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Introduction
Networks (or graphs) offer a flexible framework to explicitly incorporate various het-
erogeneities in how individuals interact within a population [1], [9]. This framework
has led to a number of models where the strong assumptions of random mixing of
the classical compartmental models can be relaxed [7], [14]. Due to the flexibility
of the network approach, nodes can represent not only single individuals but also
groups of individuals or locations. Similarly, links can represent contacts between
individuals along which diseases can spread, or interactions between groups such as
flight routes between different locations.

Most SIR (susceptible-infected-recovered) models on networks assume that both
the disease transmission and recovery process are Markovian [16]. The assumption
of Markovianity is a strong simplifying assumption, as especially in the context of
epidemiology, the period of infectiousness has paramount importance, and often this
is approximated from the empirical distribution of observed infectious periods of
various diseases by non-exponential distributions. However, there is renewed interest
in modelling non-Markovian processes, such as epidemics on networks [5], [12], [17],
[2]. A possible modelling approach involves mean-field approximations, which are
based on the classical compartmental principles and pairwise models, which have
been very successful in capturing the average behaviour of a stochastic epidemics on
networks [15].

This thesis aims to extend the pairwise model from Markovian to non-Markovian
epidemic dynamics where the infection process remains Markovian but the infectious
period is taken from an arbitrary distribution. In addition, we want to perform the
full mathematical analysis of the resulting systems, with focus on the positivity
of solutions, associated reproduction numbers and the implicit relation concerning
the final epidemic size and implement explicit stochastic simulations and numerical
solvers to test the validity of these models.

This thesis is based on the following publications of the author:
• Kiss, I.Z., Röst, G. and Vizi, Z., 2015. Generalization of pairwise models

to non-Markovian epidemics on networks. Physical review letters, 115(7),
p.078701. http://dx.doi.org/10.1103/PhysRevLett.115.078701

• Röst, G., Vizi, Z. and Kiss, I.Z., 2015. Impact of non-Markovian recovery on
network epidemics. In Biomat 2015: Proceedings of the International Sympo-
sium on Mathematical and Computational Biology

• Röst, G., Vizi, Z. and Kiss, I.Z., 2016. Pairwise approximation for SIR type net-
work epidemics with non-Markovian recovery. arXiv preprint arXiv:1605.02933.
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Reproduction numbers and final size relations
The mean-field approximation for an SIR type disease on homogeneous network
with Markovian infection and recovery is described by the following system

˙[S](t) = −τ n
N

[S][I](t)

˙[I](t) = τ
n

N
[S][I](t)− γ[I](t) (1)

˙[R](t) = γ[I](t),

where the network has N nodes and uniform degree distribution 〈k〉 = n, τ denotes
the transmission rate, γ is the recovery rate and expected number/proportion of
susceptible, infected or recovered nodes at time t are denoted by [S](t), [I](t) and
[R](t) respectively. Introducing the notation [XY ](t) and [XY Z](t) for the expected
number of X − Y links and X − Y −Z triplets, respectively, we can write down the
pairwise model as follows:

˙[S](t) = −τ [SI](t)
˙[I](t) = τ [SI](t)− γ[I](t)

˙[SS](t) = −2τ n− 1
n

[SS](t)[SI](t)
[S](t) , (2)

˙[SI](t) = τ
n− 1
n

[SS](t)[SI](t)
[S](t) − τ n− 1

n

[SI](t)[SI](t)
[S](t) − τ [SI](t)− γ[SI](t).

An epidemic, which acts on a short temporal scale, may be described as a sudden
outbreak of a disease that infects a substantial portion of the population in a region
before it disappears. Epidemics usually leave many members untouched. The number
of untouched individuals appears in the final size relation, that gives a relationship
between the size of the epidemic (number of members of the population who are
infected over the course of the epidemic) and the associated reproduction number.

Reproduction numbers play a crucial role in mathematical epidemiology and are
defined as the expected number of secondary infections caused by a ‘typical’ infected
individual during its infectious period when placed in a fully susceptible population,
which is a definition understood at the level of individuals.

Clearly, the mean-field model is written at the level of nodes and study the dis-
ease spread between susceptible and infected nodes. Similarly, the pairwise model
is written at the level of links and describes the dynamics of susceptible (S − S)
and infected (S − I) links. These remarks lead to the definitions of basic and pair-
wise reproduction numbers. More precisely, we distinguish the following two useful
quantities:
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(a) the basic reproduction number is the expected lifetime of an I node multiplied
by the number of newly infected nodes per unit time (denoted by R0);

(b) the pairwise reproduction number is the expected lifetime of an S − I link
multiplied by the number of newly generated S−I links per unit time (denoted
by Rp

0).

The most important cases for R0 and Rp
0 are summarised in Table 1.

R0 Rp
0

Markovian n
N
τ
γ
[S]0 n−1

N
τ

τ+γ [S]0
Fixed n

N
τσ[S]0 n−1

N
(1− e−τσ)[S]0

General n
N
τE(I)[S]0 n−1

N
(1− L[fI ](τ)) [S]0

Table 1: Basic and pairwise reproduction numbers for different recovery distributions.
L[fI ](τ) denotes the Laplace transform of fI , the density of the recovery process, at
τ .

We can reduce d[I]/d[S] in Eq. (1) and integrate it to obtain

ln
(

[S]∞
[S]0

)
= R0

(
[S]∞
[S]0

− 1
)
.

We will use the notation s∞ = [S]∞
[S]0 . Clearly, attack rate is 1 − s∞. Using these

formulae, we have
ln s∞ = R0 (s∞ − 1) . (3)

This equation is called final size relation and gives an implicit equation for the
proportion of remaining individuals after the disease outbreak. Clearly, larger the
reproduction number, smaller the s∞ (thus larger the attack rate). For (2) as we will
show for general case later, a significantly longer calculation yields

s
1
n∞ − 1

1
n−1

= Rp
0

(
s
n−1
n∞ − 1

)
. (4)

Impact of distribution on disease spread
Note, while R0 depends only on the expected value, (see Table 1, case ’General’), the
pairwise reproduction number Rp

0 uses the complete density function, thus the aver-
age length of infectious period does not determine exactly the reproduction number.
It implies that for an epidemic we have to know as precisely as possible the shape of
the distribution. In the following, we consider some special distributions.
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Figure 1: (a) Epidemic curves as averages of explicit stochastic simulations for non-
Markovian epidemics, where the transmission rate is τ = 0.3 and the initial number
of susceptibles is [S]0 = 999 on a homogeneous network with N = 1000 nodes and
degree n = 15. The circles/squares/diamonds correspond to simulations for gamma
distributed recovery time with parameters (a, b) = (2, 0.5)/(1, 1)/(0.5, 2), respectively.
(b) The solid curve shows the reproduction number Rp

0 as a function of variance v for
fixed m = 1, and the circle/square/diamond represent the cases simulated in Fig. (a).
In the inset figure, the shapes of the three corresponding probability density functions
are presented.

The gamma distribution is one of the most commonly used distributions in the
epidemiology literature to approximate empirically observed latent periods and in-
fectious periods. It is applied in a wide spectrum of models, because of its flexibility
and the possibility of incorporating it into ordinary differential equation models by
the method of stages. If the infectious period I is gamma distributed with shape pa-
rameter a and scale parameter b, that is I ∼ Gamma(a, b), the following proposition
can be proved:

Proposition 4.1.1. Consider two random variables I1 ∼ Gamma(a1, b1) and I2 ∼
Gamma(a2, b2) such that E(I1) = E(I2) and Var(I1) ≤ Var(I2). If I1 and I2 repre-
sent the recovery time distribution, then for the corresponding reproduction numbers
the relation Rp

0,I1 ≥ R
p
0,I2 holds (i.e. for gamma distributions with a given mean, the

pairwise reproduction number is monotonically decreasing with respect to the vari-
ance).

The monotonicity of the reproduction number in the variance is depicted in Fig.
1(b). For a fixed mean but different variances of the gamma distribution, we can
observe different epidemic curves in Fig. 1(a).

Since its simplicity allows us to make explicit calculations, we outline how the re-
production number and the disease dynamics behave when the recovery time follows
uniform distribution. Uniformly distributed incubation and infectious periods have
been used for example, in the modelling of avian influenza. Let Uniform(a, b) denote
a uniform distribution corresponding to the interval [a, b], where a ≥ 0, b > a. The
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same monotonicity property can be shown for uniform distribution, which is stated
in the following proposition:

Proposition 4.2.1. Consider two random variables I1 ∼ Uniform(a1, b1) and I2 ∼
Uniform(a2, b2) such that E(I1) = E(I2) and Var(I1) ≤ Var(I2). If I1 and I2 repre-
sent the recovery time distribution, then for the corresponding reproduction numbers
the relation Rp

0,I1 ≥ R
p
0,I2 holds (i.e. for uniform distributions with a given mean, the

pairwise reproduction number is monotonically decreasing with respect to the vari-
ance).

In general, we consider a random variable I corresponding to recovery times
with probability density functions fI(t), cumulative distribution function FI(t) =∫ t

0 fI(s)ds and integral function of CDF FI(t) :=
∫ t

0 FI(s)ds. The following theorem
gives a sufficient condition for monotonicity of pairwise reproductio number Rp

0 in
variance.

Theorem 4.4.1. Consider two random variables I1 and I2 such that

E(I1) = E(I2) <∞, (5)

and
Var(I1) < Var(I2) <∞. (6)

Let us assume, that
lim
t→∞

t3fI(t) = 0 (7)

and for all t > 0,
FI1(t) 6= FI2(t). (8)

holds. If I1 and I2 represent the recovery time distribution, then for the corresponding
reproduction numbers the relation Rp

0,I1 > R
p
0,I2 holds.

Models with fixed recovery time

We consider a non-Markovian epidemic process with fixed recovery time denoted by
σ. If the infection process is assumed to be Markovian, the equations for ˙[S](t) and

˙[SS](t) will be the same as in Eq. (2). Through this section we assume, that all
initial infected nodes are newborn at t = 0, thus there is no recovery for 0 ≤ t < σ

and we have different equations describing changing of [I](t) and [SI](t) for 0 ≤ t < σ
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and for t > σ. After some calculations, the following pairwise model can be derived
for fixed recovery time:

˙[S](t) = −τ [SI](t), (9a)
˙[I](t) = τ [SI](t), (9b)

˙[SS](t) = −2τ n− 1
n

[SS](t)[SI](t)
[S](t) , (9c)

˙[SI](t) = τ
n− 1
n

[SS](t)[SI](t)
[S](t) − τ [SI](t)− τ n− 1

n

[SI](t)[SI](t)
[S](t) (9d)

holds for 0 ≤ t < σ and

˙[S](t) = −τ [SI](t), (10a)
˙[I](t) = τ [SI](t)− τ [SI](t− σ) (10b)

˙[SS](t) = −2τ n− 1
n

[SS](t)[SI](t)
[S](t) , (10c)

˙[SI](t) = τ
n− 1
n

[SS](t)[SI](t)
[S](t) − τ [SI](t)− τ n− 1

n

[SI](t)[SI](t)
[S](t)

− τ n− 1
n

[SS](t− σ)[SI](t− σ)
[S](t− σ) e

−
∫ t
t−σ τ

n−1
n

[SI](u)
[S](u) +τdu

. (10d)

satisfies for t > σ. The Eq. (9) is a system of ordinary differential equations, given
initial values [S]0, [I]0, [SS]0 and [SI]0 at t = 0 are sufficient to guarantee a unique
solution. Let us denote the solution of (9) on the time interval [0, σ] by

X∗(t) = ([S]∗(t), [I]∗(t), [SS]∗(t), [SI]∗(t)).

At time t = σ, the initial infected nodes recover ’instantly’, thus a discontinuity
appears and obviously, the solution for t > σ starts from

X̃ = ([S]∗(σ), [I]∗(σ)− [I]0, [SS]∗(σ), [SI]∗(σ)− [SI]0).

Similarly to Markovian case, the non-Markovian mean-field model for fixed infectious
period is

˙[S](t) = −τ n
N

[S](t)[I](t), (11a)

˙[I](t) = τ
n

N
[S](t)[I](t), (11b)

for 0 ≤ t < σ and

˙[S](t) = −τ n
N

[S](t)[I](t), (12a)

˙[I](t) = τ
n

N
[S](t)[I](t)− τ n

N
[S](t− σ)[I](t− σ), (12b)
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for t > σ. Here, if we denote the solution of (11) for initial values [S]0, [I]0 and for
time interval t ∈ [0, σ] by X∗m(t) = ([S]∗(t), [I]∗(t)), the initial function associated to
(12) is X∗m(t) for 0 ≤ t < σ and ([S]∗(σ), [I]∗(σ)− [I]0) at t = σ.

First, we can find a first integral of the pairwise model (9)-(10), which allows us
to reduce the dimensionality.

Proposition 5.2.1. The function U(t) = [SS](t)
[S]2

n−1
n (t)

is a first integral of system (9)-
(10).

Consequently, using this first integral, we obtain

[SS](t) = n

N
[S]

2
n
0 [S]2n−1

n (t). (13)

Applying Eq.(13), we can reduce our pairwise model to a two-dimensional system:

˙[S](t) = −τ [SI](t),
˙[SI](t) = τ

n− 1
N

[S]
2
n
0 [S]n−2

n (t)[SI](t)− τ [SI](t)− τ n− 1
n

[SI](t)
[S](t) [SI](t)

−τ n− 1
N

[S]
2
n
0 [S]

n−2
n (t− σ)[SI](t− σ)e−

∫ t
t−σ τ

n−1
n

[SI](u)
[S](u) +τdu

. (14)

We are interested only in nonnegative solutions of system (9)-(10). The following
proposition shows, that the solutions remain nonnegative provided that the initial
conditions are nonnegative.

Proposition 5.2.2. If initial conditions [S]0, [SS]0, [I]0 and [SI]0 for (9) and (11)
are nonnegative, then [S](t) ≥ 0, [SS](t) ≥ 0, [I](t) ≥ 0 and [SI](t) ≥ 0 hold for
t ≥ 0 in both mean-field model (11)-(12) and pairwise model (9)-(10).

For exploring the relation between disease outbreak and reproduction number,
we start with the following definition:

Definition 1. In a disease transmission model with no demographic effects, there
is no epidemic if the equilibrium with all members of the population susceptible is
(locally) asymptotically stable, and there is an epidemic if this equilibrium is unstable,
in each case considering only perturbations of the equilibrium with positive infected
initial states.

Using this concept, we state the following theorems:

Theorem 5.2.1. There is an epidemic for the model (11)-(12) if and only if R0 > 1,
where the basic reproduction number is R0 = τ n

N
[S]0σ.
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Similar procedure can be done for the pairwise model (9)-(10) and the result is
summarised in the following theorem:

Theorem 5.2.2. There is an epidemic for the model (9)-(10) if and only if Rp
0 > 1,

where the pairwise reproduction number is R0 = n−1
N

[S]0(1− e−τσ).

Finally, we derive final size relations that allow us to calculate the total number of
infected nodes during an epidemic outbreak on the network.

Theorem 5.2.3. The final size relation associated to the mean-field model (11)-(12)
is

ln (s∞) = R0 (s∞ − 1) , (15)

where the basic reproduction number is R0 = τ n
N

[S]0σ.

The main result for fixed recovery time is the derivation of the final-size relation for
the pairwise system (9)-(10).

Theorem 5.2.4. The final size relation associated to the pairwise model (9)-(10) is

s
1
n∞ − 1

1
n−1

= Rp
0

(
s
n−1
n∞ − 1

)
, (16)

where the pairwise reproduction number Rp
0 = n−1

N
[S]0(1− e−τσ).

General recovery time

We want to build mean-field and pairwise models for the SIR type epidemic process
with exponentially distributed transmission and general recovery time distribution.
First, let i(t, a) represent the density of infected nodes with respect to the age of
infection a at the current time t, then [I](t) =

∫∞
0 i(t, a)da. Similarly, Si(t, a) and

ISi(t, a) describe the density of S− i links and I −S− i triplets, respectively, where
the infected node i has age a at time t and [SI](t) =

∫∞
0 Si(t, a)da, [ISI](t) =∫∞

0 ISi(t, a)da. We assume that the infection process along S− I links is Markovian
with transmission rate τ > 0. The recovery part is considered to be non-Markovian,
with a cumulative distribution function FI(a) and probability density function fI(a).
We use the associated survival function ξI(a) = 1 − FI(a) and hazard function
hI(a) = − ξ′I(a(a)

ξI(a) = fI(a)
ξI(a) . Using the notations above, we arrive at the following
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model
˙[S](t) = −τ [SI](t), (17a)(

∂

∂t
+ ∂

∂a

)
i(t, a) = −hI(a)i(t, a), (17b)

˙[SS](t) = −2τ [SSI](t), (17c)(
∂

∂t
+ ∂

∂a

)
Si(t, a) = −τISi(t, a)− (τ + hI(a))Si(t, a), (17d)

subject to the boundary conditions

i(t, 0) = τ [SI](t), (18a)
Si(t, 0) = τ [SSI](t), (18b)

and initial conditions

[S](0) = [S]0, [SS](0) = [SS]0, i(0, a) = ϕ(a), (19a)

Si(0, a) = χ(a) ≈ n

N
[S]0i(0, a) = n

N
[S]0ϕ(a). (19b)

We shall use the biologically feasible assumption lima→∞ ϕ(a) = 0. To break the
dependence on higher order moments, we apply the closure approximation formula

[XY Z] = n− 1
n

[XY ][Y Z]
[Y ] . (20)

for ISi(t, a) in the form

ISi(t, a) = n− 1
n

[SI](t)Si(t, a)
[S](t) . (21)

To obtain a self-consistent system for classical network variables [S], [SS], [I] and
[SI], further calculations are needed. The resulting pairwise system is the following
integro-differential equation:

˙[S](t) = −τ [SI](t) (22a)

˙[SS](t) = −2τ n− 1
n

[SS](t)[SI](t)
[S](t) (22b)

˙[I](t) = τ [SI](t)−
∫ t

0
τ [SI](t− a)fI(a)da−

∫ ∞
t

ϕ(a− t) fI(a)
ξI(a− t)

da (22c)

˙[SI](t) = τ
n− 1
n

[SS](t)[SI](t)
[S](t) − τ n− 1

n

[SI](t)
[S](t) [SI](t)− τ [SI](t)

−
∫ t

0
τ
n− 1
n

[SS](t− a)[SI](t− a)
[S](t− a) e

−
∫ t
t−a τ

n−1
n

[SI](s)
[S](s) +τds

fI(a)da

−
∫ ∞
t

n

N
[S]0ϕ(a− t)e−

∫ t
0 τ

n−1
n

[SI](s)
[S](s) +τds fI(a)

ξI(a− t)
da. (22d)
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From Eq.(22), the associated mean-field model can be easily deduced by using the
closure approximation formula for homogeneous networks

[XY ](t) = n

N
[X](t)[Y ](t), (23)

thus the node-level system becomes

˙[S](t) = −τ n
N

[S](t)[I](t) (24a)

˙[I](t) = τ
n

N
[S](t)[I](t)−

∫ t

0
τ
n

N
[S](t− a)[I](t− a)fI(a)da

−
∫ ∞
t

ϕ(a− t) fI(a)
ξI(a− t)

da. (24b)

Note, that Prop. 5.2.1.. holds for the pairwise system, thus we can reduce the model
(22) to the following two-dimensional system:

˙[S](t) = −τ [SI](t),
˙[SI](t) = τ

n− 1
N

[S]
2
n
0 [S]

n−2
n (t)[SI](t)− τ [SI](t)− τ n− 1

n

[SI](t)
[S](t) [SI](t)

−
∫ t

0
τ
n− 1
N

[S]
2
n
0 [S]n−2

n (t− a)[SI](t− a)e−
∫ t
t−a τ

n−1
n

[SI](s)
[S](s) +τds

fI(a)da

−
∫ ∞
t

n

N
[S]0ϕ(a− t)e−

∫ t
0 τ

n−1
n

[SI](s)
[S](s) +τds fI(a)

ξI(a− t)
da. (25)

The first proposition of this section states, that the solutions remain nonnegative
provided that the initial conditions are nonnegative.

Proposition 6.2.1. If initial conditions [S]0, [SS]0 are nonnegative and ϕ(a) ≥ 0
for a ≥ 0, then [S](t) ≥ 0, [SS](t) ≥ 0, [I](t) ≥ 0 and [SI](t) ≥ 0 hold for t ≥ 0.

We can prove, that the functional forms (15) and (16) hold for arbitrary recovery
time distribution.

Theorem 6.2.1. The final size relation associated to the mean-field model (24) is

ln (s∞) = R0 (s∞ − 1) , (26)

where the basic reproduction number R0 = n
N
τ [S]0E(I).

Finally, a lengthy calculation gives the final-size relation for the pairwise system (22):
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Figure 2: Stochastic and numerical experiments for non-Markovian epidemic with var-
ious recovery time distributions on homogeneous networks with N = 1000 nodes and
infection rate τ = 0.35. Squares, circles, diamonds show the mean of 100 simulations
on random regular graphs with average degree 〈k〉 = 15 for exponential distribution
with parameter λ = 2

3 (mean = 3
2 ,variance = 9

4 ), gamma distribution with shape
α = 3 and rate β = 2 (mean = 3

2 ,variance = 3
4 ), uniform distribution on interval

[a, b] = [1, 2] (mean = 3
2 ,variance = 1

12 ), respectively. Dashed and solid lines cor-
respond to the numerical solution of the mean-field (24) and parwise (22) models,
respectively.

Theorem 6.2.2. The final size relation associated to the pairwise model (22) is

s
1
n∞ − 1

1
n−1

= Rp
0

(
s
n−1
n∞ − 1

)
,

where the pairwise reproduction number is Rp
0 = n−1

N
(1− L[fI ](τ)) [S]0.

For the numerical solution of integro-differential equations (22) and (24), we devel-
oped a numerical scheme based on collocation method. The numerical methods in
[3] were adapted to the mean-field model and the reduced, but highly nonlinear pair-
wise system. We implemented the developed recursive algorithm and solved the Eqs.
(24) and (22) with it. In Fig. 2, homogeneous (or regular random) networks were
considered and the average of 100 simulations is compared to the numerical solutions
of mean-field (24) and pairwise (22) models.

At last, we can investigate some common choices for the recovery time. As we
expect, for ’newborn’ initial infecteds, if I ∼ Exp(γ) (i.e. the infectious period I is
exponentially distributed), we get back the classical Markovian models (1) and (2).
In the case of fixed recovery time, the models reduce to the systems (11)-(12) and
(9)-(10). We can also recover the multi-stage infection model of [13] with gamma
distributed recovery time. For uniform distribution I ∼ Uniform(A,B) we can write
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down the associated equations:

˙[I](t) = τ [SI](t)−
∫ max(0,t−A)

max(0,t−B)

τ [SI](u)
B − A

du− [I]0
B − A

ι[A,B](t),

where ι[A,B](t) is the indicator function of interval [A,B]. The same argument gives

˙[SI](t) = τ
n− 1
n

[SS](t)[SI](t)
[S](t) − τ n− 1

n

[SI](t)
[S](t) [SI](t)− τ [SI](t)

−
∫ max(0,t−A)

max(0,t−B)

τ

B − A
n− 1
n

[SS](u)[SI](u)
[S](u) e−

∫ t
u
τ n−1

n
[SI](s)
[S](s) +τdsdu

− n
N

[S]0e−
∫ t

0 τ
n−1
n

[SI](s)
[S](s) +τds [I]0

B − A
ι[A,B](t).

For t > B the model becomes a system of differential equations with distributed
delays.
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