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1. Introduction 
 
1.1. Osseointegration of dental implants 

 
Dental implantology, a special field of dentistry dealing with the rehabilitation of the 

damaged chewing apparatus due to loss of the natural teeth, is currently the most intensively 

developing field of dentistry. Missing teeth can be replaced by dental implants (artificial roots), 

which are inserted into the root-bearing parts of the mandible or maxilla. The success and long-

term prognosis of implant prosthetic therapy depend primarily on the anchorage of the implant in 

the jawbone, i.e. on the osseointegration. Today, there are ever increasing demands from patients 

with missing teeth for masticatory function and aesthetic appearance of their replaced teeth to be 

restored and for shortening of the period of osseointegration of the implants, which takes a 

relatively long time (3-6 months).  

The successful insertion of a biocompatible material into living tissue with little to no 

evidence of rejection has revolutionized medicine and dentistry. In the 1960s, Brånemark et al. 

stumbled upon this phenomenon when using titanium (Ti) in animal models, with little idea of the 

impact this discovery would have on the rehabilitation of future medical and dental patients. This 

phenomenon, described as “osseointegration”, was characterized by a number of clinical and 

ultrastructural observations. Osseointegration may broadly be defined as the dynamic interaction 

and direct contact of living bone with a biocompatible implant in the absence of an interposing 

soft tissue layer [1-3].  

Although the clinical term osseointegration describes the anchorage of endosseous 

implants to withstand functional loading, it provides no insight into the mechanisms of bony 

healing around such implants. However, in the last decade it became clear that the long-term 

success of dental implants also depends on the complex biointegration of these alloplastic 

materials, which is determined by the responses of the different surrounding host tissues (the 

alveolar bone, the conjunctival part of the oral soft tissues and the gingival epithelium). 

Nevertheless, an understanding of the sequence of bone-healing events around endosseous 

implants is believed to be critical in developing biologic design criteria for implant surfaces. Bone 

growth on the implant surface can be phenomenologically subdivided into three distinct phases 

that can be addressed experimentally [4]. The first, osteoconduction, relies on the migration of 

differentiating osteogenic cells to the implant surface, through a temporary connective tissue 

scaffold. Anchorage of this scaffold to the implant surface is a function of the implant surface 
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design. The second, de novo bone formation, results in a mineralized interfacial matrix, equivalent to that 

seen in cement lines in natural bone tissue, being laid down on the implant surface. The implant surface 

topography determines whether the interfacial bone formed is bonded to the implant. A third tissue 

response, the bone remodelling, creates a bone-implant interface comprising de novo bone formation. 

Treatment outcomes in dental implantology depend critically on the implant surface designs that optimize 

the biological response during each of these three distinct integration mechanisms. 

Today, much effort is devoted to the design, synthesis and fabrication of Ti dental 

implants in order to obtain long term (lifelong) secure anchoring in the bone. Fundamentally, this 

means the ability of then implant to carry and sustain the dynamic and static loads that it is 

subjected to. The bulk structure of the material governs this ability. Evidently, it is important to 

achieve a proper function in the shortest possible healing time, with a very small failure rate and 

with minimal discomfort for the patient. These factors are also important for cost reasons. As 

regards osseointegration, i.e. the formation of a direct connection between the living bone and the 

surface of the load-carrying implants, the important question arises as to how to attain a better 

integration by modification of the implant surface morphology. 

A wide variety of materials have been used to produce endosseous implants [5,6]. 

Currently, Ti and its alloys are the most commonly utilized dental and orthopaedic implant 

materials that meet the most important requirements [7,8]. The properties of Ti and its surface, 

which is covered by a native oxide layer, are appropriate to allow its use as a biocompatible 

material [9]. At a cellular level, the relationship of an implant with the surrounding tissue is highly 

dependent on the interaction between the passive titanium oxide (TiO2) which is formed on the 

surface of a Ti implant, and biological elements such as collagen, osteoblasts, fibroblasts and 

blood constituents [2,10]. The TiO2 layer is very stable, corrosion-resistant and may be 

manipulated to have variable thickness.  

The clinician is often faced with the challenge of identifying the successful 

osseointegration of a dental implant. Clinical success is determined by a lack of mobility and by 

the ability of the implant to resist functional loading (chewing force) without mechanical 

deformation and to transfer the load onto the alveolar bone without deterioration of the bony 

interface [11]. Radiographically, the bone should appear to be closely apposed to the implant 

surface. The resolution currently achievable in medical imaging, however, is several orders of 

magnitude less than what is required to observe a soft tissue cell. Accordingly, radiographic 

assessment alone is unsuitable to determine with certainty whether a soft tissue is present [12]. A 

number of studies have analysed this bone to Ti interface histologically and ultrastructurally, often 
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with inconsistent findings. The difficulty arises primarily with the need to prepare and section the 

specimens without changing or damaging the interface. Recent studies have utilized CT scanning 

to obtain a 3-dimensional picture of the implant interface [13,14].  

 
1.2. Biomaterials used in guided bone regeneration (GBR) 

 
The aesthetic and functional demands of the patients have recently increased enormously. 

In dental implantology, new biomaterials and available surgical techniques furnish excellent 

possibilities. 

However, there are certain fundamental weaknesses in the current technology. Patients must 

have suitable morphology and a sufficient amount of available jawbone for reconstruction to be a 

viable option. After extraction or the loss of teeth for any other reason, the edentulous alveolar ridge 

resorbs. Consequently, its dimensions and morphology, especially as concerns the labial plate, rapidly 

become inadequate for the appropriate accommodation of artificial roots. To preserve the height and 

width of the alveolar bone for future implantation therapy, guided tissue regeneration (GTR) 

procedures are used [15]. 

GBR has become a routinely applied method in dental implantology. Most of the 

dentoalveolar regenerative techniques require osteoconductive material in order to establish new 

bone formation in the necessary anatomical form. GBR is a surgical procedure that makes use of 

barrier membranes to direct the growth of new bone at sites having insufficient volumes or 

dimensions for function or prosthesis placement. GBR is similar to any other GTR utilized in 

dental therapy, but is focused on the development of bony tissues instead of soft tissues of the 

periodontal attachment. At present, GBR is predominantly applied in the oral cavity to support 

new hard tissue growth on an alveolar ridge so as to allow the stable placement of dental implants. 

Used in conjunction with a sound surgical technique, GBR is a reliable and validated procedure [16]. 

Xenograft bone substitutes originate from a species other than human, e.g. bovine. 

Xenografts are usually distributed only as a calcified matrix. Bio-Oss is a safe, effective 

xenograft: a deproteinized, sterilized bovine bone with 75-80% porosity. It is reported to be highly 

osteoconductive and biocompatible. It is known that Bio-Oss serves as a scaffold in GBR, but, 

due to its poor resorbability, it may exert a negative influence on the structure of the newly-

formed bone. The large-mesh interconnecting pore system facilitates angiogenesis and the 

migration of osteoblasts. It has been found clinically that its resorption is very similar to that of 

human bone [17-19]. 
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Pure beta-tricalcium phosphates (TCP-β) such as Cerasorb are widely used 

osteoconductive materials. The chemical characteristics of Cerasorb allow it to resorb completely 

and quite rapidly during new bone formation. This may result in too early resorption in some 

cases without fulfillment of the clinical requirement of the space-maintaining function [20,21]. 

These bone-substitute materials allow targeted bone regeneration as they facilitate construction of 

a base on which implants can be positioned and further stabilized. Cerasorb has good 

osteoconductive and resorption properties [21,23]. Full resorption over a defined period of time, 

with simultaneous transformation into autologous bone, is of particular significance in this 

respect. Because of its rounded surface and chemical composition, Cerasorb is remarkably 

bioinert and is therefore particularly suitable for innovative procedures. The unique open porosity 

structure increases active cellular in-growth and improves nutrition, while the rough surface 

further increases osteoconductivity. The result is the rapid in-growth of local bone and a 

significantly shorter resorption time (6-12 months) compared with other ceramic products [22]. 

Calcium phosphate cements (CPCs, e.g. Vitalos) are an emerging class of bone-substitute 

materials that are capable of rapid setting to a hard mass, providing a scaffold for the bone-

remodelling process. The CPCs synthetic bone graft materials invented in the 1980s, consist 

basically of tricalcium phosphate and anhydrous dicalcium phosphate. Many different 

combinations of calcium and phosphate have been developed as commercial CPC materials [24]. 

Hydroxyl-apatite (HA) is the main component of VitalOs and the primary inorganic 

component of natural bone which makes the hardened cement biocompatible and osteoconductive. 

Over time, CPC is gradually resorbed and replaced by new bone. CPC has two significant 

advantages over pre-formed, sintered ceramics. First, CPC paste can be sculpted during surgery to 

fit the contours of the wound. Second, the nanocrystalline HA structure of the CPC makes it 

osteoconductive, causing it to be gradually resorbed and replaced by new bone. Recent work with 

CPCs has focused on improving the mechanical properties, making premixed CPCs, giving the 

CPCs macroporous properties and seeding cells and growth factors into the cement [25]. 

CPCs are identified as alloplastic materials appropriate for osseous augmentation because 

of the unique combination of osseoconductivity, biocompatibility, mouldability and malleability. 

In contrast with conventional bone graft materials, CPCs can be directly moulded and shaped to 

fill intrabony defects. Moreover newly-developed CPCs are fully injectable, which ensures easy 

handling and appropriate application of these materials [26]. 
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1.3. Surface modifications of Ti implants to improve osseointegration 

 
The biological responses of the surrounding tissues to dental implants are controlled 

largely by their surface characteristics (chemistry and morphology). The biorecognition takes 

place at the interface of the implant and host tissue [27]. Biological tissues interact mainly with 

the outermost atomic layers of an implant, which measure about 0.1-1 nm. The molecular and 

cellular events at the bone-implant interface are not yet fully understood and there are still some 

uncertainties concerning the molecular structure of the bone-implant interface [28,29]. 

The rationale for the surface modification of implants is straightforward: to retain the key 

physical properties of an implant, while modifying only the outermost surface layer to influence 

the bio-interaction. As a result, much research work is devoted to the elaboration of methods of 

modifying surfaces of existing implants (biomaterials) in order to achieve the desired biological 

responses. 

These responses can be several: in a healthy patient it may be a regular osseointegration 

process, but an older or even an ill patient a smaller bone quantity or a not ideal bone quality 

means a handicap in biointegration. These cases are often avoided by appropriate patient 

selection. As the length of the average human lifetime is increasing, more and more people are 

living with missing teeth and in widely differing status of health. There is a demand at present for 

the optimization of osseo/biointegration processes (reducing the 3-6-month healing period) even 

for people in different status of health. 

For dental implants, as for other biomaterials, the bio- and osseointegration processes can 

be controlled at molecular and cellular levels by modification of the implant surface. There are 

various surface-modification possibilities, which are usually subdivided into physicochemical 

and biochemical methods [28]. 

 
1.3.1. Physicochemical methods 

The most common physicochemical treatments are chemical surface reactions, e.g. oxidation, 

acid-etching, sand-blasting, ion implantation, laser ablation, surface coating with calcium phosphate, etc. 

These methods alter the energy, charge and composition of the existing surface, but can lead to surfaces 

with modified roughness and morphology. 

The surface energy plays an important role not only with regard to protein adsorption, but 

also as concerns cell attachment and spreading [30]. The surface charge influences both the 

molecular or cellular orientation and the cellular metabolic activity [31].  



8 
 

The roughness of the implant surface plays a significant role in anchoring cells and 

connecting together the surrounding tissues, thereby leading to a shorter healing period. These 

surfaces display advantages over smooth ones as the area of contact is enlarged by micro-

structuring the implant surface. Acid-etching, sand-blasting and Ti plasma-spraying are typical 

methods for the development of rough surfaces and are well documented with in vitro and in vivo 

methods [32-35]. 

Ion implantation methods are generally used to improve the mechanical quality of an 

implant. For example iridium has been ion implanted in the Ti-6Al-4V alloy to improve its 

corrosion resistance [36] and the implantation of nitrogen into Ti reduces wear significantly [37]. 

To increase the roughness of solid surfaces, a number of laser-based techniques have been 

applied in the last decade [38]. The advantages of using lasers for the ablation of surfaces are the 

precise control of the frequency of the light, the wide range of frequencies available, the high 

energy density, the ability to focus and raster the light, and the ability to pulse the source and 

control the reaction time. Lasers commonly used for surface modification include ruby, Nd:YAG, 

argon, CO2 and excimer [39,40]. Besides the prompt intense heating of the surface, excimer laser 

illumination may further enhance the sterilizing effect in consequence of the high dose in the UV 

range [41]. 

Inorganic materials, such as the bioreactive calcium phosphate (CaP) coatings (or HA), 

have been extensively applied because of their chemical similarity to bone minerals. Several 

studies have shown that these coatings achieve a very intimate contact between the implant and 

bone [42,43]. Clinical investigations have reported a high degree of success with HA-coated 

implants, with a reduction of the healing period [44]. However, in other studies, HA-coated 

implants showed signs of the covering material peeling off from the implant surface, which may 

induce foreign body reactions [45,46]. Furthermore, a long-term clinical study of HA-coated oral 

implants indicated a significantly lower survival rate (77.8% after 8 years) for HA-coated 

implants as compared with TPS-coated (Ti-plasma-sprayed) implants (92.7%) [47]. The 

biodegradation of these coatings may be the reason why HA coatings are no longer the surface 

modifications of choice. 

 
1.3.2. Biochemical methods 

For implants, the goal of biochemical methods is to immobilize peptides, proteins and 

enzymes on the surface in order to induce specific cell and tissue responses (adhesion, signaling 

and stimulation) and to control the tissue-implant interface with molecules delivered there directly [28]. 
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Numerous different biologically functional molecules can be immobilized onto Ti surfaces to 

enhance bone regeneration at the interface of implant devices. One essential aspect is the 

maintenance of the bioactivity (or the recognizable binding site) of these molecules during their 

incorporation into a biomimetic coating. 

CaP coatings and the purely organic components of bone can serve as carrier systems for 

osteogenic drugs, thereby rendering them osteoinductive and osteoconductive. The most 

promising candidates for osteogenic agents are the members of the transforming growth factor-β 

(TGF-β) superfamily, such as bone morphogenic proteins (BMPs).  

Following its successful coprecipitation with the inorganic components and incorporation, 

BMP-2 retains its biological activity in vitro [48]. The application of BMPs to improve the present 

implantation techniques appears rather promising [49,50]. BMPs such as rhBMP-2 (recombinant human 

BMP-2) are growth factors that could be employed to augment the resorbed alveolar ridge prior to 

implantation. 

BMP-2 is a member of the TGF-β superfamily of multifunctional cytokines. Mature BMP-

2 is a homodimer of two subunits, each consisting of 114 peptides [49]. The two chains are held 

together by a single disulphide group. The monomers contain six additional cysteine residues, 

which are involved in three intrachain disulphide linkages. The cysteine residue is characteristic 

of all members of the TGF-β superfamily [51] (Fig. 1 a,b). 

a  b  
Fig. 1a, b  The molecular structure of rhBMP-2 

BMPs induce bone formation and regeneration, and thereby play important roles in repair 

processes. BMP-2 exhibits high osteoinductive properties as it attracts osteoprogenitor cells and 

directs their differentiation into osteoblasts. When used in conjunction with implants, BMPs form 

a monolayer on the surface of the device, which causes cell proliferation, thereby increasing the 

incorporation of the device. Overall, the main effect of BMPs (including rhBMP-2) is the 

stimulation of bone growth through an increase in cell differentiation [52,53]. 

At present, four major strategies exist for organic coating approaches: immobilization of 

extracellular matrix (ECM) proteins (collagen, etc.) or peptide sequences as modulators for bone 
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cell adhesion, deposition of cell signalling agents (bone growth factors) to trigger new bone 

formation, immobilization of DNA for structural reinforcement and enzyme-modified Ti surfaces 

for enhanced bone mineralization [48]. 

Biomolecules can be immobilized by physical absorption (van der Waals or electrostatic 

interactions), physical entrapment (use of barrier systems) and covalent attachment. The selection 

of the immobilization method depends on the working mechanism of the specific biomolecules, 

which dictates, for instance, a short-term, transient immobilization for growth factors and a long-

term immobilization for adhesion molecules and enzymes. 

The cell membrane receptor family of integrins is involved in cell adhesion to ECM 

proteins. These integrins bind to specific amino acid sequences within ECM molecules and in 

particular to the RGD (arginine-glycine-asparagine) sequence. For this reason, the most 

commonly used peptide sequence for surface modification is the above-mentioned cell adhesion motive 

[54,55]. 

Our group has developed a polyelectrolyte (PE) multilayer (ML) surface modification 

involving the alternating adsorption of poly-cations (poly-L-lysine (PLL)) and poly-anions (poly-

L-glutamic acid (PGA)) from aqueous solution onto a charged, solid surface. PE film coatings 

modify the solid/liquid interface in such a way as to ensure a suitable environment for the 

adsorption of proteins. The alternating adsorption technique has been successfully applied in 

different fields of science, as a consequence of its numerous practical applications. It can be 

automated, it involves the use of aqueous solutions, it is environment-friendly, and various 

substrates can be covered with films of readily variable thickness [56]. 

 In consequence of its structural properties, DNA is of high potential for application as a 

biomaterial coating, regardless of its genetic information. Additionally, DNA can be used as a 

drug delivery system since its functional groups allow the incorporation of growth factors. The 

studies by van den Beucken et al. [57] proved that DNA-based coatings improve the deposition of 

CaP.  

 A relatively new approach for surface modification is enzyme-modification of the Ti 

surface to enhance bone mineralization along the implant surface. In particular the enzyme alkaline 

phosphatase (AP) is known to increase the local concentration of inorganic phosphate, and to decrease 

the concentration of extracellular pyrophosphate, a potent inhibitor of mineralization [58]. 

 In the past decade, another viable biomimetic strategy has appeared: organic-inorganic 

composite coatings. These mimic the bone structure, which is composed of an organic matrix 

(90% of which comprises collagenous proteins) and an inorganic CaP phase. Collagen-CaP [59], 
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growth-factor-CaP [60] and PE multilayers-CaP [61] composite coatings have been developed 

and have furnished promising in vitro and in vivo experimental results. 

Many of the above-mentioned biochemical methods are still in the experimental stage and 

the in vivo applications (animal or clinical studies) are still ahead. It is believed that these surfaces 

will make an enormous positive contribution to clinical implant science, especially if the older 

subjects or patients are targeted. Hence, our group has started tests on some of these surface 

modifications and biomaterials by means of animal (rabbit and pig) experiments. 

 
1.4. Animal models for the investigation of osteogenesis and osseointegration 

 
Researchers often use laboratory animals as models of humans. The use of animal models 

in oral health science has increased significantly over the past 20 years. In attempts to understand 

the onset and dissemination of different oral diseases and to identify and develop dental materials 

and methods suitable for the restoration of the damaged tissues, animal experiments are of 

fundamental significance. A specific model is chosen because it is believed to be appropriate to 

the condition being investigated and is thought likely to respond in the same way as humans to the 

proposed treatment for the character being investigated.  

After the model has been chosen, it is essential that any experiments in which it is used are 

well designed, i.e. are capable of demonstrating a response to any treatment applied. If the model 

happens to be insensitive or the experiments are badly designed (e.g. the use of too few animals) 

so that they are incapable of distinguishing between the treated and control groups, the model is 

not appropriate for its purpose.  

When new animal experiments are introduced five key features of the animal models used 

in biomedical research must be considered [62-64]: 

1. There can be substantial asymmetry between the model and the target in the numbers of 

similarities and differences. In theory, the model and the target only need to have a single feature 

in common, but there can be any number of differences. This means that useful models can 

sometimes be highly abstract, such as a mathematical equation or computer simulation. Moreover, 

the more fundamental the biological process, the more likely it is that the animal model and 

humans will respond similarly. 

2. Some differences between the model and the target are necessary; otherwise the animal 

would not be a model. Differences are as important as similarities as they allow us to do things 

with the model which would not be possible with a human. Mice are widely used because they are 
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small and prolific, and their genetics can be manipulated in ways not possible with humans. These 

differences from humans make them more, not less, valuable as models of humans for some 

applications. Characteristics such as a small size may make them unsuitable for other applications, 

e.g. heart surgery or bone surgery. 

3. Models are highly specific to a particular study. Strains of mice and rats which develop 

cancer, heart disease, diabetes or neurological diseases could be of great interest in the study of these 

diseases, but these animals would probably be unsuitable for regulatory toxicology, where long-lived 

strains are usually required. Thus, it is impossible to say whether the rat for example, is a good or bad 

model of humans without specifying the context of the proposed study. 

4. Models need to be validated. Research using animal models usually aims at the 

prediction of a response in humans. When a new treatment for a particular disease or condition is 

developed in animals, clinical trials will normally show whether or not the model was valid. If 

not, it may either be because the model was biologically invalid, or because the experiments in 

which the model was utilized were badly designed. 

5. Models are subject to improvement through further research. Much of animal research 
is aimed at achieving an understanding of the animal as a potential model for particular human 
conditions. Models are not simply found: they need to be developed, and this requires an 
understanding of the biology of the species and the effects of various interventions.  

In investigations of the osseointegration of dental implants and different biomaterials, 

successful research is seldom limited to an anatomical region, such as the soft and hard tissues of the 

mouth. Relevant models are often used to answer more general biological questions. To study bone 

formation and or osseointegration with the application of the maxillofacial region, the long bones 

and the calvarias are often used, and not only the jawbones. 

Bone is a highly differentiated tissue. After an injury, there is a possibility that bone will 

heal not as bone, but as fibrous connective tissue. Undue heat injury increases this risk of 

disturbed bone healing. During surgical interventions in bone, frictional energy generates heat, 

and thereby increases the risk of fibrous bone healing (importance of continuous irrigation!). This basic 

knowledge is of utmost significance in all animal experiments involving bone cutting and drilling. 

The most often used and preferred animal models for investigations of the 

osseointegration of dental implants and the otseogenesis of different bone substitutes are the 

rabbit femur and tibia models [65,66].  

We have used the rabbit femur model to test the otseogenesis of different biomaterials 

utilized in bone substitution and also to study the osseointegration of different biocoated dental 
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implants. Although this model is easy to handle and has made a significant contribution to our 

studies, it presents disadvantages, too. The main drawback of this model is that, as the femur is a 

long bone, the new bone is formed according to endochondral ossification (a cartilage model 

serves as the precursor of the bone), unlike in the skull. The flat bones of the skull and face, the 

mandible and the clavicle are developed by intramembranous ossification. This is a simpler 

method, without the intervention of a cartilage precursor. It is emphasized that these concepts 

(intramembranous and endochondral ossification) refer only to the mechanism by which a bone is 

initially formed. Because of the rapid bone remodelling that occurs during bone development, the 

initial bone tissue laid down by intramembranous or endochondral formation is quickly replaced. 

The replacement bone is established on the pre-existing bone by appositional growth and is identical 

in both cases. 

Another disadvantage of this rabbit femur or tibia model is that, due to the relatively thin 

cortical bone width, during the operative drilling or after the postoperative healing period there is 

a risk of unwanted pathological fractures, especially if the drilling is bicortical (e.g. an implant 

inserted through the width of the long bone), not monocortical.  

In view of these disadvantages of the rabbit femur model, my goal was to develop a new 

animal model in rabbit and pig calvarial bones. 

Calvarial wound models bear many similarities to the maxillofacial region. Both calvarial 

and midfacial bones develop from a membrane precursor, and the calvaria and mandible consist 

of two cortical tables with regions of intervening cancelluos bone. It contains modest amounts of 

bone marrow, which generally facilitates bone formation, although bone marrow is not 

indispensable for bone formation. When the aim is to investigate the pattern of bone formation in 

growth areas, young animals in an intense craniofacial growth period are preferably used. In adult 

animals, the regenerative capacity of the cranium is reduced; this therefore constitutes a suitable 

site for research work on agents for the enhacement of bone repair. Small defects (5 mm in 

diameter) that would correspond to a typical operative defect in clinical maxillofacial surgery 

have been produced and used in rats and rabbits. This size makes spontaneous bone regeneration 

possible, allows an evaluation of the regenerative influence stemming from the implant material 

and of the maturation of the newly formed bone, and permits tests on several implant materials. A 

critical-size defect is a defect that will not heal during the lifetime of the animal. When a defect 

large enough to preclude spontaneous healing is imployed, the osteogenic potential of an implant 

or a graft may be considered unambiguous. The critical-size model allows an assessment of 

whether enhancement of bony regeneration occurs [67-72].  
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We first intented to use a rabbit calvaria model (Fig. 2a,b) for our investigations, but as the 

calvarial bone of the rabbit is quite thin and not wide enough to test an adequate number of grafts 

and implants, we rather chose the Vietnamese-pot-bellied pig calvaria, where we could 

comfortably present 6 critical-size defects (8 mm in diameter and 2 mm in depth) in the parietal 

bone to test the osteogenic potential of different surface-modified implants and grafts used in the 

dental implantology (Fig. 3a,b).  

a      b   
Fig. 2a. New Zealand White rabbit skull; 

 b. in the rabbit calvaria model, a maximum of4 critical-size defects can be developed 
 

a        b  
Fig. 3a. Vietnamese pot-bellied pig skull; b. Vietnamese pot-bellied pig skull with the prepared critical-size defects. In 

the parietal bones 6 wounds, and in the frontal bones 2 additional defects can be drilled 
 

2. Aims and questions to be answered 
 

The aim of my research was to investigate the osseointegration of different surface-

modified dental implants and the osteogenesis of different biomaterials used in GTR in order to 

improve osseointegration. 

This thesis reports on the potential of a mixture of Cerasorb + Bio-Oss, Bio-Oss and 

Cerasorb alone and of BMPs in implantation technology. A further goal was to develop an in vivo 

animal model suitable for the investigation and comparison of the effects of different materials on 

osteogenesis and to determine the most advantageous characteristics of these bone substitutes. BMP 

accelerates, but does not guide new bone formation. Bio-Oss serves as a scaffold, but its 

resorbability is poor, while Cerasorb is a good bone-developing material, but resorbs too early, not 

providing a scaffold for the new bone bridges. Both Cerasorb and Bio-Oss are currently in clinical 
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use, but, as far as we are aware, their effects in a mixture have never been investigated and never 

been compared with those of rhBMP-2 on new bone formation.  

In order to determine the advantageous (osseous) augmentation properties of CPCs, I 

investigated the osseoconductivity, biocompatibility, mouldability and malleability of VitalOs. In 

contrast with conventional bone graft materials, CPCs can be directly moulded and shaped to fill 

intrabony defects. Moreover, newly developed CPCs are fully injectable, which ensures the easy 

handling and appropriate application of these materials.  

As biochemical surface modification is the most important hot topic of Ti dental implant 

development, different surface modifications (PE-ML and Camlog experimental surface) were tested 

with the new animal model (Vietnamese pot-bellied pigs). These studies are a natural continuation of 

the in vitro studies performed by our group regarding the PE-ML surface modification. 

The challenging problems in my work may be summarized as follows: 

• To test different surface-modified implants (discs) and biomaterials which may 

influence osseointegration and osteogenesis.  

• To find the most suitable biomaterial with the most advantageous augmentation 

properties. 

• To develop new, reproducible and efficient animal models suitable for testing 

different surface-modified dental implants and the different osteoinductive and/or 

osteoconductive biomaterials. 

• To find the most efficient method of evaluation of osseointegration and to 

compare the results of histomorphometric, push-out and pull-out experiments. 

 
The animal studies presented in this thesis are of great importance concerning the clinical 

applicability of different biomaterials used in GBR and PE-ML and Camlog experimental surface 

modified implants. 

 
3. Materials and methods 

3.1. Materials 

3.1.1. RhBMP-2 solution and rhBMP-2-coated implants 
These experiments were carried out in cooperation with the Institute of Physiological 

Chemistry, Division of Biochemical Endocrinology, University Clinics of Essen, Germany (Head: 

Professor Herbert P. Jennissen), through a Hungarian–German Intergovernmental S&T 

Cooperation Grant (2003-2004). 
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RhBMP-2 was prepared in E. coli and purified to homogeneity with the objective of the 

production of a very high-grade pure protein species. The biological activity of soluble rhBMP-2 

was assessed with MC3T3-E1 cells by the induction of de novo synthesis of alkaline phosphatase 

[73]. 

 
RhBMP-2-coated implants 

RhBMP-coated Ti specimens (dental implants) were first hydrophilized by treatment 

with chromosulphuric acid (CSA) and then biocoated with rhBMP-2 (200-400 ng/cm2).  

Twenty-eight cylindeórical implants (Camlog, Altatec, Germany) were manufactured 

from commercially pure Ti. The core diameter of the implants was 3.3 mm and the length was 8 

mm. A total of 7 implants were treated with nitric acid, and 7 implants were surface-enhanced by 

a novel procedure with CSA [74]. The treatment of metals with CSA (CSA–Ti alloy) [75] leads to 

ultrahydrophilic (contact angles 0–10°, no hysteresis) bioadhesive surfaces [76]. A total of 14 

surface-enhanced implants were divided into two subgroups and biocoated with rhBMP-2: 7 

implants non-covalently immobilized rhBMP-2 (2.3 µg/cm2), and 7 covalently immobilized 

rhBMP-2 (4.9 µg/cm2) [77]. RhBMP-2 was immobilized by covalent and non-covalent methods 

on these CSA-treated surfaces [75,77,78]. In brief, the implants were assigned to the following 

test and control groups:  

1. group: 7 control implants treated with nitric acid, without BMP-2 

2. group: 7 control implants treated with CSA, without BMP-2 

3. group: 7 CSA-treated implants with non-covalently linked BMP at 2 2.3 µg/cm2 

4. group: 7 CSA- treated implants with covalently bound BMP-2 at 4.9 µg/cm2. 

To control the surface produced, the following “sibling method” was employed: In parallel 

with the preparation of the above dental implants for in vivo experiments, miniplates (10×5×1 

mm) with identical Promote surfaces were surface-enhanced with CSA and coated with 125I-

rhBMP-2 under identical conditions as for the dental implants. In this way, the corresponding 

contact angles, the amount of immobilized rhBMP-2, and the in vitro biological activity [79] 

could be tested before the implants were placed into the animals. Only those dental implants were 

released for implantation whose sibling miniplates reached the standard mentioned above and 

whose surfaces exhibited an intense in vitro bioactivity on fluorescence microscopy [79]. 

All 28 dental implants were prepared under sterile conditions in sterile solutions and 

packed singly in sterile Eppendorf cups. 
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3.1.2. Ti discs with different surface modifications 

Ti discs 8 mm in diameter and 2 mm in height were cut from commercially pure (grade 4) 

Ti rods (Camlog Biotechnologies AG, Switzerland) used for the fabrication of dental implants. 

The surfaces were sand-blasted and acid-etched according to a standardized procedure (Promote). 

This surface served as the control surface. 

We applied two kinds of surface modifications: 

(a) A PE-ML coating was produced by the alternating adsorption of poly-cations (PLL) 

and poly-anions (PGA) from aqueous solution onto a Ti surface. PE solutions were prepared in 

an aqueous buffer solution of 25 mM TRIS (tris (hydroxymethyl) aminomethane, Sigma), 25 mM 

MES (2-(N-morpholino) ethanesulphonic acid, Sigma), and 100 mM NaCl (Fluka), pH 7.4. 

Before the coating, the samples were exposed to treatment in acetone and ethanol for 15 minutes 

consecutively in an ultrasonic bath and then sonicated in ultrapure water three times for 10 min, to 

ensure the cleanliness of the surface of the Ti discs.  

The PE-ML films were formed by the alternating adsorption of cationic PLL (Mw = 30 

000-70 000, Sigma Aldrich, P-2636) and anionic PGA (Mw = 50 000-100 000, Sigma Aldrich, P-

4886) on machined Ti discs. The PE concentration was in all cases 1 mg/ml. Solutions were 

prepared with ultrapure water (Milli-Q-plus system, Millipore), and all buffer solutions were 

filtered before use. 

(b) A Camlog experimental surface modification was produced to increase surface 

hydrophilicity, which is known to improve osseointegration. This surface modification is a modified 

Promote surface. After sandblasting and acid etching with inorganic acids, a further etching step is 

added. Each of the 3 steps creates a special topography to the final surface structure. Sand-blasting 

creates micro-craters with a diameter of 10 to 50 µm. Acid-etching superimposes micropits with a 

diameter of 0.5-2 µm. Final etching leads to an overlaying nanostructure with increased surface 

hydrophilicity. 

 

3.1.3. Biomaterials used in GBR 

We used Cerasorb M, a synthetic TCP granulate (1-2 mm) produced by Curasan 

(Kleinostheim, Germany).  

The applied Bio-Oss, a bovine HA had a granule size of 1-2 mm (Geistlich Pharma AG, 

Switzerland). 

The Cerasorb + Bio-Oss mixture consisted of a 50:50 (v/v %) Bio-Oss and Cerasorb, 

each with a granule size of 1-2 mm of each material. 
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VitalOs is a VitalOs Cement® synthetic and biocompatible CPC (Produits Dentaires, 

Switzerland). Its components: tricalcium phosphate 36%, monocalcium phosphate 23%, dicalcium 

phosphate 11.5%, ultrapure water 27%. 

 
3.2. Animal specimens 

The studies involved adult New Zealand White rabbits and Vietnamese pot-bellied pigs. 

The animal management and the surgical and routine procedures followed “The Guiding 

Principles for the Care and Use of Animals” approved by the Animal Investigation Review Board of 

the University of Szeged, in accordance with the principles of the Helsinki Declaration. 

3.3. Human specimens 

In 17 edentulous healthy patients (10 women, 7 men, with an average age of 52 years), the 

maxillary sinus floor was so atrophied that dental implantation was impossible. The patients were 

fully informed about the surgical intervention, the bone substitute and the implants. All gave their 

written informed constent. The Ethical Committees at Szeged University and Semmelweis 

University approved the research protocol. 

 
3.4. RhBMP-2 experiments 

3.4.1. Experiments with rhBMP-2-coated implants 

We investigated the rhBMP-2 coating on implants with a diameter of 3.3 mm and a total 

length of 8 mm. The goal was to test how the coating accelerates the osseointegration and 

improves implant-bone bond strength and the bone quality around the implants. 14 rabbits 

participated in the experiment, divided into 2 groups.  

 
Surgical procedure 

In the first group (7 rabbits),  7 non-coated control implants treated with nitric acid were 

inserted into the left femurs, and 7 test implants treated CSA and non-covalently linked BMP-2 at 

2.3 µg/cm2 were inserted into the right femurs. 

In the other group (7 rabbits), the same surgical procedure was performed: 7 control 

implants treated with CSA, without a BMP-2 coating were inserted into the left femurs, and 7 test 

implants treated with CSA and covalently bound BMP-2 at 4.9 µg/cm2 were inserted into the right 

femurs. 

Narcosis was induced with a cocktail of 5.0 mg/body mass (bm) kg (0.25 ml/bmkg) 

xylazine (Xylazine 2% inj.), 40.0 mg/bmkg (0.4 ml/bmkg) ketamine (Ketavet inj.) and 0.8 
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mg/bmkg (0.08 ml/bmkg) acepromazine (Vetranquil inj.) intramuscularly. During narcosis the 

rabbits received a Ringer lactate infusion 0.3 ml/min via a cannula inserted into an ear vein. 

After disinfection, isolation and skin incision, the fascia lata was prepared. The femurs were 

visualized by folding the m. tensor fasciae latae and the m. abductor cruris cranialis (Fig. 4a). 
 

a   b    c  
Fig. 4a, b, c 

 
The sites of insertion of the coated and control implants were marked with a round burr in 

the proximal third of the femur, approximately 2 cm distally from the trochanter major of the 

femur. A pilot, a pre- and finally a form drill (Fig. 4 b,c) were then used  to create the bone bed of 

the implant in the femur with irrigation (pilot, pre- and form drills, Camlog Biotechnologies AG, 

Switzerland). The implant was inserted bicortically (Fig. 5a,b). 

 

a  b  c  d  
Fig. 5a, b, c, d 

 
Suturing was performed with absorbable Vicril 5.0, in three layers (fascia lata, 

subcutaneous layers and skin; Fig. 5c,d).  

During the postoperative care, the rabbits received an analgetic (4.0 mg/bmkg (0.8 

ml/bmkg) carprofen (Rimadyl) inj. sc.) and antibiotic support (15 mg/bmkg (0.15 ml/bmkg) 

enrofloxacin (Enroxil) inj. sc.) for 5 days following the operation. 

Sample harvesting 

After 4 weeks of osseointegration, the rabbits were sacrificed under general anaesthesia 

induced with an intravenous injection of an overdose of ketamine.  
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Specimen preparation for histological and histomorphometric evaluation 

For histological evaluation, perfusional tissue fixation (Fig. 6a,b,c) was carried out with 

4% neutral buffered formalin solution, after which the cut specimens were subjected to 

immersional fixation in 4% neutral buffered formalin solution.  

a  b  c  
Fig. 6a. Cannula insertion in the a. abdominalis for perfusion 4% neutral buffered formalin solution; b. specimen 

taking; and c. removed femur specimen 
 

Decalcified paraffin sections, without the osseointegrated implant were prepared using by 

Goldner, Masson-Goldner, haematoxylin-eosin and toluidine blue staining.  

Push-out biomechanical tests 

The push-out test (Fig. 7a,b) is a biomechanical test commonly used for the evaluation of 

osseointegration. We performed these tests to study the quality (i.e. the mechanical strength) of the bone-

implant connection by determining the peak (maximum) values of the push-out curves, measured with a 

Lloyd L1000R instrument (Lloyd Instruments, Segensworth West, UK). This value is the force needed to 

push-out an implant (in our case an osseointegrated control or a BMP-coated implant) from the rabbit 

femur after a 4-week of osseointegration period. Through measurment of the area of the connection 

between the bone and the implant (which is different for each femur), the magnitude of the shear strength at 

the interface can determined. 

In order for such push-out tests to be adequate the axes of the push-out force and the implant 

should coincide and the fixation of the bone segment should be firm enough not to allow any movement 

during the push-out procedure. 

a   b  

Fig. 7a.  Picture of the Lloyd instrument used for push-out evaluation test; b. and the grip, which holds the rabbit 
femur 
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Statistical analysis 

The mean, the standard deviation (SD) and the standard error of the mean (SEM) were calculated. 

The results were analysed by Student’s t-test (STATISTICA 8 software), with p = 0.05 taken as 

the level of statistical significance. 

3.4.2. Experiments with rhBMP-2 solution 

The next animal experiment involved an investigation of the effect and activity of 

rhBMP-2 solution itself. The same surgical protocol was used (section 3.4.1, page 18), but 

instead of a bicortical bone wound, which was suitable for the insertion of the implants, a 

monocortical bone wound was drilled to allow testing of how the rhBMP-2 solution 

influences the bone healing, i.e. the osseogenesis.  

Surgical procedure 

10 rabbits were included in this experiment. They were divided into 2 groups. Again both 

femurs of the rabbits were used. The first group (5 rabbits) received 5 µl of a solution containing 

90 µl rhBMP-2/ml on the test side (right femur), while the other 5 rabbits were injected with 20 µl 

rhBMP-2 solution in the same concentration into the surgically prepared bone wound. The left 

femur was regularly the control side, into which the same amount of buffered physiological 

solution was injected, i.e. the solution which served as carrier for the rhBMP-2.  

The diameter of the monocortical bone wound was 3.3 mm. Implantation drills with 

irrigation were used (pilot, pre- and form drills, Camlog Biotechnologies AG, Switzerland) to 

establish bone wounds of the same size. Spongostan (Johnson & Johnson) was placed into the 

hole and 20 µl rhBMP-2 solution was injected with a sterile pipette onto the Spongostan in the test 

(right) femur. The bone wound was covered with Surgicel (Johnson & Johnson), which was fixed 

around the hole with Histoacryl (Braun) to ensure that the BMP did not leak out. The wound was 

sutured with absorbable Vicril 5.0, in three layers (fascia lata, subcutaneous layers and skin). On 

the control side (left femur), the same procedure was performed, except that the same amount of 

sterile buffered physiological salt solution (the solution which served as carrier for the rhBMP-2) 

was injected into the bone wound.  

Sample harvesting 

After 4 weeks of osseogenesis, the rabbits were sacrificed under general anaesthesia 

induced with an intravenous injection of an overdose of ketamine.  
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Specimen preparation 

For histological evaluation, perfusional tissue fixation (as described previously, page 20) 

was carried out with 4% neutral buffered formalin solution, after which the cut specimens were 

subjected to immersional fixation in 4% neutral buffered formalin solution. The specimens were 

dehydrated and embedded in Technovit 7200VLC resin (Heraeus Kulzer, Germany). Cutting was 

performed with the Exact cutting and grinding system without decalcification [80]. The thickness of the 

sections was 5 µm and the slides were stained with toluidine blue. 

Histology and histomorphometric analysis 

Optical microscopic images (Nikon Eclipse 80i, Japan) were recorded on an Evolution MP 

5.1 Mega-pixel FireWire Digital CCD Color Camera Kit (Media Cybernetics, Inc., USA). 

Measurements were performed with Image-Pro Plus 5.1.1 image-analysing software (Media 

Cybernetics, Inc., USA). 

The histomorphometrical evaluation involved use of the areal bone density, i.e. the ratio of 

the area of newly-formed bone to the total area of the image [81]. This permitted a quantitative 

comparison of the new bone formation in the control and the different types of test bone wounds. 

 
3.5. Experiments with different surface-modified Ti discs 
 

In further experiments, my goal was to test different surface-modified implants (discs) 

and biomaterials which may influence osseointegration. I decided to use the parietal bone of the 

pig, which is a surgical territory relatively easy to reach, where desmogenic ossification occurs, 

similarly to the conditions in the jaws. Moreover, this site is readily accessible for probing the 

effects of the different surface-modified implants or biomaterials on osteogenesis and 

osseointegration. Six 8-mm critical-size bone defects were drilled in the parietal bone of the pig. 

Surgical procedure 

Narcosis was induced with a cocktail of 5.0 mg/bmkg (0.25 ml/bmkg) xylazine (Xylazine 2% inj.), 

40.0 mg/bmkg (0.4 ml/bmkg) nembutal (Nembutal inj.) and 0.8 mg/bmkg (0.08 ml/bmkg) acepromazine 

(Vetranquil inj.) intramuscularly. During narcosis, the pigs received a Ringer lactate infusion therapy 0.3 

ml/min via a cannula inserted into an ear vein. 

After disinfection, isolation and a U-shaped skin incision, the periosteum of the parietal 

bone was prepared. The parietal bone was visualized by preparing the periosteum. Following the 

protocol of bone surgery, a special burr developed for preparing the critical-size bone defects with 

irrigation was used (Fig. 8a). Six bone wounds were drilled into the parietal bone of the animal, 
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which allowed investigations of two different types of test Ti discs (for each type two discs) and 

the remaining two wounds served for the two control Ti discs (sand-blasted and acid-etched 

surface (Camlog-Promote)). After preparation of the bone wounds with a special burr with 

irrigation, the two test Ti discs were inserted, with the surface modification developed by the 

working group of Camlog (Camlog Biotechnologies AG, Switzerland). The purpose of the 

Camlog experimental surface modification was to make the Ti surface more hydrophilic; the 

details of the development have not been published, as the right belongs to the manufacturer.  

The other tested surface modification was PE-ML on the CP4 Ti discs, which was 

assumed to improve the osseointegration (section 3.1.2, page 17). In the remaining two bone 

wounds, the control discs (sand-blasted and acid-etched) were inserted. To evaluate the 

osseointegration of the discs according to standardized parameters, Teflon 

(polytetrafluoroethylene) cylinders were used around the discs and they were also covered with 

Teflon caps. With this procedure, osseointegration of the walls and the top of the discs was avoided 

(Fig. 8b). 

a   b   c   d  
Fig. 8a, b, c, d 

 
The periosteum was enclosed tightly above the discs with Vicril 5.0 absorbable suture 

(Fig. 8c). The skin was sutured with skin suture (Fig. 8d). 

During the postoperative care, the pigs received an analgetic (4.0 mg/bmkg (0.8 ml/bmkg) 

carprofen (Rimadyl) inj. sc.) and antibiotic support (15 mg/bmkg (0.15 ml/bmkg) cephalosporin 

(Zinacef) (Enroxil) inj. sc.) for 5 days following the operation. All the pigs remained healthy and 

the postoperative period was uneventful. 

Specimen preparation 

For histological evaluation, perfusional tissue fixation was carried out with 4% neutral 

buffered formalin solution. The a. carotis and v. jugularis were prepared and the head region was 

washed with 4% neutral buffered formalin solution (Fig. 9a). The cut specimens (containing the 

Ti discs; Fig. 9b) were then subjected to immersional fixation in 4% neutral buffered formalin 

solution. X-ray images were taken to identify the exact locations of the area of interest (Fig. 9c).  



24 
 

a  b  c  
Fig. 9a, b, c 

 
The specimens were dehydrated and embedded in Technovit 7200VLC resin (Heraeus 

Kulzer, Germany). Cutting was performed with the Exact cutting and grinding system without 

decalcification and together with the discs [80]. The thickness of the sections was 5 µm. The 

slides were stained with toluidine blue. 

Histology and histomorphometric analysis 

This was as described previously (see page 22).  

3.6. Bio-Oss experiments 

To test other materials used in augmentation techniques, experiments were continued in 

Vietnamese pot-bellied pigs. The parietal bone of the animal permits at least 6 critical-size bone 

defects (8 mm in diameter and 2 mm in depth). The developed model proved suitable and 

reproducible for other kinds of biomaterials.  

Surgical procedures 

Narcosis was induced with the same procedure as described in section 3.5 (page 22).  

After disinfection, isolation and a U-shaped skin incision, the periosteum of the parietal 

bone was prepared. The parietal bone was visualized by preparing the periosteum (Fig. 10a).  

a    b  
Fig. 10a, b 

 
Following the protocol of bone surgery, a special burr developed for preparing the critical- 

size bone defects with irrigation was used. Six bone wounds (Fig. 10b) were drilled into the 

parietal bone of the animal, which allowed investigations of two test materials (e.g. Cerasorb in 

two wounds, Bio-Oss in two wounds) and the remaining two wounds served as the control bone 
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defects. After prepariations of the bone defects, Bio-Oss mixed with the animal blood was 

inserted in 2 bone wounds (Fig. 11a), the other four bone wounds serving as control or for tets of 

another material. The wounds were covered with Lyoplant membrane (Fig. 11b), a pure collagen 

derived from the bovine pericardium (Braun, Germany). 

a    b    c    d  
Fig. 11a, b, c, d 

 
The periosteum above the wounds was enclosed tightly with Vicril 5.0 absorbable sutures 

(Fig. 11c). The skin was sutured with skin sutures (Fig. 11d). 

During the postoperative care, the pigs received an analgetic (4.0 mg/bmkg (0.8 ml/bmkg) 

carprofen (Rimadyl) inj. sc.) and antibiotic support (15 mg/bmkg (0.15 ml/bmkg) cephalosporin 

(Zinacef) inj. sc.) for 5 days following the operation. All the pigs remained healthy and the 

postoperative period was uneventful. 

Sample harvesting 

To test the difference in the early and late ossification, after 2 and 4 weeks of 

osteogenesis, the pigs were sacrificed under general anaesthesia, induced with an intravenous 

injection of an overdose of ketamine. 

Specimen preparation 

For histological evaluation, perfusional tissue fixation was carried out with 4% neutral 

buffered formalin solution. The cut specimens (Fig. 12a) were then subjected to immersional 

fixation in 4% neutral buffered formalin solution.  

                   a           b  
Fig. 12a, b 

 
X-ray images were taken to identify the exact locations of the bone wounds (Fig. 12b - 

orange circle). The specimens were dehydrated and embedded in Technovit 7200VLC resin 
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(Heraeus Kulzer, Germany). Cutting was performed with the Exact cutting and grinding system 

without decalcification [80]. The thickness of the sections was 5 µm and the slides were stained 

with toluidine blue. 

Histology and histomorphometric analysis 

This was as described previously (see page 22). 
 
 

3.7. Cerasorb experiments 

Surgical procedures 

3.7.1. Pig experiments 

The same pig model and the same surgical procedure were used as for Bio-Oss to test other 

otseoconductive materials, already described above (Fig. 13a,b). 

a    b  
Fig. 13a.  Insertion of Cerasorb; b. inserted Cerasorb 

 
Two different healing periods were chosen: 2 and 4 weeks, to test the difference in the 

early and late ossification. 

Sample harvesting, specimen preparation, histology and histomorphometric analysis were 

performed as previously described in connection with Bio-Oss experiments (see pages                      

22 and 25). 

3.7.2. Human experiments 

 Graft insertion can be one of the alternatives for the augmentation of injured bone. The 

effects of an alloplastic bone-replacing material, TCP-β (Cerasorb), were tested in comparion with 

autologous bone as concerns osteogenesis.  

In 17 edentulous healthy patients (10 women, 7 men, with an average age of 52 years) the 

maxillary sinus floor was so atrophied that dental implantation was impossible.  

Preoperative examinations were performed with panoramic images and CT scans. All 

patients had a bone height in the subantral maxillary sinus floor that was insufficient for dental 

implantation (average 1.9 mm). In all cases, surgery was performed under general anaesthesia 

with an autotransplant from the iliac crest to the control side (3-4 cm3). The Schneiderian 

membrane was elevated by the insertion of Cerasorb (1.5-2 g Cerasorb granules 500-1000 µm in 
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diameter; Curasan AG, Kleiostheim, Germany) on the experimental side, while on the control side 

autogenous bone graft was inserted. After surgery, the healing period was followed both clinically 

and radiologically. After a healing period of 6 months, cylinders were excised from the grafted 

areas immediately before dental implantation; samples were taken from each side the with a 

trephine burr with 2 mm in inner diameter and 3 mm in outer diameter. During the implantation 

procedure, this bone would otherwise have been lost. Ankylos implants (Degusa, Friadent, 

Germany) were then inserted into their places. 

Histology 

For histological and histomorphometric analysis, undecalcified bone samples were fixed 

in 4% buffered formalin for 24 hours and then rinsed thoroughly in running water. The samples 

were dehydrated in ascending alcohol series and then embedded in methyl methacrylate resin at 4 

°C. Histological sections 5 µm in thickness were cut, using a diamond knife. Sections were 

stained with toluidine blue, haematoxylin and eosin and Goldner trichrome for light microscopy. 

Photos were taken by the means of Olympus BH2 microscope equipped with an Olympus DP50 

digital camera (Olympus Optical Company Ltd., Melville, NY, USA) and a Nikon Eclipse 80i 

microscope and Evolution MP 5.1 Mega-pixel FireWire Digital CCD Color Camera Kit (Media 

Cybernetics, Inc., Rochester, NY, USA).  

Histomorphometry 

Histomorphometric measurments were performed according to the principles of Parfitt et 

al. [81]. (Image-Pro Plus 5.1. image-analysing software, Media Cybernetics, Inc., Rochester, NY, 

USA). The density of the newly formed bone was measured via the trabecular bone volume 

(TBV), which was defined as the area of the bone trabeculae to the total area analysed. The 

percentage of the grafted area was also determined. The trabecular bone pattern factor (TBPf) was 

also quantified. This factor marks the microarchitecture of the newly-formed bone. The trabecular 

bone area and perimeter were measured, before and after arithmetic dilatation of the binary image, 

to determine the relation of the convex and concave trabecular structures of the sections. The 

higher the degree of trabecular connectivity, the lower the value of TBPf. 

Statistical analysis 

The mean and the standard deviation (SD) values were calculated. The data obtained were 

analysed by Student’s t-test, with the significance level set at p < 0.05. 
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3.8. Experiments with Bio-Oss + Cerasorb mixture 

Surgical procedures 

The main aim of this study was to establish a gold standard for the artificial bone growth-

accelerating effect of a Cerasorb + Bio-Oss mixture on osteogenesis in order to determine and 

utilize the most advantageous characteristics of these bone substitutes. Bio-Oss serves as a 

scaffold, but its resorbability is poor, while Cerasorb is a good bone-developing material, but 

resorbs too early, not providing a scaffold for the new bone bridges. Both New Zealand white 

rabbits and Vietnamese pot-bellied pigs were involved in these experiments. 
 

3.8.1. New Zealand white rabbit experiment 

The surgical protocol was the same as described previously in connection with the 

rhBMP-2 solution experiments (section 3.4.2, page 21). The diameter of the monocortical bone 

wound was 3.3 mm. A mixture of the bone graft materials Cerasorb + Bio-Oss was inserted into 

the bone wound. The mixture consisted of a 50:50 (v/v %) mixture Bio-Oss and Cerasorb. This 

combination was applied mixed with rabbit blood to fill the 3.3-mm-diameter monocortical bone 

wound in the test (right) femur. On the control side (left femur), the bone wound was simply 

covered with Surgicel (Johnson & Johnson), which was fixed around the hole with Histoacryl 

(Braun). The wound was sutured with absorbable Vicril 5.0, in three layers (fascia lata, 

subcutaneous layers and skin).  

During the postoperative care, the rabbits received an analgetic (4.0 mg/bmkg (0.8 

ml/bmkg) carprofen (Rimadyl) inj. sc.) and antibiotic support (15 mg/bmkg (0.15 ml/bmkg) 

enrofloxacin (Enroxil) inj. sc.) for 5 days following the operation. All the rabbits remained 

healthy and the postoperative period was uneventful. 

Sample harvesting 

After 4 weeks of osteogenesis, the rabbits were sacrificed under general anaesthesia 

induced with an intravenous injection of an overdose of ketamine.  

Specimen preparation and histology and histomorphometric analysis were carried out with the same 

protocol as described previously (see pages 21 and 22). 
 

3.8.2. Vietnamese-pot bellied pig experiments 

For tests of the osteogenic effect of this mixture under desmogenic circumstances (as in 

the oral cavity), the parietal bone of the animal permits at least 6 critical-size bone defects (8 

mm in diameter and 2 mm in depth).  
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The surgical protocol was the same as described previously in connection with the Bio-

Oss (see section 3.6, page 24). Six bone wounds were drilled into the parietal bone of the animal, 

which allowed the investigation of two test materials, and the remaining two wounds serving as 

control bone defects. After preparation of the bone defects, a mixture of the bone graft materials 

Cerasorb and Bio-Oss was inserted into the bone wound. The mixture consisted of a 50:50 (v/v 

%) mixture Bio-Oss and Cerasorb. This combination was applied mixed with the blood of the 

animal to fill two of the critical-size bone wounds (Fig. 14a,b).  

a   b  
Fig. 14a, b. Insertion of Cerasorb and Bio-Oss mixture 

 
The other four bone wounds served as control (two bone wounds) and for tests of another 

material (VitalOs cement). The wounds were covered with Lyoplant membrane (pure collagen 

derived from the bovine pericardium, Braun, Germany). The periosteum was enclosed tightly 

above the wounds with Vicril 5.0 absorbable sutures. The skin was sutured with skin sutures. 

During the postoperative care, the pigs received an analgetic (4.0 mg/bmkg (0.8 ml/bmkg) 

carprofen (Rimadyl) inj. sc.) and antibiotic support (15 mg/bmkg (0.15 ml/bmkg) cephalosporin 

(Zinacef) inj. sc.) for 5 days following the operation. All the pigs remained healthy and the 

postoperative period was uneventful. The healing period was 4 weeks, similarly as in the rabbit 

experiments. 

Sample harvesting, specimen preparation and histology and histomorphometric analysis 

were carried out as described previously (see pages 22 and 25). 
 

3.9. VitalOs cement experiments 

Surgical procedures 

To test the effect of VitalOs CPC on osteogenesis, the same pig model was used as described 

previously. The surgical protocol was the same as detailed in connection with Bio-Oss (see section 

3.6, page 24). Six bone wounds were drilled in the parietal bone of the animal, which allowed the 

investigation of two test materials, and the remaining two wounds serving as control bone defects. After 

preparation of the bone defects VitalOs cement was inserted into the bone wound (Fig. 15a,b). 
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a   b  
Fig. 15a, b.  Insertion of VitalOs. 

 
The other four bone wounds served as control (two bone wounds) and for investigation of 

another test material (Cerasorb + BioOss mixture). The wounds were covered with Lyoplant 

membrane (pure collagen derived from the bovine pericardium; Braun, Germany). The 

periosteum was enclosed tightly above the wounds with Vicril 5.0 absorbable sutures. The skin 

was sutured with skin sutures. The postoperative care was the same as for Cerasorb + BioOss 

mixtur (see section 3.8.2, page 29). The healing period was 4 weeks, similarly as in the rabbit 

experiments. 

Sample harvesting, specimen preparation and histology and histomorphometric analysis 

were carried out as described previously (see page 22 and 25). 

4. Results and discussion 

4.1. Results of rhBMP-2 experiments 

4.1.1. Evaluation of osseointegration of rhBMP-2-coated implants with push-out test 

 After 4 weeks of osseointegration, the animals were sacrificed under general anaesthesia 

and their femurs were removed by surgical intervention. From each group, two kinds of 

evaluation were performed: push-out and histomorphometry. 

 Figure 16a presents typical push-out curves, on both femurs of the rabbit, one curve (blue) 

depicting the data relating to an osseointegrated control implant, and the other (red) the data 

relating an implant covered by rhBMP-2 with covalent binding.
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Fig. 16a. Typical push-out curves; b.  push-out force values for the second group of rabbits. Blue bars indicate the control implants (treated with CSA) and the 

red ones the test implants covered with covalently bound BMP 
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Figure 16b presents the bar-graph of the push-out force values (Fmax (N)) of the second 

group of rabbits. For rabbit no. 12, the force value for the control implant is missing, because the 

femur broke during the 4 weeks bone healing period. In the bar graph, the blue bars denote the 

push-out forces for the control implants (without BMP covering) and the red bars the values for 

the test implants with covalently bound BMP. The average push-out force for the control implants 

was 479.8 ± 53 N (mean ± SEM), while that for the test implants was 381.4 ± 45 N. 

The statistical analysis (Student’s t-test) of the two rabbit groups showed that neither the 

covalently (Fig. 17), nor the non-covalently bound BMP (data not shown) exerted an enhancing 

effect on osseointegration (p = 0.224 and p = 0.886, respectively) under the given experimental 

circumstances. 

 

 

 
Fig. 17.  Box & Whisker plot of control implants (treated with CSA) and test implants treated with CSA and covalently 

bound BMP-2 at 4.9 µg/cm2. 
 

We also compared the two control groups (K-Alta-CSB and K-Alta+CSB) and the two test 

groups (covalently and non-covalently bound BMP), using the Student’s t-test, and we did not 

find a significant difference between them (p = 0.258 and p = 0.784, respectively). On the basis of 

this result, the data for the two test implant groups were combined for the analysis of the interface 

shear strength. 

The measured push-out forces were converted to interface shear strengths. The bar graph in 

Fig. 18 presents the summarized interface shear-strength data, Tmax (MPa), for the control (without 

BMP coating) and test implants (with BMP coating). In order to evaluate and compare the level of 

osseointegration, primary stability tests were also performed with 10 implants. 
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Fig. 18.  Interface shear strength (Tmax (MPa)) values for control and test implants. Primary stability values are also 
shown 

 
According to these results, there was a statistically significant difference (p < 0.05) 

between the shear strengths of the primary stability (1.04 ± 0.2 MPa) and osseointegrated control 

implant groups (5.10 ± 0.3 MPa). Similarly, there was a significant difference (p < 0.05) between 

the interface shear strengths of the primary stability and osseointegrated BMP-covered implant 

groups (4.27 ± 0.4 MPa). Conversely, there was no significant difference between the two 

osseointegrated implant groups: p = 0.139.  

 
4.1.2. Histological and histomorphometric results with rhBMP-2-coated implants  

          and rhBMP-solution 

 
RhBMP-2-coated implants 

The histological evaluation methods (decalcified paraffin samples) and the results of the 

push-out tests in the animal experiments with rhBMP-2-coated implants allowed some 

preliminary conclusions. The histomorphometric results from the first experiment supported the 

outcome of the push-out test: under the given circumstances, the BMP coating on the test implants 

did not exert a significant effect on the osseointegration during the 4-week healing period. 

 
RhBMP-2 solution  

After a 4-week period of healing and osseointegration, the rabbits were sacrificed and 

their femurs were removed. Undecalcified sections were made and revealed the following 

findings: in the control samples, the bone wound was only partially filled with newly-formed 

bone, while the reconstruction of the surgically prepared bone wound was almost completed (Fig. 

19a, orange arrows). The bone at the border of the bone wound showed signs of resorption and 

new bone formation. This was young, immature lamellar bone with centrifugal orientation of the 
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newly-formed bone in the bone wound. The outer layer of the newly-formed bone was younger 

woven bone and cross-oriented. 

 

a   b  
Fig. 19a.  Control sample; b. test, slides stained with toluidine blue (bright field, 1x magnification) 

 
 

In the test samples (Fig. 19b), the original bone wounds could not be detected. The 

surgically prepared bone wound was completely replaced by newly-formed bone. The site of the 

original bone wound could be only discovered from the different histological structures and the 

density of the bone by using polarized light and higher magnification (Fig. 20a,b). 

 

a    b  
Fig. 20a. Centrifugally grown collagen fibres (10 x magnifications, polarized light); b. secondary and primary  

osteons (20 x magnification, polarized light) toluidine blue staining 
 

 
In this repaired area, the centrifugally grown collagen fibres predominated (Fig. 20a). It 

was also very characteristic of this bone specimen that, on the entire inner surface of the cortical, 

endosteal bone formation was seen as a line in tight contact with the old cortical bone. 

Remodelling occurred in all parts of the bone. 

New bone formation was evaluated via the areal bone density (Fig. 21a,b), i.e. ratio of the 

area of newly-formed bone to the total area of the image. This makes it possible to compare the 

bone formation in the control bone wound (where natural bone healing occurs) and in the rhBMP-

2-treated wound in a quantitative way.  
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       a               
Fig. 21a.  Image of the evaluating procedure; b. mean SD values of areal bone density in the control and test groups 

 
With the Image-Pro Plus 5.1.1 image-analysing software, the total area of the bone wound 

was measured; after this, the area of new bone formation was measured in the setout area (Fig. 

25a). These measured areas were transferred into Excel files. For the control samples, the mean 

areal bone density was 34.0 ± 0.1%, while for the test samples it was 2.8 times more: 96.3 ± 4.5%. 

Evaluation of the prepared slides by histological and histomorphometric methods led to 

the conclusion that, in the monocortically drilled bone wound where the rhBMP-2 solution was 

inserted, the closure of the bone wound was almost totally complete. 

 

 
4.2. Results of experiments with surface-modified Ti discs 

 

After a 2-week period of osseointegration, the animals were sacrificed under general 

anaesthesia and the parietal bone segments were removed by surgical intervention. Two types of 

evaluation methods were performed: pull-out tests and histological and histomorphometric 

observations. 

4.2.1. Evaluation of osseointegration with pull-out tests 

The bone segments containing all 6 discs inside were removed (Fig. 22a) and pull-out 

tests were performed (Fig. 22b). 

 

a   b  
Fig. 22a, b 

 

Sample Areal bone density ± SD 
(%) 

Control            34.0 ± 0.1 

Test (rhBMP-2-treated)            96.3 ± 4.5 
b
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For the control discs (Promote surface: sand-blasted and acid-etched), the maximum pull-

out force was 8.7 N (Fig. 23a), while for the Camlog experimental surface discs the corresponding 

value was 10.8 N (notation: D-modified in Fig. 23b), and for the PE-ML discs it was only 2.2 N 

(Fig. 23c). 
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Fig. 23a, b, c   

 
Although we could not perform more measurements in this case, the results of this 

preliminary study permitted the conclusion that the Camlog experimental surface discs presented 

a tendency for enhanced osseointegration, during the 2-week healing period. More experiments 

are needed to allow further conclusions. 

 

 
4.2.2. Histological and histomorphometric results with different surface-modified discs   

After 2-week period of osseointegration the animals underwent perfusional fixation and 

were sacrificed under general anaesthesia, and the parietal bone segments were removed by 

surgical intervention. With the help of Image-Pro Plus 5.1.1 image-analysing software, the area of 

new bone formation was measured on the histological slides. The histomorphometric evaluation 

involved use of the areal bone density [81]. Only the osseointegrated surface was evaluated (Fig. 

24a,b, orange line, box), which was in contact with the bone bed. The teflon cylinder and cap 

prevented osseointegration on the other surfaces of the Ti disc. The measured areas were 

transferred into Excel files. 

a  b  
Fig. 24a, b.  Marked (orange) area indicating the evaluated area 
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Quantitative comparisons were made of the new bone formation in the control and the two 

types of test surface-modified discs were permitted: for the control discs, the areal bone density of 

new bone formation was 42.5%. As may be seen in Fig. 25a, young and thick woven bone 

trabecules were attached to the surface of the Ti. 

The evaluation of the PE-ML-coated discs revealed less new bone formation: the areal 

bone density was 38.8%. The young bone trabeculae were thin and fewer (Fig. 25b), and the 

bone-free areas exhibited numerous macrophages. 

The Camlog experimental surface modification yielded rather promising results: the areal 

bone density was 53.9%, which supports the findings of the pull-out tests. The roughness of the 

disc surface was marked (Fig. 25c) and young woven bone trabeculae could be seen in dense 

compact bands towards the surface. 

a       b  c  
Fig. 25a. Control; b. PE-ML-coated; c. Camlog experimental surface modification discs (bright field, 1x 

magnification, toluidine blue staining) 
 

4.3. Results of Bio-Oss experiments 
 

After 2-or 4-week periods of osseointegration, the animals were sacrificed under general 

anaesthesia and the parietal bone segments were removed by surgical intervention. Histological 

and histomorphometric evaluation methods were performed. 

 As the bone wounds had the same size, with the Image-Pro Plus 5.1.1 image-analysing 

software, the area of new bone formation could be measured properly. This allowed quantitative 

comparison of the new bone formation in the control and the different types of test bone wounds. 

The measured areas were transferred into Excel files.  

In the experiments involving the 2-week healing period, the mean value of the new bone 

formation in the bone wounds of the control group, was 19.1 ± 0.2% (mean ± SD, Fig. 26a). As 

may be seen in Fig. 26b, the bone trabeculae were oriented radicularly towards the surface of the 

bone wound. 
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    a   b  
Fig. 26a. Control (bright field, 1x magnification, toluidine blue staining); b. old (OB) and new bone (NB) contact 

(bright field, 20 x magnification, toluidine blue staining)   
 
In the test samples (Fig. 27a), the new bone formation in the bone wound was not 

significantly higher than in the control: 31.2 ± 2.5% (p = 0.085). The new bone formation, 

together with the Bio-Oss particles, was significantly higher: 46.2 ± 2.8% (p = 0.043). At the 

bottom of the bone bed, around the Bio-Oss particles, new bone was formed with bone bridges 

between the particles (Fig. 27b). 

a              b  
Fig. 27a.  2-week treatment Bio-Oss (bright field, 1x magnification, toluidine blue staining); b. bone bridges between 

the Bio-Oss particles (bright field, 20 x magnification, toluidine blue staining)   
 

The mean areal bone density for the control samples after the 4-week osseointegration 

period was 24.3 ± 5.6% (Fig. 28a). Young immature bone could be detected at the bottom of the 

bone wound (Fig. 28b). 

a               b  

Fig. 28a.  4-week control (bright field, 1x magnification, toluidine blue staining); b. contact of the lamellar new bone 
with the original bone particles (bright field, 40 x magnification, toluidine blue staining)   

 
In the case of the 4-week osseointegration period with Bio-Oss, the bone wound was filled 

with woven bone and Bio-Oss particles (Fig. 29a). It was hard to distinguish between the particles 

and the newly-formed bone (Fig. 29b). The areal bone density, which included the new bone 

formation and Bio-Oss particles, was not significantly higher: 56.5 ± 1.5% (p = 0.056).  

OB 

NB
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a   b  
Fig. 29a. 4-week Bio-Oss treatment (bright field, 1x magnification, toluidine blue staining); b.  new bone formation 

between the Bio-Oss particles (bright field, 20 x magnification, toluidine blue staining)   
 
4.4. Results of Cerasorb experiments 
 

4.4.1. Pig experiments 

Similar osseointegration periods (2 and 4 weeks) and the same evaluation methods were 

applied as described in connection with the Bio-Oss experiments. The control samples were the 

same as for the 2-week healing period for the Bio-Oss samples (mean areal bone density: 19.1 ± 

0.2%). For the 2-week healing period, the areal bone density was significantly higher for new bone 

formation (27.7 ± 1%; p = 0.041) and for the samples including the Cerasorb particles (Fig. 30a): 

50.9 ± 1.2% (p = 0.014). 

a  b  c  d  
Fig. 30a. 2-week Cerasorb treatment (bright field, 1x magnification, toluidine blue staining); b. Cerasorb particles 

with newly-formed bone (bright field, 10 x magnification, toluidine blue staining); c. transition from woven to lamellar 
bone at the osteoblast line (bright field, 20x magnification, toluidine blue staining); d.  osteoid and woven bone (bright 

field, 20 x magnification, toluidine blue staining) 
 

Two-thirds of the bone wound was filled with Cerasorb granules and newly-formed bone 

trabeculae (Fig. 30b). The new bone was a transition between woven and lamellar bone (Fig. 30c). 

Within the densely compacted Cerasorb granules, osteoid and woven bone could be found (Fig. 

30d). 

For the 4-week osseointegration (Fig. 31a), the mean areal bone density did not differ 

significantly from the control value: for new bone formation it was 30.8 ± 0.3% (p = 0.328), and for 

the Cerasorb particles it was 56.0 ± 0.3% (p = 0.074). The control value was the same as in case of 

the 4-week healing period for the Bio-Oss samples (24.3 ± 5.6%). In the test samples, new bone 

formation was more pronounced in the centre of the bone wound. New bone bridges were evident 

between the original and the newly-formed bone (Fig. 31b). 
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a   b  
Fig. 31a. 4-week Cerasorb treatment (bright field, 1x magnification, toluidine blue staining); b.  new bone bridges 

between the Cerasorb particles (bright field, 20 x magnification, toluidine blue staining)   
 

4.4.2. Human experiments 

On the test side (augmentation site), in sections stained with haematoxylin-eosin and 

Goldner’s trichrome method, many graft particles proved to have dissolved. However, their 

previous location could easily be recognized via their characteristic round form (Fig. 32a). 

a   b        c            d  
Fig. 32a. Biopsy taken from the experimental side 6 months after grafting. CG: Cerasorb granule; B: bone; 

ST: soft tissue; H&E staining (scale bar=500 mm); b. biopsy taken from the experimental side 6.5 months after 
grafting; peri- and intragranular bone strands  can be seen; toluidine blue staining, polarized light (scale bar=400 
mm); c.  biopsy taken from the control side 6 months after grafting; B: bone; O: osteoid; BG: bone graft; ST: soft 

tissue, Goldner staining (scale bar=500 mm); d. biopsy taken from the control side 6 months after grafting; bone (B) 
and osteoid (O) production and a focus of the resorbing bone graft (BG) can be seen;  ST: soft tissue, Goldner staining 

(scale bar=200 mm) 
 

After 6 months, the newly-formed, predominantly lamellar bone was tightly intermingled 

with the graft particles at the tissue/graft interface. Bony sheathing of the Cerasorb granules was 

extensive, and where the graft particles had become completely sheathed, the osteoblastic activity 

had disappeared. The graft remnants exhibited achromatic birefringence under polarized light 

(Fig. 32b). 

On the control side, the cancellous bone grafts had undergone considerable resorption by 

the sixth month (Fig. 32c). Graft foci were entrapped in the newly-formed, predominantly mature 

lamellar bone (Fig. 32d). They were homogeneous acellular particles that stained almost like 

living bone. There was a continuous transition at the interface of the cancellous graft and the new 

bone.  

Bone density, graft density, TBPf and bone area were measured in 68 bone biopsy 

samples. The mean bone density for the 17 cases was 32.4 ± 10.8% on the experimental side and 
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34.7 ± 11.9% on the control side; the difference was not significant (p > 0.05). In an 

overwhelming majority of the patients (14 of 17 cases), the intensity of new bone formation was 

similar on the two sides. 

The graft density was markedly higher on the experimental side than on the control side. 

The mean density of the graft area was 13.1 ± 4.5% and 8.2 ± 1.7%, respectively, this difference 

being highly significant (p < 0.001). 

The TBPf values generally displayed an inverse correlation with the bone density: the 

higher the bone density, the lower the TBPf. In 11 of the 17 cases, the TBPf value on the control 

side was lower than that on the experimental side. The mean values were - 0.53 ± 1.74 and - 0.11 

± 1.43 mm-1, respectively, but the difference was not significant (p > 0.05). 

The mean areas of the biopsy samples taken from the two sides were quite similar: 8.85 ± 

1.7 mm2 on the experimental side and 9.12 ± 2.28 mm2 on the control side. 

 
4.5. Results of Bio-Oss + Cerasorb mixture experiments 

4.5.1. New Zealand white rabbit experiment 

After a 4 week period of healing and osseointegration the rabbits were sacrificed and their 

femurs were removed. The control samples were the same as in case of the 4-week healing period 

for rhBMP-2 solution (areal bone density: 34.0 ± 0.1%). In the test samples, the closure of the 

monocortical bone wound (Fig. 33a) was not complete and the areal bone density was 

significantly higher than for the control: 48.7 ± 0.1% (p = 0.005). 

a  b  c  d  
Fig. 33a.  Macroscopic histological slide of the osteogenesis induced by the Cerasorb + Bio-Oss mixture, toluidine 

blue staining; b.  picture of old bone and new bone (bright field, 20 x magnification, toluidine blue staining);   
c. osteobast line (OB);  (bright field, 40 x magnification, toluidine blue staining);  d.  polarized light microscopic 
image (20 x magnification, toluidine blue staining); CG: Cerasorb granules, BG:  Bio-Oss particles, WB:  woven 

bone.  
 
Around the bone substitutes, new bone formation had started, containing bone bridges 

between and around the granules. Mostly young immature woven bone was situated around the 

granules with osteoblastic activity. In Fig. 33b, the border of the old and the new bone can be 

clearly differentiated.   
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In the woven bone (Fig. 33d) an osteoblast line indicated the formation of bone (OB) and 

primary osteons in the lamellar bone. Both Bio-Oss (BG) and Cerasorb (CG) granules were 

visible (Fig. 33c), as a sign that the resorption of the material had not yet finished. At the same 

time, an osteoid bone (woven bone: WB) network could be discerned around the granules. 
 

4.5.2. Pig experiments 

 The osseointegration period was 4 weeks and the same evaluation methods were applied 

as described previously in connection with Bio-Oss and Cerasorb experiments. The control 

samples were the same as in case of the 4-week healing period for the Bio-Oss and Cerasorb 

samples, with an areal bone density of 25.1 ± 1.7%. The corresponding value for the newly-

formed bone (Fig. 34a) was significantly higher (48.3 ± 0.9%; p = 0.014), as was that for new 

bone formation in the presence of Bio-Oss and Cerasorb particles: 57.5 ± 1.1% (p = 0.008) 

 

a   b  
Fig. 34a. 4-week treatment Cerasorb + Bio-Oss mixture (bright field,1x magnification, toluidine blue staining); b. new 

bone bridges between the Cerasorb and Bio-Oss particles (bright field, 20 x magnification, toluidine blue staining)   
 

The network of newly-formed bone could be detected in the two types of bone 

substituents (Fig. 34b). The scalloped surface of the Cerasorb granules could be discerned. The 

peri- and intragranular bone strands were also evident and the woven bone formation was 

prominent. 

Around the Cerasorb and Bio-Oss particles, new bone formation had started. The 

dissolution of the Cerasorb particles was proved by the macrophages around the Cerasorb 

particles. The new woven bone formation was expressed. 

 
4.6. Results of VitalOs experiments 

Pig experiments 

 The osseointegration period was 4 weeks and the same evaluation methods were applied 

as described previously for the Bio-Oss, Cerasorb and Cerasorb + Bio-Oss mixture experiments. 

The control samples were the same as in case of the 4-week healing period with Bio-Oss, 

Cerasorb and Cerasorb-Bio + Oss mixture samples, with an areal bone density of 25.1 ± 1.7%. 
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For VitalOs cement, the areal density of the newly-formed bone, 24.4 ± 1.3%, was not 

significantly different (p = 0.207) from the control value (Fig. 35a).  

 

a   b  
Fig. 35a. 4-week VitalOs treatment (bright field, 1x magnification, toluidine blue staining); b.  fibrotic zone around 

VitalOs (bright field, 20 x magnification, toluidine blue staining)   
 

 
The VitalOs cement was surrounded by woven bone in a ringlike form. This new woven 

bone was rather low in quantity. Between the bone substitute material and the bone, a fibrotic 

zone was formed, which contained granulocytes, macrophages and hystiocytes due to foreign 

body reactions (Fig. 35b).  

 

4.7. Summary of results with different bone substitutes 

 
Tables of mean areal bone densities are presented for different biomaterials. Differences are 

significant at p < 0.05. 

 

New Zealand white rabbit experiment 

 

 

Sample 
Areal 

bone density ± SD 
(%) 

p 

Controls 34.0 ± 0.1  

Rh-BMP-2 solution 96.3 ± 4.5 0.033 

Bio-Oss + Cerasorb 
mixture 48.7 ± 0.1 0.005 
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Vietnamease pot-bellied pig experiments 

 

 Sample 
2 weeks+ 
Areal 
bone density ± SD(%) 

p 

2 weeks- 
Areal 
bone density ± SD(%) 

p 

4 weeks+ 
Areal 
bone density ± SD(%) 

p 

4 weeks- 
Areal 
bone density ± SD(%) 

p 

Control 1 - 19.1 ± 0.2 - 24.3 ± 5.6 

Bio-Oss 46.2 ± 2.8  
0.043 

31.2 ± 2.5 
0.085 

56.5 ± 1.5 
0.056 

37.5 ± 0.8 
0.158 

Cerasorb 50.9 ± 1.2 
0.014 

27.7 ± 1 
0.041 

56.0 ± 0.3 
0.074 

30.8 ± 0.3 
0.328 

Control 2     -     -    - 25.1 ± 1.7 

Bio-Oss+ 
Cerasorb mixture     -     - 57.5 ± 1.1 

0.008 
48.3 ± 0.9 

0.014 

VitalOs     -     -     - 24.4 ± 1.3 
0.207 

2, 4 weeks +: new bone formation together with bone substitute granules 
2, 4 weeks -: new bone formation alone without bone substitute granules 
 

5. Summary and Conclusions 
 

In modern implantology, the need for bone augmentation techniques demands adequate 

osteoinductive and osteoconductive effects from the bone substitutes. It is very important that the 

original form of the bone should be reconstructed and also that an appropriate bone structure 

should be achieved as soon as possible. 

Bio-Oss is a highly osteoconductive xenograft material certified for the regeneration of 

bone defects. In our experiments, we found that it displays very low resorbability and acts as an 

inert scaffold onto which bone-forming cells and blood vessels creep, forming the new bone. The 

areal density value of the new bone formed together with the Bio-Oss particles after 2 weeks was 

slightly higher than the control value, but significantly so. 

Both in human and in animal experiments, Cerasorb seemed to have good bioresorptive and 

osteoconductive properties. In the human experiments, the histologic and histomorphometric 

examination of 68 bone biopsies taken from the 17 cases indicated nearly equal activities of bone 

regeneration on the two sides. The bone density data in the augmented sinus floor were similar, 

irrespective of whether autogenous bone or Cerasorb particles had been applied.  



44 
 

The ideal bone substitute maintains biological support during healing and is gradually 

replaced by the newly-formed bone. We have found that Cerasorb has a higher ’bone induction’ 

capacity than that of Bio-Oss in the early phase (2 weeks) of new bone formation. The areal bone 

density was also significantly higher in the case of new bone formation and for the samples 

including Cerasorb particles. In the late phase (4 weeks) of new bone formation, our results did not 

indicate a better capacity. 

With a combination of the two materials in a Bio-Oss + Cerasorb mixture, we achieved 

rather promising results in both animal models (New Zealand white rabbits and Vietnamese pot-

bellied pigs). In the rabbit femur model, the extent of new bone formation was 1.4 times higher 

when the two bone substitutes were mixed together. In the pig model (4 weeks), the areal bone 

density measurements revealed that the induced osteogenesis was increased 2.3- and 1.9-fold for 

new bone formation together with the granules and without the granules, respectively. The reason 

for this may be that Bio-Oss serves as a scaffold, but its resorbability is poor, while Cerasorb is a 

good bone-developing material, but resorbs too early, not providing a scaffold for the new bone 

bridges. Combining these characteristics of the two materials could give a promising result. 

For VitalOs, the results of our pig experiments did not prove an increased bone formation. 

The application of rhBMP-2 in dental implantology is an alternative to bone grafting in patients 

not originally regarded as candidates. The positive effect of rhBMP-2 solution on osteogenesis is proven 

by the results of our animal (rabbit) experiments. As regards the rate of osteogenesis, significant 

differences were found between the control and the two different test groups. In the rhBMP-2-treated 

rabbit femur, the new bone formation was more enhanced than that due to the effect of the Cerasorb + 

Bio-Oss mixture. It is evident from the measurements that for the test samples, (rhBMP-2 solution 

induced new bone formation) approximately 2.8 times as much new bone was formed as compared with 

the control specimens. The demonstrated efficacy of rhBMP-2 alone on bone regeneration is of great 

importance as concerns its biomedical applications. The combination of an osteoinductive agent 

(rhBMP-2) with a mostly osteoconductive bone substitute (Cerasorb or Bio-Oss) would give a promising 

result for reconstructive bone surgery.  

The histological evaluation methods (decalcified paraffin samples) and the results of the 

push-out tests permitted some preliminary conclusions from the animal experiments with rhBMP-

2-coated implants. The histomorphometric results of this experiment supported the outcome of the 

push-out tests: under the given circumstances, and at the given concentrations, BMP did not 

exhibit a significant effect on osseointegration during the 4-week healing period. The disadvantage 

of using decalcified samples, is that the interface is ruined almost completely on the removal of the 
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implant from the specimen. During decalcification, much valuable information could be lost. In order to 

save the interface, which is the most important and informative part of the samples, the only method that 

should be used is to cut the sample together with the implant, without any decalcification. 

The evaluation of the osseointegration of RhBMP-2-coated implants with push-out tests 

demonstrated a significant difference between the shear strengths in the primary stability and 

osseointegrated control implant groups. Similarly, there was a significant difference between the 

interface shear strengths of the primary stability and osseointegrated BMP-covered implant 

groups. Conversely, there was no statistically significant difference between the two 

osseointegrated implant groups. 

As mentioned in the Introduction of this thesis, most of the surface modification methods 

(physicochemical and biochemical) are in the experimental stage and the in vivo (animal or clinical) 

studies are still ahead. Our group has started to test some of these surface modifications by means of 

animal (rabbit and pig) experiments. Although, we could not perform sufficient measurements to draw 

exact conclusions, we can say that both animal models presented pull-out and push-out preliminary 

results which were in accordance with the findings of the histological and histomorphometric results. 

This strongly suggests that our models are appropriate for these types of studies. Furthermore, these 

experiments showed that there is potential in the Camlog experimental surface modification discs, as 

they presented a tendency for enhanced osseointegration during the 2-week healing period. The PE-

ML modified samples did not afford signs of improving osseointegration. We plan to continue these 

experiments, in order to draw further conclusions. 

As a final conclusion, our results proved that, although the animal models applied (pig and 

rabbit) are appropriate for comparisons of the effects of both osteogenic factors and biocompatible 

graft materials on osteogenesis; the pig calvaria model is more suitable for an analysis of these 

factors, as it is more effective and economical. 
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