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1. Introduction 

Pollution of water and air due to intensive human activity is undoubtedly a major concern 

worldwide. This challenge urges the scientific community to look for sustainable, green solutions to 

obtain the purity of these media without exposing more strain on the environment. To produce drinking 

water for human consumption, a wide range of toxic compounds have to be eliminated such as 

pathogens, viruses, bacteria, pharmaceutical compounds and a variety of chemicals originating from 

industrial and household activities. The current methods to process drinking water require a huge 

amount of energy and money and they often include addition of chlorine, which can also relate to 

health issues, moreover, these technologies are not or partially available in developing countries. 

Considering several industrial activities, emission of toxic wastes into our natural waters is also an 

unsolved problem having adverse influence on aquatic life. Unfortunately, the same implies on the 

emission of toxic chemicals into the air, which is heavily noticed especially in highly populated and 

industrial areas, causing severe problems such as asthma and other health related issues. Undoubtedly, 

there is an urgent need for the development of safe, sustainable and efficient protocols to purify these 

media without putting more strain on the environment. Related to air pollution problems, there is also 

an increasing concern on indoor air pollution which has an increasing relevance in daily life as most 

people are spending a vast amount of their time in poorly ventilated offices, work environment, public 

places or in their homes.  

 Photocatalysis offers promising solution to reduce the level of unwanted compounds both in 

air and water. For this purpose, semiconductor nanomaterials, especially titanium dioxide (TiO2) has 

attracted a lot of attention. Thanking to the fact that the properties and thus the optical and the 

electronic properties of the submicron sized semiconductor particles are exceedingly different than 

that of the bulk, thus these materials have exciting properties and provide possible alternatives for solar 

applications with high relevance to fields such as energy and environment. 

2. Literature overview 

Heterogeneous photocatalysis has received growing popularity due to its wide-ranged practical 

interest in applications including disinfection of water and air 1 hydrogen and solar chemical 

production 2-3, artificial photosynthesis (CO2 reduction) 4-5 production of electrochemical energy, 6 

construction of functional surfaces such as antibacterial 7-8 and anti-fogging 9-10 surfaces and many 

others. Photocatalysis using TiO2 has an established role among Advanced Oxidation Processes 
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(AOPs) 11 besides UV-or vacuum- UV (VUV) photolysis 12 with or without the use of H2O2 and O3, 

photo-Fenton 13 reaction and radiolysis techniques. 14 The advantage of these techniques that due to 

the generation of reactive radicals the process is non-selective, therefore oxidation of organic 

compounds and non-biodegradable toxic soluble pollutants can be facilitated by means of these 

processes and it can be effectively used as a pre-treatment step to enhance biodegradation of 

recalcitrant organic pollutants prior to biological water treatment. 

Despite of the widespread interest, heterogeneous photocatalysis to be applied as a part of 

current water cleaning technologies is still delayed and several key technical challenges need to be 

solved first which are low photonic efficiency, especially under Vis light irradiation; 

separation/immobilisation of the photocatalyst; limitation of activity by pH of the reaction medium. 

Basically, better photocatalyst design with higher activity, new integrated or coupling system for 

enhanced photo-mineralisation or photo-disinfection kinetics, furthermore efficient design of 

photocatalytic reactor systems are required. 15 

2.1. Fundamentals of photocatalysis on TiO2  

The term photocatalysis refers to reactions where photons are absorbed by the solid, which 

remains unchanged during the entire reaction and induce chemical transformation of the surrounding 

compounds. From the thermodynamic point of view, “catalysis” is limited to those reactions which 

can be described with a negative Gibbs energy change (ΔG < 0) and decrease of activation energy of 

the chemical reaction by the catalyst. In this sense, the solid can act as a catalyst under light, therefore 

the term photocatalysis is adequate. 16 However, there are certain reactions regarded as 

“photocatalytic”, which are energy-storing (such as splitting of water), therefore these reaction should 

not be nominated as “photocatalytic”.17 Nevertheless, the term photocatalysis is widely used to 

describe the process in which the acceleration of a reaction occurs when a material, usually a 

semiconductor, interacts with light having sufficient energy to produce reactive oxygen species (ROS) 

which can lead to the photocatalytic transformation of pollutants. 18 It has been a widely investigated 

area since Fujishima and Honda reported water splitting on TiO2 photoanode, without applying 

external bias, in Nature in 1972. 19 TiO2 was first used for environmental remediation in 1977 when 

Frank and Bard reported that it was used for the oxidisation of CN– in water. 20 

TiO2 is an n-type semiconductor due to the small amount of oxygen vacancies in the crystalline 

phase which is compensated by the presence of Ti3+ centres. 21-22 Owing to the semiconductor nature, 

TiO2 can be widely applied in electrochemical and redox reactions. Semiconductors are differentiated 

from conductors and insulators by their special electronic band structure. Typically, TiO2 possesses a 

valance band (VB), which is formed by the overlapping of the oxygen 2p orbitals, and a conduction 
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band (CB), which is constituted by the 3d orbitals of Ti4+cations. A “forbidden” energy level called 

band gap, is located between the aforementioned energy states where no electrons can be found in any 

circumstances. The “size” of band gap is described by the band gap energy (Eg, eV) which is 

representative of the catalyst and determined mostly by the crystal structure. When the solid is 

irradiated with light, possessing energy, high enough to overcome the band gap energy (Eg) of the 

semiconductor, the electron (e–) in the filled VB is promoted to the empty CB, leaving a positive hole 

(h+) behind. The process is demonstrated in Figure 1. As TiO2 is a typical wide band gap 

semiconductor, the energy of incoming photons is required to be fairly high, i.e., at least 3.2 eV and 

3.0 eV for anatase and for rutile, respectively, to overcome the band gap energy of the semiconductor. 

The as-generated charges carriers (excitons) initiate the production of reactive oxygen species (ROS) 

in contact with water or molecular oxygen, according to Eq 1-2: 

hVB+ + H2O → •OH + H+       Equation 1  

and 

eCB– + O2 → •O2–         Equation 2 

 

These ROS play the most important role in the degradation and eventual mineralisation of the 

adjacent organic molecules (Eq. 3-4): 

 

•OH + pollutant → → → CO2 + H2O     Equation 3 

•O2
– + pollutant → → → CO2 + H2O     Equation 4 

 

but the oxidation or reduction of the substrates can occur on the surface of the semiconductor through 

direct chemical interactions with the charge carriers. However this latter process has a lower chance 

to happen because the substrate needs to be in direct contact with the semiconductor NP, whereas ROS 

possess some mobility up to a certain extent. Nevertheless, the photo-electrochemical reactions need 

to be thermodynamically favoured which is dependent on the relative relationship between the band 

energy positions of the semiconductor and the redox potential of the adsorbed species. The relevant 

potential level of the acceptor species needs to be below (more positive than) the CB and the potential 

level of the donor species needs to be above (more negative than) the VB position of the 

semiconductor. 22, 23, 24 The potential of holes in the VB is low enough to oxidise most of the organic 

compounds, therefore, TiO2 is applicable to decompose a variety of organic pollutants.  
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Figure 1 Scheme of electron – hole separation on anatase TiO2 

 

It is crucial on the photocatalytic process that the charge carriers reach the surface, because without 

this to occur, the photocatalytic reaction will not happen. Very often these excitons will undergo 

recombination which is one of the major limitations in the semiconductor photocatalysis, decreasing 

the overall quantum efficiency. 23 The recombination sometimes happens through radiative 

mechanisms to dissipate energy in the form of light or heat according to Eq 5: 

 

e–
CB+ h+

VB
 → energy      Equation 5 

Nonetheless, the original structure (or chemical composition) of semiconductor remains unchanged if 

equal number of electrons and holes are consumed for chemical reaction and/or recombination. 25 

2.2. Physical and chemical properties of TiO2 that influence its photocatalytic activity 

Photocatalytic activity is a function of several physical and chemical properties of the NPs and 

it is not possible to try to determine it by one or three properties. However, if it is possible to strictly 

narrow down the question, the photocatalytic activity of a semiconductor is basically determined by 

three parameters: i) its light absorption property; ii) the rate of reduction and oxidation of reaction 

substrate by electrons and holes, respectively and iii) the rate (or probability) of electron – hole 

recombination. 25 All these parameters are determined by intrinsic physical and chemical properties of 

the solid which will be discussed below without being exhaustive. 



5  

 

TiO2 has several allotropic forms, among which the most common forms are the tetragonal 

anatase and rutile and the orthorhombic brookite (Figure 2). Rutile is the thermodynamically most 

stable form of TiO2 while anatase and brookite readily transform into rutile when heated 26 the basic 

building units of these TiO2 polymorphs are the TiO6 octahedra, where the titanium (Ti4+) atoms are 

co-ordinated with six oxygen atoms (O2
–). The difference between the polymorphs is basically the 

arrangement and the distortion of the TiO6 building blocks in their structures. Therefore anatase can 

be described as tetragonal crystal, built of edge-sharing octahedra forming (0 0 1) planes; brookite and 

rutile exhibit both corner- and edge-sharing octahedra configurations. The differences in lattice 

structure cause different mass densities which basically results in alterations between electronic and 

optical properties of the polymorphs. By definition, the band structure is characterised as series of 

energetically closed spaced energy levels: the valance band is associated with covalent bonding 

between atoms that compose the crystallite and the conduction band is associated with a second series 

of spatially diffuse, energetically similar levels, lying at higher energy levels in the macromolecular 

crystallite. 23 

.  

Figure 2 Crystal structure of a) anatase b) brookite and c) rutile illustrated by VESTA visualisation 

program 27 

Among the three polymorphs anatase and rutile are the more investigated, more often than brookite 

for photocatalytic studies. The reason for that might be that it is fairly difficult to synthesise pure 

brookite without the presence of the other two polymorphs. 26 Despite of anatase has a larger band gap 

than rutile, therefore it might seem less useful when one considers to use it under solar light irradiation, 

most often it is reported to be the most active form of TiO2. 28, 29 This latter has multiple reasons. It is 

reported to have a higher capacity to adsorb O2 which process goes on with the generation of O2
– and 

O– which are highly reactive species. 30 It has also been reported that the recombination rate is relatively 

lower on anatase than on rutile. 30 This latter is closely related to the finding of M. Batzill et al, where 

they found that that the bulk transportation of charge carriers in anatase was higher which obviously 
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means lower rate of recombination. 31 J. Zhang et al showed using first-principle density calculation 

theory that the lifetime of charge carrier is longer in anatase as it seems to be an indirect semiconductor 

and the direct transition from the CB to the VB is impossible. They also suggested that the lightest 

effective mass of produced electrons and holes is representative of anatase and it contributes to retarded 

recombination in the bulk and higher probability that the charge carrier reaches the surface of the NP 

before recombination would occur. 32 Nevertheless, it seems that better photocatalytic efficiencies can 

be obtained polycrystalline samples due to the better electron transport between different phases. 33, 34 

For catalyst materials, it is generally accepted that high surface area is an advantage in terms 

of a higher concentration of active sites per square metre leading to higher reactivity. Certainly, the 

surface area is closely related to the NP size i.e., the smaller the particle size, the higher the surface 

area is. The issue of particle size is so critical, that under a certain size it influences the size of the band 

gap. This phenomenon is the so-called quantum size effect, which is representative of NPs in the size 

range of 10-100 Å, where the size of NPs become comparable to the de Broglie wavelength of the 

charge carriers in the semiconductor. As a result of confinement, the electron and hole do not 

experience a delocalisation in the bulk and a quantisation of discrete electronic states is produced, 

therefore the effective band gap of the semiconductor increases resulting in changed optical, electronic 

and catalytic properties. 23 The degree of crystallinity is inversely proportional to the surface area of 

the catalyst and since these two properties are very difficult to achieve simultaneously, the synthesis 

conditions have to be carefully planned. Furthermore, pore size and pore volume are also some of 

those physical parameters which can significantly influence heterogeneous catalytic reactions.25, 35 

Furthermore, particle morphology and exposed crystalline phases also significantly influence the 

photocatalytic activity. It has been found that polyhedral shaped TiO2 had superior photocatalytic 

activity to degrade phenol and methanol compared to spherical NPs with otherwise similar structural 

characteristics. 36, 37 It has been reported that exposed facets dramatically influence the reaction 

mechanism and selectivity. 38, 39 For example, it has been shown by ab initio density functional theory 

(DFT) calculations that generation of superoxide radical is facilitated over anatase (1 0 1) exposed 

facet from molecular oxygen. 40 Not only the exposed facets, but the overall morphology of primary 

NPs may influence the photocatalytic activity. Many indications can be found in the literature that 1D 

(elongated) morphology of NPs may result in better efficiency because the electron transport is 

facilitated along the longitudinal dimension of the nanocrystal which results in retarded electron-hole 

recombination and increased reaction rates. 40 Besides structural properties and morphology, surface 

chemistry has to be also acknowledged as a determinant parameter in control of aggregation state, O2 
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consumption properties and adsorption/complexation of the target compounds, significantly 

influencing the activity of the photocatalyst among the studied reaction conditions. 41, 42 

2.3. Photocatalyst supports, nanocomposite materials 

For heterogeneous catalytic reactions, it is very common that supports are added to the catalyst 

to contribute to the catalytic process which will be discussed in this chapter. Depending on their 

chemical nature they can be classified as organic or inorganic supports.43 Generally, supports are nano- 

or micron-sized particles, which carry the reactive NPs anchored to them. These nano- or sometimes 

micron-sized assemblies of nanoparticles are often referred as nanocomposites in the field of material 

science and nano-engineering. The supports either simply immobilise the catalyst, providing good 

stability and resistance against mechanical impacts, limit sintering or aggregation of the reactive NPs 

and/or they can actively contribute to the chemical stability of the catalyst and govern its useful 

lifetime.43 The support may also contribute to the catalytic process with its high surface area and good 

adsorption properties. This phenomenon is known as the "Adsorb & Shuttle" (A&S) effect, i.e. the 

adsorption of molecules on the inert, adsorptive, domains, followed by diffusion to the photocatalytic 

domains. 44 Historically, active carbon (AC) was the first to be used as an adsorbent to demonstrate 

the concept of A&S and up to now it is commonly used. Besides AC, 45, 46 zeolites 47, 48 metal oxides 

such as silica, 49 alumina, 49 glass fibres, pumice stones and polymers, 50 furthermore, layered silicates 

showed preferential adsorption towards organic pollutants. 50, 52 These materials therefore have double 

functions: anchoring the catalyst NPs and perform adsorption functions towards organic compounds. 

Therefore, they have been used to prepare versatile nanocomposite materials with semiconductor NPs 

for photocatalytic purposes. 53, 54, 55, 56, 57, 58, 59 60 

In heterogeneous (thermal) catalytic reactions metal oxides, including TiO2, are often used 

compounds to support catalytic reactions on noble metal. It has been shown that the support influences 

the activity of the catalyst by influencing its electronic properties. This is attributed to the direct 

electronic interactions between small metal NP and reducible oxide support, which is called strong 

metal-support interaction (SMSI). 61 A good example is the catalytic hydrogenation of CO on Rh 

catalyst or better known as the Fischer-Tropsch synthesis. 62 TiO2 not only immobilise Rh, but more 

importantly, it promotes the dissociation of the chemisorbed CO through enhanced partial electron 

transfer from TiO2 to Rh. This process accelerates the donation of electrons from Rh into an 

antibonding π-orbital of the CO, thereby strengthening the Rh-C bond and weakening the CO-bond. 63 

This phenomenon is referred as “carrier-effect” in the literature and well known for catalytic reactions 

of metal oxide supported metal NPs. 64,65 66 Graphene oxide (GO) and reduced graphene oxide (rGO) 

are recently gaining prominent attention as supporting materials, especially graphene, owing to its 
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extended sp2-bonded carbon network and excellent conductivity. 67 The unique 2D structures of GO 

and rGO possess extremely high specific surface area which makes them excellent supporting 

materials. GO has as large as 1700 m2/g geometrical specific surface area as it has been revealed earlier 

in our department as well .68 These materials have been reported to improve the photocatalytic activity 

of TiO2 because they acts as an electron acceptor and a photosensitizer. 69 It is especially true for rGO, 

because it shows exceptionally high conductivity owing to the existence of an extended sp2-bonded 

carbon network therefore individual sheets of graphene possess excellent conductivity and it has been 

reported to efficiently promote electron-hole separation in irradiated GO-TiO2 69 or rGO-TiO2. 70,71,72 

Polymers can also be used as binding materials to support TiO2 and to obtain nanocomposite films. 

However, due to their limited resistance towards UV-induced degenerative processes we have to take 

their limited stability into account when applying them as photocatalyst supports. As most polymers 

tend to photodegrade under UV-irradiation, even without the presence of photocatalyst, it may cause 

problems with its long term stability. 73 

2.4. Separation of the solid phase photocatalyst from the reaction medium  

In recent R&D processes for water treatment, photocatalytic reactors can generally be classified 

as i) slurry phase reactors and ii) fixed-bed reactors. 15 Slurry phase reactors have the huge advantage 

over fixed-bed reactors, i.e., the contact area between pollutants and NPs is much larger which 

facilitates a higher rate of degradation. However, separation of the photocatalyst is undoubtedly a 

serious issue once the photocatalytic run is over. The question is raised not only for economic, but 

environmental reasons as well, therefore the question of catalyst separation cannot be neglected. 

Practically, the longer the photocatalyst can be used, the lower the cleaning costs are. For that reason, 

easily recoverable, stable catalyst are desired for real applications. So far the recovery of 

nanoparticulate photocatalysts is neither fast, nor cheap. 74-75 Being these photocatalytic substances 

submicron sized colloids most often with electric surface charge, the phenomenon of colloid stability 

often makes these endeavours even more tedious. Metal oxides, including TiO2, show pH dependent 

surface charge stemming from the protonation and deprotonation of surface OH-groups on low and on 

high pH values, respectively. Moreover, all metal oxides can be characterised with a point of zero 

charge (p.z.c.) on the pH scale, where the net surface charge is close to zero, therefore the repulsive 

forces between the particles are minimised and the colloid stability of the suspension is highly limited 

and the aggregation of NPs are facilitated. As a result of that the hydrodynamic diameter of TiO2 NPs 

and the settling rate is the highest on this pH value (~7 for TiO2), the separation of the catalyst is 

slightly more promoted. 76 Some progress have been made to separate the solid phase photocatalyst by 

addition of different supports. For example the previously mentioned clay mineral/TiO2 
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nanocomposites are not only beneficial for environmental remediation due to their high adsorption 

capacity towards pollutants, but also owing to their accelerated sedimentation in aqueous phase. 

Photocatalysts, functionalised with magnetic NPs can be also. 54, 55, 57, 77, 78 79, 80 

 Fixed bed reactors offer practical solution to separate the photocatalyst from the polluted 

medium, because the NPs are attached to a support and there is no need for posterior separation. Due 

to lower exposed surface area, however, the immobilised NPs lost a great potential of their 

photocatalytic activity. Despite of that, this arrangement is often desired because it is very easy to 

maintain. Moreover, fixed bed photoreactors can be applied for both, water and air cleaning. 

2.5. Vis-light responsive and plasmon-enhanced photocatalysts 

Probably, the major motivation of scientists, working on the field of photocatalysis using TiO2, 

is to enhance its photocatalytic activity preferably under solar light irradiation. As it is known, natural 

sunlight contains only ca. 5 % of UV rays at sea level that is not very sufficient to induce significant 

photochemical reactions on wide band gap semiconductors. Excellent reviews are available which 

summarise the currently known methods to induce Vis light activity of TiO2-based photocatalysts 81, 

82. Doping, i.e. introduction of metal impurities such as iron, made by sol-gel and flame hydrolysis 

methods, 83, 84 vanadium 85 and non-metal elements, such as nitrogen 86, 87, 88, 89, 90, 91, 92, carbon, 89, 93, 94 

sulphur 94, 95 and fluorine 96, 97 into the TiO2 lattice, is a widely investigated approach to narrow the 

band gap of the material by modulating the band positions or by introducing mid-gap states. 

There are numerous promising results in this area, however, in some cases, especially for metal doping, 

it turned out that the procedure actually decrease the photocatalytic efficiency due to the formation of 

recombination centres. Introduction of colour centres by creating defect sites can also lead to Vis light 

activity of the photocatalyst. 98 Dye sensitisation has also been reported to be a successful method to 

extend the Vis light response of TiO2. 99 Furthermore, the previously discussed TiO2-GO and TiO2-

rGO needs to be credited here again for their Vis light due to the presence of carbonate structural 

fragments bonded with titanium. 100 

Recently, plasmon-enhanced nanomaterials have attained considerable attention due to their 

high activity for photovoltaic and photocatalytic applications. 101, 102, 103, 104, 105 In general, plasmonics 

is related to the localisation, guiding and manipulation of electromagnetic waves beyond the diffraction 

limit and down to the nanometre-length scale. 106 In metal/semiconductor nanocomposites the 

advantageous properties of plasmonic noble metal and semiconductor NPs are merged. Several 

excellent reviews are available in the literature discussing the topic. 106, 107 The term, plasmonics, is 

basically related to the localisation, guiding and manipulation of electromagnetic waves. This 

phenomenon is observable in metal NPs when they are irradiated by light with a wavelength much 
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larger than their dimensions. 106 The term “plasmonic photocatalysis” was introduced by K. Awazu et 

al. in 2008. 108 Generally speaking, processes that feature a collective oscillation of electrons in the 

solid when light is shined on them and the oscillation of the electrons is in resonance with the incident 

light can be nominated as plasmonic 109 (Figure 3). Thus, these nanostructures can be utilised to 

concentrate and guide light on a nanometre scale. 110 This property can further be utilised to enhance 

photocatalytic processes as these nanostructures can readily concentrate the energy of light into the 

close vicinity of photocatalyst NPs. Thus the shape and location of optical absorbance band will be 

highly dependent on the size, shape aggregation state of the material and dielectric constant of the 

material and the environment, thus it can be well controlled by changing these parameters. 111 112, 113 

114 115 116, 113 117, 118, 119 The advantageous fact that noble metal/semiconductor heterostructures when 

used in photocatalytic and photoelectrochemical applications, they require only a very small amount 

of noble metal to provide good efficiency. As a matter of fact, too high amount of metal content 

deposited on the TiO2 can significantly inhibit the photocatalytic process as the metal nanoclusters will 

attract the electrons too strongly and as a result of that the electrons will be trapped. Several metals are 

known to support plasmon modes in the Vis and near IR range, e.g. Au, Cu, Li or Al, but above all 

them Ag is probably the most interesting. Not only that its surface plasmon modes can be tuned in the 

range from 300 to 1200 nm and it is considerably cheaper than gold (which is the other most often 

used material for plasmonic applications), but it has the highest quality factor (Q) from all of them 

which is directly proportional of the strength of surface plasmon. 106 

 

 

Figure 3 Depiction of localised surface plasmons of noble metal NPs 

 

Another prominent feature besides the plasmon enhanced properties of noble 

metal/semiconductor heterostructures, considered from a prospective of solid state physics, is the 

Schottky-barrier which is technically the metal/support interface where the charge carrier transfer takes 

place between the two components owing to the differences in the work functions between metal and 
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semiconductor which induces a continuous flow of electrons. Kamat et al. showed the shift of Fermi-

level in TiO2 towards the CB and corollary enhancement of charge carrier transfer towards the metal 

NP.120, 121 Zhang et al. attributed forced e-/h+ pair separation and fast-lane charge transfer to the 

presence of metal-semiconductor junction and Vis light response, enhanced UV-Vis absorption, 

reduced e-/h+ diffusion length, enhanced local electric field, LSPR-powered e-/h+ generation, local heat 

effect and molecule polarisation effect. 107 The combined effect of these all contribute to significantly 

higher rates of photocatalytic activity under UV and UV-Vis light than that on pure TiO2. 122, 123 

2.6. Photocatalysis in application, commercially available photocatalytic products 

Photocatalytic applications using TiO2 have already been taken to the stage of 

commercialisation and the slowly but steadily growing availability of products on the market indicates 

the worldwide recognition of this group of materials. Products with photocatalytic activity are gaining 

emerging popularity, primarily in Asian countries, such as Japan or South Korea and China, but 

photocatalytic products tend to show up more and more in the area of European Union and United 

States also. The most popular photocatalytic products are self- cleaning coatings or external building 

elements to prevent build-up of dirt on, such as photocatalytically active cement from Taiheiyo Cement 

Corp., Japan 124 self-cleaning windows (Pilkinton ActiveTM), based on the super-hydrophilic property 

of TiO2. Today’s people spend the most amount of their time indoor, either in their offices or other 

workplaces, schools or in their homes, therefore the quality of indoor air can undoubtedly affect our 

well-being. Unfortunately, “Sick Building Syndrome” (SBS) is a well-known phenomenon among 

urban population. It is known that irrespectively of regular ventilation of the rooms, concentration of 

volatile organic compounds (VOCs) can be very high which are originated from building materials, 

furniture, cleaning agents and from cooking gas. High concentrations of VOCs can cause several 

adverse health effects such as asthma, dizziness, respiratory and lung diseases, and they might higher 

the risk to develop cancerous diseases. 125 In addition to VOCs, particulate pollutants, airborne 

bacteria, viruses, mould and other pathogens, are also present and can be highly concentrated in our 

indoor spaces. These latter has particular relevance in hospitals and other public premises. It has to be 

considered that there are several cases when casual ventilation (as simple as opening the window) 

cannot be executed, because either the outdoor air is even more polluted or the building is constructed 

in a way that it is ventilated by its special built-in ventilation system. In these cases, it is particularly 

important to obtain good quality indoor air relying on alternative solutions. Nowadays, a variety of 

indoor air purification devices can be found in the market to fight off the above mentioned problems. 

Most of them rely on physical separation of particulate pollutants and bacteria by circulating the air 

through their filtration system. In most cases the so-called high-efficiency particulate arrestance 
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(HEPA) filters are used which remove 99.999% of particles ≤ 0.3 µm size. These filters may contain 

silver to kill germs and microbes (Alen Breathsmart HEPA Air Purifier for Asthma and Mold, Alen, 

USA). Recently designed air purifiers also include germicidal UVC-lamps for its sterilising effect. In 

addition to the built-in UV lamps, some brands (Air Oasis 5000; Air Oasis, USA) can also be found 

incorporating photocatalysts to enhance the antibacterial effect of UV-irradiation and trigger 

decomposition processes of organic pollutants such as VOCs. Depending on the needs of the 

consumers, air purifiers are sold for household and commercial use with different air cleaning 

capacities (10-100 cubic feet per minute, CFM). However, I found that manufacturers rarely publish 

any detailed information about their products, especially, concerning their performance, which makes 

it fairly challenging to compare their efficiency. 

3. Objective and scope of dissertation 

This work aims to contribute to the research field of water cleaning and air purification 

technologies by means of heterogeneous photocatalysis using TiO2. Although, photocatalysis has 

shown a great potential as a low-cost, environmental friendly and sustainable technology for 

purification of water and air using this material, there are still momentous technical challenges to 

overcome. The most urging problems are probably the low quantum efficiency – especially under solar 

irradiation – and the problem of catalyst separation after the photocatalytic cycle. This work focuses 

on these issues and the core structure of this document is shown below in Figure 4. 

 

Figure 4 Scope of thesis  
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4. Experimental 

4.1. Materials and methods 

4.1.1. Materials 

Aeroxide P25 (Evonik Degussa GmbH) TiO2 was used to prepare noble metal modified titania 

heterostructures, TiGO nanocomposites and it was used for the synthesis of sodium titanate NSs. 

Sodium hydroxide (NaOH) pellets, hydrogen chloride (37 wt% HCl) and nitric acid (65 wt% HNO3) 

were purchased from Reanal or from Sigma Aldrich. Gold(III) chloride tryhidrate (HAuCl4·3 H2O, 

puriss,  mwt% ≥ 49) and silver nitrate (AgNO3, puriss) were purchased from Sigma-Aldrich for the 

preparation of noble metal NPs. 2-propanol (puriss, as an electron donor to assist the reduction of noble 

metal ions, was received from Molar, Hungary. Poly-acrylate [poly-(ethyl acrylate-co-methyl 

methacrylate; p(EA-co-MMA)] was obtained from PannonColor Kft. and it was used without any 

purification. For all the synthesis and preparation work d.i. water was used. 

4.1.2. Preparation of hydrogen titanate nanofibres (H-TNFs) and their consecutive 

transformation intoTiO2 NPs by hydrothermal post treatment (HPT) 

First, sodium titanate nanofibres (Na-TNFs) were obtained by high alkali hydrothermal treatment of 

TiO2. Typically, 3.84 g P25 TiO2 was dispersed in 80 ml 10 mol/L aqueous NaOH solution in a Teflon-

lined autoclave, and the mixture was hydrothermally treated at 180 °C for 48 hrs. In order to obtain H-

TNFs, the hydrothermal product was washed with 3 L of ultrapure water then stirred in 1 L of 0.5 

mol/L HCl overnight (~0.05- 0.055 mol HCl/g TNF). The sample was washed again with 1 L ultrapure 

water then dried at 60 °C. 

Titania NSs were prepared by acidic hydrothermal treatment as follows: 1.0 g of the as-

prepared H-TNFs was hydrothermally treated at 120 °C for 24 hrs in 80 mL 0.05 – 4 mol/L HNO3 

solution to obtain samples HPT0.05; HPT0.1; HPT0.5; HPT1; HPT2 and HPT4. The samples were 

centrifuged and washed with ca. 0.5-0.8 L water, until pH~5, then dried at 60 °C. The samples were 

ground in mortar and kept in closed glass vessels until use. 

4.1.3. Preparation of noble metal modified TiO2 photocatalysts 

5 g TiO2 was dispersed in 0.5 L d.i. water then 1.48∙10-2 L 1∙10-2 mol/L AgNO3 or 6.37∙10-3 L  1∙10-2 

mol/L HAuCl4∙3H2O was added to prepared Ag- and Au- modified TiO2 (wtmetal% = 0.5) samples. The 

pH of the suspension was adjusted to 7.2 then 0.1 mol/L NaBH4, as reducing agent, was added to the 

suspensions: 7.39∙10-3 L and 3.19∙10-3 L for Ag-TiO2 and for Au-TiO2, respectively. The suspensions 

were stirred for 60 min, washed with d.i. water, centrifuged and dried. 
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Silver (I) oxide (Ag2O) was prepared as follows: 30 ml 0.1 mol/L AgNO3 was added dropwise to 0.06 

L 2 mol/L NaOH solution. After 5 min of stirring, the suspension was filtered, washed, and dried at 

60 °C in air. Silver (II) oxide (AgO) was prepared by heating up 0.15 L 0.34 mol/L NaOH to 85 °C 

then 25 ml K2S2O8 was added to the hot alkali solution. Finally, 0.025 L 0.34 mol/L AgNO3 was added 

to the solution dropwise. The temperature of the mixture was raised to 90 °C then it was mixed further 

for 15 min. The precipitate was filtered through a Büchner funnel, and the sulphate ion was heartily 

washed with doubly distilled water. The product was dried in air at 60 °C. 

 Further Ag-containing samples were prepared using these obtained silver oxide samples. 

Ag2O-TiO2 and AgO-TiO2 were obtained by adding required amount of these oxides to aqueous 

suspensions of TiO2 (c = 1 wt/V%; V= 0.2 L). The suspensions were filtered then dried at 60 °C. 

Ag2O-TiO2 sample was also prepared using commercially available Ag2O, purchased from 

Sigma Aldrich (≥99.9 %). The sample was entitled as Ag2O-TiO2 (Sigma) 

4.1.4. Preparation of TiO2 – Graphite oxide (TiGO) nanocomposites 

Graphite oxide (GO) and the TiGO nanocomposites were previously prepared in our 

department by a self-assembly method. Graphite oxide was synthesised from natural flaky graphite 

(Graphitwerk Kropfmühl AG, Germany) by the Brodie method. The graphite was highly oxidised 

(C2O0.98H0.40) and it is identical with that codenamed “GO-2” used in earlier publication. 126 To prepare 

TiGO composites with GO content of 1 to 10 wt%, first 40-400 mg of GO was dispersed in 1.6 L of 

water. In each case, the pH was adjusted to 8.5 ± 0.3. After 15 minutes of sonication and one day of 

continuous stirring in the dark the pH was reset to 8.5 ± 0.3. Next, these suspensions were poured into 

0.4 L of 9-9.9 g/L aqueous colloid dispersions of TiO2 (pH = 5) upon which the oppositely charged 

colloids rapidly coagulated. After decantation the wet sediments were dried at 50 °C then ground. The 

prepared nanocomposites are denoted hereafter as TiGO-1; TiGO-2; TiGO-5 and TiGO-10 referring 

1; 2; 5 and 10 wt% of GO content, respectively. 

4.1.5. Preparation of nanocomposite films 

Nanocomposite films, containing TiO2 or noble metal modified TiO2 and organic or inorganic 

supports, were prepared by spray coating. This is a feasible method to obtain thick films with 

homogenous consistency and also with good reproducibility of the thickness. 10 – 30 m/V% 

suspension of the mixture of selected photocatalyst and organic or inorganic support was sprayed on 

45 cm2 glass slides from a distance of 20-30 cm in several steps and briskly dried. It was repeated until 

1.25 mg/cm2 dry material built up on the slides. 
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Nanocomposite films were prepared using TiO2 as photocatalyst and inorganic supports, 

namely, zirconium oxide (Riedel-de Haen, purum) and sodium hectorite (Hect) 

(Na0.3(Mg,Li)3Si4O10(OH)2, Fa-Laponite, Solvay). The photocatalyst content of the films was 20 wt%; 

40 wt%; 60 wt%; 80 wt% and 100 wt% and the relative amount of supporting materials (ZrO2: Hect) 

was kept constant (9:1). 

Nanocomposite films were prepared using TiO2, Ag-TiO2 as photocatalyst and [poly(ethyl 

acrylate-co-methyl methacrylate; p(EA-co-MMA)] as organic support. The polymer layer was loaded 

with 13-15 wt% photocatalyst. The average thickness of films was 100 ± 20 µm. The films were 

irradiated by a low-pressure mercury lamp (GCL307T5VH/HO type, LightTech, Hungary, P =35 W) 

from a distance of 5 cm for 0, 1, 4, 24, and 48 hrs. The emission spectrum of the light source is 

presented under Appendix 1. 

4.2. Characterisation techniques 

4.2.1. UV-Vis diffuse reflectance spectrophotometry (UV-DR) 

UV-Vis diffuse reflectance spectra of the powder samples were recorded by a NanoCalc 2000 

Micropack spectrometer equipped with an integrated sphere and HPX 2000 Micropack high power 

Xenon lamp. 

The band gap energy (Eg) values were obtained from the UV-Vis diffuse reflectance spectra. 

The absorption coefficients (αKM) were calculated from the reflectance spectra using the Kubelka-

Munk function (Eq. 6), where αKM stands for the absorption coefficient and R∞ is the reflectance of an 

infinitely thick sample with respect to a reference at each wavelength 127  

𝛼𝐾𝑀 =  
(1 − 𝑅∞)2

2𝑅∞
 

Eq. 6 

 

To determine the band gap energies, Tauc plot (αKM hν vs. hν) correlation was used. 

4.2.2. Attenuated Total Reflection Fourier-Transformation Infrared (ATR-FTIR) Spectroscopy 

A Biorad FTS-60A FTIR spectrometer was used to analyse the chemical composition of 

photocatalyst/polymer nanocomposite films before and after photo-aging. The spectra were recorded 

in the wavelength range of 4,000–400 cm-1. For each measurement 256 scans were collected with a 

resolution of 4 cm-1. 
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4.2.3. Raman spectroscopy 

A Biorad FTS-60A Fourier Transformation Infrared (FTIR) spectrometer equipped with 

Attenuated Total Reflection crystal detector was used to record the spectra of the nanocomposite films. 

The scans were recorded in the range of 4000–400 cm−1 at a resolution of 4 cm−1. 

4.2.4. X-ray diffraction (XRD) 

X-ray diffraction measurements for TiO2 samples were carried out on Bruker D8 diffractometer 

(Bruker-AXS GmbH, Karlsruhe, Germany) equipped with a, 2.5 degree soller slits, 0.5 degrees 

divergence slit, an air scattering screen and a gas-filled position sensitive detector. As a radiation 

source, Cu-Kα radiation (λ = 0.1542 nm) was used. Rietveld refinements of the TiO2 samples prepared 

by HPT of H-TNFs. were performed with Topas v4.2 (Bruker-AXS-GmbH, Karlsruhe, Germany) 

using the fundamental parameter approach (Cheary, Coelho, & Cline, 2004). The background was 

fitted with a Chebychev polynomial of order 15. Zero-shift, lattice parameters, an over isothermal 

parameter, scale factors and Lorentz crystallite size broadening were refined. The crystallite size was 

determined based on the volume weighted integral peak width. 

4.2.5. Nitrogen sorption measurements 

To characterise the surface properties of TiO2 samples, prepared by HPT of HNFs, N2 sorption 

measurements were carried out at 77 K using a Micromeritics ASAP2420 type instrument. Prior to 

measurements, the samples were degassed at 200 °C for 24 hrs. For the noble metal modified TiO2 

samples and TiGO nanocomposites, the measurements were carried out on a Micrometrics Gemini 

2375 type instrument. The Brunauer- Emmett-Teller (BET) method was used to determine the specific 

surface area of the samples and Barrett-Joyner-Halenda (BJH) method to determine the pore size 

distribution. 

4.2.6. Transmission Electron Microscopy (TEM) 

TEM images were recorded by a Phillips CM 100 microscope at University of Szeged in 

Hungary or by a TECNAI TF20 SuperTwin microscope in ICES, Singapore, using 200 eV accelerating 

voltage. 

4.2.7. Scanning Electron Microscopy (SEM) 

SEM images were taken on a Hitachi S-4700 SEM device at 10 kV accelerating voltage. 

4.2.8. X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectra (XPS) of Agx(O)-TiO2 and TiGO-2 nanocomposite were recorded 

with a SPECS instrument equipped with a PHOIBOS 150 MCD 9 hemispherical electron energy 
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analyzer operating in the FAT mode. The excitation source was the Kα radiation of a magnesium anode 

(hν = 1253.6 eV). The X-ray gun was operated at 220 V power (14 kV, 15 mA). The pass energy was 

set to 20 eV, the step size was 25 meV, and the collection time in one channel was 100 ms. Typically 

five scans were added to get a single spectrum. The C 1s binding energy of adventitious carbon was 

used as energy reference; it was taken at 285.1 eV. For data acquisition, both manufacturer’s 

(SpecsLab2) and commercial (CasaXPS, Origin) software were used. 

4.2.9. Contact angle (CA) measurements 

Advancing and receding CAs were measured by EasyDrop (Krüss GmbH, Hamburg, Germany) 

drop shape analysis system equipped with an Peltier temperature chamber and a syringe steel needle 

of 0.5-mm diameter, under atmospheric pressure. The measurement method, used for the analysis was 

the tilting plate method at 30° tilt angle. With the use of a syringe, a sessile drop of water was formed 

at the tilted plate. The drop shape was recorded by a CCD camera of the goniometer with frequency 

of a 2.77 frames/s. To determine the CA, the drop contour was mathematically described by the 

Young–Laplace equation using DSA100 software, and the CA was determined as the slope of the 

contour line at the three-phase contact point. Water used in this experiment was purified by Q-

Millipore system. 

4.2.10. Photocatalytic experiments 

The photocatalytic activity of TiGO nanocomposites was tested in liquid phase. 375 mg 

nanocomposite powder was dispersed in 375 mL 1mmol/L phenol solution (1 g/L catalyst loading) in 

a double-walled immersion well photochemical reactor. The suspension was irradiated under 

continuous stirring from inside of the reactor by a Heraeus TQ 150 type high pressure mercury lamp 

(P = 150 W, λ = 240-580 nm) The emission spectrum of the light source is presented under Appendix 

1. The high energy photons (λ < 320 nm) were filtered by a Pyrex tube in which the light source was 

placed.  The cooling jacket of the reactor kept the temperature of the suspension at ~25 °C. 1 mL 

amount of samples were taken in 5-10 min frequency then centrifuged and filtered before measuring 

the phenol content by HPLC. The equipment was build up by Knauer injector, degasser and pump, an 

RPC18 column (LiChroCART125-4, Merck) and a Knauer WellChrom K-2600 UV-VIS detector. A 

mixture of 35 vol% methanol and 65 vol% water was used as eluent. To study the reusability of the 

composites, TiGO-2 was irradiated in four consecutive runs. After each recovery, the solid was washed 

with deionised water and centrifuged before re-suspending it in the test solution. The catalyst 

concentration in the system was kept constant by adjusting the volume of phenol solution to the amount 

of remained catalyst. 
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Photocatalytic activity of the samples were tested by following photocatalytic oxidation of ethanol 

EtOH vapour in a flat photoreactor (ca. 0.165 L) at 25 °C ± 2 °C. Low pressure Mercury lamps were 

used for the flat film reactions. The photodegradation tests for AgxO-modified TiO2 samples and for 

organic and inorganic supported TiO2 nanocomposite films were conducted under UV-Vis emitting 

GCL303T5/# type 2 (Light-Tech, Hungary; P= 15 W, λ =254- 612 nm) light source; while for HPT 

TiO2 samples tests were conducted under UV-rich GCL303T5/# type 1 (254-435 nm). The emission 

spectra of the light sources are presented in Appendix 1 for comparison. The photocatalytic runs were 

carried out after 30 min adsorption equilibration time of EtOH with initial concentration of 2.73 ± 

0.018 mg/L. The chemical composition of the vapour phase was analysed by a Shimadzu GC-14 type 

gas chromatograph equipped with a thermal conductivity detector and a flame ionisation detector 

(FID). The flow rate of the gas mixture in the photoreactor system was kept at 0.375 L/min. The 

reaction rates (k) for the photocatalytic degradation of phenol in aqueous phase and for ethanol vapour 

were determined according to Eq.7  

 

−𝑙𝑛
𝑐

𝑐0
= 𝑘𝑡 

Eq. 7 

 

, where c0 is the initial concentration of model pollutant and c is the concentration at t irradiation time. 

5. Results and discussion 

5.1. TiO2 – GO nanocomposites 

5.1.1. Optical, structural and electrical characterisation of TiO2 – GO nanocomposites 

GO is a non-stoichiometric compound with and empirical formula of C4O2H for well oxidised 

samples.126 Depending on the state of oxidation, it possesses different amount of O and H constitute 

functional groups such as cyclic ethers, –OH and –COOH groups which are covalently attached to the 

carbon skeleton and non-oxidised aromatic regions or isolated C=C double bonds may also feature the 

chemical structure. 126 Owing to the surface functional groups it is highly hydrophilic therefore a stable 

colloidal dispersion can be obtained once it is delaminated into single lamellae among highly basic 

conditions. 

It is known that in highly alkali medium GO sheets spontaneously exfoliate due to the 

progressive deprotonation of acidic functional groups and the evolution of highly negative surface 



1 9  

 

charge of the GO planes.68 As a result, this material can be well applied as a support for metal oxide 

photocatalysts with a high specific surface area (1700 m2/g). 68 TiGO nanocomposites, prepared by 

heterocoagulation of positively charged TiO2 NPs and negatively charged GO sheets, were probed as 

photocatalyst nanocomposites.  

Addition of GO (≤ 10 wt%) to TiO2 significantly increased absorbance of the catalyst in the 

Vis-range Figure 5. The calculated Eg values are summarised in Table 1. According to Shen et al, the 

band gap of GO can be tuned between 2 to 0.02 eV depending on the state of oxidation. 128 As a result 

of heterocoagulation, and nanocomposite formation, the band gap energies of pure TiO2 decreased due 

to the presence of GO which could be coupled with induced Vis-light activity as well. 

 

 

Figure 5 Diffuse reflectance spectra of TiGO nanocomposites, GO and reference TiO2 

Table 1 Calculated band gap energies and corresponding wavelengths 

Nr Sample ID Eg (eV) λ (nm) a 

1 TiO2 3.10 400.00 

2 TiGO-0.5 2.80 442.85 

3 TiGO-1 2.80 442.85 

4 TiGO-2 2.65 469.92 

5 TiGO-10 2.22 558.56 

a λ=1240/Eg 
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FTIR spectra of pure GO, TiO2 and selected nanocomposites are shown in Figure 6. Typical vibrations 

of TiO2 correspond to the broad band between 400-800 cm-1 detected in pure TiO2 and TiGO 

nanocomposites. It is reported that the development of Ti-O-C vibration at 798 cm-1 represents the 

chemical bonding between TiO2 and GO 129, 130 which was absent from our TiGO samples. There is a 

broadening, however, for double oxidised GO, which was rich in surface functional groups: 

Characteristic bands at 810 and 940 cm-1 refer to C-H bonds in the aromatic carbon rings of GO 

backbone with sp2 hybridisation; a sharp band at 1047 cm-1 assigns C-O (alkoxy) vibrations; a wide 

band at 1340 cm-1. These bands are also represented TiGO-10 sample as well. Furthermore, a very 

broad band between 2400-2900 cm-1 is assigned to the C-H vibrations with sp3 hybridisation for pure 

GO. The sharp peak at 1615 cm-1 represents the presence of surface adsorbed water which can be 

observed for all samples. For GO and TiGO nanocomposites, this band is probably overlapping with 

the skeletal C=C vibrations which is normally represented in this region. 131 A smaller band at 1705 

cm-1 refers to the C=O stretching vibration of carboxyl groups. It is shown that GO is rich in O-H 

functional groups, indicated by the broad band between 2900 – 3600 cm-1, which are mostly 

responsible for the changeable acidic character of GO. Vibrations of surface O-H groups were also 

observed for pure TiO2, obviously, and for TiGO nanocomposites as well.  
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Figure 6 Normalised FTIR spectra of GO, TiO2 and selected TiGO nanocomposites 

 

The TEM images in Figure 7 are representing TiGO-10 with 10 wt% of GO content. It was established 

from the TEM images of the nanocomposites that TiO2 NPs nearly completely covered the exfoliated 

GO sheets, therefore the good adsorption property of GO was highly hindered towards the model 

pollutant.  

 

 

 

 

Figure 7 TEM images of TiGO-10 nanocomposite. 

5.1.2. Photochemical transformation of GO in TiGO due to UV-irradiation 

It has been reported that chemical transformation of GO into rGO occurs in the presence of 

reducing agents, e.g. hydrazine 132,133 or sodium borohydride, by means of electrochemical reduction 
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134, 135 during hydrothermal reaction in the absence 136 or presence of TiO2. 130 It has been also shown 

that the loss of functional groups and restoration of extended 2D graphene sheets can be facilitated by 

UV-irradiation 137 in the sole presence of an electron donor 138 and in the presence of electron donor, 

catalysed by TiO2. 139 

The colour of originally light grey TiGO nanocomposites became darker and eventually black 

with the duration of UV-irradiation either suspended in d.i. water, phenol solution or casted on an 

electrode as a film. 140 This was a clear sign of the chemical transformation of GO into a more reduced 

graphene-like carbonic compound (rGO). The phenomenon was then evidenced by XPS and electric 

conductivity measurements. XPS spectra was obtained for TiGO-2 nanocomposite. The sample was 

collected from the photoreactor before and after 2 hrs of photocatalytic run (will be discussed later 

under Section 5.1.3) to study the photochemical transformation of the material. Figure 8 shows the 

region of C 1s at binding energy of between ca 282-289 eV. After deconvolution of the data, three 

components were identified which were assigned to aromatic/graphitic carbon atoms (C=C) at ~ 285 

eV; epoxy and hydroxyl groups (C-O-C and C-OH, respectively) at ~287 eV; and finally carbonyl 

and carboxyl groups (C=O and O=C-OH), respectively. The area of peak at ~287 eV, assigned to 

epoxy and hydroxyl groups, relative to the peak at ~885 eV, assigned to C=C aromatic carbon rings, 

significantly decreased which suggests the loss of epoxy and hydroxyl groups due to UV-irradiation. 

In the same time, the peak at ~ 289 eV did not change significantly which suggests that carbonyl and 

carboxyl groups remained intact, therefore it which means that the full restoration of the poly-aromatic 

graphene structure was not complete after one cycle. These findings correspond with the results of 

another group 139 where it was shown that ~ 50% of the oxygenated sites underwent chemical 

reduction in the presence of TiO2 and EtOH under UV-illumination but not the carboxylic group. It 

strongly suggest that these functional groups are more resistant to reduction. A charge induced shift 

of the peak positions with ca 0.5 eV towards higher energies also confirms the transformation of GO 

into a more conductive material (rGO).  
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Figure 8 High resolution XP spectra of TiGO-2 (a) before and (b) after the first photocatalytic cycle 

Along with the chemical transformation, a significant increase of the electric conductivity of the 

nanocomposite was facilitated which was due to the restoration of the extended π-electron structure of 

graphene-like sheets. To study the resulted changes of electric conductivity of the nanocomposite, 

TiGO-2 was cast on an interdigitated gold electrode and irradiated by a 70 W UV-rich light source 

(emission spectrum not presented) in ambient conditions and in saturated water vapour. As-synthesized 

GO sheets or films are typically insulating, exhibiting a sheet resistance of about 1012 Ω/sq or higher. 

The relative electric conductance (G/G0, where G is the conductance measured after a certain time of 

the irradiation and G0 is the conductance before irradiation) is plotted in the function of irradiation 

time in a logarithmic representation in Figure 9. The GO-G transformation was found to be more 

pronounced in saturated water vapour: while the relative electric conductance increased 25-fold times 

in ambient conditions, it increased 100-fold times under saturated water vapour. It has to be noted that 

using the same light source did not induce the reduction of pure GO in the absence of TiO2 irradiated 

for 2 hrs, however a 630-fold increase of electric conductivity increase was realised when using a 400 
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W Hg-arc lamp (emission spectrum not presented). This finding indicated that the reduction of GO 

can be facilitated using UV-light only, but the presence of TiO2 significantly accelerates the process 

due to the produced electrons in the valence band. 

 

Figure 9 Figure G/G0 Logarithmic plots of relative electrical conductance of TiGO-2 films at U = 10 

V as a function of irradiation time in air-dry state and in 100% relative humidity. 

5.1.3. Photocatalytic activity and reusability of TiGO nanocomposites  

Photocatalytic activity of TiGO-1; TiGO-2 and TiGO-5 nanocomposites were probed for the 

UV-Vis assisted photocatalytic degradation of 1 mmol/L aqueous phenol solution and contrasted to 

that of reference P25 TiO2. It was found that the presence of GO decreased the photocatalytic activity 

which was more pronounced with GO content. While the photocatalytic conversion rate of phenol for 

pure TiO2 was 98%, it was 85%; 82% and 73% for TiGO-1; TiGO-2 and for TiGO-5, respectively 

(Table 2). This is controversial to most reported papers where the authors reported increased charge 

separation and increased photocatalytic activity of TiO2-graphene oxide nanocomposites prepared by 

similar method.141 The reason of the observed phenomenon might be rooted in the followings: first of 

all, TiO2 NPs are deprived from a high amount of active surface (and active sites) to interact with the 

phenol molecules because they were immobilised on a support. This phenomenon for supported 

photocatalysts is quite common. Second, since GO absorbed a high amount of photons in a wide range 

of the UV-Vis spectrum therefore hindered the excitation of TiO2 which eventually led to retarded 

photocatalytic activity. From a practical point of view, a photocatalyst should be able to perform under 
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repeated photocatalytic cycles. The reusability of TiO2 on different supports, such as silica gel, glass 

beads and quartz sand for photocatalytic degradation of phenol was investigated by another research 

group. 142 They found 5-12 % decrease of photocatalytic efficiency by the end of the 4th run. Other 

researchers found 10% decrease of the catalyst on active carbon support after the 5th run of phenol 

decomposition. 143 To investigate the reusability of the nanocomposite, TiGO-2 was irradiated in 1 

mmol/L phenol solution and then regained by centrifuging the irradiated suspension.  

 

  

Figure 10 Photodegradation of phenol a) on different TiGO samples b) on TiGO-2 under repeated 

photocatalytic cycles 

Table 2 Photocatalytic activity of TiGO nanocomposites and reference TiO2 in the photooxidative 

phenol degradation reaction 

Nr Sample ID Conversion 

 (%) 

k  

(1/min) 
R2 

ΔmPhenol 

(mg)  

120 min 

Δm Phenol 

(mg /g TiO2) 

1 Degussa P25 97.9 0.0263 0.9269 32.8 87.5 

2 TiGO-1 85.1 0.0156 0.9925 30.0 80.7 

3 
TiGO-2  

cycle 1 
80.9 0.0129 0.9891 27.0 73.5 

4 TiGO-5 73.3 0.0106 0.9901 25.6 71.8 

a) b) 



2 6  

 

5 
TiGO-2  

cycle 2  
77.5 0.0121 0.9918 27.02 67.4 

6 
TiGO-2  

cycle 3 
76.0 0.0121 0.9942 24.8 67.8 

7 
TiGO-2 

cycle 4 
77.9 0.0126 0.9931 24.9 71.8 

 

The photocatalytic cycles were repeated 4 times and between each cycle the nanocomposite was 

regained from the reaction medium, washed with distilled water, dried and re-suspended in 1 mmol/L 

of phenol solution. Similar phenol conversions were found (Table 2, rows 3 and 5-7) implying that the 

nanocomposite was suitable for repeated use without observable loss of the photocatalytic efficiency 

(~3 -4 %). As it was shown before, that the photochemical transformation of GO into rGO occurred 

after 1 photocatalytic cycle.  

5.1.4. Sedimentation properties of the nanocomposites 

As it has been pointed out earlier, obtaining efficient recovery of the photocatalyst NPs from the 

reaction medium after the photocatalytic treatment is a key aspect to both cost and public health 

concerns when considering commercialised applications. It is known that TiO2 forms a kinetically very 

stable colloid dispersion in aqueous medium due to its high surface charge and electric double layer 

and it can be destabilised only at around the p.z.c. (pH~6.6) where the repulsive charges are minimised 

and slight aggregation of the NPs and slow sedimentation can occur. This property makes TiO2 less 

desired as a potential candidate as a large-scale photocatalytic water cleaning agent, because its 

recovery requires special chemical treatment or filtration. On this motivation, the sedimentation 

properties of TiGO nanocomposites were compared to TiO2 in distilled water and in aqueous phenol 

solution. In Figure 11 sedimentation of P25 (on the left) and TiGO-5 (on the right) are compared at 

pH=6, close to the p.z.c. value of TiO2. The figure clearly shows that TiGO-5 was settling with a much 

higher settling velocity and the sedimentation time was significantly reduced (note the different time 

scale for the two systems). Due to the loss of net surface charge around the isoelectric point at pH = 

6.6, suspensions of bare TiO2 undergo coagulation, i.e. formation of aggregates by cohesion between 

particles of the same kind. These aggregates are large enough to be dragged down by gravitational 

force, which cannot be compensated by Brownian motion. However, the TiO2 aggregates will settle 

with different velocities due to their poly-disperse size distribution, which results in a diffuse 

sedimentation front and a very slow rate for the smallest fractions. Complete sedimentation of the TiO2 

NPs could be observed after 24 hrs but only in the pH range close to the p.z.c (pH = 6 –8). In contrast 
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to that, TiGO-5 was settling with a sharp settling interface, leaving a clear supernatant above and it 

formed voluminous and easily re-dispersible sediments indicating that it was a highly destabilised 

disperse system composed of large aggregates. After 5 minutes of settling almost the entire solid phase 

was settled. This was followed by slow syneresis, i.e. decrease of the sediment volume by a slow 

expulsion of the aqueous medium from the coherent inorganic gel network formed by the flock-like 

particles. 

 

 

Figure 11 Photographs of sedimentation 1g/L P25 TiO2 (left) and 1g/L TiGO-5 (right) suspensions 

in distilled water at pH = 6. 

To quantify the sedimentation of TiGO nanocomposites, sedimentation profiles were studied by 

observing the sedimentation of 1 g/L TiGO dispersions in the function of settling time. Two factors; 

the effect of GO content in the nanocomposite; and the effect of irradiation time on the sedimentation 

were investigated. Sigmoidal curves with a nearly linear middle section were obtained for all samples, 

which is typical for suspensions exhibiting zone settling characteristics. The slope of the line fitted 

over this range equals to the terminal settling velocity (TSV) of suspended particles, which is the 

maximum attainable settling rate established when the drag forces just compensate gravitational pull. 

The inset of Figure 12 a) shows that the TSV changed inversely with the GO loading. This means that 

the sedimentation was gradually hindered by the presence of large, anisometric GO particles. As 

proven by turbidimetry, the clarified supernatants contained less than 5 mg/L TiO2 for all GO loadings, 

which means that at least 99.5% of catalyst particles were efficiently separated from the liquid phase. 

The process of sedimentation of the nanocomposites was accelerated due to the occurrence of UV-

induced chemical transformation since the loss of functional groups endowed the TiGO nanostructures 

with a more hydrophobic character. It was represented by the accelerated displacement of settling 

fronts Figure 12 b). Inset b shows that the TSV = 2 cm/min of the non-treated TiGO-5 exceeded 10 

cm/min after prolonged illumination. TiGO-5 nanocomposite was irradiated with UV-light (same as 

that was used for the photocatalytic test reactions) in 1 mmol/L phenol solution and samples were 
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a) 

taken after 0; 20; 40; 60; 80 and 120 min. Photographs of the settling suspensions were taken after 1; 

30 and 60 min of storage time (Please refer to the photographs in Appendix 2). Turbidimetry showed 

that no more than 0.3% of the solid remained in the supernatant for these dispersions. Since the 

supernatant was transparent, it was a clear indication that the progressive decomposition of GO did 

not result in the detachment of the nanosized TiO2 aggregates. As a consequence, it was assumed that 

van der Waals adhesion forces took the key role to immobilise TiO2 on the GO sheets. However, these 

interactions are very weak and thus heterocoagulation can be reversed by mechanical energy. This 

assumption was also studied when exposing TiGO suspensions to strong acoustic irradiation (300 kHz, 

80 W).  

 

 

Figure 12 Settling profiles of 1 g/L TiGO nanocomposite dispersions a) at different GO contents and 

b) 1 g/L TiGO-5 in 1 mmol/L phenol solution after different illumination times. The insets show the 

terminal settling velocities as the function of GO loading and the irradiation time, respectively. 

 

 

b) b) 
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Figure 13 Photographs of 0.1 g/L P25 TiO2 and TiGO suspensions a) after 20 min of sonication at 

300 kHz and 80 W and b) after sonication followed by gentle redispersion  

Settling time: 30 min and 5 min for a) and b), respectively 

 

It was observed that the nanocomposites could be disintegrated to a certain extent when applying short 

(maximum of 20 min) sonication cycles. Photographs of P25 TiO2, TiGO-1, TiGO-2 and TiGO-5 are 

shown in Figure 13 a) after acoustic irradiation. The nanocomposites were almost as turbid as TiO2 

after 30 min of settling time. Surprisingly, when these dispersions were gently re-stirred and were left 

again to settle, accelerated sedimentation could be observed, representative of well-aggregated 

dispersions, but leaving a lot of worn off TiO2 in the supernatant. After that, gently re-shaking the 

suspensions facilitated the re-organisation of TiGO network (Figure 13 b)). The above phenomena 

was observed after arbitrarily repeating the strong and mild re-dispersion steps. 

 

5.2. Nanocomposite films 

5.2.1. TiO2/ZrO2/Hect nanocomposite films 

First, nanocomposite films were prepared using inorganic compounds, i.e. ZrO2 and Na-Hect 

(Na0.3(Mg,Li)3Si4O10(OH)2) to support TiO2 and to provide better dispersion of this material within 

the matrix of nanocomposite films. The added inorganic supports were optically transparent in the UV-

a) 

b) 
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Vis region as it is illustrated in Figure 14. From a practical point of view, it is important that the 

incoming light can be absorbed by the photocatalyst within the nanocomposite film thus TiO2 can be 

activated or with other words the generation of electron-hole pairs can be triggered. The ratio of 

support to photocatalyst was changed between 0-1, but the ratio of ZrO2 and Hect was kept constant 

(9:1), accordingly, nanocomposite films with photocatalyst content of 0; 20; 40; 60; 80; 100 wt% were 

prepared.144 The compositions for the prepared nanocomposite films are shown in Figure 15. The most 

advantageous properties of the supports were that they kept the TiO2 NPs well dispersed in the 

nanocomposite structure resulting in a microporous structure therefore EtOH could easily enter into 

deeper layers of the films. SEM image illustrates the porous structure of the nanocomposite coating 

Figure 16. Besides preventing TiO2 from aggregation, Na-Hect had another prominent role in the 

photocatalytic process: Due to its high surface area (305.0 m2/g) it readily adsorbed EtOH vapour. As 

the EtOH molecules were adsorbed on the surface of the nanocomposite films (and inside of the pores) 

they were easily attacked by the generated ROS. Until the eventual event of complete mineralisation 

of EtOH into CO2 and H2O, a series of chemical transformation and generation of intermediate 

products occur on the surface of TiO2. Studies in the literature agree that the reaction pathway starts 

with the formation of acetaldehyde, but its further transformation into intermediate products i.e., acetic 

acid, formaldehyde and formic acid can go through different pathways depending on the reaction 

conditions. 145, 146 Study of the generation of different intermediate products and determination of the 

reaction pathway are out of the scope of this work.  

 

Figure 14 Transmission spectra of Hect and ZrO2 supports and reference TiO2 
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Figure 15 Composition of nanocomposite films prepared with inorganic supports 

 

The as-prepared nanocomposite films were probed for the photocatalytic degradation test on EtOH. 

The obtained data is summarised in Table 3. 

 It is seen that after addition of more than 40 wt% of photocatalyst to the nanocomposite layer, the 

photocatalytic efficiency did not improve. With other words, similar photocatalytic activity could be 

obtained with nearly half as much of photocatalyst as it was obtained in the case of pure TiO2 film. 

This effect is owing to the propitious properties of supporting materials and the phenomenon is 

nominated as a synergistic effect. Figure 17 illustrates the correlation between photocatalyst content 

and photocatalytic activity. The dotted line corresponds to a theoretical value of decomposed TiO2 if 

a linear relationship is assumed between catalyst content and degraded amount of EtOH. The black 

curve represents the measured values. It does not start from zero, because there some decrease of EtOH 

concentration due to the adsorption of the supports without any TiO2 (Table 3, first row: 0 wt% TiO2). 

 

Table 3 Photocatalytic degradation of EtOH on TiO2/ZrO2/Hect nanocomposite films 

Nr TiO2 

content 

(wt%) 

Conversion 

(%) 

k (1/min) R2 ΔmEtOH 

(mg) 

ΔmETOH 

(mg/g kat) 

ΔmETOH 

(µg/cm2) 

1 0 15.43 0.0028 0.9912 0.35 - 7.74 

2 20 40.73 0.0091 0.9910 0.66 58.59 14.61 

3 40 51.86 0.0129 0.9696 1.04 44.27 23.02 

4 60 48.22 0.0113 0.9958 1.10 33.00 24.55 

5 80 51.50 0.0122 0.9979 1.16 25.45 25.79 

6 100 47.67 0.0107 0.9999 1.09 19.87 24.33 
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Figure 16 SEM image of nanocomposite film containing 80 wt%TiO2 and 20 wt% supports 

(ZrO2:Hect = 9:1) 

 

Figure 17 Synergistic effect between TiO2 and supports in the nanocomposite film 

 

5.2.2. TiO2/p(EA-co-MMA) nanocomposites 

 Concerns has been shown, not surprisingly, about the applicability of organic substances, such 

as polymers, as photocatalyst supports due to their limited stability. It is known that most polymers 

show limited resistance towards high energy UV-photons (UV-B and higher energy range). 

Furthermore, once this material is contacted with a photocatalyst, the degradation process may be even 

more accelerated due to the presence of generated ROS. Furthermore, the question is raised: Can this 

feature be turned into an advantage? 

In this section, photocatalytic properties and applicability of polymer supported photocatalyst 

nanocomposite films are investigated. The coatings (d ~ 100 µm) were prepared in such a way that 

only the upper 25% region of the coating contained evenly distributed photocatalyst NPs in the matrix 
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and the bottom region was functioning as a base to provide strong attachment to the glass support. 

p(EA-co-MMA) is a water-soluble compound and transparent in the UV-Vis range, therefore it is an 

ideal material to provide a matrix for hydrophilic TiO2 well-dispersed in its network and also to allow 

UV photons to penetrate in the layer and be absorbed by the embedded photocatalyst NPs. However it 

is a common problem that immobilisation of the photocatalysts results in decreased photocatalytic 

activity owing to the unavoidable decrease in active surface area. As a matter of fact, the polymer 

thoroughly covers the photocatalyst NPs expectedly resulting in momentous decrease of the 

photocatalytic activity. Furthermore, it is known that most polymers tend to photodegrade under UV-

irradiation which can be a huge drawback of applying them as photocatalysts supports. Below in Table 

4, photocatalytic activity of TiO2 nanocomposites are compared to pure TiO2 with organic or inorganic 

binding. It is clear that addition of 40% Hect did not decrease significantly the rate of ethanol 

conversion on TiO2. However, owing to the notable amount of adsorbed EtOH on Hect, the absolute 

amount of degraded EtOH is half of that on pure TiO2. The addition of polymer results in tremendous 

decrease in the photocatalytic activity by enwrapping the catalyst NPs, but the film can be “re-

activated” by a long UV-irradiation with high energy UV (UV-B,-C). The emission spectrum of light 

source is attached in Appendix 1.  

 

Table 4 Photocatalytic activity of nanocomposite films supported by Hect and p(EA-co-MMA) 

Nr 

Film ID 

with 60% TiO2 

content  

Conversion 

(%) 

k 

(1/min) 
R2 

ΔmEtOH 

(mg) 

Δm EtOH 

(mg /g kat) 

ΔmETOH 

(µg/cm2) 

1 TiO2 58.6 0.0107 
0.9999 

1.27 22.6 
13.35 

2 TiO2/Hect 52.5 0.0128 
0.9957 

0.60 16.3 13.45 

 

3 
TiO2/(EA-co-MMA)  

before UV 
23.8 0.0044 

0.9926 
0.60 17.3 

13.35 

4 
TiO2/(EA-co-MMA)  

after UV 
58.5 0.0145 

0.9997 
1.37 39.4 

30.44 

 

When exposed to UV irradiation, polymers suffer photo-induced oxidative degradation which 

involve breaking of the polymer chains, production of free radicals, reduction of molecular weight and 

eventually, deterioration of mechanical properties.73 The chemical formula of the p(EA-co-MMA) and 
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the schematic representation of photocatalyst/polymer nanocomposite films are shown in Figure 18 

before and after the UV-treatment. On the left it can be seen that the polymer fully covers TiO2 NPs 

on the surface, which can significantly hinder the photocatalytic activity of the coating. After exposing 

the nanocomposite film, surface TiO2 NPs are expected to show up due to partial degradation of the 

upper layers of the polymer matrix. As the UV-irradiation proceeds, deeper and deeper layers of the 

film are affected resulting in a more porous structure. 

 

Figure 18 Scheme representing the concept of UV-treatment 

 

To investigate the phenomenon further both TiO2 and Ag-TiO2-containing nanocomposites were 

prepared with addition of polymer binder. After that the nanocomposite films along with the pure 

polymer film were irradiated by high-energy UV-C photons for different time intervals (0-48 hrs) and 

the resulted changes in the structrure were analysed. 

The chemical transformation of the nanocomposite films were represented by FTIR 

measurements.147 FTIR spectra of the pure polymer film and nanocomposite coatings before and after 

irradiation were recorded. The characteristic IR vibration regions representing the chemical structure 

of p(EA-co-MMA), i.e., the stretching vibrations of C – O and C = O at 1157 and at 1725 cm-1, 

respectively and the symmetric and assymetric vibrations of – CH3 groups at 1382 and at 1447 cm-1, 

respectively are shown in Figure 18 a) and C– H vibrations at 3100- 2800 cm-1 are shown in Figure 

18 b) (only shown for TiO2/p(EA-co-MMA). The decreasing absorbance of these characteristic bands, 

due to irradiation, indicated the photodegradation of p(EA-co-MMA) in case of all films, but, not 

surprisingly, the degradation was accelerated in the presence of photocatalyst due to the generated 

ROS. The broad absorption band at around 3000 cm-1 increased due to UV irradiation, indicating the 

generation of O – H bonds, referring to the generation of surface – OH groups and the presence of 
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adsorbed water. After 48 hrs of irradiation, a slight increase of peak at 1623 cm-1, indicative of H – O 

– H vibrations was assigned to the presence of physisorbed water. It is known that due to UV 

irradiation, TiO2 reversibly adsorbs both, dissociative and non-dissociative water. 148 This leads us to 

the well-known phenomenon of super-hydrophilic property of TiO2 which is induced due to UV- 

irradiation, starting with the formation of photo-generated electrons and holes. The electrons tend to 

reduce Ti(IV) cations to the Ti(III) state and the holes oxidise O2- anions and oxygen atoms are ejected 

creating oxygen vacancies. Water molecules then can occupy these vacancies producing adsorbed –

OH groups which are responsible for the super-hydrophilic surface 24 It was reported earlier that this 

feature can be maintained for not longer than 1 or 2 days before re-exposed to UV-light again. 

Therefore it is important to note that the FTIR spectra were recorded within 24 hrs after irradiation, or 

with other words, within the timeframe of the probable existence of UV-induced super-hydrophilicity. 

149 

 

 

 

 

a) 

b) 

https://www.google.fr/search?es_sm=93&q=super-hydrophilicity&spell=1&sa=X&ei=oP8CVafPL9PfaMWMgMAN&ved=0CBoQvwUoAA
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Figure 18 FTIR regions a) 900-1900 cm-1 b) 2500-4000 cm-1, recorded on irradiated (0–48 hrs) 

TiO2/p(EA-co-MMA) film 

 

The kinetics of polymer degradation obviously differ for the pure polymer and for 

nanocomposite films. To compare the alterations in photo(catalytic) degradation of the polymer matrix 

for the three systems, a summary of values for decrease of absorbance (%) of at the characteristic group 

frequencies are given in Table 5. It can be seen that the polymer degraded much faster in the presence 

of photocatalyst NPs, especially in case of Ag-TiO2, which is the photocatalyst with higher 

photocatalytic activity and the rate of generated ROS is expectedly higher than that on TiO2. 

  

Table 5 Relative decrease in absorbance of main group frequencies for pure polymer, TiO2 and 

Ag-TiO2/polymer nanocomposites 

Nr FTIR vibration p(EA-co-MMA) TiO2/p(EA-co-MMA) Ag-TiO2/p(EA-co-

MMA) 

  % decrease in absorbance  

1 ν C-O 19.5 43.4 58.5 

2 δ C-H, sym 21.1 21.3 34.0 

3 δ C-H, asym 0.0 24.2 42.9 

4 ν C=O 26.6 51.7 67.3 

5 ν C-H 14.5 17.7 28.6 

 

Furthermore, comparing the FTIR regions of irradiated and non-irradiated films show significant 

differences in the region of 1710-1740 cm-1(Figure 20 a-b). There is an obvious broadening of the 

C=O peak towards the lower wavenumber regions for the pure polymer (Figure 20 a) as the UV-

irradiation proceeds. This shoulder was not found in case of nanocomposites, where photocatalyst NPs 

were present (only for TiO2/p(EA-co-MMA) is shown in Figure 20 b). This refers to the formation of 

some side products (unidentified) which was obviously present in the highest amount for the pure 

polymer. It is possible that for each system the polymer degrades through the same reaction pathway, 

but in the case of nanocomposites, the intermediate transforms further into CO2 and H2O. 
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Figure 20 FTIR spectra at the C=O region for a) pure p(EA-co-MMA) and b) TiO2/p(EA-co-MMA) 

after different irradiation times with UV-light 

 

Morphological changes of the surface of the nanocomposite films were well represented by the 

SEM images which were taken on a nanocomposite film containing 60 wt% TiO2 before (Figure 21 

Figure 21 a) and after 24 hrs of irradiation (Figure 21 b). It can be well seen that for the non-irradiated 

film the polymer almost completely covers the NPs forming a continuous, rather smooth surface. In 

contrast to this, it can be seen that the polymer visibly wear off from the surface and most of the TiO2 

NPs are uncovered.  
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Figure 21 SEM images of TiO2/p(EA-co-MMA) films a) before and b) after 24 hrs of UV-

irradiation. 

 

The change of surface morphology and chemical composition (increased photocatalyst to 

polymer ratio) could be also registered by contact angle measurements. The wettability profiles of the 

nanocomposite films were obtained in the function of UV-irradiation time. The wetting properties are 

basically determined by the surface free energy on the solid/liquid/vapour interface and it is greatly 

affected by the chemical and topological properties of the solid surface.  

In case of chemical or topological heterogeneity, there is a difference between the advancing 

and receding contact angles, which is manifested in the contact angle hysteresis, which is basically the 

difference of the previous two. 

Advancing and receding contact angles were recorded before irradiation (Figure 22 a) and after given 

periods of UV irradiation on the pure polymer film and on the nanocomposite films and equilibrium 

contact angles were calculated following Tadmor’s approach (Eq. 6-8). 150 

a) 

b) 
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𝜃0 = arccos (
𝛤𝑎𝜃𝑎 +  𝛤𝑟𝜃𝑟

𝛤𝑎 + 𝛤𝑟
) 

Eq. 6 

where  

𝛤𝑎 = (
𝑠𝑖𝑛3𝜃𝑎

2 − 3𝑐𝑜𝑠𝜃𝑎 + 𝑐𝑜𝑠3𝜃𝑎
)

1/3

 

Eq. 7 

 

𝛤𝑟 = (
𝑠𝑖𝑛3𝜃𝑟

2 − 3𝑐𝑜𝑠𝜃𝑟 + 𝑐𝑜𝑠3𝜃𝑟
)

1/3

 

Eq. 8 

 

The surface free energy of the solid surfaces was consequently calculated from the measured contact 

angle data, following Chibowski, 151 where the total apparent surface free energy (γs
tot) of the solid is 

determined according to Eq. 9: 

 

𝛾𝑠
𝑡𝑜𝑡 =

𝛾𝑙(1 + 𝑐𝑜𝑠𝜃𝑎)2

(2 + 𝑐𝑜𝑠𝜃𝑟 + 𝑐𝑜𝑠𝜃𝑎)
 

Eq. 9 

 

wher γl describes the surface tension of the probe liquid (which is 72.8 mN/m for water at 20 °C) 

contact and θa and θr are the advancing and receding contact angles, respectively. While the 

equilibrium contact angle and calculated surface free energy did not change significantly due to the 

high-energy UV-treatment in case of pure polymer surface, a rapid decrease of contact angle values 

was observed for the nanocomposite films. The equilibrium contact angles and surface free energies 

are presented in Figure 22b and c, respectively. This observation was due to the change of surface 

chemistry. Firstly, it was because of the evolution of well-known super-hydrophilic property of TiO2. 

The generated charge carriers due to photo-excitation migrate to the surface of the NP where the holes 

become trapped at bridging oxygen-sites and facilitate their ejection. This is followed by dissociation 

of water molecules which causes the evolution of hydroxyl-groups on the surface. The process can 

continue until the surface becomes saturated with highly polar hydroxyl-group.152 
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Secondly, the more hydrophilic TiO2 NPs were unfold from the polymer cover, thus the surface energy 

was increasing and it was manifested by decrease of measured contact angles. The photo-induced 

super-hydrophilic feature of the surface also contributed to the accelerated increase of contact angle 

values in case of the nanocomposites. This phenomenon, however was observed to be much more 

significant for the TiO2-containing nanocomposite than that for its Ag-TiO2 counterpart. The evolution 

of surface – OH groups on TiO2 was so pronounced after 60 minutes of irradiation that the contact 

angle was measured to be 0°. It was found that the measured contact angles on the Ag-TiO2/polymer 

nanocomposite film showed a much slower rate of decrease due to irradiation. With other words, the 

evolution of – OH surface groups on the Ag-TiO2 was slightly limited. The reason for that might be, 

according to our speculation, was that the nucleation of Ag NPs on the TiO2 surface started on the high 

energy active sites (oxygen vacancies) 153 which retards the formation of – OH groups on the TiO2 

surface therefore the surface free energy of the Ag-TiO2 containing nanocomposite film was increased 

much slower due to UV irradiation than that of measured on the TiO2/polymer film.  

 

a) 
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Figure 22 a) Recorded advancing and receding contact angles on pure polymer film b) equilibrium 

contact angles and c) surface free energies of polymer and TiO2- and Ag-TiO2-containing 

nanocomposite films in the function of irradiation time with high energy UV 

 

c) 

b) 
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A facile validation method to estimate the mechanical stability of the coatings was carried out 

by the adhesive tape test. Stripes of adhesive tapes were attached to the surface of the non-irradiated 

and irradiated films and were removed by a rapid pull. The adhesive tapes removed from the surface 

of non-irradiated and irradiated coatings are shown in Figure 23. After 4 hrs of UV-treatment of the 

TiO2/p(EA-co-MMA) coating, the amount of NPs attached to the tape started to visibly increase. The 

appearance of solid particles on the tape for the Ag-TiO2/p(EA-co-MMA) coating it was obvious after 

1 hr of irradiation. This finding is in correlation with the FTIR results, showing that the 

photodecomposition of polymer matrix was accelerated in the presence of Ag-TiO2, since this material 

is more active than pure TiO2. The method is not quantitative, but suitable to measure the effect of 

UV-deterioration on the coherence of the network of the nanocomposite films. 

 

 

 

Figure 23 Photographs of adhesive tapes, applied then removed from the surface of coatings and 

fixed on glass slides for a) TiO2 and b) Ag-TiO2 containing nanocomposite coatings. On the left 

reference is shown: clean adhesive tape fixed on glass slide 

 

As for the photocatalytic activity tests, a light source had much less intensive emission lines in the UV 

range than that was used for the UV-treatment. Evaluation of the photocatalytic activity of the 

nanocomposite films was carried out by the standard EtOH photodegradation test and the results are 

summarised in Table 6. It can be seen that the non-pre-irradiated TiO2 and Ag-TiO2/polimer 

nanocomposites showed fairly low conversion rates of EtOH; 23.9 and 36.0%, respectively. As the 

Ref. Ag-TiO2
Ag-TiO2@p(EA-co-MMA)

48 h0 h 1 h 4 h 24 h
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irradiation time intervals for the preliminary UV-treatment was increased, consequently higher rates 

of EtOH conversions were observed. Due to the UV-treatment, on one hand, a loss of mechanical 

stability was observed as a consequence of declining integrity of the polymer network. On the other 

hand, significant increase in the photocatalytic activity was found owing to a higher local catalyst 

content. Photo-induced degenerative oxidation was observed due to high-energy photon irradiation in 

the absence of photocatalyst. Furthermore, the degradation of polymer was accelerated in the presence 

of TiO2 and Ag-TiO2 photocatalysts due to the deteriorating effect of generated ROS. However, it is 

important to note that during the photodegradation of polymer matrix, even if there were some 

degradation products of the polymer, they did not poison the photocatalyst NPs or block the active 

sites of TiO2 because the photocatalytic efficiency of the nanocomposites showed positive correlation 

with the duration of UV-treatment. However, the decrease of mechanical stability can be a significant 

drawback in case of long-term use and for practical applications. 

 

Table 6 Photocatalytic degradation of EtOH on TiO2 and Ag-TiO2/polimer nanocomposite films. 

Nr Sample 

ID 

UV  

(h) 

Convers

ion 

 (%) 

k  

(1/min) 

R2 ΔmEtOH 

(mg) 60 

min 

Δm EtOH 

(mg /g 

kat) 

ΔmETOH 

(µg/cm2) 

1 p(EA-co-

MMA) 

0 26.98 0.0080 0.9980 0.57 16.96 12.67 

2 TiO2/ 

p(EA-co-

MMA) 

0 22.92 0.0056 0.9985 0.45 13.39 10.00 

3 1 34.82 0.0112 0.9982 0.70 20.83 15.56 

4 4 36.12 0.0121 0.9977 0.73 21.73 16.22 

5 24 48.34 0.0151 0.9995 0.96 28.57 21.33 

6 48 57.58 0.0178 0.9997 1.06 31.55 23.56 

7 TiO2 - 58.64 0.0142 0.9992 1.29 23.04 28.67 

8 Ag-

TiO2/p(E

A-co-

MMA) 

0 36.02 0.0113 0.9990 0.72 21.43 16.00 

9 1 35.20 0.0114 0.9977 0.73 21.73 16.22 

10 4 51.38 0.0161 0.9993 1.05 31.25 23.33 

11 24 63.52 0.0219 0.9944 1.30 38.69 28.89 

12 48 65.59 0.0223 0.9940 1.28 38.10 28.44 

13 Ag-TiO2 - 81.62 0.0207 0.9882 1.65 29.39 36.58 
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We found that addition of inorganic compounds, such as layered silicates, can significantly slow down 

the degenerative processes of the polymer matrix, because up to a certain extent it prevents the polymer 

from the generated ROS. This is reflected by the photocatalytic activity test results: Photocatalytic 

efficiency of 60%TiO2/polymer nanocomposites was compared to that of contained 10 wt% hectorite 

as well besides the polymer (i.e. 60%TiO2/30%polymer/10%hectorite nanocomposites). Similarly to 

previous experiments, significant increase of photocatalytic activity was observed for the 

photocatalyst/polymer films, but much slower efficiency-increase was observed in the presence of 

Hect as it is shown in Figure 24. 

 

 

Figure 24 Photocatalytic EtOH conversion on TiO2/polymer and on TiO2/polymer/Hect films after 0-

24 hrs of UV-treatment  

5.3. Agx(O)-TiO2 heterostructures 

 Ag-TiO2 and Au-TiO2, prepared by in situ chemical deposition method with a metal content of 

0.5 wt%. The colour of the modified TiO2 was brown and purple for silver and gold modified samples, 

respectively (Figure 25 (right)). The measured UV-Vis spectra for the prepared samples are shown on 

Figure 25 (left). Strong Vis absorption peaks were detected at λmax = 455 nm and at λmax = 560 nm, for 

Ag-TiO2 and for Au-TiO2, respectively. It has been shown that the size of loaded metal NPs 

significantly influence the photocatalytic performance of the heterostructure in several ways. Clearly, 

the size of metal NP determines its optical properties i.e. the location of plasmonic band in the UV-

Vis spectrum as it was indicated in the literature summary. However, further results on how the size 

affect the carrier transport are somewhat contradictory. Subramanian et al. showed that the size of Au 

NP affects the Fermi-level on the metal-semiconductor interface and smaller the deposited Au NPs 

were, the more negative shift of the Fermi level was observed which consequently resulted in better 
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charge separation and reductive power of the composite system.154 On the other hand, other study by 

J. Lee et al. suggests that the photogenerated charge transfer was higher in case of larger Au NPs.155 

TEM image of Ag-TiO2 indicate the particle size of the Ag NPs on TiO2 which was ca. 10-12 nm 

Figure 26. It can be seen that Ag NPs were attached to the surface of TiO2 as primary particles and 

particle aggregates. This variation was manifested in the wide Vis plasmon band. 

 

  

Figure 25 UV-Vis absorbance spectra of unmodified TiO2, Au-TiO2 and Ag-TiO2 and photograph of 

pure and modified TiO2 samples 

 

 

Figure 26 TEM image of Ag-TiO2 

Au-TiO2 

TiO2 

Ag-TiO2 

b) a) 
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As for the photocatalytic activity, both, Ag and Au-modified samples showed higher photocatalytic 

performance than pure TiO2. The results are presented in Table 7, rows 2 and 6, respectively. It is 

shown, that containing 0.5 wt% metal, Ag-TiO2 is significantly more active than its Au-containing 

counterparts. It could be owing to the broader Vis-range plasmon peak than that for the Au-TiO2 since 

it overlaps with two prominent emission peaks of the light source (λ = 435nm and 545 nm). It might 

be also owing to the higher quality factor which is in direct correlation with the strength of plasmonic 

response of metal NPs, 106 however there is not much difference between the absorbance of plasmonic 

bands for Ag and Au in the samples. Since silver is more economical to use and it showed higher 

photodegradation rates for ethanol, gave a good reason to carry on our research using silver to modify 

TiO2 instead of Au. 

 

Table 7 Summary of data on the photocatalytic degradation of Ag-; AgO-; Ag2O- and Au-modified 

TiO2. 

Nr Sample ID Conversion 

(%) 

k 

(1/min) 

R2 ΔmEtOH 

(mg) 

ΔmEtOH 

(mg /g 

kat) 

ΔmETOH 

(µg/cm2) 

1 TiO2 58.6 0.0145 0.9994 1.27 22.60 28.13 

2 Ag-TiO2 81.6 0.0207 0.9882 1.65 29.39 36.58 

3 Ag2O-TiO2 80.8 0.0259 0.9925 1.64 29.24 36.38 

4 Ag2O-TiO2 

(Sigma) no UV 

85.3 0.0294 0.9838 1.86 33.13 41.23 

5 Ag2O-TiO2 

(Sigma) after UV 
84.78 0.0288 0.9827 1.78 30.72 39.60 

6 AgO-TiO2 81.7 0.0265 0.9905 1.65 29.49 36.70 

7 Au-TiO2 65.4 0.0175 0.9984 1.45 25.97 32.31 

8 TiO2
* 41.66 0.0087 0.9954 1.06 103.6 0.023 

9 Ag2O (Sigma) * 11.98 0.0024 0.9537 0.38 30.36 0.008 

* Film thickness for TiO2 and Ag2O in rows 8 and 9 was ~0.2 mg/cm2 
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It is also known that Ag NPs deposited on TiO2 showed photochromism, which is a feature of 

materials that react reversibly to light. 152, 156, 157 As a matter of fact, these materials find exciting 

applications such as displays, smart windows and memory devices. 158 Silver NPs, deposited on TiO2 

surface, go through reduction and oxidation states which is ensued with a change of colour. The 

displayed colour can be tuned by the wavelength of irradiating light irradiation. Once the as prepared 

Ag-TiO2 film was irradiated with Vis light-emitting LED (λmax=450 nm), the originally brownish 

colour of the film started to fade and gradually turn into light pink. The change was followed by UV-

DR measurements and the recorded spectra are shown in Figure 27 a). 

 

Figure 27 UV-Vis absorbance spectra of Ag-TiO2 film under Vis (λmax=450 nm) and under UV 

(λmax=254 nm) irradiation for 1 hr 

 

The process could be readily reversed and the original brownish colour could be re-obtained by shining 

UV-rich light on the film (λmax=254 nm). The corresponding UV-Vis spectra are shown in Figure 27 

b). The process was owing to the reversible interconversion of Ag(0) into Ag(I). Once the film was 

illuminated with Vis light with emission wavelength overlapping the plasmonic band of the 

nanostructure, the electrons of Ag(0) interacted with the light through surface plasmon resonance and 

the Ag(0) states gradually converted into Ag(I). The corresponding XPS spectra provided further 

evidence. The Ag 3d regions of Ag-TiO2 film before and after 1 hr with illumination with UV light is 

shown in Figure 28. The peaks at ~374 and ~378 can be attributed to Ag 3d3/2 and Ag 3d5/2 binding 

energies, respectively. The position of XPS peaks, located at 373.3 eV and at 367.4 eV, for Ag 3d3/2 

a) b) 
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and 3d5/2, respectively were shifted towards higher binding energy regions which refers to more 

metallic environment. 159, 160 161, 162 

 

 

Figure 28 Ag 3d region of XPS spectra of Ag-TiO2 before and after 1 hr of UV-irradiation (λmax=254 

nm) 

 

Further Ag- containing samples were prepared by mixing Ag2O or AgO with TiO2 (wtAg%=0.5). The 

photocatalytic activity of 4 samples were contrasted. One was the Ag-TiO2 sample, prepared by in situ 

wet chemical reduction. Furthermore, Ag2O and AgO, prepared as described in the Materials and 

methods section were mixed with TiO2 and named Ag2O-TiO2 AgO-TiO2, respectively. Finally Ag2O, 

purchased from Sigma Aldrich was used to prepare a sample similarly to the other Ag2O-containing 

counterparts and was entitled as Ag2O-TiO2 (Sigma). The purchased Ag2O powder was grinded in a 

mortar with TiO2 then stirred in aqueous suspension. When it was well dispersed, the small amount of 

added black Ag2O powder was not visible with the naked eye and the colour of suspension was white. 

The same was observed for the other Ag2O containing samples, but after the photocatalytic test runs, 

the colour of the photocatalyst films became homogeneous orange/brown indicative of appearance of 

metallic silver due to UV photons coming from the light source. It has to be pointed out that in case of 

the silver oxide samples there was actually no surface deposition of Ag on TiO2 only physical mixing 

which excludes the possibility of strong attachment between TiO2 and AgxO. Furthermore, another 

crucial point is that there was a different state of oxidation state and also different size of silver (-
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oxide) NPs. The light microscopy image of commercially purchased Ag2O particles after grinding in 

a mortar is shown in Figure 29. Obviously, the size of these particles was much larger, 1-2 µm then 

that of in situ deposited Ag NPs on TiO2. Even with ultrasonic irradiation it was impossible to break 

these particles, thus large Ag2O particles were visibly settled at the bottom of the glass vessel. Thus 

the size of Ag particles, mixed to TiO2, was surely not in the nanoscale range. This is why it is so 

interesting that there was no significant difference in the photocatalytic activity of the obtained 

samples. The conversion rates varied between 80.8 and 85.3 % (Table 7, rows 2-6). There is surely 

more about the photocatalytic enhancement than plasmonic effects. Ag2O is on the other hand a Vis-

light sensitive photocatalyst, it is a p – type semiconductor with a band gap of 1.2 eV 163 and with a 

chemically unstable nature. Considering this, there is a p – n type junction on the Ag2O/TiO2 interface. 

164 Owing to its limited chemical stability Ag2O is hardly ever used on its own. Pure Ag2O was also 

tested for the photocatalytic test reaction. The only technical difficulty was that it was impossible to 

prepare a homogeneous film with the same catalyst content as in the previous cases (1.25 mg/cm2). 

Thus, a pure Ag2O film was prepared with a catalyst coverage of 0.27 mg/cm2 and its photocatalytic 

activity was compared to a TiO2 film (mTiO2 = 0.25 mg/cm2) as it is shown in Figure 27 rows 8-9. 

Although less than TiO2, but Ag2O also has some activity also under present reaction parameters.  

Further experiments were conducted on Ag2O-TiO2 (Sigma) film after 1 hr of UV irradiation. 

The expected change of colour was significant already after 15 min and eventually resulted in a 

homogenously purple film (Figure 30) which indicating the Ag2O – Ag conversion. However, it was 

found that the photocatalytic activity was identical as that of the non-irradiated film (Table 7, rows 4 

- 5). Despite of the obvious change of colour, it is possible that not many metallic Ag sites were formed 

during the short irradiation time and under the photocatalytic tests both direction takes place Ag to 

Ag2O and the other way around because the light source irradiates but UV and Vis rays.  
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Figure 29 Light microscopy image of commercial Ag2O after grinding 

 

 

Figure 30 Photograph of Ag2O-TiO2 (Sigma) film before and after 1 hr of UV irradiation 

5.4. TiO2 NPs prepared by hydrothermal treatment of H-titanate nanofibers 

As it has been pointed out earlier in section 2.2, the crystal structure has a paramount 

importance on the photocatalytic activity. In present section, the correlation between crystal phase 

composition, photocatalytic activity (PC) and photoelectrochemical (PEC) features is shown through 

the example of a series of TiO2 NPs, which were prepared by acidic hydrothermal treatment of H-

TNFs.165 By changing only one parameter of the synthesis reaction, i.e. the concentration of HNO3 (c= 

0.05–4 mol/L), the structural and morphological features of the NPs could be altered. Therefore a 

variety of TiO2 samples were obtained such as anatase-rich nanofibers, brookite-rich rhomboid NPs 

and rutile-rich flower-like assemblies of nanowires.  

 

5.4.1. Structural, optical and electronic characterisation 

Due to the acidic hydrothermal process the H-TNFs were re-crystallised as TiO2 and the 

composition of crystal phases was fundamentally affected by the acid concentration of the reaction 

medium. A trend of formation of anatase-, brookite-, and finally, rutile-rich samples was observed as 

the initial pH of reaction medium was lowered. The XRD patterns of the TiO2 products are shown in 

Figure 31  Reflections at 2θ = 25.28°, 37.80°, 48.05°, 53.89° and 55.06° were observed in HPT0.05, 

HPT0.1, HPT0.5 and HPT1 which can unambiguously be assigned to (101), (004), (200), (105) and 

(211) planes of anatase, respectively. Furthermore, HPT0.1, HPT0.5, HPT1, HPT2 and HPT4 samples 

showed reflections at 25.36°, 25.71°, 30.83° and 36.28°, 48.06° and 55.28° which were indicative of 
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(210), (111), (211), (102), (321) and (421) planes of brookite, respectively. Rutile phase was identified 

in samples from HPT0.5 to HPT4 from reflections at 2θ = 27.24°, 35.81°, 40.93°, 53.90°, 56.20° and 

68.45°, which were referred to (110), (101), (111), (211), (220) and (301) planes of rutile, respectively. 

By visually comparing the XRD patterns in Figure 31, it can readily be recognised that among 

relatively mild conditions anatase was the dominant crystal phase to be formed. Increasing the 

concentration of acid (0.5-2 mol/L HNO3) in the reaction medium led to brookite, and finally rutile-

rich samples (>2 mol/L HNO3). 

 

 

Figure 31 XRD patterns of HPT TiO2 samples: ◊ Anatase; ○ Brookite; ● Rutile 

Quantitative analysis of the crystalline composition of the TiO2 samples was determined by Rietveld 

refinement and the composition of crystalline phases are summarised in Table8. It is worth noting that 

there was a small amount of amorphous TiO2 present in all samples. While HPT0.05 contained solely 

anatase in the crystalline phase, a low amount of brookite (6.8%) was formed in HPT0.1 besides the 

dominant anatase phase. Further increasing the acid concentration, the amount of brookite phase 

became more significant and reached its highest proportion (74.8%) in sample HPT2. After this point 

( ≥ 2 mol/L HNO3), the formation of brookite was hindered due to the progressive evolution of rutile. 

This latter phase was first detected in sample HPT0.5 in a small quantity (3.05 %). The volume-

weighted domain size of the anatase, brookite and rutile crystallite sizes were determined from XRD 
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patterns based on Lorentz crystallite size-broadening, as shown in Table8. The anatase crystallites 

were observed to be relatively small (9.5 – 8.0 nm) in samples HPT0.05 to HPT1 and the average 

dimension slightly decreased with the progressive evolution of brookite at lower pH values. It was a 

competitive process between the different crystal phases: the size of anatase crystallites was gradually 

decreased as the proportion of brookite was increased. The brookite phase appeared first in HPT0.1 

with an average crystallite size of 37.0 nm. This value was determined to be larger at higher acidic 

conditions for samples HPT0.5 and HPT1 (53.1 and 50.3 nm, respectively). After this significant 

increase in crystallite size, the growth was suppressed with the gradual increase of rutile, which first 

appeared in HPT1. The average crystallite size for rutile was first measured to be 47.0 nm for HPT1. 

When the pH was further decreased, the crystal size for rutile first increased to 63.4 nm (HPT1), and 

then gradually decreased to 24.0 nm (HPT4). 

Table 8 Table Crystal phase composition of HPT TiO2 samples obtained from XRD measurements by 

Rietveld refinement and volume weighted integral crystallite sizes calculated from Lorentz crystallite 

size broadening. The crystallites were assumed to be spherical. 

Nr Sample ID Crystal phase composition 

(%) 

Crystallite size 

(nm) 

Anatase Brookite Rutile Anatase Brookite Rutile 

1 HPT0.05 100 - - 9.5 ± 2.0 - - 

2 HPT 0.1 93.2 ± 1.2 6.8 ± 1.2 0 9.2 ± 3.1 37.0 ± 11 - 

3 HPT 0.5 49.2 ± 2.9 47.7 ± 2.9 3.05 ± 

2.9 

8.0 ± 3.9 53.1± 3.7 47.0 ± 1.4 

4 HPT1 34.4 ± 2.6 55.7 ± 2.7 9.9 ± 

1.0 

7.9 ± 5.4 50.3± 2.8 63.4 ± 7.3 

5 HPT2 - 74.8 ± 1.1 25.2 ± 

1.1 

- 33.9 ± 0.5 49.7 ± 1.4 

6 HPT4 - 27.5± 1.5 72.5± 

1.5 

- 15.9 ± 0.5 24.0 ± 0.3 

 

The structural differences essentially influenced the evolution of morphology of NPs and as a result of 

various crystal phase compositions, various shapes of nanocrystals – such as fibres, rhomboid NPs and 

flower-like aggregates Figure 32 a-i) –  were formed. Under the relatively mild acidic conditions (0.05 

– 0.1 mol/L HNO3), the elongated morphology of H-TNFs was conserved when the crystal phase was 
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transformed from hydrogen titanate into anatase, as it can be seen in the TEM images of HPT 0.05 and 

of HPT0.1 in Figure 32 b) and in Figure 32 c-d) respectively. It is due to the similar crystal structure 

of hydrogen titanates and anatase. As the transformation reaction does not have a high energy barrier, 

it take place among relatively mild conditions as an in situ rearrangement of the TiO6 building blocks, 

the process is therefore considered as a topochemical reaction.166 Further increase of the acid 

concentration (0.5 – 2 mol/L HNO3), however, resulted in disappearance of the fibre-like structures 

and instead, rectangular (cube-like) NPs were formed with an edge length of ~100 nm for samples 

HPT0.5, HPT1 and HPT2 Figure 32 f and g), respectively). Due to extremely high acidic conditions 

(as it was the case for HPT0.5 –HPT2) the titanate is dissolved and a dissolution-re-crystallisation 

process takes place to form TiO2. Ti–OH is protonised to generate Ti–OH2
+ thus, due to the large 

amount of H+ ions, the dehydration process of the structures is not favoured. The other reason for the 

hindrance of the formation of anatase is due to the repulsive forces between Ti–OH2
+ and +H2O–Ti, 

causing the TiO6 octahedral units mainly being arranged via edge-sharing and giving rise to the 

formation of corner- and edge- sharing brookite and rutile polymorphs.167 Crystal structures of the 

respective polymorphs were introduced under section 2.1., in Figure 2. The sample HPT0.1 was found 

to show interesting structural characteristics where the two reaction mechanisms (topochemical acid 

catalysed dehydration and dissolution – re-crystallisation took place simultaneously. As a consequence 

of the parallel processes, rectangular NPs were also observed besides the nanofibers. It is shown on 

the HRTEM image Figure 32 d) that the crystal structure was brookite (d111=0.346 nm) and anatase 

(d101=0.352 nm) for the nanocubes and for the nanofibers, respectively. In the case of HPT4, where 

extremely acidic medium was used, the morphological features were significantly different from those 

observed for the previous samples. HPT4 showed flower-like assemblies with a longitudinal diameter 

of ca. 1 μm. These structures were found to be built of radially aligned nanorods with a length of ~ 0.8 

– 1 μm and a width of ~15 nm, shown in Figure 32 h). HRTEM image shows that the thinner fibres 

were epitaxially attached to each other Figure 32 i) as a result of dehydration and consecutive 

rearrangement and splitting of titanate nanostructure along the connecting corners of four TiO6 

repeating units.168 The lattice distance was read as d = 0.346 nm from the inverse FFT image (not 

shown here) and was assigned to the (1 1 1) plane of brookite Figure 32 i). 
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Figure 32 TEM images of a) as-prepared H-TNFs, b) HPT0.05, c) HPT0.1, d) HRTEM image of 

HPT0.1; taken from the area marked by red circle (inset) e) HPT0.5, f) HPT1, g) HPT2, and h) HPT4 

TiO2 products i) HRTEM of HPT4 

Raman measurements showed a qualitative correspondence with the XRD results about the 

identity of composing crystal phases. Figure 33 shows the Raman spectra of the HPT0.05 – 4 TiO2 

samples. The characteristic Raman bands of anatase at 144 (Eg), 198 (Eg), 397 (B1g), 516 (A1g, B1g) 

and 639 cm-1 (Eg) were recognized in HPT0.05, confirming the presence of pure anatase phase in the 

sample. For HPT0.1, weak vibrational bands of brookite were also visible at 247 and 322 cm-1 besides 

anatase. When higher acid concentration was used ( ≥ 0.5 mol/L), the sharp vibrational band at 144 

cm-1 slightly shifted towards 153 cm-1, representative for brookite.26 Further vibrational peaks, 

assigned to brookite, were observed at 172, 214, 247, 288, 322, 366, 396, 454, 585 and at 636 cm-1 in 

g) h) 

i)  
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HPT0.5, HPT1, HPT2 and HPT4. Finally, in HPT1, HPT2 and HPT4 samples obtained at extreme low 

pH (below pH ~1.1), vibrational Raman modes for rutile were also found besides anatase and brookite 

with wide bands at 143, 235 and 320 cm-1 and sharp bands at 449  and 610 cm-1.26, 169 

 

 

 

Figure 33 Raman spectra of HPT TiO2 samples. A, B and R referring to the representative vibrations 

of anatase, brookite, rutile, respectively. 

 

The textural properties of the TiO2 samples were analysed using the N2-sorption method. Specific 

surface area data were obtained using BET (Brunauer – Emmett–Teller) method. Volume and average 

diameter of pores were determined by BJH (Barrett –Joyner – Halenda) and the data are summarised 

in Table 9. The specific surface areas varied between 52.0 and 65.4 m2/g without significant difference. 

 

Table 9 BET surface areas of the prepared TiO2 samples. 

Nr Sample ID sa
BET 

(m2/g) 

Vol. of pores  

(cm3/g)a 

Diameter of pores 

(Å)
b
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1 HPT0.05 65.4 0.32 203 

2 HPT 0.1 62.2 0.30 191 

3 HPT 0.5 64.5 0.42 245 

4 HPT1 52.0 0.32 235 

5 HPT2 52.6 0.20 136 

6 HPT4 57.0 0.12 162 

aBJH Desorption Cummulative Volume of pores (17.000-3.000.000) 

bBJH Desorption average pore diameter (4V/A) 

 

The calculated Eg values for HPT0.05 and HPT0.1 samples were 3.25 and 3.22 eV, respectively (Table 

10). These values were close to the data reported in literature for anatase TiO2 (3.2 eV). 30 For samples 

HPT0.5 to HPT4, the band gap energy was shifted towards slightly lower energy values owing to the 

increasing amount of rutile and brookite which are known to have lower band gap energies, 3.02 eV 

170 and 3.12 eV 127, respectively. 

 

Figure 34 Figure 4 Kubelka-Munk plots of HPT samples 

 

Table 10 Calculated band gap energies and corresponding wavelengths. 

Nr Sample ID Eg (eV) λ (nm) 

1 HPT0.05 3.25 381.5 
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2 HPT0.1 3.22 385.1 

3 HPT0.5 3.05 406.6 

4 HPT1 3.00 413.3 

5 HPT2 2.98 416.1 

6 HPT4 2.98 416.1 

a λ=1240/Eg 

 

In semiconductor photocatalysis, the rate of electron – hole generation is an important factor that 

fundamentally affects the photocatalytic activity. The generation of excitons (the separation 

mechanism) is essential, but not sufficient for the photocatalytic process to occur. Once the separation 

is successful, the charge carriers have to reach the surface of the semiconductor NPs where they can 

actively participate in the photocatalytic process by generating radicals or directly interacting with 

adjacent organic molecules. Often the case is that these charge carriers are trapped in bulk defects 

before reaching the surface of the NPs. PEC measurements, such as photo-voltammetry, are good 

preliminary indicators of the electronic mechanisms induced by light irradiation on the semiconductor. 

Figure 35 compares linear sweep photovoltammetry data for selected TiO2 samples (HPT0.05, HPT0.1 

and HPT4 with identical film thickness). 

 

 

  

HPT4 

HPT0.05 

HPT0.1 
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Figure 35 a). Representative photo-voltammograms of selected TiO2 samples, recorded between -1.1 

V and 0.5 V, in 0.1 M Na2SO3, at a sweep rate of 2 mV s-1 using a 300W Hg-Xe arc lamp. b) 

Comparison of the maximum photocurrent values obtained for the various TiO2 samples. 

 

This voltammetry technique had been described elsewhere in more details.171 Briefly, slow scan of the 

potential was recorded while the irradiation of the film was periodically interrupted. In this manner, 

both the ‘‘dark’’ and the light-induced photoresponse of the samples could be assessed in a single 

experiment. As it can be seen in Figure 35 a), the photocurrents are anodic in polarity for all the 

samples, consistent with the n-type semiconductor behaviour of the different TiO2 phases. The 

photocurrents arose mainly from the photo-oxidation of the electrolyte ions, which were the hole-

scavengers (electron donors). The overall shape of the voltammograms was similar and all of them 

had the same onset potential. On the other hand, the magnitude of the photocurrent was notably 

different for the various samples. A careful comparison of the photocurrent values, detected in the 

plateau region, revealed an important information on the PEC properties. As shown in Figure 35 b), a 

volcano-type curve is obtained, which shows that the highest currents are obtained for samples HPT0.1 

and HPT0.5. It is particularly interesting to correlate the maximum photocurrent values with the 

compositional/morphological features (as shown by XRD, Raman spectroscopy, and TEM) of the 

samples. The compositional change in the series of samples was reflected in the PEC behaviour. 

Initially, a sharp increase was observed in the photocurrents with the appearance of the brookite phase 

(HPT0.1 and HPT0.5). Subsequently, the photocurrent decreased with the gradual increase of the rutile 

component, as a large amount of rutile could become a barrier for electron transport 172. These 

observations can be rationalized with the significant difference in the conductivities of the three phases 

(brookite > anatase > rutile).173 

Finally, consecutive photovoltammetric scans were conducted in a wider potential window (i.e., up to 

E=1.5 V vs. Ag/AgCl) using Na2SO4 as electrolyte to avoid dark electrooxidation of sulphite ions 

(Figure 36). In these experiments there was no hole-scavenger used in the solution; therefore, the 

photogenerated charge carriers stayed longer on the photoanode. These studies reveal significant 

differences in the stability of the various samples which was reflected by a decrease of the 

photocurrents in the series of voltammetric scans (as deduced from the plateau-current values). It was 

found that the rhomboid-shaped brookite-rich samples (HPT0.5; HPT1 and HPT2) showed a decay of 

the photocurrents already during the second cycle, whereas the anatase- or the rutile-rich samples 

showed a notable stability. These results highlight the importance of structure and morphology on the 

PEC properties: the rhomboid-shaped brookite-rich NPs were found to generate high photocurrents, 
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but showed low stability of the photoresponse; whereas the elongated anatase- and rutile-rich samples 

had higher stability than the brookite-rich, rhomboid NPs. 

 

Figure 36 Repeated photovoltammetric scans of TiO2 samples. The scans were recorded between -

0.7 V and 1.5 V, in 0.1 M Na2SO4, at a sweep rate of 2 mV s-1 under irradiation with a 300W Hg-Xe 

arc lamp. 

 

5.3.2. Evaluation of photocatalytic activity  

Comparing the photocatalytic and reaction rates, normalised for BET surface area, it was found 

that HPT0.1, the sample containing dominant anatase (93.2%) and small amount of brookite (6.8%), 

displayed the highest photocatalytic activity. The second most active catalyst was HPT0.05 containing 
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pure anatase nanofibers. It was followed by the tri-crystalline (anatase, brookite and with a minor rutile 

phase with 49.2 %; 47.7% and 3.05%, respectively) rhomboid shaped TiO2 NPs. Furthermore, with 

the increasing of the rutile-content, the photocatalytic activity was decreased, accordingly. The 

photocatalytic test data are summarised below in Table 11. 

 

Table 11 Summary of data on the photocatalytic degradation of EtOH on HPT TiO2 samples 

Nr Sample ID Conversion 

(%) 

k 

(min) 

R2 k/as
BET 

(g/ min 

/m2) 

x 10-4 

ΔmEtO

H 

(mg) 

Δm EtOH 

(mg /g 

kat) 

ΔmETOH 

(µg/cm2) 

1 HPT0.05 76.62 0.0502 0.9701 7.68 1.62 28.94 36.01 

2 HPT0.1 99.60 0.0530 0.9770 8.52 1.78 31.79 39.57 

3 HPT0.5 98.51 0.0372 0.9645 5.77 1.93 34.45 42.87 

4 HPT1 95.09 0.0247 0.9638 4.75 1.85 32.98 41.04 

5 HPT2 97.48 0.0217 0.9930 4.17 2.05 36.63 45.59 

6 HPT4 76.62 0.0105 0.9830 1.84 1.89 33.72 41.96 

 

The results are reasonable, if we consider that this sample was very rich in anatase and it has an 

elongated structure, also it has a bi-crystalline structure, containing only a small amount of brookite. 

These properties all seem to contribute to better photocatalytic efficiencies. The above observations 

show good correlation with the photoelectrochemical photoelectrochemical properties of the different 

TiO2 samples. The reason why HPT0.1 seems to exhibit enhanced photoelectrochemical properties is 

because of two factors. First, it is able to generate high photocurrents and second, the generated 

photocurrent values could be maintained for an extended time of irradiation. These properties are 

related to the advantageous structural features of this sample including the anatase-brookite bi-

crystalline nature and the elongated morphology. The reason for the slightly lower photocatalytic 

activity of the pure anatase nanofibres (HPT0.05) should also be attributed to the absence of the bi-

crystalline structure, which resulted in higher rate of recombination that accordingly led to smaller 

photocurrents. As for the rutile-rich samples, the generated photocurrents were very low, as rutile is 

not a very good conductor and it is rather difficult for the charge carriers to move in the structure. 
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Therefore, it is not a surprise that the rutile-rich samples showed low photocatalytic activity; In spite 

of the fact that rutile displayed a fairly stable photoelectrochemical response, it had low ability to 

generate photocurrents which had a detrimental effect on the photocatalytic activity. Clearly, these 

findings show how the structure influences and determines the photoelectrochemical and 

photocatalytic properties, and explains why HPT0.1 is the most active TiO2 photocatalyst among those 

presented in this work. 

5.5. Photoreactor for indoor air purification 

Most reported TVOC (Total VOC) concentrations in non-industrial indoor environments are 

below 1∙10-3 mg/L and few exceed 25∙10-3 mg/L according to a study conducted by the European 

Commission Joint Research Centre in 1997.174 Headaches and discomfort can be realised at TVOC 

concentration from 22∙10-3 mg/L, e.g. in new or renovated buildings.175,176 A photoreactor was built to 

be the functional part of an indoor air cleaning device (Figure 37). 18 LED light sources, emitting in 

the Vis range (λmax = 405 nm), were built in the photo-reactor with a total electric power consumption 

of 25 W/h. The EtOH vapour was circulated by a built-in fan. The initial EtOH concentration was 2.92 

mg/L in a closed vessel (V = 16.18 L). Note that this concentration is more than 3 magnitude higher 

than the TVOC concentration in and average indoor area. Ag-TiO2/p(EA-co-MMA) nanocomposite 

film (70wt%/30wt%) was evenly coated on both sides of a removable cylinder with a total surface area 

(A) of 880 cm2. The cylinder with the catalyst coating was irradiated by the LEDs from both sides. 

Prior to the photocatalytic tests, the coating was irradiated for 20 hrs to be “pre-activated”, which was 

followed by three consecutive photocatalytic runs. After the third run, the UV-treatment was repeated, 

followed by three consecutive runs again. 

It was observed that the conversion of EtOH decrease from 89.1% to 64.0% by the end of the 

third run which is presumably due to deactivation of the photocatalyst by adsorbed intermediate 

products (Table 12). However, the UV-treatment was found to be very efficient to re-activate the 

nanocomposite layer, and even to slightly increase the photocatalytic activity, which might be owing 

to the fact that new layers of photocatalyst NPs were uncovered. 
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Figure 37 Photographs of the constructed air purification device: a) under operation (EtOH 

degradation test) under a closed glass vessel from top view b) and covered in reactor jacket 

 

Table 12 Summary of data on the photocatalytic degradation of EtOH in the air cleaning device 

No. 

Photocatalytic 

run 

Conversion 

EtOH (%) 

k (1/min) R2 ΔmEtOH 

(mg) 

Δm EtOH 

(mg /g kat) 

ΔmETOH 

(µg/cm2) 

Cycle 1 

1/1 89.1 0.0285 1.0000 
28.40 

36.88 32.27 

1/2 76.4 0.0186 0.9835 25.59 33.23 29.08 

1/3 64.0 0.0129 0.9831 22.48 29.19 25.54 

Cycle 2 

2/1 96.3 0.0372 0.9873 25.63 33.29 29.12 

2/2 87.3 0.0254 0.9885 25.51 33.12 28.98 

2/3 68.2 0.0158 0.9853 21.86 28.39 24.84 

 

 

  

a) b) 
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8. Summary 

 I have prepared and examined TiO2-based photocatalysts and photocatalytic nanocomposites 

for the photocatalytic degradation of organic pollutants. The term nanocomposite refers to those 

heterostructured solids which contain two or more compounds and the size of at least of them is in the 

nanoscale range. This group of materials includes nanostructures with various chemical structures and 

properties, therefore they have a broad range of applicability, including heterogeneous catalysis. Their 

speciality is attributed to that the advantageous properties of these materials are merged thus giving 

better function.  

 Applicability of TiO2 – graphene oxide (GO) nanocomposites (TiGO) as photocatalysts was 

studied in the photocatalytic degradation reaction of phenol in aqueous solution. As a result of optical 

shading of GO and surface loss, originated from the anchoring, the photocatalytic efficiency of TiO2 

slightly decreased. However owing to the very fast sedimentation of the nanocomposite, TiO2 could 

be readily removed in a short amount of time which has a paramount importance in practical 

application. It was observed that under UV-light the GO converted into a graphene-like material (rGO) 

with a loss of many functional groups, but without the full restoration of the polyaromatic graphene 

structure. Despite the chemical transformation and low pH, the rGO held TiO2 NPs anchored on its 

surface which suggests that the interparticle attractions were primarily van der Waals forces not 

electrostatic forces. These interactions could be reversed by strong mechanical impact, however, the 

process was reversible and the particles could be re-aggregated by gently shaking. TiGO-2, containing 

2 wt% of GO was easily recovered after the photocatalytic cycle and reused 4 times without significant 

loss of the photocatalytic activity (~ 3%)  

 For practical reasons, it is very prevailing to immobilise catalyst NPs on a macroscopic surface 

(substrate, e.g. bottom and walls of the reactor), therefore endeavours to remove the photocatalyst after 

use can be omitted. The immobilising agent has to be suitable for the purpose from several points of 

view such as price, mechanical stability and preferably it should not interfere much with the activity 

of the photocatalyst. Polymers are widely applied as catalyst binders, however their limited UV-

resistance can be a problem, especially in the presence of a photocatalyst which can be activated by 

the irradiating light. Furthermore, these materials are not porous thus complete coverage of the catalyst 

NPs can result in drastic decrease of photocatalytic activity. Application of controlled UV-irradiation 

cycles on the TiO2/polymer nanocomposites can „activate”, that is, by partly destroying the polymer 

matrix can result in enhancement of photocatalytic activity. The rate of polymer degradation can also 

be controlled by addition of UV-resistant inorganic compounds into the nanocomposites which slow 
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down the degenerative processes in the polymer matrix and contribute to a more porous structure and 

good adsorption properties towards organic pollutants. 

 Addition of noble metal NPs to TiO2 enhance the photocatalytic activity under UV-Vis 

irradiation which is partly owing to the plasmonic absorption of Vis light photons of noble metal NPs 

and more so the enhanced rate of transfer of charge carriers through the metal/semiconductor interface 

limiting the recombination process. Ag NPs deposited on the surface of TiO2 show interesting 

photochromic properties and with the change of oxidation state which depends on the wavelength of 

the irradiating light source. Photocatalytic activity of various Agx(O)-TiO2 samples, obtained from 

different sources of Agx(O) NPs possessing different oxidation states, were compared. The difference 

was an average less than 3% in the conversion rates. It indicated that neither the preparation method 

(in situ deposition of physical mixing) nor the state of oxidation of silver did not result in drastic 

variations of the photocatalytic activity under UV-Vis irradiation. 

 Crystalline structure and morphology of TiO2 samples, obtained from the acidic hydrothermal 

treatment of H-TNFs, were varied by changing the acid concentration in the reaction medium. Anatase, 

brookite, finally rutile rich samples were formed with various morphologies. The band gap energies 

were shifted towards lower band gap energies as the rutile phase was building up. The electron-

transport processes and the rate of charge carrier formation/recombination processes fundamentally 

affect the photocatalytic activity. Photoelectrochemical measurements served information about these 

factors which correlated well with the photocatalytic tests.  

 Finally, the prototype of an air cleaning device for indoor use was constructed using Vis-light 

emitting LEDs and photocatalytic coating of the inner walls using Ag-TiO2 immobilised in polymer. 

According to the ethanol photocatalytic tests, the device can be used to decompose VOCs above the 

concentration of average indoor VOC content.  

9. Összefoglalás 

Munkám során TiO2-alapú fotokatalizátorokat és fotokatalitikus nanokompozitokat állítottam 

elő és vizsgáltam azok alkalmazhatóságát szerves szennyezőanyagok fotokatalitikus lebontására. 

Nanokompozit alatt értünk minden olyan két vagy több szilárd fázisból álló heterogén anyagot, 

amelyben legalább az egyik fázis a nano mérettartományba esik. Ezen anyagcsoportba változatos 

kémiai szerkezetű és tulajdonságú anyagok sorolhatók, ennek köszönhetően felhasználási lehetőségeik 

nagy teret hódítanak a heterogén katalízis területén is. Népszerűségük annak köszönhető, hogy két 

vagy több anyag hasznos funkcióit ötvözve olyan tulajdonságokat nyújtanak, amelyekre önmagában 

egyik anyag sem lenne képes; más szavakkal, szinergizmus lép fel.  
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TiO2-grafén-oxid (TiGO) nanokompozitok fotokatalitikus alkalmazhatóságát vizsgáltam 

folyadék/szilárd határfelületen, fenol oldat fotodegradációján. Bár a GO lamellák optikai árnyékoló 

hatása és a felületi rögzítésből adódó felületvesztés miatt a katalizátor valamelyest veszített a 

hatékonyságából, azonban percek alatt bekövetkező ülepedése a katalizátor gyors elválasztását teszi 

lehetővé, aminek pedig a gyakorlati felhasználás szempontjából óriási jelentősége van. Megfigyeltem, 

hogy a GO vizes közegben, a felületén megkötött TiO2 jelenlétében, UV bevilágítás hatására átalakul 

grafén-szerű, szén síkhálóval és kevés felületi funkciós csoporttal rendelkező redukált anyaggá (rGO). 

A kémiai átalakulás ellenére a rGO felületén kötve tartja a TiO2 részecskéket. Ebből következik, hogy 

a fotokatalizátor részecskék között fellépő elektrosztatikus kötőerők gyenge diszperziós, van der 

Waals kötések egészülnek ki. A részecskék közti vonzó hatás erős mechanikai hatásra megszüntethető, 

ugyanakkor a kötőerők nem szűnnek meg véglegesen és a folyamat reverzibilis jellegéből adódóan a 

részecskék enyhe kevertetéssel újra koaguláltathatók. A 2 m/mt%-ban GO-t tartalmazó nanokompozit 

könnyen visszanyerhető volt és fotokatalitikus hatékonysága négy egymást követő ciklus után sem 

romlott.  

Praktikus okokból közkedvelt megoldás a katalizátor makroszkópos felületen való rögzítése 

(pl. a reaktor falán, alján), így nem kell külön időt és energiát fordítani annak eltávolítására a 

fotokatalitikus ciklus végén. A rögzítő anyagnak több szempontból eleget kell tennie a kívánalmaknak: 

legyen olcsó, ellenálló és lehetőleg minél kevésbé csökkentse a fotokatalizátor hatékonyságát. A 

polimer alapú rögzítő anyagok igen népszerűek katalizátor részecskék immobilizálására is, azonban 

gyakran probléma azok csökkent UV-ellenálló képessége, különösen fotokatalizátor jelenlétében. 

Továbbá, mivel ezek nem pórusos anyagok, a katalizátor-részecskék teljes beborításával óhatatlanul 

csökkentik azok fotokatalitikus aktivitását. Szabályozott idejű és energiájú UV-kezeléssel a 

TiO2/polimer réteg „elő-aktiválható”, így a kompakt polimer-réteg integrációjának részleges 

megbontásával növelhető a filmek fotokatalitikus aktivitása. A folyamat mértéke szabályozható 

továbbá UV-fényre nem bomló, szervetlen agyagásványok hozzáadásával, amelyek valamelyest 

csökkentik a polimer degradációját, ugyanakkor pórusosabbá teszik a filmet és jó adszorpciós 

tulajdonságaikkal hozzájárulnak a szerves szennyezők megkötéséhez.  

Nemesfém nanorészecskék hozzáadásával növelhető a TiO2 hatékonysága UV-látható fény 

alatt, mely részben a nemesfém részecskék plazmonikus sajátságának, részben pedig a fém/félvezető 

határfelületen megvalósuló jobb elektron-transzportnak köszönhető, amely csökkenti a töltéshordozók 

rekombinációra való hajlamát. A TiO2 felületen depozitolt Ag azért érdekes, mert a besugárzó fény 

hullámhosszával hangolható az oxidációs állapota. Különböző oxidációs állapotú (Ag2O, AgO és Ag)- 

TiO2 filmek fotokatalitikus aktivitását összevetve nem találtam jelentős különbséget (± 2,5% 
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konverzió) etanol fotooxidációján. Úgy találtam, hogy sem az előállítás jellege (in situ depozíció vagy 

fizikai keverés), sem az előzetes fénybevilágítás nem eredményez jelentős különbséget azonos Ag 

(m/mAg%=0,5) tartalmú filmek esetében UV-látható megvilágítás alatt. 

TiO2 minták morfológiája és kristályszerkezete jól hangolható a sav koncentrációjának 

változtatásával hidrogén-titanát nanoszálak savas hidrotermális reakciója során. .Anatáz-brookit-, 

illetve rutil-dús minták keletkeztek a savkoncentráció növelésével, melynek következtében a minták 

változatos alakzatokban kristályosodtak ki. A minták optikai tulajdonsága és a számolt tiltott sáv 

energiák jól követték a mintában jelen levő többségi polimorf jellemző irodalmi értékét. Az elektron-

transzport folyamatok és az elektron-lyuk rekombináció mértéke kétség kívül meghatározó faktora a 

fotokatalizátor aktivitásának. A fotovoltammetriás mérések erről adtak információt, ami jól korrelált a 

fotokatalitikus tesztekkel.  

Végezetül, egy belső terek levegőjének tisztítására alkalmas berendezés került összeállításra 

beépített látható fényt emittáló LED-ekkel és polimerben rögzített Ag-TiO2 fotokatalitikusan aktív 

bevonattal. A berendezés hatékonynak bizonyult az átlagos könnyen illó szerves koncentrációknak 

három nagyságrenddel nagyobb koncentrációjú etanol gőz fotokatalitikus degradációjára.  
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10. Appendices 

 

Appendix 1 

Emission spectra of light sources are introduced here: 

 

a) GCL303T5/type 2 Low-pressure mercury lamp was used for photooxidation of EtOH vapour 

on Agx(O) and Au-modified TiO2 and nanocomposite films built with organic and inorganic 

supports 

 

b) GCL303T5/type 1 Low-pressure mercury lamp was used for photooxidation of EtOH vapour 

on HPT-TiO2 samples 

 

c) GCL303T5VH/OH Low-pressure mercury lamp was used to destroy the polymer (“UV-

treatment”) 

 

d) TQ-150 High-pressure Mercury lamp was used for photocatalytic degradation of phenol 

solution  

 

e) Vis-emittig LED light sources: Ledium LED (λmax = 405 nm) was used in the air cleaning 

device and LED from GE was used to study the optical behaviour of Agx(O) on TiO2 

 

 

 

 
 

a) 

d) 

c) 

b) 
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e) 
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Appendix 2 Settling of 30 mg TiGO-5 in 30 mL of 1 mmol/L phenol solution after 1 min (top), 30 

min (middle) and 60 min (bottom) at different irradiation times. 

 

 


