  

127  !  0 0 0 0 15 15 15 
O 9 9 19 9 0 0 0 

O 9 919 9 0 0 0 

T6  = 	0 0 0 4 0 0 0 0 

O 9 9 19 9 0 0 0 

O 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 

Páratlan számu lépéseknél a legfelső sor első helye,páros számvaknál a 

ugyanott a negyedik hely a sürüsödési hely. Tehát: 
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TU~2~ 
max 

= 27 

A 9.sz.mátrix által leirt "elágazó—adaptiv" /Hehrweg/ al(oritmus /jele:  

M/ vizsgálatánál:  

M2  =  

O 0 1 0 1 0 0  

O 0 0 1 0 1 0  

O 0 0 0 0 1 0  

O 0 0 0 0 0 1  

O 0 0 0 0 0 1  

O 0 0 0 0 0 0  

O 0 0 0 0 0 0  

 

  

O 0 0 1 0 1 0  

O 0 0 0 0 1 1  

O 0 0 0 0 0 1  

O 0 0 0 0 0 0  

O 0 0 0 0 0 0  

O 0 0 0 0 0 0  

O 0 0 0 0 0 0  

M4  =  

O 0 0 0 0 1 1  

O 0 0 0 0 0 1  

O 0 0 0 0 0 0  

O 0 0 0 0 0 0  

O 0 0 0 0 0 0  

O 0 0 0 0 0 0  

O 0 0 0 0 0 0  

  

  

M3  



5 M 
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O 0 0 0 0 0 1 

O 0 0 0 0 0 0 

O 0 0 0 0 0 0 

O 0 0 0 0 0 0 

O 0 0 0 0 0 0 

O 0 0 0 0 0 0 

O 0 0 0 0 0 0 

az M6  már "0-mátrix"! 

Az eddigi algoritmus-mátrixok hatványainak kissé terjengős bemutatása 

az általuk leirt folyamatok dialektikus szemlélését volt hivatva bizto- 

sitani• ♦ továbbiakban ugyanis ki szeretnénk emelni azokat a mátrix hat-

ványokból leolvasható és általánositható tulajdonságokat, amelyek egy-

részt a mátrixhoz tartozó tanitási algoritmusra jellemzőek, másrészt al-

kalmasak bizonyos optimális stratégiai számitásokra is. 

1./ Szembetűnő és igy tízonyitásra nem szorul, hogy a bemutatott mátrix-

ok két nagy csoportra oszthatók: 

a./ amelyeknél a hatványszorzatok a "0-mátrix"-hoz tartanak, pl: 

S S2  	 S7  = "0-mátrix" 

2K 	
 
2

2 	 K3 	 2K4 — 	 __ 2K6  = "0-mátrix" 

U U2   —U6  = "0-mátrix" 

M 	 M2  	M6  = "0-mátrix" 

Ezen összefüggés alapján ezeknél az algoritmusoknál előre megadható a 

maximális lépések száma. Különben ezek a mátrixok is még két alcsoportra 

oszthatók: 1./ amelyekben a mátrixoknak vannak, olyan elemei, amelyek mo-

notonan növekednek /2K/, és olyanokra 2./ amelyekben az elemek csak /0;1/ 
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értékeket vesznek fel /S; U; M/. 

b./ Amelyeknek hatványszorzatai sohasem tartalmaznak "0—mátrixokat" 

/G, C, R,T/. Ezek is két alcsoportra oszthatók: 

1./ amelyeknek egyes elemei minden határon tul nőnek /pl.: G, R, I/ 

2.1 amelyekben két végleges forma váltakozó ismétlődése látható, pl: 

"C"—nél a "C2k" és "C2k-1 " formák.  

Ha ezeket egybevetjük a III/III.—al és a 	sz.táblázattal, akkor észre- 

vehetjük, hogy  

a/1.—hez a konturnélküli gráfokkal leirható algoritmusok, 

a/2.—höz ezek közül a paragráfokkal leirható algoritmusok, 

b/1.—hez a konturos gráfokkal leirható algoritmusok, 

b/2.—höz ezek  közül egyedül a Crowder—algoritmus tartozik. 

2./ Több mátrixnál kitünik, hogy egyes /piros keretben lévő/ elemek a 

többiekhez képest nagyobb mértékben növekednek, s igy ezek az általuk 

kifejezett "azonos lépés számu utak" sürüsödésére utalnak. Ezek azok, a-

hol az  

XU/n/ 	1  
/2/ max  

és monoton növekvő értékek az X = G, 2K, R, I, T esetekben. 

Ugyanakkor CU~ / max = 2—nél nagyobb értéket soha nem vesz fel. Ennek 

az összefüggésnek két didaktikai értéke van: 

a./ az 1/a.esetben ez a módszer lehetővé teszi, hogy pl. egy " rK/n/" ti_ 

pusu algoritmus esetében, ha 

/n+1/ 
rK 	= "0—mátrix", akkor 

UrK%2% max = teljes /kiindulási ponttól a végpontig/ 



- 237 - 

vezető utak számát előre meghatározzuk. 

b./ As 1/b. esetekben, az 

XTJ/2/ max  

sürüsödési helyek kiszámithatósága lehetővé teszi, hogy az algorit-

musnak erre a szakaszára épitsük a legnehezebben elsajátitható,  leg-

többszöri  ismétlést és lehetőleg minél több kisegitő ut bevonását 

igénylő  elemeit. 

3./ Az 1./ és 2./—ből következik, hogy ha célunk egy "T" anyagrész program-

mozása és ehhez egy olyan algoritmus kiválasztása, amely azonos lépésszós 

ms mellett a lehető legtöbb átalakitási utat biztositja /pl. nehezebb 

anyagrész feldolgozása, gyengébb tanulók korrepetálása, stb/, akkor ezt 

a 2/b. alapján az alábbi módon számithatjuk ki: 
r Y . 	.  

Szolgáljon erre az alábbi táblázat: / 	sz.k/  

n=1 

GU/n/  /2/ max 

CU/n/  
/2/ max 

2KU/2/ max  

KU/n/  3 /2/ max  

RU/n/  /2/ max  

/n/  
117/2/ max  

W/n/  /2/ max 

r,U~~  max  

1  

1  

1  

1  

1  

1  

1  

1  

3  

1  

2  

3  

3  

2  

1  

1  

? 

2  

4  

3  

1  

1  

15 

2  

8  

17  

19  

4  

1  

1  

31  

2  

16  

41  

45  

6  

1  

1  

n=2  n=3  n=4  n=5  
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TU/n/  
/2/ max 

SU/n/  
/2/ max  

A táblázatból már leolvasható az "n" különböző értékeihez tartozó "e-

gyenlő utak" száma, s igy meghatározható az optimális 

/n/ "XU
/2/ max ! is. 

Természetesen, ha speciális didaktikai célok nem indokolják az ismétlé-

seket /az egy és ugyanazon lépésekhez való visszatérést/, akkor a   

sz.táblázat módositása indokolt. 

Ebben az esetben p1. a táblázatból leolvasható áptimális algoritmus nem 

az "R" mátrixhoz tartozó algoritmus lesz, hanem a " 2K"—hoz tartozó algo-

ritmus. 

Sommázva:  az itt ismertetett elvek az optimális stratégia meghatározásá-

nak egy más oldalát mutr.tjá., be, mint amit a II/1.—ben ismertettünk. Fel-

vetődhet a kérdés, hogy nem tulzás—e ezen bonyolult apparátus alkalmazá-

da akkor, amikor pl. a "2K" esetében a 

2KU/$/ max 	16 —ot 

közvetlenül aránylag "könnyű szerrel" leolvasható. Szabadjon ellenpélda-

ként a "3K" tipusu gráfból kiindulva egy másik paragráfot bemutatni: 

1 
	

3 
	

5 
	

9 
	

15 

1 
	

1 
	

1 
	

1 
	

1 
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Felirjuk a hozzátartozó mátrixot: 

I. II. III. IV. 

I. o 1 1 1 

II. 0 0 0 0 

III. 0 0 0 0 

IV.  0 0 0 0 

V,  0 0 0 0 

VI.  0 0 0 0 

VII.  0 0 0 0 

3K- VIII.  0 

/

0 0  0  

Iá. 0 n V V 

X.  o 0 0  0  

XI.  o o 0  0  

XII.  o 0 0  0  

XIII.  0 0 0  0  

XIV.  0 0 0  0  

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0  0  

0 0 0  0  

0 0 0  0  
K2  =  3 0 0 0  0  

o 0 0  0  

o o 0 0 

0 0 0  0  

o 0 0  0  

o 0 0  0  

o 0 0  0  

0 0 0 	0 	0 0 0 0 

1 1 0 	0 	0 0 0 0 

1 1 1 	0 	0 0 0 0 

0 1 1 	0 	0 0 0 0 

0 0 0 	1 	1 0 0 0 

0 0 0 	1 	1 1 0 0 

0 0 0 	0 	1 1 0 0 

0 	

/

0 	0

nn 	

0 	0 	

/

0

~~ 	

1 	1 

V V V 	 V 	0 0 1 1 

0 0 0 	0 	0 0 0 1 

0 0 0 	0 	0 0 0 0 

0 0 0 	0 	0 0 0 0 

0 0 0 	0 	0 0 0 0 

0 0 0 	0 	0 0 0 0  

2  5  3  2 	0 	0 0 0 0 

O 0 0 	2 	2 1 0 0 

O 0 0 	2  LI]  2 0 0  
O 0 0 	1 	2 2 0 0 

O 0 0 	0 	0 0 2 2 

O 0 0 	0 	0 0 2  ~  j1 
~  

O 0 0 	0 	0 0 1 2 

O 0 0 	0 	0 0 0 0  

O 0 0 	0 	0 0 0 0  

O 0 0 	0 	0 0 0 0 

O 0 0 	0 	0 0 0 0  

O 0 0 	0 	0 0 0 0  

O 0 0 	0 	0 0 0 0  

O 0 0 	0 	0 0 0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0 

1 n  

1 0  

0 1  

0 1  

0 1  

0  0  

0 0  

0 0  

0  0  

0 0  

1 0  

2 0  

2 0  

0 2  

0 j3)  
0 2  

0  0  

0  0  

0  0  

0  0  

majd az előbbi hatványozási eljárást alkalmazva kapjuk:  

V. VI. VII. VIII. IX. X. XI. XII.XIII. XIV.  



0 0 0 0 0 0 0 5 7 5 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 0 4 5 	3 	0 

0 0 0 0 0 0 0 0 0 0 5 Fi 1
5 0 

0 0 0 0 0 0 0 0 0 0 3 5 	4 0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	5 

0 0 0 0 0 0 0 0 0 0 0 0 	0 7 
0 0 0 0 0 0 0 0 0 0 0 0 	0 5 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 ű 0 0 0 	v^ 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 01212 0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 12 

0 0 0 0 0 0 0 0 0 0 0 0 OF j 
o 0 0 0 0 0 0 0 0 0 0 0 	0 12 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	C; 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 

0 0 0 0 0 0 0 0 0 0 0 0 	0 	0 
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K5 
! 
_ 

3  

O 0 0 0 0 0 0 0 0 0 0 0 0 41  i 
O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

A 3K6  már "0--mátrix"! 

A KU/5/ 	_ 41 mutatja, hogy 41 féleképen juthatunk el az I—ből a 
3 /2/ max 

XIV—be. Ennek leolvasása közvetlenül a gráfból már körülményes. Termé-

szetesen a mátrix szorzások is igen nagy figyelmet igénylő, s tekinté-

lyes hibalehetőséggel járó szémitások. Ha azonban ezt az eljárást külö-

nösen nagyobb lépésszámu algoritmusoknál Computerekre bizzuk, akkor a 

mátrixos forma a legracionálisabb módszer. A Computerek ilyen irányu 

felhasználásának lehetőségeire utalnak K.A.CZEMPER és H.BOSWAU /15 : 90/ 

és H. FRANK /12.: 6/. 

A II. fejezet ismertetett anyagát összefoglalva ismételten kiemeljük a 

didaktikának azt a szerepét, mely szerint az oktatásnak mindig valamilyen 

kiindulási állapotot kell valamilyen,_ az oktatás célja által meghatáro-. 
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zott végállapottá alakitania.  Ezekwi együtti alkotjá4az oktatási rá-

hatások rendszere. Egyedi esetben az oktatási ráhatásoknak ezt a rend-

szerét olyan algoritmussal irhatjuk le és adhatjuk meg, amely a tanult 

.indulási állapotának végállapottá való átalakitására vonatkozik, - 

állapitja meg L.N.LANDA /Xt : 39/. 

Másodszor a  "stratégia"  fogalmának mi didaktikai értelmet adtunk. LANDA 

szerint /,3'b  :  38/ nehéz szigéruan megkülönböztetni ezt a fogalmat /egzakt 

kibernetikai ős matematikai értelemben véve/ az  algoritmus  fogalmától; 

azonos kategóriába tartoznak ezek. Jelenleg azonban a stratégia fogalmát 

gyakran tágabb értelemben használják, beleértve a véletlenszerü cselekvé-

sek lehetőségét is, ami az algoritmussal nem fér össze. Másrészt a stra-

tégiát tekinthetjük a cselekvések lehetséges módjára vonatkozó előirás-

nak, az algoritmust pedig parancsolóbb természetei előirásnak. Ezzel kap-

csolatban lerögzithctjiik, hogy a stratégia a lehetséges algoritmus, az al- 

goritmus pedig a kiválasztott stratégia.  

III. Átvitt értelemben bármilyen féle szabatosan előirt eljárás matema-

tikai modellje algoritmusnak nevezhető - hangzik az ismert alapdefinició. 

Ezen az alapon, ha létezik egy olyan programmkészitési eljárás, amely sza-

batosan leirható és találunk ehhez egy matematikai modellt /pl. mátrixot, 

vagy diagrammot/, akkor ezt az eljárást a fenti definició értelmében a 

programmkészités algoritmusának tekinthetjük. /Igy a megtanitandó algo-

ritmus és a tanitás algoritmusa után ez az algoritmus-fogalom uj alkalma-

zása./ E fejezet azonban nem a programmozott oktatás terminológiájának bőví-

tését célozza, hanem segitséget kiván nyujtani a programmozott oktatás után 

érdeklődőknek ahhoz, hogy aránylag világos és jól áttekinthető módszer bie.. 

titkába jutva, saját maguk is készithessenek oktató programmokat és ezzel 



Számfogalom 
1 
A számok 
kezelése 
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is segitsék az oktatás hatékonyságának fokozása terén kialakult törek- 

véseke t. 

Az eddig - jobbára empirikus - uton, a sokéves tanári tapasztalatra épü-

lő, programmkészitési eljárások általában három szakaszra bonthatók: 

1./ A tervezett tananyagrész elemi szabályokból és példa-anyagokból való 

felépitése. 

2./ Az 1./ lista alapján az oktató programm elkészitése. 

3./ A 2./ programm kipróbálása utján való javitása és finomitása. 

Jelen esetben talán korai lenne még egy olyan algoritmusról beszélni, a--

mely mind a három szakaszt átfogja. Az eddigi ilyen irányu próbálkozások 

általában az 1./ vagy 2.1-re korlátozódtak. 

1./ Először az 1./ szakaszra mutatunk be egy F.MECHER-/ P`1:252/-től szár-

mazó fél-algoritmust /lásd II/40. oldal/. Az eljárás alapgondolata a tan-

anyag szisztematikus felbontása, mindaddig folytatva, arcig az anyagrészt 

teljesen "atomjaira" nem bontották. MECHNER a különböző szinteken történő 

felosztásnál az egységek feljegyzésére különböző szinü kartonokat ajánl. 

Pl.:  A halmazelmélet elemei cimü anyagrész programmozását megelőző "atomok-

ra" bontás folyamata: 

Portulá- 
tumok 

Más 
rendszerek 

Halmaz- Számrend- Számel- Szám- 
elmélet szerek mélet  egyenes 
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Halmazok 

Felhalmo- 
zás 

Isomorfia 

Elemek 

Egyesités 

-- 

Halmaz 

i  Rendszer 

Könr:yü belátni, hogy amennyiben valamennyi szinten elvégeznénk a tel-

jes felbontást, akkor az utolsó sorban 

44 	256 

szekvenciához jutnánk. Ez azonban feltétlenül csak elméleti értékü szek-

vencia sor lenne. Hogy gyakorlatilag mi kerül a programmba, az az eddigi 

gyakorlat szerint a programorozó döntésére van bizva. /Ez a rész tehát 

még nem irható le teljesen szabatosan - emiatt tekintjük ezt az eljárást 

fél-algoritmusnak/. MECHNER egy diagrammot ismertet /.yi :2S3/, amely a-

lapján az eljárásnak ez a része is szabatosan leírhatóvá válik, sőt sze-

rinte ezt a döntést egyra a diagramm adatait feldolgozó computerre lehet-

ne bizni. 

Gyakorlati értékének kidomboritására szolgáljon még az alábbi VII. az  ál-

talános iskolai évfolyamban tanitandó fizikai törvény programmozása. "A 

munkát ugy számitju_-:-, hogy az erőt megszorozzuk az erő irányába eső 

uttal". 



Gépi Emberi 

Jelentése Kapcsolata 
a kg-al. 

Erő Ut 
►   

Munka 

Mérték- 
egysége 

Méterki-s 
lopond 

Jele 

Értelme-
zése Jelölése 
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2./ A következőkben a 2.1-es szakasz algoritmizálását kivánjuk bemutat-

ni, egy az USA-ban meghonosodott eljárás: a Ruleg -módszer és a Flow--di-

agramm 	alapján. Le kell rögziteni bevezetőül még azt is, hogy 

ezt a fél-algoritmust kizárólag csak lineáris programmok készitésére 

használják. Mielőtt a részletes ismertetésre áttérnénk, be szeretném 

mutatni a két uj terminus-technikus jelentését: Ruleg, az angol szabá-

lyok: = ru's és példák = eg's fonetikus kiejtésének összeolvadásából ke-

letkezett müszó, a Flow-diagramm pedig folyamat-diagrammot jelent. 

A továbbiakban a VII-es. általános iskolai fizika IV/1. pontjából "A mun-

ka" cimü bevezető első 12 sorának a Rule g-módszer és Flow-diagramm által 

meghatározott programmkészitési algoritmus segítségével készült, prog-

rammozott változatát mutatjuk be. Az emlitett anyagrész elemi szabályok- 
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ból és példaanyagból történő felépitése az előbb ismertetett MECENER-el- 

j árás egyik speciális változata alapján történt. 

Erő kifej. 
t és 

4 

Van elmoz-
dulás 

  

 

Nincs el-
mozdulás 

 

2 

      

3 

         

p 

    

Emberi és gépi 
erő hatására 

 

Csak gépi 
erő hatására 

     

 

Csak emberi 
erő hatására 

   

        

1 

Munkavég-
zés 

/Lásd az előbbi, - III/1. pontban szereplő példát!/ 

A vonalak mellett szereplő számok a felbontott részfogalmak bemutatását 

szolgáló példák száma. Ennek alapján a tananyagrész elemi szabályokból és 

példákból álló sora: /4 + 2 + 2 + 3 + 1 = 12/ 

1./ Ha egy szénnel rakott nagy kocsit egyedül megtolsz, akkor erőt fej-

tettél ki, de a kocsi nem mozdul el. 
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2./ Ha egy nagy  mozdony—kereket egyedül megemelsz, akkor erőt fejtettél 

ki, de a kerék mozdulatlan marad. 

3./ Ha egy nagy élő fát megpróbálsz kidönteni, akkor erőt fejtettél ki, 

de a fa mozdulatlan marad. 

4./ Ha egy nagy vastag falnak egyedül nekidőlve, megpróbálod ledönteni, 

akkor erőt fejtettél ki, de a fal mozdulatlan marad. 

5./ Ha egy kis játékkocsit megtolsz, akkor erőt fejtettél ki és a kocsi 

elmozdul. 

6./ Aki fát gyalul, az erőt fejt ki és elmozditja a gyalut. 

7./ Aki vasat reszel, az erőt fejt ki és elmozditja a reszelőt. 

8./ Aki egy zsákot egy autóra felrak, az erőt fejt ki és elmozditja a 

földről a zsákot. 

9./ Pótkocsi huzásakor a vontató 	 

10./ Épitkezésnél az emelőgép 	 

11./ Toronyházban a teherfelvonó 	 

12./ Ha valaaely test erő hatására elmozdul, akkor fizikai értelemben 

munkavégzés történt. 

Ezek után térünk át a 2.szakaszra, amelynek algoritmizálása a következő 

egzakt müveletekből tevődik, össze: 

a./ A Ruleg mátrix megszerkesztése. 

b./ A generalizált mátrix leképzése. 

c./ A Flow—diagramm összeállitása az l./, a./ és b./ összevetése alap-

3'ns maJd 

d./ az 1./ és c./ pont alapján az oktató—programm leirása. 

a./ A Ruleg—mátrixot /továbbiakban R—mátrix/ a 	sz.mátrix mutatja. 
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1 	2 	3 	4 	5 	6 	7 8 9 10 11 12 

1 1 	A 	A 	AD D 

2 A 	2 	A 	AD D 

3 A 	A3 	AD D 

4 A 	A 	A 	4 	D D 

5 DDDD 	5 	A 	A A A 

6 A 	6 	A A A 

7 A 	A 	7 A A 

8 A 	A 	A8 A A A A 

9 A 9 A A A 

10 A A 10 A A 

11 A A A 11 A 

12 DD 	DD 	A 	A 	A A A A A 12 

	sz.mátrix. 

Itt: A = /associatio/ gondolattársitás 

D = /discrimination/ megkülönböztetés 

1 = /definition linie/ definiciók vonala 

A mátrix készitésének elve:  Az l.sor l.oszlopában lévő 1-es az előbbi fel-

bontás 1./ sorában bemutatott példa önmagával történő definiciója. A 2.sor 

2.oszlopában lévő 2-es az előbbi felbontás 2./ sorában bemutatott példa ön-

magával történő definiciója. A 3.sor 3.oszlopában lévő 3--as   

Az l.sor 2.oszlopában lévő "A" az elemi felbontás 1./ példája és 2./ példá- 

ja közötti gonáolattársitásra uu.,l, ami a két példa egybevetéséből nyilván- 
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való. Az l.sor 3.oszlopában lévő "A" az elemi felbontás 1./ példája és 

3./ példája közötti gondolattársitásra utal. A 2.sor 3.oszlopában lévő 

"A" az elemi felbontás 2./ példája és 3./ példája közötti 	 

Az 5.oszlopban lévő "D"-k arra a megkülönböztetésre utalnak, ami az ele-

mi felbontás 1./, 2./, 3./, és 4./ példái és az 5./ példa egybevetéséből 

adódik. A 12.oszlopban lévő "D"-k és "A"-k az elemi bontások 	12./-as 

szabályának az 1./-4./ példáktól való megkülönböztetését és az 5.1..11.1 

példákkal való gondolattársitását jelentik. 

Az 1. - 12, definiciók vonala alatt található "A"--k és "D"-k külön je-

lentéssel nem birnak, s mindössze csak a szimmetria kedvéért tüntettük fel 

őket. Külön feltüntetjük a lényeges szerepük miatt a különböző mezőnyök 

találkozásánál lévő vastagon bekeretezett elemeket. 

A  " sz.mátrixon felismerhetők: 

a./1  Három különböző "A" /asszociációs/ mezőny = /asszociációs blokkok/ = 

= A-blokk. 

a./2  egy "D" /diszkriminációs/ mezőny = /diszkriminációs-blokk/ = D-

blokk. 

a./3  A definiciókból álló diagonális /definiciós vonal/ = D-vonal. 

a./4  Egy *D"-kből és "A".kból á116 sáv a /az ismeretek megszilárdulási 

sávja/ _ M-sáv 

a./5  A blokkok közös elemei = /csomúpontok/. 

b./ Ezen jelenségek figyelembevételével készitjük el az alábbi Qanerali- 

zált mátrixot  /továbbiakban G-mátrix/, amely a most definiált "blokkok", 
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"vonalak"  és "sávok" jelölésére szolgál mátrix/. 

	s z. mátrix. 

Asszociációs blokk: 

Diszkriminációs blokk: 

Definiciós vonal: 

Mejszilárdulási sáv: 

Csomópontok: 
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Az egyes anyagrészek logikai szerkezetére jellemző "generalizált mátrixok" 

formái a tananyagrészektől függően igen differenciáltak. Igy például a 

"Pythagoras-tétel trigonometriai bizonyitása" cimü anyagrész "generali-

zált mátrixa" már egész más formát mutat /""-- 	 sz.mátrix/: 

Teljes definicibs vonal: 

Megkülönböztetési blokk: 

Megszilárdulási sáv: 

	sz.mátrix. 

c./ Az elemi szabályok sorának a Ruleg- mátrixnak és a generalizált mát- 

rixnak az egybevetéséből készitjük el a Flow-diagrammot /folyamat-diag- 
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ramm/, amelynek  sorszáma az elemi p'ldák 4s szabályok számával /12/ meg-

egyezik, s az előállitott oszlopok száma pedig megadja a  program  lépése-

inek a számát /35/.  

r-1 N 1+1 # 	 tiD 	Co 01  O rt t11 
ri 	ri 	r-1  
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Itt: R = /Ruleg/ szabály 

E = /example/ példa 

D = /discriminatio/ megkülönböztetés 

I = /instruction/ utasitás 

A diagramm elkészitésének elve:  

Az R-mátrix 1.sorában lévő a definició, és a három "A" asszociációnak 

megfelelően az "F-diagramm 1.sorába beirunk négy "E"-t. A 2,sor és a 

2.oszlop metszésénél leirt "E" jelenti a második lépést. A 3.sor és 3. 

oszlop metszésénél írjuk le a harmadik lépést jelző "E"-t. Majd a 4sor  

és 4.oszlop 	  

A 2., 3., és 4./ sorban lévő "A"-k értelmét az 1.sorban lévő "A"-k már 

kifejezték, igy ezeket figyelmen kivül hagyhatjuk. Az 1.1-4./ lépések-

ben beirt "E" -k /példák/ általánositása képezi az 5./ lépést, s ezt jel- 

zi az F-diagramm 4.sorának 5.oszlopában látható R /szabály/.  

Az R-mátrix 5.oszlopában lévő "D"-k jelentésüknek megfelelően az F-diag-

ramm 1., 2., 3., és 4./ soraiba kerülnek a /következő üres/ 6.oszloptól 

kezdődően lefelé haladva egy-e gy  hellyel jobbra irva. Mivel ezek az ele-

mi példák és szabályok sorának 1.-4./ sorait különböztetik meg az 5./ 

sortól, igy érteleraszerüen a F-diagramm 5.sorának következő /üres/ osz-

lopaiba kerülnek be, mint "E"-k /példák/. Igy érkezünk el az első csomó-. 

ponthoz, az 5 -höz, mely az első "A-blokk" végét jelenti, s igy az en-

nek megfelelő R az 5./ sor következő üres oszlopába, a 10./-esbe kerül. 

Egyuttal vegyük észre, hogy az 12-mátrix 5.sorának 6., 7., 8./ oszlopai-

ban található "A"-k, mint "E"-k kerülnek be az F-diagramm 5.sorának kö-

vetkező három (üres/ oszlophelyeire. S mivel igy ismét egy "A-blokk" vé-

géra értünk, ennek megfelelő csomópontot ugyanebben a sorban az "E"-k u- 
~ 

tán irt "Ft"-rel jelöljük. Ezután az "E"-ket levetitjük a $., 7., 8./ sor. 



lévő "A"-knak megfelelő 

vetkező /üres/ helyeire 

ba és utána a harmadik ' 

kező helyére. 

"E"-ket irjuk be az F-diagramm 8.sorásak kö-- 

, majd levetitjük őket a 9., 10., és 11•/ sorok-

'A-blokkot" 

 

 lezáró "R"-t irjuk be a 11.sor követ- 
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rokba, az "R"-t pedig a 8./ sorba. 

Ezt követően az "R-mátrix" 8./ sorának 9., 10. és 11./ oszlophelyein 

Az F-diagramm 12.sorát a végleges szabállyal kezdve, beirjuk a 20.osz- 

lophelyre az R -t. 

Ezt követi a "G-mátrix" "M-sávja", ahol az 1., 2., 3., 4./ soroktól va-

ló megkülönböztetést az állandóan /jobbra tolódó/ lefelé haladó "D"-kkel 

jelöljük, s a 4.soron egy "diszkriminációs szabállyal" zárjuk be. Ezt kö-

vetően az 5., 6., 7., 8./—as sorokkal való gondolattársitást az állandó-

an /jobbra tolódó/ lefelé haladó "E"-kkel jelöljük, s a 8./ sorban lévő 

csomópontoknak megfelelően egy "R"-rel megtoldjuk. Végül a 9., 10., 11./ 

sorokkal való gondolattársitisnak megfelelő "E" _ket helyezzük el az előb-

bihez hasonlóan. Végül a 12.soron az általános szabálynak begyakorlásá-

ra hévrom "R"-rel zárjuk be az F-diagrammot. 

Legvégül: 

d./ Az oktató-xl!gx programmot az 1./ figyelembevétele mellett a c./ alap-

ján készitjük el olymódon, hogy a Flow-diagramm minden egyes oszlopából 

egy programmlépést készitünk ugy, hogy a pirossal aláhuzott "E"-ket és 

"R"-ket megszövegezzük. A programra felépitésénél érvényesitjük V.THIMM 

/411/Nfitai által ismertetett "SR-learning" /tanulási/ modelljét, ahol S 

/etimuli - Reise/ = ingert és R /response - Reaktion/ = választ jelen-

tenek. Ez az elv ennél a programmnál az alábbi módon érvényesül. 
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Az egyes lépéseknél megállapitjuk az "S - R" faktor tárgyát, pl.: 

a "G-mátrix" A1-blokk, ábani 

S1 -R1  

S2  - R2 	= mozdulatlan 

A "G-mátrix" D.  A2--  és A3  blokkjaiban: 

S1 -R1  

S2 -R2  

erőt 

= elmozdult 

a "G-mátrix N--sávaában: 

S1  - Rl 	= erőt 

S2  - R2 	= munkát 

S3  - S3 	= elmozdul 

jelentenek ." 

Ezt követően az egyes blokkokban az "E"-knél és "R"-knél egyaránt érvé-

nyesitjük az alábbi elrendezést: 

S1 	 R1  

32 	 R2 

S1 +S2 
	 R1 R2 

S1 	 R1  

S1 +S2 	 R1 +R2  

S 1 +S2 +S3 	 R1 + R2+ R3 

erőt 
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Ezt könnyen észrevehetjük, ha a programm "válasz sávját" megfigyeljük. 

Xzek  után a programm:  

1./ Ha egy szénnel megrakott nagy kocsit sik 

/E/ terepen megpróbálasz eltolni, akkor 

erőt fejtettél ki, de a kocsi nem mozdul 

el. 

2./ Ha egy nagy élőfát megpróbálsz kidönteni, 

/E/ akkor 	 fejtettél ki, de a 

fa mozdulatlan maradt 	 

erőt 

3./ Ha egy nagy mozdonykereket megpr6bál4e 

felemelni /E/, akkor erőt fejtettél ki, 

de a kerék   maradt. mozdulatlan 

X4./ Ha egy nagy  magzi vastag falat megpróbálsz le— 

dönteni /E/, akkor 	 fejtet— 

tél ki, de a fal 	 maradt. 

erőt 

mozdulatlan 

5'/ Ha egy erődet meghaladó tárgyat akarsz 

/12/ mozgásba hozni, akkor erőt fejtesz ki, 

de a tárgy mozdulatlan marad. 

6./ Ha egy kis játékkocsit megtolsz, akkor /E/ 

erőt fejtesz ki és a kocsi elmozdul. 

7./ Ha egy bicikli kereket felemelsz, akkor 

	 /E/ fejtettél ki, ős a bicikli ke— 

erék elmozdult. 

erőt 

8./ Ha egy kiszáradt, korhadt kis fát kidön-

tesz, /E/ akkor erőt fejtesz ki és a kis 

fa   elmozdult. 

9./ 	Ha egy korhadt vékony léckeritést ledön- 

tesz /E/, akkor 	 fejtesz ki ós 

a kerités 	 

erőt 

elmozdult. 
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10./ Ha egy  erődet me g; nem haladó tárgyat 

megmozditasz /R/, akkor erőt fejtesz 

ki és a tárgy elmozdul. 

11./ Aki fát gyalul, az erőt fejt ki és a 

/E/ gyalut elmozditja. 

12./ Aki vasat reszel, az 	 fejt ki 

/E/ és elmozditja a reszelőt. 

erőt 

13./ Aki egy zsákot egy autóra felrak, as 

/E/ erőt fejt ki és a zsákot 	 elmozditja 

14-a Ha egy erődet meg nem haladó tárgyat 
/R/ meeozditasz, akkor 	 fejtesz 

ki ős a tárgy 	 

erőt 

elmozdul. 

15./ Pótkocsi huzásakor a vontató 	 

fejt ki és a pótkocsi elmozdul. 

erőt 

A./  Épitkezésnél az emelőgép erőt fejt ki 

/E/ és a terhet 	 elmozditja 

17./ Toronyházban a lift 	 fejt ki 

/E/ ős a terhet 	 

erőt 

elmozditja 

18./ A nagyerejű gépek, amikor erőt fejtenek 

/R/ ki, akkor elmozdulást idéznek elő. 

19./ Ha erő hatására valamely test elmozdul, 

/R/, akkor ezt a fizika nyelvén munkavég-

zésneknevezzük. 

20./ Ha egy szénnel megrakott nagy kocsit sik 

terepen /E/ megpróbálasz eltolni, akkor  

erőt fejtettél ki, de munkát nem  végeztél. 

21.1 Ha egy nagy élő fát megpróbálsz kidönteni, 

/E/  akkor 	 fejtettél ki, de mun— 

kát nem végeztél. 

erőt 
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22./ Ha egy nagy mozdonykereket egyedül meg-

próbálsz /E/ felemelni, akkor erőt fej- ,  

tettél ki, de   nem végeztél. munkát 

23./ Ha egy nagy vastag falat megpróbálsz le-

dönteni/E/, akkor erőt fejtettél ki, de 

munkát   nem végeztél 

24./ Ha erődet meghaladó tárgyat akarsz moz- 

gázba /R/ hozni, erőt fejtesz ki, de nem 

végzel munkát. 

25./ Ha egy kis játékkocsit eltolsz, akkor 

erőt /E/ fejtesz ki és munkát végzel. 

26./ Ha e a bicikli kereket felemelsz, akkor 

/E/ 	 fejtesz ki és munkát végzel. erőt 

27./ Ha egy kiszáradt, korhadt kis fát kidön-

tesz /E/, akkor erőt fejtesz ki és   

végzel. 

munkát 

28./ Ha egy korhadt vékony léckeritést ledön- 

tesz /E/, akkor 	 fejtesz ki és 

	... végzel. 

erőt 

munkát 

29./ Ha egy erődet meg nem haladó tárgyat meg-

mozditasz /R/, akkor 	 fejtesz ki 

és 	 végzel. 

erőt 

munkát 

30./ Pótkocsi vontatásakor a vontató 	 

fejt ki és munkát végez. 

erőt 

31./ Épitkezésnél az emelő gél 	erőt fejt ki és 

/E/ 	 végez. munkát 

32./ Toronyházban a teherfelvonó 	 fejt 

ki /E/ és 	 végez. 

erőt 

munkát 

33./ Ha . 	.. hatására valamely test elmoz- erő 
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dul /R/, akkor ezt fizikai nyelven munka-

végzésnek nevezzük. 

34./ Ha 	 hatására valamely test 

	 /x/, akkor ezt fizikai nyelven 

munkavégzésnek nevezzük. 

erő 

elmozdul 

35./ Ha    hatására valamely test 

	.. /R/, akkor ezt fizikai nyelven 

	 nevezzük.  

erő 

elmozdul 

munkavégzésnek 

Vége a programmrészletnek. 

A 12 elemi szabályból és példából felé,:itett programm 35 lépést tartal-

maz. Ez az arány nem törvényszerü, esetenként az "R", ill. "G" mátrixok 

felépitésétől függ. 

A 3.szakasz algoritmizálására G.LLI,U /7( :374/ és LBJERSTEDT /2 : 99-

109/ tettek kisérleteket. Ezek a fél—algoritmusok azonban nem merítették 

ki az alapdefinició követelményét, még fél—algoritmus szintjén sem, igy 

tárgyalásuk a "Stati ai módszerek" témakörébe tartozik. 

Az "elágazó programm" készités algoritmizálásával foglalkozik G.M.SED-

DON /120:458/, eljárását azonban még nem, publikálta. 

///  
IV. A "Formális elemek" cimü rész 	% oldalán már emlitettük, hogy 

bizonyos esetekben értelmes a tanterv—készités és az oktatási folyamat 

tervezésének algoritmusáról beszélni. Ennek azonban természetes felté- 

tele, hogy az emlitett folyamatok szabatosan leirhatók legyenek, s tar- 
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tozzon hozzájuk egy matematikai modell. Amennyiben ezek a feltételek 

nem teljesülnek, ugy a fenti algoritmus éppugy értelmetlen, mint a 

III. pontban ismertetett univerzális algoritmus. 

Konkrétan: I.B.MORGUNOV / 04,:62-79/ eljárását kivánom itt ismertetni. 

Lehet, hogy más ilyen irányu koncepció is ismert, azonban a MORGUNOV-

eljárás az, amely a fenti definició követelményeit teljes mértékben ki- 

elégiti, s egyben komoly gyakorlati értékekkel is bir. 

MORGUNOV szerint elsőrendü fontosságu feladat olyan tantervek és prog-

rammok összeállitása, melyek tükrözik a tudományos szinvonalat és me g-

felelnek az élet követelményeinek. Az iskolai munka eredménye nagymér-

tékben függ e feladat megoldásától. Ahhoz, hogy a feladatot tudományo-

san és megalapozottan oldjuk meg, nyilvánvalóan ínem elegendő csak a 

meglévő tapasztalatokra támaszkodni. Fel kell fegyverkeznünk a szüksé-

ges apparátussal, objektiv kritériumokat kell kidolgoznunk az összeál-

litandó tantervek és progranmoknak a jelenlegiekkel való összehasonli-

tására és azok további tökéletesitésére. Ebben az irányban már megtet-

ték az első kisérleteket. Javaslat hangzott el arra vonatkozóan, hogy 

az összehasonlitandó programmokat osszuk fel a tanulmányozandó anyag 

kicsiny, értelem szerint befejezett részeire. Azután állapitsuk meg a 

közöttük lévő logikai kapcsolatokat, melyek kifejezik az anyag kifej- 
, 

télében érvényesülő folyamatosságot. Ajánlatos a programmok részekre 

való felosztását gráfok alakjában rögzíteni, melyek alapján könnyebben 

figyelemmel kisérhetjük az anyag tanulásának logikai sorrendjét, és a 

szükséges esetben elvégezhetjük a megfelelő kiigazitásokat. / 3 b Sr -- / 

De ez nem elegendő. Meg  kell  állapítanunk minden egyes anyagrész fontos-

sági fokát abból a célból, hogy a jelentőséggel nem biró anyagrészeket 

kitaly'assuk, vagy lerővidithessük. 
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Most azokat a kérdéseket vizsgáljuk, hogyan alkalmazható a gráf és a 

mátrix elmélet matematikai apparátusa a tantervek és prograrnmok fel-

épitésének tanulmányozására. 

A továbbiakat megelőzően javasolom a  "III.rész" gráfelméleti bevezető-

jének áttanulmányozásátI!! Majd azt követően az elméleti apparátust az 

alábbi módon kivánjuk konkretizálni esetünkre: 

"Tantárgy" szóval jelöljük bármely tanulmányozandó anyagrész programm-

jának tetszés szerinti részét /a *antárgyakat a latin "abc" nagybetüi-

val jelöljük: A, B, C, D/. Ugy véljük, hogy az anyag közlésének a for-

rása lehet akár a könyv, altár a tanár, akár oktatógép. Azt a közlési 

forrást, melyet a megfelelő tantárgyhoz tartozónak tekintünk, a gráf 

csucsával jelöljük, melynél a megfelelő betü szerepel. A szóbanforgó 

tantárgynak az ábráját, mely az oktatási folyamatban alakul ki /vagyis 

azt a tényt, hogy a szóbanforgó tantárgyat a tanulók tanulmányozzák és 

fel tudják ismerni/, a gráf csucsával és a csucsnál elhelyezett megfe-

lelő "abc" kisbetüivel jelöljük. Az "A" tantárgy tanulási folyamatát 

a gráfon a következő módon ábrázoltuk: 

AO 

 

	,3f a 

 

Itt a /A,a/ nyil az először tanult ismeretek átadási irányát jelöli. 

Nevezzük a bemutatott gráfot az "A" tantárgy tanulási gráfjának. 

Ha két tantárgyat, az A-t és a B-t vizsgáljuk, akkor a következő négy 

logikai lehetőséget állithatjuk fel: 

1./ Az "A" tantárgyból tanult ismereteket a "B" tantárgy nem tartalmaz- 
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ta, és a "B" tantárgyból tanult ismeieteket nem foglalja magában 

az "A" tantárgy. 

2./ Az "A" tantárgyból tanult ismereteket magában foglalja a "B" tan-

tárgy, vagyis egyes olyan operativ egységeket, melyek az "A"  tan-

tárgy tanulásánál kialakultak, felhasználhatunk a "B" tantárgy uj 

operativ egységeinek kidolgozásához, de a "B" tantárgyból tanult 

ismereteket az "A" tantárgy nem  foglalja magában. 

3./ A "B" tantárgyból ta ult ismereteket az "A" tantárgy magában fog-

lalja, de az "A" tantárgyból tanult ismereteket nem foglalja magá-

ban a "B" tantárgy. 

4./ Az "A" tantárgyból tanult ismereteket a "B" tantárgy magában fok 

lalja és a "B" tantárgyból tanult ismereteket is megtaláljuk az "A" 

tantárgyban. 

Az első esetben az "A" és "B" tantárgyak tanulási gráfja a következő-

képen fest: 

AQ 	 }Qa 

B O 	 b 

T • 9 	. 

I sz. ábra 

A második esetben az "A" tanulási gráfját az alábbi ábrán adjuk meg: 

.:sz.ábra 

Tételezzük fel, hogy az "A" tantárgy ábrája áll fenn, vagyis van "a" 

csucs. Akkor a "B" tantárgy tanulási gráfja a következőképen szemlél-

tethető: 



-261- 

..sz.ábra. 

A /B,b/ nyil, mint a második ábrán, az először tanult ismeretek átadási 

irányát jelöli. A /B,a/ nyil az "A" tantárgyból tanult azon isme r etek 

irányát jelzi, melyek a "B" tantárgyban bennefoglaltatnak. A /a,b/ nyil 

az "A" tantárgyból tanult azon ismeretek felismerését jelöli, melyeket 

a "B" tantárgy magában foglal. 

Az "A", "B" tantárgyak együttes tanulmányozásának gráfját is bemutatjuk: 

A(} 	 a 

BQ 	

 

jb 

....sz.abra. 

A harmadik eset hasonló a másodikhoz. A harmadik esethez tartozó gráf az 

"A" és "B" tantárgyak tanulását mutatja be: 

:sz . ábra. 
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Az "A" és "B" tantárgyak tanulásának gráfját a negyedik esetben a kö-

vetkező ábra mutatja be: 

„.. 

....sz.abra. 

Az "A" és "B" tantárgyak tanulását eszerint a gráf szerint nem lehet 

megvalósitani, mert "a, b, a" logikai konturt kapunk,  ahol /a,b/ nyil 

az "A" tantárgynak a "B"—ben való felismerését jelöli, a /b,a/ nyil pe-

dig ellenkezőleg, a "B" tantárgyat ismertnek kell vennünk, pedig azt 

még nem tanulmányoztuk. Következé-1,lpen az "A" és "B" tantárgyak ta-

nulását hogy lehetővé tegyük, ki kell küszöbölnünk vagy az /a,b/ nyi-

lat a /B,a/ nyillal együtt,  vagy pedig a /b,a/ nyilat az /A,b/ nyillal 

együtt. 

Az /a,b/ nyil kiküszöbölése azt jelenti, hogy a "B" tantárgy tanulása 

közben már nem feltételezhetjük az "a" csucs meglétét, vagy az "A" tan-

tárgy felvázolt ábrájának meglétét. 

A negyedik eset kiküszöbölésének másik utja abban áll, hogy az "A" és 

"B" tantárgyakat tartalmukat tekintve, igen kis részekre osztjuk. Akkor 

ezek között az uj tantárgyak között nem keletkezhetnek olyan gráfok, 

mint amelyeket a 	sz.ábra jelöl, mert a fedés általában nem az egész 

témánál áll fenn, hanem csak bizonyos részkérdésekben, s a hasonló tago-

lásoknál felszabadulnak olyan részek, amelyeknél az egybeesés vagy fe-

dés nem áll fenn. Azonban ennél a felosztásnál, miként a kettőnél több 



aQ 	aQ 	aQ 	b Q 	aQ 

b b Q  
1  

Q 	b C,~ 

2 	 3  
a 1) 

4 	 5  
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tantárgy tanulásánál is, előfordulhatnak bonyolultabb jellegü logikai 

konturok. 

Ahhoz, hogy a további kutatásokat megkönnyitsük, kivánatos a 	sz. 

és 	sz.ábrákon szereplő gráfok szerkezetének leegyszerüsitése. Te- 

gyük fel, hogy először csak azokat a csucsokat rajzoljuk meg, amelyek a 

tárgy megszerkesztett ábrájának a meglétét jellemzik, vagyis a kisbetűk-

kel jelölt csucsokat, másodszor csak azokat az irányt mutató nyilakat 

tartjuk meg, amelyek ezek között a csucsok között állanak fenn. Éppen 

ezek az ivek jellemzik azon operativ egységek felismerésének eredményét, 

amelyek az egyes tantárgyakban létrejöttek, azoknak más tantárgyakban 

történt felhasználásuk közben. Akkor azok a gráfok, amelyeket a ....sz.  

és ....sz.ábrákon mutattunk be, a következő alakot fogják felvenni /bal- 

ról jobbfelé haladva/. 

A 	sz.ó.lra i e; t_,,:tott gráfokat a tantárgyak leegyszerüsitett tanu- 

lási gráfjainak fojuk nevezni. Nyilvánvaló, hogy tetszés szerinti szá-

mu ilyen leegyszerüsitett tantárgyi gráfot szerkeszthetünk. Abban az e-

setben, ha a tanulmányozandó tárgyal: száma  nagy, a gráf sematikus ábrá-

zolása méginkább annak kutatása nehézzé válik. Ezért adott esetben jól 

felhasználhatjuk a megfelelő összefüggési mátritcokat. Meg fogunk adni  

egy leegyszerüsitett gráfot annak összefüggési mátrixával, s azt a  tan-

tárgyak tanulási mátrixának fogjuk nevezni:  
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Az A = /aij / számu tantárgy tanulmányozási mátrixának gyakorlati meg-

szerkesztése a megfelelő leegyszerüsitett gráf szerkesztésének elha-

gyásával a következő módon megy végbe: Tegyük fel, hogy a ij  r.1.  Azaz 

az i sor ős j oszlop metszésénél irjuk az egyest, ha a "j" tantárgy ta-

nulása közben az "i" tantárgyból vett ismeretekre támaszkodik. Ha "j" 

tantárgy nem támaszkodik az "i" tantárgyra, akkor a ij  = 0. A tantár- 

gyak tanulási mátrixa szemléletes képet ad minden egyes tantárgy tanu-

lásának jellegéről külön-külön. 

a b B b 
A= 0 0 a B= 	11011 	a C= 0 1 a 

0 

a 

0 

b 

b a 

a b 

0 0 b 

          

          

          

D = 

  

0 

0 

a E  _ 

  

1 

0 

a 

  

0 b 

  

1 b 

          

          

          

          

          

Eggyezzünk meg, hogy a továbbiakban a tantárgyakat természetes számok-

kal jelöljük. Ha a tantárgyak tanulási mátrixának sorait vizsgáljuk, 

mely tetszésszerinti tárgyra vonatkozhatik, akkor az egyesek, melyek 

benne a megfelelő oszlopokkal való metszéspontokban állanak, azokat a 

tantárgyakat /oszlopokat/ fogják mutatni, amelyek a tanulásuk közben 

felhasználják a megjelölt tantárgyból /sorból/ vett ismereteket. 

Az "A" tárgyak alább bemutatott tanulási mátrixában például a 6.sor 4. 

tantárgyát felhasználjuk a' 3. 5. és 6.számu tantárgyak tanulásánál: 
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1 2 3 4 5 6  

o  0 1 1 0 1 1 

0 0 0 1 1 1 2 

0 1 0 0 1 0 3 
A = 

o  0 1 0 1 1 4 

1 0 0 0 0 1 5 

0 0 1 0 0 0 

Ha a mátrixban szereplő bármely oszlopot vizsgáljuk, akkor az egyesek, 

melyek a megfelelő sorok kereszteződésében állanak, azokat a tantárgya—

hat fogják mutatni, melyekre az adott tantárgy tanulása közben támaszko-

dik. Igy például az "A" mátrixban a 3.számu tárgy tanulása közben fel-

használja az 1., 4., és 6. tantárgyak ismereteit. A mátrixok megszerkesz-

tésében semmiféle követelményt nem támasztottunk a tantárgyak időbeli ta-

nulási sorrendjét illetően. Ezért nincs kizárva annak a lehetősége, hogy 

abban a gráfban, mely ennek a mátrixnak megfelel, előfordulhatnak logi-

kai konturok, mint például a ..... 	.ábrán 	látható 5—ös gráf, vagy még 

ennél is bonyolultabb jellegűek. 

Tüzziik ki a következő feladatot: meg kell határoznunk: előfordulnak—e 

a konturok a tantárgyak megadott leegyszerüsitett tanulási gráfjában? 

Hogy erre a kérdésre felelhessünk, élni fogunk a tantárgyak tanulási 

mátrixa csökkentésének vagy leröviditésének szabályával. 

Fentebb rámutattunk, hogy az egyesek, amelyek a mátrix bármely sorában 

állanak, azokat a tantárgyakat jelölik, amelyekben felhasználjuk az a-

dott tárgyból vett ismereteket. Ezért, ha ilyen sort nem találunk a mát-

rixban, amelyben csupán nullák szerepelnek, akkor ez azt fogja jelenteni, 

hogy ennek a tantárgynak az ismereteit nem használjuk fel semmiféle más 
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tantárgyban. A ....sz.ábrán bemutatott gráf esetében például a neki 

megfelelő "B" mátrix 4.sora csupán nullákból áll. 

 

1 2 3 4 5 

O 1 0 0 1 

O 0 1 1 0 

O 0 0 0 1 

O 0 0 0 0 

O 1 0 1 0 

 

  

B - 

1 

2 

3 

4 

   

    

.'.sz.ábra 

A gráfon ezt ugy jelöljük, hogy a 4.csucsból nem indul ki egyetlen 

nyit sem, és következésképpen azon nem is haladhat át logikai kontur. 

Ezért a 4.csucsot a gráfból el fogjuk távolitani a /2,4/ és /54/ nyi-

lakkal együtt. A "B" mátrixban pedig ez a folyamat ugy zajlik le, hogy 

kihuzzuk a 4.sort és a 4.oszlopot. Ezek után az átalakitások után uj 

gráfot kapunk, és a neki megfelelő leröviditett "C" mátrixot: 

 

1 2 3 5 

O 1 0 1 

O 0 1 0 

O 0 0 1 

O 1 0 0 

 

  

C - 

1 

2 

3 

5 

    

    

. :'.sz.ábra 

Azt látjuk, hogy a "C" m.árixban nincsenek, olyan sorok, amelyek csu-

pán nullákból állanának, és következésképpen a gráfban sincsenek olyan 
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csucsok, amelyekből nem indulnak ki nyilak. 

Jelöljük meg  a  továbbiakban a "C" mátrixban azokat az oszlopokat, ame-

lyek csupán nullákból állanak. Ilyen az 1—es oszlop. Ez azt jelenti, 

hogy az 1.csucsba nem fut be nyíl, azaz az 1.tárgy tanulása közben 

nem használunk fel más tantárgyakból vett ismereteket. Nyilvánvaló, 

hogy az elsó csucson keresztül nem halad át kontur. Távolitsuk el a 

gráfban az l.csucsot azokkal a nyilakkal együtt, amelyek belőle kiindul-

nak. A "C" mátrixban pedig ki fogjuk huzni az l.oszlopot és az l.sort. 

Az átalakitások után uj gráfot és uj "D" mátrixot fogunk kapni: 

2 3 5 

o 1 0 2 

D 0 0 1 3 

1 0 0 5 

A "D" mátrixban hiányoznak mindazok az oszlopok, mind pedig azok a so-

rok, amelyek csupán nullákból állanak, azaz a gráf minden egyes csucsá— 

ból kiindulnak nyilak, s minden egyes csucsába befutnak. Amint a 	 

sz.ábrán látható, kontur halad át a 2., 3. ós 5. csucsokon. Hasonló a 

helyzet bármely mátrix esetében: miután elvégeztük annak redukálási 

folyamatát, vagy olyan mátrixot fogunk kapni, amelynél az összes tó-

nyezők nullák, vagy pedig olyant, amelynél nem az összes tényezők nul-

lák, de hiányoznak azok az oszlopok és sorok, amelyek csupán csak nul-

lákból állanak. Az első esetben a megfelelő gráfban hiányozni fognak  a 

logikai konturok, a második esetben pedig fennállanak. 

Ha a gráf alapján járunk el, s a tanulást a 2.tantárgynál fogjuk elkez- 

deni, akkor azt látjuk, hogy előtte tanulmányoznunk kell az 5.tantárgyat, 
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az előtt pedig a 3.tantárgyat, ez előtt pedig a 2.tantárgyat, vagyis 

amikor még el sem kezdtük a 2.tantárgy tanulmányozását, már fel kell 

tételeznünk annak ismeretét. I:rne, ebben áll a logikai kontur ellent-

mondása. 

Ilymódon a logikai konturt meg kell szüntetnünk, vagyis el kell távo-

litanunk legalább is egy nyilat azok közül, melyek abban részt vesznek.  

A megfelelő nyíl eltávolitásánál el kell döntenünk azt a kérdést, hogy 

melyik tantárgyiban célszerübb előbb tanulmányozni a megfelelő anyag. 

részt.  

Távolitsuk el p lilául a 	 sz.ábrán szereplő gráfban a /3,5/ nyilat. 

Ekkor a  '-- sz.ábrán bemutatott gráfot és a neki megfelelő "E" mátrix-

ot fogjuk kapni: 

2  2 3  

o 1  

3 C~ E  o 0  

1 0  

A ...sz.ábrán mutatjuk be a  ---sz.ábrán szereplő gráfot a /3,5/ nyil 

eltávolitása után, és a neki megfelelő B 1—el jelzett mátrixot: 

5  

0 
	 2  

0 
	

3  

5  

  

1 2 3 4 5  

O 1 0 0 1  

O 0 1 1 0  

O 0 0 0 0  

O 0 0 0 0  

O 1 0 1 0  

 

  

1  

2  

3  

4  

5  

B 1  =  
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Ebben a gráfban logikai konturok nélkül folyhat le a tantárgyak sorrend-

ben történő tanulmányozása. Már rámutattunk arra, hogy a nullának a je-

lenléte bármely oszlopban azt jelenti, hogy az adott tantárgy tanulása  

közben nem használunk fel más tantárgyból vett ismereteket, vagyis eze-

ket célszerü elsősorban tanulni.  Érthető, hogy ilyen oszlop több elő-

fordulhat. Távolitsuk el a B 1  mátrixból az l.oszlopot, amely csupán nul-

lákból áll és a neki megfelelő 1.sort. Ilymódon a B ?  mátrixot fogjuk kap-

ni. A ~... . eabrán látható gráfban távolitsuk az 1.csucsot és a belőle 

kiinduló nyilakat. Akkor a 	sz.ábrán látható gráfot fogjuk kapni és 

a neki  megfelelő  B2  mátrixot: 

  

2 3 4 5  

O 1 1 0  

O 0 0 0  

O 0 0 0  

1 0 1 0  

 

   

  

2  

3  

4  

5  

B2  

 

     

     

,-j :.  s z .  áb  ra . 

A B2  mátrixban az 5.oszlop áll csupa nullákból. Következésképpen máspá—

sorban kell tanulnunk az 5—el jelölt tantárgyat, mert a B2—es mátrixban 

az 5—ös tantárgy nem támaszkodik más tantárgyakból vett ismeretekre. Tá-

volitsuk el az 5.oszlopot az 5.sorral együtt. A 	sz.ábrán látható 

gráfban távolitsuk el az 5.csucsot és a /5,2/ és 4'  /5,4/ nyilakat. 

Ilymódon uj gráfot és a B3  mátrixot fogjuk kani.:  

  

2 	3 /1-  

O 1 1  

O 0 0  

O 0 0  

 

   

   

B3  = 

 

3  

4  
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A B3  mátrixban a 2.oszlop áll nullákból. Következésképpen a 2.tantár-

gyat fogjuk tanulni harmadsorban. Távolitsuk el a B 3  mátrixból a 2.osz-

lopot és a .sort, a 	.'.ábrán látható gráfból pedig a 2.csucsot  
• 

és a /2,4/ és /2,3/ nyilakat. Ekkor a 	sz.ábrán látható gráfot és a 

B4  mátrixot fogjuk kapni:  

 

Ó  

  

3 	4  

o 	o  

o 	o  

  

     

     

30  

 

B4 =  

  

3  

4  

       

       

       

t >i 

A~. sz. ábra.  

Azt látjuk,  hogy  a B4  mátrixban egyszerre szerepel két nullákból álló 

oszlop. Ezért a 3. és 4.számu tantárgyak tanulási sorrendben a 4. és 

5.helyen fognak állni. Ezeknél a tanulás sorrendje tetszés szerinti 

lehet. Ilymódon a 47Zz.ábrán látható gráfra vonatkozóan a tantárgyak 

következő tanulási sorrendjét fogjuk kapni: 1.5;  2,3 és 4 `  A  tantárgyak  

tanulási sorrendjének ilyen meghatározási módszerét bármely mátrixnál 

felhasználhatjuk azzal a feltételellel, hogy a megfelelő leegyszerüsi-

tett gráfban nincsenek konturok. 

A gráfok és mátrixok segitségével vizsgálhatjuk az egyes tantárgyak ta-

nulására forditott idő mérlegelésének a kérdését is. E célból bonyolul-

tabb matematikai apparátust kell igénybe vennünk és figyelembe kell ven-

nünk a kiindulási adatokat, azaz minden egyes tantárgy gyakorlati al-

kalmazásának fontosságát. 

A moszkvai Energetikai Főiskolán e tudományos módszertan segitségével 

összeállitották az egyik szak oktatási folyamatának gráfját, amely le- 
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hetőséget adott arra, ho gy  a tanulmányozott tantárgyakat idő ben logi-

kusabban csoportosithassák. Az alábbiakban közöljük e gráf mintáját. 

Tanulmányozás tárgyává tettek 20 tantárgyat. Irjunk mindegyik tantárgy 

mellé egy sorszámot, amely szerepelni fog a további számításokban. A-

lább megadjuk a tantárak elnevezéseit; 

1./ Felsőbb matematika 

2./ Fizika 

3./ Kémia 

4./ Ábrázoló geometria 

5./ Elméleti mechanika 

6./ Anyagok technológiája 

7./ Az elektrotechnika elméleti alapjai 

8./ Elektromos mérések 

9./ Elektrotechnikai anyagok 

10./ Elektromos gépek 

11./ Elektromágneses technika 

12./ Elektron- és félvezető technika 

13./ Impulzus technika 

14./ Gépi ellenőrzés 

15./ Az önvezérlés elmélete 

16./ A számológép-.technika alapjai 

17./ Másoló rendszerek és szabályozók 

18./ Távirányitás és távmérés 

19./ Elektromos  háztartási készülékek gyártási technológiája 

20./ Az üzembiztonság technikai alapjai. 

A fentebb emlitett tantárgyak leegyszerüsitett tanulási gráfjainak 20 

csucsa lesz. E gráfnak megfelelően a mátrixban n = 20 sor fog szerepel- 
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ni. A megfelelő tantervek elemzése nyomán összeállitották a tantárgyak 

tanulásának alább következő "A" mátrixát: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

O 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 	1 

O 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 	2 

O 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 	3 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	4 

O 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 	5 

O 0 0 0  0 0  0 0 0 0 0 0 0 0 0 0 0 0 1 0 	6 

O 0 0 0  0 0  0 1 1 1 1 1 1 0 1 1 1 1 1 1 	? 

O 0 0 0  0 0  0 0 0 1 1 0 0 1 1 1 1 1 0 0 	8 

O 0 0 0  0 0  0 0 1 0 1 1 1 0 0 0 0 0 1 0 	9 

	

A- 0 0 0 0  0  0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 	10 

O 0 0 0  0  0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 	11 

O 0 0 0  0  0 0 1 0 0 0 0 1 0 1 1 1 1 1 0 	12 

O 0 0 0  0 0  0 0 0 0 0 0 0 0 1 1 0 1 0 0 	13 

• 0 0 0  0  0 0 1 o 0 0 0 0 0 1 1 0 1 0 0 	14 

O 0 0 0  0  0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 	15 

• 0 0 0  0  0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 	16 

• 0 0 0  0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	17 

• 0 0  0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	18 

• 0 0 0  0  0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 	19 

• 0 0 0  0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	20 

A megfelelő tantárgyak tanárai összeállitották azon tárgyak közötti ösz-

szefüggéseket, melyeket az "A" mátrixban az egyesek jelölnek. Ezek az 

összefüggések megmutatják, hogy az oszlopokban leirt tantárgyak milyen 

tantárgyakra /sorokra/ támaszkodnak. Először azt kell tisztáznunk, hogy 

az "A" nátrixnak megfelelő gráfban vannak—e konturok. E célból alkalmaz- 
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zuk az "A" mátrixra a csökkentési szabályta n  Azt látjuk, hogy az "A" 

mátrixban a  4., 17., 18. és 20.sorok csupa nullákból állnak. Ezért 

ezeket el lehet távolitani az ugyancsak nulla jelű oszlopok kal együtt. 

Ezen kívül az "A" mátrixban az 1. és 3. oszlopok ugyancsak nullákból 

állanak, ezért azokat is eltávolithatjuk a szintén nullából álló so-

rokkal együtt. Ilymódon rögtön eltávolitjuk az 1., 3., 4., 17., 18. és 

20.sorokat és oszlopokat, s ezáltal egy  uj "B" mátrixot nyerünk: 

2 5 6 7 8 9 10 11 12 13 14 15 16 19 

0 0 1 1 1 1 1 1 1 1 0 0 0 1 5 

o 0 0 0 0 0 0 0 0 0 0 0 0 1 6 

o 0 0 0 1 1 1 1 1 1 0 1 1 1 7 

o 0 0 0 0 0 1 1 0 0 1 1 1 0 8 

0 0 0 0 1 0 1 1 1  0 0 0 0 1 9 

B= o 0 0 0 0 0 0 0 0 0 0 1 0 0 10 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 11 

0 0 0 0 1 0 0 0 0 1 0 1 1 1 12 

o 0 0 0 0 0 0 0 0 0 0 1 1 0 13 

0 0 0 0 1 0 0 0 0 0 0 1 1 0 14 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 15 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 16 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 19 

A "B" mátrixban az előzőhöz hasonlóan távolitjuk el a 2. és 5.oszlopo-

kat, a 2. és 5.sorokat. Igy a "C" mátrixot kapjuk. 
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6 7 8 9 10 11 12 13 14 15 16 19 

0 0 0 0 0 0 0 0 0 0 0 1 6 

o 0 1 1 1 1 1 1 0 1 1 1 7 

0 0 0 0 1 1 0 0 1 1 1 0 8 

0 0 1 0 1 1 1 0 0 0 0 1 9 

o 0 0 0 0 0 0 0 0 1 0 0 10 

C 0 0 0 0 0 0 0 0 0  0 1 0 11 

0 0 1 0 0 0 0 1 0 1 1 1 12 

0 0 0 0 n 0 v̂ 0 0 1 1 0 13 

o 0 1 0 0 0 0 0 0 1  1 0 14 

o o 0 0 0 0 0 0 0 0 1 0 15 

o o 0 0 0 0 0 0 1 0 0 0 16 

o o 0 0 0 0 0 0 1 0 0 0 19 

A "Co mátrixban a 6. és 7.oszlopok csupán nullákból állanak. Távolitsuk 

el ezeket a 6, és 7.sorokkal együtt. Igy nyerjük a "D" mátrixot: 

  

8 9 10 11 12 13 14 15 16 19 

O 0 1 1 1 0 1 1 1 0 

1 0 1 1 1 0 0 0 0 1 

O 0 0 0 0 0 0 1 0 0 

O 0 0 0 0 0 0 0 1 0 

1 0 0 0 0 1 0 1 1 1 

O 0 0 C 0 0 0 1 1 0 

1 0 0 0 0 0 0  1  1 0 

O 0 0 0 0 0 0 0 1 0 

O 0 0 0 0 0 1 0 0 0 

O 0 0 0 0 0 1 0 0 0 

 

  

8 

9 

10 

11 

12 

13 

14 

15 

16 

19 

  

D = 
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A "D" mátrixból távolitsuk el a 9.sort és a 9.oszlopot; ilymódon az  

"8" mátrixhoz jutunk.' Az "E" mátrixból hagyjuk el a 12.sort és a 12.  

oszlopot, ezáltal kapjuk az "F" mátrixot:  

8 10 11 13 14 15 16 19  

0 1 1 0 1 1 1 0  8  

0 0 0 0 m 1 0 0  10  

o o 0 0 0 0 1 0  11  

F 	- o 0 0 0 0 1 1 0  13  

1 0 0 0 0 1 1 0  14  

o 0 0 0 0 0 1 0  15  

o 0 0 0 1 0 0 0  16  

0 0 0 0 1 0 0 0  19  

Az "r^" mátrixból küszöböljük ki a 13. és 19.oszlopokat ós a 13. és 19.  

sorokat. Ezáltal kapjuk a "G" mátrixot: 

	

8 10 11 	14 15 16  

1 	1 	1 	1 	1  

o 0 	0 	0 	1 	0  

O 0 	0 	0 	0 	1  

1 	0 	0 	0 	1 	1  

O 0 	0 	0 	0 	1  

o 0 	0 	1 	0 	0  

Azt látjuk, hogy a "G" mátrixban nincsenek olyan oszlopok és sorok, a-

melyek csupa nullákból állanának. Következésképpen a "G" mátrixnak metn-  
~~ 

felelő gráfban vannak konturok. A .-í 
iff. 
.sz.ábrán közöljük a "G" mátrixnak 

megfelelő gráfot.  

G  - 

8  

10  

1 1  

14  

15  

16  
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Ebben a gráfban meg kell szüntetnünk a konturokat. Elsősorb an  meg kell 

állapitanunk, melyek  a legkisebb távolságot mutató konturok, először, 

mert ezeket egyszerűbb felfedezni, másdászor, mert ezek jellemzik leg-

világosabban a konturok logikai képtelenségét. Ilyenek a /8, 14, 8/ és 

/14, 16, 14/ konturok. Módszeres meggondolások alapján távolitsuk el 

a /14, 8/ és /16, 14/ nyilakat. A G = /gij / mátrixban ennek megfelel 

a  314, 8 
es g16, 14 

tényezők eltávolitása. Ennek eredményeképpen kapjuk 

az "M" mátrixot: 

8 10 11 14 15 16 

O 1 	1 	1 	1 	1 

O 0 	0 	0 	1 	0 

O 0 	0 	0 	0 	1 

O 0 	0 	0 	1 	1 

O 0 	0 	0 	0 	1 

O 0 	0 	0 	0 	0 

10 

M = 

8 

10 

11 

14 

15 

16 

16 

15 

:3 ì, s z. ábra. 
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Az "N" mátrixban a 8.oszlop és a 16.sor csupa nullákból állanak. 

Ezért eltávolitjuk a 16. és 8. sorokat és a 8. és 16. oszlopokat, s 

igy megkapjuk az "Ml" mátrixot. Az "Ml" mátrixban a 10., 11. és 14. 

oszlopok állanak csupa nullákból, valamint a 15.sor. Ezek eltávoli-

tása után megoldjuk az egész mátrixot. Ekkor már nem találhatunk uj 

konturokat. :,tért, ha a kiindulási "A" mátrixban eltávolitjuk az  a14,8  

és a16,14 tényezőket, akkor az Al  mátrixot kapjuk és ennek a mátrixnak 

megfelelő gráfban hiányozni fognak a konturok: 

1 2  3  4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

O 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 

O 000011 11 1 1 ..:1 , ' 1 o 0 0 0 0 1 0 

O 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 

O 00000000 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

O 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 

O 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 

O 0 0 0 0 0 0 1 0 1 1 1 0 0 C 0 0 0 1 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

O 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 0 

0 0 0 o 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 00000000 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A1- 

1 
2 
3 

4 

5 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

19 

20 

Az "A 1 " mátrix felhasználásával meg tudjuk, állapitani a táegyak tanulá- 

sának időbeli sorrendjét. Sorrend szerint először kell tanulni azokat a 
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tantárgyakat, amelyeknek, az A l  mátrixban csupa nullákból álló oszlopai 

vannak. Ilyenek lesznek az 1. és 3. tantárgyak. Hagyjuk el az A l  mát-

rixból az 1. és 3. oszlopokat, s az ezeknek megfelelő nullákból álló 

sorokat. Igy kapjuk meg az A2  mátrixot: 

  

2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 

0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 

0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

    

    

A2  = 

  

2 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

2e 

     

     

     

Az A2  mátrixban a 2., 4. és 5. oszlopok csupa nullákból állanak. Követke-

zésképpen másodsorban kell t anulni a 2., 4. ós 5. tantárgyakat. A 2. 4. és 

5.számu sorok és oszlopok elhagyása után kapjuk az A 3  mátrixot. 
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6 7 8  9 10 11 12 13 14 15 16 17 18 19 20  

O 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

O 0 1 1 1 1 1 1 	1 1 1 1 1 1 

O 0 0 0 1 1 0 0 1 1 1 1 1 0 0 

O 0 1 0 1 1 1 0 0 0 0 0 0 1 0 

O 0 0 0 0 0 0 0 0 1 0 1 1 0 0 

O 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

O 0 1 0 0 0 0 1 0 1 1 1 1 1 0 

O 0 0 0 0 0 0 0 0 1 1 0 1 0 0 

O 0 0 0 0 0 0 0 0 1 1 0 1 0 0 

O 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

  

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

A
3

= 

 

    

    

    

Az A3  mátrixban a 6. és 7. oszlopok állanak csupa nullákból. Követke-

zésképpen harmadsorban kell tanulni a 6. és 7. tantárgyakat, miután az 

A3  mátrixból eltávolitottuk a 6. és 7. számokkal jelzett oszlopokat és 

sorokat, nyerjük az A4  mátrixot. 

Az A4  mátrixban a 9. és 20. oszlopok állanak csupa nullákból. Ezért 

negyedsorban kell tanulni a 9. és 20. tantárgyakat. 
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8 9  10  11 12 13 14 15 16 17 18 19 20 

O 0 1 1 0 0 1 1 1 1 1 0 0 

1 0 1 1 I 0 0 	I C 

O 0 0 0 0 0 0 1 0 1 1 0 0 

O 0 0 0 0 0 0 0 1 1 1 0 0 

1 0 0 0 0 1 0 1 1 1 1 1 0 

O 0 0  0 0 0 0 1 1 0 1 0 0 

O 0 0  0 0 0 0 1 1 0 1 0 0 

O 0  0  0 0 0 0 0 1 1 1 0 0 

O 0 0  0 0 0 0 0 0 0 1 0 0 

O 0 0  0 0 0 0 0 0 0 0 0 0 

O 0  0 0  0 0 0 0 0 0 0 0 0 

O 0  0 0 0 0 1 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 

    

       

       

A
4 = 

     

8 

9 

10 

1 1 

12 

13 

14 

15 

16 

       

      

17 

      

18 

      

19 

20 

        

        

        

Távolitsuk el az A4  mátrixból a 9. és 20. oszlopokat és sorokat. Igy 

kapjuk  az  A5  mátrixot. 

8 10 11 12 13 14 15 16 17 18 19 

O 1 1 0 0 1 1 1 1 1 0 

O 0 0 0 0 0 1 0 1 1 0 

O 0 0 0 0 0 0 1 1 1 0 

1 0 0 0 	1 	0 	1 	1 	1 	1 	1 

O 0 0 0 0 0 1 1 0 1 0 

O 0 	0 0 0 0 1 1 0 1 0 

O 0 0 0 0 0 1 1 0 1 0 

o 0 0 0 0 0 0 0 0 1 0 

o 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 

o 0 0 0 0 1 0 0 0 0 0 

A5 = 

8 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 
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Az A5  mátrixban a 12.oszlop áll csupa nullákból. Ezért ötödször a 

12. tantárgyat kell tanulni. Távolitsuk el a 12.oszlopot és sort az 

A5  mátrixból, s ezáltal az A6  mátrixot kapjuk: 

8 10 11 13 14 15 16 17 18 19 

O 1 	1 0 	1 	1 	1 1 	1 0 

O 0 0 0 0z 1 0 1 1 0 

O 0 0 0 0 0 1 1 1 0 

O 0 0 0 0 1 1 0 1 0 

o 0 0 0 0 1 1 0 1 0 

O 0 0 0  0  0  1  1 1 0 

O 0 0 0 0 0 0 0 1 0 

O 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 

O 0 0 0 1 0 0 0 0 0 

Az A6  mátrixban a 8., 13. és 19.oszlopok állanak csupa nullákból, e-

zért hatodsorban a 8., 13. ős 19.tantár yakat kell tanulni. Távolit-

suk el az A6  mátrixból a 8., 13. és 19. oszlopokat és sorokat. Igy 

kapjuk az A?  mátrixot: 

 

10 11 14 15 16 17 18 

O 0 0 1 0 1 1 

O 0 0 0 1 1 1 

O 0 0 1 1 0 1 

O 0 0 0 1 1 1 

o 0 0 0 0 0 1 

o o 0 o o 0 o 

O 0 	0 0 0 0 0 

 

  

A7  ^ 

10 

11 

14 

15 

16 

17 

18 

   

A6  

8 

10 

11 

1$ 

14 

15 

16 

17 

18 

19 

Az A7  mátrixban csupa nullákból állanak a 10„ 11. és 14. oszlopok. Kö- 
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vetkezésképpen hetedsorban kell tanulni a 10., 11. és 14. tantárgya-

kat. A 10., 11. és 14.számokkal jelölt soroknak és oszlopoknak az A 7  

mátrixból való eltávolitása után nyerjük az A 8  mátrixot: 

  

15 16 17 18 

O 1 	1 	1 

O 0 	0 	1 

O 000  

O 0 	0 	0 

 

   

A8  = 

 

15 

16 

17 

18 

    

    

    

Az A8  mátrixban a 15.oszlop áll csupa nullákból. Ezért nyolcadsorban a 

15.tantárgyat kell tanulni. Távolitsuk el a 15.sort és oszlopot az A 8  

mátrixból, ekkor kapjuk az A 9  mátrixot: 

16 17 18 

O 0 	1 16 

17 

18 

A9  = O 0 	0 

O 0 	0 

Az A9  mátrixban a 16. és 17. oszlopok állanak csupa nullákból. Ezért 

kilencedsorban a 16. és 17. tantárgyakat kell tanulni. Miután az A 9  

mátrixból eltávolitottuk a 16. és 17. számokkal jelzett sorokat és 

oszlopokat, az A10  mátrixhoz jutunk: 

18 

A10 = o 18 

   

Az A10  mátrixban csak nulla szerepel. Ezért sorrendben az utolsónak 

kell tanulni a 18. tantárgyat, vagyis a Távirányitást és távmérést". 
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Ha az Al  mátrixban az oszlopokat és sorokat időbeni tanulásuk sorrend-

jében helyezzük el, akkor az A l  mátrixnak olyan változatát kapjuk, amely 

háromszögalakot fog mutatni /8b: _ /, vagyis a főátlótól lefelé /a fő-

átlót az Al_/aij/ mátrixnak azok a tényezői képezik, amelyek alakja a ij /, 

az Al  mátrixban nullák helyezkednek el. Alább adjuk az A l  mátrix képét, 

amelynek alakja háromszög: 

1 3 2 4 5 6 7 9 20 12 8 13 19 10 11 14 15 16 17 18 

     

  

O 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

O 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 

O 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 v^ 0 0 0 0 0 

O 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 

O 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 

O 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 

O 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

1 

3 

2 

4 

5 

6 

9 

20 

12 

8 

13 

19 

lo 
11 

14 

15 

16 

17  
18 

A1 =  

  

     

     

     

     

Hasonlóképpen áll a dolog a többi esetekben is. Ha a tárgyak tanulásának 

tets', és szerinti  „ u+ '•: ,ixát háromszögalakura tudjuk hozni, akkor ennek a 

mátrixnak megfelelő gráf alakján meg  lehet valósitani a tantárgyak tanulá-

si sorrendjének a megállapitását. Ekkor a tantárgyak tanulási sorrendje 

ugyano&yan lesz, mint a háromszögalaku mátrixban elhelyezkedő megfelelő 

sorok és oszlopok elhelyezési sorrendje. Az ajánlott tudományos módszer 
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alkalmazása tudományosan megalapozottá és hatásosabbá teszi az oktatá-

si folyamatot és a tanterveket. 

Ez MORGUNOV algoritmusa, amely igen egyértelmü, szabatos módszer. A 

hozzátartozó matematikai modell segitségével a tantárgyak tanulási sor-

rendjének megállapitását egzakt módon oldja meg. Az algoritmus értelmezé-

si köre azonban feltétlenül szélesebb, mint amit MORGUNOV prezentál. Azt 

hiszem, különösebb indokolás nélkül belátható, hogy a módszer alkalmas 

lehet még: 

a./ a tantáryakon belüli anyagrészek lo=°ikai sorrendben történő elrende-

zésére, 

b./ esetleg egy tantervi egységen belüli egységek logikai sorrendjének 

meghatározására, 

c./ egy programra elkészitésénél a szekvenciák logikai rendben való felé-

pitésére, 

d./ teszt-vizsgálatok kérdéseinek logikai felépitésére. 

Sommázva:  mindenütt alkalmazhtó, ahol egységek közötti logikai sorren-

det kell rö gziteni. Ugyanakkor ve gyük észre azt is, hogy a bonyolult el-

rendezési problémák számológépes megoldására alkalmas matematikai modell-

hez jutottunk. 

X  x x 

A "Konstruktiv elemek" cimü rész végére érve, megállapithatjuk, hogy 

- mint ahogy előrevetitettük - számos didaktikai problémában sikerült 

optimális döntést elérnünk. Ha eredtényeinket L.KLINGBERG 	J.A, 

KOMENSKY /j3 : 33/ didaktikai alapdefiniciójára /Didaktik ist die Lehre, 

vorn Lehren/ felépitett három didaktikai funkciójának /1./ Vermittlungs- 
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funktion; 2./ Hilfsfunktion; 3./ Führungsfunktion/ rendszerébe kíván-

juk beépíteni, akkor megállapithatjuk, hogy a "Konstruktív elemek" cimü 

részben bemutatott optimális számitások a KLINGBERG-féle funkciók mind-

egyikében alkalmazhatók. Igy a 

1./ "Vermittlungsfunktion" /közvetitő funkció/ területén, valamint a 

2./ "Hilfsfunktion" /a tanulást segitő funkció/ területén optimalizál-

hatók a megtanulandó algoritmusok. /I.11.-8./ 

3./ "Führungsfunktion" /a tanátás, mint a tanulási folyamat irányitásá-

nak  a  funkciója/ területén érvényesithetók a II/1., 2.,; a III. és 

IV.-ben bemutatott algoritmusok. 

Mindezek mellett feltételezhető még két indokolt aggály: 

1./ Mennyire merítették ki a bemutatott eljárások a lehetőségeket? 

2./ Nem szakadtunk-e el a tapasztalati uttól, azaz nem bontottuk-e meg 

az elmélet és gyakorlat kötelező egységét? 

Az 1./-re válaszolva ismételten utalni szeretnék arra, hogy a bemutatott 

eljárások csak a lehetőségek már felfedett utjaira utalnak, s igy sem 

horizontális, sem vertikális irányban nem tarthatnak a teljességre i-

gényt. 

A 2./-re KISS ÁRPÁD megállapitásával válaszolok / y : /. Szerinte az 

oktatás hatékonyságának fokozását célzó törekvések ma két irányból ha-

ladnak a cél felé: 

a./ az empiria felől, 

b./ az absztrakt /matematikai/ tanulási elméletek optimális algoritmusai 

felől, 

Az a./ és  b./  egy és ugyanazon fejlődési folyamat két oldala; kölcsön- 
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hatásaik az evoluciós szakaszban egyre jobban érvényesülnek, s végül  

a revoluciós ponton feltétlenül találkoznak. 
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V. 

ST R UKTURÁLIS 	ELEMEK  
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A "Strukturális elemek" tárgyalását három fejezetre osztjuk: 

Először a tanitás mikrostrukturáját ismertetjük. H.FRANK /3J - :102/ ős 

H.ANSCHÜTZ /-3 	mikrostruktura alatt a tanitási lépések rend- 

szerét értik, amely szerintük négy elemből tevődik össze: 

1./ Az itélet /a megelőzőleg lefolyt és kódolt elemek reakciói/. 

2./ A tanitási egység /adag/. 

3./ A kérdések /amelyek a lehetséges valaszok repertoárját explicite 

tartalin'z ák/. 

4./ Az utasítás /a tanuló felé valaminek a feltételeként/. 

A felsorolt elemekkel az előző fejezetekben formális, vagy konstruktiv 

szinten már foglalkoztunk. Igy ebben a fejezetben csak azt a néhány, 

már az előzőek során is tár gyalt elemet ragadjuk ki, amelyeket maguk 

a szerzőik is ebbe a részbe sorolnak. Elemző értékelés helyett inkább 

csak a terminológiai  teljességre  való törekvést tüztem itt ki célul. 

Másodsorban ugyan, de fő céllal szeretném a tanitási algoritmusok mak-

rostrukturáit bemutatni. Ezt a törekvésemet ennek a fogalomnak átfogóbb 

jellege is indokolja. H.FRANK /3j:103/ szerint egy tanitási algoritmus 

makrostruktuája alatt e gy  olyan 

"(,(i" funkció 

értendő, amely minden egyes 

y l C F (v-) 
bemeneti jelhez egy /"r" eleme "F /J/" halmaznak/ 
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tanulási utat rendel hozzá, ahol adott "(f" esetében a "+J" ut S/O/  kez-

dő lépése független az "r" bemeneti jeltől. H.KELBERT /E5: 93/ szerint 

a programorozott oktatást kibernetikai aspektusból egy absztrakt automa-

ta munkájára jellemző strukturának és folyamatnak kell tekinteni, ahol 

a tanuló-rendszer /diák, tz ií tanuló, .../ egy stochasztikusan deter-

minált automatát; a tanitó-rendszer /programmozott tankönyv, tanitó-gép, 

.../ pedig egy determinált automatát állit elő. A tanitó-rendszer deter-

mináltsága a pedagógiai elvek alapján felépitett tanitási algoritmusok-

ban és a programorozott tananyag tartalmában realizálódik. 

Mind a két definicióból kitünik, hogy ennek a résznek a tárgyalásinál 

a./ igen közel jutottunk az absztrakt automaták elméletéhez, 

b./ ennek matematikai modellezése pedig már a halmaz-elmélet alapfogal- 

mainak ismeretét is igényli. 

Éppen ezért ezt a fejezetet, bár igyekszünk kellő részletességgel tár-

gyalni, két oldalról:a nem matematikai utról is, meg a matematikai ut-

ról is meg fogjuk közeliteni. 

A matematikai jellegü tárgyalásnál azonban az előző szokástól kissé el-

térve nem mutatom be teljes részletességgel a felhasználásra kerülő ma-

tematikai apparátus elemeit. 

A harmadik részben a tanulás belső strukturájának modellezésével kapcso-

latban már kénytelenek leszünk egy teljesen uj, matematikai-logikai disz- 

ciplinát i:- prezF=ntá 1 , t , tekintettel arra, hogy itt ez a cél elérésének 
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nélkülözhetetlen alapeleme. 

Ezek után rátérünk a részletes tárgyalásra. 

x x x 

I. Mikrostrukturák.  

1./ A IV/I-7./ alatt már tettünk emlitést a struktura szerepéről a 

megtanulandó algoritmus optimálisának kiszámitásánál. Ott bemutattuk 

GENTILHOMME /'i1 :13-31/ információ-alapon végzett "bonyolultsági fok" 

kimutatására szolgáló hányadosait. Ezek számára azonban valóban mind-

egy, milyen sorrendben, és egy elágazódó kérdés-hálózatban hol kell 

egy kérdésre válaszolni. Egy algoritmusok alapján dolLozó elektroni-

kus gépnek is  mindegy - állapitja meg HELL GYÖRGY / :414/ - hogy az 

alábbi / í?
LL 
 sz./ ábrákon látható mikrostrukturák közül melyiknek az a-

lapján dönti el a 6 kérdést: 

A 
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vagy a 

     

      

      

      

      

      

. 1..f. sz. ábra. 

alapján. 

Nem tudja "érzékelni", hogy eközben egy elágazó struktura belső része-

ibe került és több elágazást elhagyott. Az embernél máskéj;p áll ez. 

Számunkra nem mindegy, hogy az eldöntendő" kérdések egy bonyolult rend-

szer elágazásaivá válnak—e, vagy pedig egy felsorolásos rendszer egyik 

tagját képezik. Semmiké:pen sem vehetők az ábrákon bemutatott struk-

turák azonosaknak az ember szempontjából. Más a tanuló emlékezeti meg-

terhelése a  11(7   sz. és más a 7  /  sz.esetben, és egészen természetes-
nek látszik, hogy a második, 	 ''  sz.ábrán látható struktura gondolat- 

menete e gyszerübb és könnyebben megjegyezhető, mint a másik. 
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Ezekből adódó a IV/I-7./—et kiegészitő konkluzió szerint a gondolat-

menet bonyolultságának megállapitására használt strukturá'nál nem csak 

azt kell nezni, ho gy  hány elágazás vezet az eredményhez, hanem azt jr, 

hogy milyen a struktura. Ebből a szempontból egyszerübb az ember számá-

ra az a gondolatmenet, mely egyenes ágat adó összefüggő gondolatsort 

tartalmaz, melynek elágazásai lehetőleg közvetlenül utalnak a megoldás-

ra. /Ez pedig döntő lehet a megtanitandó algoritmus optimálisának ki—

szárvitásánál./ 

A makrostrukturák között a terminológiai egyensuly kedvéért megemlitjük, 

hogy: 

2./ az F.KOPS'1EIN—től 0 11: 10/ bemutatott és a 	sz.ábrán látható, 

illetve a IV/II-2./ 	sz.ábráján látható paragráfokat, valamint 

3./ a G.GLIUSS—tól /j) :371/ származó, s a III/I.—ben bemutatott Ljapu- 

nov—féle operátorsémára jellemző strukturát: 

x 	Y 	}Y 

S lq 	
U 	

S2q  

2 

szintén speciális algoritmus mikrostrukturáknak tekinthetjük. 

II. A makrostrukturák.  /3;- :93-97/ 

1./ H.KELBERT /0;-: 30/ megállapitja, hogy szükségessé vált a legjobb 

didaktikai tradiciók és a modern természettudományos eredmények össze- 

kapcsolása. Ennek alapján kiindul a "strukturális—rész" bevezetőjében 

a tőle származó definicióból, s a tanuló automatát: 

U 
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A/S/ 	/ )PS/,X-  /S/,  7Q /S/ , /S/  • ~ /S// 

a tanitó automatát pedig:  

A/1/  _ /Z1/1/9X/1/4'1'9 g- /1/ . ;II  /i//  

halmazfiiggvényekkel jelöli.  

A tanulórendszert /tanuló, diák, ipari tanuló, tanfolyam hallgató, fő-

iskolai hallgató, stb./ három nem tires halmazzal:  

	

~L /s/ 	 	/s/  
r 	 ~ 

és két, ezen halmazon definiált függvénnyel:  

y/s/ ,  A  /s/  

határozzuk meg, ahol:  

ef-  /S/  a,/S/ .  z'S//  = a./S/  

%t. /S/ /  CiS/ , z/S//  = Y/S/  

amennyiben:  

ass,  
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/61. /3/  eleme a Zr /S/  halmaznak/  

g/s/  
	

17/s/ 
 

Y/s/ 	^~ /s/  

Az Sr  /S/  halmaz felfogható, mint az automata belső állapota elemei- 

nek /logikai; szakmai; tudás és képesség; senzoros készség; 	 

halmaza. Az17 /S/  halmaz mint az összes bemenő információk /átadott is-

meretek, foualmak, szabályok, törvények, audiovizuális ingererk, 	 

halmaza.  

A 22 /S/  halmaz, mint a tanuló automata összes kimenő információinak 
/válaszainak, tevékenységeinek, cselekedeteinek, kijelentéseinek, ..../ 

halmaza.  

A 	/S/  funkció, mint az automatát egy a,,/S//t, - 1/ állapotból egy  
S  a, /t/ állapotba történő átvitel átalakitási függvénye. 

funkció, mint a tanuló automata eredményfüggvénye, amely az  

halmazt a 	/S/  halmazba egyértelmüen leképzi.  

A tanitó-automata /programmozott oktatás, tanitógép, profirammal és tá-
rolóval,  / szintén három szeg ner: üres halmazzal és két ezen halma-

zon értelmezett függvénnyel 
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S71/1 a/1/ ;  x/i//  /1/  

illetve  

~ ~) / (1/1/ ; 
 x/1//  = Y/1/  

definiálható, halmazfüggvény: 

A/1/  _  /7S-  /yam ;  ‘q/i/;  6C/1/ ;  /i//  
Az oktató—automata állapothalmaza az előadandó oldalak halmazán 

S../n/  

keresztül, amelyek az "i" és "j"—re 

A természetes számok halmazai, tartalmilag /tananyag tartalma, fela-

datok, kérdések, megoldások, felelet—választós válaszok, utasitások, 

	/ meghatározott. Bemeneti információinak halmaza gyakorlatilag 

azonos az oldalak számának /n/ halmazával; mig a kimeneti információ-

inak halmaza vagy a programorozott tankönyv oldalain található utasitá-

sokkal, vagy pedig a tanitógép tanulói válaszokat felvevő billentyü ze-

tének kódszám halmazaival analóg. 

Amennyiben az A/S/  és A/1/  egyértelmüek, és ha: 

Yi /1/  X. /S/ 
 

érvényesül 
Y . /S/  

J 
=  x 	/1/ 

i  
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akkor a két rendszer egy rendszerbe kapcsolható.  

Az absztrakt automaták funkciós törvénye az alábbi két egyenlettel ki-

fejezhető:  

1./ 

2•/ 
a 	t 

,/t/=  

= 1, 

_ 
2, 3, 

; Y/t/ -  11, ~ /t- 1/. Z/t/ ~ ~  
~E. [&/t_1/;x/t/l  ; Y/t/ =A /t/; x/t/  _~  

4, 	 értékekre.  

lL 
~ 

Azt az automatát, amelyre az 1./ függvény-törvény érvényes, Mealy-auto-

matának /III/III. ..g.sz.ábra és 4.sz.mátrix/, azt pedig, amelyikre a  

' érv4nye , Moore-automatának /III/III.  1/17   sz.ábra és 3.sz.mátrix/  

nevezik.  

A tanuló-rendszer egyidejűleg egy Mealy- és Moore-automata. Ugyanis  

ugy az  1./, mint a 2./ funkciós-törvény alkalmazása csak a bemenő jelek  

után realizálható. Eszerint a tanuló-rendszer munkamódszere a bemenő je-

lektől függ.  

A tanuló-automata teljes munkafolyamatát algebrai uton is le lehet irni:  

Legyen adott az  

A/s/ _ /lf/sI,  )(E  /a/X/s/ ,    is 	 s// 

tanuló-automata. Képezzünk két szabad félcsoportot a bemenő jele k /S/  

és a kimenő jelek  
/s/  halmazaiból: 

F /X-  /S//  
illetve:  
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Ezek elemei jelentsék a bemeneti szavakat, illetve a kimeneti szavakat. 

Az3(—i /S/ , illetve 7:1? /S/  halmazok elemei ennek megfelelően legyenek 

a bemeneti, illetve a kimeneti hetük. Igy az F/ .k /S// és F / 	/S// 

félcsoportok elemei a tanuló—automata bemenő információinak és operáció-

inak, végső fokon a bemenő és kimenő jelek ABC—inek betüitől függenek. 

Konkrétan az F/) /S// félcsoport elemei a programorozott tankönyv azon 

oldalaival adekvát, amelyeket a tanulóval feldolgoztatunk; mig az F/ /S// 

félcsoport elemei képezik a tanuló által megválaszolásra kiválasztott ol-

dalak kimenő szavait. 

TWvábbiakban jelöljük az absztrakt automata "bemeneti szórendjének" transz-

formációit: 

Pl • p2 s p3 • 	  C F/ 	/S// = P 

majd a "kimenő szórend"—nél 

ql  • q2 , q3' 

 

C S//  

 

mint a "kérdések"  ós  "válaszok" rendszerét, 

Általában az automaták az előzményektől füg_;ően különböző válaszokat ad—

hatnak. 

A tanulóknál a válaszreakciók nem közvetlenül a külső befolyástól füg-

genek, tehát nem direkt reakciók, hanem az agy munkája által / J—funk- 
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ció, -funkció/ átformálódnak, s igy alá vannak rendelve a nagyagy- 

kéreg analizisének és szintézisének. 

Ezek szerint a belső feltételek: 

az agy ref lektórikus tevékenységének törvényszerüségei; 

a nagyagy-kéreg analitikus és szintetikus tevékenysége és ennek ter-

mékei; 

azon időbeni kapcsolatok rendszere, amelyekben ierögzithetők a már 

előzőleg fellelhető külső behatások viszonyai az organizmus reak-

cióihoz. 

A tanulási modell az absztrakt automaták elméletének nyelvén feltéte-

lezi az ingereknek - a belső feltételek és folyamatos átalakulásuk fi-

gyelembevétele mellett - válaszokká történő törvényszerü feldolgozását. 

A "feltételes reflex" nemcsak az "S következménye, hanem a 

szervezet belső feltételeinek megváltozásáé is. Ezen tény alapján le-

hetőség adódik arra, hogy az automaták "önszervezését" is meghatároz-

zuk: 

Ezt szolsálja a "tanulás-entrópia" néven ismert: 

Ha  /Lern/ = - 	/P/ log 
	
/P/ 

rendszer, amely a tanulási eredmények halmazát jelentő "P" és valószi-

nüségi megoszlás halmazát jelentő 3 /P/ által határozható meg. 

Ha bevezetjük a GLUSCHKOW-féle / -i3 : -/ "vizsgálati entrópia" fogalmát, 

akkor kapjuk a 
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Ha  /Prüf/ = - 	q/ log 5/p,  g/  

	 *  

entrópia képletet, ahol 
 

13/p, q/ a "p, q" pár tanulás utáni valószi- 

nüsége.  

KELBERT ezt a modellt tovább finomitja:  

A- /B, Z, I, X, Y, h, e k, 	/  

ahol a mindenkori automata állapothalmaza B az aktivitási állapotot, a  

Z halmaz az emlékezetben tároltakat, I halmaz az utasitásokat számláló  

állapotot jelentik.  

A "g''" és  "1,"  funkciókat az  

= beadagolási   

= operációs,  

CiN  = utasitási  

részfunkciók helyettesitik.  

A tanuló /tanitó/ automata részére bevezet egy megfelelő "parancs-rend-

szert" /S/:  

a cimzettek számát jelentő "k" természetes számot,  

a megállitó parancsot: "h"-t,  

ahol KALMÁR /(2_:147-176/ szerint  

b C ~ 
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A valódi pedagógiai kisérletekhez ez a modell nem kielégitő. Feltét-

lenül szükséges a tanuló automaták esetében a mindenkori átalakitási 

és megállapitási funkciókat, mint az egész halmaz részhalmazainak te-

kinteni és ennek megfelelően a 

fcr‚n1 ős D‘J 
részhalmazokat képezni. Ezek -az  analizis, szintézis, összehasoniitás, 

logikai végkövetkeztetés, generalizAció, partikuláció, osztályozás spe-

cifikus funkcióiként tekintendők.  

A tanulórendszer munkája a pro rammozott tankönyvvel/tanitó 1,éppel/ a  

következőképpen folyik:  

a./ A tanuló-rendszer létrehozza a kiindulási adatok  

meghatározott konfigurációját.  

b./ Ez megfelel a "t" időpontban egy  

d (,1  /S/ . ~1 /$/  

algoritmusnak.  

c./ A prograinnozott tankönyv /tanitógép/ ebben a pillanatban az  

/1/ /t/  a/1/ /t/E /1/  

állapotban van, és  
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d./  p /mij / 

valószinüséggel megy át a megfelelő  

MS Sij /n/ 	= P /mij/-g  

"átmeneti" /Lbergangs-/ mátrix szerint az  

e It + 1/  

állapotba.  

e./ Ennek az átmenetnek az eredménye előállitja a progranmiozott tan-

könyv /tanitógép/  

Y/5/  /t + 1/  

uj kimeneti állapotát.  

f./ Feltétlenül szükséges a tanuló-rendszer motivációs funkciójának a  

bevezetése is. Ez felvilágositást ad a tanuló-rendszer érdeklődésé-

ről, melyet a programorozott tankönyv adott "állapota" iránt tanunit:  

0 ha j 	0 és j N  

~~. /j/ /t/ 	=
g ha j = 0  

ahol "g" a tanuló-rendszer "t" időpontbeli motivációjának "meghatá-

rozott foka".  

A tanuló-rendszer magatartását a "T" időpontban és "N" tanulási lépés  

alatt akkor nevezhetjük célratörőnek és motivált tanulásnak, ha a "mo-

tivációs fokok" mérőszármainak az összege nem kisebb egy előre megadott  

" " ismertető számnál /Kennzahl/:  
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Tehát: 

/j1/  /t/ ; 	C  

KELBERT végül az eddigieket átfogó következő "funkció—alűoritmust" fogal-

mazza meg: 

A tanuló—rendszer kimeneti konfigurációin: 

keresztül, amelyek a 

/s/ 

halmaz elemei, egyrészt hat a környezetére, másrészt információkat vesz 

fel a környezetéből. 

Ha a külvilág 

állapotban van, ós ha az 

behatások következtében az 

állapotba  megy  át,, ugy az 

a- /01/ /t/ 
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~ q1//t/ ' 

	

, (cs//t/  E  

pár a WZN emlékezetbe tárolódik.  

Ha az  

/1/ 
~ ~S/ 	~ 

dio]./ 
 k  

esemény a  "Alit"  időintervallumban nem kevesebbszer, mint  

~ —szor  

ismétlődik, akkor az  

(9,  1/
/t/'  Yks//t/  

reakció végbemegy és a további  

q// 	~S//t/  

folyamat mindig sikeres.  

A külvilág  

~ q
1/ 

/t/  

illapota igy elfogadtatja a tanuló—rendszerrel az  

a 
 01//t/  

állapot tulajdonságait, ami azt jelenti, hogy annak a behatásnak és  

az állapotban egybeesése, amely az  

/1/ /t/—hez  
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vezetnek,  a  megjegyezhetőségét elősegiti.  

Ha azonban a tanuló—rendszer az emlékezeteinek megfelelően funkcionál  

és a környezet még sem megy át az  

c2,  O1/ /t/  

állapotba, azaz nem fog ezekkel a tulajdonságokkal rendelkezni, akkor az  

/1/
/t/  és 

Y,S//t/  

közötti kapcsolat, amely nem vezetett a kellő eredményhez, néhány igen  

sikertelen ismétlés után felejtésbe megy.  

Ezek alapján tekintsünk egy kvázi—stacionárius külvilágot. A tanuló-

rendszer "Z" emlékezetében egy a behatások alábbi meghatározott sora ke-

rül feldolgozásra.  

n  /1/ 	Y/S/ _ ~ /1/ 	 Y/S/ ~  /1/ Y/S~  
 

I. 	0  

ahol érvényes minden egyes  

:7 /1/ 	 YjS/,_ G2„1/ 
 

folyamatra a  

Prs3  = max Prs q  

ami azt jelenti, hogy valamennyi algoritmus—funkció sikeres mtiködése e-

setén, a külvilág leirását megközelitő mátrixok elemei csupa "o" és "1"  

elemeket tartalmaznak csak. /Vesd össze a III.részben a Mealy és Moore  
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automatákkal kapcsolatban mondottakkal; a külvilágnak ebben az esetben 

a lehetőségekhez képest determináltnak kell lennie./ A külvilág megkö- 

zelitésének foka a determináltság tekintetében a 't" időszakban a "77" 

számmal határozható meg, amely elengedhetetlen feltétel az 

kV1/; 	X ykS/ 

kapcsolat kidolgozásához. 

KELBERT most bemutatott eljárása az absztrakt automaták tanulási modell-

jének absztrakt tárgyalása, amely 	F : 't . TTTE, NArALKOV és KUSCHELJEW 

eredményeire támaszkodik. 

A didaktikai folyamatok strukturájának ez a tárgyalási módja egyenlőre 

nem sokat nyujt a gyakorlatnak. Amint kitünik, igen komoly szárvitások. 

/lehetőleg computerekkel/ eredményei adhatnak csak gyakorlati értékeket, 

pl: a "g"—nek /motivációs fok mérőszáma/, hagy az ugyancsak idetartozó 

"C"—nek, vagy az ismétlődések mértékét mutató "l '%"—nak. 

A "halmaz—elméleti" tárgyalás valóban lehetővé teszi az egész struktura 

matematikai átfogását, annak ellenére, hogy /egyenlőre/ csak szinguláris 

eredményeket realizálhat. 

2./ H.FRARK /.3.5r:.,-/ hasonló kisérletei is mutatják e téma egyre növek-

vő fontosságát. Éppen ezért szükségesnek tartom egyrészt a több oldalról 

való megközelités céljából, másrészt az elmélyültebb tanulmányozás felté-

teleinek a biztositása érdekében FRANK módszerének az ismertetését. 

Szerinte a tanitás algoritmusa akkor definiált, ha: 
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a./ A tanitási lépéseket S i  egy nem szükségszerüen rendezett  D  hal-
mazból választjuk ki, amelyek közül egy feltétlenül, mint kezdő 

lépés tüntethető ki, 

b./ létezik a 	x C halmaznak egy olyan 	al-halmaza /Unter- 

menge/, melynek rendezett 

Si Si  = Pij  

elempárjairól /"potenciális átmenetet" jelentő "nyilak". Lásd: III/ 

III. THIELE-féle operátor sémát/ tudjuk, hogy  

Si ~  ` 	és  Si  E  

c./ léteznek a lehetséges tanulói reakciók /'f halmazának r i  elemei, 

d./ adott az F/Y/ halmaznak,/'/ halmazba való "(f " egyértelmű  

leképzése. 

Itt az 

a./ meghatározza a tanulóknak nyujtható összes tanitási lépéseket, 

b./ megadja ezeknek a lépéseknek a sorrendjét, 

c./ megadja a tanulóknak azokat a viselkedési módjait, amelyeknek meg-

különböztetését a tanitási algoritmustól feltétlenül meg kell köve-

telnünk, 

d./ megmutatja az előbbinek azt a sorrendjét, amelyek által a tanulók 

magatartása determinálható. 

3./ W.M.GLUSCHKOW / 413:  23/ szerint ezek a definiciók akkor teljesitik  

egy " " tanitási algoritmus makrostrukturájával szemben támasztott 

követelményeket: 

a./ hogyha minden r € F/)q / bemenet egyenlő hosszu a W 1/r/  uttal 

és  
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b./ hogyha P6F,I, / és q€ F/ /, valaniV  

a két reakció-sor összeillesztését, akkor 

' jel.;li 

= '17 
/p/. 
	

pq  

ugyanis a (ip /q/ 	 egy  folytonos folyamat, ahol a t/q/  

ut a pq E F/5 / bemeneti jellel egyértelműen meghatározott. 

Az /1/ feltétel szerint a tanulási rendszer az egyes tanitási lépéseket 

követő tanulói reakciókat minden esetben bevárja. A /b/ feltétel pedig  

azt mondja, hogy a tanitási rendszer a tanitási lépések folyamatát ki-

zárólag az addigi tanulói viselkedéstől függően állitja össze. 

A bemeneti jelek F/]{/ halmazának "r" elemei, a " Cf " leképzési funk-

ció segitségével, / 1 	/ egyenértékü osztályra lesznek felbontva, ha 

/ a különböző tanitási lépések számát jelzi. 

P1  tehát ekvivalens P2-vel, ha w /P1/ és lf /P2/ ugyanazzal az Si  tanu-

lási lépéssel végződnek. 	l 
 

A továbbiakban FRANK bemutatja, hogy mikor nevezhetünk egy tanitási al-

goritmust egy Markov-féle tanitási algoritmusnak.  

/b/ alapján ennek az a feltétele, hogy a Cf /qj folyamat állandó "q"  

mellett minden egyenértékü "P" bemeneti jel esetében ugyanaz legyen.  

Egy Markov-féle tanitási algoritmusban tehát a következő tanitási lépés  

csak a közvetlenül őt megelőzőtől és az erre adott tanulói reakciótól  

függ. Eszerint a Markov-féle tanitási algoritmusoknál a tanítási algorit- 

musok 	

(„/~  makrostrukturája  
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J x v' halmaznak ]" halmazba történő leképzésére e gyezerüsitődik. 

Igen könnyü felismerni a "készség" pszicholójiai definiciója és a most 

bemutatott algoritmus közötti komparációt. Az előbbi ugyanis igy  hang-

zik: "A készségben az egymásután következő szakaszok közvetlenül meg-

határozzák egymást, s igy az egyes részcselekvések pszichikus /főként 

akarati/ vezérlése a minimumra csökken, vagy akkor teljesen kiiktatódik 

AO' :118/. Ezt Mint megtanulandó algoritmust tekinthetjük. Igy a "készr  

ség" egy Markov-féle megtanulandó al oritnusnak tekinthető.  

Befejezésül röviden utalnéf( arra, hogy FRANK is KELBERT-hez hasonlóan,  

a különböző automaták közötti kapcsolatot halmaz-funkciós formában is  

kifejezi, igy például a Mealy és Moore automaták kapcsolatát a  

r 	 ~ 
/ '/ / 	

~S 
- /" ~ /r100RE / ~ / ~  MEALY / • /  / + 1  

ahol /(3'-/  a léAsek halmaza,  az automata állapot halmaza,) 

a bemenőjelek halmaza. /Vesd össze a III/IV. 3., és 4.sz.mátrixait./ 

Az automaták funkciós-törvényeit is felirja:  

a/t/ = 	E./t - 1/; r /t/ 

ás  

Y/t/ _ 	L',' 	r/tj 
 

amelyek komparábilisak a KELBERT-féle 1./ funkciós törvénnyel. 

x x x  

A most bemutatott három makrostruktura /KELBERT-FRANK-GLUSCHKOW/ közös 

vonása, hogy mind a hárman a " )" lékérzési funkciót határozzák meg, 
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sajátos halmazelméleti szimbolumok segitségével. Összehasonlitásukra szol ál-

jon az alábbi táblázat: 

KELBERT FRANK GLUSCHKOW  

algoritmus átalakitási strukturái  

Tanuló-rendszer kime - /S/ /S/ Y. /t/C  
J 

ql/t/ 

/S/  Y k 	/t/ 

a./  S. 	3- i 

SiC(  

S.  = 
L  .., 

S i3.=P.. 

r E  F/- Z/  
A./  

W  rT 
Cf 

/r/ 

neti konfigurációi: 

A külvilág állapota, 
amely behatások követ-
keztében átmegy egy 
másik állapotba és igy 
ezek az emlékezetbe tá- 
rolódnak. 	~) /1//t/  (Á 0  

CZ  Z 

Ha az átalakulási ese- 	/1/ Y/S/  - 
cr  /pV- f/P/1 P  

d. /  piény 	 a  q 	' k~ 	0 	CC  

Egy adott idő alatt 	L t 

B./ 

Pg  E  .F/ 	/ 

legalább egy megadott 
"érték"-szer ismétlő- 1. ' iik, akkor az előbbi 
emlékezetbe tárolt 	/1/t/, Y/S/t/ ismeret, mint réakció 	~q 	k r / i~ 

és 	át- végbemegy 	az 
alakulási folyamat 	9 qlt/ >Yk3/t/ sikeres  d./ 	

f 
 (f p/q/E I 

Amint a táblázatból leolvasható, KELBERT algoritmus-strukturája a legrész-

letesebb, GLUSCHKOJ-é a legtömörebb. Egyben az is kitünik, hogy az eddigi 

strukturá_k "tengelye" a " " átalakitási-funkció /leképzés/, amit a táb-

lázatban külön keretben jelöltünk. 

X  x  

A "makrostrukturák" másik tárgyalásra kerülő csoportjában a tanitási algo-

ritmusok készités.:nek, ill. értékelésének strukturális problémáira sze- 
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retnénk rámutatni.  

4./ H.FRANK /35': 6/ makro-strukturális elemekből felépitett átalaki- 

tási algoritmusba:  

; cp 
az alábbi  öt  didaktikai változót épitette be: 

P, S, Z/  

Ezek sorjában:  

L = a tananyag, mely rendundancia-szegény "Basaltext" formába irható, 

M 	= a közeg /szövegkönyv-forma...oktatógéptipus...esetleg számológép- 

pel, mint szimulátorral/, 

P = pszicho-struktura /pl. egy információs-pszichológiai modell/RIE-

DEL  után/ az életkortól függő paraméterekkel, 

S 	= szociál-struktura /az oktatási rendszerben nem ellenőrizhető kör- 

nyezet zavaró hatása/, 

Z 	= tanitási cél, az a /metanyelven/ megformulázott követelmény, ahol 

Z G 	L és amelyből levezethető, hogy a cimzett preciz értelem- 

ben milyen valószinüséggel sajátitja el az  anyagot.  

Az első lépés, amely az algoritmikus oktatás-algoritmizáció nehézségei-

nek részben leküzdéséhez vezet, az ugynevezett "építőkő-módszer", mint 

félalgoritmikus módszer. Problémamentesnek tekinthető a reakció-reper-

toire: 

~ =W,/P~,/ 
közlése.  
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A tanitás lépéseinek száma: 

~ =/7/L, P, Z, ,  

algoritmikusan kiválaszthatók az oktatási tömeg / r-,L/ és az "összekö-

tők" /(T/ kartézi szorzatából /kérdés; utasitás; itélet/. A Markov- 

rendszerű, vagy nem Markov-rendszerű makro-struktura: 

CF = 	/^(l ~ ~I- ,)? s  L, P , Z/  

hasonlóképpen algoritmikusan meghatározható. 

A mikrostruktura a 	-ból és 	-bál az algoritmuskészitő által ala- 

kitandó ki, ebben az esetben is algoritmikus uton analizálható. Ugyan-

akkor S-nek biztositania kell 7,, zavarmentes alkalmazását. 

A teljes algoritmizáció egyenlőre csak korlátok között alkalmazható prak-

tikusan, ugyanis itt az algoritmikus előállítás a 
	

és L tényezőknek, 

legalább is a matematikai nyelv-elmélet körébe tartozó problémákat vet 

fel, amelyek jelenleg még az automatizált nyelvi forditás és az automa-

tizált dokumentáció-képzés tartományába tartoznak. E helyen az áttörés 

a kibernetikus pedagógia algoritmusai és az organizációs kibernetika kom-

binációján alapul. 

5./ H. STACHOWIAK /123: 51/ probléma felvetésének alapja H.FRANK  /3J: 
/ egyik megjegyzése. Kiindulási pontja a P.HEINANN-tól származó következő 

didaktikai dimenziók megkülönböztetése: 

1./ Pszicho-logik /a tanuló pszicho-strukturája/ = "P"  

2./ Szocio_logik / az oktatási helyzet szociál-strukturája/ = "S"  
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3./ Medien-logik /oktatási eszközök adottsága/ = 'Tr  

4./ Anyab logik /tananyag/ _ "L" 

5./ Teleo-logik /tanulási cél = "Z" 

6./ Metodo-logik /tanitási módszer = " ," 

amelyek H.FRANK alapján felirt alakban egy általános parametrikus didak-

tikai algoritmus függvényt adnak meg: 

= 2)- Psrí L/ls/ 

A probléma a tanitási cél változója. A "Z" az oktatás célja minden didak-

tikára generalizálva, abban áll, hogy a tanulási rendszert minden időben 

idáig fejlesztjük, hogy kvalifikálható válaszokat kapjunk a meghatáro-

zott kérdésekre és egyben ezen válaszok minőségeinek a mértékét is kivá_ 

natos megtalálni. Emellett probléma a mindenkori válaszoknak a hozzájuk 

tartozó lehető legjobb válaszoktól való eltérésének korlátozása, ami az 

optimális válasz deduktiv specializálódásában vagy az induktiv generali_ 

zálódásában áll. 

A legegyszerűbb CARNAP-tipusu Ln logikai nyelvre vonatkozó probléma-

feldolgozás felhasználja a BAR-HILLEL es CARNAP által kifejlesztett sze-

mantikus in"orráció elméletét. Ez az elmélet a CARNAP-féle induktiv-logika 

fogalomképzésén nyugszik, melyet az alapvető nyelvi rendszer bevezető vi-

tája után legelőször egy definició-lánc részére állitottak össze. A leg-

szükségesebb deduktiv és speciális induktiv logikai alapfogalmak megha-

tározása után bevezették az induktiv-logikai függvényeket. Ezek azok a 

szabályos mértékfüggvények - m/./ - amelyek az ugynevezett Ln állapot-

leirás halmazán belüli valószinüségi mértékekként értelmezhetők és a sza-

bályos igazoló-függvények - c/.../, - amelyek a hipotézis-igazolás induk- 



ciós logikai összefüggéseit szolgálják. Erre igen egyszerű példa az 

L2 nyelvi rendszer, amelyet az eddig kifejlesztett általános fogalmak 

jelentősen és számtalan esetben numerikusan is meghatároznak. 

Az ugynevezett "igazoló-gépekről" szólva, amelyek bizonyos automatizá-

lási lehetőségeket mutatnak fel, az induktiv-logika keretein belül, 

majd továbbá a szemantikus információ-elmélet alapfogalmait is definiál- 

j ák • 

Ezzel az előmunkálatokat teljesitve, következnek a tanítás minőségének 

mértékére vonatkozó definiciók, ami alatt az adott tanulási rendszeren 

belüli "j" felelet-mondatok minőségét, a hozzájuk tartoző elérhető leg-

jobb "i ot" felelet-mondatokra vonatkoztatva értjük, majd mindkét monda-

tot az Ln  -re vonatkoztatjul. Ez a mérték: 

qual/j, iopt/ 

visszavezethető egy eltérési mértékre: 

elt/j, iopt/ 

és ez pedig; ismét visszavezethető a BAR-HILLEL-CARNAP féle információs 

mértékre: 

inf/iopt/ visszanyitva inf/j/-hez 

Ismételten az L2 pé lda szolgál az általános összefüggések szemléletes 
bemutatására. 

Az általános qual/ , / függvény tekintettel az esetek különbözőségére, 
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alkalmat ad ennek a függvénynek néhány problematikus, a szokásos ter—

mészetes esetekben mért intuitiv tanulási eredmény ellenőrzéstól való 

pedagógiai eltérések megvitatására is. Igy az Ln  mondat—rendszer "in-
duktiv bővitése" két eddig kivüleső fogalommal gyarapodott. 

Végül is a fenti "oktatási algoritmus—függvényt" mindenekelőtt meghatá- 

rozott: 

)1.=h
PSML 

/qual/ , //  

alakra hozzák. A továbbiakban egyrészt a függvényelőirás meghatározásá-

nak a problémáját: 

+ PSML/  ~ /  

másrészt a "kérdések elméletét" /itt azokra a kérdésekre gondolnak, a-

melyeket a tanulási rendszeren belül a "j" feleletek adnak fel/ kiván-

ják megvilágitani. Befejezésül annak a reményének ad STACHOWIAK kifeje-

zést, hogy egy adekvát probléma—feldol-ozás révén egy, az Ln modellnél 

is jóval tökéletesebb modellt fosnak találni. 

6./ G.NE TWIG /403 : 53/ speciális szakmai követelmények aspektusából  

közeliti meg az algoritmus—készités strukturális problémáit. A mérnök-

képzés tantárgyai programorozásánál ugyanis, szemben a másjellegü iskolai  

anyagokkal, sajátos szempontokat kell figyelembevenni, ami többek között  

a tananyag specialitásaiból /pl. tartalom, terjedelem, komplikáltság/, a  

mérnökképzés különleges képzési és nevelési céljából, és végül a hall-

gatók szellemi fejlettségi szintjéből adódik.  

Ebből adódik az oktatóprogrammok algoritmusai kialakitásának az a köve- 

telménye, hogy azok ne csak ismereteket közöljenek, hanem ezzel párhuza- 
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mosan a mérnöki képességeket, készségeket és magatartást is kifejlesz-

szék. Ennek a magas minőségi követelménynek a realizálása az oktató-

programmokban akkor lehetséges, ha a programra kialakitása és kifejlesz-

tése a pedagógiai kibernetika alapjain, valamint a célszerűen kiválasz-

tott tanulási elmélet alkalmazásán felépülő algoritmuson nyugszik. 

A mérnöki gondolkodási mód strukturájából kiindulva kell a tananyag struk-

turáját /SS/ a strukturképek formájában grafikusan ábrázolni. A  tananyag  

strukturájából kell a programm didaktikai strukturáját /DS/ levezetni. 

A tananyag felkészitése az egyes "fra - es"-ekre a különböző oktatási mód-

szerektől /metodikai struktura: /M // függő tananyag és tanulási cél al-

kalmazása után következik. 

7./ A legrészletesebben tárgyalja a didaktikai algoritmus /oktatási prog-

ramm/ kidolgozásának szakaszait L.N.LANDA, aki az erre vonatkozó nézete-

it - kritikai elemzés alapján - nyolc pontban dolgozta fel és rendszerez-

te /f38:39-76/: 

a./ Az oktatás tartalmának és céljának a meghatározása: Az oktatás cél-

jának meghatározása azt jelenti, hogy a végállapot vektora gyanánt 

mutatjuk be  azt  a cél, enélkül nem szerkeszthető oktatási programm. 

Az oktatás céljának ilyen mérvü konkretizálása akkor jön létre, ha 

olyan kérdésekre, mint: 

1./ milyen módszerekkel ismerhetjük fel, diagnosztizálhatjuk, hogy 

kialakultak-e a tanulókban bizonyos pszichikai folyamatok, 

2./ a folyamat milyen fokát nevezhetjük "kialakult"-nak - 

feleletet tudunk adni. 

b./ Meghatározzuk a pszichikai folyamatok felismerésének vagy  diagnosz-

tizálásának módfait: Azt, hogy valamilyen folyamat a tanuíiónál kia-

lakult-e, általában csak viselkedési aktusok együttese, rendszere 
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alapján állapithatjuk meg. Miután megkerestük azt a rendszert, ki- 

alakitjuk azt a feladat-rendszert,:: mely mindezen viselkedési aktu-

sok végrehajtását kivánja, s lehetővé teszi a bennünket érdeklő pszi-

chikai folyamatok helyes és egyértelmü megitélését. Ezt a feladat-

rendszert kell beépitenünk az oktatási programmba. P1. a már előb-

biekben is idézett idegen szavak elsajátitásánál hogyan mérhetjük 

azokat  a  jártasságokat, amelyek a biztos tudást jelentik: 

1./ A tanulóknak oroszul számneveket mondunk, mire ők megjelölik a 

hallott számneveknek megfelelő halmazt, vagy számot, s utána 

az anyanyelvén megnevezi az adekvát számot. 

2./ Most oroszul leirt számneveket mutatunk a tanulónak, mire ő 

megjelöli az illető számneveknek megfelelő halmazt, vagy szá-

mot, majd az anyanyelvén megnevezi az adekvát számot. 

3./ A tanulónak bemutatunk egy számot, ill. halmazt, s ezt kell oro-

szul kimondania. 

4./ A 3./ eset csak azzal a változtatással, hogy a számot oroszul 

kell leirnia a tanulónak. 

Ezzel az egyszerü példával próbáltuk illusztrálni, hogyan találhat-

juk meg azokat a viselkedési aktusokat, amelyekben a bennünket érdek-

lő pszichikai folyamatok és sajátságok megnyilatkoznak. 

c./ Meghatározzuk a vés,állapot változóinak számértékét. Az előbbi pél- 

dára hivatkozva könnyen megadhatjuk a "számnevek tudását" jelentő 

jártasságok kialakultságának a fokát. Pl.  a tanuló elsajátitotta 

egy-től tiz-ig az orosz számneveket, ha a számnév hangalakjának vagy 

grafikus képének észlelésére válaszul az esetek 100 -ában helyesen 

jelöli meg a számot, a szám észlelésére válaszul az esetek 100 0-á-

ban helyesen mondja ki a számnevet. Itt azonban figyelembe kell ven-

nünk a reakció-időt is, ahol a számértékek egy optimális idő-inter-

vallum értékei. Pl.:  az orosz számnév kimondásának 1-1,5 sec., fel- 
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ismerésének 0,7-0,9 sec., leirásának 2-4 sec. az  intervalluma. 

d./ A kiindulási állapot változóira jellemző számértékek meghatározása.  

A c./-hez hasonló módon történik az ott ismertetett orosz szó ki-

mondásának, leirásának, felismerésének kezdeti értékeinek és reak-

ció-idejének a meghatározása. Részletes indokolás nélkül utalni 

szeretnénk arra, hogy a c./ és d./ esetben az alábbi - jövőben meg-

oldandó - problémák foglalkoztatják a kutatókat: 

1./ a lehetséges valamennyi algoritmus közül a  legmegfelelőbb  ki-

választása, 

a változó »számértékekhez" és aáatokhoz alkalmazkodó adaptiv ok-

tatógépek - melyek a már emlitett adaptiv algoritmusok szerint 

műk3dnéne! - negépitésére /véleményünk szerint az elektronikus 

berendezések lesznek erre megfelelőek/. 

e./ A kiindulási állapotból a végállapotba való átmenet sorrendjének a  

meghatározása.  A programmozott oktatás szakirodalmában rendszerint 

a tananyag adagokra tagolását és szigoru logikai sorrendben való tár-

gyalását jelölik meg e helyen főfeladatként. Itt a főkérdés a "szigo-

ra logikai sorrend" tisztázása. Itt azonban ismét ujabb problémák ve-

tődnek fel: 

1./ bizonyos tudományokra, vagy részeik közötti relációra a "logika" 

fogalma még nincs eléggé tisztázva, 

2./ ugyanannak a tudománynak többféle egyaránt helyes "logikája" le-

het /euklideszi és nem euklideszi geometriák/, 

3./ az oktatási logikája /rendszere/ sokszor nem felel meg - és nem 

is kell, hogy megfeleljen - a tudomány logikájának /rendszeré- 

nek/. Pl. a megtanitandó algoritmus oktatásának a viszonya. 

4./ az elsajátitás pszichológiájának és logikájának a kapcsolata. 

f./ Meghatározzuk a tanuló tevékenységének azon formáit, amelyek a tanu-

ló egyik állapotból a másik állapotba való eljutását biztositják. E 
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célból a programmkészitőnek a következő feladatokat kell megoldania: 

1./ a pszichikai folyamatok végrehajtásához szükséges tanulói cse-

lekvési módok és formák meghatározása, 

2./ ezeket a tevékenységeket elemi operációk komponenseire kell fel-

bontani, 

3./ az előbbi operációk célszervi sorrendjének kimunkálása, 

4./ meghatározni azokat a feladatokat, amelyek a szükséges operáció-

kat, tevékenységeket végrehajtják, 

g./ A szükséges tevékenységi formák végrehajt!sát biztositó feladatok meg-

határozása. Itt ismét négy feladatot kell a programorozásnak megoldania: 

1./ meg kell találni azokat a ráhatási formákat /feladat—tipusokat/, 

amelyek &p a szükséges tevékenységet, pszichikai folyamatokat 

váltják ki a  tanulóból, 

2./ ismernie kell minden ráhatási formát, minden pedagógiai lehetősé-

get, vagyis azokat a pszichológiai következményeket, amelyekkel 

az oktatási ráhatások minden e, ,yes fajtája járhat. Ezek a "kö- 

vetkezmények" az oktatási ráhatások didaktikai sajátosságai. 

3./ össze kell vetni mindegyik ráhatási forma didaktikai sajátossá-

gait  egymással és a ráhatások által kiváltandó eredménnyel, és 

ennek alapján ki kell választania közülük azt, amely a szükséges 

pszichikai következményekre vezet, 

4./ ha a meglévő és ismert oktatási ráhatások egyike sem rendelke- 

zik a szükséges didaktikai sajátosságokkal, nem váltja ki a 

szükséges tevékenységet és folyamatokat, akkor a programm szer- 

kesztőjének uj ráhatásokat kell keresnie. 

h./ Meghatározzuk a tanuló cselekedeteire, eredményeire és hibáira való  

reagálás módozatait. Ez a következőképpen történhet: 

1./ tanitási egységek közlése feladat elé állitás után, vagy az el-

sajátitás módozataira történő utalás segitségével, 
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2./ a tanulók feleleteinek analizise utján,  

3./ a feleleteket követő reakció utján.  

A behaviorista álláspont általában megelégedett az u.n. "bemeneti" és  

"kimeneti"  ráhatásokkal, ill. eredményekkel. Véleményük szerint csak a  

cselekvés eredménye az érdekes, ami közben lezajlik és ami a tudatban  

rögződik, szerintük lényegtelen. A.A.SZMIRNOV az inger-reakció folyamat  

közötti részre vonatkozó behaviorista "ürt" "fekete doboz"-nak nevezte.  

Az adaptiv algoritmusok feladata ennek a "közbülső tag"-nak irányitásá-

ra alkalmas programmok realizálása. A "nyolc pont" vázlatos ismertetése  

csak utalás arra a komoly, megalapozott munkárli a::lely ugy az algori=-  

us készitőire, mint a programmozókra jellemző.  

X  x  

A bemutatott négy algoritmus-készitési eljárás strukturális problémái-

nak "gerincét" a didaktikai változók /dimenziók/ szerepe képezte. Az a-

lábbi táblázat célja a négy különböző megoldás egybevetése és értékelé- 

se.  

LANDA ~'jQ f.5 fi~ ~  
l  

r'i~Af~~K~l9~./7~ STACI30~íIAK6$~~~ idE~ITt+TIa ~Í>Q l~t 
algoritmus /készitési/ strukturálat 

1'  1.  

Az oktatás tar- 
talmának és  cél- 
j  ának  meghatá- 
rozása  

L S  S 

2'  

A pszichikai fo- 
lyamatok felis- 
merése és diag- 
nosztizálása. 

P 
P - 

3'  3.  
A végállapot vál-
tozói számérté- 
keinek a meghatá-
rozása.  

Z 
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4 . 
A kiindulási álla-
pot változóira jel- 
lemzo számértékek 
meghatározása. 

- - - 

s. 
A kiindulási álla-
potból a végálla-
potba való átmenet 
sorrendjének meg-
határozása. 

r 

DS  

6 ' 

A tanuló azon te-
vékenységi formái-
nak  a  meghatározá-
sa, amelyek a ta-
nulók egyik álla- 
potból a másik ál-
lapotba való elju- 
tását biztositják. 

r 
r1S 

7. 

A szükséges tevé-
kenységi formák 
végrehajtását biz- 
tositó feladatok 
meghatározása. 

M M - 

B. 

A tanuló eredmé-
nyeire és hibáira 
való reagálás mó- 
dozatainak a meg-
határozása. 

- - - 

9. - S S - 

1./ Azonnal kitünik, hogy a négy struktura közös elemeket is tartalmaz 

az 

1./ = L = L = SS 

ill. az  

S./ = 	= 	= DS  

és 

6./ =  A. 	= mg  
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sorokban. Ezek egyuttal a strukturák "tengelyeinek" tekinthető leg 

fontosabb elemek. 

2./ LANDA módszere alapossága és használhatósága szembetünő a másik 

három eljáráshoz viszonyitva. 

3./ A 9./ soron látható "S"—ek a kapitalista társadalmi viszonyok kö-

zött élő tanulók szociális körülményeinek erős differenciáltságára u-

talnak. 

X  x x  

8./ A didaktikai szekvenciák jelenség— és teljesitmény—strukturáit ~ . 

BJERSTEDT /9 :99-108/ dolgozta fel két részben; Elsőnek a jelenség-

struktura—analizishez szükséges segédeszközöket irja le és taglalja: 

a./ kérdések jegyzéke, 

b./ a végcél és az egyes didaktikai egységek közötti viszonyt bemutató 

diagrammok, 

c./ különböző jegyzőkönyv—felvételi módszerek. Egy jegyzőkönyv lehet 

pl. egy terv is, ami megkönnyiti ugy a teljes, mint a rendszeres 

analizis keresztülvitelét. Itt egy olyan jegyzőkönyvről van szó, 

ahol minden didaktikai egységet a céltól függő itéletrések kitöl-

tésével vizsgálunk. Három főtipust különböztethetünk meg:  

1./ a fő tartalmi jegyzőkönyv, 

2./ metodalógiai jegyzőkönyv, 

3./ a kettő együttes alkalmazása. 

ásodszor a teljesitmény—analizis lehetőségeit és módszereit mutatja. 

te. Eddig ezek igen korlátozott mértékben hatottak csak a programmok 

fejlődésére, általában csak a hibák számát vették tekintetbe és igen 

kevés sulyt helyeztek a hibák tartalmi elemzésére. Nagy sulyt helyez-

tek magára a téves viselkedésre és figyelmen  kivül hagyták a hatásnél- 

küli hibátlan elemek elemzését. Nagy sulyt helyeztek az elágazó lehe- 
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tőségek létezésére és keveset az elágazásból eredő nevelési eredmények 

értékelésére. Az analizis segédeszközei: 

1./ Áttekinthető táblázat, felbontva hibákra és kétségekre, 

2./ A különböző elágazások és a feleletek helyességének diagrammja, 

egyéni didaktogramm és csoport—didaktogramm. 

3./ A tanuló programmon belüli és kivüli viselkedése közötti viszony 

analízisét szolgáló módszerek: 

a./ az információk sürüsége, 

b./ az információk sebessége, 

c./ a választási pontok közötti kapcsolat, ahol a teljesitményso-

rozatok felosztását a szürőegységeknél vizsgáljuk. 

Véleménye szerint az ilyen rendszeres és átfogó értékelő módszerek to-

vábbi kiszélesitése nemcsak a hatékonyabb prograxnmok előállitását segi-

ti, hanem felhalmozza mindazokat az alapvető ismereteket, amelyek a 

programmozott oktatás tudományának kidolgozását is megkönnyitik. 

III. Az előző fejezetben megismerkedtünk a didaktikai folyamatok struk-

turális megközelitésének különböző matematikai és nem matematikai jelle— 

gü leirásával. Az alapdefinició érvényét sikerült fenntartani azáltal, 

hogy a szabatosan leirható tanulási és tanitási rendszerekhez kapcsol-

tuk H.KELBERT és H.FRANK matematikai modelljeit. A makrostrukturák al-

goritmusai igy reális eljárásoknak tekinthetők. Ezzel  szemben  egyre több 

akadályba ütköznek a tanulás belső strukturáinak a "hagyományos kijelen-

tés—logika" segitségével történő modellezésénél. Erre utal H.ZEMANEK 

/143:9-20/, amikor a tanulási strukturák leirására legalkalmasabbnak 

az u.n. "szekvencionális—logikát" és a hozzárendelhető aritmetikai ele-

meket tartja. /FUr die Beschreibung von Lernstrukturen eignet sich die 
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sequentionelle lo ische Algebra, die zusammen mit airthmetischen Ele-

menten auch eine gewisse ökonomie der Darstellung verspricht./ Szerinte 

néhány tanulási struktura ebben a kifejlesztett formalizmusban kifejez-

hető, s ez azt jelenti, hogy ez az előállítási mód továbbfejleszthető egy 

algoritmikus-nyelv irányába. /Einige Lernstrukturen werden in dem ent-

wickelten Formalismus ausgedrückt und es wird angedeutet, wie sich die-

se Darstellungsweise in Richtung auf eine algorithmische Sprache weiter-

entwickelt./ 

ZEMANEK a továbbiakban rámutat arra, hogy egyre inkább bizonyossá válik, 

hogy a Boole-féle szimbolikus logikai rendszer a tanulás logikai rend-

szerétől igen messze van. A tanutológiák és "szolgai"  triviális telje-

sitmények leirására alkalmas Boole-algebra felett az idő tovahaladt, s 

az uj dimenzióknak megfe&elően kialakult a kombinatórikus logikából a 

szekvencionális logikai algebra, 

s ezzel megszűnt a logika "örök" igazság-igénye  is. Ez a logika már al-

kalmas az önszabályozó rendszerek AEI  és automaták tanulási folyama-

tának /me gcözelitésére/ leirására. 

Példaként hozható fel A.M.UTTLEY /135-: 1-24/ szimbolikus logikai impli-

kációval leirt tétele: 

/1 X2 	X1 	 x2  A x 1  

UTTLEY a tanulási eljárásra ennek forditottját alkalmazza, amit induk-

tiv implikációnak nevez: 
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Ennek a tételnek az az érdekessége, hogy pontosan akkor lesz hamis /0/, 

amikor a tanulásra jellemző X o  = 0 értéket felveszi. 

A tanulási eljárásnál ugyanis döntő jelentőséggel birnak az előzmények, 

nevezetesen, ha egy időpontb an  az 

X2 	X1  

fellép és ezen kivül ettől függően az X3  a 

P 
 /X

3 I  X2 ~~  1  X 1/  

/annak a relativ gyakoriságnak a valószinüsége, hogy az X 3  bekövetkezik  

azon feltétel mellett, hogy az X2 /\  X1  bekövetkezett, nagyobb, rint  

szigora/. Egyuttal ennek alapján feltehető, hogy ez pillanatnyilag vala-

mi ok folytán hiányzik, s igy a szóbanforgó összefüggés irreveláns, s  

ettől kezdve zavaró körülménynek tekinthető.  

UTTLEY egyébként nem magát a valószinüséget, hanem egy olyan  

I = —  1 d p  
/kettesalapu logaritmus = 1 d/  

információs mértéket alkalmaz, amely önmagában is indokolja az eredeti-

ségét és nyilvánvalóan éppen olyan jó, mintha logikai—matematikai indok  

lenne. Ennek alapján az előbbi valószinüségi érték "információs formája":  

I /X3 /  , 
 x2 

 f  ,  X1/  —  I/X2  ' `  X1/  \. 	IO  

Eszerint az indukció csak akkor megengedett, ha az X3  bekövetkezésének  
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rrneglepetésszerüsége" az "X 2 l 1 X 1" után elégé kicsiny.  

Az indukciónak ez a formája éppenséggel logikailag szigoru, ámnár egy  

tetszés szerinti " 67 "  vagy "Io" konstanssal definiált, s igy a szek-

vencionális logikai algebra strukturiájának bizonyul. 

Az alábbiakban ennek a logikai diszciplinának mutatjuk be példaként 

néhány fontosabb elemét:  

a./ A differenciáló tan: 

E gy  előzmény adagolását és végét dinamikus formában ábrázolhatjuk, 

ha az első"egyessel" az "egyesek" egész szorzatát, az első "nullá-

val" pedig a "nullák" egész szorzatát reprezentáljuk. Ennek bemu-

tatására szolgáljon az alábbi egyszerű "logikai kapcsolás" és a 

hozzátartozó értéktáblázat: 

to 
 

X  

.t 2,. sz.  ábra  

X  

D1  

De  

0 0 0 0 i L 

o  0 	0 	0 ~ 1 

o  0 	0 	0!0  

1 1 1 j 0  

0 

0 

0 

0 

f- 0 	~ o 

0 i 1  

O lilO!1111 1 0000 00 i 	1 	; 	i  
o ~ 1 ~ o l  l o 0 0 l o 0 0 0 0 0 

010'10000 1000 00  
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b./ A "Flip—Flop" szisztéma /egy bemenettel/. 

Az egyik leggyakrabban alkalmazott "logikai kapcsolás", amelynek 

igen sok változata ismert, az automaták elméletében. A legegysze-

rűbb változata az, amelyiknek csak egy bemenete van. Logikai funk-

ciója abban áll, hogy minden "egyes" váltakozva hol üzembe helyez 

egy folyamatot, hol pedig kioldja /s igy egy antivalens—funkcióval 

az egyszerű késleltetést modellezi/: 

.11.x. s z. ábra. 

Értéktáblázata: 

0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 1 1 0 0 C 0 1 1 0 0 0 1 0 1 0 1 0 

b'./ Flip—lop két bemenetellel.  

Ennél a logikai rendszernél már két bemenet van, egyik a bekapcso-

lást, a másik a kioldást szolgálja. Logikai analizisénél négy vari-

áció adódik, amelyek a beinditó és kioldó impulzusok egybeesésénél 

adódnak. Kapcsolási rajza: 

          

1  

  

            

      

TZ 

     

kioldás 

      

lO 	 kimenet 

        

            

beinditás 

         

             

leolieasás 

           

           

           

:.sz. ábra 



-327- 

Értéktáblázata: 

most:  0 0 0 0 1 1 1 1  

kiold: 0 0 1 1 0 0 1 1  

beinti.: 0 1 0 1 0 1 0 1  

utána:  © 1 0 P 1 1 0 P  

c./ Időszakos tárolás. 

A "to" egységidőre történő késleltetés a szekvencionális logika 

alapeleme. Előfordulhat azonban, hogy egy meghatározott időre ki-

vánjuk a késleltetést, pl. " o" időre azzal a feltétellel, hogy 

mindazok az impulzusoknak, amelyek ez alatt az idő alatt lépnek be, 

hatástalanoknak kell ,.naradnif1' - . 	.  ;jza:  

X  

 

SP  

~ • to 

 

kimenet  

   

ItS  sz. ábra  

Értéktáblázata " 3= 5"-re:  

  

► 	 . 	 ~ 	 . 

 T- 	- 

0 0 1 10 0 1 0 0' 0 0 1 ! 0 0 
0 
  0 0 ( 0  0  X  

SP  

 

 

0 0 0 '1 1 1 1 1 1 0 0 0 	1 1 1 1 1; 0 0  

 

   

InteJ rációs tag.  

Arcig a differenciációs tag realizálása aránylag igen könnyü, addig  

az integrációs tag legalább egy számlálási folyamatot igényel, mivel  

azonban az elemek igen sok helyen előfordulnak, igy érdemes foglal-

kozni velük és definiálni őket. Le kell rögziten;ink azonban, hogy  

logikai kapcsolásuk nem mindig lehetséges, különösen ott, ahol a  



kimenet  Z 

/Zo/  

hozzá.  - 

L e1, 

bemenet  

GPO 
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számolási folyamat gyakran előfordul, amely többnyire egy olyan 

struktura fennállására utal, amelynek vizsgálatába azonban itt 

nem megyünk bele. Leginkább csak a "billenő számláló" /kippenden 

Zdhlern/ blokkszimbolumaként definiáljuk. Ennek logikai rendszerei: 

d:/  "Billenő számláló" pozitiv "billenő" ponttal: 

Kapcsolási rajza:  

&. s z. ábra  

Minden impulzus a fAi 	hemeneten 	:4moló tárolt érték—rendszerét 
~r  

növeli eggyel, ugyanakkor minden impulzus az alső bemenetben a szám-

láló tárolt értékrendszerét eggyel csökkenti. Ugyanakkor ha a tárolt  

értékrendszer a "Z o" értéket eléri, ugy kiold és a következő időpont-

ban a kimenet az "e gyes" értéket veszi fel.  

Értéktáblázata, ha "Zo  - 3":  

hozzá: 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1  
bemenet: 

el: 0 0 0 0 1 0 0 0 11000000  

kimenet 0  0  0  0  0  0  0  0  1 0 0 0 0 0 1 0  

számláló 0 1 2 3 2 2 3 0 0 0 1 2 3 0 1 2  

d"./ "Billenő számláló" abszolut "billenő"ponttal:  

itt minden a felső bemeneten jelentkező impulzus a számláló tárolt  

értékrendszerét eggyel emeli, ugyanakkor minden az első bemeneten  

fellépő impulzus eggyel csökkenti. Amikor pedig a tárolt érték a  



-329- 

"Zo"_t vagy a "-Zo"-t eléri, ugy az előbbivel analóg módon kiold és 

ugyanakkor  a  következő időpontban a kimenet felveszi az "egges" érté-

ket. 

Kapcsolási rajza: 

hozzá 

  

 

kimenet 

el 

 

NNW 

 

   

• .sz. ábra.  

Értéktáblázata ha 

T 
hozzá: 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 

bemenet: 
el: 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 

kimenet 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 

számláló 0 1 2 3 2 2 3 0- 1- 2-3-2-3 0 1 2 3 0 1 2 

A most kiragadott példák közel sem tarthatnak a teljességre igényt. Cé-

lunk a definiciók egyértelmüségének bemutatásán kivül a tanulási struk-

turák leirására alkalmas logika módszer bemutatása /a kizárólagosság i-

génye nélkül/ és egy olyan kapcsolási rendszer ismertetése, amely azon-

ban feltétlenül jogosan tarthat igényt a tanulási strukturák ábrázolásá-

nál bizonyos ökonomiára. 

A szekvencionális logika segitségével felépített tanulás-strukturák kö-

zül feltétlen emlitésre méltóak: 

W.G.WALTER /140: 21/ "CORA" /Conditioned Reflex Analogue/ automatája és 

= 3: 
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H.KRETZ /?S  : 21/  modellje'. ?ind a ho tten a feltételes reflex brbzonyos 

feltételek szerinti modellezését oldották meg. 

A.M.UTTLEY /W:1-24/ a feltételes valószinüségi tanulás strukturális 

modelljét szerkesztette meg. Ugyancsak ennek a "logikának" a segitsé-

gével épitette fel K.STEINBUCH /l..N :36-45/ tanuló—mátrixát. 

X  x x 

A Strukturális elemek cimü részt összefoglalva, le szeretném rögziteni, 

hogy: 

a/ A bemutatott mikrostrukturáknak csak terminológiai értelmük van, 

egyébként nem nyujtanak többet a "Konstruktiv elemek"—hez viszo-

nyitva. 

b./ A makrostrukturáknál alkalmazott matematikai apparátus telges fei-

épitése ezen keretek között nem valósitható meg. 

c./ A makrostrukturák és a tanulási strukturák tulzott elvontsága /ab-

sztrakt automaták elméletével való analógizálás; szemantikus infor-

máció—elméletre, CARNAP—féle logikai nyelvre; matematikai nyelvel-

méletre, automatizált nyel és dokumentáció—képzés elméleteire való 

utalás, szekvencionális logikai alapfogalmak ismertetése/ inkább a 

jövőbe mutatnak, s igy a jelenben főleg csak a didaktikai változók 

/dimenziók/ "második táblázatban" összefoglalt elemei realizálha-

tók. 

d./ A két táblázat összevetéséből adddó "közös tengelyen" a didaktika 

legfontosabb feladata az "átalakitási folyamatok szervezése" helyez-

kedik el,  ami az L.KLINGBERG féle didaktikai /2.:321/ "hármas—funk-- 

2  ció" téladatával'részben/,a 3./—al pedig teljesen komparábilis. 
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KONKLUZIÓ K  

Az eddigieket egybevetve a végkövetkeztetéseket három pontban szeret- 

nem összefoglalni. 

Először megvizsüáljuk,  hogy  a Bevezetőben emlitett és az I. és II. 

részben lerö;zitett alapdefinició által megengedett kereteken belífl 

mennyire sikerült a három szintet /formális, konstruktiv, strukturá. 

lis/ felépitenünk. 

Másodszor me ; póábáljuk a gyakorlat részére realizálható elemeket kiemel-

ni. 

Harmadszor rá szeretnénk mutatni az érintett területen folytatandó to-

vábbi kutatások fő irányaira. 

1,/ Az alapdefinició két követelmény betartását irts elő: 

a./ szabatosan előirható eljárást, és 

b./ a hozzá tartozó matematikai modell szerepét. 

A II.részben bemutatott a./ tipusu algoritmusokat az a./ követel- 

mény szerint, a III.részben tárgyaltakat főleg a b./ követelmény-

nek előtérbe helyezésével épitettük fel. A IV.részben a b./ köve-

telmény képezte az optimális számitások alapját. Az V.részben az 

absztrakt modellek esetében a b./ előtérbe kerülése talán kicsit 

tulzottnak is tünhet, bár ezt ellensulyozza LANDA eljárása, aki az 

a./ megoldást választotta. 

Sormázva: megállapithatjuk, hogy a definició követelményeinek be-

tartását nagy  mértékben segitette az a tény, hogy a modern algo-

ritmus definiciók közül a legáltalánosabbat választottuk ki. Ezzel 

biztosítottuk a természettudományos eredmények minél szélesebb te-

rületen való alkalmazásának lehetőségét, amire - mint azt az eddi-

giek során tapasztaltuk - a didaktika kutatói közül is egyre töb- 
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ben /LANDA, ITYELSON, KELBERT, FRANK, .../ utalnak. 

2./ A "Formális elemek" cimü részben sikerült a matematikai modelle-

zéshez szüksé ;;es az apparátust /operátor-sémák, gráf-sémák, kom- 

bonatórikai-sémák, mátrix-sémák, kijelentés-logikai-sémák, blokk-

sémák/ felépiteni. Ezek segitségével a "Konstruktív elemek" cimü 

részben sikerült kimunkálni azokat az algoritmikus eljárásokat, 

amelyekkel a megtanulandó algoritmusok, a tanitás algoritmusainak 

optimálisait egyes esetekben meg tudtuk határozni. Ezen kivül a 

lineáris oktató_programmok készitésére és a tanterv készitésre is 

kidolgoztunk algoritmusokat, ill. félalgoritmusokat. A "Strukturá- 

lis elemek" cimü részben kisérletet tettünk az oktatási folyamit 

átfogó modellezésére. 

Sommázva:  a./ A didaktikai algoritmusok realizalásanJ szukséges, 

de nem elégséges feltételei a "formális elemek". /Ezt 

feltétlenül szükséges kiemelni, mert eléggé elterjedt 

az a nézet, amely szerint az algoritmusok csak egy 

formális változatot adnak./ Az elégséges feltétele-

ket a "konstruktiv", ill. "strukturális elemek" biz-

tositják. A realizálható eredmények a fejlődés jelen-

legi szakaszán szingulárisak. Ebből következik, hogy 

az univerzális algori tmus csak üres absztrakció. 

b./ Ha elfogadjuk McCullough-Pitts és Kleene megállapi-

tásait, mely szerint minden olyan tevékenység, amely 

egyértelmű szabályokba foglalható, az algoritmizál-

ható, s ami algoritmizálható, az digitális számoló-

gépelvre programmozható is 413:269/. Igy mindazok a 

didaktikai feladatokat, folyamatokat, amelyeket a 

/II.-III.-IV.-V./ részekben algoritmizáltunk, azok 

digitális számológépekre programmozhatók. Igy az elek- 
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tronikus /divitális/ számológépek nagy müködési sebes-

ségében /fénysebesség/ rejlő potenciális energia didak-

tikai célokra is felhasználhatóvá válhat. /Vesd össze 

A.I.BERG-től idézettekkel./ Ezzel a gyakorlatban is el 

lehetne érni a tanulók óránkénti értékelhető önálló mun-

káját, ami a tanitási óra hatékonyságának fokozását 

nagyban segitené. Ilyen eredményeket mutatott fel G. 

MATT  /S'1: 41/ sindelfingeni kisérlete, ahol 29 tanuló-

val egy óra alatt hét fokozatosan erősödő feladatot dol- 

oztatott fel egy elektronikus adatfeldolgozó gép, amely 

minden egyes feladatnál 99 változatból adagolta a fel-

adatokat, majd irányitotta a feladatmegoldásokat, s vé-

gül tanulónként egy kartonon értékelte aznapi munkáju-

kat. A példából kitünik, hogy ez a kis kapacitásu számo-

lógép is igen komoly segitőtársa lehet a pedagógusnak. 

3./ A perspektivikus fejlődés lehetőségeinek vizsgálatánál megállapod-

hatunk abban, hogy a "formális elemek"-ben bemutatott apparátus fel-

tétlenül elegendő a részletes kimunkálás előtt álló konstruktiv és 

strukturális elemek tovább fejlesztéséhez. A konstruktiv elemek va-

lamennyi területe, de különösképpen az optimális stratégiai számi-

tósok kidolgozása döntő jelentőségü, amennyiben a pedagógus munká- 

ját computerekkel óhajtjuk megsegiteni. Csak kiragadott példaként 

em7 4.- , . leg, hogy a IV./II./2./ általánositása nem egyenlő hosszu 

utakra, már önmagában is megoldás előtt álló feladat. 
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Konturosok Konturnélküliek 

s Skinner—Algoritmus 
/ S / 

Iterációs—Algoritmu 

/I/ 

Röviditő—Algoritmus 
/U/ 

Szabályozó—Algoritmu. 

/R/ 

-o 

N 

aj 

.aj 

Többutas—Algoritmus 

/M/ 

Crowder—Algoritmus 
/C/ 

  

I.sz.tábla 
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X 
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nem a tanulási célhoz vezető gráfél 

a tanulási célhoz "Z"—hez vezető gráfél 

II.sz.tábla 
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Közlemény • 
Diagnózis 
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A = Az i-ik /i = 1,2,3,4,5, ...n/ könyv oldal felütése.  

B = A /i/ szöveg feldolgozása  

C = az a /./ feladat megoldása  

D = A feladatmegoldás irásbeli vagy gondolatban vale  

rögzitése.  

E = A megoldás összehasoniitása az L /i/ megadott felelet  

választós-f leletek halmazából  

G =  a  megfelelő utasitás végrehajtása  

Ezekhez rendbeli a /P 1 , P2 , P3 , P4 ,/ logikai feleleteket és  

egy logikailag mindig hibás operátort a "W"-t.  

P1_  Vizsgáld meg, hogy az °'i°°-ik oldalon van-e egy feladat,  

ha igen, akkor alkalmazd "C"-t, ha nem, akkor a P 4et!  

P2= Vizsgáld meg, hogy az i-ik oldalon van egy f eleletvá-

lesztós-felelet, ha igen, akttor alkalmazd 7E"-et, ha  

nem ,  akkor P4-et !  

P3-  Vizsgáld meg, hogy van-e egy utasiuás, ha igen_akor  

alkal:::azd "G"-t, ha  nem, akkor  stop  !  

P4= Vizsgáid meg a P3-at az i=n-ra /ahol "n" a programozott 

tankönyv valamennyi oldalára való utalás/, bárhol ahol  

fennáll, akkor alkalmazd "G"-egy ,  ha nem akkor fejezd  

be a munkát.  

Az algoritmus operátor - sémája:  

A 1BP1 CDP2 2 FFP 	1,2 

W 

P 4 ~~ 3' 4 
3 

	
4  

VII.sz.tábla  
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IDÉZE TT ÉS FELHASZNÁLT 

IRODALOM  
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1./ ÁGOSTON GYÖRGY: 	Programmozott oktatás és az oktatógép. 

/KÖZNEVELÉS XIX.16. Budapest.1963./ 

2./ ANSCHUTZ H.: 	Über die Verteilung der semantischen In- 

formation in Lehrprogrammtexten /Grund-

lagenstudien aus Kybernetik 1964/3/4./ 

3./ ArISCHÜTZ H.: 	Begriffe als Trager der semantischen In- 

formation bei iernprozessen /4.Symposion 

über Lehrmaschienen — Düsseldorf 1966.34./ 

4./ ANTAL LÁSZIÁ: 	Szives szóbeli közlése alapján. 

5./ ASSER G.: 	Einführung in die mdtematische Logik — I. 

/Nathematisch — naturwissen — schaftliche 

bibliothek — 18.sz.Leipzig, 1959./ 

6./ BAR--HILLEL Y.: 	Four Lectures on algebraic linguistics and 

machine translation — Syntactic Complexity 

/The Hebrew University of Jerusalem, 1963./ 

7./ BERG A.I.: 	/Felszólalása  r morzkvai 1965.—ös oktató- 

gépekkel  foglalkozó konferencián/  /AV—Köz-

lemények 1966/2./ 

8./ Bevezetés a pro-rammozott oktatásba /OPI könyvkiadványa, 1966./ 

L 
9./ BJERSTEDT A.: Mapping the Effect—Structure of Self—In-

structional Materials /Programmed Learning 

1965. July./ 
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10./ BOCK ű.-JALSCH W.: 	Können unsere Schuler logische den- 

ken? /Iathematik in der Schule - 1965.10./ 

11./ BÖÜíE G.: 

12./ CHOMSKY iJ.-IiILLE2 G.A,: 

13./ CLAUSS G.: 

14./ CONr,NIUS: 

15./ CZEMPE:t ü.A.-BOSWAV H.: 

16./ CSENCOV A.A.: 

Der Eloktronrechner IBM.1620 als Lehr-

maschine /Deutsche Lehrprogramme fur 

Schule und Praxis - 1966.II./ 

Finitery Models of Language Users /Hand-

book of Mathematical Psychology, vol.II. 

/19 63./ 

Zur Handlungsanalyse durch Algorithmen 

und ihre Anorendung im Unterricht /Pada- 

DQJ2L` +9 65/4./ 

Didactica magna /Sárospatak,1896./ 

Unterricht und Computer /Oldenburg Ver-

lag München - 1965./ 

Szposzobü otiszkanyija racionalnük al-

goritma díja vüpolnyenyija prakticsesz-

kik robot /Szovjetszkaja Pedagogika -

1965/3./ 

17./ DEUTSCH J.R.H.: 	Wörterbuch Programmierter Unterricht 

/Manz-Verlag München - 8./ 

18./ Dialektikus materializmus /Marxizmus-Leninizmus esti egyetemének 

anyaga. KOSSUTH - 1964.-1965./ 
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19./ ELSNER K.: 	Algo -rithmen in Verbalform /Doctordis- 

sertation — 1964./ 

20./ ELSNER K.: 

21./ $LSNER K.: 

22./ ERDŐS SÁNDOR: 

23./ FEKETE JÓZSEF: 

24./ FEKETE JÓZSEF: 

25./ FRANK H.:  

ForschunE;sbericht zum Programm "Tech— 

nische t•íilchgewinnung -melken mit der 

Kannenmelkanlage" /Deutsches Institut 

fUr Berufsbildung — 1964./ 

Empfelilungen zur Pro grammierung im be— 

rufs praktischen Unterricht /Disskussi— 

onsmaterial — 1965./ 

A készséf értelmezése /Maóyar Pedagógia 

1966/2./ 

A pro;rammozott oktatás néhány kérdése. 

/Pedaüógiai Szemle, XV.1965.2./ 

Programmovane Uceni v idadarsko /Pedagó- 

gika XVI.-1966.1./ 

Über grundlegende Satze der Informations— 

psychologi.e /Grundlagenstudien aus Kyber— 

netik — 1960.1./ 

26./ FRANK H.: 
	

Über eine informationspsychologische Masz- 

bestimmung der semantischen und pragma-

tischen Information /Grundlagenstudien 

aus Kybernetik — 1960.2./ 
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27./ FRANK H.: 	Kibernetik-Brücke zwischen den Wissenschaf- 

ten /Die Umschau 1961.14, 15, 17, 19./ 

28./ FRANK H.: 	Zur Mathematisierbarkeit des Ordnungsbegrif- 

fes /Grund1agenstudien aus Kybernetik - 1961.2./ 

29./ FRANK H.: 	Ordnung, Lernprozess und Rückwirkung in per- 

zeptiven LM-System /Grundlagenstudien aus Ky- 

bernetik - 1962.3./  

30./ FRANK H.: 
	Kin Isomorphismus zwischen der nichtbinAren 

Lernmatrix und Schannons kontinuierlichen Ka-

nal /Archiv der elektronischen Übertragung -

1963.11./  

31./ FRANK H. : 
	

Ausregunüen zur Terminologie aaf dem Gebiet der 

Lehrobjektivierung /2.Symposion Uber Lehrraa- 

schinen - Nüringen 1964./ 

32. / FRANK H. : 
MÜLLER G.:  

33. / FRANK  H.:  

34./ FRANK H. : 

Ein adaptiver Lehrautomat für verzweigte Pro~ 

ramrue /2.Symposion über Lehrmaschinc - Nürtin- 

gen 1964./  

Kybernetische Betrachtungen Tiber Lehr- und 

Lernprozesse /ProÜrammiertes lernen und pros-. 

rammierter Unterricht - 1964.1./ 

Uber einen Ansatz zu eineM probabilistischen 

Gedüchtnisruodell /Grundlagenstudien aus Kyber- 

netik - 1964.2./  
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35./ FRANK H.: 
	Zur Makrostrukturthcorie von Lehralgorith- 

men /Grundlagenstudien aus Kybernetik. U.S. 

Quickborn 1964.3.4./ 

36./ FRANt. H.: 	Ist das Informationsnass fUr Aussagen Uber 

den Menschen nUtzlich? /Hippokrates - 1964.6./ 

37./ FRANK H .: 

38. / FRANK H.: 

Zur Kiybernetisch-Pedagogischen Theorie der 

Skinner-Al  gro -ri thme n /Grandlagens tudie n aus 

Kybornetik 1965.4./ 

Zum Zusammenhang zwischen Programmierter In- 

struktion und kybernetischer Padagogika /Deut-

sche  Lehrprogramme fUr Schule und Praxis.- 

1966.I./ 

39./ FRIDt;AN L.M.: 	Das logisch-mathematische Nodell des Erken- 

nens in der LehrtAtiÚveit /Duschanbe- 1963./ 

40./ TRUCK  C.L.: 	Probleme des Programmierten Unterrichts 

/Zeitschrift fUr Pidagogik 1963.4./ 

41./ GENTILHOMME Y.: 	Optimisation des al orithmes d'enseignement 

/La Pedagogie Cybernetque - 1964.II.4./ 

42./ GLASER R.: 	Some research problems in automated instruc- 

tion: instructional programming and subject-

matter structure /Programmed learning New-

York,1962./ 

43./ GLUSCKOW W.M.: 	Theorie der abstrakten Automaten /Deutsche 

Verlag der Wissenschaften, Berlin-1963./ 
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44./ GYA2AKY F.FRIGYES:  

45. / GYARAKY F.F RIGYES: 

46./ GYARAKY F.  FRIGYES :  

47./ GYARAKY 'r'.FRIGYES: 

48./ "xYA:3AKY F. FRIGYES:  

49./ GYA ~~Y-TE  iZENY I :  

50./ GYAZAKY F.F RIGYES:  

51./ sYARAhY F.;,~RIGYES:  
VOLLMA;+í'1 S.:  

Egy térmértani téma prograsmozása /KÖZ-

NEVELÉS XX.1964. 919. /  

Matematikai korrepetáló pro,rammok. / A ma-

tematika tanitása.XII.1965.5./ 

Példa az oktatási folyamat szerkezetének 

tervezésére kibernetikai alapon /Szakmun-

kásnevelés XVI.1965.11./ 

Oktatási algoritmus félautomata gépek ke-

zelésének betanitásához. /Szakmunkásneve-

lés,XVI.1965.2./ 

Didaktikai algoritmusok elemei /Bevezetés  

a programorozott oktatásba. OPI-kiadás, Pécs  

19b6./  

PU und Lehrmaschinen in Ungarn /Deutsche 

Lehrprogramme für Schule und Praxis, 1966.1./ 

Adaptiv pro,ramm szöve ges egyenletek korre-

petálására /A matematika tanitása.XIII. 

1966.5./  

Erfolgreiche Nachhilfe mit Lernprograraraen  

/Deutsche Lehrprogramme für Schule und Prax-

is, 1966.111./  

52./ GYARAKY F.FRIGYES: 	Oktatóprogrammok készitésére szolgáló algo- 

ritmus /Audiovizuális Technikai és Módszer-
tani Közlemények.Budapest.1966.5./ 
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53./ GYA3AKY F. FRIGYES: 

54./ GYARAKY F.F.—NIKOL F.: 

55./ HAHN R.: 

A programmozott oktatás és az oktatógépek 

helyzete a düsseldorfi Symposionon. /I•a-

gyar Prdagó'ia 1966.3-4./ 

Lehralsorithrr.us für eine spezielle Diskus— 

sion /Deutsche Lehrprogramme fUr Schule 

und Praxis — 1966.IV./ 

Digitális vezérléstechnika /UJ TECHNIKA 

Műszaki Könyvkiadó Budapest,1964./ 

56.1 HEIIIRICHS H.: 	 Robater vor der Shultur? /Zeitschrift fUr 

Püdagogik, 1964.4./ 

57./ HELL GYÖRGY: 

58./ HERINAU O.: 

59./ HINCSIN A.T.: 

Gondolatmenetek mélységének szárvitása ki-

bernetikai módszerekkel /Pedagóniai Szemle 

1966.5./ 

Grundlagen und Grundzüge eines Kyberne— 

tisch orientierten Fremdsprachen Unterrichts 

/Fremdsprachen Unterricht, 1965/9./ 

Mathematical Foundations of information 

Theory /Dover Publications, New—York,l957./ 

60./ ITELSON L.P.: 	Zur mathenatischen Erfassung der Aneignung 

und Vernittlung von Kentnissen /Vergleichen-

de Pedaaogik 1965.1./ 

61./ JAKUBOVICS ELEK: 	Programorozott oktatás a szakmunkásképzésben. 

/Magyar Pedagógia 1965-4./ 

62./ KALMAR LÁSZLÓ: 	Matematika alapjai II.kötet, Matematikai 

Logika, Budapest.1963./ 
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63./ KARDOS LAJOS: 	Kibernetika és pszichológia /Mag yar Pszi- 

chológiai Szen1e-XXI.1964.4./ 

64./ KELBLBT ii.: 

65./ KELBÉRT H.: 

__..j 	.. . 

Progra=ier ter Unterricht und anwendung mo- 

derner Lernhilfsmittel /Padagosche Enzyklo- 

pedie-II.VEB, 1963./ 

Kybernetischen Modell der Abarbeitunj eines 

Progran;mierten Verzweigten Lehrbuches /Pái- 

dagogische Wissenschaft und Schule /Bprlin, 

1964./ 

Kybernetisches Modell der Abarbeitung eines 

pro;raimierten verzweigten Lehrbuches /Mi- 

litáirisches Denken,1964.No.11./ 

67./ KISS ÁRPÁD: 

68./ KISS ARAD: 

69./ KISS ÁRPÁD: 

70./ KLAUER K.J.: 

71./ KLAUS G.: 

72./ KLINGBERG E.: 

Progranmozott oktatás-I./Magyar Pedagógia, 

1964.2./ 

Programozott oktatás-II. /Magyar Pedag6- 

Sia, 1965.2./ 

A programmozott oktatás 10 éve./Magyar Peda- 

gógia, 1966.3..4./ 

Proórammierter Unterrichts in Sonderschu- 

len /Berlin, 1965./ 

Bevezetés a formális logikába. /Gondolat-

kiadó, Budapest.1963./ 

Fragen der Weiterentwicklung der Didaktik. 

/Pidagogik 1965-4./ 
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73./ KOrű';2dSKY J.A.: 	Analytische Didaktik /Volk und Wissen, 

Berlin, 1959./ 

74./ KOPSTEIN F.: 

75./ KR2TZ H.: 

76./ KOSARAS ISTVÁN: 

??./ KOSARAS ISTVÁN: 

78./ LANü)A L.N.: 

79./  LADA  L..: 
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