Summary of the Ph.D. dissertation

Examination of the ABCB1 transporters in multidrug resistant rat hepatoma cell lines

Ádám Sike

Supervisor: Prof. Dr. Imre Miklós Boros Head of department

Ph.D. School of Biology University of Szeged

University of Szeged Faculty of Sciences and Informatics Department of Biochemistry and Molecular Biology

2014

INTRODUCTION

The continuous increase of cancer incidences is one of the most important issue of mankind. A key factor in the successful chemotherapy in cancer treatment is the effectiveness of the drug used either alone or in combination with radiotherapy or surgery. Often one of the main reasons of failure during chemotherapeutic treatment of a patients is the so called multidrug resistant (MDR) phenotype of tumors. A number of cellular mechanisms have been described to explain the phenomenon of acquired MDR. The classical multidrug-resistant phenotype of tumor cells is acquired via an increased capability of drug efflux by energy-dependent transmembrane transporters. The transporters involved are members of the ABC (ATP-Bindig Casette) protein superfamily. The major physiological function of ABC transporters is to extrude xenobiotics from the cytoplasm, thereby helping cell survival. Grotesquely, cancer cells take advantage of this natural protection mechanism in order to ensure their own survival. For this phenomenon, the increased activity level of the ABC familv member ABCB1/MDR1/P-gp protein is responsible. A number of different mechanisms have been described which might result in an increased ABCB1 activity level. In drug resistant cell lines, gene amplification, chromosomal translocation and mRNA-stabilization can contribute to elevated ABCB1 protein levels. On the other hand, changes in the transcription activation of the ABCB1 gene can also play an important role in this process since several transcription factors, tumor suppressors, oncogenes and epigenetic factors and modifications (histone acetylation, DNA methylation) influence the transcription of the gene.

I used multidrug resistant rat hepatoma cell lines to explore the molecular mechanisms underlying MDR, in particular, I was interested to determine the role of histone acetylation in the developement of multidrug resistant phenotype. In my experiments I used multidrug resistant cell lines which showed medium (col500) and high (col1000) level resistancy. These cell lines were selected from a dexamethasone-resistant hepatoma clone 2 (D12) by increasing the concentrations of colchicine. Previous studies have demonstrated that the drug-selected cells overexpress *Abcb1* mRNAs and display resistancy to structurally unrelated drugs.

AIMS

In order to study the role of different mechanisms, especially histone acetylation on the elevated ABCB1 expression in multidrug resistant rat hepatoma cell lines, I aimed to answer the following questions:

- Does the elevation of ABCB1a and/or ABCB1b transporteractivity responsible for the development of MDR phenotype? Does the elevated activity of ABCC1 play a role in MDR?
- 2. What is responsible for the elevated ABCB1 activity
 - the amplification of *Abcb1a* and *Abcb1b* genes
 - the stabilization of *Abcb1a* and *Abcb1b*-related mRNAs
 - transcription activation of *Abcb1a* and *Abcb1b* genes?
- 3. What is the relationship between alterations in the transcription of *Abcb1* genes and alterations in the chromatin structure caused by changes in histone modifications?
- 4. Can *Abcb1* expression be altered by modification of histone acetylation pattern using histone deacetylase inhibitor?

MATERIALS AND METHODS

- Determination of the activity of transporter-proteins by calcein-assay method

- Examination of gene expression by quantitative real-time PCR (QPCR)

- Determination of ABCB1 protein-levels by Western blot analysis

- Comparsion of RNA stability

- Examination of the Abcb1 regulatory regions by sequencing

- Transfection of reporter plasmids and luciferase activity measurement

- Determination of H3K9 acetylation by chromatin immunoprecipitation

RESULTS

1. Transporter proteins responsible for MDR phenotype

At first, I characterized the transporter activities of the studied cell lines. I found that the activity of the ABCB1 transporter is significantly higher in the drug resistant cells as compared to the sensitive D12 parental cell line. This result is in accord with the observations of those who established the cell lines. Surprisingly, drug selection did not increase, rather decreased the activity of the ABCC1 transporter. In drug sensitive D12 cells a higher activity of this transporter was detectable as in the resistant cell lines, in which this transporter was nearly inactivated. In rodent genomes, there are two genes encoding homologues of the major human drug transporter ABCB1. The contributions to drug resistency of the two transporters encoded by these genes were not distinguished previously in the cell lines I used. Therefore I found it important to compare their activities. I found that the activity of ABCB1a was decreased in the drug resistant col500 and col1000 cells as compared to the drug sensitive D12 cell line. In contrast, the activity of ABCB1b was increased in both drug-resistant cell lines as compared to the sensitive cell line. In summary, based on these data I concluded that the ABCB1b transporter has the major contribution to the MDR phenotype of the studied drug-resistant rat hepatoma cells.

2. Several mechanisms contribute to incresed ABCB1 activity

Since high drug efflux activity may result from several mechanisms affecting Abcb1 gene expression and/or ABCB1 activity, next I compared the mRNA levels of Abcb1a and Abcb1b by quantitative RT-PCR. I found that Abcb1a and Abcb1b mRNA levels differed significantly in the parental D12 cell line, being the level of Abcb1a-specific mRNA nearly thirty-fold higher than that of Abcb1b. In the drug-resistant col500 and col1000 cell lines, increased mRNA levels suggested that both genes were upregulated. Curiously, while the mRNA level of Abcb1a was higher than that of Abcb1b both in the parental and the resistant cell lines, the increase of Abcb1b expression in drug-resistant versus parental cells was considerably higher than that of Abcb1a. Determination of ABCB1 transporter protein levels by Western blot confirmed that the resistant cell lines had slightly higher ABCB1b amount compared to the sensitive D12 cells, while the expression level of ABCB1a differed only very modestly between sensitive and resistant cells.

Many factors may contribute to the elevated *Abcb1* mRNA levels in drug resistant cell lines. Among these, one possible reason for *Abcb1* overexpression can be gene amplification. However, I observed only small fluctuations in the quantity of the *Abcb1* genomic regions (this did not reach a two-fold difference) between D12 and the resistant cell lines. Therefore, I concluded that gene amplification alone is an unlikely cause of *Abcb1* overexpression in the studied rat hepatoma cell lines, as the differences in mRNA levels were much higher than one would expect based on the observed small differences in copy numbers. Another possibility of increased *Abcb1* mRNA levels could be stabilization of *Abcb1* mRNAs in the drug-resistant cell lines. This, however also not a reason for the drug resistancy since I detected only very modest differences in the decay of *Abcb1a* mRNA between drug-sensitive and resistant cell lines. On the other hand, *Abcb1b* transcript levels in actinomycin D-treated col500 and col1000 cells were higher than in the parental D12 cell line at almost each time point tested. However, the increases of mRNA half-lifes in the drug-resistant cells cannot serve as an explanation for the 5-20 times higher mRNA levels detected in these cells.

Since data from neither gene amplification nor mRNAstability experiments could explain the elevated mRNA-levels, next I compared the transcription rate of *Abcb1* genes. For this I compared the levels of unprocessed *Abcb1a* and *Abcb1b* pre-mRNAs. I detected elevated pre-*Abcb1a* and pre-*Abcb1b* levels in col500 and col1000 cell lines compared to the parental D12 cells. These data therefore suggest that *Abcb1* genes are transcriptionally up-regulated in drug-resistant cells. This could serve as the main contribution to the elevated mRNA-levels in these cells.

3. Histone modifications which are influence the expression of *Abcb1* genes

For transcription factors regulating Abcb1 expression it is critical to gain access to their binding sites, which is highly affected by the chromatin structure. In recent years, the roles of DNA methylation and histone acetylation in the regulation of Abcb1 gene expression have been intensively studied. Using drug-sensitive and drug-resistant human breast carcinoma cells, it has been shown that the level of acetylated H3K9 was increased in the promoter region of the intensively transcribed MDR1 gene in drug resistant cells compare to sensitive ones. Despite the fact that MDR1 gene expression was considerably higher in resistant cells, surprisingly I found that the acetylated H3K9 levels in the initiator regions of both Abcb1 genes were similar in the sensitive and resistant cell lines. This suggests that an increased level of acetylated H3K9 at the promoter is not associated with Abcb1 up-regulation in the col500 and col1000 cells. The level of acetylated H3K9 was higher in the Abcb1a initiator region than in the initiator region of Abcb1b. This observation correlates well with the amount of the mRNAs transcribed from the genes. These results might suggest that H3K9 acetylation is important for the up-regulation of *Abcb1a* relative to *Abcb1b* in all cell lines, but the H3K9ac levels do not correlate with the expression levels of the *Abcb1* genes in the different cell lines.

4. The effect of histone deacetylase inhibitor treatment on the expression of *Abcb1* genes

There is a widely accepted model, which states that there is a hierarchical relationship between DNA methylation and histone acetylation, being methylation is dominant over acetylation. According to this model, the methylation status of the *Abcb1* genes has to be low in the studied three hepatoma cell lines, because all of them express these genes. Consequently, histone deacetylase inhibitor treatments should cause transcription activation of both genes in these cell lines, as methylation will not interfere with the gene activation resulted from elevated histone acetylation upon HDACi treatment. To test this hypothesis, I treated the cells with trichostatin A, a well-known HDACi. In the case of Abcb1b, I detected the expected affect of TSA-treatment: the mRNA level was considerably higher in the treated cells compared to the untreated ones in all cell lines. On the contrary, in the case of Abcb1a the mRNA level was unexpectedly lower in the treated cells. A comparison of Abcb1 pre-mRNA levels in TSA-treated versus untreated cells indicated that the histone deacetylase inhibitor affected the transcription of the two Abcb1 genes differently: it decreased the expression of *Abcb1a* and in parallel it increased the expression of *Abcb1b* in the parental and the drug-resistant cell lines as well.

SUMMARY

In this dissertation several lines of evidence are provided for the complicated and complex regulation of the overexpression of ABCB1 transporters, which are play an important role in the development of MDR phenotype of cancer cells. In the studied rat hepatoma cell lines, Abcb1a and Abcb1b mRNA levels increased significantly with drug resistancy compared to the parental drug sensitive D12 cell line. I concluded that gene amplification alone is an unlikely cause of *Abcb1* overexpression, however, in the case of Abcb1b, an increase of mRNA half-life might contribute to elevated mRNA levels in the drug-resistant cells. Abcb1 genes are transcriptionally up-regulated in col500 and col1000 cells, which could serve as the main contribution to the elevated mRNA-levels in these cells. H3K9 acetylation has an important role for the upregulation of Abcb1a relative to Abcb1b in all cell lines, but the H3K9ac levels do not correlate with the expression levels of the Abcb1 genes in the different cell lines. The histone deacetylase inhibitor treatment affected the transcription of the two MDR1 genes differently in the studied cell lines: it decreased the expression of Abcb1a and in parallel it increased the expression of Abcb1b, however, it did not significantly influence the drug efflux activity of rat hepatoma cells.

LIST OF PUBLICATIONS

Publication related to the thesis:

Ádám Sike^{1*}, Enikő Nagy^{1*}, Balázs Vedelek¹, Dávid Pusztai¹, Anikó Venetianer³ and Imre M. Boros^{1, 2, #} **mRNA levels of related** *Abcb* genes change opposite to each other upon histone **deacetylase inhibition in drug-resistant rat hepatoma cells** PLOS ONE 9:(1) pp. 1-12. (2014) **IF: 3,730**

Other publications:

Ildikó Huliák^{1*}, **Ádám Sike**^{1*}, Sevil Zencir^{2*} and Imre M. Boros^{1, 3, #} **The objectivity of reporters: interference between physically unlinked promoters affects reporter gene expression in transient transfection experiments** DNA and Cell Biology 31:(11) pp. 1580-1584. (2012) **IF: 2,344**

Sevil Zencir¹, Adam Sike[†], Melanie Dobson[‡], Ferhan Ayaydin[§], Imre Boros[†], || ¹, and Zeki Topcu^{¶,1} Identification of transcriptional and phosphatase regulators as interaction partners of human ADA3, a component of histone acetyltransferase complexes BJ Gene 450:(2) pp. 311-320. (2013) IF: 4,654

*Co-first author

Total impact factor: 10,728