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1. Bevezetés

Doktori értekezésemet a [3], [4] és [5] dolgozatok eredményei alapjdn &llitottam Ossze. (A
3] cikk k6zos munka Hajnal Péterrel.) Az értekezés kozéppontjaban bijektiv bizonyitasok
allnak.

A kombinatorika targya diszkrét matematikai strukturak vizsgdlata. Egyik torekvése a
matematikai objektumok kozotti osszefiiggések megvilagitasa. A kombinatorika 6sszeszam-
lalassal foglalkozd teriilete mennyiségi jellemzést ad a strukturdkrél. Ugyanannak a
szamsorozatnak kiillonboz6 objektumok osszeszamlalasakor valéo megjelenése nem mindig
egyszertien érthetd. Ilyenkor felmeriil az igény, hogy a két— vagy tobbféle objektum szer-
kezetében megtalaljuk azokat a kozos vonasokat, mellyel megmagyardzhaté az azonos
SZAMOSSAg.

Az Osszefiiggések feltarasahoz a kombinatorika specialis eszkozével, a bijektiv bizonyitas-
sal jarul hozza, mely éppen a belso strukturdlis azonossagokon alapszik. Egy bijekcio
halmaz kozott 1étesit egy-egy értelmii megfeleltetést és igy demonstralja a két halmaz
elemszaméanak megegyezését. Ha az egyik halmaz elemszama ismert, akkor a bijekcid
,,levezeti” | hogy a masik halmaz elemszamara is ez a formula adja meg a valaszt.

fgy a bijekcié alkalmas modszer arra, hogy egy halmaz elemeit Osszeszamoljuk, kap-
csolatba hozva egy olyan halmazzal, melynek ismert az elemszama, de arra is alkalmas,
hogy kiemelje azt a kozos szerkezeti jellemzot, mellyel mindkét halmaz bir, s ezzel a
szamsorozat karakterisztikus tulajdonsagara is magyarazattal szolgal.

Két n elemii halmaz kozott n! bijekcio 1étezik. A bijekcidk gyakran finomabb struktirak-
ra is ramutatnak, mint az ,,azonos elemszamusag”. Gyakran a két halmaz finomithaté
egy—egy specialis paramé- ter értéke szerint. A két kiilonboz6 struktiurara vonatkozé
paraméter szerinti statisztikai eloszlas gyakran megegyezik. A bijekcidk kozott vannak
olyanok, amelyek megérzik a vizsgalt paraméter értékét és igy ramutatnak erre a nem
trividlis tényre. fgy egyes bijekcidk jobbak, értékesebbek, mélyebbek lesznek. A bijektiv
kombinatorikara jellemzo, hogy klasszikus azonos elemszamu halmazparok esetén is pub-
likdlnak ujabb és tjabb bijekcidkat.

Ertekezésem célja a bijektiv bizonyitas, mint modszer fontossaganak és hatékonysaganak
bemutatasa.

A dolgozat kiilonboz6, ma is aktivan kutatott tertiletekrol emel ki problémékat, fo-
galmaz meg tételeket, illetve ismert tételekre ad 1j, kombinatorikus bizonyitdsokat. A
bevezeto fejezet utan a masodik fejezetben a poly—Bernoulli szamok kombinatorikai értelme-
zésével, tulajdonsagaival, a harmadik fejezetben a fak Osszeszamlalasdaval, a negyedik fe-
jezetben pedig a 312-elkeriil6 permutéciokkal foglalkozom.

Munkédm példa arra, hogy a matematika tudomanyaban nem csupan informaciok
gyljtése, tételek kimondasa a cél, hanem a koriilottiink 1éve vilag, legyen az akar abszt-
rakt formaban megadva, megértése. FEzért tartom egy—egy tétel tobbféle bizonyitasat



fontosnak és gondolom azt, hogy a dolgozatomban talalhatoé bijektiv megkozelitéseim
lényeges hozzajarulast jelentenek az adott problémakorokhoz.

2. Poly—Bernoulli szamok

Amint a név is utal ra, a poly—Bernoulli szamok a jél ismert és szamos kérdésben kozponti
szerepet jatszo Bernoulli szamok altaldnositdasa. A poly-Bernoulli szdmokat Kaneko [14]
vezette be 1997-ben mikozben a Riemann zeta fliggvények dltaldnositasat a tobbszoros
zeta értékeket (angolul multiple zeta values, mas néven Euler Gsszegeket) vizsgalta.

1. Definicié ([14]). Jeldlje {ng)}neN,keZ a poly-Bernoulli szdimokat, melyeket a kivetkezd
generdtorfugguény definidl:
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Ha k£ < 0, akkor B természetes szam.

1. tablazat. The Poly—Bernoulli Numbers

_Jofrf2[3 ] 4 | 5 |
01| 1] 1] 1| 1 I
T12] 4 8 | 16 | 32
214 14| 46 | 146 | 454
31| s | 46 | 230 | 1066 | 4718
"4 116|146 | 1066 | 6902 | 41506
5| 1|32 454 | 4718 | 41506 | 329462

Kaneko egy kompakt formulat is levezet erre az esetre:

1. Tétel ([1]). k € N esetén
b n—+1 k+1
(=k) — ! !
By 230 m'{m+1}m'{m+1}’ (1)

ahol {Z} szamok megadjdk eqy n elemi halmaz k osztdlyi osztalyozdsainak szamdt, azaz
ezek a szamok a masodfaju Stirling szdmok.



Felvetodott a kérdés, hogy a trividlis értelmezésen til van—e olyan kombinatorikus probléma,
amelyben ezek a szdmok megjelennek. Els6ként Brewbaker [6] adott igenld valaszt, és
megmutatta, hogy a poly—Bernoulli szamok az n x k lonesum matrixok szamaval egyenlo.
Lonesum mdtriznak neveziink egy 01 matrixot akkor, ha az oszloposszegek és sorosszegek
ismeretében egyértelmiien rekonstrualhato.

Bar ez az egy kombinatorikai interpretacié valt ismertté, kutatasaim azt mutatjak,
hogy szamos egymastol lényegében eltéré kombinatorikai értelmezés létezik. A poly—
Bernoulli szamok sok helyen felmeriilnek a matematikaban. Szerepiik nem annyira kozponti,
mint példaul a Catalan szamoké. fgy sokszor publikalatlan bejegyzésként vagy a poly—
Bernoulli szamok ismerete nélkiili matematikai tételként szerepel az irodalomban.

Az mésodik fejezet 4.-9. szekcidi azokat az aktudlisan ismert matematikai objek-
tumokat gytijti 0ssze és rendszerezi, melyek szamossaga a poly—Bernoulli szamokkal ad-
haté meg. Osszefoglalém azonban nem csupén egy listaszerti felsorolds. Minden esetben
explicit bijekcié leirasaval vagy bijekcié vazlatanak megadasaval adok magyarazatot arra,
hogy milyen Osszefiiggés van az objektumok kozott. Ez tobbszor hianyzik az irodalombdl,
illetve csak rejtve, implicit médon szerepel benne.

Kiindulépontom a (1) képlet természetes interpretacija a kombinatorikus alapelvek
alapjan: a szoban forgé képlet egy n+1 illetve egy k+ 1 elemii halmaz particidit szamolja
ossze. Mindkét halmazban van egy specialis elem. A halmazokbdl képeziink ugyanolyan
szamu (m + 1) nemtres osztélyt, melyeket parba dllitunk. A speciélis elemet tartalmazé
osztalyok egy part alkotnak. Ezeknek a rendezett particioparoknak a szamat adja meg a
(1) képlet.

A két rendezett particié struktirat leghiibben az un. Callan féle permutaciok [7]
Srzik. Jelolie N = {1,2,...,n}U{0} és K = {n+1,n+2,...,.n+k}U{n+k+1}
halmazokat. Tekintsiik az N U K halmaz azon permutaciét, melynek elsé eleme 0, utolsé
eleme n + &k + 1 és ha a permutdcioban egymds utan allo elemek ugyanabbdl a halmazbol
N ill. K valdak, akkor ezen elemek névekvo sorrendben vannak. Ezeket a permutaciokat
nevezziikk Callan permutdcioknak.

A Callan permutéaciok dudlisaként foghaté fel az in. maximumhoz tarto permutéciok,
melyek az suffix array adatstruktira jellemzésekor jatszanak fontos szerepet. Pontosan
megadhato ugyanis, hogy egy bindris sz6 alapjan képzett suffix array, amely természetesen
egy permutacid, milyen karakte- risztikus tulajdonsaggal bir.

Az egyik kulcsfontossagu tulajdonsag a ,,maximumhoz tartds”. Az eredeti definicio
modosithato ugy, hogy hangsulyos legyen a Callan permutdciokkal vald érték—pozicié du-
alitds. Tekintsiik djra a N U K permutaciokat, melyeknek elsé eleme 0, utolsé eleme
n + k+ 1, de most azt koveteljik meg, hogy ha két egymdést kozvetleniil koveto érték
az els6 n + 1 pozicioban van, akkor a permutacioban is kovessék egymast kozvetleniil.
Ugyanigy akkor is, ha egymaést koveto értékek az utolsé k + 1 poziciéba esnek. Fzeket a
permutaciékat mazimumhoz tarto permutacidknak nevezziik.



Az atfogalmazas és a dualitas nyilvanvaléan bizonyitja a kovetkezo, eddig nem ismert
tételt.

2. Tétel ([3]). Jeldlie ALY a {0,1,2,....n + k + 1} halmaz mazimumhoz tarté per-
mutdcioit. Ekkor
AP) = B,

n

Egy masik, ezektol lényegesen eltéré permutacidosztaly Osszeszamlalasanal szintén a
poly-Bernoulli szamok jelennek meg.

Altaldnos kérdés az, hogy a permutaciok szama hogyan alakul, ha fiiggvényként tek-
intve egy permutdaciéra bizonyos megszoritasokat tesziink egy-egy elem képhalmazéra.
Az egyik legtermészetesebb megszoritas az, ha az elemnek és a képének a tavolsagat
korlatozzuk. Vesztergombi hatarozta meg az ilyen permutaciéknak a szamat egy altalanos
formédban [21]. A képlet specidlis esetében a poly-Bernoulli szamokat kapjuk. Fel-
hasznalva Lovasz [18] mddszerét kozvet- len kombinatorikai bizonyitast adtam a kovetkezd
allitasra. Jelolje V¥ val azoknak a 7 € Spar permuticicknak a halmazat, melyekre tel-
jesiil a kovetkezo feltétel:

—n<i—m() <k

Ekkor:

3. Tétel ([21],[17],[3]).
V| = B

n

Sokréti alkalmazédsai miatt egy graf aciklikus orientacidinak vizsgalata aktiv kutatasi
teriilet. Egy természetes extremalis kérdés a kovetkezd. Adott n pontszamu és m élszamu
egyszerli grafok kozt melynek van legkevesebb /legtébb aciklikus irdnyitdasa? Linial megvala-
szolta a minimalizaldsi kérdést. A maésik irdnyu kérdés még nyitott. Cameron [8] foglalko-
zott a maximalizdlas problémajaval. Sejtése szerint ha m egy paros Turan graf élszama,
akkor ez a Turan graf adja az extremalis értéket. Numerikus szamolasokat végzett a
kétrészes Turan grafok aciklikus iranyitasainak szaméval kapcsolatban. Ekkor vette észre,
hogy a teljes péaros graf aciklikus irdanyitasainak szamét éppen a poly—Bernoulli szamok
hatarozzak meg.

Az aciklikus irdnyitds, mint interpretacié azért is érdekes, mert a poly—Bernoulli
szamok masik képletével (2) szoros kapcsolatot mutat.

4. Tétel ([14]).



Ezt a tételt kombinatorikailag bizonyitom be, kihasznalva azt a jol ismert tételt, miszerint
az aciklikus orientdcidk szdma (el6jel korrigdldsa utan) egyenld az adott graf kromatikus
polinomjanak —1-nél torténd kiértékelésével.

Az els6 fejezet 1. 10. szekcidjanak eredménye egy eddig ismeretlen kombinatorikai
interpretacié megadésa, mely azért kiilonleges, mert az egyetlen olyan objektumhal-
maz, mely kombinatorikailag vilagos magyarazatot ad a poly—Bernoulli szamok rekurziés
képletére. A rekurzids képletet Arakawa és Kaneko [1] algebrai iton vezette le multiple
zeta értékeket felhasznalva és kombinatorikai bizonyitds nem volt ismert.

2. Definicid. Legyen G¥) azon n x k 01 mdtrizok halmaza, melyben

(o) (03)

matrixok eqyike sem fordul el részmdtrizként. Ezeket a matrizokat I'-mentes mdtrizoknak
nevezzuk.

A tiltas azt jelenti, hogy a matrixban nincs harom 1-es, amelyek , ['-t alkotnak”. Az
ilyen matrixok vizsgédlata az extremdlis kombinatorika teriiletén mar megjelent. Fiiredi és
Hajnal [10] meghatdroztdk a ['-mentes métrixokban szereplé 1—esek maximadlis szdmaét,
mely egy n X k méretli matrix esetén n + k — 1. Azaz az ilyen matrixok lényegesen
kiilonbozoek a lonesum matrixoktdl, amelyek kozt ott van a csupa 1-es matrix is. Ennek
ellenére a I'-mentes matrixok szama megegyezik a lonesum maéatrixok szamaval. Azaz

5. Tétel ([3]).
9] = B,

Bizonyitasom bijektiv, de a bijekcié nem a két matrixhalmaz kozotti. A korabbi esetekben
a standard halmazzal torténé parba allitas tobbé—kevésbé egyszerii, latvanyos moédon
halad. A I'-mentes méatrixoknal a bijekcié technikai és bonyolultabb a korabbiakndl. A
tétel egy nagy elonye, hogy I'-mentes matrixok szdmara egyszerl rekurzié adhaté.

Tulajdonképpen a poly—Bernoulli szamok altalam ismert 0sszes kombinatorikai tulaj-
donsagat kombinatorikusan igazolni tudtam.

6. Tétel ([14]).
B{® =B,

A szimmetria nyilvanvalé barmelyik definidlé halmaz esetén. Ezt a kombinatorikus
bizonyitast mar Brewbaker hangsiilyozta [6].
A kovetkezo tétel a poly—Bernoulli szamok analitikus vizsgalata soran adddott.



7. Tétel ([2], [11]).

k—1)
BV =B <’”’+Z()BMZN- 3)

Kaneko és Arakawa eredeti bizonyitasa a szép egyszerii alakot nem magyarazza meg. Uj
kombinatorikus érvelésem (3) elsé kombinatorikus magyarazatat adja.

A kovetkezo Osszefiiggés egyszertien felismerhet6 a poly—-Bernoulli szamok téablazatanak
tanulmanyozdsa soran. Indokldsa torténhetne algebrai médon. En kombinatorikusan
értelmezem és bijektiven igazolom.

8. Tétel ([3]).
> (=1y"B{M =0

n,kEN
n+k=N

A fenti tétel kombinatorikai tartalma az, hogy N = n + k elemii Callan permutaciok
kozott azok szama, amelyekben n paratlan és azok szama, amelyekben n paros, ugyanan-
nyi. Egy bijekcié megfogalmazasaval mutattam meg ezt az allitast.

A poly—Bernoulli szdmokhoz kapcsolédo kérdéskor gazdag kutatési teriilet. A fejezet
végén felsorolok néhény olyan tovabbi nyitott kérdést, melyek megvalaszolasahoz munkam
hozzéajarulhat.

Egyrészt (multiple zeta értékekkel valé szoros kapcsolat miatt) tébben definidltak
algebrai altalanositdsokat, masrészt a kombinatorikai interpretaciék esetében is vannak
paraméterek, melyek természetes médon altalanosithatéak. Ezek kozott az dltalanositasok
kozott a nemtrivialis kapcsolatok megtalalasa érdekes kombinatorikai problémakor.

Hamahata és Masubuchi definidlta algebrai moédon a multi—poly—Bernoulli szamokat,
s vezette special multi-poly-Bernoulli szamokat [12]. A formuldk kombinatorikai jellege
felveti az igényt a magyarazatra.

A lenyligozo kozismert kapcsolat az elsofaju és masodfaji Stirling szamok kozott és
a poly—Bernoulli szamok érdekes tulajdonsagai, Komatsut arra inditot- ta, hogy a poly—
Bernoulli szamok analdgidjara algebrai megfontolasok alapjan definidlja az in.  poly—
Cauchy szamokat [16]. A poly—Cauchy szdamok esetében az els6faju Stirling szamok
jatszanak szerepet. Bizonyos paraméterek mellett a poly—Cauchy szamok is természetes
szamok. Szamos azonossigot vezetett le Komatsu, mely a poly—Bernoulli és a poly—
Cauchy szamok kozott fennall. Nyitott kérdés az, hogy a poly—Cauchy szamoknak van—e
kombinatorikai interpretacioja.



3. A hook formula

A harmadik fejezet témaja a rendezett fak novekvo cimkézéseinek Osszeszamlaldsa. A
fa struktira egy fontos alapfogalom. A szamitaselméletben adatstrukturakban kézponti
szerepet jatszik. Az algoritmusok elemzéséhez gyakran elengedhetetlen a fak kombina-
torikai tulajdonsdgainak, tobbek kozott kiilonbozé paraméterek szerinti leszdmolasanak
az ismerete.

A rendezett fa, mellyel dolgozatomban foglalkozom, olyan gyokeres fa, amelyben egy
csucshoz, mint gyokérhez csatlakozo részfaknak sorrendje lényeges.

A rendezett fa csticsainak halmazéan a fa szerkezet természetes médon definidl egy
részbenrendezett halmazt. Legyen T' egy rendezett fa és u,v € V(T') két csicsa. u < v
pontosan akkor, ha v csics az u cstucs leszarmazottja. Alapveto kérdés, hogy ez a parcidlis
rendezés hanyféleképpen terjesztheto ki linedris rendezéssé. Masképpen megfogalmazva,
a fak csicsai hanyféleképpen cimkézhetéek meg tgy, hogy a leszarmazott csics cimkéje
minden 6sének cimkéjénél nagyobb legyen. Jelolje ezt a szamossagot fr. Knuth klasszikus
eredménye:

9. Tétel ([15]). |

H’UEV(T) hU 7

ahol h, a v cstcs leszarmazottjainak szama, onmagat is hozzaszdamolva. A formula kom-
binatorikai jellege jobban latszik az atszorzéas utan:

fTX H hU:n'

veV(T)

fr =

Az Osszefiiggés bizonyithatd egy olyan bijekcidval, mely egy n—elemil permutaciéhoz
hozzarendel egy (S, H) part, ahol S a fa egy megfelel6 cimkézése, H pedig egy un. hook
fliggvény, azaz egy olyan fiiggvény, amely miden csticshoz egy pozitiv egész szamot rendel,
melynek értéke legfeljebb a csiics leszarmazottjainak szama.

Ertekezésem mésodik fejezetében ennek a tételnek két kiillonbozé bijektiv bizonyitdsat
mutatom be.

A hook formuldknak hosszu torténete van. Az els6 hook formula standard Young
tablok vizsgdlatdnal sziiletett (Frame, Robinson, Hall [9]). Eredményiiket tobben ujra-
bizonyitottdk. Szamunkra a Novelli, Pak, Stoyanovskii [19] bijektiv bizonyitdsa fontos.
Ezzel a médszerrel ferde standard Young tablokra is bebizonyithaté a hook formula. Els6
bijektiv bizonyitasom Tétel 9.-re ezt a mddszert koveti.

Algoritmus formajaban fogalmazom meg a leképezést. A kiindulépont egy tetszdleges
permutacié m € S, azaz egy megszoritasok nélkiili cimkézés. Az algoritmus ezt a per-
mutaciot transzformalja egy olyanna, amely mar teljesiti azt a feltételt, hogy egy cstics
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cimkéje minden Osének cimkéjénél nagyobb. Elsé 1épésként a csticsok egy meghatarozott
sorrendjét rogzitem. Az algoritmus ebben a sorrendben vizsgélja végig a cstucsokat és ha
szitkséges (a cimke kisebb mint valamelyik leszarmazotté), akkor az adott csics cimkéjét
addig ,.tolja felfelé” , amig az addig megvizsgalt csicsok altal meghatdrozott részfa cimkézése
a feltételnek eleget tesz. Azt a szamot, amely megadja, hogy hanyadik leszarmazotthoz
keriilt az aktualis cimke, szintén rogzitjik.

10. Tétel ([5]). A fent vdzolt algoritmus az dsszes csics vizsgdlata utdan ledll és eredménye
eqy megfeleld cimkézés és eqy hook fligguény lesz.

Masodik bijekciém bizonyos értelemben forditva miikédik. Egyszertibb megfogalmazni
ezt az eljarast egy megfelel6 cimkézésbdl és egy adott hook fiiggvénybdl kiindulva.

Most is rogzitem a csicsok egy specidlis sorrendjét, mely meghatarozza, hogy az al-
goritmus milyen sorrendben vizsgédlja a cstcsokat. Ezuittal azonban nem a csiics cimkéjét
mozgatom, hanem a cstcsot csusztatom el abban a rendezett halmazban, melyet a cstcs
leszarmazottjai alkotnak. A hook fiiggvény értéke hatarozza meg azt, hogy mekkora a
csusztatas mértéke.

11. Tétel ([5]). Az algoritmus eqgy monoton cimkézés és eqy hook fiigguényhez egyértelmien
rendel eqy tetszoleges permutdciot.

A fak kiilonbozé osztalyainak oOsszeszamlalasakor ujabb és ujabb hook formuldkat
fedeznek fel. A fejezet végén néhany aktudlis eredményt emlitek meg ebbdl a témakorbdl,
melyek kombinatorikus megértése még nem teljes. Ugy gondolom, hogy ezeknek az
azonossagoknak a kombinatorikus bizonyitasahoz bijekcidim hozzédjarulhatnak.

4. 312—elkeriil6 permutaciok

A negyedik fejezet a klasszikusnak szamité Catalan problémakorhoéz kap- csolhaté. A
Catalan szamsorozat alapveté a kombinatorikaban. Tébb, mint 200 olyan matematikai
objektum ismert, melynek szamossdga a Catalan szamokkal adhaté meg.

Ertekezésemben a 312—elkeriils permutéicidk és a sokszogek triangulécioi kozott fo-
galmazok meg egy egyszertien leirhatd, direkt bijekcidt. Ez eddig nem szerepel az iro-
dalomban és a két halmaz kozti mélyebb Osszefiiggésekre is ravilagit. Egy sokszog tri-
anguldciojdan a poligon atlokkal torténd haromszogekre bontasat értjik. 312—-elkerulonek
neveziink egy m = mmy - -, permutdciét, melyben nem fordul el6 olyan m;m;m, rész-
permutdcio, hogy 1 < j <k és m; < m, < m;.

Bijekciémhoz tobb lemma, megfigyelés, észrevétel vezet el.

Az alapsokszog csicsai legyenek { Ry, . .., P,11}/{0,1,...,n+1}. Ekkor minden hérom-
szognek lesz egy kozépso cstcsa.



12. Lemma ([4]). Minden trianguldciéban, minden i € {1,2,...,n} —re pontosan eqy
olyan hdaromszog létezik, melynek kozépso csiucsa a sokszog i csucsdara illeszkedik.

Ha a sokszoget, melyben adott T' triangulacid, az ora jarasaval megegyezo iranyban
korbejarjuk, s minden haromszog cimkéjét a harmadik csticsanak illeszkedése alapjan
jegyezziik fel — kiilon szabalyozva azt az esetet, amikor tobb haromszog cimkéjét kellene
egyszerre feljegyezni — egy w(7T') permutéciot kapunk.

13. Lemma ([4]). w(T") egy 312—elkerild permutdcio.

A bijekcié ,,sikere” a 312—elkeriil6 permutéci6 inverzidin alapszik. A m permutaciéban
egy (m;,m;) part inverzionak neveziink, ha ¢ < j és m; > m;. A 7 permutécié in-
verziotablajan, s—vektordn, azt az s = (s1, Sa, . . ., S,) vektort értjiik, melyben s, azoknak
az elemeknek a szamat adja meg, amelyek nagyobbak, mint k és a permutaciéban k el6tt
(t6le balra) helyezkednek el.

Sk:|{ﬂ'i‘ﬂ'¢>/€:ﬂ']’ and Z<j}‘
14. Eszrevétel ([4]). A 312-elkerilé permutdcid s—vektora kielégiti a kovetkezd feltételt:
Spri Ksp—1 for 1<k<n—2 and 1<i< s

Tovabbd minden permutdcio, amelynek inverziotabldja ezzel a tulajdonsdggal rendelkezik
312—elkertilo.

Az inverzidtabla és a triangulacio kapcsolatat fogalmazza meg a kdvetkezd észrevételem.

15. Eszrevétel ([4]). Legyen T egy trianguldcid. Tekintsik a hdromsziget, melynek
cimkéje k. Ekkor a haromszig | By, Ck] oldala meghatdrozza a megfeleld permutdcic w(T)
iverziotablajanak k—ik elemét, s,—t:

sk = 1(Cr) = 1(By) — 1,
ahol I(P) a P csics sorszdma a sokszdgben.

Ez a tulajdonsag lehetdséget ad arra, hogy egy adott 312—elkeriilé permutaciéhoz hozzarendelt
triangulaciét az s—vektor alapjan meghatarozott haromszogekbol épitsiik fel.
A fenti észrevételek vezetnek el a fejezet {6 eredményéhez:

16. Tétel ([4]). Legyen T egy tetszdleges trianguldcio. T +— w(T) hozzdrendelés egy
bijekcio a trianguldciok és a 312—elkerulo permutdciok kozott.



Bijekciémnak tobb elonye van. Elsének emlitem, hogy leképezésem minden tovabbi nélkiil
alkalmazhaté a k—triangulaciok esetére is.

Egy k—trianguldcio definicié szerint olyan maximalis szamu atlohalmaz egy poligonban,
melyre igaz, hogy nem valaszthaté ki k + 1 darab egymést kolcsonosen metszé atlo.

A k—trianguldcidkat tekinthetjiik azonban 2k + 1 &gi csillagok uniéjanak is [20].
Ezt a szemléletmddot egészitem ki azzal az észrevételemmel, hogy a 2k + 1 agu csil-
lagok szintén cimkézhetéek kozépso csicsuk elhelyezkedése szerint. Az egyszer(i tri-
angulaciéknal definidlt algoritmusomhoz hasonléan a poligon korbejarasa soran felje-
gyezhetéek a (k + 1)., (k + 2)., stb. csicsok cimkéi. Ily médon a k-trianguldciéhoz
hozzarendelhetd a 1%2% ... n* halmaz egy permutaciéja. Ha a kapott permuticidkat jél
megértjiik, akkor egyszerii bijektiv médon targyalhatok a k—triangulaciok osszeszamlalasi
kérdései. Sajnos ez a program még sok nyitott problémat takar.

Bijekciéom kozéppontba helyezi az inverziotabldkat. Ez tovabbi leszamlalési eredménye-
ket 1j megvilagitasba helyez. Egyet részletesen kidolgozok.

Egy permutécioban kétféleképpen is szamon tarthatjuk és kédolhatjuk a benniik fellépo
inverzidkat. Az s—vektor mellett definidlhatjuk a permutdcié c—vektorat. (ci,ca,...,¢,)
azt a vektort értjik, melyben ¢, megadja, hogy k mogott (t6le jobbra) hany k-—nél kisebb
elem all.

cp=/{m :m <k=m; and > j}|
Az s—és c— vektor kapcsolatanak megvilagitasa érdekében, definidlom az inverziédiagramot.
A diagram forméja szemlélteti a kétféle vektor specidlis tulajdonsagat 312—elkeriilé per-
mutacidk esetében, illetve ezek kapcsolatat.

A Tamari és Dyck halé az s— ill. c—vektorok természetes rendezéseként addodnak,
mely nyilvanvaléva teszi a koztiik fennallé kapcsolatot. Mindkét hélé esetében felsorolok
néhany problémat, mely a halé intervallumaira vonatkozik. Szamos példa van arra ugyan-
is, hogy Osszeszamlalaskor valamelyik halo intervallumainak szdma adédik. Erdekesnek
talalom azt a nyitott kérdést, hogy adhato—e egyszeri bijekcié ezen objektumok és a
megfelel6 312—-elkeriil6 permutacioparok kozott. Ertekezésem harmadik fejezetét egy ilyen
bijekcioval zarom.

Tekintsiik a rendezett grafokon a teljes parositasokat. (A gréaf cstucsainak sorrendje
adott és minden csicsra pontosan egy €l illeszkedik.) Tobben vizsgél- tédk azt a kérdést,
hogy hany olyan teljes parositas 1étezik, melyben egy bizonyos minta nem fordul el6. Ez
a probléma a permutaciok altalanositasa, hiszen egy ™ € .S, felfoghaté egy rendezett K,, ,,
paros graf teljes parositasaként.

A 312—elkeriil6 permutacidk szoros kapcsolatban vannak azokkal a teljes parositasokkal,
melyben az abccab minta nem fordul elé, melyeket M, (abccab) jelol.

17. Tétel ([13]).
Cn Cn+1
Cn+1 Cn+2

n

| M, (abccab)| = |IP| = ’

10



PN
A A

Dolgozatomban a fenti tételnek egy 1j bizonyitasat fogalmazom meg. Ertelmezésemben
egy intervallum a Dyck haléban egy olyan (m, o) permutaciéparral azonosithat6, melyben
7 és 0 312—-elkeriilé valamint c—vektorukra teljesiil, hogy ¢(m) < ¢(0).

A teljes parositasban minden csucsra egy €l illeszkedik. Rendezett grafrol 1évén szo a
csucsoknak van egy sorrendje, s igy beszélhetiink az élek kezd6— és végpontjarol. Hozzaren-
delésemben a kezd6 és végpontok sorrendje definidl egy o 312-elkeriilé permutaciot. A
masik permutaciot 7t pedig ugy kapjuk, hogy az éleket a kezdopontjaik sorrendjében
cimkézzik, de a cimkéket a végpontjaik sorrendjében olvassuk le.

18. Lemma ([4]). A leképezés sordn kapott w, o permutdciokban a 312 minta nem fordul
eld és teljesiil, hogy c(m) < c(o).

Bizonyitasom bizonyos szempontbdl természetesebb és elemibb, mint az eddig ismertek.
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