
DEPENDENCY ANALYSIS AND
LEARNING METHODS OF

DECLARATIVE LANGUAGES

PhD Thesis Summary

Author:Gyöngyi Szilágyi
Thesis Supervisor: Dr. Tibor Gyimóthy

Doctoral School in Mathematics and Computer Science
PhD Programme in Informatics

University of Szeged
2003

Abstract

The present thesis summarizes the scientific results of the author of the PhD dissertation (”Dependency Analysis
and Learning Methods of Declarative Lanuages”).
Besides the imperative programming paradigm an other main type is the declarative paradigm. Declarative Pro-
gramming requires a more descriptive style than imperative ones. The programmer must know what relationship
holds between the various entities.
The dissertation concentrates on three declarative paradigms, namely Logic Programming (LP) [20,17], Constraint
Logic Programming (CLP) [18,12] and Attribute Grammars (AG) [1]. There is a close relationship between At-
tribute Grammars (AG) and Logic Programming (LP) [6], and Logic Programming (LP) can be viewed as a special
case of Constraint Logic Programming (CLP) [12].
One of the results of the dissertation is the slicing of Logic and Constraint Logic Programs. Slicing [11] is a program
analysis technique which facilitates understanding of data flow and debugging. Intuitively, a program slice with re-
spect to a specific variable at some program point contains all those parts of the program that may affect the value
of the variable or may be affected by the value of the variable.
In the dissertation a dynamic slicing algorithm for Logic Programs [23,10,9] is defined augmenting the data flow
analysis with control flow dependences to help one locate the connected components of the program and the source
of a bug. A general slice definition is provided which is valid for the success and failure branches of the SLD-tree,
as well. The extension of the data flow analysis to the failure branches of the SLD-tree helps improve the existing
debugging techniques, it can help one detect dead code, and is useful in program maintenance.
Constraint Logic Programming (CLP) [12,18] is a fusion of two declarative paradigms, namely Constraint Solving
and Logic Programming. In the dissertation we lay the theoretical foundations for the slicing of Constraint Logic
Programs [24,25,26] which provide a basis for defining techniques based on variable sharing.
Inductive Constraint Logic Programming (ICLP) is a research topic that combines the theory and results of CLP
[12,18] and Machine (Inductive) Learning (ILP) [19,16]. In the dissertation a specialization technique is provided
for learning of CLP programs [28]. The specialization method combines unfolding, clause removal and, as an im-
provement of the algorithm, slicing. We lay the theoretical foundations for specializing CLP programs, state the
associated theorems, and prove that the defined unfolding transformation preserves the operational and logical se-
mantics of CLP programs.
Attribute Grammars (AG) [29,15,1] are a generalization of the concept of Context-Free Grammars [13]. In the
framework of compilation oriented language implementation, Attribute Grammars (AG) are the most widely applied
semantic formalism. Efficient techniques for learning Attribute Grammars can help in finding good definitions of
AGs, which usually require a lot of effort.
Based on the correspondence of Attribute Grammars and Logic Programs [6] some of the learning technique devel-
oped for Logic Programs (ILP) [19,16] could be applied to AGs. We introduced an AG based description language
in ILP and defined a parallel method for learning semantic functions of Attribute Grammars (AGs) [27]. The paral-
lelism can help to provide a more efficient technique than the sequential one, in both execution time and interactions
needed.

1. INTRODUCTION

In the following we provide some basic definitions needed to summarise our results. The others can be
found in the Dissertation.

Definition 1 Constraint Logic Program

A constraint domain is a pair 〈L,D〉 where L is a first order language over an alphabet of variables,
predicate symbols (including equality), and function symbols (including constants). D is a set (domain).
All function symbols of L are given a fixed interpretation on D. A constant is a function symbol of arity
0.
A term is a variable, a constant or a n-ary (n > 0) function symbol followed by a bracketed n-tuple of
terms (The latter is called a compound term).

1

The predicate symbols of L are divided into the following two disjoint sets:
1. constraint predicates Σ, which are given a fixed interpretation in D.

These include the symbol =, interpreted as identity.
2. defined predicates Π, which may occur in program clause heads and for which the user

has an intended interpretation on D.
A defined atom is a formula of the form p(t1, · · · , tn) where p is an n-ary defined predicate (p ∈ Π) and
t1, · · · , tn are terms.
Constraints atoms are formulae constructed with some constraint predicates with a predefined interpre-
tation. A typical example of a constraint is a linear arithmetic equation or inequality with rational coef-
ficients where the constraint predicate used is the equality symbol interpreted over rational numbers, e.g.
X − Y = 1. The variables of a constraint range over the domain of interpretation.
A clause is a formula of the form h : −b1, ..., bn, n ≥ 0 , where h, b1, ..., bn are atomic formulae. The
predicates used to construct b1, ..., bn are either constraint predicates or defined predicates. The predicate
of h is a defined predicate.
A goal is a clause without h. A fact is a clause h← c1, · · · , cn where c1, · · · , cn are constraints.
A constraint logic program is a set of clauses.

Logic Programs only use defined predicates.

Definition 2 Skeleton
A skeleton for a program P is a labelled ordered tree:

- with the root labelled by a goal clause and
- with the nodes labelled by clause instances of the program < c, σ >; some leaves may instead

be labelled ”?”, in which case they are called incomplete nodes.
- Each non-leaf node has as many children as the non-constraint atoms of its body.
- The head predicate of the i-th child of a node is the same as the predicate of the i-th

non-constraint body atom of the clause labelling the node.

Definition 3 The set of constraints of a skeleton
For a given skeleton S the set C(S) of constraints, which will be called the set of constraints of S, consists
of :

- the constraints of all clauses labelling the nodes of S
- all equations �x = �y where �x are the arguments of the i-th body atom of the clause labelling a node

n of S, and �y are the arguments of the head atom of the clause labeling the i-th child of n. (No equation
is created if the i-th child of n is an incomplete node.)

A derivation tree for a program P is a skeleton for P whose set of constraints is satisfiable. If the skeleton
is complete (i.e. it has no incomplete node) the derivation tree is called a proof tree.
In order to properly present the slicing techniques we need to refer to program positions and to derivation
tree positions. A slice is defined with respect to some particular occurrence of a variable (in a program
or derivation tree), and positions are used to identify these occurrences. The set of all tree positions of a
derivation tree T will be denoted by Pos(T).

2. DATA FLOW ANALYSIS OF LOGIC PROGRAMS

The related papers are [23,10,9].

Data flow analysis of Logic Programs (LP [20,17]) plays an important role in debugging, testing, program
maintenance, and so on . Slicing [11]is a program analysis technique originally developed for imperative
languages. It can be applied in a number of software engineering tasks, is a natural tool for debugging, is
useful in incremental testing, and can help one detect dead code or find parallelism in programs. Intuitively,

2

a program slice with respect to a specific variable at some program point contains all those parts of the
program that may affect the value of the variable (backward slice) or may be affected by the value of the
variable (forward slice). Data flow in logic programs is not explicit, and for this reason the concept of a
slice and the slicing techniques of imperative languages are not directly applicable. Moreover, implicit data
flow makes the understanding of program behavior rather difficult. Thus program analysis tools explaining
data flow to the user are of great practical importance. One of the results of our research is the extension
of the the scope and optimality of previous algorithmic debugging techniques of Prolog programs [22] using
slicing techniques based on a depenence graph. We provide a dynamic slicing algorithm augmenting the
data flow analysis with control flow dependences to help one locate the connected components of a program
and the source of a bug included in the program.
A general slice definition is provided which is valid for the success and failure branches of the SLD-tree,
as well. The extension of data flow analysis for the failure branches of the SLD-tree helps to improve the
existing debugging techniques, it can help detect dead code, and is useful in program maintenance.
A tool was developed for debugging Prolog programs which also handles the specific programming tech-
niques.

Consider the following example.

Example 1 The Data Flow slice is not enough to find the source of a bug

The buggy program is: The correct program should be:

1. p(A,X) :- q(A,X). 1. p(A,X) :- q(A,X).
2. q(A,X) :- A > 0, X is 2. 2. q(A,X) :- A = 0, X is 2.
3. q(A,X) :- X is 3. 3. q(A,X) :- X is 3.

Executing this program for the goal p(0,X) the given solution is X = 3, while we expect X = 2. So a bug
must be present in the program somewhere.
Creating the dynamic data flow slice for an instance of X, it does not contain the buggy predicate A > 0
because X does not exactly depend on the predicates of clause 2, there being only control dependences
between them. This means that if A > 0 had been evaluated differently it could have affected the solution
of X. Our new slicing approach contains the buggy predicate A > 0.

2.1. The Augmented SLD-tree of Logic Programs, Skeleton(n) and Proof Tree Dependence Graph

The derivation of a program P for a goal can be represented by a tree called SLD-tree. Each branch of
the SLD-tree [21] is a derivation of a program for a goal. Branches corresponding to successful derivations
are called success branches, while branches of the infinite derivations are called infinite branches; those
corresponding to failed derivations are called failure branches.
An SLD-tree may have many failed branches and very few or just one success branch. Control information
supplied by the user may prevent the interpreter from constructing failed branches. To control the search the
concept of cut(!) is introduced in Prolog. Cut has the following effect: after success of ”!” no backtracking
to the literals in the left-hand part is possible. Denote this part of the SLD-tree by cut(W). However, in
the right-hand part execution goes on as usual.
We add these pieces of information to the SLD-tree to get the so called Augmented SLD-tree. Our dynamic
slicing algorithm is defined in this structure.
The SLD-tree representation is unsuitable for representing the data flow information of a logic program
(for a given goal). The structure Skeleton(n) is used to represent this information, where n identifies a
leaf node of the SLD-tree.
There is an one-to-one correspondence between the nodes belonging to one branch of the SLD-tree (T)
(identified by n) and the nodes of the corresponding Skeleton(n) (denoted by S). This correspondence is

3

expressed by the map φ : nodes(S)→ nodes(T).
The definition of Skeleton(n) is augmented with groundness information.

We would like to represent the data flow of a derivation tree. In a logic program data can be transferred
in two ways: firstly from one clause to another via unification, and secondly within a clause multiple
occurrence of variables result in data dependences [4,5]. The following definition reflects these conditions.

Definition 4 Proof Tree Dependence Graph (PTDG: Tg,n = (Pos(S),∼T))
Let T be an SLD-tree for the goal g, n ∈ nodes(T) a leaf of T and S the
Skeleton(n), β, δ ∈ Pos(S).

– The nodes of PTDG are the elements of Pos(S).
– β ∼T δ iff one of the following conditions holds:

1. β and δ have common variable in their variable set V (local edge)
2. the predicate of δ was unified with the predicate of β, and β and δ are both the k-th argument position

of their predicate (transition edge).

It follows directly from the definition that the dependence graph is constructed only for one branch of the
SLD-Tree (identified by n), for Skeleton(n). But of course we can construct a PTDG for every Skeleton(n)
(n is a leaf node of T), that is for every branch of the SLD-tree T .

This graph is further extended with directionality information (�Tg,n = (Pos(S),→T)).

2.2. General Data Flow Slice and Debug SLice

Thesis 1

Below a general slice definition is given. The definition identifies those argument positions upon which a
given argument position depends.

Definition 5 Slice(Tg,n, α)
Let P be a logic program, T a SLD-tree for the goal g, n ∈ nodes(T) a leaf of T , S Skeleton(n) and
�Tg,n = (Pos(S),→T) the corresponding Directed Proof Tree Dependence Graph. Let α ∈ Pos(S).
A slice (Tg,n, α) over �Tg,n with respect to α

– is a subgraph of �Tg,n

– a node β ∈ Pos(S) is in the slice iff β →∗
T α

This is a general data flow slice definition that is valid for one derivation path of the SLD-tree which may
be a failed branch.

To create the Debug slice we specify, as a first step, the Potentially Dependent Predicates Set (PDPS).

Definition 6 Potentially Dependent Predicate (PDPS)
Let P be a logic program, T the Trace-tree for the goal g. A leftmost (selected) predicate in a node of T is
in the Potentially Dependent Predicate Set (PDPS) if it actually did not affect the value of an argument
of a predicate in the success branch of T , but could have affected it had its boolean outcome been different.

The following theorem identify those predicates which satisfy this condition.

Theorem 1 The Potentially Dependent Predicate Set
Let P be a logic program, T the Trace-tree for the goal g. Then
PDPS= {The predicates of the success branch of T} ∪ {The predicates of the failed leaves of T}.

4

Definition 7 Debug Slice
The Debug slice of an Augmented SLD-tree for a goal g is the following set:

Debug slice= PDPS ∪ Data F low of PDPS ∪ Cut(W) Set =

= { The predicates of the success branch of T}⋃ { The predicates of the failed leaves of T}⋃
φ(∪n,α{k ∈ nodes(S) | k has at least one head argument position in

slice(Tg,n, α), α is an argument position of p, n is a failed leaf of T})⋃
(∪Mark {p ∈ nodes(T) | p is a leftmost predicate on the path from the node

whose leftmost goal is cut(Mark) at the node identified by Mark})

�

The idea behind the definition of the Debug Slice comes from imperative languages, which is called there
to ”relevant slice” [7]. The relevant slice could be used to find such a bug instance, which could not be
identified by examining the data flow slice alone. In this case the data flow slice is augmented with control
dependences as well.
The searching strategy is controlled by (1) the boolean outcomes of the predicates (i.e. the Interpreter
continues the search in the case of success of a predicate, backtracks at failed predicates), and (2) a special
built in predicate cut(!) (i.e. after success of cut no backtracking to the literals in the left-hand side is pos-
sible). Our Debug slice deals with these two kinds of main control effects, and it is further extended by the
data flow slice of those predicates which take part in the control flow (3). The reason for this extension is
that the cause of a failure of a predicate (p) could be a wrong value which reached p via the data flow.

So an informal definition for the Debug slice is the following.
Let P be a logic program, T be the Trace-tree for the goal g. The Debug slice of T consists of the following
predicates:

1. The predicates of the Potentially Dependent Predicate Set (PDPS)
2. The predicates specified by the data flow of the predicates of PDPS
3. The predicates that belong to some cut(W) of T

Certain types of bugs were found during testing by a prototype implementation which were missed by the
data-flow slice but were identified using the Debug slice method, as they appeared in the failure branches
of the SLD-tree. These types include cases when a cut is mis-placed, a failed predicate is mis-printed (its
name or arity) or a condition (<,>, =) has failed, or a wrong data value has reached the failed node. So in
the data-flow from the root to the failed node, a wrong constant value, a mis-printed predicate or a failed
condition has appeared.

3. DATA FLOW ANALYSIS OF CONSTRAINT LOGIC PROGRAMS

The related papers are: [24,25,26].

One other significant result of the dissertation is the slicing of Constraint Logic Programs.
This part of the work formulates declarative notions of slice suitable for CLP. (The problem of finding
minimal slices may be undecidable in general, since satisfiability may be undecidable.) These definitions
provide a basis for defining slicing techniques (both dynamic and static) based on variable sharing. The
techniques are further extended by using groundness information.
A prototype dynamic slicer of CLP programs has now been implemented.

5

X
slice slice slice

φ

Proof Tree ProgramConstraint store

position
proof tree program

position
variable
instance

Fig. 1. A slice of a constraint set, a proof tree and a program.

Given a variable X in a CLP program we would like to find a fragment of the program that may affect
the value of X (see Figure 1).
We first define a concept of slice for a set of constraints, which is then used to define slices of derivation
trees representing states of CLP computations. Afterwards, we define slices of a program in terms of the
slices of its derivation trees.
To formalize this thesis we use the following definitions and notations.

Let C be a set of constraints. A derivation tree T is a skeleton with a set of constraints C(T). The variables
of C(T) originate from positions of T . Let P be a set of positions of T , i.e. P ⊆ Pos(T). Then Ψ(P)
identifies the variables of C(T) with occurrences originating from positions in P. We denote the set of all
constraints of C(T) that include these variables by CP .

Every position of a derivation tree T is a (renamed) copy of a program position or of a goal position. This
provides a natural map ΦT of the positions of T into program positions and goal positions. Corresponding
to this definition of ΦT for a program position q, the set Φ−1

T (q) contains those proof tree positions such
that if r ∈ Φ−1

T (q) then ΦT (r) = q.

Definition 8 Solution of a Constraint set
The binding of a variable X to a value v is said to be a solution of C with respect to X iff there exists a
valuation ν such that ν(X) = v and ν satisfies C. The set of all solutions of C with respect to X will be
denoted by Sol(X,C).

Thesis 2

2.a A precise declarative formulation of the slicing problem for Constraint Logic Programs,
Proof trees and there Sets of Constraints.

Definition 9 Slice of a satisfiable constraint set C
A slice of a satisfiable constraint set C with respect to X is a subset S ⊆ C such that
Sol(X,S) = Sol(X,C).

Definition 9 implicitly gives a notion of minimal slice with respect to X.

Definition 10 A minimal slice of C
A minimal slice of C is a slice S of C with respect to X such that if we further reduce S to S′, then
Sol(X,S′) will be different from Sol(X,C).

Notice that the whole set C is a slice of itself, any superset of a slice is also a slice, and that the definition
does not provide any hint about how to find a minimal slice. The minimal slice may not be unique. In
general, the problem of finding minimal slices may be undecidable as satisfiability may be undecidable.
We now formulate the slicing problem for derivation trees.

6

Definition 11 A slice of a derivation tree
A slice of a derivation tree T with respect to a variable position of X is any subset P of the positions of
T such that CP is a slice of C(T) with respect to X.

Lastly we define the notion of a CLP program slice with respect to a variable position.

Definition 12 A slice of a CLP program
A slice of a CLP program P with respect to a program position q is any set S of positions of P such that
for every derivation tree T whenever its position r is in Φ−1

T (q), there exists a slice Q of T with respect to
r such that ΦT (Q) ⊆ S.

2.b Data flow based automatic slicing techniques for the construction of slices of CLP programs,
Proof Trees and Constraint Sets

Generally it is undecidable whether a subset of a set of constraints is a slice. We now present a simple and
sufficient condition for a “syntactical” approach to slicing constraint stores, proof trees and programs. We
use variable sharing between constraints as a basis for the slicing of sets of constraints.

Definition 13 Explicit Dependence of Constraint Stores
Let C be a set of constraints, and vars(C) be the set of all variables occurring in the constraints in C. Let
X,Y be variables in vars(C). X is said to depend explicitly on Y iff both occur in a constraint c in C.

Definition 14 Dependency Relation of Constraint Stores
A dependency relation on vars(C) is the transitive closure of the explicit dependency relation. The depen-
dency relation on vars(C) will be denoted by depC .

Note that depC is an equivalence relation on vars(C). We map any equivalence class [X]depC
to the subset

CX of C which consists of all constraints that include variables in [X]depC
.

Definition 15 Direct Dependency Relation of a Derivation tree
Let T be a derivation tree, α, β ∈ Pos(T), and let ∼T denote the direct dependency relation on Pos(T).
Then α ∼T β if and only if one of the following conditions holds:

1. α and β are positions in an occurrence of a clause constraint (constraint edge).
2. α and β are positions in a node equation (transition edge).
3. α and β are positions in an occurrence of a term (functor edge).
4. α and β share a variable (local edge).

The transitive closure ∼∗
T of the direct dependency relation will be called the dependency relation on

Pos(T). Thus ∼∗
T is an equivalence relation.

Recall that each position of a derivation tree T “originates” from a position of the selected program P .
This is formally expressed by the mapping Φ : Pos(T)→ Pos(P).

Definition 16 Direct Dependency Relation of a Program
Let P be a CLP program, α, β ∈ Pos(T). Let ∼P denote the direct dependency relation on Pos(P). Then
α ∼P β iff at least one of the following conditions holds:

1. α and β are positions of the same constraint (constraint edge).
2. α is a position of the head atom of a clause c and β is a position of a body atom of a clause d

and both atoms have the same predicate symbol (transition edge).
3. α and β belong to the same argument of a function (functor edge).
4. α and β are in the same clause and have a common variable (local edge).

7

Comparing the definitions of ∼T and ∼P one can check that whenever
α ∼T β in some tree T of P then Φ(α) ∼P Φ(β) as well. Consequently, for any proof tree T
(α ∼∗

T β)⇒ Φ(α) ∼∗
P Φ(β). The transitive closure ∼∗

P is an equivalence relation on Pos(P).

Directionality information is introduced into the Proof Tree Dependency Graph
(TDG = (Pos(T),→T)) to make the slice more precise.

2.c The proofs that the automatic slice construction methods satisfy the conditions
of the declarative slice definitions

The following theorem states that CX satisfies the declarative slice definition as well.

Theorem 2 Slice of a Constraint Set
Let C be a satisfiable set of constraints and let X ∈ vars(C).
Then CX is a slice of C with respect to X.

The following result relates ∼∗
T to depC(T).

Theorem 3 The relation of ∼∗
T to depC(T)

Let α be a variable position of a proof tree T and let Ψ({α}) = {X}.
Then Ψ([α]∼∗) = [X]depC(T) .

As a corollary we immediately obtain the following Theorem.

Theorem 4 A Slice of a Proof Tree
Let T be a proof tree and let α be a variable position of T . Then [α]∼∗ is a slice of T with respect to α.

So a slice of a proof tree can be obtained by finding the equivalence class of the dependency relation
involving a given variable position.
Theorem 4 gives suggestions for a simple slicing technique of derivation trees based on finding equivalence
classes of variables in the constraints of a derivation tree.
The following result shows how ∼∗

P can be used for the slicing of P .

Theorem 5 A Slice of a Program
Let P be a CLP program and let β be a position of P . Then [β]∼∗

P
is a slice of P with respect to β.

Definition 16 with Theorem 5 give a method for constructing program slices without referring to proof
trees.

2.d Two approaches had been proposed to reduce the size of the slices.

We introduced directionality information (which uses groundness information) into the slicing and dealt
with the so-called calling context problem.

Theorem 6 Directed Slice of a Proof Tree
{β|β →∗

T (G) α} is a slice of T with respect to α.

�

8

3.1. Summary of Thesis 2

2.a We gave a precise, declarative formulation of the slicing problem for Constraint Logic Programs, Proof
trees and their Sets of Constraints: Definitions 9, 11, 12.

2.b A data flow based automatic slicing technique was used for the construction of
- static slices of CLP programs: Definition 16
- dynamic slices of Proof Trees: Definition 15
- dynamic slices of Constraint Sets: Definition 14.

2.c We proved that the automatic slice construction methods satisfy the conditions of the declarative slice
definitions: Theorems 5, 4, 2.

2.d Two approaches were proposed to reduce the size of the slices. We introduced directionality information
into the slicing (Theorem 6) and dealt with the so-called calling context problem.

A prototype slicing tool has been implemented using static and dynamic slicing techniques. Our experi-
ments with this tool show that the slices obtained were quite precise in some cases, and on average provided
a substantial reduction in the program size.

4. LEARNING OF CONSTRAINT LOGIC PROGRAMS

The related paper is [28].

Inductive Constraint Logic Programming (ICLP) is a new research topic that combines the theory and
results of Constraint Logic Programming (CLP) [12,18] and Inductive Logic Programming (ILP) [19,16].
Inductive Logic Programming (ILP) refers to a class of machine learning algorithms where the agent learns
a first-order theory from examples and background knowledge. The use of first-order logic programs as
the underlying representation makes ILP systems more powerful and useful than the conventional propo-
sitional machine learning systems, but they are weak in handling numerical data.
CLP languages make logic programs execute very efficiently by focussing on a particular problem domain,
and they are capable of handling numerical data, as well.

The dissertation discusses the specialization of Constraint Logic Programs by applying unfolding and, as
an improvement of the method, by combining unfolding with a slicing technique. The transformation rule
for unfolding together with clause removal is a method (called SPECTRE [3]) for the specialization of
Logic Programs (LP).
Firstly, we formulate the exact definitions of the basic elements of an unfolding learning algorithm such
as the specialization and unfolding transformation of CLP programs giving the semantics of them. We
prove that the defined unfolding transformation preserves the operational and logical semantics of CLP
programs.
Another result is the exact formalization of the specialization method (CLP SPEC) and the proof of the
correctness of the algorithm based on the logical and operational semantics of CLP programs.
Yet another result is that an improved interactive version of the specialization algorithm has been defined
integrating an algorithmic debugging algorithm and a slicing method with a specialization algorithm for
CLP programs.
A prototype learner of LP and CLP programs implementing the above ideas is briefly described.
The following definitions have been used to present our results.

9

Definition 17 D-Interpretation
Let 〈L,D〉 be a constraint domain, where L is a first order language over an alphabet of variables, predicate
symbols (including equality), and function symbols (including constants). D is some set (domain).
An � D-interpretation of the alphabet A of L is the domain D and a mapping that associates

- each constant c ∈ A with an element c� ∈ D which is the same interpretation as c has in D
- each n-ary function f ∈ A with a function f� : Dn → D which is the same interpretation

as f has in D
- each n-ary defined predicate p ∈ Π with a relation p� ⊆ D × · · · ×D
- each n-ary constraint predicate p ∈ Σ with the same interpretation as it has in D

Let BD = {p(d̃) | p ∈ Π, d̃ ∈ Dn}.
Then a D-interpretation can be represented as a subset of BD.

The top-down operational semantics of constraint logic programs P can be seen as a transition system
of states, tuples 〈A,C, S〉, where A is a multiset of atoms and constraints, and C and S are multisets
of constraints [12]. The constraints C and S are referred to as the constraint store. Intuitively, A is a
collection of as-yet-unseen atoms and constraints, C is a collection of constraints playing an active role
(they are awake), and S is a collection of constraints playing a passive role (they are asleep).
We will take as given a computation rule that selects a transition type and an appropriate element of A
for each state.
An initial goal G for execution is represented by the state 〈G, ∅, ∅〉. A derivation is a sequence of transitions.
A state which can not be rewritten is called a final state. A derivation is successful if it is finite and the
final state has the form 〈∅, C, S〉.
A detailed description of the transitions rules can be found in the dissertation.

Here the specialization problem is formalized in the following way.

Definition 18 The specialization problem
The specialization problem of a Constraint Logic Program with respect to a set of positive examples (E+)
and a set of negative examples (E−) can be defined as follows:
Given: a P Constraint Logic Program and two disjoint sets of ground terms (E+ and E−).
The aim is: to find a P’ Constraint Logic Program (the specialization of P with respect to (E+ and E−))
such that MP ′ ⊆MP , E+ ⊆MP ′ and MP ′ ∩ E− = ∅, where MP denotes a D-model of P .

We assume that every positive / negative example is a ground instance of a target (defined) predicate G
(goal).

Thesis 3

3.a The unfolding transformation

The unfolding transformation is formulated below and two theorems are given which state that the defined
unfolding transformation preserves the operational and logical semantics of CLP programs.

Definition 19 The unfolding transformation
Let P be a CLP program with the rules R1, · · · , Rn, such that
Rj : hj ← bj1 , · · · , bjmj

, cj (j = 1, · · · , n), where hj , bj1 , · · · , bjmj
are defined predicates, cj denotes the

conjunction of the atomic constraints appearing in the body of Rj.
Let R : h ← b1, · · · , bm, · · · , bk, c be a program clause in P , and R = {R1, · · · , Rq} be a set of program
clauses given new variables names such that the head of each Ri ∈ R (i = 1, · · · , q) and bm have the same
predicate symbol, and bm is selected by some computation rule.

10

Then the program P ′ after unfolding is :
P ′ = Unf(P,R, bm) = argument equations body(Rj)

= P \ {R} ∪ (
⋃

Rj∈R h←
︷ ︸︸ ︷
(bm = hj), b1, · · · , bm−1,

︷ ︸︸ ︷
bj1 , · · · , bjmj

, cj , bm+1, · · · , bk, c),
where bm = hj is an abbrevation for the conjunction of argument equations between the corresponding
argument positions of bm and hj.

We note that only defined predicates can be unfolded and no constraint predicates.

Now we can state our theorem about the operational semantics preservation.

Theorem 7 The operational semantics preservation of the unfolding transformation
Let P be a CLP program with the constraint domain 〈L,D〉, and with the rules R1, · · · , Rn such that
Rj : hj ← bj1 , · · · , bjmj

, cj (j = 1, · · · , n), where hj , bj1 , · · · , bjmj
are defined predicates and cj denotes the

conjunction of the atomic constraints appearing in the body of Rj.
Let � be a D-interpretation and let ∃−X̃

Q denote the existential closure of the formula Q except for the

variables X̃, which remain unquantified.

For every SLD-tree (P ∪ {G} where G = p(X̃)), for every clause R ∈ P and for every bm ∈ body(R)
defined predicate :

SS(P) = SS(P ′),
where P ′ = Unf(P,R, bm) and SS(P) = {p(X̃)← c | 〈p(X̃), ∅, ∅〉 →∗ 〈∅, C ′, C ′′〉,� |= c←→ ∃−X̃

C ′ ∧C ′′}
collects the answer constraints to simple goals p(X̃) with free variables X̃.
So an unfolding transformation preserves the operational semantics

Theorem 8 The logical semantics preservation
The unfolding transformation preserves the logical semantics (D-semantics) of CLP programs.

3.b The CLP SPEC algorithm

The CLP SPEC algorithm specializes Constraint Logic Programs with respect to positive and negative
examples by applying the unfolding transformation rule together with clause removal.

Theorem 9 The correctness of the CLP SPEC algorithm
The output P ′(n) of the CPL SPEC algorithm is a specialization of P with respect to E+ and E− if the
reason for the termination of the algorithm is not that no more unfolding steps can be applied. This also
means that P ′(n) is complete and consistent (i.e. it covers all positive examples and does not cover any
negative examples).

3.c The CLP SPEC SLICE algorithm

The algorithm CLP SPEC specializes clauses defining a target predicate by using different strategies for
selecting the literal to apply unfolding upon. The identification of a clause to be unfolded is of crucial
importance in the effectiveness of the specialization process [2]. If a negative example is covered by the
current version of the initial program there is supposedly at least one clause that is responsible for this in-
correct covering. In our algorithm CLP SPEC SLICE a debugging system combined with slicing technique
is used to identify a buggy clause instance. Afterwards this clause is removed from the initial program.

11

Theorem 10 The correctness of the CLP SPEC SLICE algorithm
The output P ′(n) of the CPL SPEC SLICE algorithm is a specialization of P with respect to E+ and E−

if the DEB SLICE algorithm is able to identify a buggy clause (otherwise the CLP SPEC algorithm can
be used to find the hypothesis) and the reason for the program termination is not that no more unfolding
steps can be applied.

�

5. LEARNING SEMANTIC FUNCTIONS OF ATTRIBUTE GRAMMARS

The relevant paper is: [27].

In the framework of compilation-oriented language implementation, Attribute Grammars (AG) [29,15,1]
are the most widely applied semantic formalism. Attribute Grammars are generalizations of the concept
of Context-Free Grammars [14]. The formalism of AGs has been widely used for the specification and im-
plementation of programming languages. Since the definition of an AG and its semantic functions may be
complex it is very useful to have an efficient tool for inferring semantic rules of AGs from examples. Based
on the correspondence between Attribute Grammars and Logic Programs [6] some of the learning tech-
nique developed for Logic Programs (ILP) could be applied to AGs. Introducing an AG based description
language in ILP leads to the definition of an Attribute Grammar Learner. In the dissertation we present a
parallel method for learning semantic functions of Attribute Grammars based on an ILP [19,16] approach.
The method presented is suitable for S-attributed and for L-attributed grammars, as well. The parallelism
can help to reduce the large number of user queries posed during an interactive learning session, so the
parallel method is more efficient in both execution time and interaction needed than the sequential one.

Definition 20 S-attributed Grammars
A special class introduced by Knuth [13] is the S−attributed grammars in which only synthesized attributes
are allowed.

Due to the restrictive form of S-attributed grammars, L− ordered grammars are used in practice.

Definition 21 L-attributed Grammars
An attribute grammar is said to be L-attributed if and only if each inherited attribute of Xp,j in the
production p : Xp,0 → Xp,1, . . . , Xp,np

depends only on the attrributes in the set
⋃

k∈{1,···,j−1} Inh(Xp,k) ∪
Syn(Xp,0) for j = 1, . . . , np.

AGLEARN [8] is an interactive method for learning semantic functions of attribute grammars. The method
uses background knowledge for learning semantic functions of S-attributed and L-attributed grammars.
The given context-free grammar and background knowledge allow one to restrict the space of relations and
give a smaller representation of data. The basic idea behind this method is that the learning problem of
semantic functions is transformed to a propositional form and the hypothesis induced by a propositional
learner can be transformed back into semantic functions. This approach was motivated by the fact that
there is a close relationship between attribute grammars and logic programs [6].
AGLEARN uses the same concept as Inductive Logic Programming (ILP) but has a different represen-
tation. The background knowledge and the concepts are represented in the form of attribute grammars.
One example contains a string which can be derived from the target nonterminal. We presuppose that
the underlying context-free grammar is given. The task of AGLEARN is to infer the semantic functions
associated with the production rule. In the learning process the grammar, background semantic functions
and the examples are made use of.

12

We developed a parallel method for learning semantic functions of AGs (using a general purpose multi
paradigm AG evaluator) based on the AGLEARN method. We handled the so-called circuity problem and
gave parallel algorithms for S-attributed and L-attributed grammars as well.

Thesis 4

Our method (PAGELEARN) is parallelized according to three aspects:

1. Every semantic rule of the target rules is learnt in parallel.
2. The Ag evaluator is a parallel parser, so the attributed tree built for the actual example is handled in

parallel. Moreover, this facility makes it possible to learn many semantic rules concurrently.
3. The concurrent learning of many semantic rules allows for the possibility of reducing the oracles needed

in the procedure. The total elimination of oracles is possible in cases when no circuity situation arrises.
While the main problem of the sequential system was the large number of the user queries, this method
improves the efficiency of the previous method from this aspect too. The reduction of user queries
depends (on the training examples) on the number of circuits appearing among the waiting rules during
the learning method.

6. SUMMARY OF THE AUTHORS CONTRIBUTION

I. Data Flow Analysis of Logic Programs:

The idea of applying the philosophy of a relevant slice to Logic Programs came from Tibor Gyimóthy.
The relevant papers were written in the main by myself, but the development of the main algorithm is a
common work of the authors. So, the the formalization of the algorithms, the necessary structures (Aug-
mented SLD-tree, Skeleton(n)), the exteneded slice definitions and the necessary theorems were made by
myself. The author assisted in the implementation of some ideas, but the main implementer was László
Harmath.

II. Data Flow Analysis of Constraint Logic Programs:

The relevant papers were written in the main by myself. Most of the results of this research topic were
made by myself too with supporting suggestions and ideas from Jan Ma�luszyński and Tibor Gyimóthy.
Jan Ma�luszyński proposed the semantic definition of a slice of a Constraint Set and he clarified some
formalisms. The main implementer was László Harmath.

III. Learning of Constraint Logic programs:

The relevant paper was written myself. The idea of examining the adaptability of the specialization tech-
nique for CLP programs came from Tibor Gyimóthy. The adaptation, the necessary theoretical background
(including the definitions of the unfolding transformation, the theorems about the logical and operational
semantics preservation) and also the formalization of the algorithms were made by myself. The implemen-
tation was done by myself and an informatics student.

IV. Learning Semantic Functions of Attribute Grammars:

This work was carried out by myself without the description of the PAGE system (parallel AG evaluator),
but this system is not relevant from the view of the formalised parallel method since it can be substituted
by an appropriate parallel AG parser.

13

7. RELATED PAPERS OF THE AUTHOR

[1] Szilágyi, Gy., Ma�luszyński, J., Gyimóthy, T., 2002. Static and Dynamic Slicing of Constraint Logic
Programs. Journal of Automated Software Engineering, Kluwer Academic Published, Vol. 9, No. 1, Jan
2002, pages 41-65.

[2] Szilágyi, Gy., Gyimóthy, T., Ma�luszyński J., 2000. Slicing of Constraint Logic Programs. In Proceedings
of the Fourth International Workshop on Automated Debugging (AADEBUG’2000), Munich, Germany,
pages 176-187.

[3] Szilágyi, Gy. and Thanos, A. M., 2000. PAGELEARN: Learning Semantic Functions of Attribute Gram-
mars in Parallel. Journal of Computing and Information Technology (C.I.T.), Vol. 8, No. 2, pages 115-131.

[4] Szilágyi, Gy., Harmath, L. and Gyimóthy, T., 2001. Debug Slicing of Logic Programs. Acta Cybernetica,
Vol. 15, No.2, pages 257-278 .

—————–

[5] Harmath, L., Szilágyi, Gy. and Gyimóthy, T., 2000. Debug Slicing of Logic Programs. Conference of
PhD Students on Computer Sciences 2000, Hungary, pages 43-44.

[6] Harmath, L., Szilágyi, Gy., Gyimóthy, T., Csirik, J., 1999. Dynamic Slicing of Logic Programs. In
Poceedings of the Program Analysis and verification, Fenno- Ugric Symposium (FUSST’99), Tallin, Esto-
nia, pages 101-113.

[7] Szilágyi, Gy. and Gyimóthy, T., 2003. Learning of Constraint Logic Programs by Combining Unfolding
and Slicing. Submitted to AI Communications, The European Journal on Artificial Intelligence.

[8] Szilágyi, Gy., Gyimóthy, T. and Ma�luszyński, J., 1998. Slicing of Constraint Logic Programs. Technical
Report, Linköping University Electronic Press 1998/020,
www.ep.liu.se/ea/cis/1998/020.

Other Papers:

[9] Juhos, I., Szilágyi, Gy., Csirik, J., Szarvas, Gy., Szeles, T., Kocsis, A., Szegedi, A., 2002. Time Series
Prediction Using Artificial Intelligence Methods. In Proceedings of Conference of PhD Students in Com-
puter Science (CS2 2002), Szeged, Hungary.

[10] Hócza, A., Szilágyi, Gy. and Gyimóthy, T., 2002. LL Frame System of Learning Methods. In Proceed-
ings of Conference of PhD Students in Computer Science (CS2 2002), Szeged, Hungary.

14

References

[1] Alblas, H., 1991. Introduction to Attribute Grammars. LNCS 545, Springer Verlag.

[2] Alexin, Z., Gyimóthy, T., Boström, H., 1996. IMPUT: An Interactive Learning Tool based on Program Specialization
submitted to the Intelligent Data Analysis Journal published by the Elsevier Ltd.

[3] Boström, H. and Idestam-Almquist, P., Specialization of Logic Programs by Pruning SLD-trees. Proceedings of the
Fourth International Workshop on Inductive Logic Programming (ILP-94), Bad Honnef/Bon, Germany, pages 31-47.

[4] Boye, J. Paakki, J. and Ma�luszyński, J., 1993. Dependency-Based Groundness Analysis of Functional Logic Programs.
Research Report LiTH-IDA-R93-20, Department of Computer and Information Science, Linköping University.

[5] Boye, J. Paakki, J. and Ma�luszyński, J., 1993. Synthesis of Directionality Information for Functional Logic Programs.
In Proceedings of 3rd International Workshop on Static Analysis, LNCS 724, Springer-Verlag, pages 165-177.

[6] Deransart, P. and Ma�luszyński, J., 1993. A grammatical view of logic programming. The MIT Press.

[7] Gyimóthy, T. Beszédes, À. and Forgács, I., 1999. An Efficient Relevant Slicing Method for Debugging. In Proceedings
of the 7th European Software Engineering Conference (ESEC’99), LNCS 1687 Springer Verlag, Toulouse, France, pages
303-322.

[8] Gyimóthy, T. and Horváth, T., 1997. Learning Semantic Functions of Attribute Grammars. Nordic Journal of Computing,
Vol. 4 (1997), pages 287-302.

[9] Harmath, L., Szilágyi, Gy., Gyimóthy, T., Csirik, J., 1999. Dynamic Slicing of Logic Programs. In Proceedings of the
Program Analysis and verification, Fenno- Ugric Symposium (FUSST’99), Tallin, Estonia, pages 101-113.

[10] Harmath, L., Szilágyi, Gy. and Gyimóthy, T., 2000. Debug Slicing of Logic Programs. Conference of PhD Students on
Computer Sciences 2000, Hungary, pages 43-44.

[11] Horwitz, S. and Reps, T., 1992. The Use of Program Dependence Graphs in Software Engineering. In Proceedings of the
Fourteenth International Conference on Software Engineering, Melbourne, Australia, pages 392-411.

[12] Jaffar, J. and Maher, M.J., 1994. Constraint logic programming: A Survey. The Journal of Logic Programming, 19/20,
pages 503-582.

[13] Knuth, Donald E., 1968. Semantics of Context-Free Languages. Mathematical Systems Theory, volume 2, number 2,
pages 127 -145.

[14] Knuth, Donald E., 1968. Semantics of Context-Free Languages, correction. Mathematical Systems Theory, Volume 5,
Number 1, pages 95 - 96.

[15] Knuth, Donald E., 1990. The Genesis of Attribute Grammars. In Proceedings of the International Conference on Attribute
Grammars and their Applications, Springer-Verlag, LNCS, 1990, Volume 461, pages 1 - 12.

[16] Lavrac, N. and Dzeroski, S., 1994. Inductive Logic Programming: Techniques and Applications. Ellis Horwood.

[17] Lloyd, J.W., 1987. Foundations of Logic Programming, Spinger Verlag.

[18] Marriott, K. and Stuckey, P.J., 1998. Programming with Constraints. An Introduction. The MIT Press.

[19] Muggleton S., 1994. Inductive Logic Programming. The ACM Press.

[20] Nilsson, U. and Ma�luszyński, J., 1995. Logic, Programming and Prolog. John Wiley and Sons Ltd.

[21] Pereira, L.M. and Calejo, M., 1988. A Framework for Prolog Debugging. In Proceedings of ICLP/SLP‘88, pages 481-495.

[22] Shapiro, E., 1983. Algorithmic Debugging. The MIT Press.

[23] Szilágyi, Gy., Harmath, L. and Gyimóthy, T., 2001. Debug Slicing of Logic Programs. Acta Cybernetica, Vol. 15, No.2,
pages 257-278.

[24] Szilágyi, Gy., Ma�luszyński, J., Gyimóthy, T., 2002. Static and Dynamic Slicing of Constraint Logic Programs. Journal
of Automated Software Engineering, Kluwer Academic Published, Vol. 9, No. 1, Jan 2002, pages 41-65.

[25] Szilágyi, Gy., Gyimóthy, T., Ma�luszyński, J., 2000. Slicing of Constraint Logic Programs. In Proceedings of the Fourth
International Workshop on Automated Debugging (AADEBUG’2000), Munich, Germany, pages 176-187.

[26] Szilágyi, Gy., Gyimóthy, T. and Ma�luszyński, J., 1998. Slicing of Constraint Logic Programs. Technical Report, Linköping
University Electronic Press 1998/020, www.ep.liu.se/ea/cis/1998/020.

[27] Szilágyi, Gy. and Thanos, A. M., 2000. PAGELEARN: Learning Semantic Functions of Attribute Grammars in Parallel.
Journal of Computing and Information Technology (C.I.T.), Vol. 8, No. 2, pages 115-131.

[28] Szilágyi, Gy. and Gyimóthy, T., 2003. Learning of Constraint Logic Programs by Combining Unfolding and Slicing.
Submitted to AI Communications, The European Journal on Artificial Intelligence.

[29] Wilhelm, R., 1979. Attributierte Grammatiken. Informatik Spektrum, Volume 2, pages 123 - 130.

15

