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1. Bevezetés

Doktori értekezésemet a [3], [4] és [5] dolgozatok eredményei alapján álĺıtottam össze. (A
[3] cikk közös munka Hajnal Péterrel.) Az értekezés középpontjában bijekt́ıv bizonýıtások
állnak.

A kombinatorika tárgya diszkrét matematikai struktúrák vizsgálata. Egyik törekvése a
matematikai objektumok közötti összefüggések megviláǵıtása. A kombinatorika összeszám-
lálással foglalkozó területe mennyiségi jellemzést ad a struktúrákról. Ugyanannak a
számsorozatnak különböző objektumok összeszámlálásakor való megjelenése nem mindig
egyszerűen érthető. Ilyenkor felmerül az igény, hogy a két– vagy többféle objektum szer-
kezetében megtaláljuk azokat a közös vonásokat, mellyel megmagyarázható az azonos
számosság.

Az összefüggések feltárásához a kombinatorika speciális eszközével, a bijekt́ıv bizonýıtás-
sal járul hozzá, mely éppen a belső strukturális azonosságokon alapszik. Egy bijekció
halmaz között léteśıt egy-egy értelmű megfeleltetést és ı́gy demonstrálja a két halmaz
elemszámának megegyezését. Ha az egyik halmaz elemszáma ismert, akkor a bijekció
,,levezeti”, hogy a másik halmaz elemszámára is ez a formula adja meg a választ.

Így a bijekció alkalmas módszer arra, hogy egy halmaz elemeit összeszámoljuk, kap-
csolatba hozva egy olyan halmazzal, melynek ismert az elemszáma, de arra is alkalmas,
hogy kiemelje azt a közös szerkezeti jellemzőt, mellyel mindkét halmaz b́ır, s ezzel a
számsorozat karakterisztikus tulajdonságára is magyarázattal szolgál.

Két n elemű halmaz között n! bijekció létezik. A bijekciók gyakran finomabb struktúrák-
ra is rámutatnak, mint az ,,azonos elemszámúság”. Gyakran a két halmaz finomı́tható
egy–egy speciális paramé- ter értéke szerint. A két különböző struktúrára vonatkozó
paraméter szerinti statisztikai eloszlás gyakran megegyezik. A bijekciók között vannak
olyanok, amelyek megőrzik a vizsgált paraméter értékét és ı́gy rámutatnak erre a nem
triviális tényre. Így egyes bijekciók jobbak, értékesebbek, mélyebbek lesznek. A bijekt́ıv
kombinatorikára jellemző, hogy klasszikus azonos elemszámú halmazpárok esetén is pub-
likálnak újabb és újabb bijekciókat.

Értekezésem célja a bijekt́ıv bizonýıtás, mint módszer fontosságának és hatékonyságának
bemutatása.

A dolgozat különböző, ma is akt́ıvan kutatott területekről emel ki problémákat, fo-
galmaz meg tételeket, illetve ismert tételekre ad új, kombinatorikus bizonýıtásokat. A
bevezető fejezet után a második fejezetben a poly–Bernoulli számok kombinatorikai értelme-
zésével, tulajdonságaival, a harmadik fejezetben a fák összeszámlálásával, a negyedik fe-
jezetben pedig a 312–elkerülő permutációkkal foglalkozom.

Munkám példa arra, hogy a matematika tudományában nem csupán információk
gyűjtése, tételek kimondása a cél, hanem a körülöttünk lévő világ, legyen az akár abszt-
rakt formában megadva, megértése. Ezért tartom egy–egy tétel többféle bizonýıtását
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fontosnak és gondolom azt, hogy a dolgozatomban található bijekt́ıv megközeĺıtéseim
lényeges hozzájárulást jelentenek az adott problémakörökhöz.

2. Poly–Bernoulli számok

Amint a név is utal rá, a poly–Bernoulli számok a jól ismert és számos kérdésben központi
szerepet játszó Bernoulli számok általánośıtása. A poly–Bernoulli számokat Kaneko [14]
vezette be 1997–ben miközben a Riemann zeta függvények általánośıtását a többszörös
zeta értékeket (angolul multiple zeta values, más néven Euler összegeket) vizsgálta.

1. Defińıció ([14]). Jelölje {B(k)
n }n∈N,k∈Z a poly–Bernoulli számokat, melyeket a következő

generátorfüggvény definiál:

∞∑
n=0

B(k)
n

xn

n!
=

Lik(1− e−x)

1− e−x

ahol

Lik(z) =
∞∑
i=1

zi

ik
.

Ha k ≤ 0, akkor B
(k)
n természetes szám.

1. táblázat. The Poly–Bernoulli Numbers
0 1 2 3 4 5

0 1 1 1 1 1 1
-1 1 2 4 8 16 32
-2 1 4 14 46 146 454
-3 1 8 46 230 1066 4718
-4 1 16 146 1066 6902 41506
-5 1 32 454 4718 41506 329462

Kaneko egy kompakt formulát is levezet erre az esetre:

1. Tétel ([1]). k ∈ N esetén

B(−k)
n =

min(n,k)∑
m=0

m!

{
n+ 1
m+ 1

}
m!

{
k + 1
m+ 1

}
, (1)

ahol
{

n
k

}
számok megadják egy n elemű halmaz k osztályú osztályozásainak számát, azaz

ezek a számok a másodfajú Stirling számok.
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Felvetődött a kérdés, hogy a triviális értelmezésen túl van–e olyan kombinatorikus probléma,
amelyben ezek a számok megjelennek. Elsőként Brewbaker [6] adott igenlő választ, és
megmutatta, hogy a poly–Bernoulli számok az n×k lonesum mátrixok számával egyenlő.
Lonesum mátrixnak nevezünk egy 01 mátrixot akkor, ha az oszlopösszegek és sorösszegek
ismeretében egyértelműen rekonstruálható.

Bár ez az egy kombinatorikai interpretáció vált ismertté, kutatásaim azt mutatják,
hogy számos egymástól lényegében eltérő kombinatorikai értelmezés létezik. A poly–
Bernoulli számok sok helyen felmerülnek a matematikában. Szerepük nem annyira központi,
mint például a Catalan számoké. Így sokszor publikálatlan bejegyzésként vagy a poly–
Bernoulli számok ismerete nélküli matematikai tételként szerepel az irodalomban.

Az második fejezet 4.–9. szekciói azokat az aktuálisan ismert matematikai objek-
tumokat gyűjti össze és rendszerezi, melyek számossága a poly–Bernoulli számokkal ad-
ható meg. Összefoglalóm azonban nem csupán egy listaszerű felsorolás. Minden esetben
explicit bijekció léırásával vagy bijekció vázlatának megadásával adok magyarázatot arra,
hogy milyen összefüggés van az objektumok között. Ez többször hiányzik az irodalomból,
illetve csak rejtve, implicit módon szerepel benne.

Kiindulópontom a (1) képlet természetes interpretációja a kombinatorikus alapelvek
alapján: a szóban forgó képlet egy n+1 illetve egy k+1 elemű halmaz part́ıcióit számolja
össze. Mindkét halmazban van egy speciális elem. A halmazokból képezünk ugyanolyan
számú (m+ 1) nemüres osztályt, melyeket párba álĺıtunk. A speciális elemet tartalmazó
osztályok egy párt alkotnak. Ezeknek a rendezett part́ıciópároknak a számát adja meg a
(1) képlet.

A két rendezett part́ıció struktúrát leghűbben az ún. Callan féle permutációk [7]

őrzik. Jelölje N̂ = {1, 2, . . . , n} ∪ {0} és K̂ = {n + 1, n + 2, . . . , n + k} ∪ {n + k + 1}
halmazokat. Tekintsük az N̂ ∪ K̂ halmaz azon permutációt, melynek első eleme 0, utolsó
eleme n+ k+ 1 és ha a permutációban egymás után álló elemek ugyanabból a halmazból
N̂ ill. K̂ valóak, akkor ezen elemek növekvő sorrendben vannak. Ezeket a permutációkat
nevezzük Callan permutációknak.

A Callan permutációk duálisaként fogható fel az ún. maximumhoz tartó permutációk,
melyek az suffix array adatstruktúra jellemzésekor játszanak fontos szerepet. Pontosan
megadható ugyanis, hogy egy bináris szó alapján képzett suffix array, amely természetesen
egy permutáció, milyen karakte- risztikus tulajdonsággal b́ır.

Az egyik kulcsfontosságú tulajdonság a ,,maximumhoz tartás”. Az eredeti defińıció
módośıtható úgy, hogy hangsúlyos legyen a Callan permutációkkal való érték–poźıció du-
alitás. Tekintsük újra a N̂ ∪ K̂ permutációkat, melyeknek első eleme 0, utolsó eleme
n + k + 1, de most azt követeljük meg, hogy ha két egymást közvetlenül követő érték
az első n + 1 poźıcióban van, akkor a permutációban is kövessék egymást közvetlenül.
Ugyańıgy akkor is, ha egymást követő értékek az utolsó k + 1 poźıcióba esnek. Ezeket a
permutációkat maximumhoz tartó permutációknak nevezzük.
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Az átfogalmazás és a dualitás nyilvánvalóan bizonýıtja a következő, eddig nem ismert
tételt.

2. Tétel ([3]). Jelölje A(k)
n a {0, 1, 2, . . . , n + k + 1} halmaz maximumhoz tartó per-

mutációit. Ekkor
|A(k)

n | = B(−k)
n .

Egy másik, ezektől lényegesen eltérő permutációosztály összeszámlálásánál szintén a
poly–Bernoulli számok jelennek meg.

Általános kérdés az, hogy a permutációk száma hogyan alakul, ha függvényként tek-
intve egy permutációra bizonyos megszoŕıtásokat teszünk egy-egy elem képhalmazára.
Az egyik legtermészetesebb megszoŕıtás az, ha az elemnek és a képének a távolságát
korlátozzuk. Vesztergombi határozta meg az ilyen permutációknak a számát egy általános
formában [21]. A képlet speciális esetében a poly–Bernoulli számokat kapjuk. Fel-
használva Lovász [18] módszerét közvet- len kombinatorikai bizonýıtást adtam a következő

álĺıtásra. Jelölje V(k)
n -val azoknak a π ∈ Sn+k permutációknak a halmazát, melyekre tel-

jesül a következő feltétel:
−n ≤ i− π(i) ≤ k.

Ekkor:

3. Tétel ([21],[17],[3]).
|V(k)

n | = B(−k)
n

Sokrétű alkalmazásai miatt egy gráf aciklikus orientációinak vizsgálata akt́ıv kutatási
terület. Egy természetes extremális kérdés a következő. Adott n pontszámú és m élszámú
egyszerű gráfok közt melynek van legkevesebb/legtöbb aciklikus iránýıtása? Linial megvála-
szolta a minimalizálási kérdést. A másik irányú kérdés még nyitott. Cameron [8] foglalko-
zott a maximálizálás problémájával. Sejtése szerint ha m egy páros Turán gráf élszáma,
akkor ez a Turán gráf adja az extremális értéket. Numerikus számolásokat végzett a
kétrészes Turán gráfok aciklikus iránýıtásainak számával kapcsolatban. Ekkor vette észre,
hogy a teljes páros gráf aciklikus iránýıtásainak számát éppen a poly–Bernoulli számok
határozzák meg.

Az aciklikus iránýıtás, mint interpretáció azért is érdekes, mert a poly–Bernoulli
számok másik képletével (2) szoros kapcsolatot mutat.

4. Tétel ([14]).

B(−k)
n = (−1)n

n∑
m=0

(−1)mm!

{
n

m

}
(m+ 1)k (2)
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Ezt a tételt kombinatorikailag bizonýıtom be, kihasználva azt a jól ismert tételt, miszerint
az aciklikus orientációk száma (előjel korrigálása után) egyenlő az adott gráf kromatikus
polinomjának −1–nél történő kiértékelésével.

Az első fejezet 1. 10. szekciójának eredménye egy eddig ismeretlen kombinatorikai
interpretáció megadása, mely azért különleges, mert az egyetlen olyan objektumhal-
maz, mely kombinatorikailag világos magyarázatot ad a poly–Bernoulli számok rekurziós
képletére. A rekurziós képletet Arakawa és Kaneko [1] algebrai úton vezette le multiple
zeta értékeket felhasználva és kombinatorikai bizonýıtás nem volt ismert.

2. Defińıció. Legyen G(k)
n azon n× k 01 mátrixok halmaza, melyben(

1 1
1 0

)
,

(
1 1
1 1

)
mátrixok egyike sem fordul elő részmátrixként. Ezeket a mátrixokat Γ–mentes mátrixoknak
nevezzük.

A tiltás azt jelenti, hogy a mátrixban nincs három 1–es, amelyek ,,Γ–t alkotnak”. Az
ilyen mátrixok vizsgálata az extremális kombinatorika területén már megjelent. Füredi és
Hajnal [10] meghatározták a Γ–mentes mátrixokban szereplő 1–esek maximális számát,
mely egy n × k méretű mátrix esetén n + k − 1. Azaz az ilyen mátrixok lényegesen
különbözőek a lonesum mátrixoktól, amelyek közt ott van a csupa 1–es mátrix is. Ennek
ellenére a Γ–mentes mátrixok száma megegyezik a lonesum mátrixok számával. Azaz

5. Tétel ([3]).
|G(k)

n | = B(−k)
n .

Bizonýıtásom bijekt́ıv, de a bijekció nem a két mátrixhalmaz közötti. A korábbi esetekben
a standard halmazzal történő párba álĺıtás többé–kevésbé egyszerű, látványos módon
halad. A Γ–mentes mátrixoknál a bijekció technikai és bonyolultabb a korábbiaknál. A
tétel egy nagy előnye, hogy Γ–mentes mátrixok számára egyszerű rekurzió adható.

Tulajdonképpen a poly–Bernoulli számok általam ismert összes kombinatorikai tulaj-
donságát kombinatorikusan igazolni tudtam.

6. Tétel ([14]).

B(−k)
n = B

(−n)
k .

A szimmetria nyilvánvaló bármelyik definiáló halmaz esetén. Ezt a kombinatorikus
bizonýıtást már Brewbaker hangsúlyozta [6].

A következő tétel a poly–Bernoulli számok analitikus vizsgálata során adódott.
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7. Tétel ([2], [11]).

B(−k)
n = B(−(k−1))

n +
n∑

i=1

(
n

i

)
B

(−(k−1))
n−(i−1) . (3)

Kaneko és Arakawa eredeti bizonýıtása a szép egyszerű alakot nem magyarázza meg. Új
kombinatorikus érvelésem (3) első kombinatorikus magyarázatát adja.

A következő összefüggés egyszerűen felismerhető a poly–Bernoulli számok táblázatának
tanulmányozása során. Indoklása történhetne algebrai módon. Én kombinatorikusan
értelmezem és bijekt́ıven igazolom.

8. Tétel ([3]). ∑
n,k∈N

n+k=N

(−1)nB(−k)
n = 0.

A fenti tétel kombinatorikai tartalma az, hogy N = n + k elemű Callan permutációk
között azok száma, amelyekben n páratlan és azok száma, amelyekben n páros, ugyanan-
nyi. Egy bijekció megfogalmazásával mutattam meg ezt az álĺıtást.

A poly–Bernoulli számokhoz kapcsolódó kérdéskör gazdag kutatási terület. A fejezet
végén felsorolok néhány olyan további nyitott kérdést, melyek megválaszolásához munkám
hozzájárulhat.

Egyrészt (multiple zeta értékekkel való szoros kapcsolat miatt) többen definiáltak
algebrai általánośıtásokat, másrészt a kombinatorikai interpretációk esetében is vannak
paraméterek, melyek természetes módon általánośıthatóak. Ezek között az általánośıtások
között a nemtriviális kapcsolatok megtalálása érdekes kombinatorikai problémakör.

Hamahata és Masubuchi definiálta algebrai módon a multi–poly–Bernoulli számokat,
s vezette special multi–poly–Bernoulli számokat [12]. A formulák kombinatorikai jellege
felveti az igényt a magyarázatra.

A lenyűgöző közismert kapcsolat az elsőfajú és másodfajú Stirling számok között és
a poly–Bernoulli számok érdekes tulajdonságai, Komatsut arra ind́ıtot- ta, hogy a poly–
Bernoulli számok analógiájára algebrai megfontolások alapján definiálja az ún. poly–
Cauchy számokat [16]. A poly–Cauchy számok esetében az elsőfajú Stirling számok
játszanak szerepet. Bizonyos paraméterek mellett a poly–Cauchy számok is természetes
számok. Számos azonosságot vezetett le Komatsu, mely a poly–Bernoulli és a poly–
Cauchy számok között fennáll. Nyitott kérdés az, hogy a poly–Cauchy számoknak van–e
kombinatorikai interpretációja.
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3. A hook formula

A harmadik fejezet témája a rendezett fák növekvő ćımkézéseinek összeszámlálása. A
fa struktúra egy fontos alapfogalom. A számı́táselméletben adatstruktúrákban központi
szerepet játszik. Az algoritmusok elemzéséhez gyakran elengedhetetlen a fák kombina-
torikai tulajdonságainak, többek között különböző paraméterek szerinti leszámolásának
az ismerete.

A rendezett fa, mellyel dolgozatomban foglalkozom, olyan gyökeres fa, amelyben egy
csúcshoz, mint gyökérhez csatlakozó részfáknak sorrendje lényeges.

A rendezett fa csúcsainak halmazán a fa szerkezet természetes módon definiál egy
részbenrendezett halmazt. Legyen T egy rendezett fa és u, v ∈ V (T ) két csúcsa. u ≤ v
pontosan akkor, ha v csúcs az u csúcs leszármazottja. Alapvető kérdés, hogy ez a parciális
rendezés hányféleképpen terjeszthető ki lineáris rendezéssé. Másképpen megfogalmazva,
a fák csúcsai hányféleképpen ćımkézhetőek meg úgy, hogy a leszármazott csúcs ćımkéje
minden ősének ćımkéjénél nagyobb legyen. Jelölje ezt a számosságot fT . Knuth klasszikus
eredménye:

9. Tétel ([15]).

fT =
n!∏

v∈V (T ) hv

,

ahol hv a v csúcs leszármazottjainak száma, önmagát is hozzászámolva. A formula kom-
binatorikai jellege jobban látszik az átszorzás után:

fT ×
∏

v∈V (T )

hv = n!

Az összefüggés bizonýıtható egy olyan bijekcióval, mely egy n–elemű permutációhoz
hozzárendel egy (S,H) párt, ahol S a fa egy megfelelő ćımkézése, H pedig egy ún. hook
függvény, azaz egy olyan függvény, amely miden csúcshoz egy pozit́ıv egész számot rendel,
melynek értéke legfeljebb a csúcs leszármazottjainak száma.

Értekezésem második fejezetében ennek a tételnek két különböző bijekt́ıv bizonýıtását
mutatom be.

A hook formuláknak hosszú története van. Az első hook formula standard Young
tablók vizsgálatánál született (Frame, Robinson, Hall [9]). Eredményüket többen újra-
bizonýıtották. Számunkra a Novelli, Pak, Stoyanovskii [19] bijekt́ıv bizonýıtása fontos.
Ezzel a módszerrel ferde standard Young tablókra is bebizonýıtható a hook formula. Első
bijekt́ıv bizonýıtásom Tétel 9.-re ezt a módszert követi.

Algoritmus formájában fogalmazom meg a leképezést. A kiindulópont egy tetszőleges
permutáció π ∈ Sn, azaz egy megszoŕıtások nélküli ćımkézés. Az algoritmus ezt a per-
mutációt transzformálja egy olyanná, amely már teljeśıti azt a feltételt, hogy egy csúcs
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ćımkéje minden ősének ćımkéjénél nagyobb. Első lépésként a csúcsok egy meghatározott
sorrendjét rögźıtem. Az algoritmus ebben a sorrendben vizsgálja végig a csúcsokat és ha
szükséges (a ćımke kisebb mint valamelyik leszármazotté), akkor az adott csúcs ćımkéjét
addig ,,tolja felfelé”, amı́g az addig megvizsgált csúcsok által meghatározott részfa ćımkézése
a feltételnek eleget tesz. Azt a számot, amely megadja, hogy hányadik leszármazotthoz
került az aktuális ćımke, szintén rögźıtjük.

10. Tétel ([5]). A fent vázolt algoritmus az összes csúcs vizsgálata után leáll és eredménye
egy megfelelő ćımkézés és egy hook függvény lesz.

Második bijekcióm bizonyos értelemben ford́ıtva működik. Egyszerűbb megfogalmazni
ezt az eljárást egy megfelelő ćımkézésből és egy adott hook függvényből kiindulva.

Most is rögźıtem a csúcsok egy speciális sorrendjét, mely meghatározza, hogy az al-
goritmus milyen sorrendben vizsgálja a csúcsokat. Ezúttal azonban nem a csúcs ćımkéjét
mozgatom, hanem a csúcsot csúsztatom el abban a rendezett halmazban, melyet a csúcs
leszármazottjai alkotnak. A hook függvény értéke határozza meg azt, hogy mekkora a
csúsztatás mértéke.

11. Tétel ([5]). Az algoritmus egy monoton ćımkézés és egy hook függvényhez egyértelműen
rendel egy tetszőleges permutációt.

A fák különböző osztályainak összeszámlálásakor újabb és újabb hook formulákat
fedeznek fel. A fejezet végén néhány aktuális eredményt emĺıtek meg ebből a témakörből,
melyek kombinatorikus megértése még nem teljes. Úgy gondolom, hogy ezeknek az
azonosságoknak a kombinatorikus bizonýıtásához bijekcióim hozzájárulhatnak.

4. 312–elkerülő permutációk

A negyedik fejezet a klasszikusnak számı́tó Catalan problémakörhöz kap- csolható. A
Catalan számsorozat alapvető a kombinatorikában. Több, mint 200 olyan matematikai
objektum ismert, melynek számossága a Catalan számokkal adható meg.

Értekezésemben a 312–elkerülő permutációk és a sokszögek triangulációi között fo-
galmazok meg egy egyszerűen léırható, direkt bijekciót. Ez eddig nem szerepel az iro-
dalomban és a két halmaz közti mélyebb összefüggésekre is ráviláǵıt. Egy sokszög tri-
angulációján a poligon átlókkal történő háromszögekre bontását értjük. 312–elkerülőnek
nevezünk egy π = π1π2 · · · πn permutációt, melyben nem fordul elő olyan πiπjπk rész-
permutáció, hogy i < j < k és πj < πk < πi.

Bijekciómhoz több lemma, megfigyelés, észrevétel vezet el.
Az alapsokszög csúcsai legyenek {P0, . . . , Pn+1}/{0, 1, . . . , n+1}. Ekkor minden három-

szögnek lesz egy középső csúcsa.

8



12. Lemma ([4]). Minden triangulációban, minden i ∈ {1, 2, . . . , n} –re pontosan egy
olyan háromszög létezik, melynek középső csúcsa a sokszög i csúcsára illeszkedik.

Ha a sokszöget, melyben adott T trianguláció, az óra járásával megegyező irányban
körbejárjuk, s minden háromszög ćımkéjét a harmadik csúcsának illeszkedése alapján
jegyezzük fel — külön szabályozva azt az esetet, amikor több háromszög ćımkéjét kellene
egyszerre feljegyezni — egy w(T ) permutációt kapunk.

13. Lemma ([4]). w(T ) egy 312–elkerülő permutáció.

A bijekció ,,sikere” a 312–elkerülő permutáció inverzióin alapszik. A π permutációban
egy (πi, πj) párt inverziónak nevezünk, ha i < j és πi > πj. A π permutáció in-
verziótábláján, s–vektorán, azt az s = (s1, s2, . . . , sn) vektort értjük, melyben sk azoknak
az elemeknek a számát adja meg, amelyek nagyobbak, mint k és a permutációban k előtt
(tőle balra) helyezkednek el.

sk = |{πi|πi > k = πj and i < j}|.

14. Észrevétel ([4]). A 312–elkerülő permutáció s–vektora kieléǵıti a következő feltételt:

sk+i ≤ sk − i for 1 ≤ k ≤ n− 2 and 1 ≤ i ≤ sk.

Továbbá minden permutáció, amelynek inverziótáblája ezzel a tulajdonsággal rendelkezik
312–elkerülő.

Az inverziótábla és a trianguláció kapcsolatát fogalmazza meg a következő észrevételem.

15. Észrevétel ([4]). Legyen T egy trianguláció. Tekintsük a háromszöget, melynek
ćımkéje k. Ekkor a háromszög [Bk, Ck] oldala meghatározza a megfelelő permutáció w(T )
inverziótáblájának k–ik elemét, sk–t:

sk = l(Ck)− l(Bk)− 1,

ahol l(P ) a P csúcs sorszáma a sokszögben.

Ez a tulajdonság lehetőséget ad arra, hogy egy adott 312–elkerülő permutációhoz hozzárendelt
triangulációt az s–vektor alapján meghatározott háromszögekből éṕıtsük fel.

A fenti észrevételek vezetnek el a fejezet fő eredményéhez:

16. Tétel ([4]). Legyen T egy tetszőleges trianguláció. T 7→ w(T ) hozzárendelés egy
bijekció a triangulációk és a 312–elkerülő permutációk között.
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Bijekciómnak több előnye van. Elsőnek emĺıtem, hogy leképezésem minden további nélkül
alkalmazható a k–triangulációk esetére is.

Egy k–trianguláció defińıció szerint olyan maximális számú átlóhalmaz egy poligonban,
melyre igaz, hogy nem választható ki k + 1 darab egymást kölcsönösen metsző átló.

A k–triangulációkat tekinthetjük azonban 2k + 1 ágú csillagok uniójának is [20].
Ezt a szemléletmódot egésźıtem ki azzal az észrevételemmel, hogy a 2k + 1 ágú csil-
lagok szintén ćımkézhetőek középső csúcsuk elhelyezkedése szerint. Az egyszerű tri-
angulációknál definiált algoritmusomhoz hasonlóan a poligon körbejárása során felje-
gyezhetőek a (k + 1)., (k + 2)., stb. csúcsok ćımkéi. Ily módon a k–triangulációhoz
hozzárendelhető a 1k2k · · ·nk halmaz egy permutációja. Ha a kapott permutációkat jól
megértjük, akkor egyszerű bijekt́ıv módon tárgyalhatók a k–triangulációk összeszámlálási
kérdései. Sajnos ez a program még sok nyitott problémát takar.

Bijekcióm középpontba helyezi az inverziótáblákat. Ez további leszámlálási eredménye-
ket új megviláǵıtásba helyez. Egyet részletesen kidolgozok.

Egy permutációban kétféleképpen is számon tarthatjuk és kódolhatjuk a bennük fellépő
inverziókat. Az s–vektor mellett definiálhatjuk a permutáció c–vektorát. (c1, c2, . . . , cn)
azt a vektort értjük, melyben ck megadja, hogy k mögött (tőle jobbra) hány k–nál kisebb
elem áll.

ck = |{πi : πi < k = πj and i > j}|.
Az s– és c– vektor kapcsolatának megviláǵıtása érdekében, definiálom az inverziódiagramot.
A diagram formája szemlélteti a kétféle vektor speciális tulajdonságát 312–elkerülő per-
mutációk esetében, illetve ezek kapcsolatát.

A Tamari és Dyck háló az s– ill. c–vektorok természetes rendezéseként adódnak,
mely nyilvánvalóvá teszi a köztük fennálló kapcsolatot. Mindkét háló esetében felsorolok
néhány problémát, mely a háló intervallumaira vonatkozik. Számos példa van arra ugyan-
is, hogy összeszámláláskor valamelyik háló intervallumainak száma adódik. Érdekesnek
találom azt a nyitott kérdést, hogy adható–e egyszerű bijekció ezen objektumok és a
megfelelő 312–elkerülő permutációpárok között. Értekezésem harmadik fejezetét egy ilyen
bijekcióval zárom.

Tekintsük a rendezett gráfokon a teljes párośıtásokat. (A gráf csúcsainak sorrendje
adott és minden csúcsra pontosan egy él illeszkedik.) Többen vizsgál- ták azt a kérdést,
hogy hány olyan teljes párośıtás létezik, melyben egy bizonyos minta nem fordul elő. Ez
a probléma a permutációk általánośıtása, hiszen egy π ∈ Sn felfogható egy rendezett Kn,n

páros gráf teljes párośıtásaként.
A 312–elkerülő permutációk szoros kapcsolatban vannak azokkal a teljes párośıtásokkal,

melyben az abccab minta nem fordul elő, melyeket Mn(abccab) jelöl.

17. Tétel ([13]).

|Mn(abccab)| = |IDn | =
∣∣∣∣ Cn Cn+1

Cn+1 Cn+2

∣∣∣∣
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Dolgozatomban a fenti tételnek egy új bizonýıtását fogalmazom meg. Értelmezésemben
egy intervallum a Dyck hálóban egy olyan (π, σ) permutációpárral azonośıtható, melyben
π és σ 312–elkerülő valamint c–vektorukra teljesül, hogy c(π) ≤ c(σ).

A teljes párośıtásban minden csúcsra egy él illeszkedik. Rendezett gráfról lévén szó a
csúcsoknak van egy sorrendje, s ı́gy beszélhetünk az élek kezdő– és végpontjáról. Hozzáren-
delésemben a kezdő és végpontok sorrendje definiál egy σ 312–elkerülő permutációt. A
másik permutációt π–t pedig úgy kapjuk, hogy az éleket a kezdőpontjaik sorrendjében
ćımkézzük, de a ćımkéket a végpontjaik sorrendjében olvassuk le.

18. Lemma ([4]). A leképezés során kapott π, σ permutációkban a 312 minta nem fordul
elő és teljesül, hogy c(π) ≤ c(σ).

Bizonýıtásom bizonyos szempontból természetesebb és elemibb, mint az eddig ismertek.
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