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2 ABSTRACT

Besides the imperative programming paradigm an other main type is the declarative paradigm.
Declarative Programming requires a more descriptive style than imperative ones. The program-
mer must know what relationship holds between various entities.

This dissertation concentrates on three declarative paradigms, namely Logic Programming (LP)
[50, 44], Constraint Logic Programming (CLP) [46, 32] and Attribute Grammars (AG) [1]. There
is a close relationship between Attribute Grammars (AG) and Logic Programming (LP) [14], and
Logic Programming (LP) can be viewed as a special case of Constraint Logic Programming (CLP)
[32].

One of the results of this dissertation is the slicing of Logic and Constraint Logic Programs. Slicing
[29] is a program analysis technique which facilitates a better understanding of data flow and debug-
ging. Intuitively, a program slice with respect to a specific variable at some program point contains
all those parts of the program that may affect the value of the variable or may be affected by the value
of the variable.

In this thesis a dynamic dicing algorithm for Logic Programs [78, 28, 27] is defined augmenting the
data flow analysis with control flow dependences to help one locate the connected components of the
program and the source of a bug. A general slice definition is provided which is valid for the success
and failure branches of the SLD-tree as well. The extension of the data flow analysis for the failure
branches of the SLD-tree helps improve the existing debugging techniques. It can help to detect dead
code and is useful in program maintenance.

Congtraint Logic Programming (CLP) [32, 46] is a fusion of two declarative paradigms, namely
Constraint Solving and Logic Programming. In this thesis we lay the theoretical foundations for the
dicing of Constraint Logic Programs [74, 75, 76], which will provide a basis for defining techniques
based on variable sharing.

Inductive Constraint Logic Programming (ICLP) is a research topic that combines the theory and
results of CLP [32, 46] and Machine (Inductive) Learning (ILP) [49, 42]. In this dissertation a spe-
cialization technique is provided for learning of CLP programs [79]. The specialization method
combines unfolding, clause removal and as an improvement of the algorithm, slicing. We lay the the-
oretical foundations for specializing CLP programs, state the associated theorems, and prove that the
defined unfolding transformation preserves the operational and logical semantics of CLP programs.
Attribute Grammars (AG) [91, 38, 1] are a generalization of the concept of Context-Free Grammars
[36]. In the framework of compilation oriented language implementation, Attribute Grammars (AG)
are the most widely applied semantic formalism. Efficient techniques for learning Attribute Gram-
mars can help us find good definitions of AGs, which usually require a lot of effort.

Based on the correspondence between Attribute Grammars and Logic Programs [14], some of the
learning technique developed for Logic Programs (ILP) [49, 42] could be applied to AGs. We intro-
duced an AG based description language in ILP and defined a parallel method for learning semantic
functions of Attribute Grammars (AGs) [77]. This parallelism can help provide a more efficient ap-
proach than the sequential one, in both execution time and interactions needed.



3 INTRODUCTION

Besides the imperativeprogramming paradigm an other main type is the declarative
paradigm. Declarative programs state what a program will do, as opposed to imperative
programs where the emphasis on how the program will do it. As a result, declarative pro-
grams are closer to user requirements, and in general much shorter and easier to understand
and reason with.

The first implementations of declarative programming languages dates back to the mid
1960’s with the McCarthy invention of LISP (1958). Since then Prolog (1972), Standard
ML (1984) and many other systems have paved the way the use of declarative programming
as practicle tools.

This dissertation deals with four main subjects in the domain of declarative paradigms,
namely the data flow analysis and slicing of Logic Programs [78, 28, 27], data flow
analysis and slicing of Constraint Logic Programs [74, 75, 76], learning of Constraint
Logic Programs [79] and learning semantic functions of Attribute Grammars [77].
There is close relationship between these areas [53, 54], in [14] a grammatical view (AG)
of Logic Programming (LP) is provided, and Logic Programming (LP) can be viewed as a
special case of Constraint Logic Programming (CLP) [32].

Based on these correspondence some of the learning technique developed for Logic Pro-
grams (ILP) could be applied to AGs, and learning methods of Logic Programs can be
adopted for CLP programs and vice versa.

3.1 Data Flow Analysis of Logic Programs

The idea of Logic Programming (LP) [50, 44] is to use a computer for drawing conclusions
from declarative descriptions. Such descriptions -called Logic Programs - consist of finite
sets of logic formulas. In order to be able to apply a relatively simple and powerful inference
rule (called the SLD-resolution principle), restrictions are introduced on the language of
formulas.

Prolog [50], which is a well-known logic programming language, is based on first-order
predicate logic. It uses a restricted form of formulas called Horn clauses.

The Data flow analysis of Logic Programs plays an important role for example in
debugging, testing and program maintenance.

Slicing [29]is a program analysis technique originally developed for imperative languages.
It can be applied in a number of software engineering tasks, is a natural tool for debugging,
is useful in incremental testing, and can help to detect dead code or to find parallelism
in programs [56, 73]. Intuitively, a program slice with respect to a specific variable at
some program point contains all those parts of the program that may affect the value of
the variable (backward slice) or may be affected by the value of the variable (forward
slice). Data flow in logic programs is not explicit, and for this reason the concept of a slice
and the slicing techniques of imperative languages are not directly applicable. Moreover,
implicit data flow makes the understanding of program behavior rather difficult. Thus
program analysis tools explaining data flow to the user are of great practical importance.
One of the results of our research is the extension of the scope and optimality of previous
algorithmic debugging techniques of Prolog programs [69] using slicing techniques based
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on a dependence graph. We provide a dynamic slicing algorithm augmenting the data flow
analysis with control flow dependences to help one locate the connected components of a
program and the source of a bug included in the program.

A general slice definition is provided which is valid for the success and failure branches of
the SLD-tree, as well. The extension of the data flow analysis for the failure branches of the
SLD-tree helps improve existing debugging techniques, it can help one detect dead code
and is useful in program maintenance.

A tool has been developed for debugging Prolog programs which also handles specific
programming techniques (cut, if-then, or).

The relevant papers of the author for this are: [78, 28, 27].

3.2 Data Flow Analysis of Constraint Logic Programs

One other significant result of this dissertation is the slicing of Constraint Logic Programs.
Constraint Logic Programming (CLP) [32, 46] is an emerging software technology with
a growing number of applications. It has the power to tackle those difficult combinatorial
problems encountered for instance in job scheduling, timetabling, and routing which stretch
conventional programming techniques to their limit.

Constraint Logic programming is a fusion of two declarative paradigms: constraint solving
and logic programming. The framework extends classical logic programming [50, 44] by
removing the restriction on programming within the Herbrand universe alone; unification is
replaced by the more general notion of constraint satisfaction.

Data flow in constraint programs is not explicit, and for this reason the concepts of slice and
the slicing techniques of imperative languages [4, 29, 30, 31] are not directly applicable.
This part of this work formulates declarative notions of slice suitable for CLP. (The
problem of finding minimal slices may be undecidable in general, since satisfiability itself
may be undecidable.) These definitions provide a basis for defining slicing techniques
(both dynamic and static) based on variable sharing. The techniques are further extended
by using groundness information.

A prototype dynamic slicer of CLP programs which implements the idea presented above is
briefly described together with the results of some slicing experiments.

The aim of this dissertation was to lay the precise theoretical background of the vari-
ous slicing methods of Logic and Constraint Logic Programs and not to provide a detailed
description of the implementation.

The relevant papers of the author for this are: [74, 75, 76].

3.3 Learning of Constraint Logic Programs

Inductive Constraint Logic Programming (ICLP) is a new research topic on the inter-
section of Constraint Logic Programming (CLP) [32, 46] and Inductive Logic Programming
(ILP) [49, 42].

Inductive Logic Programming (ILP) refers to a class of machine learning algorithms
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where the agent learns a first-order theory from examples and background knowledge. The
use of first-order logic programs as the underlying representation makes ILP systems more
powerful and useful than the conventional propositional machine learning systems, but they
are weak in handling numerical data.

CLP languages make logic programs run very efficiently by focussing on a particular prob-
lem domain and they are good at handling numerical data as well.

This dissertation discusses the specialization of Constraint Logic Programs by applying
unfolding, and as an improvement of the method, by combining unfolding with slicing tech-
nique. The transformation rule unfolding together with clause removal is a method (called
SPECTRE [7]) for specialization of Logic Programs (LP).

Logic programming can be viewed as a special case of constraint logic programming, while
CLP extends logic programs with constraints. This is a substantial extension, so CLP not
only has syntactics distinct from LP but also distinct semantics.

In this part of the thesis we first formulate the exact definitions of the basic elements of an
unfolding learning algorithm such as the specialization and unfolding transformation of CLP
programs, providing their semantics as well. We prove that the unfolding transformation de-
fined preserves the operational and logical semantics of CLP programs.

Another result is the exact formalization of the specialization method (CLP_SPEC) and the
proof of the correctness of the algorithm based on the logical and operational semantics of
CLP programs.

Yet another result is that an improved interactive version of the specialization algorithm has
been defined which integrates an algorithmic debugging algorithm and the slicing method
with the specialization algorithm for CLP programs.

A prototype learner of LP and CLP programs implementing the presented ideas is briefly
described.

The relevant paper of the author for this is: [79].

3.4 Learning Semantic Functions of Attribute Grammars

In the framework of compilation oriented language implementation, Attribute Grammars
(AG) [91, 38, 1] are the most widely applied semantic formalism. Attribute Grammars are
generalizations of the concept of Context-Free Grammars [37]. The formalism of AGs has
been widely used for the specification and implementation of programming languages. Since
the definition of an AG and its semantic functions may be complex it is very useful to have
an efficient tool for inferring semantic rules of AGs from examples. Based on the corre-
spondence of Attribute Grammars and Logic Programs [14] some of the learning technique
developed for Logic Programs (ILP) could be applied to AGs. Introducing an AG based
description language in ILP implies the definition of an Attribute Grammar Learner. In this
dissertation we present a parallel method for learning semantic functions of Attribute
Grammars based on an ILP [49, 42] approach. The method presented is suitable for S-
attributed and for L-attributed grammars, as well. The parallelism can help to reduce the
large number of user queries posed during the interactive learning process, so the parallel
method is more efficient in both execution time and interaction needed than the sequential
one.

The relevant paper of the author for this is: [77].
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3.5 Organization of this Dissertation

This dissertation is organized as follows.
After the abstract and a general introduction about the scope, golas and main results of
this work, we grouped the results into four main themes:

I. Data flow analysis of Logic programs (including Chapters 4, 5 and 6.)

I1. Data flow analysis of Constraint Logic programs (including Chapters 7 and 8)
I11. Learning of Constraint Logic programs (including Chapter 9.)

IV. Learning semantic functions of Attribute Grammars (including Chapter 10.)

Basic concepts of Logic Programming (LP) and Prolog (such as syntax, semantics,
derivation tree, SLD-tree and algorithmic debugging) are reviewed in Chapter 4.

A general introduction about slicing is provided in Chapter 5.

One of the main result of this thesis, the Debug slicing of Logic Programs is discussed in
Chapter 6.

The second main part of the thesis (Il) includes an introduction to Constraint Logic
Programs (CLP) (syntax, semantics, derivation and SLD-tree - see Chapter 7), and the
detailed description of the slicing of Constraint Logic Programs (Chapter 8).

The results of Chapter 8 are then also used in Chapter 9, which lays the theoretical
foundations and formalizes two learning methods of Constraint Logic Programs.

In Chapter 10 a parallel learning method of semantic functions of Attribute Grammars is
introduced.

Finally, Chapter 11 and 12 contains a summary of this thesis (written in English and
Hungarian) including a list of the new results (definitions, theorems and algorithms) of this
research.

A list of the related papers of the author (Chapter 13) and the Bibliography is included
at the end of the thesis.

An extended abstract of the thesis (about 15 pages) written in Hungarian and English is
also included with the dissertation.



Part |

DATA FLOW ANALYSIS OF
LOGIC PROGRAMS

The results of this part of the thesis are covered in [78, 28, 27].



4 Logic Programming and Prolog

The idea of logic programming is to use a computer for drawing conclusions from declar-
ative descriptions. Such descriptions -called logic programs - consist of finite sets of logic
formulas. Thus, the idea has its roots in the research on automatic theorem proving. In order
to be able to apply a relatively simple and powerful inference rule (called the SLD-resolution
principle), restrictions are introduced on the language of formulas.

This chapter introduces a restricted language of definite logic programs, their semantics and
computational principles.

4.1 Syntax of Logic Programs

From the syntactic point of view logic formulas are finite sequences of symbols such as
variables, functors and predicate symbols. Thus the alphabet of the language of the language
of predicate logic consists of the following classes of symbols:

e variables, which will be represented by an upper case letter followed by a string of
lower case letters and/or digits. Examples of variables are X, List.

e function symbols, which are alphanumeric identifiers represented by a lower case
letter followed by a string of lower case letters and/or digits, and associated with an
arity > 0. An example of a function is f(X')/1 where 1 is the arity of f.

e constants, which include integers and atoms; a constant is a function symbol of arity
0. The symbol for an atom can be any sequence of characters. Examples of constants
are mother, peter.

e predicate symbols, which are alphanumeric identifiers represented by a lower case
letter followed by a string of lower case letters and/or digits, and associated with an
arity > 0. An example of a predicate is p(X, Y") /2 where 2 is the arity of p.

¢ logical connectives, which are A (conjunction), Vv (disjunction), — (negation), — (im-
plication) and < (logical equivalence).

e quantifiers: V (universal) and 3 (existential).

e auxiliary symbols like parentheses, commas.

Sentences of natural language consist of words where objects of the described world are rep-
resented by nouns. In the formalized language of predicate logic objects will be represented
by strings called terms whose syntax is defined in the following way:

Definition 1 Terms
The set T" of terms over a given alphabet A is the smallest set such that:

e any constantin AisinT

e anyvariablein AisinT
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e if f/nisafunctorin Aandty,---,t, € T then f(ty,--- ,t,) € T.

Thus f(g(X), head) is a term when f, g and head are function symbols and X is a variable.

In natural language only certain combinations of words are meaningful sentences. The coun-
terpart of sentences in predicate logic are special constructs built from terms. These are
called formulas or well-formed formulas (wff) and their syntax is defined in the following
way:

Definition 2 Formulas
Let 7" be the set of terms over the alphabet A. The set F' of wff (with respect to A) is the
smallest set such that:

e if p/n is a predicate symbol in Aand ¢,--- ,t, € T thenp(ty,---,t,) € F
e ifGiand Gy € F'thensoare (—G,), (G1AG3), (G1VGL), (G + Gs) and (G + Gs)
e if G € Fand X isavariable in A then (VXG) and (3XG) € F

A predicate symbol immediately followed by a bracketed n-tuple of terms (p(t1, - - ,t,)) is
called an atomic formula (or simply atom).

Definition 3 Bound Variables

Let F' be a formula. An occurrence of the variable X in F'is said to be bound either if the
occurrence follows directly after a quantifier or if it appears inside the subformula which
follows directly after ’V.X"” or ”3.X". Otherwise the occurrence is said to be free.

Definition 4 Closed and Ground Formulas
A formula with no free occurrences of variables is said to be closed. A formula or term
which contains no variables is called ground.

We will deal with a special type of declarative sentences of natural language that describe
positive facts and rules. A sentence of this type either states that a relation holds between
individuals (in the case of a fact), or that a relation holds between individuals provided that
some other relations hold (in the case of a rule).

Definition 5 Horn Clauses
Let h,aq,---,a, be atomic formulae for some m > 0 and let X, --- , X; be all variables
occurring in these formulae.
Then the formula
VXy - VX (h<—a A Nay,)
or equivalently:
VX VX (A V —a Ve Vo—ay,)
is called a definite clause.
If m = 0 the formula is called a fact.
The atomic formula A is called the head of the clause, while a4, - - - , a,, is called its body.
Since all variables of a definite clause are universally quantified we can omit the quantifiers,
and comma is used instead of A,
So a definite clause can be written in the following form:
h <+ ay,---,an.
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Definition 6 Goal

A goal is a definite clause with empty head:
— Gy, Gy

or equivalently:
-Gy V- VoG,

where G; (¢t = 1,-- -, n) are atoms.

Definition 7 A (Definite) Logic Program
A logic program is a finite set of definite clauses having the form

hy < ag,, -+ a5, (k=1,-+- n;m>=0),

where hy, ay,, -+ ,ag, (k=1,---,n) are atoms.

The following simple example makes use of the above definitions.
Example 1 Consider the following simple logic program:

1. daughter(X,Y) : - female(X), parent(Y,X).

2. female (mary).
3. parent (ann,mary) .

The clause
1. daughter(X,Y) : - female(X), parent(Y,X).

is a definite clause, which corresponds to the following logical formula:
VXVY (daughter(X,Y) V = female(X) V —parent(Y, X))

Afactis:
2. female (mary).

A possible goal could have the following form:
- daughter (X, mary) .

— which means ’who is the daughter of mary?”’

4.2 Semantics of the Formulas

The previous section introduced the language of formulas as a formalization of a class of
declarative statements of natural language. This section discusses the meaning of these
formulas. In order to give the logical semantics of the program clauses (formulas) we have
to define the notion of interpretation, semantics of terms, facts and program clauses.

Definition 8 Interpretation
An interpretation ¥ of an alphabet A is a nonempty domain D and a mapping that asso-
ciates:
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e each constant ¢ € A with an element ¢ € D
e each n-ary function f € A with a function fg : D" — D

e each n-ary predicate symbol p € IT with a relationpg C D x --- x D

The interpretation of constants, functions and predicate symbols provides a basis for assign-
ing truth values to formulas of the language. The meaning of a formula will be defined as a
function of the meanings of its components. First the meaning of terms will be defined since
they are components of formulas. Since terms may contain variables the auxiliary notion of
valuation is needed too.

Definition 9 Valuation
A valuation of a set .S of variables of an alphabet A is a mapping ¢ from S to the interpre-
tation domain D.

Thus, a valuation is a function which assigns objects of an interpretation to variables of the
language.

Definition 10 Semantics of terms
Let & be an interpretation with the domain D, ¢ a valuation and ¢ a term. Then the meaning
@g(t) of ¢ is an element in D defined as follows:

e if ¢ isa constant c then pg(t) := cg
e if ¢ isavariable X then pg(t) := ¢(X)
o iftisoftheform f(ty,--- 1) then ps(t) == fa(ps(tr), - ps(tn)).

Notice that the meaning of a compound term is obtained by applying the function denoted
by its main functor to the meanings of its principal subterms, which are obtained by
recursive application of this definition.

The meaning of a formula ) with respect to interpretation & and valuation ¢ is a truth value
denoted by ¥ =, Q. The meaning depends on the components of the formula. So the
semantics of clauses (the corresponding logical formulas) is defined based on the semantics
of predicates, facts, logical connectives and quantors.

Definition 11 Semantics of formulas (logical form of clauses)
Let & be an interpretation , ¢ a valuation and ) a formula (a logical form of a definite
clause). The meaning of ¢ with respect to S and ¢ is defined as follows:

o Iy plty, - 1) iff (ps(tr), - ws(tn)) € ps
° Sy (RF)iff (S =, F)
e S, (FAG)IffS =, FandS =, G
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S, (FVQ)IiffS =, ForS =, G

S =, (F = G) iff S =, G whenever S =, F

(
(
S, (Fe6)iff =, (F—-G)andS =, (G — F)
o S, (VXF)Iiff S =y xy F foreveryt € D

(

Sy (AXF)Iff S =yxy F forsomet € D

Model and Logical Consequence

The semantics of formulas as defined above relies on the auxiliary concept of valuation,
which associates variables of the formulas with elements of the domain of the interpretation.
It is easy to see that the truth value of a closed formula depends only on the interpretation.
Since the valuation is of no importance for closed formulas it will be omitted when
considering the meaning of such formulas.

Given a set of closed formulas P and an interpretation < it is natural to ask whether
the formulas of P give a proper account to the ”world” described by P. This is the case if
all formulas of P are true in &

Definition 12 Model

An interpretation < is said to be a model of a closed formula @ iff @ is true in & (denoted
I E @ - the formula is closed so ¢ can be omitted).

¥ is a D-model of a set of formula if it is model of every formula in the set.

Definition 13 Logical Consequence
Let P be a set of closed formulas. A closed formula F' is called a logical consequence of P
(denoted P = F) iff F is true in every model of P.

It may be rather difficult to prove that a formula is a logical consequence of a set of formulas.
The reason is that one has to use the semantics of the language of formulas and to deal with
all models of the formulas.

One possible way to prove P = F is to show that —F is false in every model of P, or put
alternatively, that the set of formulas P U {—F'} is unsatisfiable (has no model).

Theorem 1 Unsatisfiability
Let P be a set of closed formulas and F' a closed formula. Then P = Fiff PU {—-F} is
unsatisfiable.

The SLD- resolution is an inference rule which is appropriate for creating logical conse-
quences just by the symbolic manipulation of a set of formulas, and is based on the above
proposition.

Definite programs can only express positive knowledge. Therefore using the language of
definite programs, it is not possible to construct contradictory descriptions, i.e. unsatisfiable
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set of formulas. In other words every definite program has a model. It can be shown that
every definite program has a well defined least model (with respect to the subset ordering).
We will focus on models of a special ones known as Herbrand models.

Definition 14 Herbrand universe and Herbrand base

Let A be an alphabet containing at least one constant symbol. The set U4 of all ground
terms constructed from functions and constants in A is called the Herbrand universe of A.
The set B4 of all ground, atomic formulas over A is called the Herbrand base of A.

The Herbrand universe and Herbrand base are often defined for a given program. In this
case it is assumed that the alphabet of the program consists of exactly those symbols which
appear in the program. It is also assumed that the program contains at least one constant.

Definition 15 Herbrand interpretation
A Herbrand interpretation of P is an interpretation < such that:

The domain of &'is Up.

For every constant ¢, cg is defined to be c itself.

For every n-ary function f the function fs is defined as follows:

f%(Xla e 7Xn) = f(X17 e 7Xn)
That is, the function f5 is applied to n ground terms composes them into the ground
term with the principal function f.

For every n-ary predicate symbol p the relation pg is a subset of U7 (the set of all
n-tuples of ground terms) such that

ps = {({ty, - tw) €U [ S EP(t, - ta) ).

Definition 16 Hebrand model
A Herbrand model of a set of (closed) formulas is a Herbrand interpretation that is a model
of every formula in the set.

For the restricted language of definite programs, it turns out that in order to determine
whether an atomic formula A is a logical consequence of a definite program P it suffices
to check that every Herbrand model of P is also a Herbrand model of A.

Theorem 2 Hebrand model
Let P be a definite program and G a definite goal. If I is a model of P U {G} then
S:={A € Bp|I [ A} isaHebrand model of P U {G}.

Theorem 3 Model I ntersection Property
Let M a non-empty family of Hebrand models of a definite program P. Then the intersection
& := [ M is a Herbrand model of P.
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Theorem 4 The least Herbrand model

The least Herbrand model M p of a definite program P is the set of all ground atomic logical
consequences of the program.

That is, Mp = {A € Bp | P ): A}

Emden and Kowalski [16] created a consequence operator for constructing the least Her-
brand model:

Definition 17 Immediate Consequence Operator
Let ground(P) be the set of all ground instances of clauses in P. Tp is a function of
Herbrand interpretations of P defined as follows:

Tp(I):={Ag | Ay Ay, , Ay € ground(P) N {Ay, - A} C I}

For definite programs it can be shown that there exists a least interpretation & such that
Tp(¥) = I and that S is identical with the least Herbrand model Mp.

Substitutions

Definition 18 Substitution

A substitution is afinite set (possible empty) of pairs of the form X/¢, where X is a variable
and ¢ is a term and all the variables X are distinct. For any substitution 0 = {X; —
t1,--+, X, — t,} and term s, the term so denotes the result of replacing each occurrence
of the variable X; by t; (: = 1,--- ,n). The term so is called an instance of s.

Definition 19 Clause instance
A For any substitution o the clause co = (h : —by,--- ,b,)0 = ho : —bjo,--- ,b,0 IS
called an instance of the clause c.

Definition 20 Composition of substitutions
Let & and o be two substitutions:
0:={X1/s1,- -, Xm/Sm}, 0 ={Y1/t1,--- Yo/t }.
The composition o of § and o is obtained from the set:
0:={X1/s10, -, Xpn/Smo, Y1/t1, -+, Yo/ /tn}
by removing all X;/s;o for which X; = s;0 (1 <4 < m) and by removing those Y;/t; for
whichY; € {Xy, -+, X} (1 <j <n).

Definition 21 Unifiers

A substitution o is called a unifier for two terms s; and s, if s;0 = sy0. Such a substitution
is called the most general unifier of s; and s, if for any other unifier oy of s; and ss, s10y
is an instance of s,0.

If two terms are unifiable they have a unique most general unifier.
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Example 2 Let ¢; be a clause:

c1: daughter(X,Y) : - female(X), parent(Y,X).
and
o = {X/mary,Y/ann} a substitution.
Then,
ci0 =daughter (mary,ann) : - female (mary),parent (ann,mary).
Let ¢3 be an other clause (fact):
c3: parent (ann,mary) .

Then o is a unifier of ¢ and parent (Y, X).

4.3 SLD Resolution

In the previous chapter the model-theoretic semantics of definite programs was discussed.
The SLD-resolution principle, whose basis was first introduced by J. A. Robinson in the
mid-sixties, makes it possible to draw correct conclusions from the program, thus providing
a foundation for a logically sound operational semantics.

A computation of a logic program P [69] can be described informally as follows. The
computation starts from some initial goal g and can have two results: success or failure. If a
computation succeeds, then the final values of the variables in g are considered as the output
of the computation. A given goal can have several successful computations, each resulting
in a different output.

The computation progresses via nondeterministic goal reduction, and at each step we have
some current goal G = g¢1,---,¢9,. Aclause C = a < by,---,by Iin P is then chosen
nondeterministically; the head of the clause « is then unified with g,, say, with substitution
o, and the reduced goal is G’ = (b1, -, bk, g2, -+ ,gn)o. Then G' is said to be derived
from GG and C'. The computation terminates when the current goal is empty.

Definition 22 Derivation

Let P be a logic program and G a goal. A derivation of G from P is a possible infinite
sequence of triples < G;,C;,0; >, 1 = 0,1, --- such that G, is a goal, C; is a clause in P
with new variable symbols not occurring previously in the derivation, o; is a substitution,
Gy = G, and G, is derived from G; and C; with substitution ¢;, for : > 0. A computation
rule R is used for choosing a goal to be unified at each step.

Definition 23 An SLD-refutation

If there is a derivation of G from P such that G; = < (the empty goal) for some [ > 0 we say
that P succeeds on G and this kind of derivation is called an SLD-refutation. We assume
by convention that in such a case C;, = { and o, = {}.

Definition 24 Failed derivation
A derivation of a goal clause G, whose last element is not empty and cannot be resolved
with any clause of the program is called a failed derivation.

Definition 25 Computed answer substitution
The computed substitution of an SLD-refutation of GG, restricted to the variables in G is
called a computed answer substitution for .
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All such derivations may be represented by a possibly infinite tree called the SLD-tree of G,
(using P and R).

Definition 26 SLD-tree
Let P be a definite program, G, a definite goal and R a computation rule. The SLD-tree of
Gy (using P and R) is a (possible infinite) labelled tree satisfying the following conditions:

e the root of the tree is labelled by G

e if the tree contains a node labelled by G; and there is a renamed clause C; € P such
that G, is derived from GG; and C; via R then the node labelled by G; has a child
labelled by G;, ;. The edge connecting them is labelled by C;.

It can be proved that the SLD-resolution is correct (the conclusions produced by the system
are correct, i. e. they are logical consequences of the program) and complete.

Theorem 5 Soundness of SLD-resolution

Let P be a definite program, R a computation rule and ¢ an R-computed answer substitution
for a goal <~ Ay,---, A, Then V((+ Ay,---,A,)0) is a logical consequence of the
program.

The completeness answer whether all correct answers for a given goal (i.e. all logical con-
sequences) can be obtained by the SLD-resolution.

Theorem 6 Completeness of SLD-resolution

Let P be a definite program, «+ Aq,---, A, a definite goal and R a computation rule.
If P =V((+ A1 A--- A Ap)o), there exists a refutation of <— Ay, ---, A, via R with the
computed answer substitution 6 such that (A; A---A Ay )o isan instance of (A; A---AA,,)6.

4.4 Derivation Tree

One branch of the SLD-tree can be represented by another structure called a derivation tree.

Definition 27 Derivation Tree
For a program P a derivation tree is any labeled, ordered tree 7" such that

1. Every node is labeled by an instance name of a clause of P.

2. Let n be a node labeled by an instance name < ¢,o >, where c is the clause h «+

a,- -, ay, (m > 0)and o is asubstitution. Then n has m children, fori =1,--- ,m,
the -th child of » being labeled < ¢}, o] >, where ¢} is a clause with head A} such that
a;o = hio;.

The reasoning behind this definition is that every tree is obtained by combining appropriate
instances of program clauses. The precise meaning of “appropiate instances” is expressed
in condition 2. A logic program defines a set of derivation trees. This may be viewed as a
semantic of definite programs.
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4.5 Prolog

Prolog is a simple but powerful programming language developed at the University of Mar-
seille [65] as a practical tool for programming in logic [41]. Prolog [50] is a logical and a
declarative programming language that has been successfully applied in a number of com-
mercial applications including telecommunications, CAD, digital design, electronics design,
process scheduling, manufacturing design, train dispatching, legal reasoning, expert sys-
tems, theorem proving, and natural language processing.

The name itself, Prolog, is short for PROgramming in LOGic. Prolog’s heritage includes
the work on theorem provers and other automated deduction systems developed in the 1960s
and 1970s.

Prolog is the major example of a fourth generation programming language supporting the
declarative programming paradigm. The Japanese Fifth-Generation Computer Project, an-
nounced in 1981, adopted Prolog as a development language.

There are a number of different Prolog-implementations nowdays. The M-Prolog system
was developed by Hungarian researchers [17, 18]. Here we have used Sicstus Prolog [72] as
the implementation language of our algorithms.

The ”pure” part of Prolog is simply a realization of refutations of logic programs on a se-
guential machine.

The Prolog interpreter searches the SLD-tree to find success branches. The Prolog system
always selects the leftmost atom in a goal along with a depth-first search rule. The program
clauses are then tested in their original order in the program.

An SLD-tree may have many failed branches and very few or just one success branch. Con-
trol information supplied by the user may prevent the interpreter from constructing of failed
branches. To control the search the concept of cut(!) is introduced in Prolog. C'ut has the
following effect: after success of ”!” no backtracking to the literals in the left-hand part is
possible. However, in the right-hand part execution goes on as usual.

Prolog’s sequential proof procedure is correct, as any refutation it finds is indeed a refutation,
but is incomplete, as it may fail to find a refutation although one exists. This may happen
if there are both refutations and infinite computations for a given goal, which arise from
different choices of clauses, and Prolog happens to start and explore an infinite computation
first.

4.6 Algorithmic Debugging

Algorithmic debugging [69, 57] is a process where the user and a debugging system inter-
actively try to locate the source of an externally visible bug in the program [69]. There are
a number of features of Prolog program which distinguish it from other programming lan-
guages. A Prolog program can have both a declarative and a procedural reading, may or
may not be multi-directional, and it can even be nondeterminate. The computation model
of Prolog is based on goal invocation as well as goal success and failure. Thus errors in
Prolog programs occur when, for example, they finitely fail on goals that should succeed, or
succeed on goals that should fail.

Shapiro’s algorithm is an interactive diagnosis algorithm which identifies a bug in a program
that behaves incorrectly. The theoretical foundations for the debugging of Logic Programs
are presented in [69].
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To debug an incorrect program one needs to know the expected behavior of the target pro-
gram. Therefore we assume the existence of an agent, that knows the target program and
may answer queries concering its behavior.

A debugging algorithm accepts as input a program to be debugged and a list of input / output
samples, which partly define the behavior of the target program. It executes the program on
the inputs of the samples, builds up the corresponding derivation trees and, whenever the
program is found to return an incorrect output, it traverses the proof tree of a program in
different ways and asks the user about the expected behavior of each resolved goal.

The bottom-up method traverses the proof tree in postorder manner and asks the oracle about
the correctness of the computed values of the nodes. If the result at a node is incorrect and
all sons of this node are evaluated correctly the algorithm identifies the clause applied to this
node as a buggy one. The query complexity of this method is linear in the size of the tree.
The second method investigates the nodes in a top-down manner. If the result computed at
a node is evaluated correctly by the oracle then the algorithm does not visit the nodes inside
the sub-tree. Using this approach the query complexity can be reduced to a linear depen-
dence in the depth of the proof tree.

The most efficient technique is the divide-and-query strategy, which requires a number of
queries logarithmic in the size of the proof tree. The divide-and-query algorithm splits the
proof tree into two approximately equal parts, and makes a query for the node at the splitting
point. If this node gives an incorrect evaluation the algorithm goes on recursively to the
sub-tree associated with this node. If the node’s answer is correct its sub-tree is removed
from the tree and a new mid-point is computed.
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5 The Slicing of Logic Programs

Slicing is a program analysis technique originally developed for imperative languages [90].
Later improvements are presented in [81, 70, 40, 34].

Intuitively a program slice with respect to a specific variable V' at some program point p
(which can be a variable or an argument position of a predicate) contains all those program
points that may affect the value of the variable or may be affected by the value of the vari-
able. The tuple < V,p > is called a slicing criterion and a slice is computed with respect to
one.

Slicing techniques can also be classified into static and dynamic ones.

Static slicing is based on an analysis of the program without executing it so it may be impre-
cise if it contains data flow which is actually not manifested during a particular execution.
Dynamic slicing is based on the program’s execution and hence extracts the precise data
flow. A dynamic slice may be different for each execution and so shall always be produced
separately whenever the program run.

In addition, slicing can be classified into forward and backward types. Suppose our slicing
criterion is < V,p >. Forward slicing with respect to < V,p > contains all those program
points that may have its value modified if < V. p > is modified. Backward slicing contains
all those program points which, if modified, might change the value of V.

In the case of imperative languages a possible program representation for the program’s de-
pendences is the Program Dependence Graph [19, 51, 31].

The problem of slicing logic programs is more complicated than that for the imperative case.
Before a slice over a logic program can be produced, its implicit data flow has to be approx-
imated. To approximate the data flow the implicit input/output data dependences have to be
extracted from the program.

Program slicing has been widely studied for imperative programs [81], but research on slic-
ing logic programs is just beginning. To our knowledge, only a few papers deal with the
problem of slicing logic programs [23, 66, 93, 76].

One of the aims of this work is to furnish a dynamic slicing algorithm which augments the
data flow analysis with control-flow dependences so as to make the slicing algorithm more
suitable for debugging. The precise definitions associated with slicing are given in Section
6.2.
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6 The Debug Slicing of Logic Programs

This part of the dissertation extends the scope and optimality of previous algorithmic
debugging techniques of Prolog programs using slicing techniques.

A general slice definition is provided which is valid for the success and failure branches
of the SLD-tree as well. The extension of data flow analysis to the failure branches of the
SLD-tree helps improve the existing debugging techniques. It can also help one to detect
dead code and is useful in program maintenance.

The defined dynamic slicing method (called Debug slice) augments the data flow analysis
with control-flow dependences in order to identify the source of a bug present in a program.

6.1 Introduction

Slicing methods are widely used for the debugging [89], testing [5] and maintenance of
imperative programs [4, 29]. Intuitively, a slice should contain all those parts of a program
that may affect the variables in a set V" at a program point p [90]. Slicing algorithms can be
classified according to whether they only use statically available information (static slicing),
or compute those program points which influence the value of a variable occurrence for
a specific program input (dynamic slice). Dynamic slicing methods are more appropriate
for debugging than static ones as during debugging we generally investigate the program
behaviour under a specific test case. The main advantage of using a dynamic slice during
debugging is that many statements can be ignored in the process of bug localization.
Various dynamic slicing methods have been introduced for debugging imperative programs
[81]. Most of these methods are based on a dependence graph which contains the explicit
control dependences and data dependences of the program. In [23, 39] a slicing method was
introduced for logic programs, and this method was used to improve the efficiency of the
Shapiro’s algorithmic debugging algorithm [69]. The slice presented in [23] contains those
parts of a program that actually have an influence on the value of an argument of a predicate.
This type of slice (called data flow slice) is safe if the structure of the proof tree for a goal is
not changed [76].

However, during debugging when we seek to locate the source of a bug (i.e. a bug instance)
we also need to identify those predicates that actually did not affect an argument in a predi-
cate but could have affected it had they been evaluated differently (had their boolean outcome
been different). We can say that these predicates are in the Potentially Dependent Predicate
Set. Note that a different evaluation of the predicates in this set could change the success
branch of the SLD-tree (where the bug was manifested).

Consider the following example.

Example 3 The Data Flow dliceisinsufficient to locate the source of a bug

The buggy program is: The correct program should be:
1. p(AX) :- q(A.X). L. p(AX) :- q(A.X).
2. q(AX):-A >0, Xis 2. 2. q(AX):-A=0,Xis 2.

3. q(AX) :- X'is 3. 3. q(AX) :- Xis 3.
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Executing this program for the goal p(0, X) the given solution is X = 3, while we expect
X = 2. So there must be a bug in the program somewhere.

Creating the dynamic data flow slice for an instance of X, this does not contain the buggy
predicate A > 0 because X does not exactly depend on the predicates of clause 2, there
being only control dependences between them. This means that if A > 0 had been evaluated
differently it could have affected the solution of X. Our new slicing approach contains the
buggy predicate A > 0 (see Section 6.3.2).

In this section a new type of slicing is introduced, called Debug slicing for Prolog programs
without side effects. A Debug slice of an Augmented SLD-tree includes those predicates
that may affect the value of an argument in any success branch’s predicate. So this slice
is very suitable for debugging. The Debug slice is the set of predicates which contains the
Potentially Dependent Predicates and their data dependences.

This slicing method has been integrated into an interactive algorithmic debugging tool to
reduce the number of questions posed to the user during a debugging session [39]. The size
of the debug slice is larger than the size of the data flow slice, but the data flow slice is not
safe for debugging. On the other hand the Debug slice contains all parts of the program that
may be responsible for the incorrect behaviour at some selected argument position.

The next section provides a detailed description of the construction of those structures
needed in an outline of the Debug slice algorithm (Augmented SLD tree, Skeleton(n), (Di-
rected) Proof Tree Dependence Graph, General Data Flow Slice). The computation of the
Debug slice on the basis of these structures is described in Section 6.3. The first results of a
prototype implementation of Debug slice algorithm are discussed in Section 6.4. Finally, in
Section 6.5 we summarize related work and outline further studies.

6.2 Basic structures and theorems for constructing the Debug Slice

Our slicing is based on a dependence based approach. In [23] a Dependence Graph was
constructed for a proof tree i.e. for a success branch of the SLD-tree. We would also like
to extend this definition to the failure branches of the SLD tree. That is why this section
provides a detailed description of the necessary structures needed to outline this extension:
the Augmented SLD-tree, Skeleton(n) (a modified derivation tree), (Directed) Proof Tree
Dependence Graph (PTDG) and General data flow slice. The computation of the Debug
slice on the basis of these structures is described in the next section.

The Augmented SLD-tree shows the execution order of the statements for a given input.
Skeleton(n) is always built for one branch of the Augmented SLD-tree, and its nodes repre-
sent the data flow information needed for preparing the Proof Tree Dependence Graph.

A General slice of a logic program with respect to a variable V' is constructed using the Proof
Tree Dependence Graph, which contains those predicates of a derivation that may affect the
value of V.

6.2.1 The Augmented SLD-tree of Logic Programs

The derivation of a goal from a program P can be represented by a tree called the SLD-
tree. Each branch of the SLD-tree [61] is a derivation of a program for a goal. Branches
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corresponding to successful derivations are called success branches, while branches of the
infinite derivations are called infinite branches; those corresponding to failed derivations
are called failure branches. The Prolog interpreter searches the SLD-tree to find success
branches. The Prolog system always selects the leftmost atom in a goal along with a depth-
first search rule. The program clauses are then tested in their original order in the program.
An SLD-tree may have many failed branches and very few or just one success branch. Con-
trol information supplied by the user may prevent the interpreter from constructing failed
branches. To control the search the concept of cut(!) is introduced in Prolog. The atom ”!”
is handled as an ordinary atom in the body of a clause. When a cut is selected for resolution
it succeeds immediately (with the empty substitution) [50]. The node where cut is selected
will be called the cut node. A cut node may be reached again during backtracking. In this
case the normal order of tree traversal is altered - from the definition of cut the backtracking
continues above the node origin (1). (If cut occurs in the initial goal, the execution simply
terminates). So cut has the following effect: after success of ! no backtracking to the lit-
erals in the left-hand part is possible. However, in the right-hand part execution goes on as
usual.

We add these pieces of information to the SLD-tree, identify each node with an unique mark,
and use a list (pred_def_ref()) in order to know which program clauses (corresponding to
the selected predicate) are used at a node to execute the next step. We also deal with the
pruning effect of cuts. The following definition provides a formal description of the modified
SLD-tree. The node label contains the whole list of goals ((G’, R) = (a1, a2, -+ ,ay)). The
actual goal (G") is the first in this list (a, in our case). A node has a child for every program
clause whose head (h,,,) could be unified with the actual goal. The list of these clauses for
every node is given in pred_def_ref() (Definition 1.1). If the actual goal were cut(!), the
corresponding branches of the tree would be pruned (Definition 28.2 and 28.3).

Definition 28 Augmented SLD-tree
Let P be a Prolog program and G a goal. An augmented SLD-tree for P U {G} is a tree
which satisfies the following:

e Each node label is triple < Mark, (G', R), pred_def_ref(G') >, where Mark is a
unique identification of the node, (G’, R) is a (possibly empty) conjunction of goals
(resolvent). G’ is the leftmost goal in the resolvent (called the selected goal) and
pred_def ref(G') is a reference list for the predicate definitions corresponding to the
leftmost goal G’. We assign a a true value to the empty resolvents.

e The root node is < Mark, (G, true),pred_def ref(G) >.

o Let< M, (ay,a9,--- ,ax),pred_def_ref(iy,---,i;) > be anode in the tree (so a; is
the selected atom), where i,,(m = 1,--- 1) is the identity number of input clauses
By <= by, -+ -, by, SUCh that a; and h,,, are unifiable with most general unifier o.

1. Then this node has a child
< M, (bmys bngs ==+ 5 by G2, - - - ag)o, pred_def ref(b,,) > for each
im(m = 1,---,1). The edges immediately below a node and also the
pred_def ref() list are ordered from left to right, according to the program
clause order.
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2. If hyy <= by, - -+, by, has cuts the child is

< Ml (b‘m17 b;ny T blmqa A2,y ak)aa pred—def—ref(b:nl) >
where b, , - - ,b;nq are obtained from b,,, , - - -, by,,, replacing all cuts with the
same unigue annotation such as ”cut(M)”, where M is the node’s identification

mark.

m )

. If the following selected atom ( b‘,,, or ay) were cut(M), we use the pruning rule

below, and the next element of the list that follows cut(M) will be the selected
goal.

The pruning rule: If "Mark” is the argument of cut(), consider the path W from
the actual node up to the node marked Mark. All descendants of this node to the
right of W are removed.

e Nodes with an empty R list in resolvent have no children.

We will refer to the Augmented SLD-tree simply as the SLD-tree. During the execution of a
program for a goal to find the first success branch of the SLD-tree, only a part of it is walked
by the Prolog interpreter. We will call this part of the SLD-tree the Trace-tree because
we can build the Trace-tree from the trace of a program for a goal given by the interpreter.
Figure 1 shows the Trace-tree of the program in Example 4 for the goal a(Y").

Example 4 The definition of the Trace-tree
We will now make use of our definition of the Trace-tree in a simple example:

. b(2).
. b(2).
. b(3).
. d(2).
. e(3).

~No o, WwWwN e

. a(Y):-b(X), c(Y), d(X).
. ¢(Y):-b(Y), e(Y).

Example 5 The pruning effect of the cuts
Figure 2 shows the pruning effect of the cuts in the following example for the goal a(X).

. ¢(2).
. ¢(2).
. d(2).

~No o, wWwN e

. a(X) :- b(X), c(X).
.a(Xx) :-
. b(X) :- ¢(X), !, d(X).
. b(X) :- e(X), h(X).

9(Xx).

8. e(1).
9. h(1).
10.9(3).

The removed part of the Trace-tree is depicted by a broken line (the pruning effect of the

cut).
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1, (a(Y),| true), prd(1)>

c(Y), d(X)), prd(3,4)>

<3, (c(Y), d(2)), prd(2)> , d(2)), prd(2)>
da, (M) e(v), d(W), pra@45)> 410, b(Y)| e(v)), d(2), pra(34.5)>

45, (e(l) dy), prd NILL)> <7, (e(3), d(2)), prd(7)>

46, (e(z) d(1), prd(NILL)> | 411, (e(l) d(2), prd(NILL)> )
Q O ‘ d(2)), prd(NILL)>

< true), prd(NILL)>
<{14 (d(2),| true), prd(6)>

,|,d(2)), prd(7)>

Figure 1: The Trace-tree for the goal a(Y) and the Debug slice in frames.

<1, (a(X), true), prd(1, 4)>

/N

<2, (b(X), c(X)) prd(3, 4)> <7, (9(X), true) prd(10)>

~
~

<3, (c(1), cut(2), d(1)), prd(5)> <5, (e(X), h(X)), prd(9)>

<4, (d(1), true), prd(NILL)> <6, (h(1), tfue), prd(9)>

false

Figure 2: The pruning effect of the cut in Example 5 for the goal a(X).

6.2.2 Skeleton(n)

The SLD-tree representation is unsuitable for representing the data flow information of a
logic program (for a given goal). The structure Skeleton(n) [50] is used to represent this
information, where n identifies a leaf node of the SLD-tree. Skeleton(n) is basically a
derivation tree defined for one branch of the SLD-tree (from the root to the node marked by
n). To improve the approximation of the implicit data flow Skeleton(n) contains direction-
ality information as well.
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We will use the notion of clause instance (co) which means that a substitution o is applied
for every predicate of c.
We extended the definition of the derivation tree used in [50] to our case.

Definition 29 Proof Tree
For a program P a proof tree is any labeled, ordered tree 7" such that

1. Every node is labeled by an instance name of a clause of P.

2. Let n be a node labeled by an instance name < ¢,o >, where c is the clause h «+

a,- -, ay, (m > 0)and o is asubstitution. Then n has m children, fori =1,--- ,m,
the i-th child of n being labeled < ¢}, o} >, where ¢ is a clause with head A such that
a;0 = hlol.

The reasoning behind this definition is that every tree is obtained by combining appropriate
instances of program clauses. The precise meaning of appropiate instances” is expressed
in condition 2. A logic program defines a set of derivation trees. This may be viewed as
a semantic of definite programs, and can be related to the concepts of proof defined in
symbolic logic.

A derivation tree represents one branch of the SLD-tree (one derivation), but in a more
suitable format for representing the data flow.

Let us modify this definition to suit our present needs.

We need not know exact the substitution itself; it is enough to know which variables
are ground at call of a predicate and which are ground at success. Basically, having to
investigate directionality information of the tree requires using some groundness annotation.
Let us suppose that we can identify each argument position of the clauses of a derivation
tree with a tuple (the formal definition of the argument position is given at the end of this
subsection).

Groundness information associated with a derivation tree will be expressed as an an-
notation of its argument positions. The annotation classifies the argument positions of a
derivation tree. The positions are classified as inherited (marked with |), synthesized (1)
and dual (}). An annotation is partial if some positions are dual.

Definition 30 Annotation
An annotation is a mapping v from the positions in the set {|, 1,1} [14].

The intended meaning of the annotation is the following.

Definition 31 Inherited Argument Position

An inherited argument position is a position in which every variable is ground at the
time of calling, that is when the equation involving this position is first created during the
construction of the derivation tree.

Definition 32 Synthesized Argument Position

A synthesized argument position is a position in which none of the variables are ground at
the time of calling, and every variable is ground at success, that is when the subtree having
the position in its root label is completed in the computation process.
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Definition 33 Dual Argument Positions
The dual argument positions of a proof are those which are neither inherited nor synthe-
sized. The annotations are collected during the execution of a program for a given goal.

We notice that the argument positions are annotated in the present version of our tool. But
the annotation of the variable positions would provide more precise dependences so we are
planning to extend the annotation to variable positions, too.

We now introduce the following auxiliary terminology relevant to the annotated positions of
a LP program.

Definition 34 Input, Output and Dual Positions

The inherited positions of the head atoms and the synthesized positions of the body atoms are
called input positions. Similarly, the synthesized positions of the head atoms and inherited
positions of the body atoms are called output positions. The others are dual. Note that dual
positions are not strictly classified as input or output ones.

Alternatively, if we say that a position is annotated as an output we mean that it is annotated
as inherited provided it is a position in a body atom, or annotated as synthesized if it is a
position of the head of a clause.

Now we are ready to define Skeleton(n).

Definition 35 Skeleton(n)

Let 7" be a SLD-tree, < n, (G', R), pred_def_ref(G') >€ nodes(T') a leaf node identified
by n. Consider the path W in T" from the root to », which identifies a derivation for the root
goal.

Then, Skeleton(n) is a labeled ordered tree such that

1. Every node is labeled by a double < Mark, v(c) >, where Mark is an unique identi-
fication, and v(c) is the annotated clause instance.

2. The root node is labeled by < 1, v(¢) >, where the root goal was unified with ¢ during
the given derivation.

3. Let £ be a node labeled by
< Mark‘,p([Xl, V(Xl)]a D [Xkov V(Xko])) -
al([Yia V(Yi)]v B [Yklv V(Ykl)])a T va’m([‘/l? V(‘/i)]a B [V}Cm? l/(‘/km,])) >
Then k£ has m children, for i = 1,---,m, the i-th child of £ being labeled <
Mark,v(c;) >, where ¢, is a clause whose head was unified with a; during the given
derivation.

Figure 3 shows Skeleton(5) of Example 4. The variable Y of a(Y") in node 1 is annotated as
output, since it would be ground at success of a(Y"), and a(Y") is a head atom. For the same
reason X in node 2, Y in node 3 and 4 are annotated as output. The variable Y in node 5 is
ground at call, so it is annotated as input.
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<1, a([Y, Q]) :- b([X, 1), c([Y, 1T) , d([X, D]).>

<2, b([X, Q]).> <3,c([Y, 0] :- b(Y,1]), e(Y,O0].>
<4, b([Y, 0]).> <5, e([Y, 1])>

I: Input, O : Output, D: Dual

Figure 3: Skeleton(5) for Example 4.

Definition 36 Argument Position

We can refer to the k-th argument position in each node of the skeleton by the tuple
(Mark,i, k,V'), where Mark is the identity number of the node, i is the number of the
predicate in the clause (from 0 to m), & is the argument position of a; and V' is the set of
variables at this position. If V" also contains Input and Output variables it is annotated as
Dual.

Let Pos(S) denote the set of argument positions of the Skeleton(n) S.

As can be seen from the definition of the Augmented SLD-tree and Skeleton(n), there is
an one to one correspondence between the nodes belonging to one branch of the SLD-tree
(identified by n) and the nodes of the corresponding Skeleton(n). This correspondence is
based on the fact that both structures describe the same derivation for a goal step by step. In
our formalism the Mark of a node highlights this correspondence.

Definition 37 Map from the nodes of S to the nodes of T’
Let 7" be an SLD-tree for the goal g, n € nodes(T') a leaf of T, and S the Skeleton(n).
Then, there is a map from the nodes of S to the nodes of 7" such that:

b nodes(S) — nodes(T)
< Mark,v(p: —ay,--- ,an) >— < Mark, (p, R),pred_def_ref(p) >.

If S C nodes(S) then let ¢(S’) denote the corresponding subset of nodes(T') such
that

¢(5') = {o(n)ln € 5'}.
For n € nodes(T) let =" (n) = m € Pos(S), such that ¢(m) = n.

Now we are ready to define the Proof Tree Dependence Graph.

6.2.3 Proof Tree Dependence Graph

We would like to represent the data flow of a derivation tree. In a logic program data can
be transferred in two ways: firstly from one clause to another via unification, and secondly
within a clause multiple occurrence of variables result in data dependences [10, 11]. The
following definition reflects these conditions.
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Definition 38 Proof Tree Dependence Graph (PTDG: T, = (Pos(S), ~1))
Let 7" be an SLD-tree for the goal g, n € nodes(T) a leaf of T"and S the
Skeleton(n), 3,6 € Pos(S).

e The nodes of PTDG are the elements of Pos(.S).
e [ ~ ¢ iff one of the following conditions holds:

1. g and ¢ have common variable in their variable set V' (local edge)

2. the predicate of § was unified with the predicate of 3, and 5 and J are both the
k-th argument position of their predicate (transition edge).

It follows directly from the definition that the dependence graph is constructed only for one
branch of the SLD-Tree (identified by n) for Skeleton(n). But of course we can construct a
PTDG for every Skeleton(n) (n is a leaf node of T'), that is for every branch of the SLD-tree
T.

Figure 4 shows the PTDG for Skeleton(5).

——fF—

<1, a(fy,0]) - b([)\(, 1), eCY, 1), d([X, B])->
| T

<2,b([X, O]).>
<3, c([Y,O]):= b(LY, 1), e([Y,0Q].>
| | | ‘
<4,b([Y,Q]).> <5, e([Y, 1])>

| : Input, O : Output, D: Dual

Figure 4: The Proof Tree Dependence Graph for Skeleton(5)

6.2.4 Directed Proof Tree Dependence Graph

As mentioned earlier we would like to better approximate the implicit data flow by introduc-
ing directionality using an annotation technique. The annotations can be collected during the
execution of the program. Based on this annotation, the Proof Tree Dependence Graph can
be directed because the data flows from an Input position to an Output one via a local edge,
and from an Output position to an Input one via an transition edge. This can be expressed
more precisely in the following definition.

Definition 39 Directed Proof Tree Dependence Graph
Let 7, = (Pos(S),~r) be a proof tree dependence graph, «, 3 € Pos(S). Then the

directed proof tree dependence graph is fg,n = (Pos(S), —r), where
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1. a —7 Bifa ~p 3, ~7is alocal edge and one of the following conditions holds:

« is an Input position and 3 is an Output position

« is a Dual position and /3 is an Output position

a is an Input and g is a Dual position

« isa Dual and 5 is a Dual position (in this case o« —+ S and § = «)

2. a —7 pifa ~7 3, the positions being connected by a transition edge and satisfying
one of the following conditions:

e « is an Output position and 5 is an Input position
e «isaDual and $ is a Dual position (in this case o —¢ S and f —r «)

It is quite easy to check the validity of these rules. It is possible to define more precise
conditions to direct the edges (referring to the textual occurrences of the positions), but it
would be too complicated to present them here. Our experience shows that the use of these
rules (which permit in some cases non-realisable data flow) gives good results. Our slicing
algorithm applies to this Directed Proof Tree Dependence Graph.

The Directed Proof Tree Dependence Graph for Skeleton(5) is depicted in Figure 5.
e

<1, a([Y, O]) :- b([X, 1), c([Y, 11) , d([X, D]).>

<2,b ‘X 0]).>
PO 5 ey, 0p - (V) [EIOTY

— |

<4,b([Y, Q]).> ES e[y, 1]).> |

I Input, O : Output, D: Dual

Figure 5: The Directed Proof Tree Dependence Graph and the data flow slice with respect
to (5,0,1,{Y})

6.2.5 General Data Flow Slice

In this section a general slice definition is given which shows a given argument position of
Skeleton(n) which other argument positions depends on (from the aspect of data flow).

Definition 40 Slice(T, ., o)

Let P be a logic program, 7" a SLD-tree for the goal g, n € nodes(T) a leaf of T', S
Skeleton(n) and T”g,n = (Pos(S), —r) the corresponding Directed Proof Tree Dependence
Graph. Let a € Pos(S).

A slice (T}, ,,, ) over T}, ,, with respect to a
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e is asubgraph of T,
e anode 5 € Pos(S) isintheslice iff 5 —% «

This is a general data flow slice definition that is valid for one derivation path of the
SLD-tree which may be a failed branch.

Figure 5 shows slice(Tqy) 5, (5,0,1,{Y'})). The argument of e(Y") innode 5 ((5,0,1, {Y'}))
is an Input position, the slice being constructed with respect to this position. The set of all
positions from which there is a directed path to this argument position (this is the slice with
respect to (5,0, 1,{Y})) contains the argument position of e(Y") and 5(Y") in node 3, and
b(Y') in node 4.

In [23] a data flow slice was defined for the success branch of the SLD-tree (Trace-
tree). We extended the data flow slice definition to the full SLD-tree (Trace-tree), based on
the Directed Proof Tree Dependence Graph.

This general slice definition may not only used for constructing the Debug Slice, but the
data flow analysis of the failure branches to provide a good basis for program maintenance.
It is useful in incremental testing [5] and can help one detect dead code or find parallelism
in programs [29, 56, 73].

6.3 Debug Slice of Logic Programs

A bug manifestation is undesired program behavior, i.e. an undesired sequence of solutions
computed by the program for a goal. A bug instance, which is a predicate instance, is a
cause for a top goal bug manifestation. Our algorithm (Debug Slice) identifies a set of
predicates of a program which can cause a bug manifestation (i.e. an undesired solution
with respect to a variable of the top goal).

Analyzing just the data flow of a program is not always enough to find the source of a bug
manifestation (as is shown by Example 3). It is necessary to deal with control dependences
as well.

The idea behind the definition of the Debug Slice comes from imperative languages, which
there is called the "relevant slice” [21]. The relevant slice could be used to find the kind of
bug instance, which could not be identified by examining the data flow slice alone. In this
case the data flow slice is augmented with control dependences as well.

Similarly, with Prolog we deal with those predicates which could affect the control of
the search of the Interpreter in such a way that this effect could be responsible for a bug
manifestation. In Example 3 the predicate A > 0 failed for the goal p(0, X'). The Prolog
interpreter made a backtrack, so this failure give rise to a bug manifested at the value of
X (the given solution was X = 3, while we expected X = 2). The bug is included in the
predicate instance A > 0.

We note that our philosophy does not strictly separate the bugs into different sets such as
”wrong solution” or missing solution” suspect sets, as is usual.

Our aim was to provide a slicing tool for programmers to help them in debugging (extending
incrementally the set of predicates which may be responsible for a bug manifestation,



6.3 Debug Slice of Logic Programs 31

complementing it with knowledge of the data flow of the failure branches), program
maintenance, general analysis and so on.

As we mentioned earlier the Debug slice of a Trace-tree (7) deals with those left-
most (selected) predicates in a node of 7', that do not directly affect the value (V') of an
argument of a predicate in the success branch of 7', but could affect the control of the search
of the Interpreter in such a way that this effect could create a bug manifestation at V.

So, the question is how the searching strategy of the Interpreter is affected by the
predicate instances of the program.

The searching strategy is controlled by (1) the boolean outcomes of the predicates
(i.e. the Interpreter continues the search in the case of success of a predicate, backtracks
at failed predicates), and (2) a special built-in predicate cut(!) (i.e. after success of cut no
backtracking to the literals in the left-hand side is possible).

Our Debug slice deals with these two kinds of main control effects, and it is further
extended by the data flow slice of those predicates which take part in the control flow (3).
The reason for this extension is that the cause of a failure of a predicate (p) could be a wrong
value which reached p via the data flow.

To create the Debug slice, firstly we specify the Potentially Dependent Predicates
Set (PDPS) which contains those predicates that actually did not affect the selected argu-
ment, but could have done so had they been evaluated differently (i.e. had they succeeded
or failed). This set covers case (1) above (see Section 6.3.1).

In Subsection 6.3.2 the Debug slice is defined on the Augmented SLD-tree (Trace tree)
which includes the Potentially Dependent Predicates (case (1)), their associated data
dependences (case (3)) and the predicates affected by some cut (case (2)).

6.3.1 Potentially Dependent Predicates

Sometimes we cannot find the source of a bug just by analyzing the data flow for the success
branch of the Trace-tree. So we have to examine which predicates might cause a branch of
the Trace-tree to fail, or what would have happened if a predicate had succeeded but actually
failed, or if it should have failed but actually succeeded. We concentrated on the leftmost
(goal) predicate of an SLD node so the slice is defined for these predicates. The following
definition covers these cases.

Definition 41 Potentially Dependent Predicate (PDPS)

Let P be a logic program, 7' the Trace-tree for the goal g. A leftmost (selected) predicate
in a node of 7' is in the Potentially Dependent Predicate Set (PDPS) if it actually did not
affect the value of an argument of a predicate in the success branch of 7', but could have
affected it had its boolean outcome been different.

In the following we try to identify those predicates which satisfy this condition.
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Theorem 7 The Potentially Dependent Predicate Set

Let P be a logic program, T the Trace-tree for the goal g. Then

PDPS= {The predicates of the success branch of 7'} U {The predicates of the failed leaves
of T'}.

Proof

To prove the validity of this theorem we have to demonstrate that these predicates indead
satisfy the condition in Definition 41 while the other predicates of 7" do not. To achieve
this, we classify the predicates of 7" in such a way that the categories cover all predicates
belonging to 7T'. Notice that we use "the selected variable” expression but it could have been
any variables of the program whose values do not meet our expectations (i.e. where a bug
was manifested). The PDPS is the same for every selected variable, so it is created for a
Trace tree built up for a given goal.

e If a predicate should have failed but actually succeeded

1. If this predicate (selected goal) belongs to the success branch of the Trace-tree,
then its boolean outcome could have affected the value of the selected variable
(argument), so it could have been the source of the bug. We note here that this
situation caused the modification of the structure of the Trace-tree.

2. If this predicate belongs to a failure branch of the Trace-tree, then its boolean
outcome could not have affected the value of the selected variable because, if had
it failed it would then have caused the pruning of the subtree below this predicate.
But this would have not modified the structure of the other parts of the Trace-tree.

e If a predicate should have succeeded but it failed

Then this predicate is a leaf of a failed branch of the Trace-tree (because these are
the only failed predicates). Its boolean outcome could have affected the value of the
selected variable because it might have modified the structure of the Trace-tree.

To extend this theorem we recognize that if the user had found a bug in a success branch
of the SLD-tree which was not the first one, then the predicates of the previous success
branches did not belong to the PDPS because if they had failed the result would not have
affected the structure of the later branches of the SLD-tree.

Example 6 The PDPS of the Trace-tree in Figure 1 is the following (The nodes are
identified with their marks):
PDPS={1,2,5,6,8,9,10, 11,12, 13, 14}.
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6.3.2 Debug Slice

In this section our main result the Debug slice is specified based on the definitions and
theorem of the previous sections. The Potentially Dependent Predicate Set of a Trace-tree
(for a logic program P and goal ¢) includes all those predicates whose boolean outcome
may affect the value of an argument in a success branch’s predicate. The Debug slice deals
with control dependences as well. The Debug slice is a set of predicates which contains the
Potentially Dependent Predicates [Definition 41], their data dependences [Definition 40]
and the predicates affected by some cut.

Since the Debug slice contains all predicates of the success branch of T, the Debug slice is
the same with respect to every selected argument. Hence the Debug slice is defined for a
logic program P and goal g.

An interesting question is the effect of cuts. If there is a node in the Trace-tree whose
leftmost goal is cut(Mark) we remove all descendants of this node to the right of the path
W up to the node marked M ark. We denote this kind of path by cut(W 4.«)-

An informal definition for the Debug slice is the following.

Let P be a logic program, 1" be the Trace-tree for the goal g.

The Debug slice of T consists of the following predicates:
1. The predicates of the Potentially Dependent Predicate Set (PDPS)

2. The predicates specified by the data flow of the predicates of PDPS
3. The predicates that belong to some cut(W) of T

In the following we examine the contents of these sets in turn.

1. The predicates of the Potentially Dependent Predicate Set (PDPS)

The Potentially Dependent Predicate Set of a Trace-tree includes all predicates whose
boolean outcome may affect the value of an argument in a success branch’s predicate (see

Theorem 7). The PDPS can affect the control of the search.

PDPS= {The predicates of the success branch of 7'}
U {The predicates of the failed leaves of T°}.

2. The predicates specified by the data flow of the predicates of PDPS

Since the PDPS consists of two subsets, the first point is dealt with by examining
two cases in turn.

e The predicates that belong to the success branch of T’

Here the data flow does not introduce new predicates into the Debug slice as the data
flow slice is valid for one given branch of the Trace-tree (7°), and all predicates of the
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success branch of T are in the Debug slice.

e The predicates of the failed leaves of T’

Let n € PDPS such that n is a leaf node of a failed branch of T, S the Skeleton(n),
fg,n the corresponding directed Proof Tree Dependence Graph (see Section 6.2.4),
and ¢~'(n) the corresponding node of S (see Section 6.2.2). Suppose that ¢—!(n) is
labeled by < n,p: —aq, -+, am >.
Next, construct slice(T,,,a) for every a € Pos(S) such that a is an argument
position belonging to the head predicate p.
Let

H = U, o{k € nodes(S) | k has at least one head argument position in

slice(Ty n, @), a is an argument position of p, n is a failed leaf of 7'}.

Afterwards, map H back to the Trace tree (¢(H)). So ¢(H) contains those
predicates which are specified by the data flow of the failed leaves of 7.

Let the set of these predicates be denoted by Data_Flow_of _PDPS.

Definition 42 Data_Flow_of _PDPS

Data_Flow of PDPS : = ¢(H) =
= ¢(Una{k € nodes(S) | k has at least one head argument position in
slice(T, ,, @), v is an argument position of p, n is a failed leaf of 7°}).

For example, one can see in Figure 5 that n = 5 is a failed leaf of the Trace tree
(Figure 1), so ¢~ '(5) is < 5, (e(Y, I) >. As the clause contained in this node is a fact,
the head predicate is e(Y"), which has one argument position Y. Constructing the slice
with respect to this argument position it contains a head argument position from node
4 and 5. So Data_Flow_of _PDPS in this case contains nodes 4 and 5 of the Trace
tree in Figure 1.

We will now address the third point.
3. The predicates that belong to some cut(W) of T’

If there is a node in the Trace-tree whose leftmost goal is cut(Mark) we remove all de-
scendants of this node to the right of the path 1 up to the node marked Mark. We denote
this kind of path by cut(W .-« ). Hence a cut may affect the control dependences and those
nodes that belong to W have to be added to the Debug slice.
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Definition 43 cut(Wiark)
Let T be a Trace-tree, Mark a node identification of 7.

cut(Wararr) = = {p € nodes(T') | p is a leftmost predicate on the path from the node
whose leftmost goal is cut(Mark) up to the node identified by Mark}

Definition 44 Cut(W)_Set

Cut(W)-Set : = Uprarr 0t Warark)

Example 7 In Example 5, if we had not had a cut in clause 3, we would have got X = 1,
S0 < 5,e(X) > and < 6, h(X) > would have affected the value of the variable X in a(X),
but this would not have shown up in data flow analysis.

The following definition formalizes our main result the Debug slice according to Definitions
41, 42, 43, 44 and Theorem 7.

Definition 45 Debug Slice
The Debug slice of an Augmented SLD-tree for a goal g is the following set:
Debug slice= PDPS U Data_Flow_of PDPS U Cut(W)_Set =

= { The predicates of the success branch of 7'}
U { The predicates of the failed leaves of 7'}
U #(Un.a{k € nodes(S) | k has at least one head argument position in
slice(Ty », @), o is an argument position of p, n is a failed leaf of T'})
U (Unrark {p € nodes(T) | pis a leftmost predicate on the path from the node
whose leftmost goal is cut(Mark) up to the node identified by Mark} )

Example 8 In Example 3 the PDPS contains the buggy predicate A > 0,50 A > 01isin
the Debug slice, but the data flow slice does not have it because this predicate belongs to a
failed branch of the SLD-tree for the goal p(0, X).

Example 9 We will now go on with Example 4.

In order to construct the Debug slice we furnish the sets PDPS, Data_Flow of PDPS and
Cut(W)_Set.

1. We know from Example 6 that the PDPS of the Trace-tree in Figure 1 is the following
(where the nodes are identified by their marks):
PDPS={1,2,5,6,8,9,10,11,12,13, 14},
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2. To get Data_Flow_of_PDPS we have to construct a Skeleton(n) for every
n € {5,6,8,11,12} and the corresponding Proof Tree Dependence Graphs. We also
have to specify a slice(fq,n, «) for every « argument position of n in the Proof Tree
Dependence Graph and to state every node of 7" that belongs to these slices.
Figure 5 shows the Proof Tree Dependence Graph for Skeleton(5) and
slice(fg,n, (5,0,1,{Y})). We urge the reader to construct all the slices for each ar-
gument position of{5, 6,8, 11, 12}. In our case the only node in 7" specified by these
slices is node 4.

So Data_Flow_of PDPS = {4}.
3. We had no cut in this example, so Cut(W)_Set is empty.

Then, Debug slice= {{1,2,5,6,8,9,10,11,12,13, 14} U {4} U {}} =
{1,2,4,5,6,8,9,10,11,12, 13, 14}

In this example the only nodes that are not in the Debug slice are 3 and 7.
The Debug slice of the Trace-tree built for Example 4 is drawn and highlighted in Figure 1 .

6.4 Prototype Implementation

We implemented a prototype in Sicstus Prolog using the complete framework described
for slicing Prolog programs. The implementation handles specific programming techniques
(cut, if-then, OR). The Trace-tree is constructed from the call ports of the trace given by
the Interpreter. The slice with respect to a node of the Trace-tree is created. The slicing
technique, if desired, can be combined with Shapiro’s debugging method [39, 69]. To first
approximation the slice is built up for the success branch of the Trace-tree. The slice is then
constructed with respect to the given argument position, and during a debugging session the
system asks for the validity of just those nodes that are in the slice. If it is unsuccessful in
locating the source of the bug, the Debug slice is constructed and the user can then request
data flow information as well for any leaf node predicate of the Debug slice. A graphical
interface draws the Trace-tree and highlights those nodes that are included in the data flow
slice and in the Debug slice.

We tested our Debug Slice algorithm on several small Prolog programs. These programs
can produce big fail branches for some inputs. The test results are shown in the Table 1
below. We examined the number of nodes and arguments in the whole Trace tree, in the
success and failed branch of the Trace tree, and lastly in the Debug slice.

The test results demonstrate that if the number of the failed branch’ nodes is high and the
data flow slices for the failed branch’s leaf predicates do not contain too many predicates,
then the Debug slice is significantly smaller than the whole Trace tree. The test results of
course depend on the size and type of input, as well.

The Debug slice method handles types of bugs which the conventional data-flow slice tech-
nique overlooks. Certain types of bugs were found during testing which were overlooked by
the data-flow slice but were identified using the Debug slice method, as they appeared in the
failure branches of the SLD-tree. These types include cases, when:

e acut is misplaced.
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Complete  Tree | Success Branch | Failed Branch | Debug Slice

Nodes Arg. | Nodes Arg. | Nodes Arg. | Nodes  Arg.
1. |14 14 | 6 6|8 813 13
2.1 15 26 | 6 919 17 | 7 10
3.119 3917 11| 12 28| 11 20
4. | 34 64 | 15 15| 19 49 | 23 39
5. | 267 618 | 11 13 | 256 605 | 16 23
6. | 316 769 | 15 15| 301 754 | 23 39
7. 520 1393 | 24 49 | 496 1344 | 181 423
8. | 622 1240 | 6 9| 616 1231 | 7 10
9. | 1142 2687 | 5 9| 1137 2678 | 7 13

Table 1: Test Results of the Debug Slice Algorithm

o afailed predicate is mis-printed (its name or arity) or a condition (<, >, =) has failed.

e awrong data value has reached the failed node; so in the data-flow from the root to the
failed node, a wrong constant value, a mis-printed predicate or a failed condition has
appeared.

We note that the system finds only those misprinted predicates of the failure branches of the
SLD-tree which occur in the data-flow of a failed predicate, or are affected by a cut.

6.5 Related Work and Discussion

While program slicing has been widely studied for imperative programs [81], relatively few
papers have dealt with the problem of slicing logic programs [23, 66, 76, 93].

Gyimothy and Paaki presented in [23] a specific slicing algorithm for sequential logic pro-
grams in order to reduce the number of user queries of an algorithmic debugger. But they
only analyzed the data dependences for the success branch of the SLD-Tree (Trace-tree).
Sometimes it is insufficient to locate the source of a wrong solution because the cause of
the erroneous result may also be an invalid proof tree structure. We solved this problem by
dealing with control dependences as well as extending the data flow analysis to the failure
branches. So the data flow slice given in [23] is a special case of our approach.

Schoening and Ducasé have proposed a backward slicing algorithm for Prolog which pro-
duces executable slices [66]. An executable slice is usually less precise than a general slice
[81], and their algorithm is only applicable to a limited subset of Prolog programs. Our aim
was to develop a tool for debugging Prolog programs that also handles specific programming
techniques.

In [93] Zhao at al. presented a new program representation called the argument dependence
net for concurrent logic programs in order to produce static slices at the argument level. Dy-
namic slicing usually produces more precise slices than static ones because it only considers
a particular execution of a program. We chose the dynamic version because our application
focuses on debugging .

In [61] Pereira and Calejo examined the wrong solution suspect set (WSS) and the missing
solution suspect set (MSS). It is possible to refine WSS using our general slice definition.
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In [76] a dynamic slicing method was presented for constraint logic programs based on
variable sharing and groundness analysis. In the paper the declarative formulation of the
slicing problem for constraint logic programs was also described.

The Debug slicing method for Prolog programs has been introduced in this part of the disser-
tation. This slicing technique is very appropriate for debugging because it deals with control
dependences as well. This slicing method will be integrated into the IDTS interactive algo-
rithmic debugging tool [39]. This tool employs an improved version of Shapiro’s debugging
method [69] for identifying a buggy clause. By using slicer modules the number of user in-
teractions can be reduced during the debugging process. The data flow slice is usually much
smaller than the Debug slice, so in the first step we can try to locate the bug in the data flow
slice. However it may happen that the data flow slice does not contain the buggy clause.
In this case the debugging process has to be extended to the nodes of the Debug slice. We
tested our slicing tool on small Prolog programs.
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Part 11
DATA FLOW ANALYSIS OF

CONSTRAINT LOGIC PROGRAMS

The results of this part of the thesis are covered in [74, 75, 76].



40

7 Constraint Logic Programming

As the name suggests, Constraint Logic Programming (CLP) (see [46]) is descended from
logic programming. The commercial acceptance of Prolog was hindered by its relatively
poor efficiency compared to procedural languages like C, and its use has declined in recent
years. Prolog, which is a well-known logic programming language, is based on first-order
predicate logic and the objects that it manipulates are pure symbols with no intrinsic mean-
ing: for example in the Prolog proposition likes(jim, baseball) the constants jim and baseball
have no deeper interpretation beyond syntactic identity, ie. jim = jim.

The execution of a Prolog program proceeds by searching a database of such facts to find
those values that will satisfy a user’s query (goal), using a process called unification based
on syntactic identity. Since Prolog tries to find the set of all solutions to a query (goal),
during this search many dead-ends may be explored and then abandoned by backtracking to
an earlier state and trying a different branch. For complex problems this search process can
become very greedy in both space and time, which is the root cause of Prolog’s inefficiency.
CLP languages make logic programs execute very efficiently by focussing on a particular
problem domain. Constraint Logic Programming (CLP) has the power to tackle those dif-
ficult combinatorial problems encountered for instance in job scheduling, timetabling, and
routing which stretch conventional programming techniques to their limit. CLP is still the
subject of intensive research, and is an emerging software technology with a growing num-
ber of applications. Logic programs can be treated as a special case of CLP [32].

The cornerstone of Constraint Logic Programming (CLP) [32, 46] is the notion of constraint.
Constraints are formulae constructed with some constraint predicates with a predefined in-
terpretation. A typical example of a constraint is a linear arithmetic equation or inequality
with rational coefficients where the constraint predicate used is equality interpreted over ra-
tional numbers, e.g. X — Y = 1. The variables of a constraint range over the domain of
interpretation. In a CLP language this purely abstract logical framework is supplemented by
objects that have meaning in an application domain, hence there isn’t a single CLP language,
but a whole family of them defined for different application domains. The constraints have
to be satisfied for succesful execution of the program.

In such a CLP system the simple unification algorithm that lies at the heart of Prolog must be
augmented by a dedicated ’solver’ for the particular domain of application, which can decide
at any moment whether the remaining constraints are solvable. For efficiency’s sake, solvers
for CLP systems need to be incremental, so that adding a new constraint to an already solved
set does not force them all to be re-solved. For example a useful solver for linear rational
constraints is the well-known simplex method.

The constrained search ability makes CLP languages good at precisely those problems that
conventional programming techniques find hardest; NP-hard search problems where the time
needed for an unconstrained search increases exponentially (or worse) with the problem size.

7.1 Syntax of Constraint Logic Programs

The cornerstone of Constraint Logic Programming (CLP) [32, 46] is the notion of constraint.
In this section we provide some basic concepts of constraints logic programming.
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Definition 46 Constraint Logic Program

A constraint domain is a pair (L, D) where L is a first order language over an alphabet
of variables, predicate symbols (including equality), and function symbols (including
constants). D is a set (domain).

In this paper we adopt the Prolog notation for variables (identifiers starting with a capital)
and function symbols (identifiers starting with lower case letters).

All function symbols of L are given a fixed interpretation on D.

A constant is a function symbol of arity 0.

A term is a variable, a constant or an n-ary (n > 0) function symbol followed by a
bracketed n-tuple of terms (The latter is called a compound term).
Thus f(g(X), head) is aterm when f, g and head are function symbols and X is a variable.

The predicate symbols of L are divided into the following two disjoint sets:

e constraint predicates X, which are given a fixed interpretation in D. These include the
symbol =, interpreted as identity.

e defined predicates IT, which may occur in program clause heads and for which the
user has an intended interpretation on D.

A defined atom is a formula of the form p(t4, - - - , ¢,) where p is an n-ary defined predicate
(pell)andty,---,t, are terms.

Constraints atoms are formulae constructed with some constraint predicates with a
predefined interpretation.

A typical example of a constraint is a linear arithmetic equation or inequality with rational
coefficients where the constraint predicate used is the equality symbol interpreted over
rational numbers, e.g. X — Y = 1. The variables of a constraint range over the domain of
interpretation.

A clause is a formula of the form A : —by,...,b,, n > 0, where h, by, ..., b, are atomic
formulae. The predicates used to construct b, ..., b, are either constraint predicates or
defined predicates. The predicate of & is a defined predicate.

A goal is a clause without h.

Afactisaclause h < ¢y, -+, ¢, Where ¢, - - - , ¢, are constraints.

A constraint logic program is a set of clauses.

Logic Programs only use defined predicates.

The definitions above describe the syntax of CLP programs, and the following basic defini-
tions help provide the semantics for them.
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Definition 47 Groundness
A clause or an atom is ground if it has no variable.

Definition 48 Valuation
A valuation of a set S of variables is a mapping ¢ from S to the interpretation domain D.

Definition 49 Satisfiability
A set of constraints C' is satisfiable if there exists a valuation ¢ for the set of variables
occurring in C, such that ¢(C') holds in the constraint domain.

Definition 50 Clause instance
A substitution is a finite, possibly empty, set of pairs of the form X — ¢, where X is a
variable and ¢ is a term and all the variables X are distinct.

For any substitution o = {X; — ¢;,---, X, — t,} and term s, the term so denotes the
result of replacing each occurrence of the variable X; by ¢; (i = 1,--- ,n). The term so is
called an instance of s.

The clause co = (h : —=by,--- ,b,)0 = ho : —=byo,--- ,b,o is called an instance of the
clause c.

Example 10 In the following constraint logic program the equality constraint and symbols
of arithmetic operations are interpreted over the domain of rational numbers. The con-
straints are distinguished by the curly brackets { }.

Given the definition of a light-meal as consisting of an appetiser, a main meal and a dessert
and a database of foods and their calorific values we wish to construct light-meals i.e.
meals whose sum of calorific values does not exceed 10.

1. lightmeal(A,M) : - {I+J <10}, appetiser(A,I),
main (M,J) .

2. appetiser(A,I) : - cheese(A,I), {I>0}.

3. appetiser(A,I) : - pasta(A,I), {I>0}.

4. main(M,J) : - fish(M,J), {J>0}.

5. main(M,J) : - meat (M,J), {J>0}.

6. fish(sole,2).

7. fish(tuna,4).

8. meat (beef,5).

9. meat (chicken,4).

10. pasta(general,l).

11. cheese(camamber, 2).

7.2 Logical Semantics of Constraint Logic Programs

The previous section introduced the language of formulas of Constraint Logic Programs and
some basic definitions. Now we will discuss the meaning of these formulas. In order to give
logical semantics of constraint logic programs we have to define the notion of interpretation,
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semantics of terms, facts and program clauses. The following definitions have been adapted
to our needs based on [32, 50].
Let X denote a sequence of distinct variables X1, - - - , X,, for an appropriate n.

There are two common logical semantics of CLP programs over a constraint domain
(L,D) .

The first interprets a rule
h:—=by,...;bp,n >0
as the logic formula:
(1) VX,Y h(X)V =b V---V by,
where X U'Y is the set of all free variables in the clause.

The second logical semantics associates a logic formula to each predicate in II.
If the set of all rules of P with p in the head is

p(X) < B,
Then the formula associated with p is
2 VXp(X)« IB
VY7 B,
v3Y, B,
where ?; is the set of variables in B; except for variables in X. If p does not occur
in the head of a rule of P then the formula is

VX —p(X)

Definition 51 D-Interpretation

Let (L, D) denote a constraint domain, where L is a first order language over an alphabet
of variables, predicate symbols (including equality), and function symbols (including con-
stants). D is some set (domain).

An & D-interpretation of the alphabet A of L is the domain D and a mapping that associates
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e each constant ¢ € A with an element cg € D which is the same interpretation as ¢ has
in D

e each n-ary function f € A with a function fg : D™ — D which is the same interpre-
tation as f hasin D

e each n-ary defined predicate p € I with a relationpg C D x --+ x D

e each n-ary constraint predicate p € 3 with the same interpretation as it has in D

Let By = {p(d) | p € I1,d € D"}.
Then a D-interpretation can be represented as a subset of B),.

The interpretation of constants, functions and predicate symbols provides a basis for assign-
ing truth values to formulas of the language. The meaning of a formula will be defined as a
function on meanings of its components. First the meaning of terms will be defined as they
are the components of formulas. Since terms may contain variables as well we will make
use of the notion of valuation defined in the previous section.

Definition 52 Semantics of terms
Let I be a D-interpretation, ¢ a valuation and ¢ a term. Then the meaning ¢«(t) of ¢ is an
element in D defined as follows:

e if ¢ isa constant c then pg(t) := cg
e if ¢ isavariable X then ¢g(t) := p(X)
o iftisoftheform f(ty,--- 1) then ps(t) == fa(ps(tr), - ps(tn)).

Note that the meaning of a compound term is obtained by applying the function denoted
by its main functor to the meanings of its principal subterms, which are obtained by the
recursive application of this definition.

The meaning of a formula @@ with respect to the interpretation & and valuation ¢ is a truth
value denoted by & =, (. The meaning of course depends on the components of the
formula. So the semantics of clauses (the corresponding logical formulas) is defined based
on the semantics of predicates, facts, logical connectives and quantors.

Definition 53 Semantics of formulas
Let & be a D-interpretation , ¢ a valuation and F' and G two formulas. Then:

S e p(te, - o ta) 1 (ps(th), -+ @s(ta)) € ps

S k=, (a ) iff S = ¢(c), where a < ¢ is a fact
o Sk, (F) i (S |, F)

S, (FAGQ)IffS E, FandS =, G

®
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S, (FVQ)IiffS =, ForS =, G

S =, (F = G) iff S =, G whenever S =, F

(
(
S, (Fe6)iff =, (F—-G)andS =, (G — F)
o S, (VXF)Iiff S =y xy F foreveryt € D

(

Sy (AXF)Iff S =yxy F forsomet € D

The logical meaning of a CLP program (with respect to & and ) can be obtained by the
recursive application of this definition to the logic formulas (1) or (2).

Definition 54 D-Model

A D-interpretation S is said to be a D-model of a closed formula @ iff Q istrue in 3 (S E @
- the formula is closed so ¢ can be omitted).

3 is a D-model of a set of formulas if it is @ model of every formula in the set.

The definition of the least D-model will be used to prove the correctness of our unfolding
algorithm.

Definition 55 The least D-model of a formula

Let & denote a D-model of a CLP program with the constraint domain (L, D).

The least D-model of a formula @ under the subset ordering will be denoted by Im(Q, ),
and the least D-model of a set of formula P will be denoted by Im(P, ).

The following definition provides the logical semantics of a solution.

Definition 56 Solution
A solution to a query G is a valuation ¢ such that o(G) C Im(P, ).

7.3 Operational Semantics of Constraint Logic Programs (SLD-trees)

This section presents the operational semantics of constraint logic programs, and the
definition of the SLD-tree created for our needs based on this type of operational semantics.

The top-down operational semantics of constraint logic programs P can be seen as a
transition system of states, tuples (A, C, S) where A is a multiset of atoms and constraints,
and C and S are multisets of constraints [32]. The constraints C' and S are referred to as
the constraint store. Intuitively, A is a collection of as-yet-unseen atoms and constraints, C'
is a collection of constraints playing active role (they are awake), and S is a collection of
constraints playing a passive role (they are asleep).

There is also another state, denoted by fail.

We will take as given a computation rule that selects a transition type and an appropriate
element of A for each state.

An initial goal G for execution is represented by the state (G, 0, ().
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Let ; denote a clause of a P constraint logic program such that
R; h by b5 6 (j =1,---,n), where h;,b;,--- , bj,, are defined predicates,
and cj denotes the conjunction of the atomic constralnts appearing in the body of R;.

The transitions in the transition system are:

o (AUDL,C,S) =, (AU{bj,---,b jmj ,¢;}, C,SU (b= hy))

if b is a defined atom selected by the computation rule, hj < bj,-- b, c0s a
rule of P, renamed to new variables, and h; and b have the same predicate symbol
The expression b = h; is an abbrevation for the conjunction of equations between
corresponding arguments of band h,.

(AUb,C,S) —, fail
if b is a defined atom selected via the computation rule and, for every rule

hj < b b;...,c; of P, h; and b have different predicate symbols.

Ji """ Yimys

e (AU, C,S) —.(A,C,SUc)
if ¢ is selected by the computation rule and ¢ is a constraint.

o (A,C,S)—; (A, C", 5"
if (C",S") =infer(C,S).

o (A,C,S) —,(A,C,S)
if consistent(C).

(A, C,S) =5 fail
if =consistent(C).

The predicate consistent(C') expresses a test for the consistency of C. The function
infer(C,S) computes from the current set of active constraints a new set of active
constraints C" and passive constraints S’.

The —, transitions arise from the resolution, — . transitions introduce constraints into the
constraint solver, — , transitions test whether or not the active constraints are consistent, and
—; transitions infer more active constraints from the current collection of constraints.

Definition 57 Derivation
A derivation is a sequence of transitions. A state which can not be rewritten is called a
final state. A derivation is successful if it is finite and the final state has the form of ((), C, S).

Definition 58 The answer constraint of a derivation
Let G be a goal with free variables X which initiates a derivation and produces a final state
(0,C,S). Let 3_Q denote the existential closure of the formula ¢ except for the variables

)?, which remain unquantified. Then 3 ¢ C' A S is called the answer constraint of the
derivation.
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It should noted that the operational semantics we are dealing with can be rewritten as
—r—i—s and —.—;—.

The computation for a goal GG can be described by a tree called the SLD-tree.

Definition 59 SLD-tree
Let P be a constraint logic program and G a goal. An SLD-tree for P U {G} is a tree which
satisfies the following:

e each node label is a computational state (A, C, S) like that defined above

the root node is (G, 0, )

each node has as many children as valid transitions are associated with it

final states have no children

the edges are labelled by the type of the transition (r, ¢, i, s)

We note that every branch of the SLD-tree describes one derivation. A node may have more
than one child only if the subsequent transition is an — . transition (since the actual defined
predicate could be "unified” with head predicates of different program clauses). A node has
children for every clause whose head has the same predicate symbol. An —,. transition can
be viewed as an operation, if instead of b, the body predicates of the "unified” clause are
inserted and the corresponding argument equations are added to the set of constraints.

We will prove later that our specialization algorithm (CLP_SPEC) can be viewed as the
problem of pruning an SLD-tree.

Example 11 An —,., —;, — transition triple of Example 10 for the goal lightmeal (A, M)
is the following:

(lightmeal(A, M); 0; 0) —.,

({{I, + J1 <10}, appetiser(Ay, I), main(My, Ji)}; 0; {A = Ay, M = M,})

—; ({{I1 + J1 < 10}, appetiser(Ay, I), main(My, J1) }; {A = A, M = M, };0)
—s ({11 + 1 < 10}, appetiser(Ay, I), main(My, J1)}; {A = Ay, M = M, }; 0)

The third state is the same as the second one since C is consistent. This can be
viewed as a part of the corresponding SLD-tree.
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7.4 Derivation Tree

As slicing concerns computations we now introduce some relevant notions. Abstractly, a
computation of a CLP program can be regarded as the construction of a tree (skeleton) from
renamed instances of clauses. This structure for Logic Programs is discussed formally in
[14] we extended it for CLP.

Definition 60 Skeleton
A skeleton for a program P is a labelled ordered tree:

e with the root labelled by a goal clause and

e with the nodes labelled by clause instances of the program; some leaves may instead
be labelled *?”” in which case they are called incomplete nodes.

e Each non-leaf node has as many children as the non-constraint atoms of its body.

e The head predicate of the i-th child of a node is the same as the predicate of the i-th
non-constraint body atom of the clause labelling the node.

Definition 61 The set of constraints of a skeleton
For a given skeleton S the set C'(S) of constraints, which will be called the set of constraints
of S, consists of :

e the constraints of all clauses labelling the nodes of S

e all equations ¥ = ¢/ where ' are the arguments of the i-th body atom of the clause
labelling a node n of S, and ¢/ are the arguments of the head atom of the clause labeling
the 4-th child of n. (No equation is created if the i-th child of n is an incomplete node).

Definition 62 Derivation tree and proof tree

A derivation tree for a program P is a skeleton for P whose set of constraints is satisfiable.
If the skeleton is complete (i.e. it has no incomplete nodes) the derivation tree is called a
proof tree.

Example 12 In the following constraint program the equality constraint and symbols of
arithmetic operations are interpreted over the domain of rational numbers. A simple exam-
ple has been chosen so as to simplify the forthcoming illustration of slicing concepts and
techniques. The constraints are distinguished by the curly brackets {}.

p(X,Y,2):- {X-Y=1}, a(X,Y), r(Z).
a(u,v):- {U+v=3}.
r(42).

Figure 6 shows a complete skeleton tree for the program in Example 12.

The set of constraints of this skeleton is:

CO={X-Y=1X=UY=V,U+V =3,Z =42} and it is satisfiable. Hence the
skeleton is a proof tree.
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p(X,Y,Z) :- {X-Y =1}, q(X,Y), r(2)

qu,v) -{U+Vv =3} r(42)

Figure 6: A skeleton for the CLP program of Example 12.

7.5 Program and Proof Tree Positions

In order to properly present the slicing techniques we need to refer to program positions
and to derivation tree positions. The following definitions have been made by the author.
A slice is defined with respect to some particular occurrence of a variable (in a program or
derivation tree), and positions are used to identify these occurrences.

To define the notion of position we assume that some standard way of enumeration of the
nodes of any given tree 7' can be adopted.

Let c be a clause in P CLP program of the form oo : —a4,-- -, a, Where a; has the form
pj(ty,  t),p, ENUN j=1,--- mt;€T,i=1,--- k.

We can now refer to the A-th argument position in a; with the tuple (C, J, A), where C'is
the clause number and .J is the number of the predicate. But this is not enough for our task,
since we would like to refer to a variable position inside the argument terms.

The recursive definition of terms make possible to view a term as a tree. Figure 7 shows the
tree representation of the term f (¢, , t,).

Tree(tl) Tree(tn)

Figure 7: A tree representation of a term

Now each leaf of a term tree ¢ can be represented by the pair (i, X') where X is the variable
or the constant labelling a leaf of the tree and 7 is the number of the leaf in ¢ counting from
left to right. Clearly this number itself is sufficient to identify the leaf, and its label but
sometimes we include the label for the sake of legibility. For example the occurrence of the
variable Z in the term V' — 3 x (Z/2 + z) can be identified by the pair (3, Z) or only by 3 as
illustrated by Figure 8.

Definition 63 Program Positions

A position of a variable X in the program can be identified by the four-touple (C, P, A, V)
containing an identification number of the clause (C), the predicate (P), the argument (A)
and the variable position (V) of the given argument .
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1 V/mnus
VAN

plus

/N
VAN

Figure 8: The identification of a "term’s leaf”

Definition 64 Proof-tree Positions

A proof tree position can be identified by the tuple (Mark, P, A,V'), where Mark is the
identity number of the node, P is the number of the predicate in the clause (from 0 to m), A
is the argument position of P and V' is the identification number of the given variable.

The set of all tree positions of a derivation tree 7" will be denoted by Pos(T).

Note that each label of a derivation tree 7' is a variant of a program clause, or of a goal.
Therefore the positions of 7" can be mapped in a natural way into the corresponding program
positions.

Similarly, each occurrence of a variable X in C(T") (the constraint set of T") originates from
a variable position of X inT'. Thus variable positions of 7" can be associated with the related
constraints of C'(T').

Let P be a set of positions of 7', and W-(P) the set of all variables that appear in the terms at
positions in P. In this way P identifies the subset C'» of C(T") consisting of all constraints
including variables in ¥ (P).

Example 13 Consider the derivation tree of Figure 1.
Let (P) = { derivation tree positions of the atom ¢(X,Y")} C Pos(T).
Then ¥, (P)={X,Y}and Cr={X -Y =1, X=0U,Y =V}
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8 Slicing of Constraint Logic Programs

Slicing is a program analysis technique originally developed for imperative languages. It
facilitates understanding of data flow and debugging.

This section discusses the slicing of Constraint Logic Programs. Here we formulate declar-
ative notions of slice suitable for CLP. They provide a basis for defining slicing techniques
(both dynamic and static) based on variable sharing. The techniques are further extended by
using groundness information.

A prototype dynamic slicer of CLP programs implementing the presented ideas is briefly
described together with the results of some slicing experiments.

8.1 Introduction

This part of the thesis discusses the slicing of Constraint Logic Programs. Constraint Logic
Programming (CLP) (see e.g. [46]) is an emerging software technology with a growing
number of applications. Data flow in constraint programs is not explicit, and for this reason
the concept of a slice and the slicing techniques of imperative languages are not directly
applicable. Moreover, implicit data flow makes the understanding of program behaviour
rather difficult. Thus program analysis tools explaining data flow to the user could be of
great practical importance. This part of the dissertation formulates declarative notions of
a slice suitable for CLP and presents a prototype slicing tool for CLP programs written in
SICStus Prolog [72] based on these notions.

Intuitively, a program slice with respect to a specific variable at some program point contains
all those parts of the program that may affect the value of the variable (backward slice) or
may be affected by the value of the variable (forward slice).

Slicing algorithms can be classified as static or dynamic. In static slicing the information
on the program needed to construct the slice is obtained without executing the program,
typically by various static analysis techniques. Thus a static slice concerns all potential exe-
cutions of the program. In contrast, a dynamic slice is constructed for a particular execution,
and relies on the information collected during that execution.

The concept of slice in imperative programming provides a focus for analysis of the origin
of the computed values of the variable in question. In the context of CLP the intuition
remains the same, but the concept of slice requires a new definition since the nature of CLP
computations is different from the nature of imperative computing.

Slicing techniques for logic programs have been discussed in [23, 66, 93]. CLP extends logic
programming with constraints. This is a substantial extension and the slicing of CLP pro-
grams has, to our knowledge, not yet been addressed by other authors. Novel contributions
presented in this work are:

e A precise declarative formulation of the slicing problem for CLP programs. We first
define a concept of slice for a set of constraints, which is then used to define slices
of derivation trees representing states of CLP computations. Afterwards, we define
slices of a program in terms of the slices of its derivation trees.

e Slicing techniques for CLP. We present slicing techniques that make it possible to
construct slices according to the definitions to given later on. The techniques are
based on a simple analysis of variable sharing and groundness.
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e Handling calling context problem. This section shows a way of constructing finer
static slices of a program than those obtained by basic slicing.

e A prototype slicer. A tool implementing the proposed techniques and experiments
(slice distribution) with possible applications is described.

The precisely defined concepts of slice provide a solid foundation for the development of
slicing techniques. The presented prototype tool, including some visualisation facilities,
assists the user in a better understanding of the program and in the (manual) search for
errors. The integration of this tool with more advanced debuggers is a topic of future work.
The paper is organized as follows. Section 8.2 formulates the problem of slicing for Con-
straint Logic Programs. Section 8.3 presents and justifies a declarative formalization of CLP
slicing, based on a notion of dependency relation. Section 8.4 discusses a dynamic backward
slicing technique, and the use of directionality information for reducing the size of slices.
Section 8.5 outlines a way of reducing the size of the static program slice handling the *“call-
ing context” problem. Our prototype tool is described in Section 8.6, together with results
of some experiments. Section 8.7 discusses related work. Finally in Section 8.8 we present
our conclusions and suggestions for future work.

8.2 The Slicing Problem

Given a variable X in a CLP program we would like to find a fragment of the program that
may affect the value of X. This is rather imprecise, hence our objective is to formalize this
intuition. We first define the notion of a slice of a satisfiable set of constraints. A variable
X in a derivation tree T" has its valuations [32, 46] restricted by the set of constraints of T’
(which is satisfiable), so our second task will be to define a slice of a derivation tree, and
finally a slice of a program (see Figure 9).

Constraint store Proof Tree Program
0
Xr——variable / proof tree Slice program
slice instance ice position position

Figure 9: A slice of a constraint set, a proof tree and a program.

Let C be a set of constraints. Intuitively we would like to remove all constraints of the set
that do not restrict the valuation of a given variable.

Definition 65 Solution of a Constraint set

The binding of a variable X to a value v is said to be a solution of C' with respect to X iff
there exists a valuation v such that v(X') = v and v satisfies C'. The set of all solutions of C'
with respect to X will be denoted by Sol(X, C).

Definition 66 Slice of a satisfiable constraint set C'
A slice of a satisfiable constraint set C' with respect to X is a subset S C C such that
Sol(X,S) = Sol(X,C).



8.2 The Slicing Problem 53

In other words the set of all solutions of a slice S of C' with respect to X is equal to the set
of all solutions of C' with respect to X. Definition 66 implicitly gives a notion of minimal
slice with respect to X.

Definition 67 A minimal slice of C'
A minimal slice of C'is a slice S of C' with respect to X such that if we further reduce S to
S', then Sol(X, S') will be different from Sol(X, C).

Note that the whole set C' is a slice of itself, and that the definition does not provide any
hint about how to find a minimal slice. The minimal slice may not be unique. Consider for
example finite domain constraints in C = {X < Y, X < Z}, where X ranges over {0, 1}
and both Y and Z range over {1, 2}. Then each of the two constraints is a minimal slice of
C' with respect to X.

In general, the problem of finding minimal slices may be undecidable as satisfiability may
be undecidable. So reasoning about the minimality of the constructed slices only seems
possible in very restricted cases, and for some specific constraint domains. Our general
technique is domain independent but we show in Section 5 how the groundness information
(which may be provided by a specific constraint solver) can be used to reduce the size of the
slices constructed by the general technique.

We now formulate the slicing problem for derivation trees. A derivation tree 7 is a skeleton
with a set of constraints C'(T"). The variables of C'(7") originate from positions of 7". Let P
be a set of positions of 7', i.e. P C Pos(T'). Then ¥(P) identifies the variables of C'(T')
with occurrences originating from positions in P. We denote the set of all constraints of
C(T) that include these variables by C'p.

Definition 68 A dlice of a derivation tree
A slice of a derivation tree 7" with respect to a variable position of X is any subset P of the
positions of 7" such that C'» is a slice of C'(T") with respect to X.

The intuition reflected by this definition is that the constraints associated with those positions
of the tree not included in a slice do not influence restrictions on the valuation of X imposed
by the tree. We formalize this by referring to the formal notion of the slice of a set of
constraints. Note that any superset of a slice is also a slice.

Finally we define the notion of a CLP program slice with respect to a variable position. We
note that every position of a derivation tree 7" is a (renamed) copy of a program position or of
a goal position. This provides a natural map @ of the positions of 7" into program positions
and goal positions. Corresponding to this definition of ® for a program position ¢, the set
@' (¢) contains those proof tree positions such that if » € ®..'(¢) then ®(r) = q.

Definition 69 A slice of a CLP program

A slice of a CLP program P with respect to a program position ¢ is any set .S of positions
of P such that for every derivation tree 7" whenever its position r is in ®.! (¢), there exists a
slice () of T" with respect to r such that &+ (Q)) C S.

This means that for any derivation tree position r such that ®,(r) = ¢ and program slice
S with respect to ¢, the value of the variable in r can only be influenced by variants of the
program positionsin S.
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8.3 Dependency-based slicing

The formal definitions of the previous section make it possible to state precisely our objec-
tive, which is the automatic construction of slices.

Our formulation defines the slicing of a CLP program in terms of the slicing of sets of
constraints. Generally it is undecidable whether a subset of a set of constraints is a slice.
This section presents a simple and sufficient condition for this. We provide here a “syntactic”
approach to slicing constraint stores, proof trees and programs.

8.3.1 Slicing sets of constraints

We use variable sharing between constraints as a basis for the slicing of sets of constraints.

Definition 70 Explicit Dependence

Let C be a set of constraints, and vars(C') the set of all variables occurring in the constraints
in C. Let X, Y be variables in vars(C). X is said to depend explicitly on Y iff both occur
in a constraint ¢ in C'. Notice that the explicit dependency relation is symmetric and reflexive
but need not be transitive.

Definition 71 Dependency Relation
A dependency relation on vars(C') is the transitive closure of the explicit dependency rela-
tion.

The dependency relation on vars(C') will be denoted by dep¢. (The index C' may be omitted
if the set C' is clearly determined by the context.) Notice that dep is an equivalence relation
on vars(C'). We map any equivalence class [X] g, to the subset C'x of C' which consists
of all constraints that include variables in [X]4,.. From this definition vars(C — Cx) N
vars(Cx) = (. With this observation and using the definition of a solution of C' with
respect to X we obtain the following.

Theorem 8 Slice of a Constraint Set
Let C be a satisfiable set of constraints and let
X € vars(C). Then Cy is aslice of C with respect to X

Proof. As Cx is a subset of C' then any solution of C' with respect to X is also a solution of
C'x with respect to X.

Let v be a valuation that satisfies C'x. Then any valuation that coincides with v on vars(C'x)
also satisfies C'x. Consequently any solution of C'y with respect to X is also a solution of C'
with respect to X since C'is satisfiable and constraints in C'— C'y have no common variables
with constraints in C'x.

Example 14 For the set of constraints of Example 12 the dependency relation has two equiv-
alence classes: {X,Y,U,V} and {Z} and gives the following slice of C' with respect to X:

Cx={X-Y=1,X=U,Y=V,U+V =3}
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8.3.2 Slicing of derivation trees

We defined the concept of slice for a derivation tree by referring to the notion of slice of a
set of constraints. To construct slices of derivation trees we introduce a dependency relation
on the positions of a derivation tree then elucidate how it relates to the dependency relation
on the constraints of the tree.

Recall that for a given derivation tree 7" the set C'(7") consists of two kinds of constraints:

e constraints of the clause instances that appear in 7',
e the node equations of 7.

The tree positions of 7" correspond to occurrences of variables and constants in both kinds
of constraints. We now formally define a direct dependency relation ~ on Pos(T). It can
be related to the dependency relation on vars(C(T)) and thus can be used for slicing 7.

Definition 72 Direct Dependency Relation of a Derivation tree
Let 7" be a derivation tree, o, 5 € Pos(T). Let ~7 denote the direct dependency relation on
Pos(T). Then o ~¢ 3 if and only if one of the following conditions holds:

1. «and j are positions in an occurrence of a clause constraint (constraint edge).
2. «and f are positions in a node equation (transition edge).
3. aand g are positions in an occurrence of a term (functor edge).

4. « and g share a variable (local edge).

Notice that the relation is both reflexive and symmetric. The transitive closure ~7%. of the
direct dependency relation will be called the dependency relation on Pos(T’). Thus ~. is an
equivalence relation. Notice that all positions of ¥ ~!(X) are equivalent since they share the
common variable X.

The following result relates ~7. to depe(ry.

Theorem 9 Therelation of ~7. to depcr)
Let «v be a variable position of a proof tree 7" and let ¥ ({a}) = {X}.
Then ¥([a].«) = [X]

depc(Ty*
Proof.
1. Assume f is a variable position and « ~. 5. We then show that dep(¥ («), ¥(5)).

1.a First, examine the case a ~7 £3.

From the definition four cases are possible.

1. (a, p) is a constraint edge: the constraint of 7" is then included in C(7"), hence
dep(¥(a), ¥(5)).
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2. («a, p) is atransition edge: the node equation involves ¥ («) and ¥(f), hence

dep(¥(a), ¥(5)).

3. («, ) isafunctor edge. Since all nodes of 7" are complete, ¥ («) and ¥(/5) must occur
in a constraint or in a node equation.
Hence dep(¥(a), ¥(p)).

4. («a, ) is alocal edge. Then ¥(«) = ¥(f3), and there are two different constraints (or
node equations) in C'(T") sharing this variable. Consequently dep(¥ (), ¥(5)).

Notice that the first three cases imply an explicit dependency relation between corresponding
variables, while the local edges describe its transitive closure.

The transitive closure of ~ always involves local edges, that is variable sharing between
constraints of C(7"). Hence the corresponding variables must also be in the depc(ry relation.
A formal proof can be given by performing a simple induction on the number of Iocal edges.

1.b The induction hypothesis is:

Va, 5 € Pos(T) : a ~ = dep(¥ (), ¥(5)).

1.c We have to prove: Va, 8 € Pos(T) : a ~% B = dep(¥(a), ().

o~ B =~y ~p 3 fore some y € Pos(T).

From the induction hypothesis: dep(¥ (), 1 (y)) and dep(¥ (), (5)). Since depc(ry is an
equivalence relation dep(¥ (), v(5)).

2. To conclude the proof we have to examine depc(r).

It suffices to show that whenever dep(X,Y") then there exista € ¥ 1(X) and 8 € 1Y)
such that o ~* .

2.aIf X and Y are in the explicit dependency they appear in a constraint or node equation,
hence satisfy the above condition. The transitive closure involves variable sharing between
distinct constraints of C'(T"). A formal proof can be carried out by simple induction on the
number of constraints involved.

2.b The induction hypothesis is:

If n constraints are included in the constraint store:
dep(X,Y) = there exista € ¥~1(X) and 3 € ¥~ (Y) such that o ~* 3.

2.c We have to prove that adding a new constraint to the constraint store:

VX,Y dep(X,Y) = there exista € ¥~!(X) and § € (V) such that o ~* f3.
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Suppose that we have added a new constraint ¢,,.,, to the constraint store C', getting C".
Let X, Y € var(C") and suppose dep(X,Y’). We have three cases:

A) X and Y € var(cpew) = X and Y belong to the same constraint or node equation, so
there exists « € ¥~!1(X) and 8 € ¥~ !(Y) such that & ~r 3 (constraint edge) or o ~r 3
(transition edge).

B) X € var(cpew) and =(Y € var(cpew)).

In this case there exists a ¢, # ¢ € C such that X is included in ¢ and dep(X,Y).
Then, from the induction hypothesis 3o € ¥ 1(X) and 8 € ¥~ (Y") such that o ~% 3.

C) Neither X and nor Y is in var(¢pew)-

Then X and Y € var(C), so from the induction hypothesis 3o € ¥ ! (X') and
f € U1(Y) such that o« ~2 3.

As a corollary we immediately obtain the following Theorem.

Theorem 10 A Slice of a Proof Tree
Let 7" be a proof tree and let « be a variable position of 7. Then [a] - is a slice of T" with
respect to a.

Proof. ¥([a].-) is an equivalence class of dep, hence it is a slice of C(T).
So a slice of a proof tree can be obtained by finding the equivalence class of the dependency
relation involving a given variable position. This applies to derivation trees as well.

Theorem 10 offers suggestions for a simple slicing technique of derivation trees based on
finding equivalence classes of variables in the constraints of a derivation tree. The size of the
slices obtained in that way is determined by the nature of the dependency relations on the
variables of the computation represented by the tree subject to slicing. If the computation
consists of several subcomputations not sharing variables the slice obtained will identify one
of them. Usually it is not the case, so that this slicing technique is inadequate in practice. In
the sequel we show how to improve it by the analysis of directionality of data flow during
the computation.

8.3.3 Slicing of CLP programs

Recall that each position of a derivation tree 1" “originates” from a position of the selected
program P. This is formally expressed by the mapping ® : Pos(T) — Pos(P).

Having constructed a slice of a derivation tree we can map it to P using ®. Program frag-
ments identified in this way can be considered dynamic slices of the program. The pre-
viously discussed techniques for the slicing of derivation trees thus give a foundation for
dynamic slicing of CLP programs.

In this section we show yet another approach for the construction of program slices. This
approach will be based on a dependency relation which will be defined on the positions of
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the program, without regarded to any particular derivation tree. This can be viewed as static
slicing.

Definition 73 Direct Dependency Relation of a Program
Let P be a CLP program, a, 5 € Pos(T). Let ~p denote the direct dependency relation on
Pos(P). Then a ~p (3 iff at least one of the following conditions holds:

1. «and $ are positions of the same constraint (constraint edge).

2. «a/isaposition of the head atom of a clause ¢, 3 is a position of a body atom of a clause
d and both atoms have the same predicate symbol (transition edge).

3. a and j belong to the same argument of a function (functor edge).
4. o and S are in the same clause and have a common variable (local edge).
The dependency relation of a program can be represented as a graph.

__-"local edge

IR I | |
PXY.2) = {X-Y=1}  a(XY)  1(2)

M1 ‘transition edge

q(U, V) - {ULVQ} r(42)

‘constraint edge

Figure 10: Program dependence represented in graphical form along with the backward slice
with respect to Z in p(X,Y,Z))

Comparing the definitions of ~ and ~p one can check that whenever

« ~7 (3 insome tree T of P then ®(«) ~p ®() as well. Consequently, for any proof tree
T (o ~% ) = ®(a) ~% ®(B). The transitive closure ~3% is an equivalence relation on
Pos(P). The following result shows how ~%, can be used for the slicing of P.

Theorem 11 A Slice of a Program
Let P be a CLP program and let 3 be a position of P. Then [$3] .. is a slice of P with respect

to .

Proof. We refer to the definition of a program slice. We have to show that for every proof
tree T if o € &' (3) there exists a slice Q of T with respect to o such that ®(Q) C [A] .

P

From the definition of ~» we have that for every T ®([a].:) C [®(a)]~;. But[a].: isa
slice of T" with respect to a.. Hence if o € ®.'(3), then [®(«)] .., = [f]~;, isaslice of P.

P
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Figure 10 shows the program dependences and a backward slice of the program in Example
1 with respectto Z in p(X,Y, 7).

For the program in Example 12 ~7%, has two equivalence classes. One of them includes all
occurrences of Z and the occurrence of the constant 42. The other contains the remaining
positions.

Definition 73 with Theorem 11 gives a method for constructing program slices without refer-
ring to proof trees. Thus we obtain a static slicing technique for CLP. The mapping ® was
introduced to formally describe the correctness of this technique. These results also confirm
the correctness of the slicing algorithm in [23] because a logic program can be viewed as a
constraint logic program.

8.3.4 Discussion

We have shown that variants of the notion of dependency relation provide sufficient con-
ditions for (static and dynamic) slicing of CLP programs. However, in practice, the slices
obtained are often quite large; sometimes they may even include the whole program. We pro-
pose two ways of improving the techniques presented in the following two sections. The first
way is to take into account groundness information, which makes it possible to introduce di-
rectional dependency relations reflecting dataflow during the execution of the program. This
approach is applicable both for dynamic slicing and for static slicing. Groundness propaga-
tion in a particular derivation tree can be precisely monitored by tracing the execution. In
the case of static slicing groundness information can be inferred via static analysis of the
program.

For some programs the results of groundness analysis may be insufficient to reduce the size
of static slices. This is because a static slice must take into account all possible executions of
the program, and static analysis is often imprecise. Therefore, dynamic slicing is preferable
for debugging, while static slicing may facilitate a general understanding of the program and
assist users in program maintenance.

The second way of improving the techniques to be discussed concerns static slicing. The
size of slices may be reduced if we handle the so called “calling context problem”[30],
which appears when the same predicate is called from two different clauses. It is possible to
adapt to CLP the solution proposed by Horwitz et. al [30] for procedural languages.

8.4 Directional slicing

All the dependency relations discussed so far were symmetric. Intuitively, for a constraint
c(X,Y") a restriction imposed on valuations of X usually influences admissible valuations
of Y and vice versa. However if ¢(X, Y") belongs to a satisfiable constraint set C' and some
other constraints of C' make X ground then the slice of C' with respect to X need not include
c(X,Y). Forexample, if C = {X +1 = 0,Y > X} is interpreted on the integer domain
then {X + 1 = 0} is a slice of C' with respect to X. This slice can be constructed using
information about the groundness of variables occurring in the dependency graph.

This section tells us how to use groundness information in derivation tree slicing, that is
in the dynamic slicing of CLP programs. It extends the ideas of dynamic slicing for logic
programs presented in [23] to CLP. In our approach groundness is captured by adding di-
rectionality information to dependency graphs. The directed graphs show the propagation
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of ground data during the execution of CLP programs, and these graphs can then be used to
produce more precise slices. Groundness information is collected during computations that
construct the derivation tree to be sliced.

8.4.1 Groundness Annotations

Groundness information associated with a derivation tree will be expressed as an annotation
of its positions. The annotation classifies the positions of a derivation tree. A position is
classified as inherited (marked with |), synthesized (1) or dual (J). Formally speaking, an
annotation is a mapping p from the positions into the set {|, 1,1} [14].

The intended meaning of the annotation is as follows. An inherited position is a position
which is ground at time of calling, that is when the equation involving this position is first
created during the construction of the derivation tree. A synthesized position is a position
which is ground at success, that is when the subtree having the position in its root label is
completed in the computation process. The dual positions of a proof tree are those which are
ground neither at call nor at success.

The above-mentioned annotations are collected during the execution of the program.

We will now introduce the following auxiliary terminology relevant to the annotated posi-
tions of a proof tree. The inherited positions of the head atoms and the synthesized positions
of the body atoms are called an position. Similarly, the synthesized positions of the head
atoms and inherited positions of the body atoms are called an output position. Note that dual
positions are not strictly classified as input or output ones. Alternatively, if we say that a
position is annotated as an output we mean that it is annotated as inherited provided it is a
position in a body atom, or annotated as synthesized if it is a position of the head of a clause.

Example 15 Consider the following CLP program:

1. p(X,Y) :- r(X), g(X,Y).
2. r(3).
3. g(U,v) :- {U+V = 5}.

The corresponding annotated proof tree for the goal p( X, Y) is presented in Figure 11, where
the actual positions have been replaced by I (the input positions) and by O (the output posi-
tions):

1.p©! 0t ):-rty, g 1)
2.0 1. 3.q() ,0l):-{ol It =0t}

Figure 11: The annotated proof tree for Example 15

As discussed below the annotation reflects groundness propagation during the computation.
The variables X and Y of p(X,Y) are annotated as output as they are ground at success of
p, and p(X,Y) is a head atom. For the same reason the argument of the fact r(3) in node
2 is annotated as output. The variable U in the first argument of the predicate ¢(U, V) in
node 3 is ground at call so it is annotated as input, while V' is ground at success of ¢ so it is
annotated as output.
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In a CLP program the groundness of a position depends in general on the employed con-
straint solver.

Monitoring the execution, we are able to annotate certain positions as inputs or outputs. For
example the indomain(X) constraint of CHIP instantiates X to a value in its domain, so
that X is an input position. Rational solvers can usually solve linear equations. For example
in the rational constraint

Y =2x% X + 7, X can be annotated as input if Y and Z are output.

8.4.2 Directional slicing of derivation trees

Having input/output information for the positions of a derivation tree, we then add directions
to the corresponding dependence graph. The following definition describes how it can be
achieved.

Definition 74 Directed Dependency Graph of a Proof Tree

Let 7" be a proof tree, Tz = (Pos(T'), ~) its proof tree dependence graph, then the directed
dependence graph of 7'(P) can be defined as:

Tpg = (Pos(T), —r), where:

o a =) Bifa ~r Bisatransition edge, « is an output position and /3 is an input
position

o a = Bifa ~p Bisalocal edge, « is an input position and 3 is an output
position

e o~y [ and 3 = ainevery other case when o ~7 ) f3

From the definition of — () assuming correctness of the annotation we see that if « is a
position of X in 7" and it is annotated as input or output then C'(7") binds X to a single value.
This value is determined by the constraints associated with those positions that are in the set
{818 =7 o} Hence we have:

Theorem 12 Directed Slice of a Proof Tree
{818 =7 o} is aslice of T with respect to c.

Proof

The correctness of this theorem is based on the fact that we did not eliminate edges from the
undirected proof tree dependence graph; we only directed them according to the realizable
data flow paths.

Formally speaking, Theorem 10 says that {5|5 ~Z «} is a slice of T with respect to «.
Following the points of Definition 74 :

e there is no realizable data flow along a transition edge from an input position to an
output position.

e there is no realizable data flow along a local edge from an output position to an input
position.

e in every other case the data can flow in both directions along the directed edges
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we get that we did not eliminate edges according to the realizable data flow pathes, so
{818 =7 a} is aslice of T with respect to av.

These slices are usually more precise than in the case when groundness information is not
employed.

The concept of a directed dependency graph can be extended to programs and used for static
slicing. Good methods are required for static groundness analysis to infer annotations for
program positions. One possibility is to rely on groundness information specified by the user
in some CLP languages, see for instance the mode declarations of Mercury [71].

8.5 Using the calling context

This section outlines yet another technique for improving the precision of slicing. It is an
adaptation of a technique proposed in [30] for imperative programming. The technique has
not yet been implemented in our slicer. The objective of this section is only to show that
the calling context problem known in imperative programming appears also in CLP and to
sketch informally an approach to its solution.

First we illustrate in a simple example a common source of imprecision introduced by basic
static slicing, which is known as the calling context problem. Then we show how to improve
slicing precision via a simple analysis. Finally, we illustrate this idea with a CLP example.

Example 16 Consider the following logic programming example:

1. 1(X,Y) :- p(X,Y).

2. p(X,Y) - r(X,Y), s(X)
3. g(U,wW) :- r(U,wW).

4. r(X,Y) :- X is Y+1.
5. s(X).

The program dependency graph for this program is shown in Figure 12. A slice of the pro-
gram with respect to the variable in s(X') of clause 5 obtained using the basic dependency-
based slicing contains the whole program, so includes the positions of the atom ¢(U, W) as
well. These positions could safely be removed from the slice but the basic method does not
do that. The reason is that the predicate r is called in two different bodies but the relation
~ p does not care about the calling context. So the slice obtained is based on dependencies
in nonrealizable paths. This situation can appear quite often in real programs as predicates
are often used independently in several parts of the program.

To solve this problem for procedural languages a two-pass slice computation on the program
dependency graph was suggested by Horwitz et al [30]. The basic idea is that in the first pass
we do not move down into the called procedures, but only up to the callers, then we mark
the slice points in the caller procedures. In the second pass we start from these slice points
and move down to the called procedures, but do not move up to the callers. In the first pass
we also have to consider the effects of procedure calls. To do this we have to compute the
so-called summary edges in the body atoms of the clauses. In our example in the clause 7 the
body atom (X, Y') gives rise to the summary edge Y — X . This edge is introduced to show
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Figure 12: A two-pass static slice computation for the variable s(X)

that calling »(X, Y') leads to a dependency between the variables. For procedural languages
efficient algorithms for the computation of summary edges have been suggested in [30] and
[20]. Firstly, the interprocedural control and data dependency edges are constructed, then
the summary edges can be computed by using these interprocedural dependency graphs.

In CLP programs, predicates correspond to procedures and the intraprocedural dependency
graphs can be constructed using the constraint, functor and local edges (Definition 73). On
the basis of these dependency graphs and the transition edge the summary edges can be
computed.

The implementation of the two-pass static slicing method for CLP programs is one of the
tasks of future work.

Figure 12 shows which program positions are added to the slice (with respect to X in s(X)
of clause 5) of the example program in the first and second passes (framed by broken lines).
The summary edges are also added to the original program dependence graph. We see that
the variables in clause 2 are added to the slice in the first pass and the variables of clause
4 in the second pass. The variables of clause 3 do not appear in the slice, which is an
improvement on the method previously referred to.

The calling context problem does not appear in slicing of proof trees. The reason for this is
that each proof tree describes a real calling sequence with renamed clause instances. This
is in contrast with the program dependency graph where calling information is not present
and all potential instances are represented by one clause. Overall this means that the two-
pass program slicing method is sound since it eliminates, from the slice obtained by the
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dependency method only those positions which do not correspond to real proof trees.
We will now illustrate the two-pass slicing method with a simple CLP example.

Example 17 Consider the following constraint logic program:

1. prg(Ll,Sum,L2,DSum) :- p(Ll,Sum), g(L2,DSum).
2. p(L1,Sum) :- sum(Ll,Sum), control (Sum).

3. control (Sum) :- {Sum <= 500}.

4. g(L2,DSum) :- sum(L2,Sum2), {DSum=2*Sum2}.

5. sum([],0).

6. sum([X|Rem],Sum) :- sum(Rem,Suml), {Sum=X+Suml}.

Figure 13 shows the modified program dependency graph for this example and the two-pass
static slice for the variable Sum?2 in clause 4. The predicate sum is called by two different
predicates (p and ¢). The original slice with respect to Sum?2 contains the whole program.
For example it contains clause 2, which need not be included in the slice. The two-pass slice,
framed by broken lines, does not contain them.

8.6 A Prototype Implementation

We developed a prototype in SICStus Prolog for the backward slicing of constraint logic
programs written in SICStus. The tool handles a realistic subset of Prolog. The inputs of the
slicing system are:

e the source code,
e atest case (a goal)

¢ (following the execution) the execution traces given by the Prolog runtime system.

From this information the Directed Proof Tree Dependence Graph (Definition 39) may be
constructed. The following four types of slice algorithms were implemented (see Figure 14):

1. Proof tree slice
In this case the user chooses an argument position of the created proof tree, and the
slice is constructed with respect to this proof tree position using the Directed Proof
Tree Dependency Graph. This kind of slice is useful when the user is interested in the
data dependences of the proof tree.

2. Dynamic slice
This case is very similar to 1, but the constructed slice of the proof tree is mapped
back to the program. This is the classic dynamic slice approach [40], as in the case of
procedural languages. So this slice provides a slice of the program.

3. Program position slice
In this case the user selects a program position. The system provides all instances of
this program position in the proof tree, creates the proof tree slice for every instance,
then the union of these slices is constructed and mapped back to the program. So
this algorithm also provides a slice of the program which shows all dependences of a
program position for a given test case.
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Figure 13: The Program Dependency Graph and two-pass static slice for the variable Sum2

4. Static slice
This kind of slice does not refer to a particular proof tree, but concerns all executions.

The user selects a program position as above but, in contrast to the previous case, the
slicing is based on a program dependency graph (see Definition 73) and not on the

analysis of a particular proof tree.

We can apply the Proof tree slice method if we have an efficient tool for the visualization of
the proof tree (for example, in the case of debugging). When the Dynamic slice algorithm is
used no additional tool is needed, since the slice is highlighted in the program text, and can

be used for “conventional” debugging.
The Static slice incorporates all the possible dependences of a program position, therefore

this slice is useful in program understanding, testing and maintenance.
The static slices may be imprecise (too large) in many cases, hence the computation of the

Program Position slice for several test cases and using this slice to estimate the possible
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Figure 14: Proof Tree, Static, Dynamic, and Program Position Slice.

dependences may be useful.

Example 18 This example shows how dynamic slicing can be used to locate a bug in the
modified program of Example 17.

Let suppose that we have an error in clause 6, such that {Sum = X — Suml1} is typed
instead of {Sum = X + Suml}.

When running the program we obtain wrong values for Sum and Dsum. As the wrong result
obtained is related to the variable in the main procedure of the program, which is p, a natural
impulse is to create a slice of the proof tree of the computation, or dynamic slice with respect
to Sum in the head of clause 1. This slice is shown in Figure 15. It focuses the search for the
bug on the highlighted position including the erroneous constraint {Sum = X — Suml}.
The remaining question, not addressed in this work, is how to organize this search.

A graphical interface draws the proof tree (see Figure 15), marked with different colored
nodes that are in the proof tree slice and for a dynamic slice and program position slice, the
corresponding slice of the program is highlighted. The labels of the nodes identify the nodes
of the proof tree, including the name of the predicate and annotation of its arguments.

In the implementation we applied a very simple annotation technique: the inherited posi-
tions were those which were ground at the time of calling, while synthesized positions were
those which were ground at success. This method provides a precise annotation because we
continuously extract information from the actual state of the constraint store. However, in
the current implementation slicing can only be done on argument positions. If an argument
includes several variables it is not possible to distinguish between them, which makes the
constructed slice "less precise” (compared to the minimal slice). So one possible aim of the
future work is to improve the existing implementation by extending it to variable positions.
In the present version of the tool the sliced proof tree corresponds to the first success branch
of the SLD tree. As the proof tree slice definition is quite general, there is no real difficulty
in applying the technique to all success branches of the SLD tree. The extension to failure
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Figure 15: Displayed program and proof tree slices.

branches is discussed in [78] which makes it possible to create a slicer of an unsatisfiable
derivation tree (due to incompleteness of the constraint solver) as well.

Our definition of the derivation tree assumes that the skeleton equations are interpreted over
a specific constraint domain, and solved accordingly by a domain specific constraint solver.
However, in most CLP languages, including SICStus Prolog, these equations are instead
subject to syntactic unification, and a domain-specific constraint solver is applied only to the
constraints in clause bodies. This fact was taken into account in our tool, which can only
slice the derivation trees constructed via syntactic unification of the skeleton equations.
Systematic slicing experiments were performed on a number of small constraint logic pro-
grams (written in SICStus Prolog). Even if the size of the programs is small, the size of the
constructed proof trees can be large (up to 10,000 nodes). Our present implementation has
not been optimalized yet, so the computation of a proof tree slice (up to 5000 nodes) on a
P11 machines needs about 1-2 minutes.

Each of the test programs was executed with a number of test inputs to collect data about the
relative size of a slice with respect to the proof tree, depending on the choice of the position.
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The selected application programs [32, 46] had different language structures (use of cut, or,
if-then, databases, compound constraint).

A summary of the test results obtained from proof tree slicing is listed in Table 8.6. A
comparison of the four kinds of slices with respect to the number of nodes is shown in
Figure 16.

PROGRAM NUMBER OF NUMBER NUM. OF AVERAGE SIZE OF AVERAGE SIZE
CLAUSES OF TEST COMPUTED THE PROOF TREE OF SLICES
CASES SLICES
NODE ARG. POS.

FIB 4 6 1349 399.57 533.51 7.7%
CIRC 5 2 139 33.35 54.09 9.41 %
SUM 6 4 626 80.26 120.77 7.89 %
LIGHTMEAL 11 1 17 9 15 29.61 %
SCHEDULING 20 1 575 134 390 51.21%
PUZZLE 30 2 1363 22757 607.82 19.05 %

Table 2: Test Results of The Proof Tree Slice Algorithm

Slice size (%)
Proof Tree Slice
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Program Position Slice
Static Slice
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Figure 16: Comparison of the Proof Tree Slice, Dynamic Slice, Program Position Slice and
Static Slice.

It should be mentioned that the average slice size (in %) in these experiments had no correla-
tion with the size of the program. The average slice size was 29% of the number of executed
nodes. In the case of static program slicing the average slice size was 87% (without using
any groundness information, and handling the calling context problem). The reason for this
average size of slices was because small-sized programs were used.

Figure 17 shows the slice size distribution of the six examples above. The slice size distri-
bution was counted in the following way:
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Figure 17: Slice Size distribution.

Let n denote the number of constucted slices and let
- the number of slices whose size is between 0-5 % be n;

- the number of slices whose size is between 95-100 % be ny

Then the slice size distribution for the i-th class (i = 1, - - - 20) is: n;/n * 100.

The programs were executed for different inputs, and the slices were constructed with respect
to different proof tree (program) positions.
The computation time is in ratio to the size of the proof tree or program.
The intended application of our slicing method is to support the debugging of constraint
programs. A bug in a program shows up as a symptom during the execution of the program
on some input. This means that in some computation step (i.e. in some derivation tree) a

variable of the program is bound in a way that does not conform to user expectations. A
slice of the derivation tree with respect to this occurrence of the variable can be mapped into
the text of the program and will identify a part of the program where the undesired binding
was produced. This would provide a focus for debugging, whatever debugging technique is
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used. The intersection of the slices produced from different runs of the buggy program may
further narrow the focus.

In particular, our slicing technique can be combined with Shapiro’s algorithmic debugging
[69], designed originally for logic programs.

As shown in [39] the slice of a derivation tree of a logic program may reduce the number of
queries of the algorithmic debugger. This technique can also be applied to the algorithmic
debugging of CLP programs.

8.7 Related Work

Program slicing has been widely studied for imperative programs [21, 30, 29, 34, 40]. To
our knowledge only a few papers have dealt with the problem of slicing logic programs, and
the slicing of constraint logic programs has not been investigated till now.

We provided a theoretical basis for the slicing of proof trees and programs starting from a
semantic definition of the constraint set dependence. This applies as well to the special case
of logic programs (the Herbrand domain). In particular it justifies the slicing technique of
Gyimothy and Paakki [23], developed to reduce the number of queries for an algorithmic
debugger and enables us to extend the latter to the general case of CLP. The directional
slicing of Section 8.4 is an extension of this technique to the general case of CLP.
Schoening and Ducassé [66] proposed a backward slicing algorithm for Prolog which pro-
duces executable slices. For a target Prolog program they defined a slicing criterion which
consists of a goal of P and a set of argument positions P, along with a slice S as a reduced
and executable program derived from P. An executable slice is usually less precise but it
may be used for additional test runs. Hence the objectives of their work are somewhat differ-
ent from ours, and their algorithm is only applicable to a limited subset of Prolog programs.
In [93] Zhao et al defined some static and dynamic slices of concurrent logic programs called
literal dependence nets. They presented a new program representation called the argument
dependence net for concurrent logic programs to produce static slices at the argument level.
There are some similarities between our slicing techniques and Zhao’s as we also rely on
some dependency relations. However, the focus of our work has been on CLP not on con-
current logic programs, and our main aim has been to find a declarative formulation of the
slicing problem which provides a clear basis for proving the correctness of the proposed
slicing methods.

The results of the ESPRIT Project DiSCiPI [13] show the importance of visualisation in
the debugging of constraint programs. Our tool provides a rudimentary visualisation of the
sliced proof tree. It was pointed out by Deransart and Aillaud [13] that abstraction techniques
are needed in the visualisation of the search space. Program position slicing, if applied to all
branches of the SLD-tree, provides yet another abstraction of the search space.

8.8 Conclusions

This part of the thesis offers a precise declarative formulation of the slicing problem for CLP.
It also provides a basis for deriving various techniques of slicing CLP programs in general
and for logic programs treated as a special case. A data flow based slicing technique [23] was
used for the construction of static slices of CLP programs and dynamic slices of proof trees.
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Two approaches were proposed for reducing the size of the slices: introducing directionality
information (which uses groundness information), and the handling of the calling context
problem.

We also presented a prototype slicing tool using static and dynamic slicing techniques. Our
experiments with this tool show that the slices obtained were quite precise in some cases,
and on average provided a substantial reduction of the program.

One possible avenue of future research is the application of slicing techniques to constraint
programs debugging. Two aspects will need to be considered. Firstly, in the manual de-
bugging of CLP programs it is necessary to support the user with a tool that facilitates the
understanding of the program. Secondly, the slicing of a derivation tree can often reduce the
number of queries in the algorithmic debugging of logic programs [69].
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Part |11

LEARNING OF CONSTRAINT
LOGIC PROGRAMS

The results of this part of the thesis are covered in [79].



73

9 The Learning of Constraint Logic Programs

This part of the thesis discusses the learning of Constraint Logic Programs using unfolding
and combining unfolding with a slicing technique. Constraint Logic Programming (CLP) is
an emerging software technology with a growing number of applications. The transforma-
tion rule for unfolding together with clause removal is a method (called SPECTRE) for the
specialization of Logic Programs (LP).

Logic programming can be regarded as a special case of constraint logic programming, CLP
extends logic programs with constraints. This is a substantial extension, so CLP not only
has syntactics distinct from LP but also distinct semantics.

Slicing is a program analysis technique originally developed for imperative languages. It
facilitates the understanding of data flow and debugging.

This paper presents a learning method for constraint logic programs by combining unfolding
and clause removal, formulates the semantics of this new method, proves that the unfolding
transformation preserves the operational and logical semantics, and improves the unfolding
technique by applying slicing.

A prototype learner of CLP programs which implements the above ideas is briefly described.

9.1 Introduction

Constraint Logic Programming (CLP) [32, 46] extends logic programs with constraints. It
is an emerging software technology with a growing number of applications, it has the power
to tackle those difficult combinatorial problems encountered for instance in job scheduling,
timetabling, and routing which stretch conventional programming techniques to their limit.

Inductive Logic Programming (ILP) [49] refers to a class of machine learning algorithms
where the agent learns a first-order theory from examples and background knowledge. The
use of first-order logic programs as the representation language makes ILP systems more
powerful and useful than the conventional propositional machine learning systems, but they
are weak in handling numerical data. Although some existing ILP systems are capable of
handling numerical data, the approach in most cases is ad-hoc.

CLP languages make logic programs perform very efficiently by focussing on a par-
ticular problem domain, they have their are good at handling numerical information, as well.

Inductive Constraint Logic Programming (ICLP) is a research topic on the intersec-
tion of Constraint Logic Programming (CLP) and Inductive Logic Programming (ILP).

In this section we present an inductive learning algorithm (ICLP) based on the spe-
cialization of Constraint Logic Programs, formulate the semantics of this method, state the
associated definitions and theorems, and prove that the specialization operator preserves the
operational and logical semantics of constraint logic programs.

In the case of inductive learning from examples, the learner is given some examples
from which general rules or a theory underlying the examples can be derived.



9.1 Introduction 74

More formally, the learning setting in the case of ICLP is the following:

The teacher selects a target concept and provides the learner with a finite, nonempty
training set of examples, each of which is correctly labelled either as positive or negative.
From this training sample and any available background knowledge, the learner constructs
a hypothesis of the concept. Examples are ordinary atoms built over a target predicate and
the background knowledge is a finite set of constrained clauses. A hypothesis is a finite set
of nonrecursive constrained clauses whose heads are ordinary atoms built over the target
predicate and whose bodies consist of literals built over predicate symbols defined in the
background knowledge or constraint symbols.

The algorithm SPECTRE [7] is an ILP method (learning method of Logic Programs ) which
takes as its input a definite program and two sets of atoms (positive and negative examples).
The output of the algorithm is a new definite program that covers all positive examples but
no negative ones.

The SPECTRE algorithm specializes clauses defining a target predicate by applying different
strategies for selecting the literal to apply unfolding upon (e.g. taking the leftmost, selecting
randomly or using the impurity measure).

The main idea behind the IMPUT method [2] is that the identification of a clause to be un-
folded plays a crucial role in the effectiveness of the specialization process. If a negative
example is covered by the current version of the initial program it is supposed that there is
at least one clause that is responsible for this incorrect covering. The IMPUT system uses a
debugging algorithm to identify a buggy clause instance which is then unfolded and partially
removed from the initial program.

The IMPUT system improves the original SPECTRE algorithm but this solution has one
major drawback, namely that an oracle has to answer membership questions to identify a
buggy clause instance.

In our prototype the algorithmic debugger is combined with a slicing technique. Slicing
makes it possible to reduce the number of user queries during the debugging process. Dur-
ing the slicing a proof tree is produced for a buggy program, then a proof tree dependence
graph is constructed and sliced, removing those parts that have no influence on the visible
symptom of a bug. The algorithmic debugger traverses the sliced proof tree only, thus fo-
cusing on the suspect part of the program.

The idea of using slicing was introduced in [2], but they did not carry out a safe implemen-
tation.

The SPECTRE and IMPUT algorithms have been worked out for Logic Programs. Logic
Programming (LP) can be viewed as a special case of Constraint Logic Programming
(CLP). CLP extends Logic Programs with constraints. This is a substantial extension, so
CLP not only has syntactics distinct from LP but also distinct semantics.

The main contributions of this work are the following.

Firstly, we will formulate the exact definitions of the basic elements of an unfolding learning
algorithm such that SLD-tree, specialization and unfolding transformation of CLP programs
giving the semantics of them. We will prove that the unfolding transformation preserves the
operational and logical semantics of CLP programs.

Another result is the exact formalization of the specialization method (CLP_SPEC) and the
proof of the correctness of the algorithm based on the logical and operational semantics of
CLP programs.
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Yet another result is that an improved interactive version of the specialization algorithm has
been defined which integrates an algorithmic debugging algorithm and the slicing method
with the specialization algorithm for CLP programs.

A prototype tool has been implemented for both algorithms. The novelity of this implemen-
tation is also the combination of the specialization algorithm with a slicing tool for Logic
Programs.

This part is organized as follows. Section 9.2 outlines some basic concepts (machine learn-
ing, SPECTRE) which are then used to formulate and analyze the specialization methods.
Section 9.3.1 presents our main results - the CLP_SPEC algorithm, the associated defini-
tions (specialization, unfolding) and theorems (operational and logical semantics preserva-
tion, correctness analysis). Section 9.4 discusses an improved interactive version of the
CLP_SPEC algorithm (called CLP_SPEC_SLICE) which combines the unfolding technique
with algorithmic debugging and slicing. Our prototype tool is described in Section 9.5. Sec-
tion 9.6 provides a comparison with other works and suggestions for future work, and finally
in Section 9.7 a summary is given.

9.2 Preliminaries

In Section 7 we formalized some basic concepts of Constraint Logic Programming. In the
following a short overview of Machine Learning and the SPECTRE algorithm is given.

9.2.1 Machine learning

In the case of inductive learning from examples, the learner is given some examples from
which general rules or a theory underlying the examples can be derived. An inductive con-
cept learner is given by a set of training examples, some background knowledge (that needs
to be refined), a hypothesis description language, and an oracle willing to answer questions
(in the case of interactive learners). The aim is to find a hypothesis such that the hypothesis
is complete and consistent with respect to the examples and background knowledge.

To express efficiently the examples, the background knowledge, and the hypothesis to be
induced we need to use a language L with sufficient expressive power.

9.2.2 The SPECTRE algorithm

The inductive learning techniques of logic programs (Inductive logic Programming (ILP))
use the first order predicate logic language as the hypothesis and example description
language (L). In the case of Constraint Logic Programs(ICLP) the first order language is
extended with constraints.

The problem of finding an inductive hypothesis by specializing a logic program with respect
to positive and negative examples can be regarded as the problem of pruning an SLD-tree
such that all refutations of negative examples and no refutations of positive examples are ex-
cluded [7]. It has been shown that the actual pruning can be performed by applying unfolding
and clause removal. The algorithm SPECTRE [7] is based on this idea. The algorithm uses
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different strategies for the top-down induction of logic programs.

The algorithm SPECTRE accepts a definite program as input, two sets of atoms (positive and
negative examples) and a computation rule. The output of the algorithm is a new definite
program that covers all positive but no negative examples. The algorithm consists of one
main loop that continues until no negative examples are covered. When a clause is found
that covers a negative example, and no positive examples, it is then removed. When a clause
is found that covers both a negative and a positive example, it is unfolded. The choice of
which literal to unfold is decided using the computation rule.

The generality of the resulting specialization depends on the actual computation rule, and
hence the choice of computation rule is crucial for the good performance of the algorithm.
The computation rule should be formulated such that the number of clauses that are needed
to distinguish between positive and negative examples is kept to a minimum. This means
that the number of applications of unfolding should be kept as low as possible, since the
number of clauses increases when unfolding is applied.

An improvement of the specialization process is achieved when a debugger and slicer with
SPECTRE are combined.

9.3 Specialization of CLP Programs by Unfolding

This section presents our main result, that of the CLP_SPEC algorithm, along with associ-
ated definitions and theorems.

The algorithm CLP_SPEC specializes logic programs with respect to positive and negative
examples by applying the transformation rule unfolding together with clause removal. Af-
ter providing the exact definitions of the specialization problem and unfolding transforma-
tion we prove that the unfolding transformation of constraint logic programs preserves the
operational (Theorem 14) and logical semantics (Theorem 15). It is also shown that pruning
an SLD-tree (such that all refutations of negative examples and no refutations of positive
examples are excluded) can be performed by combining unfolding and clause removal.
Finally, the algorithm CLP_SPEC is formulated and the correctness of the algorithm is
proved.

9.3.1 The specialization problem

Definition 75 The specialization problem

The specialization problem of a Constraint Logic Program with respect to a set of positive
(E™) and a set of negative examples (£ ) can be defined by the following:

Given: a P Constraint Logic Program and two disjunct sets of ground terms (E+ and £ ).
The aim is: to find a P’ Constraint Logic Program (the specialization of P with respect to
(E* and E7)) such that Mp C Mp, E* C Mp and Mp: N E~ = (), where Mp denotes a
D-model of P.

We note that this definition satisfies the conditions of completeness and consistency of a
hypothesis since the specialized program covers all positive examples and does not cover
any negative example.
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In this work we assume that every positive and negative example is an ground instance of a
target (defined) predicate GG (goal). SLD-refutations of all the examples are then included in
an SLD-tree of PUG (every e € (ET U E7) : e € Im(P,<)).

This means that for each SLD-refutation of a particular example, there is a branch in the
corresponding SLD-tree leading from the root to the empty goal.

Consider the following example.

Example 19 In the following constraint logic program the equality constraint and symbols
of arithmetic operations are interpreted over the domain of rational numbers. A simple
example has been chosen to simplify the illustration of the specialization algorithm shown
later on. The constraints are distinguished by the use of curly brackets {}.

Given the definition of a fish-meal as consisting of an appetiser, a main meal and a dessert
and a database of foods and their calorific values we wish to construct light fish-meals i.e.
fish-meals whose sum of calorific values does not exceed 10. This program needs to be
specialized since it doesn’t just cover fish-meals.

1. fishlightmeal (A,M) : - {I + J < 10}, appetiser(A,I),
main (M, J) .

appetiser (A,I) : - cheese(A,I), {I>0}.
appetiser(A,I) : - pasta(A,I), {I>0}.
main(M,J) : - fish(M,J), {J > 0}.

main (M,J) : - meat(M,J), {J>0}.
fish(sole,2).

fish(tuna,4).

meat (beef,5) .

. meat (chicken,4).

0. pasta(general,l).

1. cheese(camamber,?2).

RN R LV oo Ut W

In Figure 18 (see Section 9.3.5), the skeleton of the SLD-tree of Example 19 is shown whose
leaves corresponding to refutations of positive and negative examples are labelled ’+* and
’-” respectively, while leaves that do not correspond to refutations of any examples are left
unlabelled (The corresponding set of positive and negative examples are also given in Section
9.3.5). The broken line shows two places where the SLD-tree can be pruned such that all
refutations of the negative examples and no refutations of the positive examples are excluded.

9.3.2 Unfolding

Following our formulation of the unfolding transformation, two theorems are proved which
state that the defined unfolding transformation preserves the operational and logical seman-
tics of CLP programs.

Definition 76 The unfolding transformation
Let P be a CLP program with the rules Ry, - - - , R,, such that
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R;: hj < bj,---,b;. ,c;(j=1---,n), where h;,b;,---,b;, are defined predicates,
c; denotes the conjunctiJ0n of the atomic constraints appearing in the body of R;.

Let R : h < by, by, -+, by, c be aprogram clause in P, and R = {R,,---, R,} be
a set of program clauses renamed to new variables such that the head of each R; € R
(¢ = 1,---,q) and b, have the same predicate symbol, and b,, is selected by some
computation rule.

Then the program P’ after unfolding is :

P’ =Unf(P,R,b,) = argument equations body(R;)
— p > ~
=P \ {R} U (URjeﬁh — (bm = hj)abla T 7bm717bj17 e ’bjmj7cj’ bm+1; e 7blc, C),

where b,, = h; is an abbrevation for the conjunction of argument equations between the
corresponding argument positions of b,, and h;.

We note that only a defined predicate can be unfolded and no constraint predicates.
In the formalization of the algorithm CLP_SPEC we will use the following set:

argument equations body(R;)

A\

— P -
R€S(P, R7 b) = URjeﬁ(h — (bm = hj)abla T 7bm717bj17 e abjmjacjaberl; e abkac)

This set can be viewed as the set of "resolvents” of R.

In Example 20 (see Section 9.3.5) an unfolding step with respect to main(M, .J) in clause 1
of Example 19 is shown.

In the following we will show that the unfolding transformation preserves the operational
semantics. To do this we first define the notion of operational equivalence.

Definition 77 Operational equivalence

Let P be a CLP program with the constraint domain (D, L), (§,C’,C”) and (), C', C”) two
final states of an SLD-tree for P U {p(X)}, where p(X) is a goal with free variables X. Let
S denote a D-interpretation.

Two states (i, C",C")y and (9, C', C"') are equivalent iff S = 3_<C'AC" &S =3_C A

— I

C.

The following theorem taken from [32] describes the connection between the top-down
operational and logical semantics of a CLP program, which is used to prove here that the
unfolding transformation preserves the logical semantics.
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Theorem 13 The connection between the top-down operational and logical semantics
of a CLP program

Let 3 be a D-interpretation and 3 () denote the existential closure of the formula () ex-
cept for the variables X, which remain unquantified. Consider a P CLP program with the
constraint domain (L, D). The success set S.S(P) collects the answer constraints to simple
goals p(X) with free variables X:

SS(P) = {p(X) < ¢ | (p(X),0,0) —* (§,C",C"), S = ¢ +—I_zC'AC"}.

Then [SS(P)]s = Im(P, ) where Im(P, ) is the least D-model of P.

Now we can state our theorem about the operational semantics preservation.

Theorem 14 The operational semantics preservation of the unfolding transformation
Let P be a CLP program with the rules Ry, - - - , R, such that

Rj:hj < bj,--- ,bjm]_,cj (j =1,---,n), where hj, b;,--- ,bjmj are defined predicates
and c; denotes the conjunction of the atomic constraints appearing in the body of R ;.

For every SLD-tree (P U {G} where G = p()?)), for every clause R € P and for every
b € body(R) defined predicate :

SS(P)=SS(P'),

where P’ = Unf(P, R, b,) and SS(P) collects the answer constraints to simple goals p(X)
(see Theorem 13).

So an unfolding transformation preserves the operational semantics (we deal now only with
success refutations).

Proof

Recall that this theorem says that applying an unfolding step on an SLD-tree does not
affect the set of answer constraints for a goal. This is important for us since, together with
Theorem 13 this means that an unfolding step does not change the least D-model of a CLP
program (see Theorem 15).

SS(P) = {p(X) < c| (p(X),0,0) = (§,C",C"), S = ¢ +— I_zC' AC"},

Hence to prove that SS(P) = SS(F) it is enough to show that for every branch of the
SLD-tree P U {p(X)} /i.e. for a given derivation (p(X),0,0) —* (0,C",C") / there

exists exactly one branch of the SLD-tree " U {p(X)} whose final state is equivalent to
(B, C",C"y and P' U {p(X)} has no additional branches.

To this end let us consider a branch of the SLD-tree P U {p(X)} and examine the effect of
an unfolding step for this branch.

Suppose that b,, in

R:h<+ by, -, by, by, c
was “unified” with
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~ =~ .
Rj: h’j <_bj17"'7bjmj’cj (]:1,---,71).

Compare an —,. transition (1) (see Section 7.3) with an unfolding step (2) (see Definition
76):

(1) (AU by, C,S) =, (AU {bj, - ,bj. ,c;},C, S U (by, = hy))
~ L ——

-~

body(R;) argument equations
argument equations body(R;)
/_M AN

~

(2) Rnewj th (Em :Ej)abla"' 7bm—17?)j17"' 7bjmjacj7bm+17"' ,bk,C)

One —, transition can be viewed as an operation where, instead of b,,, the body predicates
of the "unified” clause instance are inserted and the corresponding argument equations are
added to the set of constraints.

Applying an unfolding step, the body atoms of the “unified” clause and the argument
equations are added to the actual clause. We will show that an unfolding step simulates
the —,. transition. Since the unfolding transformation involves all unifiable” clauses, an
unfolding step can be viewed as an operation which moves a subtree closer to the root
(a node of an SLD-tree may have more then one children only if the following applied
transition is an —,. transition).

More precisely: If there is a derivation of P U {G} (G = p(X)) in which R (the clause has
been unfolded upon) is not used as an input clause, this is then also a refutation in P' U {G}.
But suppose R is used as an input clause in a refutation (p(X),0,0) —* (0,C’,C”) of
P U{G}.

We will prove that from such a refutation an (p(X),0,0) —* (0, C",C”) refutation of
P' U {G} can be constructed such that (), C’,C”) and (§,C’,C”) are equivalent (see
Definition 23).

Derivation 12 shows a part of the refutation when R is utilised as an input clause.
Derivation Res(R) shows when Res(P, R, b,,,) is used as an input clause instead of R (we
suppose now that Res(P, R, b,,) contains only one element).

The sets of the variables of the clauses (vars(c) where ¢ is a clause) are disjunct.
Since the SLD resolution uses clauses instances, in our proof we deal with a substitution,
denoted by o, which creates an instance of R, ; and R,,..,,;. There exists such a substitution
because vars(R) Nwvars(R;) = 0 and vars(Ryew,;) = vars(R) U vars(R;).

Derivation R:

1.--- (b,GRem;C})
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2. {byo, -+ by 10, b0, by 10, -+, byo, co, GRem; Cy A (b= ho)) e
3. {bm-10, b0, 10, - -+, bo, co, GRem; Ca) F(rue)
4. (bypo,byir0, -+, byo, co, GRem; C3) -,

5. (bj,0,---,0b; 0,60, bng10, - -+, bo, co, GRem; C'y A (bno = hjo)) Fp -+

m

Derivation Res(R):

1.--- (b,GRem;C}) t,

2. {byo,+++ ,by_10, (b, = hj)o,bj 0, ,bjmj 0,¢j0,bpi10,+ -+, bro, co, GRem; Ci A (b =
E)> l_(rUc)*

3. (bm10, (b, = hj)o,bj 0, - ,bjm]_ 0,€j0,bmy10, -+, bo, co, GRem; Ca) b (yu0)-

4. ((by, = hj)o,bj,0,- - s Djm, 03¢0, b 10, -+ - byo, co, GRem; Cs) F.

5. (bj,0,-- ,bjmj 0,¢j0, bypi10, -+, byo, co, GRem; Cs A ((a = h,_J)O')> Fpoeee

For these derivations we employ the following notational conventions:

e We did not picture the 7 and s transitions, we only marked that an r or ¢ transition
was applied (since the content of the constraint store in the corresponding nodes is the
same, the result of the 7 and s transitions are also the same).

e Every node has the following form: (goals, C'y, where goals contains the actual list of
goals and C' is the constraint store.

e R s the clause and b, is the literal in R to be unfolded upon.

e The first node is (b, GRes, C1), where b is "unified” with the head of R in the next
derivation step, G Rem is the remainder of the actual list of goals, and C is the con-
straint store.

e We pictured only one refutation, so if b,, can be "unified” with more clauses then this
map of nodes can be applied to every other branch of the SLD-tree which correspond
to these clauses.

Node 1 in Derivation R and Derivation Res(R) is the first node. The first goal b is "unified”
with Ro [ Ryew; 0.
Node 2 shows when the body predicates of Ro (Derivation R) / R, (Derivation Res(R))

are added to the actual list of goals, and the corresponding node equations (b = ho) are
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added to the constraint store C.

Node 3 shows the state after the derivations of the subgoals b,0, - - - , b,,_20. The content of
the constraint store Cj is the same in both derivations (SLD-trees) since the content of the
constraint store in Node 2 was the same and the same subgoals were derived in both cases.
In Node 4 the set of constraints C'5 is also the same in both derivations since the subgoal
b.,_10 was derived. But the next step is different: in Derivation R the next actual goal is
by, While in Derivation Res(R) (b, = h;)o.

As can be seen in Node 5, after applying an r transition for b,,,0 in Derivation R the resulting
node has the same label as when we apply a c transition for (b,, = h;)o in Derivation
Res(R) because

(bmo = h;o) = ((bn = hj)o). Hence from Node 5 the derivation continues with the same
list of goals and with the same content of the constraint store (see the comparison of the r
transition (1) and unfolding (2)), so finally the result constraint set is the same, which of
course means that the final state of the derivations is equivalent.

Theorem 15 The logical semantics preservation

The unfolding transformation preserves the logical semantics (D-semantics) of CLP pro-
grams.

Proof
Here we make use of the notes of Theorem 14.
Let S be a D-interpretation.

From Theorem 13: [SS(P)]g = Im(P,<3) and [SS(P')]s = Im(P', ).
From Theorem 14: SS(P) = SS(P').
So,
Im(P,) = [SS(P)]s = [SS(P')]s = Im(P', ).
From which: im(P,¥) = Im(P’, ).

9.3.3 Clause Removal

The aim of the learning process is to find a CLP program that does not cover any negative
examples. During the learning process it is verified whether or not a clause covers any posi-
tive examples. If it covers no positive examples, it is then removed (otherwise it is unfolded).
Removing a clause which covers only negative examples corresponds to pruning SLD-trees
such that all refutations of negative examples and no refutations of positive examples are
excluded.

9.3.4 The CLP_SPEC Algorithm

This section contains one of our key results, namely a specialization algorithm for constraint
logic programs. In the CLP_SPEC method, similar to the general ILP approach, background
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knowledge can be given that is not modified during the specialization. The algorithm
specializes logic programs with respect to positive and negative examples by applying the
transformation rule for unfolding together with clause removal. This is done in the following
way. The algorithm consists of one main loop that continues until no negative examples are
covered. When a clause is found that covers a negative example, and no positive examples,
it is removed. When a clause is found that covers both a negative and a positive example, it
is unfolded. The choice of which literal to unfold upon is made using the computation rule,
which uses different strategies (i.e. it selects the leftmost, in a random way).

Input: An initial constraint logic program program P, background knowledge B C P (a
set of clauses that does not change during the learning process and which clauses does not
take part in the refutations of negative examples), sets of ground atoms E+, E~ (the positive
and negative examples which are ground instances of a target predicate).

Output: Series of programs P/ P/ ... p'm)(pO) = P) where

P+ = Unf(P') (0 > i > n), and Unf is the unfolding operator extended with clause
removal.

THE CLP_SPEC ALGORITHM

1. if the program P does not terminate on all e™ € E*
2. then stop "Initial program should cover all positive examples.”
3. leti=0
4. while there is a clause R in P’ that covers an atom in £~
or (no more unfolding steps can be applied *) do

5. begin
if R does not cover any atom in £+
6. then
remove R from P'(%)
7. else
begin
8. - unfold upon the literal b in R that is selected

by the computation rule
P'eH) .= Unf(P'D R, b)
9. - Let D_Res(P'™, R,b) := Res(P'®, R, b)\ {those clauses
that do not occur in refutations
of positive examples }

10. - P'UF) = PG\ D_Res(P'® | R, b)
/*to find the most specific theory*/
11. end /*else*/

12. let;:=7+1
13. end /*while*/

We note that this algorithm produces the most specific theory, removing as many clauses as
possible (i.e. it removes all clauses that do not cover positive example - see program lines 9
and 10).
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9.3.5 The Correctness of the CLP_SPEC algorithm
Theorem 16 The correctness of the CLP_SPEC algorithm

The output P'(™) of the CPL_SPEC algorithm is a specialization of P with respect to £+ and
E~ if the reason of the termination of the algorithm is not (*) above. This also means that
P'™ is complete and consistent (i.e. it covers all positive examples and does not cover any
negative examples).

Proof
According to Definition 75 we have to satisfy the following three conditions:

1. MplﬂE_:@

We assume that the clauses of the background knowledge B does not take part in the
refutations of negative examples.

If the main loop in program line 4 terminates because there are no more program
clauses which cover negative examples, then P’ does not cover any negative
examples.

If it terminates because no more unfolding step can be performed (*), and P’ still
covers negative example(s), then our algorithm could not find a consistent hypothesis
(the percentage of the covered negative examples is provided). In this case new and
more precise constraints have to be introduced into the program. One aim of future
work is to combine this algorithm with a constraint inferring method.

2. ET C Mp
We prove this state for Mp = Im(P,<3).
From program line 1: E* C Mpio)

Foreveryi=1,---.n
e The unfolding step in program line 8 does not change Im(P'®, <)
(see Theorem 15).

e The clause removal in program line 6 and 10 does not remove clauses that cover
positive examples.



9.3 Specialization of CLP Programs by Unfolding 85

3. Mp C Mp

We prove this state for Mp = Im(P, <) in two steps:
Foreveryi=1,---.n

e The unfolding step in program line 8 does not change Im (P, 3)
(see Theorem 15).

e The clause removal in program line 6 and 10 does not extend Im(P'®, ).
The clause removal cuts branches of the SLD-tree, so reduces or does not change
the success set of the answer constraints (S.S(P'")) as well as Im(P'® | J)
(see Theorem 13).
From which,
Mpiiv1y € Mpiy fori =0,---,n,50 Mpr = Mpiny € Mpioy = Mp.

The complexity of the algorithm depends on the number of iterations ¢ (the number of un-
foldings). During the running process the number of the clauses increases when unfolding is
applied, so the number of iterations should be kept as low as possible. To do this, different
computation rules can be employed (for more details see [7]).

Example 20 We try out the CLP_SPEC algorithm on Example 19.
We would like to obtain a CLP program which tells us whether a meal is a light fish-meal,
i.e. a fish-meal whose sum of calorific values does not exceed 10. The program in Example
1 needs to be specialized since it does not merely cover fish-meals.

The set of positive examples:
E* := {fishlightmeal(A, sole), fishlightmeal (A, tuna)}

The set of negative examples:
E~ = {fishlightmeal(A, beef), fishlightmeal (A, pork)}

The goal for the SLD-tree which contains all the examples is: fishlightmeal(A, M).
The unfolding steps and clause removals and the corresponding SLD-trees in each iteration
are the following:

P'®) has the following form:

1. fishlightmeal( A, M) : - {I + J < 10}, appetiser(a, I),
main (M, J).

2. appetiser(A, I) : - cheese(aA, I), {I>0}.

3. appetiser(a, I) : - pasta(a, I), {I>0}.

4. main(M, J) : - fishM, J), {J>0}.

5. main(M, J) : - meat (M, J), {J>0}.

6. fish(sole, 2).

7. fish(tuna, 4).



9.3 Specialization of CLP Programs by Unfolding 86

8. meat (beef, 5).

9. meat (chicken, 4).
10. pasta(general,l).
11.

cheese (camember, 2) .

Figure 18 shows the skeleton of the SLD-tree of P'(“) for the goal fishlightmeal(A, M).

<fishlightmeal(A,M)>

[1+3=<10]

<appetiser(A,l), main(M,J)>

[14+j=<10, 1>0] /

<cheese(A,l), main(M,J)>

[A=camambert, 1=2,
1+J=<10, 1>0]

<main(M,J)>

[A=camambert, A=
1+J=<10, 1>0/J>0]

<fish(M,J)>

[the previou§ and]

[ M#sole [M=tuna
J=2]
+ + -

[Ascamambert, 1=2,
1+J=%40, 1>0, J>0]

<meat(M,J)>

he/previous and]

[t [the previous and]
. [M=beef [M=chjcken [M=sole [MEtuna
3=4] 3=5] 1=4] 1=2] 3= J=5] 3=4]
+

[|+j\:¢\o,|>01

<pasta(A,l), main(M,J)>

[A=geneyal, I=1,
1+J=<10, 1>0]

<main(M,J)>

7
[A=general, I=1,
1+J=x10, 1>0, J>0]

[A=general, 1=1,
1+J=<10, 1>0, J>0]

<fish(M,J)> <meat(M,J)>

[the previous gnd]

[M=beef [M=chjcken

- +

Figure 18: The skeleton of the SLD-tree of P'(*) for the goal fishlightmeal(A, M)

Choose the first clause and the main(M, .J) predicate for unfolding.

Instead of adding the argument equations we have made use of the same (corresponding)

variable names.

The two new clauses are the following:

1. fishlightmeal( A, M)
main (M, J).

4. main((M, J)

5. main(M, J)

-{I + J < 10}, appetiser(a, I),

- fish(M, J), {J>0}.

- meat (M, J), {J>0}.
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1.4 fishlightmeal(a,M) : - {I + J < 10}, appetiser (a,I),
fish(M,J), {J>0}.

1.5 fishlightmeal(aA,M) : - {I + J < 10}, appetiser(a,I),
meat (M,J), {J>0}.

After the clause removal (that of clause 1) P'(!) has the following form:

1.4 fishlightmeal (A,M) : - {I + J < 10}, appetiser(a,I),
fish(M,J), {J>0}.

1.5 flshllghtmeal(A,M) - {1l + J < 10}, appetiser (a,I),
meat (M,J), {J>0}.

appetiser (A, I) : - cheese(ad, I) , {I>0}.

appetiser (A, I) : - pasta(a, I), {I>0}.

main(M, J) : - fish(M, J , {J>0}.

main (M, J) : - meat (M, , {J>0}.

fish(sole, 2).

fish(tuna, 4).

meat (beef, 5).

meat (chicken, 4).

0 pasta (general,l).

1. cheese (camamber, 2) .

H P w0 J0 Ul b WiN

Figure 19 shows the skeleton of the SLD-tree of P'") for the goal fishlightmeal (A, M).

<fishlightmeal>

ST

<appetiser, fish> <appetiser, meat>

/NN

<cheese, fish> <pasta, fish> cheese, meat> <pasta, meat>

Vo)

<fish> <fish> <meat> <meat>

NIV I

Figure 19: The skeleton of the SLD-tree of P'(!) for the goal fishlightmeal (A, M)
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As we can see on Figure 19 the clauses 1.5, 4, 5, 8 and 9 do not take part in the refutation
of positive examples, so they can be removed. The removing of clause 1.5 cuts the
corresponding branch of the SLD-tree (which contains only negative examples).

Finally, P'") has the following form:

1.4 fishlightmeal( A,M) : - {I + J < 10}, appetiser (a,I),
fish(M,J), {J>0}.

2. appetiser(aA, I) : - cheese(a, I) , {I>0}.

3. appetiser(a, I) : - pasta(a, I), {I>0}.

4, fish(sole, 2).

5. fish(tuna, 4).

6. pasta(general,l).

7. cheese (camamber, 2) .

One iteration was enough to obtain the specialized program that covers only positive exam-
ples.

9.4 Improving the CLP_SPEC Algorithm by Slicing

The algorithm CLP_SPEC specializes clauses defining a target predicate by using different
strategies for selecting the literal to apply unfolding upon. The identification of a clause
to be unfolded is of crucial importance in the effectiveness of the specialization process
[2]. If a negative example is covered by the current version of the initial program there
is supposedly at least one clause which is responsible for this incorrect covering. In our
algorithm CLP_SPEC_SLICE a debugging system combined with a slicing technique is used
to identify a buggy clause instance, then this clause is removed from the initial program.

9.4.1 Combining Algorithmic Debugging and Slicing for Constraint Logic Programs

The algorithmic program debugging method, introduced by Shapiro [69], can isolate an er-
roneous procedure, given a program and an input on which it behaves incorrectly. Shapiro’s
model was originally applied to Prolog programs but it can be also extended to constraint
logic programs in a fairly natural way.

A major drawback of this interactive debugging method is the large number of queries made
to the user about the correctness of intermediate results of procedure calls.

A major improvement in the localization process is possible by combining the algorithmic
debugging with slicing technique [74]. A proof tree is produced for a buggy program, then
a proof tree dependence graph is constructed which is sliced and then those parts of the
tree that have no influence on the visible symptom of a bug are removed. The algorithmic
debugger traverses the sliced proof tree only, thus concentrating on the suspect part of the
program. In this paper we refer to this method as the DEB_SLICE debugging method.
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9.4.2 The CLP_SPEC_SLICE Algorithm

The main idea behind the CLP_SPEC_SLICE algorithm is that the identification of the next
clause to be unfolded plays a crucial role in the effectinevess of the specialization process. It
is assumed that when a negative example is covered by the current hypothesis (intermediate
program) there is at least one clause which is responsible for this incorrect covering.
CLP_SPEC_SLICE uses the DEB_SLICE algorithm to identify a buggy clause of the
program. The clause identified in this process will be unfolded in the next step of the
specialization algorithm.

The CLP_SPEC_SLICE algorithm basically consists of the following three steps:

e Finding the clause the unfolding is applied upon (this step is done by the DEB _SLICE
algorithm)

¢ Finding the literal within the clause that will be the basis of the unfolding: The same
method is applied here as that used in SPECTRE [7].

e Performing the unfolding on the program.

The CLP_SPEC_SLICE algorithm is the following:

Input: An initial constraint logic program P, background knowledge B C P (a set of
clauses that remains unchanged during the learning process and does not take part in the
refutation of negative examples), sets of ground atoms E+, E~ (the positive and negative
examples which are ground instances of a target predicate).

Output: A series of programs P/, p'(M) ... p')(p'®) = p), where

Pi+D) = Unf(P') (0 > i > n), and Unf is the unfolding operator extended with clause
removal.

THE CLP_SPEC_SLICE ALGORITHM

1. if the program P does not terminate onall e™ € E*

2. then stop ”Initial program should cover all positive examples.”

3. leti=0

4. while there isan e~ € £~ such that P’ does not fail on e~ or
(no more unfolding can be applied *) do

begin
5.  find a buggy clause R € P'® using the DEB_SLICE debugger
(Risnotin B)
if R does not cover any atom in £+
6. then

remove R from P'(9)



9.5 Prototype Implementation 90

7. else
begin
8. - unfold upon the literal b in R that is selected
by the computation rule
P = Unf(P'D R, b)
9. - Let D_Res(P'™, R, b) := Res(P'", R, b)\ {those clauses
that do not occur in refutations
of positive examples }

10. - P'UF) = PG\ D_Res(P'® | R, b)
/*to find the most specific theory*/
11. end /*else*/

12. let;:=7+1
13. end /*while*/

We note that this algorithm also produces the most specific theory.

9.4.3 The Correctness of the CLP_SPEC_SLICE Algorithm

It can readily seen be that the difference between this and the CLP_SPEC algorithm is the
choice of the clause whose literal is unfolded upon.

Theorem 17 The correctness of the CLP_SPEC_SLICE algorithm

The output P'™ of the CPL_SPEC_SLICE algorithm is a specialization of P with respect to
E* and E~ if the DEB_SLICE algorithm is able to identify a buggy clause (otherwise the
CLP_SPEC algorithm can be used to find the hypothesis) and the reason for the program
termination is not (*) above.

Proof:

The correctness of the CLP_SPEC_SLICE algorithm depends on the correctness of the
CLP_SPEC algorithm and the correctness of the DEB_SLICE algorithm. The CLP_SPEC al-
gorithm is correct with respect to these conditions (see Theorem 16). There are special cases
however when the buggy clause cannot be identified by the DEB_SLICE method. There is a
solution to this problem [?], but the complexity of this method is too large compared to the
complexity of the CLP_SPEC algorithm, so we prefer to apply the CLP_SPEC algorithm in
this case.

9.5 Prototype Implementation

Both algorithms (CLP_SPEC and CLP_SPEC_SLICE) were implemented in SICStus Prolog.
For slicing we used a previously developed tool [74].

The algorithms were tested on simple examples such as N-Quens, rectangle [2](to recognize
a horizontally lying rectangle), horse-jumping, and so on. During the testing we employed
the Prolog computation rule (i.e. we chose the leftmost literal).
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From the test results it may be concluded that the number of clauses learned by
CLP_SPEC_SLICE is less than that learned by the CLP_SPEC algorithm. This means that
CLP_SPEC_SLICE can learn more compact theories than CLP_SPEC. However, during the
running of the CLP_SPEC_SLICE algorithm an oracle has to answer membership questions
to identify a buggy clause instance. Generally, about the 40 % of these user queries could
be reduced by applying slicing (in a few cases 100 %). Sometimes it was difficult to answer
the user queries, since they were about the correctness of numerical functions (data). A list
of the slice points, which may be identified with the help of a graphical user interface, could
be given in a list inserted in the goal in the following way:
fishlightmeal(A, beef),[2].

In this negative example the second argument is incorrect, so the proof tree is created for
the goal fishlightmeal(A,beef), the slice is created with respect to the second argument
(beef), and the algorithmic debugger asks only about the correctness of those predicates
that are included in this slice of the proof tree. If the list is empty then the proof tree is
walked by the original algorithmic debugging method.

The following small example shows how the CLP_SPEC _SLICE algorithm learned
horse-jumping from an initial theory. As the example is very small, no slice was created and
the algorithmic debugger asked only one question at each iteration step.

The initial program describing horse-jumping (which needs to be specialized) was the
following:

1. horse(A,B,C,D):-Horiz=abs(A-C),Vert=abs (B-D), horse step(Horiz,Vert).

2. horse_step(Horiz,Vert) :- num(Horiz), num(Vert).

background (num(X) :- X=0.0). background (num(X) :- X=1.0).
background (num(X) :- X=2.0). background (num(X) :- X=3.0).
background (num(X) :- X=4.0). background (num(X) :- X=5.0).
background (num(X) :- X=6.0). background (num(X) :- X=7.0).
background (num(X) :- X=8.0). background (num(X) :- X=9.0).

The set of positive exampes:

positive horse(1.0,2.0,3.0,3.0). positive horse(3.0,6.0,4.0,4.0)
positive horse(4.0,2.0,3.0,4.0). positive horse(5.0,2.0,3.0,3.0)
positive horse(5.0,6.0,4.0,4.0). positive horse(4.0,6.0,3.0,4.0)
The set of negative examples:

negative horse(3.0,2.0,7.0,6.0) negative horse(2.0,3.0,4.0,8.0)
negative horse(3.0,5.0,7.0,6.0) negative horse(2.0,3.0,4.0,5.0)
negative horse(3.0,2.0,7.0,6.0) negative horse(2.0,3.0,4.0,6.0)
negative horse(2.0,3.0,3.0,6.0)
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The running of the CLP_SPEC _SLICE algorithm:
-? start.
Welcome to CLP_SPEC learning system.
Please enter the filename to be processed: horse.

The background knowledge is:

3: num(A):-A=0.0 4: num(A):-A=1.0 5: num(A):-A=2.0
6: num(A):-A=3.0 7: num(A):-A=4.0 8: num(A):-A=5.0
9: num(A):-A=6.0 10: num(A):-A=7.0 11: num(A):-A=8.0
12: num(A) :-A=9.0

The theory that needs to be specialized is:
1: horse(A,B,C,D):-E=abs(A-C),F=abs(B-D), horse step(E,F)
2: horse.step(A,B) :-num(A) ,num(B)

The positive examples are:

1013: horse(1.0,2.0,3.0,3.0) 1014: horse(3.0,6.0,4.0,4
1015: horse(4.0,2.0,3.0,4.0) 1016: horse(5.0,2.0,3.0,3
1017: horse(5.0,6.0,4.0,4.0) 1018: horse(4.0,6.0,3.0,4
The negative examples are:

1019: horse(3.0,2.0,7.0,6.0) 1020: horse(2.0,3.0,4.0,8
1021: horse(3.0,5.0,7.0,6.0) 1022: horse(2.0,3.0,4.0,5
1023: horse(3.0,2.0,7.0,6.0) 1024: horse(2.0,3.0,4.0,6
1025: horse(2.0,3.0,3.0,6.0)

Checking input examples:

The sets of positive and negative examples are distinct.
Checking positive examples:

All positive examples are covered.

Checking negative examples:

1019: horse(3.0,2.0,7.0,6.0) covered. 1020:
horse(2.0,3.0,4.0,8.0) covered.

1021: horse(3.0,5.0,7.0,6.0) covered. 1022:
horse(2.0,3.0,4.0,5.0) covered.
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1023: horse(3.0,2.0,7.0,6.0) covered. 1024:
horse(2.0,3.0,4.0,6.0) covered.

1025: horse(2.0,3.0,3.0,6.0) covered.

The fact horse(3.0,2.0,7.0,6.0) is covered by the theory.

Starting the false proc. algorithm to determine
the basis of the unfolding.

Is it ok [horse._step(4.0,4.0)] (y/n) n
Unfolding at the clause instance:
2: horse step(4.0,4.0):-num(4.0) ,num(4.0)

- trying resolvent(s): [2-1]
- trying resolvent(s): [2-2]

The result of the unfolding is:
1: horse(A,B,C,D):-E=abs(A-C),F=abs(B-D),horsestep(E,F).

2: horse_step(A,B) : -num/(

,B=1.0.
3: horse_step(A,B) :-num( B=2.0

A)
),
Checking positive examples:
All positive examples are covered

Checking negative examples:

1021: horse(3.0,5.0,7.0,6.0) covered. 1022:
horse(2.0,3.0,4.0,5.0) covered.

The above theory:

covers 6 positive samples from 6 (100.00 percent)
fails on 5 negative samples from 7 (71.43 percent.)

The fact horse(3.0,5.0,7.0,6.0) is covered by the theory.
Starting the false proc. algorithm to determine

the basis of the unfolding.

Is it ok [horse._step(4.0,1.0)] (y/n) n

Unfolding at the clause instance:

2: horsestep(4.0,1.0):-num(4.0),1.0=1.0
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- trying resolvent(s): [2-1]

The result of the unfolding is:

1: horse(A,B,C,D):-E=abs(A-C),F=abs(B-D), horse step(E,F)
2: horse_step(A,B):-A=2.0,B=1.0

3: horsestep(A,B):-num(A),B=2.0

Checking positive examples:

All positive examples are covered

Checking negative examples:

1022: horse(2.0,3.0,4.0,5.0) covered.

The above theory:

covers 6 positive samples from 6 (100.00 percent) and
fails on 6 negative samples from 7 (85.71 percent).

The fact horse(2.0,3.0,4.0,5.0) is covered by the theory.

Starting the false proc. algorithm to determine
the basis of the unfolding.

Is it ok [horse_step(2.0,2.0)] (y/n) n
Unfolding at the clause instance:

3: horsestep(2.0,2.0):-num(2.0),2.0=2.0
- trying resolvent(s): [3-1]
The result of the unfolding is:
l1: horse(A,B,C,D):-E=abs(A-C),

F
2: horsestep(A,B):-A=2.0,B=1.0
3: horse_step(A,B):-A=1.0,B=2.0

=abs (B-D) ,horse_step (E, F)

Checking positive examples:
All positive examples are covered
Checking negative examples:

The above theory:
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covers 6 positive samples from 6 (100.00 percent) and
fails on 7 negative samples from 7 (100.00 percent) .

The final result theory is:
1: horse(A,B,C,D):-E=abs(A-C),F=abs(B-D),horse_step(E,F)
2: horse_step(A,B):-A=2.0,B=1.0
3: horse_step(A,B):-A=1.0,B=2.0
Checking positive examples:
All positive examples are covered.
Checking negative examples:
No negative example is covered

The above theory:

covers 6 positive samples from 6 (100.00 percent) and
fails on 7 negative samples from 7 (100.00 percent).

yes - ?

As we can see the algorithm has learnt the correct theory for horse-jumping.

9.6 Related Work

Different learning methods have been introduced for learning constraint logic programs in
[35, 67, 47, 58, 48] but to our knowledge only one of them has so far been implemented [67] for a
special domain.

Kawamura and Furukawa [35] adopted the dominant paradigm in ILP, namely the paradigm of
inverse resolution for generalizing constraints.

Sebag et al. [67] propose a framework for learning clauses which can discriminate between positive
and negative examples expressed as constrained clauses. They conjecture that only a subset of the
entire set of discriminating clauses need to be determined fully in order to explicitly represent the
learned concept. The remaining clauses of the concept can be derived from these basic set of clauses.

Martin and Vrain’s [47] idea is that instead of interpreting function symbols in constraints sym-
bolically, if we interpret them by more semantic means, there is scope for development of better
algorithms for generalizing and inducing constraint logic programs.

Page and Frisch [58] extend the concepts involved in the generalization of atoms, to more general
forms of atoms, especially atoms with constraints associated with them. The constraint is a logical
expression built of specialized predicates called constraint predicates and represents a form of
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restriction on the atom to which the constraint is involved.

Mizoguchi and Ohwada [48], extend ideas from ILP based on Plotkin’s framework [62] of Relative
Least General Generalization(RLGG) to induce constraint logic programs.

We have adopted another existing ILP technique for ICLP, namely the specialization method SPEC-
TRE [7].

Our algorithm (CLP_SPEC) is unable to create new (more precise) constraints during the learning
process. It applies unfolding on the defined predicates.

One of the aims of future work will be to combine the CLP_SPEC method with another algorithm
that is able to infer new constraints as well.

A major area of research motivated by all the ICLP systems involves the question of developing
notions of bias restrictions. A reduced size of search space can help to solve the time and complexity
problems. In our work we produced a modification of the specialization method which combines the
CLP_SPEC algorithm with algorithmic debugging and slicing in order to reduce the bias and to learn
more compact theories.

9.7 Summary

The idea of Logic Programming (LP) [50] is to use a computer for drawing conclusions from
declarative descriptions. Such descriptions -called Logic Programs - consist of finite sets of logic
formulas. In order to be able to apply a relatively simple and powerful inference rule (called the
SLD-resolution principle), restrictions are introduced on the language of formulas.

Constraint programming [46] is an emergent software technology for declarative description
and effective solving of large problems. Not only does it have a strong theoretical foundation but it is
attracting widespread commercial interest as well, in particular, in areas of modelling heterogenous
optimisation and satisfaction problems.

The cornerstone of Constraint Logic Programming (CLP) [46, 32] is the notion of constraint.
Constraint Logic programming is a fusion of two declarative paradigms: Constraint Solving
and Logic Programming. The framework extends classical logic programming by removing the
restriction on programming within the Herbrand universe alone; unification is replaced by the more
general notion of constraint satisfaction.

Inductive Constraint Logic Programming (ICLP) refers to a class of machine learning algorithms
where the agent learns a theory (a CLP program) from examples and background knowledge.

We presented a learning method for constraint logic programs (ICLP) by combining unfolding and
clause removal, formulated the semantics of this new method (CLP-SPEC), proved that the defined
operator preserves the operational and logical semantics (for LP a similar theorem was provided in
[68]), and improved the unfolding technique by applying slicing (CLP.SPEC_SLICE). A prototype
learning tool was then implemented based on these methods.

The specialization algorithm is an extension of the original algorithm SPECTRE [7], which is a
learning method for logic programs (SPECTRE 3.0 [6] has some new features for handling numerical
values). Logic programming (LP) can be viewed as a special case of constraint logic programming.
This is a substantial extension, so CLP not only has distinct syntactics from LP but also distinct
semantics.



9.7 Summary 97

We formulated the necessary definitions and theorems needed to formalize the CLP. SPEC algorithm
and to analyze it. We provided the exact definitions of the specialization problem, unfolding
transformation and operational equivalence. We proved that the application of the unfolding operator
does not affect the set of the answer constraints of a CLP program for a given goal and preserves the
operational semantics as well as the logical semantics. The correctness of the CLP. SPEC algorithm
was proved on the basis of these theorems.

In our work we furnished a modification of the specialization method which combines the CLP. SPEC
algorithm with algorithmic debugging and slicing to reduce the bias.

IMPUT [2] is a specialization method for LP that also improves the original SPECTRE [7] algorithm
using a debugging algorithm to identify a buggy clause instance, but it has the big disadvantage that
an oracle has to answer membership questions to identify a buggy clause instance.

In our work the combination of algorithmic debugging with slicing technique was extended to CLP
in order to reduce the number of user queries.

Both algorithms were implemented and tested on different examples and, as the results of the
implementation show, compact theories can be learned without much difficulty.
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Part IV
LEARNING SEMANTIC FUNCTIONS
OF ATTRIBUTE GRAMMARS

The results of this part of the thesis are covered in [77].
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10 Learning Semantic Functions of Attribute Grammars

Attribute Grammars (AGs)[91, 38, 1, 55] are a generalization of the concept of Context Free Gram-
mars (CFGs). The formalism of AGs has been widely used for the specification and implementation
of programming languages. Actually, there is an intimate relationship between AGs and Logic Pro-
gramming. This part of the dissertation presents a parallel method for learning semantic functions of
Attribute Grammars (AGs) based on AGLEARN [22] and PAGE system [88]. The method is more ef-
ficient in both execution time and interactions needed than the sequential one. The method presented
is adequate for S-attributed grammars and for L-attributed grammars as well.

10.1 Introduction

In the framework of compilation-oriented language implementation, attribute grammars [36] are the
most widely applied semantic formalism. The notion of an attribute grammar is an extension of the
notion of a context free grammar. The idea is to decorate parse trees of a context free grammar by
additional labels which provide a ”semantics” for the grammar. Every node of a parse tree labeled by
a nonterminal is also decorated by a tuple of semantic values called attribute values. The number of
attribute values is fixed for any nonterminal symbol of the grammar. Their names are called attributes
of nonterminal. Since the definition of an attribute grammar usually requires much work it would be
useful to have a tool for inferring semantic rules in attribute grammars based on examples.

In the case of inductive learning from examples, the learner is given some examples from which
general rules or a theory underlying the examples can be derived. An inductive concept learner is
given by a set of training examples, some background knowledge, a hypothesis description language,
and an oracle willing to answer questions (in the case of interactive learner). The aim is to find
a hypothesis such that the hypothesis is complete and consistent with respect to the examples and
background knowledge.

To express efficiently the examples, the background knowledge, and the Hypothesis to be induced we
need to use a language L with sufficient expressive power. Many systems were developed for learning
logic programs, using first order predicate logic language tools (Inductive logic Programming (ILP)).
Attribute Grammars merge the declarative power of predicate logic with the flexibility of a predefined
interpretation of its terms. Complex objects and relations can be described in the framework of
AGs. Introducing an AG-based description language L in ILP implies the definition of an Attribute
Grammar learner.

In the following sections we will show how this integration is carried out using the AGLEARN [22]
methodology and we will give the description of an innovative technique for a parallel implementa-
tion.

AGLEARN is a method for learning semantic functions of attribute grammars, which infers semantic
rules of attribute grammars from examples. This is an interactive system, so during the execution the
oracle has to answer a lot of questions, which requires a lot of work and much time. The parallel
implementation of AGLEARN makes it possible to decrease the number of oracles so it is more
efficient in both execution time and interactions needed (We rercall that the execution time depends
on the number of the user queries). Our method uses the PAGE system, which is a general purpose
parallel parser, augmented with a powerful semantic evaluator. Notice that this parallel method can
be implemented using any general purpose parallel parser that has the appropriate facilities for storing
and handling the necessary information.

The following sections are organized as follows. Section 10.2 gives an introduction to the concepts
of Attribute Grammars. Section 10.3 provides a brief introduction to the AGLEARN method, and
gives a typical example. Then Section 10.4 presents the computational model of PAGE in order to



10.2 Preliminaries 100

represent the necessary facilities for the parallelization. In Section 10.5 the PAGELEARN method is
presented. We give a detailed description of the parallel method for S-attributed grammars explaining
how can we handle the circuity problem, the we furnish an illustrative example. Finally we show how
the parallel method works for L-attributed grammars.

10.2 Preliminaries
10.2.1 Attribute Grammars

Attribute Grammars have been proposed by Knuth [36, 37] as an extension of context-free grammars.
The original motivation was to facilitate compiler specification and development procedure.

While compilers was the initial area of research for AGs, they can also be used in a very wide
research spectrum, where relations and dependences among structured and interpreted data is very
valuable. Areas like software engineering [59, 43], visual programming [83], logic programming
[14], distributed programming [92, 64], functional logic programming [45] and signal processing are
some notable examples.

Definition 78 Context-free grammar

A context-free grammar G is a quadruple such that G =< N, T, P, D >, where N is a finite set of
nonterminal symbols, T is a set of terminal symbols, P is a finite set of productions, and D € N is
the start symbol of G.

Anelement in V = N U T is called grammar symbol. The production in P are pairs of the form
X — «a,where X € N and o € V*, i.e. the left hand side symbol (LHSS) X is a nonterminal,
and the right hand side symbol (RHSS) « is a string of grammar symbols. An empty RHSS (empty
string) will be denoted by «.

Definition 79 Attribute Grammar
An Attribute Grammar consists of three elements, a context-free grammar G, a finite set of attributes
A and a finite set of semantic rules R. Thus AG =< G, A, R >.

A finite set of attributes A(X) is associated with each symbol X € V. The set A(X) is partitioned
into two disjoint subsets, the inherited attributes 7(X) and the synthesized attributes S(X). Thus
A =UA(X).

The production p € P, p: Xg — X7 --- X, (n > 1) has an attribute occurrence X;.a, if a € A(X;),
0 <@ < n. Afinite set of semantic rules R, is associated with the production p, with exactly one
rule for each synthesized attribute occurrence Xy.a and exactly one rule for each inherited attribute
occurrence X;.a,1 <1 <n.

Thus R, is a collection of semantic rules of the form X;.a = f(y1,--- ,yx), k¥ > 1, where

1. eitheri =0anda € S(X;),0orl1 <i<nmanda € I(X;)
2. each y;,1 < j <k, is an attribute occurrence in p and

3. fisafunction called semantic function, that maps the values of 4, . . ., v, to the value of X;.a.
In a semantic rule X;.a = f(y1,...,yx), the occurrence X;.a depends on each occurrence
Yy, 1<5< k.
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Thus R = UR,. By definition, synthesized attributes are output to the LHSS of the productions
while inherited attributes are output to the RHSS. In other words synthesized attributes move the data
flow upwards and inherited attributes move the data flow downwards in the derivation tree during the
attribute evaluation procedure.

Remark: Note that each semantic rule of an attribute grammar can be viewed as a definition of
the relation between local attribute values of the neighboring nodes of the parse tree. This relation is
defined for a production rule and should hold for every occurrence of this production rule in any parse
tree. In the original definition of AG (Definition 79) the definition of the relation takes the form of
an equation. It is possible to generalize the concept of semantic rules and allow them to be arbitrary
formulae (not necessarily equalities) over a language +.

Definition 80 Conditional Attribute Grammar
A Conditional Attribute Grammar (CAG) is an attribute grammar having the concept of the semantic
rules extended. Thus a CAG is a 5-tuple < G, S, A, S, I > where:

e ( is the underlying context free grammar
e Sisaset of sorts (i.e. of domains where the attributes have values)
e A s afinite set of attributes. Each attribute « has a sort s(a) in S.

e & is a map function of a logic formula <, written in terms of an S-sorted logic language t
for each production rule p € P. The variables of a formula 3, include all output attribute
occurrences of A(p) = UxepA(X). The allowed form of the function <, is either a function
f or arelation c.

— in the case of a function, f has the form

f : Xpyk.a = f(Xpykl.al, N ,Xp’km.am)
where f: I(Xp 5, .01) X ... X I(Xp g -0m) = 1(Xp -0).

— in case of relation, ¢ has the form
c:e(Xpp-aty .y Xp g -Gm)
where ¢ : I(X, g, .a1) X ... X I(Xpk,,-0m) — {true, false}.

e [ isan interpretation of £ in some S-sorted algebraic structure A.

Semantic rules induce dependences between attributes. These dependences can be represented by a
dependency graph, from which partial ordering relations are implied. From these partial orderings
the evaluation order of the attribute occurrences can be determined. A decorated tree is a derivation
tree in which all the attribute occurrences have been evaluated according to their associated semantic
rules. The dependency graph characterizes all restrictions on the control of computations. The ac-
tual sequence of attribute evaluation must preserve this ordering which is called attribute evaluation
strategy. Attribute grammars can be classified according to the attribute evaluation strategy used .

Definition 81 S-attributed Grammars
A special class, introduced by Knuth [36], is the S — attributed grammars where only synthesized
attributes are allowed.

Due to the restrictive form of S-attributed grammars, L — ordered grammars are used in practice.
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Definition 82 L-attributed Grammars
An attribute grammar is said to be L-attributed if and only if each inherited attribute of X, ;
in the production p : X,o — X,1,...,Xp,, depends just on the attributes in the set

Ukeqt, j—13 Inh(Xp ) U Syn(Xpo) forj =1,... mp.

Example 21 We now present a typical example for the type checking of arithmetic expressions [91].
Consider the following attribute grammar:

e Nonterminals: N = {Expression, Term, Factor, AddOp, MulOp}
e Terminals: T' = {Real, Integer,+, —, %, /,(,)}
e Start Symbol: D = Ezpression

e Sorts:
S = {Smodea Soperawr} where
= Siode = {int,real}

— Soperator = {add, sub, mul, div}
& = {add, sub, mul, div,int, real,id, f1, fo} where

— add, sub, mul, div,int and real are constants
— id : Spmode — Smode denotes the identity function

= f1 1 Smode X Smode = Smode

fi(op1,0p2) :=if opy = real Or opy = real then real
else int

- f2 : Soperator X Smode X Smode = Smode

fa(op1, op2, 0p3) := if opy = mul and ops = int and ops = int
then int
else real

e Attributes: A = Syn = {mode, operator} so that
Syn(Exzpression) = Syn(Term) = Syn(Factor) = mode
Syn(AddOp) = Syn(MulOp) = operator

e Production and Semantic Rules:

1. Expressiong — Exzpression; AddOp Term
R(1) : Exzpressiong.mode := f1(Ezpression;.mode, Term.mode)

2. Expression — Term
R(2) : Expression.mode := Term.mode

3. Termy — Termy MulOp Factor
R(3) : Termg.mode := fo(MulOp.operator, Termi.mode, Factor.mode)

4. Term — Factor
R(4) : Term.mode := Factor.mode



10.3 The AGLEARN method 103

5. Factor — Real
R(5) : Factor.mode := real

6. Factor — Integer
R(6) : Factor.mode := int

7. Factor — (Fxpression)
R(7) : Factor.mode := Ezxpression.mode

8. AddOp — +
R(8) : AddOp.operator := add

9. AddOp — —
R(9) : AddOp.operator := sub

10. MulOp —
R(10) : MulOp.operator := mul

11. MulOp — /
R(11) : MulOp.operator := div

10.3 The AGLEARN method

AGLEARN [22] is a method for learning semantic functions of attribute grammars. The method uses
background knowledge for learning semantic functions of S-attributed and L-attributed grammars.
The given context-free grammar and background knowledge together allow one to restrict the space
of relations and give a smaller representation of data. The basic idea of this method is that the learning
problem of semantic functions is transformed to a propositional form and the hypothesis induced by
a propositional learner is transformed back into semantic functions. This approach is motivated by
the fact that there is a close relationship between attribute grammars and logic programs [14].
AGLEARN uses the same concept as Inductive Logic Programming (ILP) but has a different rep-
resentation. The background knowledge and the concepts are represented in the form of attribute
grammars. An example contains a string which can be derived from the target nonterminal. We
suppose that the underlying context-free grammar is given. The task of AGLEARN is to infer the
semantic functions associated with the production rule. In the learning process the grammar, the
background semantic functions and the examples can be used.

The input :

e The AG = (G, S, A, S, I) inwhich :

— The unambiguous context-free grammar is G = (N, T, P, D)

— The set of productions P is partitioned into two disjoint sets I3 (The background rules)
and Pr (the target rules). The set of semantic functions R is fully defined for the rules
belonging to Pg and there are no semantic functions in R associated with the rules
belonging to Pr.

— A partially defined set of semantic conditions C. C'is fully defined for B3, and there is
no condition for any rule in Pr.

— It is supposed that the sorts of attributes(S)and the set of initial semantic functions
are defined in advance.

e Foreach p € Pr and for each synthesized attribute occurrence X, o.a there is a set of examples
E,(a) (which is partitioned into two disjoint sets) the set of positive examples E;“(a) and
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negative examples E; (a). Let us suppose that p has the form of p : X, 0 — X 1,..., Xpp,-
An example e € E,(a) is given in the form: e = (w, (a1,v1), ..., (@m, Vm), (@m41,Vm+1)),
where w € T*, X0 =* w, {a1,..,an} = Inh(X,) , and apq1 = a. A pair (a;,v;)(1 <
J <m+1) in the example e denotes the attribute X, .a; that has the value v; in the evaluated

attributed tree built for the word w.

The aim is to find a set of functions S; and for each production p € Pr a definition of the sets
R(p) and C(p) such that the semantic functions and conditions in R(p) and C(p) are defined by
the elements of ; U . The resultant attribute grammar must be complete and consistent with the
examples.

10.3.1 Learning semantic functions of S-attributed grammar

The method is based on the idea that the semantic functions of the background rules can introduce
new columns in the table corresponding to the transformed learning problem.

Consider the production p : X, 0 — Xp1,...,Xpn, € Pr, and suppose that the symbols in this
rule can possess only synthesized attributes. We would like to learn the semantic function associated
with X, g.a. For X, o.a, a T'(a) table must be constructed. Each row of this table corresponds to an
example from E,(a). The table has the set of columns

{ class, word, target } UU U Syr U Sycr U Sur U Sucr

where, for a given example e = (w, (a,v)) these columns are defined as follows:

1. class(e)= + ife € Ej(a)
- otherwise (i.e. e € E(a))

2. word(e) =w
3. target(e) is the value of a in e, i.e. target(e) = v

4. The key part is the computation of the column U (see Table 3) which contains columns cor-
responding to the attribute instances X, ;.b € Syn(X,;),j = 1,...,n,. The value of this
column is computed using the semantic functions in Ps. For the example e = (w, (a,v)) this
computation is performed as follows:

e An attributed tree is built on the input string w

o If the subtree derived from symbol X, ; contains only nodes corresponding to rule in-
stances belonging to Pg, then the attributes of this subtree can be evaluated.

e If the subtree derived from X, ; contains a node corresponding to a rule instance belong-
ing to Pr then the values of the attributes in Syn(X, ;) are asked from the user for the
given derivation.

5. Let Xpp,.a1, -, Xp 501 (0 < Ky,---, k < np) be applied attribute occurrences and let
f 7 x - x1; = {true, false} be a Boolean function (f € ;) such that 7; = (X, 1,.a;)
(1 <4 <1). Then there is a column for the relation f (X, ,.a1,- -+ , Xp,.a7) in Syg.

6. Let X, ;.b be an applied attribute occurrence (0 < k£ < m,) and let {ci,--- , ¢, } be a set of
constant values occurring in the column X;, ;..b of U. Then for each ¢; there is a corresponding
column for the relation X, ..b = ¢; in Sycr (1 <@ < m).
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[ class word target | U | FUCR [ Fucr [ Fur |
To.m | Up Us Us | Ri__ Ro R3 Ri Rs Rs | F1 | 1 s |
+ 3x 2.5 real int* mul real T F T F F T F T F T
+ 5% 3 int int* mul int T F T F T F T F T T
+ 1.5 x4 real real* mul int F T T F T F F T T F
+ 2.5/3 real real* div int F T F T T F F T T F
+ 2/3 real int* div int T F F T T F F T F F
+ 6/3.4 real int* div real T F F T F T F T F T
- 2 % 3.2 int int* mul real T F T F F T T F T F
4.3/2 int real* div int F T F T T F T F F T
8/3 int int* div int T F F T T F T F T T
Table 3: The generated propositional table
7. Let Xpp, a1, , Xpp,-a0 (0 < Ky, ---, k; < np) be applied attribute occurrences and let

f:m x - x 7 — 19 be afunction (f € ;) such that ; = I(X,4,.0;) (1 <4 <) and

70 = I(a). Then there is a column for the relation a = f(X, 1, .a1, -

8. Let {ci,---

7Xp,/€l'al) inSyp.

,cm } be a set of constant values occurring in U or in the column of target(e).

Then for each ¢; there is a corresponding column a = ¢ in Syep ifand only if I(a) = I(¢)
(1<i<m).

The if-rules are constructed from the T'(a) table, and the semantic functions are generated from a set

of accepted if-rules. For a detailed description, see [22].

10.3.2 Learning L-attributed semantic functions

Suppose that the symbols in the rule p can possess synthesized and inherited attributes.

The

task of an attribute learner is to define semantic functions for the set of defined occurrences
Ukeqt, np} I70(Xp ) U Syn(Xp,0). The learning process of these attributes can be summarized as

follows:

1. Learning sematic functions for a € Inh(X;),j =1,...,np.

The user is asked to provide examples. For the attribute X, ;.a a T'(a) table must be con-
structed. The columns in the part U of the table are all the attribute occurrences on which the
value of X, ;.a depends on Inh(Xp0) U Ugeq, ... j—1} Syn(Xpx). Afterwards the proposi-
tional part can be constructed in the same way as that presented for S-attributed grammars.
When semantic functions for all « € Inh(X, ;) have been learned the attributes of Syn (X, ;)

can be computed by using the background rules.

2. Learning semantic functions for a € Syn(X o)

The semantic functions for ¢ can be determined in the same way as that for S-attributed gram-

mars.

Example 22 An example of AGLEARN method (taken from [22]).

Applying the above procedure to our example:
Pp ={R(5),...,R(11)}.

Sy = {add, sub, mul, div,int, real,id} (fi and fo are to be learnt)

We demonstrate the learning of the semantic function of R(3).

-Ej (mode) = {(3%2.5,real), (53, int), (1,5%4,real), (2.5/3, real), (2/3,real), (6/3.4, real)}
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- E; (mode) ={(2 * 3.2,int), (4.3/2,int), (8/3,int)}

Step 1.

Table 3 shows the generated propositional table+ where:
* . we have to ask this value from the user
Uy : Termy.mode,

Us : MulOp.Operator,

Us : Factor.mode,

Ry : Termi.mode = int,

Ry : Termy.mode = real,

R3 : MulOp.Operator = mul,

Ry : MulOp.Operator = div,

Rs : Factor.mode = int,

Rg : Factor.mode = real,

Fy : Termg.mode = int,

F5 : Termg.mode = real,

Ci : Termgy.mode = Termy.mode,

Cy : Termgy.mode = Factor.mode,

T :true, F : false

Step 2.
The if-rule :
if Ry = true & R3 = true & Ry = true & then F| = true else Fy, = true

Step 3.
The transformed semantic function R(3) takes the form of

if Termy.mode = int & MulOp.operator = mul & Factor.mode = int
then Termg.mode := int
else T'ermg.mode := real

10.4 The Computational Model of PAGE

One of the objectives of developing the PAGE system was to implement a tool which is portable and
independent of the underlying system architecture. PAGE [85] is built on top of the ORCHID kernel
[87, 86], which encapsulates the machine dependencies, providing a layer with parallel programming
primitives. In PAGE a supervisor process maintains a pool of messages, and is responsible for supply-
ing the processors with a computational load (i.e. processes to execute). Each slave process handles
a grammar production along with its semantic rules. It collects messages corresponding to the RHSS
(body) of the production in which it is the head, and produces new messages which correspond to the
head of the production in which it is a RHSS. All the static information of the grammar (grammar
productions, semantic rules, atomic productions) is broadcast and kept in the network processors for
faster access. All the information generated from the slave processes (i.e. partial solutions) is stored
locally in the network processors in a caching hierarchy inducing an incremental attribute evaluation
and achieving a controlled grained parallelism.
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Example 23 Let us assume we have to evaluate the following grammar:

1. S(x,y,z) :- A(x,y), E(y,z).
2. A(x,vy) :- B(x), C(y).
3. E(y,z) :- B(y), D(z).

where S is the start symbol

The Supervisor assigns the evaluation of rule (1)to a new slave (for example, slave s1). Slave sl
asks the Supervisor for solutions for the RHSS A and F along with their corresponding inherited
attributes. The supervisor checks if there already exist solutions for A(z,y) and E(y, z). If not, it
assigns the evaluation of A(z,y) and E(y, z) to s1 two new slaves (say s2 and s3), respectively. This
scheme achieves AND parallelism. If there already exist solutions for some or for all of the RHSSs,
then there is no need for new slaves corresponding to these RHSSs. As a result PAGE achieves
controlled grained parallelism, because no unnecessary slaves are generated. Similarly, slave s2 asks
the supervisor for solutions for the RHSS B and C' along with their inherited attributes (i.e., 2 and
y respectively). The Supervisor checks if there exist already solutions for B(x) and C(y). If not,
it assigns the evaluation of B(z) and C(y) to two new slaves (say s4 and s5), respectively. The
procedure goes on in the same manner unfolding a proof tree over the network. If we add one more
rule to our example

4. S(x,y,z) :- Aly,x), E(z,y).

then another similar proof sub-tree will be generated, establishing OR parallelism.

Fig. 20 illustrates the above example. Each slave may be located in different processors or in the
same processor with another slave.

Processor 1

Processor 2 sl S(xiz) ; Processor n

:“...54, B(x) 55 C(y) $6, B(y) s7,D(2)

Processor 3

Figure 20: Slave Processes generation.

Fig. 21 shows the Network Supervisor processor structure in which the AG is stored. The AG is
decomposed and broadcast to the network nodes along with the input string, which is sent to the
network nodes. Moreover the network Supervisor process maintains a Process Allocation Table in
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Process Results Grammar Input
Allocation String
Table

Supervisor

Figure 21: Network Supervisor Structure.

order to prevent an explosion in the number of processes. The results of all the rules evaluated in the
network are stored in a special-purpose structure.

Fig. 22 depicts the Node Processor Structure. There is a Node Supervisor Process controlling the
underlying slave processes which handles the grammar rules. In addition, the Node Processor keeps
a list of the terminals of the AG in order to prevent the overhead communication we would have if
this list was maintained by the Network Supervisor Processor. The supervisor process handles local
requests for solutions of rules evaluated in remote processes in a special-purpose queue. Besides this
every slave process keeps a similar queue of remote requests. The solutions are kept in a caching
hierarchy in which every generated or remote accessed solution is stored in a special structure.

Pending
Facts Local

Terms AskForResult
Messages

Node Supervisor

Local
Results

Local
Results

Remote
Requests

Remote
Requests

Syntax ’ Syntax ’
Rule Attributes Rule Attributes

Slave Process Slave Process

Figure 22: Node Structure.

In general the data-flow style of execution of PAGE assimilate to the computational model of Conery’s
AND/OR process model, however differs in the following important aspects: We use the above-
mentioned structure sharing approach when referring to these structures so there is no need for stack
copying which is a major source of overhead in the latter model. Solution caching for incremental
attribute evaluation greatly improves our model. Moreover PAGE tries to keep processes belonging to
the same OR-branch locally in the same processor. Finally, we use an interleaved unification schema
where several solutions of each AND parallel branch are unified at the same time [85].
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10.5 PAGELEARN: A parallel approach to AGLEARN

In this section a parallel method is presented for the implementation of AGLEARN using the PAGE
general purpose multi-paradigm attribute grammar evaluator. The method is adequate for S-attributed
and for L-attributed AGs as well. Parallel learning leads to a more efficient execution time and
reduces the oracles that may needed. In the following a description of the method of using S-attribute
grammars is supplied. We show how the circuity problem can be handled and give a detailed example.
A description of the method using L-attribute grammars is also presented.

10.5.1 Parallel Learning of S-attribute grammars

DESCRIPTION OF THE METHOD LetAG=< G, S, A, S, I > the given Attribute Gram-
mar, Pg the set of background rules, Pr the set of target rules, and E the set of the training examples.
The target nonterminals posses only synthesized attributes. We would like to learn the semantic func-
tions of each P € Pr in parallel using PAGE.

In this case the Supervisor processor and the processors have the AG. The rules of F- are decom-
posed, and each processor handles one part of the target rules. Every process (slave) learns one
semantic function of a rule R. So every rule and every attribute of the rules in F- is learned in paral-
lel. The process has to build the table T" (given in example 22). This means that for every example the
corresponding process must compute the columns class, word, target, U, /g, Fucr, Fur, Fucr.
It is clear from this procedure that the main issue is the computation of U, since the other columns
can be derived from the column U or target or from the examples.

Let us suppose that R has the formof R: —X,, 0 — Xp1,..., Xp .

To compute U, in the previous section, we have to know the value of X, ;.b € Syn(X,;),j =
1,...,k (AGLEARN method). For this we build the tree for the actual example, and if the subtree
derived from X, ; contains a node corresponding to a rule instance belonging to £, then the values
of the attributes of Syn(X, ;) are asked from the user for the given derivation. Now we have the
possibility of asking the other processes if the rule belonging to £ is already learned or not (because
of parallelism). If this is, we can use these semantic functions and we do not need an oracle. If it
hasn’t been learned yet we have again a possibility of waiting until it is learned (or we can ask the
user).

At this point we have to handle a difficult problem. If we decide to wait for these semantic rules to
be learned, we may face a circuity situation where two processes wait (perhaps transitively) for one
another to produce a semantic rule.

In Fig. 23 we give the general procedure of PAGELEARN

HANDLING THE CIRCUITY PROBLEM  The problem can be summarized as follows:
Every process learns the semantic rule for an attribute (R;.a;) in parallel. When the process
creates the column U for the given training example it has to build the derivation tree for this
example, and evaluate this tree. If this tree has a rule that belongs to P, then the process
has to wait for the semantic rules of this rule. We want to avoid the circuity problem, that is
when two or more processes are waiting one for another.

Example 24 Assume that we have the processes Py, P, P, P, learning the semantic rules
Rl.a, R2.a, R3.a, R4.a respectively. Fig. 24 depicts the circuity problem when the processes
are waiting for the learning of the following semantic rules:
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for each grammatical rule p € P and for each synthesized
occurrence X, o.a do spawn a process in parallel
Every process does the following
for each example e € E,(a) do
build the attributed tree for the actual example on the input string w
using grammar G and semantic functions R
if the subtree contains only nodes corresponding
to rule instances R; belonging to Pg then
the attributes of this subtree can be evaluated
so the columns of the table 7" can be computed
else
for every R; € Pr do
the process that evaluates R; asks the Supervisor if the
unknown rule R has already been learned
if learned then
the process can evaluate R;
using the learned semantic rules
else if there isn’t any circuit in the waiting processes then
wait...
else ask the user for an oracle and kill the waiting rules
belonging to this tree. (These rules are different from the others
that are being learned. Moreover, the rules belonging to the tree
are used only for their operational semantics, while the rules

end {for}
end {for example }
As soon as every column and row of table T has been computed,
T is sent to the Supervisor, which then sends it to an attribute value learner
(in our case to C4.5). When the Supervisor gets the learned semantic rules from the
attribute value learner it broadcasts it to the processes.
end {for}

Figure 23: General Algorithm of the PAGELEARN Method.

associated with the other processes may used for inferring the semantics)

M [RL|R2[R3|R4|

R1j 0] 0|10
R2| 0| 1]0 1
R3| 1|0] 0|1
R4jl 10| 0] O

Table 4: The circuity problem: Neighbouring Matrix M.
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$P_1$ $P_28 $P_3% $P_43

Figure 24: The circuity problem: the waiting processes.

S

R1 R3

\/

R4

Figure 25: The circuity problem: the dependency graph.

e Pl is learning R1.a and in the subtree for the given example R3 and R4 are used.
(It means that we need the semantic rules R3.a and R4.a to evaluate the value of the
attributes of the derivation tree built for the actual example.)

e P2 is learning R2.a and in the subtree for the given example R2 is used.
e P3islearning R3.a and in the subtree for the given example R1 is used.

e P4 is learning R4.a and in the subtree for the given example R2 and R3 are used.

In the above example we see that each learning process of a semantic rule may depend on the
learning process of another semantic rule of another grammatical rule. These dependences
form a dependency graph G. Let G = (V, E) a directed graph, where V- = (Ry, ..., Ry),
R]' ePr,j=1,...,k,

E ={ (R;, R;) : There is an edge from R, to R; if and only if R; is waiting for R;}

In Fig. 25 the dependency graph of the example 24 is shown. In this graph we have three
circuits:

e R1 — R3 — R4 — R1
e R2 — R2
e R1 -+ R3 — R1

In the general algorithm of PAGELEARN (see Fig. 23) we have to check for the circuity
problem. For this purpose a neighbouring matrix M is used, situated in the Supervisor, and
is similar to that of Table 4. Using this matrix it is easy to detect when a circuity problem is
being faced or not. If a circuity problem has come up then it is enough to cut the circuit only
at one point (one rule) and ask the user. The checking algorithm is listed in Fig. 26.
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Initialize matrix M: fill all elements with 0.
if Pj (which learns a semantic function of Rj) have
to wait for Rk then
Ask the Supervisor if there is a circuit or not
(check if the addition of the new edge
(RE, Rj) in the neighbouring matrix may cause a circuity problem.
if there is a circuit then
the Supervisor sends a message informing that a circuit exists
else
Set M|k, j] = 1 and the Supervisor sends a message that no circuit
exists, so the process can wait for Rk to learn the semantic
functions
if all semantic rules for Rk have been learned then
they are sent to the waiting processes
Set Row (M) =0

Figure 26: Checking Algorithm for the Circuity Problem

A DETAILED EXAMPLE This section presents a detailed example describing the pro-
posed parallel method using PAGE. Some processes (belonging to a processor) have been
assigned the task of learning the semantic rules of a target rule. Other processes belonging to
the same processor work on the learning of the semantic rules of another target rule. Every
process has to build a table 775 (from which the if-rules are generated). The Supervisor as
well as the slave processors know the whole AG specification. To be more precise, each one
of the PAGE processes has the following assigned tasks.

The Supervisor:

e Handle the table M that is used for dealing with the circuity problem.
e Decompose the target rules P € Pr.
e Store the learned semantic rules
e Serve the requested messages for the semantic rules or the circuits
The slave processors:
e Spawn and delete processes for the rules and for its attributes
e Forward the requests and the learned semantic functions to the Supervisor
e Handle the requests of the processes for the AGs rules
The processes:
e compute the table 7;.

e Build the derivation tree for the actual example {this is automatic in the PAGE system}



10.5 PAGELEARN: A parallel approach to AGLEARN 113

| Class || Word | Target | U; | ... [ ... |

+ 25+3 | Real | int
+

Table 5: The T(a) table of Example 25

e Ask the Supervisor or other processes or the user for the unknown semantic rules if it
IS necessary

e Transform the table 7;; to the Supervisor

The Supervisor decomposes the target rules and broadcasts them along with the correspond-
ing training examples over the network. The processors spawn processes (slaves) for every
semantic rule corresponding to each one of the synthesized attributes of the target rules. The
processes start learning the target semantic rules from the given examples. The core tasks
of PAGELEARN are: creation of the table 7; ;, building of the derivation tree for each of
the given corresponding examples and, if it is necessary, asking the Supervisor for the target
rules for evaluation of the parse tree, or waiting for other processes to produce target seman-
tic rules. When the table 7} ; is computed then the process generates the if-rules, transforms

them into semantic rules, and sends them to the Supervisor.

Example 25 We demonstrate how the method works in parallel by continuing the previous
example. Recall that Pr = {R(1), R(2), R(3), R(4)}.

Processor 2 handles R(1) and R(2),

Processor 3 handles R(3) and R(4).

Processor 2 spawns 2 processes Py, for R(1) and Ps, for R(2).

Processor 3 spawns 2 processes Ps; for R(3) and Ps, for R(4).

Fig. 27 shows the mapping of the processes in the processor network.
The rules R(1) - R(4) are learned in parallel. The positive and negative examples are :
) ={(2.5+ 3,real), (5 + 3,int), (1.5 — 4, real), ...}
L ( ) ={2+3.2,int), (4.3 — 2,int),...}
- E;(mode) {(2,int), (3.5, real), ...}
) ( ) = {(1.3,int), (2, real),...}
(mode) =

- Ef (mode) = {(3 % 2.5, real), (5 x 3,int), (1,5 * 4, real), (2.5/3, real),
(2/3,real), (6/3.4,real)}

- E5 (mode) = {(2 * 3.2,int), (4.3/2,int), (8/3,int)}

- E+( de) = {(2,int), (3.5, real), ...}

- E; (mode) = {(1.3,int), (2, real), ...}

Table 5 shows the table 7'(mode) which is computed in parallel.

To compute the element of the column U an attributed grammar tree is built on the input
string w of each example. Fig. 28 shows the attribute tree for the rule R(1). Recall that the
rules R(2) and R(4) are evaluated in parallel.
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Processor 1

Supervisor

Slave|® ® @ Slave Slave|® ® @ Sjave ' (] 0
(1 1]

Processor 2 Processor 3 Processor n

$P_{21}$ $P_{22}$ $P_{31}$ $P_{32}$
R(1) R(2) R(3) R(4)

Figure 27: Process mapping for the Example 25

R(2) and R(4) € Py are used in this derivation tree.
If we build the derivation tree for the given examples we find that

To learn R(2) we need to use R(4)

To learn R(3) we need to use R(4)

To learn R(4) we needn’t to use rules from Py

The corresponding dependency graph for the detection of circuity problem is given in
Fig. 29. We do not have a circuit in this graph so P, and P3; can wait until R(4) is learned,
and P»; can wait until R(2) and R(4) are learned. So we needn’t ask the user. But when we
had to learn sequentially we had to ask the user for every example in R(1), R(2) and R(3).

Example 26 We give an example to show how there can be a circuit in the dependency
graph. Let Pr = {R(3),R(7)}. Ei = {(3.2 x (4.1 + 3),real)} and EF = {((4.1 *
1.2), real)}. When the process builds the attributed tree for e3, then we have to wait for R(7)
to be learned, and when the other process builds the attributed tree for e; then we have to
wait for R(3) to be learned. So we have the circuity problem.

10.5.2 How the method works for L-attributed grammars

We suppose that a target nonterminal can possess inherited attributes. Consider the produc-
tion: p : Xpo = X,1...Xp,, € Pr. The symbols in this rule may possess synthesized
and inherited attributes. We have to learn the semantic functions for the set of defined oc-
currences U<, 10 (Xpr) U Syn(Xpo) -
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{mode}
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Figure 28: Derivation tree for the Example 25
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Figure 29: Dependency graph for detecting the circuity problem of Example 25

In our method we learn the semantic functions for every X, ;, j = 1,...,n,, and then learn
the semantic functions for X, , sequentially. However, we can learn in parallel the semantic
functions for the attributes of a given X, ;, j = 1,...,n,, and for X,, ; as well since both are
independent.

The whole task of process mapping and decomposition of the rules is similar to the parallel
learning of the S-attributed grammar. The only difference is that we have to spawn processes
for every inherited attribute € Inh(X,;),7 = 1,...,n,, when their semantic functions are
learned, and we have to spawn processes for every synthesized attribute € Syn(X, o) when
we learn the semantic functions of X, ;.

The procedure can be summarized like that in Figure 30.

So we learn in parallel the rules in Py (the set of the target semnatical rules)
Foragivenrulep : X, o — X,1... X, 0 € Prwe learn

1. first the semantic functions for the inherited attributes of .X, ; in parallel

2. then the semantic functions for the inherited attributes of .X, , in parallel
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for every rule in parallel do
{plXp,() _>Xp,1---Xp,np S PT}
1. for j =1,...,n, do {sequential }
for every inherited attribute € Inh(X, ;) in parallel do spawn and run Process2
2. for every synthesized attribute € Syn(X, () in parallel do spawn and run Process1
end {for}

Processl

for each grammatical rule p € P and for each synthesized
occurrence X, .a do
spawn processes in parallel which do the following
for each example e € E,(a)
build the attributed tree for the actual example on the input string w
using grammar G and semantic functions R
if the subtree contains only nodes corresponding
to rule instances R; belonging to Pp then
the attributes of this subtree can be evaluated,
and the columns of the table 7" can be computed
else
for every R; € Pr do
the process that evaluates R; asks the Supervisor if the unknown rule R
has already been learned
if learned then the process can evaluate R; using the learned semantic rules
else if there isn’t any circuit in the waiting processes then wait...
else ask the user for an oracle and kill the waiting rules
belonging to this tree.
end {for}
end{for example }
end {for}

Process2

for every example do
1. ask the user to give the example for the target attribute X, ;.a
2. build the attributed tree for the actual example on the input string w
3. evaluate the part of the tree in order to get the value of
Ukeq, g1y Syn(Xpr) U Inh(X;0)
end {for}
5.generate the if rule
6.generate the semantic rule

Figure 30: General algorithm for the L-attributed grammar
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n,,. finally the semantic functions for the inherited attributes of X, ,, in parallel

n, + 1. and then the synthesized attributes of X, ; in parallel

For steps 1 — n,, to create table 7; , we have to know the value of [, ... 1y Syn(Xpx) U
Inh(X, () of which semantic functions are learned in the previous steps.

We learn the rules in parallel, so for a nonterminal both the inherited and the synthesized
attributes are learned in parallel because

e If it is in the right hand side its inherited attributes are learned in the actual rule, and
its synthesized attributes are learned in another rule of which it is the left hand side
symbol ( or this rule belongs to Py ).

e Ifitisinthe left hand side, its synthesized attributes are learned in the actual rule, and
its inherited attributes are learned in another rule in that it is on the right hand side ( or
this rule belongs to Pg ).

10.5.3 Analysis of the method used

Our method learns semantic functions of Attribute Grammars. During the execution an
oracle has to answer questions about the learning problem. So the execution time depends
on both the oracles needed in the procedure and the execution time of the program.

Our program is parallelized according to three aspects:

1. Every semantic rule of the target rules is learnt in parallel.

2. The PAGE system is a parallel parser, so the attributed tree built for the actual example
is handled in parallel. Moreover, this facility makes it possible to learn many semantic
rules concurrently.

3. The concurrent learning of many semantic rules offers the possibility of reducing the

oracles needed in the procedure. The total elimination of oracles is possible in cases
when no circuity situation occurs.
While the main problem of the sequential system was the large number of the user
queries, this method improves the efficiency of the previous method from this aspect
too. The elimination of user queries depends on the training examples, on the number
of the circuits appearing among the waiting rules during the learning method.

10.6 Summary

The method presented here is based on the AGLEARN method described in [22]. Parallelism
improves the efficiency of the previous method both in execution time and in interaction
needed. PAGE is capable of handling the learning of many semantic rules concurrently. OR
parallelism PAGE explores the possibility of reducing the oracles needed in the procedure.
The total elimination of oracles is possible in cases when no circuity situation occurs.

Moreover, behind parallelism there is a "dual nature” of the proposed method. The concept
of the method described is to give the user the capability of handling smaller specifications
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of the grammar describing the problem the user deals with. The natural order to do this
is, firstly to learn the semantic rules from the given examples and, secondly, to execute the
program. Now we can have both steps interleaving each other in the following fashion:
Evaluate the grammar — if a semantic rule is needed try to learn it — continue the execution.
In [3, 94] a learning method called LAG is presented, which infers semantic functions for
simple classes of AGs by means of examples and background knowledge. LAG generates
the training examples on its own via the effective use of background knowledge. The LAG
method makes use of the C4.5 decision tree learner during the learning process. This method
has been applied to the Part-of-Speech tagging of Hungarian sentences as well.
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11 Summary

See Introduction (Section 3).

The list of the new results (definitions, algorithms and theorems)
of this thesis is the following:

I. Data Flow Analysis of Logic Programs:

Definition 28 Augmented SLD-tree

Definition 35 Skeleton(n)

Definition 36 Argument Position

Definition 37 Map from the nodes of S to the nodes of T’
Definition 38 Proof Tree Dependence Graph (PTDG: T, ,, = (Pos(S), ~1))
Definition 39 Directed Proof Tree Dependence Graph
Definition 40 Slice(7} ,,, o)

Definition 41 Potentially Dependent Predicate (PDPS)
Definition 42 Data_Flow_of PDPS

Definition 43 cut(Wja)

Definition 44 Cut(W)_Set

Definition 45 Debug Slice

Theorem 7 Theorem: The Potentially Dependent Predicate Set

I1. Data Flow Analysis of Constraint Logic Programs:

Definition 49 Satisfiability

Definition 51 D-Interpretation (A detailed formalization)
Definition 52 Semantics of terms (A detailed formalization)
Definition 53 Semantics of formulas (A detailed formalization)
Definition 54 D-Model (A detailed formalization)

Definition 55 The least D-model of a formula (A detailed formalization)
Definition 56 Solution (A detailed formalization)

Definition 59 SLD-tree (A detailed formalization)

Definition 60 Skeleton of a CLP program

Definition 61 The set of constraints of a skeleton

Definition 62 Derivation tree and proof tree

Definition 63 Program Positions
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Definition 64 Proof-tree Positions

Definition 66 Slice of a satisfiable constraint set C'
Definition 67 A minimal slice of C'

Definition 68 A slice of a derivation tree

Definition 69 A slice of a CLP program

Definition 70 Explicit Dependence

Definition 71 Dependency Relation

Definition 73 Direct Dependency Relation of a Program
Definition 74 Directed Dependency Graph of a Proof Tree

Theorem 8 Theorem: Slice of a Constraint Set
Theorem 9 Theorem: The relation of ~7. to depcr)
Theorem 10 Theorem: A Slice of a Proof Tree
Theorem 11 Theorem: A Slice of a Program
Theorem 12 Theorem: Directed Slice of a Proof Tree

I11. Learning of Constraint Logic programs:

Definition 75 The specialization problem
Definition 76 The unfolding transformation
Definition 77 Operational equivalence

Theorem 14 Theorem: The operational semantics preservation

of the unfolding transformation
Theorem 15 Theorem: The logical semantics preservation
Theorem 16 Theorem: The correctness of the CLP_SPEC algorithm
Theorem 17 Theorem: The correctness of the CLP_SPEC_SLICE algorithm
Section 9.3.4 Algorithm: The CLP_SPEC algorithm
Section 9.4.2 Algorithm: The CLP_SPEC_SLICE algorithm

IV. Learning Semantic Functions of Attribute Grammars:

Figure 23 Algorithm: General Algorithm of the PAGELEARN Method
Figure 26 Algorithm: Checking Algorithm for the Circuity Problem
Figure 30 Algorithm: General algorithm for L-attributed grammar
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12 Osszefoglalas

Az imperativ programozasi nyelvek mellett egy masik fontos programozasi paradigma a
deklarativ irany. A deklarativ nyelvek magat a feladatot irjak le, azaz azt, hogy "mit”
kell megoldani szemben az imperativ programokkal, melyeknél a hangstly azon van,
hogy “hogyan” kell megoldani a problémat. Ezért a deklarativ programok sokkal leirdbb
jellegliek, kozelebb allnak az emberi gondolkodashoz. A deklarativ nyelvek els6 imple-
mentacioja, a LISP programozasi nyelv elkészitése McCarthy nevéhez fliz6dik (az 1960-as
évek kozepe). Azbta tobb mas programozasi nyelv (példaul: Prolog (1972), Standard ML
(1984)) megszuletése is segitette a deklarativ nyelvek gyakorlati elterjedését.

Ez a doktori értekezés a deklarativ programozasi paradigmakon beliil négy fo terilettel
foglakozik, a Logikai Programok adatfolyamanak analizisével és szeletelésével
[78, 28, 27], Korlatozasos Logikai Programok adatfolyamanak analizisével és szele-
telésével [74, 75, 76], Korlatozasos Logikai Programok tanulasaval [79], és AttribGtum
Nyelvtanok szemantikus fliggvényeinek tanulasaval [77].

Ezen teriiletek kozt szoros kapcsolat all fenn, a [14] -ben megadott cikk a Logikai Pro-
gramok Attribatum Nyelvtanokkal torténd leirasaval foglakozik, a Logikai Programok
pedig a Korlatozasos Logikai Programok (CLP) specialis eseteként kezelhetdk [32]. Ezen
megfeleltetések alapjan a Logikai Programok tanulasara kidolgozott bizonyos algoritmu-
sok (ILP) alkalmazhatbak AttribGtum Nyelvtanok tanulasara, illetve némely ILP technikak
adoptalhatbak Korlatozasos Logikai Programok tanulasara (és viszont).

12.1 Logikai Programok Adatfolyam Analizise

A Logikai Programozas alapotlete az volt, hogy deklarativ leirasok alapjan
kdvetkezményeket lehessen el6allitani. Az ilyen leirdsok (Logikai Programok) logikai for-
mulak véges halmazabol épiilnek fel. Ahhoz hogy egy egyszer(, de hatékony kdvetkeztetési
szabalyt az SLD rezollciot alkalmazni tudjuk, a logikai nyelven megszoritasokat kell
bevezetni.

Egy kozkedvelt logikai nyelv a Prolog [50] az elsd rend(i logikéan alapul. Az els6 rendi
formulak egy megszoritott formajaval, a Horn kl6zokkal dolgozik.

A Logikai Programok adatfolyam analizise fontos szerepet jatszik tobbek kozt a
nyomkdvetésben, tesztelésben és program megértésben.

A Szeletelés [29] egy olyan program analizis technika, melyet eredetileg imperativ
programokra dolgoztak ki. A szeletelés szintén alkalmazhatd az el6zdekben felsorolt
terlileteken. Egy adott valtozora vonatkoz6 program szelet a program azon részeit tartal-
mazza, melyek hatassal lehetnek a valtozora ("visszafele iranyulo szeletelés™), illetve ame-
lyekre hatassal lehet az adott valtozo ("elGre iranyul6 szeletelés™).

A Logikai Programok adatfolyama nem explicit, ezért az imperativ programoknal alka-
Imazott szeletelési modszerek kdzvetlenil nem adoptalhatbak. Az adatfolyam implicit
volta tovabb neheziti a program viselkedésének megértését. Ezért olyan program elemzd
eszk0zok, melyek segitik az adataramlas megértését nagy gyakorlati hasznossaggal birnak.
Ebben a témaban az egyik kutatasi eredmény korabbi Prolog programokra kidolgozott
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nyomkovetési modszerek [69] optimalizalasa, illetve a program analizis segitése szeletelési
technika alkalmazasaval. A szeletelési technika egy Ggynevezett Program Fligg0ségi Grafon
alapul.

Kidolgozasra keriilt egy olyan dinamikus szeletelé algoritmus amely az adatfolyam
vizsgalata mellet a kontroll fuggdségeket is figyelembe veszi, igy segitve a program
0sszefliggé komponenseinek megtalalasat, illetve a kiillonbdz6 tipust program hibak
forrasanak feltarasat.

Megadunk egy olyan altalanos szelet definiciot mely az SLD-fa sikeres agai mellett a sikerte-
len &gakra is érvényes. Az adatfolyam analizisnek a sikertelen agakra ilyen modon torténd
Kiterjesztése segiti mar létezé nyomkdvetési technikak hatékonysaganak novelését, "halott”
kodrészek megtalalasat, a program jobb megértését, parhuzamositasat, stb.

Elkészilt egy prototipus is Prolog programok szeletelésére, alkalmazva a fenti meggon-
dolasokat, mely nyomkovetéssel lett kombinalva.

A szerzdnek ezen témahoz kapcsol6do cikkei a kovetkezok: [78, 28, 27].

12.2 Korlatozasos Logikai Programok Adatfolyam Analizise

A doktori értekezésben leirt egy masik eredmény a Korlatozasos Logikai Programok adat-
folyam analizisére vonatkozik. A Korlatozasos Logikai Programozas (CLP) [32, 46]
egy egyre jobban fejl6do szoftver technologia igen sokféle alkalmazasi lehetdsséggel. A
hatékonysaga abban all, hogy képes kezelni olyan nehéz kombinatorikus problémakat is,
mint amely megjelenik példaul az Utemezéses, az id6osztasos, az (tvonal valasztasos
problémaknal, melyek megoldasa thlmutat a konvencionalis programozasi technikak
lehetGségein.

A Korlatozasos (Constraint) Logikai Programozas (CLP) két deklarativ programozasi
paradigma, a constraint megoldas és a Logikai Programozas (LP) fGzibjaként jott létre.
A Klasszikus Logikai Programozas [50, 44] esetén a Herbrand Univerzumban lehet csak
mozogni, a CLP esetén a unifikacid egy sokkal altalanosabb constraint megoldé mecha-
nizmussal lett helyettesitve. Az imperativ programokra kidolgozott adatfolyam technikak
[4, 29, 30, 31] a CLP esetén sem alkalmazhatoak kozvetlenil a CLP imperativ jellege mi-
att. Mivel a Logikai Programozas a CLP egy specialis eseteként kezelhet0, ezért az LP -nél
alkalmazott szeletelési technikak CLP-re torténd adoptalasa mélyrehatd elméleti analizist
igényel.

Ezen analizis soran formalizalasra kerilt a Korlatozasos Logikai Programok szeletelésének
szemantikaja. A minimalis szelet megtalalasa altalanos esetben az eldonthetetlen problémak
kategoriajaba tartozik, mivel a CLP szeletelést constraint halmaz kielégithetGségére vezettiik
vissza, ami altalanos esetben elddnthetetlen probléma. A szemantikus definiciok teremtették
meg az alapot valtoz6 megosztason alapuld dinamikus, illetve statikus szeletelési technikak
kidolgozasara. Az algoritmusok tovabbi Kiterjesztésre keriiltek valtozo lekotési informaciok
figyelembe vételével. A fenti meggondolasok implementalasra kertiltek egy prototipus szele-
tel6 rendszerben.

Ezen doktori értekezés nem tartalmazza az algoritmusok implementacié szint( for-
malizalasat, a szerzd f6 célja a pontos elméleti hattér lefektetése volt.

A szerzdnek ezen témahoz kapcsol6do cikkei a kovetkezdk: [74, 75, 76].
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12.3 Korlatozasos Logikai Programok Tanulasa

Az Induktiv Korlatozasos Logika Programozas (ICLP) egy olyan kutatasi irany, mely
a Korlatozasos Logikai Programozas (CLP) [32, 46] teriletén induktiv logikai tanulasi
modszereket alkalmaz (ILP [49, 42]). Az ILP esetén a felhasznalo az els6rendi logikai pro-
gramozas nyelvén megfogalmazott tedriat tanul meg példak alapjan, bizonyos hattér tudasra
tamaszkodva. A logikai programozas nyelvét hasznalva reprezentacios nyelvként az ILP
algoritmusok sokkal hatékonyabb tanulast tesznek lehetévé mint a hagyomanyos elsérendi
logikara kifejlesztett gépi tanulasi modszerek, viszont még hatranyuk, hogy nagyon gyengék
numerikus informaciok kezelésében.

A Korlatozasos Logikai Programozasi nyelvek (CLP) hatékonysaga pont abban van, hogy
a Logikai Programozasi nyelveket kiterjesztik (gy, hogy alkalmasak legyenek numerikus
adatok kezelésére is.

A doktori értekezésben ismertetésre keriil egy Korlatozasos Logikai Programok tanulasara
kidolgozott olyan modszer, mely CLP programok specializalasan alapul. A kidolgozott
modszer egy szeleteléssel kombinalt valtozatat is megadjuk. A megadott eljaras Iényege,
hogy az tgynevezett “unfolding” (kicsomagolas) transzforméacios szabaly kl6z elhagyassal
van kombinalva. Hasonld modszer eredetileg Logikai Programokra lett kidolgozva [7]. A
Logikai Programok a CLP specialis esetének tekinthetok, a numerikus adatok kezelése nem-
csak kulonbdzo szintaktikat jelent, hanem mas szemantikat is maga utan vonz. A doktori
értekezésben el6szor is formalizaljuk a specializalason alapul6 tanuld algoritmus alapvetd
fogalmait CLP-re vonatkozboan, mint példaul a specializalasi problémat, magat az unfold-
ing transzformaciot, megadjuk a hozzajuk tartozd6 szemantikat is. Bebizonyitjuk, hogy az
altalunk definialt unfolding transzformacié megérzi a CLP programok mdiveletei és logikali
szemantikajat is. Formalizaljuk magat a CLP_SPEC tanulo algoritmust, és belatjuk annak
helyességét. Megadunk egy interaktiv javitott valtozatat is a specializal6 transzforméacionak,
mely a CLP_SPEC algoritmust kombinalja algoritmikus nyomkdvet6 technikéaval és szele-
teléssel. Egy olyan prototipus keriilt implementalasra, mely a fenti modszereken alapulva
LP és CLP programok tanulasara is alkalmas.

A szerzOnek ezen témahoz kapcsolodo cikke a kovetkez6: [79].

12.4 AttribGtum nyelvtanok Szemantikus Fliggvényeinek Tanulasa

A Fordité Programok vilagaban az AttribGtum Nyelvtanok (AG) hasznalata az egyik leg-
szélesebb korben alkalmazott modszer [91, 38, 1]. Az AttribUtum Nyelvtanok a Kornyezet
Fuggetlen Nyelvek [37] altalanositasanak tekintheték. Az AttribGtum Nyelvtanokat gyakran
hasznaljak kilonbdzd programozasi nyelvek specifikalasara és implementalasara. Mivel az
Attribatum Nyelvtanoknak, illetve szemantikus fuggvényeinek definialasa igen nagy mun-

kaval jar, ezért igen hasznos lenne egy olyan eszkdz, mely példak alapjan képes AG-
k szemantikus fliggvényeinek kovetkeztetésére. A doktori értekezésben bemutatunk egy
olyan parhuzamos tanul6 eljarast, mely az LP és az AG kozti kapcsolton alapulva [14]
képes AG-k szemantikus fliggvényeinek tanulasara. Egy a Logikai Programokra kidolgo-
zott tanulasi modszer lett adoptalva Attribatum Nyelvtanokra a [22] cikkben (Gyimothy
T. és Horvath T.), a doktori értekezésben megadjuk ennek egy parhuzamositott valtozatat.
A parhuzamos tanul6 algoritmus kidolgozasra keriilt S-attribGtum és L-attribGtum nyelv-
tanokra vonatkozban is. A parhuzamossag nem csak hatékonyabb végrehajtasi id6t
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eredményez, hanem segit az interaktiv algoritmus soran a felhasznalonak feltett kérdések
szamat is redukalni.
A szerzbnek ezen témahoz kapcsolodo cikke a kovetkez6: [77].
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