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Preface

An increasing amount of data is stored in electronic form. This phenomenon

increases the need of the methods that help to access the useful pieces of in-

formation that are hidden in ocean of the collected data. That is, methods to

perform automated data processing are needed. The role of machine learning

is to provide methods that support this progress, i.e. it provides algorithms

that can automatically discover those hidden and non-trivial patterns in data

that are useful for us.

In the focus of this thesis stands a special family of machine learning al-

gorithms referred to as support vector-based learners. These algorithms are all

based on the so-called maximal margin heuristic, which helps to select the fi-

nal model from the suitable ones preserving the generalization ability of the

model. These methods are quite general, and they have a numerous amazing

properties like generalization capability or robustness to noisy data. However,

to apply them to a specific task it is needed to adapt them to that particu-

lar task. This is challenging since the inappropriate adaptation can result in

a drastic decrease in prediction performance or in the generalization capabil-

ity; or cause a computationally infeasible situation (e.g. huge computational

complexity or untreatable network load in a distributed setting).

The goal of this thesis is to examine the suitability and adaptability of
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various support vector-based learning methods in numerous learning tasks

and environments. During this, novel techniques and ideas, which are less

frequent or maybe surprising, are investigated and discussed. The consid-

ered tasks themselves touch a wide range problems like time series forecast-

ing, opinion mining, collaborative filtering, and the common binary classifica-

tion problem. An uncommon computational environment is also concerned,

namely the fully distributed environment.

Róbert Ormándi, July 2013.
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CHAPTER 1

Introduction

More and more data is accumulated around us. The year 2012 was called the

year of “big data” meaning that various tools become easily available for man-

aging very large-scale data, while the storage of data is getting cheaper and

cheaper. This phenomenon—although the problem of machine learning has

long been considered fundamental—continuously increases the need for ma-

chine learning algorithms that work properly on specific tasks, and operate ef-

ficiently in unusual settings (like in distributed computational environments),

since without these algorithms we simply cannot extract useful information

from the data. That is, without the appropriate application of machine learn-

ing algorithms, we are not able to utilize that large amount of data. However,

achieving these goals is still challenging, since the inappropriate adaptation of

a learning algorithm to a specific task can yield models that are far from the

optimal ones. On the other hand, the naive adaptation of the algorithms can

result in unexpected effects within the system that applies them (like huge,

unbalanced load in a distributed system).

The aim of this thesis is to present various approaches which help achieve

these goals (appropriate adaptation of the algorithms in terms of both algorith-
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mic and system aspects) related to a specific learning algorithm family, referred

to as support vector-based learners1. That is, we investigate the adaptivity of sup-

port vector-based learners to various tasks and computational environments.

The main “take-home message” of the thesis can be summarized as follows.

One can achieve significant improvements through applying powerful basic

ideas, like the maximal margin heuristic of support vector-based learners, as

building-blocks, and careful system design.

The thesis starts with an introductory chapter (Chapter 2), which sum-

marizes the necessary background information related to support vector ma-

chines and fully distributed systems.

The main part of the thesis can roughly be divided into two distinct parts.

In the first part (Chapters 3-5), we investigate the algorithmic adaptivity of sup-

port vector machines. That is, we focus on how we can adapt the basic idea of

support vector-based learners, the maximal margin heuristics, to develop ef-

ficient algorithms to a wide-range of applications, like time series forecasting

(in Chapter 3), domain adaptation (in Chapter 4), and recommender systems

(in Chapter 5). The general work-flow here is that we consider a task, inves-

tigate the special aspects of the given problem, propose an algorithm which

utilizes the observed characteristics of the problem by applying the maximal

margin heuristics, and finally evaluate the algorithm in thorough empirical

experiments against the state-of-the-art, and often idealized baselines. During

the algorithm design, we take into account the computational efficiency, and

other practical aspects of the proposed algorithms to get a practical result.

Chapter 3 provides an extension for the Least Square Support Vector Ma-

chine, which is more suitable for learning time series. After providing the

details of the algorithm, the evaluation of the method follows against several

baselines on three widely used benchmark datasets.

In Chapter 4, a general domain adaptation mechanism is proposed with

two distinct instantiations (one of them is based on support vector machines).

Then, the evaluation points out that while both instantiations outperform the

baseline methods, the support vector-based approach is a more suitable choice

1The main concepts and properties of the algorithm family are detailed in Chapter 2.
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Table 1.1: The relation between the chapters of the thesis and the referred pub-
lications (• denotes the basic publications, while ◦ refers to related publica-
tions).

Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7
ICDM 2008 [89] •

TSD 2010 [91] •
EUROPAR 2010 [92] •

WETICE 2010 [90] •
EUROPAR 2011 [93] • •

CCPE 2012 [94] •
SASO 2012 [55] ◦ ◦

SISY 2012 [53] ◦ ◦
EUROPAR 2012 [54] ◦ ◦

ICML 2013 [114] ◦ ◦

from the instantiations.

The next chapter (Chapter 5) has a twofold contribution. First, it proposes

an unusual use-case of the support vector machine to validate the learnabil-

ity of a recommender database generated from implicit user feedback. Sec-

ond, it investigates how we can adapt the centralized collaborative filtering

approaches in a fully distributed setting. In this way, this chapter relates to

both parts of the thesis.

In the second part of the thesis (Chapters 5-7), we turn to examine the sys-

tem model aspect of adaptivity. In this part, our main question is how we can im-

plement support vector-based learning algorithms in a specific system model

that is radically different from the usual ones.

In Chapter 6, we carefully define the addressed system model, referred to

as fully distributed system model. Then, we propose a gossip-based support

vector implementation called P2PEGASOS. The basic idea of the protocol is that

online support vector models take random walks in the network while update

themselves using the training samples available in the nodes. The algorithm

has some notable properties, like fast convergence speed, applicability of fully

distributed data (that is, there is no need to move the data from the nodes of

the network), simplicity, and extreme tolerance to various network errors (like

message drop and delay).
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In the following chapter (Chapter 7), we improve significantly the P2PEGA-

SOS algorithm by introducing a general ensemble learning component which

increases the convergence speed of the algorithm by an order of magnitude

while keeps all the original advantages. Here we provide a proof of the con-

vergence of the algorithm.

Each chapter of the thesis is based on at least one accepted publication.

Tab. 1.1 shows the relation among the chapters of the thesis and the more im-

portant1 publications.

1For a complete list of publications, please visit the corresponding section of my website:
http://www.inf.u-szeged.hu/~ormandi/papers

http://www.inf.u-szeged.hu/~ormandi/papers


CHAPTER 2

Background

This work involves some topics that are based on common results from the

field of machine learning and distributed systems. These topics clearly have

a crucial role in understanding our results. So, we dedicate this chapter to

overview some of the most important concepts from these fields.

In the next sections, we briefly introduce the problem of supervised learn-

ing and show the classic way of how the Support Vector Machines [24, 31, 119]

learning algorithm tackles this problem. This overview gives us the key insight

to understand the basic concepts of support vector-based learning. Later in this

chapter, we turn to discuss the basics of the fully distributed systems. Here, we

briefly overview the concept of overlay networks and describe two particular

unstructured overlay network management protocols, called NEWSCAST [64],

and T-MAN [63], respectively, which are used intensively in the later chapters

of the thesis.

We want to emphasize that the results described here have been achieved

by others.
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2.1 Supervised Learning

Let us assume that we are given a labeled database in the form of pairs of fea-

ture vectors and their correct labels, i.e. D = {(x1, y1), . . . , (xn, yn)}, where

xi ∈ R
d and yi ∈ L. The constant d is the dimension of the problem (the

number of features) and L denotes the set of labels. We distinguish between

supervised regression problem and classification problem. When the range of

labels is continuous e.g. L = R, we talk about regression. However, when it

is discrete and finite, i.e. L = {C1, . . . , Cl}, we refer to the problem as classifi-

cation where the number of classes is l. The special case of classification when

the number of possible class labels equals to two is called binary classification

problem. In this case we assume that—without the loss of generality—the set

of labels is L = {−1,+1}. Slightly different learning algorithms can be ap-

plied for regression and classification, but the goal is similar in the case of both

problems.

The main goal of supervised learning (including classification and regression)

can be defined as follows. We are looking for a model f : R
d → L that correctly

predicts the labels of the available feature vectors, and that can also general-

ize well; that is, which can predict unseen examples too. The generalization

property of the model is crucial since a trained model is mainly used for pre-

dicting of unseen examples. To be able to achieve generalization it is assumed

that the unseen examples come from the same probability distribution than

those were used for training. This is one of the main assumptions of machine

learning [84].

During the training phase, a supervised learning algorithm seeks for a suit-

able model from a predefined (by the training algorithm itself) model space

called hypothesis space. This phase can be thought of as an optimization pro-

cess, where we want to maximize prediction performance, which can be mea-

sured via, e.g. the number of feature vectors that are classified correctly over

the training set. The search space of this problem is the hypothesis space and

each method also defines a specific search algorithm that eventually selects one

model from this space keeping in mind the preservation of the generalization

property of the model.



7 CHAPTER 2. BACKGROUND

Training algorithms that process the training database as a continuous stream

of training samples (i.e. stream of (xi, yi) pairs) and evolve a model by updat-

ing it for each individual training sample according to some update rule are

called online learning algorithms. These algorithms are often used in large scale

learning problems [78], there is no need for storing the whole training database

in the memory.

In various machine learning tasks, the available training data is often par-

titioned into a training set and an evaluation set. In this case we assume that

during the training phase the algorithm accesses only to the training set and

the evaluation set is completely hidden.

2.1.1 Support Vector Machine

In the previous section, we introduced the main concepts of the supervised

learning. Here we discuss a particular supervised learning algorithm family—

namely the family of Support Vector Machines (SVMs) [24, 31, 119]—which

plays a central role in this work.

The name SVM or more generally support vector-based learning refers to

a supervised learning family instead of a particular algorithm [31]. The al-

gorithms belonging to this family were designed around a central idea called

maximal margin heuristic. The basic idea of support vector-based learning is

pretty simple: find a good learning boundary while maximizing the margin

(i.e. the distance between the closest learning samples that correspond to dif-

ferent classes). In this way, each algorithm that optimizes an objective func-

tion in which the maximal margin heuristic is encoded can be considered a

variant of the SVMs. In the following, to show some interesting properties

of SVMs, we briefly discuss a particular SVM classification algorithm (and its

soft-margin and kernel-based extensions).

Let us assume that we are in a binary classification setting, i.e. we have a

set D of training samples containing n pairs in the form (xi, yi) where xi ∈ R
d

and yi ∈ {−1,+1}.

In its simplest form the SVM is expressed as a hyperplane parametrized by

the normal vector (that is orthogonal to the hyperplane) of the plane (w ∈ R
d)
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and a scalar (b ∈ R). Given such a hyperplane the model of the SVM is written

in the following form:

f (x) =sign(wTx + b). (2.1)

The geometrical interpretation of this kind of model is pretty clear: the

model assigns label −1 to the inputs that are below the hyperplane and +1

that are above.

During the training phase the SVM seeks for the appropriate parameters

that separate the training samples and maximize the margin. Formally it is

done by searching in the space of canonical hyperplanes [31] corresponding to

the training set D. It is easy to see that a hyperplane with parameters (w, b) is

equally expressed by all pairs of (λw, λb) parameters where 0 < λ ∈ R. Let us

define a canonical hyperplane to be such that separates the training database

correctly with a distance of at least 1, i.e.:

wTxi + b ≥ 1 when yi = +1,

wTxi + b ≤ −1 when yi = −1 for each sample 1 ≤ i ≤ n
(2.2)

or in a more compact form:

yi(w
Txi + b) ≥ 1 for each sample 1 ≤ i ≤ n. (2.3)

Given a canonical hyperplane (w, b), we can obtain the geometrical distance

from the plane to a data point xi by normalizing the magnitude of w:

dist ((w, b), xi) =
yi(w

Txi + b)

‖w‖
≥

1
‖w‖

. (2.4)

As one can see, the geometrical distance between the canonical hyperplane

(w, b) and each training point xi can be bounded by the reciprocal of the norm

of w.
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The SVM training algorithm wants to maximize the margin, i.e. the geo-

metrical distance between the closest training points from the opposite classes

in the space of canonical hyperplanes [31]. Given a canonical hyperplane

(w, b)—based on the bound in Eq. 2.4—the margin is at least 2
‖w‖

i.e. to max-

imize it, the training algorithm has to minimize the quantity ‖w‖ or equally
1
2‖w‖

2 (to get a more handy objective function).

Based on the definition of the canonical hyperplanes and the above ob-

served bound on the margin, we can easily formalize the optimization problem

of the SVM:

minimizew,b
1
2
‖w‖2

subject to yi(w
Txi + b) ≥ 1 (for each 1 ≤ i ≤ n).

(2.5)

As one can easily notice that the above defined optimization problem is

pretty restricted in the sense, it is only defined for separable training sets (be-

cause of the concept of canonical hyperplanes). Extending this optimization

problem to the so-called soft-margin [31] optimization can overcome this prob-

lem. To achieve this we introduce a non-negative ξi ∈ R (1 ≤ i ≤ n) slack

variable for each condition of the above defined optimization problem. For a

given condition i, this variable models how that condition violates the condi-

tion of being a canonical hyperplane, i.e. the error corresponds to be canonical

hyperplane. By introducing the slack variables, we tolerate some error in those

conditions. However, if we want this error to be as small as possible, we have

to extend the objective function as well by adding the slack variables to it.

Based on the introduction of slack variables, we get the soft-margin optimiza-

tion form of SVM classification:

minimize
w,b,ξ

1
2
‖w‖2 + C

n

∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi and ξi ≥ 0 (for each 1 ≤ i ≤ n).

(2.6)

Here the C ∈ R is a hyperparameter which could be considered as a trade-
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off between the error minimization and margin maximization.

During the SVM training we have to solve the optimization defined in

Eq. 2.5 or Eq. 2.6. Now let us focus on the more general soft-margin form. The

original form of this optimization problem showed above is called primal form.

Numerous methods exist that solve the optimization problem in this original

form [26]. However in some scenarios (e.g. in centralized computation mod-

els), there are some advantages—most importantly, one can apply the kernel-

based extension that introduces nonlinearity into the approach [24, 119]—of

transforming this form to the so-called dual form.

The dual form of Eq. 2.6 is found by first taking the Lagrangian of the opti-

mization problem:

L(w, b, ξ, α, ν) =
1
2
‖w‖2 + C

n

∑
i=1

ξi

−
n

∑
i=1

αi(yi(w
Txi + b)− 1 + ξi)−

n

∑
i=1

νiξi

αi ≥ 0 (for each 1 ≤ i ≤ n)

νi ≥ 0 (for each 1 ≤ i ≤ n).

(2.7)

Then by differentiating with respect to w, b and each element of ξ (i.e.

respect to the non-Lagrangian variables), imposing stationarity, resubstitut-

ing the obtained constraints into the primal, and applying the Karush-Kuhn-

Tucker (KKT) complementary conditions [24, 119], we eventually get the fol-

lowing dual form:

maximizeα −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjx
T
i xj +

n

∑
i=1

αi

subject to
n

∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C (for each 1 ≤ i ≤ n).

(2.8)

This is a so-called quadratic programming (QP) problem in the variable α ∈

R
n. It is a quite general optimization problem having a unique and globally

optimal solution [18]. Numerous efficient techniques have been developed to
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solve QP problems [18] and some of them scale well with the size of training

database. Nevertheless, the size of this optimization problem is very large

(since usually it is n≫ d), which often causes serious problems in practice.

Additionally, from the derivation of the primal equations, it can be seen

that the optimal hyperplane can be written as:

w⋆ =
n

∑
i=1

α⋆

i yixi

b⋆ =
1
n

n

∑
i=1

1− yiw
⋆Txi

yi

(2.9)

where α⋆ ∈ R
n is the optimal solution of the dual problem. That is, the vector

w⋆ is the linear combination of the training examples [24, 119]. Moreover, it

also can be shown (based on the KKT conditions [119]) that only the closest

data points (that are called support vectors) contribute to w⋆ (i.e. have a value

α⋆

i > 0). Subsequently, the non-support vectors have a coefficient α⋆

i = 0 and

can be skipped from the model. This leads to the sparse solution [119] of the

model:

f (x) =sign( ∑
(xi ,yi)∈SV

α⋆

i yix
T
i x + b⋆) (2.10)

where SV ⊆ D denotes the set of support vectors, where usually |SV| ≪ |D|.

The above defined dual representation learns a robust and sparse linear

model. But what if the relation between the data and the labels is strictly non-

linear? The kernel representation offers a solution to tackle with the nonlinear-

ity by projecting the data into a higher dimensional feature space to increase

the representation power of the linear learning machine. That is, we apply a

φ : R
d → R

h nonlinear transformation, where h ≫ d, to change the represen-

tation of each data point x ∈ R
d.

Mapping the data onto a higher dimensional space each time when we

need it would be computationally inefficient. But one can easily recognize that

the only way in which the data appears in the training problem in Eq. 2.8, and
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in the model in Eq. 2.10 is in the form of inner products (xT
i xj). Now suppose

we first transformed the data to the higher dimensional features space, using

a mapping φ defined above. Then the training algorithm would only depend

on the data through dot products in that feature space, i.e. on functions of the

form φ(xi)
Tφ(xj). By defining the kernel function K(xi, xj) = φ(xi)

Tφ(xj) we can

avoid the explicit computation of mapping φ. This procedure is called kernel-

based learning and can increase the representation power of SVMs strictly

without significantly increasing the computational complexity. This is why it

is pretty often applied together with support vector-base learning algorithms.

Other advantage of the application of kernels is that it can be considered as

an external component of the learning which can be modified without modify-

ing the learning algorithm itself. Different kernels exist and the construction of

the kernels is theoretically well-studied (see e.g. Mercel-theorem [31]). Kernels

that are used very often are the polynomial kernel, and the RBF kernel [31],

however, kernels for specific tasks exist as well like the alignment kernel (e.g.

for time series forecasting), string kernels, and graph kernels [31, 33].

The above described variant of SVM deals with classification problems.

This model applies a possible formalism of the central idea (margin maximiza-

tion) which has extension to the soft-margin optimization to become a more

general learning approach, and the kernel-based extension, which is applica-

ble to be capable of handling nonlinear relations. However, the basic concept

of maximal margin classifiers can be easily formalized in a different way [112]

or can be extended to regression problems [31] as well.

2.2 Fully Distributed Systems

In the later part of the thesis, we will move our system model from the tradi-

tional random access stored program machine (RASPM) [52]—where you have a

single computational unit (CPU), with a central memory—to the so-called fully

distributed environments.

These systems are networked environments which contain usually a large

number of units, called nodes, that are capable of local computation and can

communicate with other nodes using the network. We assume that the sys-
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tem consists of a potentially very large number of nodes, typically personal

computing devices such as PCs or mobile devices. We do not assume any ho-

mogeneity between the nodes. They can be different in their computational

power, operating system, or any other characteristics. But we expect that most

of them know and run the same protocol (excepting for a few number of mali-

cious users, which usually can be tolerated in this type of systems1).

Each node in the system has a unique network address. We assume that

a particular node knows the addresses of a constant number of other nodes,

called neighbors. The number of neighbors is much less than the size of the

network (due to memory limitations), but the set of neighbors can vary in time.

If a node A knows the address of node B, we say that node B is connected to

node A (connectivity relation).

The communication is done by message passing between connected nodes

without any central control (fully distributed aspect). That is, every node can

send messages to every other node, provided the address of the target node is

available. We assume that messages can have arbitrary delays, and messages

can be lost as well (failure scenarios). In addition, nodes can join and leave at

any time without warning (churn), thus leaving nodes and crashed nodes are

treated identically. Leaving nodes can join again, and while offline, they may

retain their state information.

The graph defined by the computational units as nodes, and the connec-

tivity relations as edges is called overlay network. The communication is com-

pletely based on this graph, since it is a central component of each fully dis-

tributed system. The overlay networks are provided by middleware services,

called peer sampling services [64]. The peer sampling service is itself a dis-

tributed protocol. In the following, we briefly overview two widely used un-

structured peer sampling protocols that are used intensively in the later chap-

ters.

1This perspective of the fully distributed systems is not investigated here.
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Algorithm 2.1 Skeleton of NEWSCAST and T-MAN protocols
1: n← initNeighbors()
2: loop
3: wait(∆)
4: p ← selectPeer(n)
5: send (n ∪ currNode()) to p
6: end loop

7: procedure ONRECEIVENODES(nodes)
8: n← updateNeighbors(n ∪ nodes)
9: end procedure

2.2.1 Overlay Management

In Alg. 2.1, one can see the basic skeleton of both the NEWSCAST [64] and T-

MAN [63] protocols. The algorithm handles a set of node descriptors, stored in

variable n, which contains the addresses (and other node related data) of the

nodes known by the current node. The connectivity relations (and so the over-

lay itself) is defined by these node descriptor sets. Each node in the network

runs the same protocol. Through the run of the protocol, these sets are ex-

changed between the nodes to obtain the required overlay network based on

local communication.

The algorithm is divided into two distinguished sections: the active behav-

ior (left hand side code snippet) and an event handler function (right hand side

code snippet; ONRECEIVENODES function). The active behavior consists of an

initialization part and an infinite loop defining periodic activities. The node

descriptors are initialized (at line 1 of Alg. 2.1) by applying a node cache or

other bootstrap service. The main part of the active behavior consists of a se-

quence of periodic activities inside a loop executed in each ∆ time moment (at

line 3 of Alg. 2.1). In each active execution, the protocol selects a node stored

in its own node descriptor set (at line 4 of Alg. 2.1, based on the abstract func-

tion SELECTPEER). Then, it sends its node descriptor set, extending with its

own descriptor (proposed by the CURRNODE function), to the selected node

(at line 5 of Alg. 2.1).

When a node descriptor set is received, the mechanism defined in the event

handle function, called ONRECEIVENODES, is executed. The function takes the

received node set and updates its own set by applying the abstract function

UPDATENEIGHBORS (at line 8 of Alg. 2.1).

The proposed skeleton is abstract in the sense that the additional informa-



15 CHAPTER 2. BACKGROUND

Algorithm 2.2 The NEWSCAST protocol
1: procedure SELECTPEER(nodes)
2: node ← uniRand(nodes)
3: return node
4: end procedure

5: procedure UPDATENEIGHBORS(nodes)
6: nodes ← nodes − {currNode()}
7: s← sort nodes by field ts
8: return topK(s)
9: end procedure

10: procedure CURRNODE()
11: d←initDesc()
12: d.ts ← current time
13: return d
14: end procedure

tion stored in the node descriptors is not mentioned1, and it contains three

functions that are not yet defined (however, their semantic roles are clearly

discussed above).

The NEWSCAST [64] protocol is yielded if one implements the abstract func-

tions as defined in Alg. 2.2. Here it is assumed that the node descriptors are

extended with a timestamp field, denoted by ts in the pseudo code, containing

the time moment when the node descriptor is created by the function CUR-

RNODE() (at line 12 of Alg. 2.2). In the case of the NEWSCAST protocol, the

update method selects the top-k most freshest node descriptors from the set

of received and owned node descriptors providing a continuous sampling of

the probably online nodes. The function SELECTPEER supports this behavior

by providing uniform random selection from the available node descriptors.

Thus, the NEWSCAST protocol results a dynamic overlay.

The selection of the top-k elements is necessary to avoid the continuous

growing of the node sets (at line 8 of Alg. 2.2). This results that the overhead

of the protocols consists of sending one message of a constant size to a node

periodically. Here k is the parameter of the protocol.

It can be shown that, through the set of node descriptors proposed by the

NEWSCAST protocol, each node can request uniform random samples of the

nodes in the network that are likely to be online at the time of the request [64].

This protocol has been extended to deal with uneven request rates at different

1We assumed earlier only that the address of the node is stored; however, to achieve con-
crete algorithms, other information could be needed as well.
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Algorithm 2.3 The T-MAN protocol
1: procedure SELECTPEER(nodes)
2: node ← argmaxo∈nodes(s(currNode(), o))
3: return node
4: end procedure

5: procedure UPDATENEIGHBORS(nodes)
6: (nodes ← nodes ∪ {r random nodes})
7: nodes ← nodes − {currNode()}
8: s← sort nodes based on s (currNode(), .)
9: return topK(s)

10: end procedure

11: procedure CURRNODE()
12: d←initDesc()
13: fillCharacteristics(d)
14: return d
15: end procedure

nodes, as well as uneven distributions of message drop probabilities [116].

For discussing the T-MAN [63] protocol, let us assume that the node de-

scriptors contain the characteristics of the users1 that use them, and a s : node

descriptor × node descriptor → R similarity measure is given which can mea-

sure some kind of higher order similarity (e.g. similarity in taste or behavior

of users) between two users based on the information that can be found in the

node descriptors.

We can obtain the protocol T-MAN by defining the abstract functions of

Alg. 2.1 in the way given in Alg. 2.3. The active behavior of the protocol selects

the most similar node (at line 2 of Alg. 2.3) to the current node from the set of

node descriptors available locally (through the SELECTPEER implementation).

Through the update, the protocol retains the most similar k nodes to the cur-

rent node by sorting the incoming nodes based on the function s(currNode(), .)

(at line 8 of Alg. 2.3) varying only in its second argument (as a partially called

function, that is, function of one variable). The function CURRNODE is respon-

sible for creating the node descriptor of the current node. Here the node related

characteristics are loaded by the function call FILLCHARACTERISTICS at line 13

of Alg. 2.3. The details of this function are application dependent, hence we do

not discuss it here.

Applying the above mentioned mechanism, this protocol converges to the

1We could say feature vectors of the users if we want to apply the terminology of super-
vised learning mentioned in Sec. 2.1.
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similarity overlay of the given measure. That is, an overlay which contains

edges to the most similar nodes based on the similarity function s. The speed

of the convergence is pretty fast; it is O(log(n)) per node [63]. Considering

that the nodes of the network are individual computation units, i.e. this is an

asynchronous parallel network, this is a very efficient solution.

The protocol is often extended with an optional modification shown at

line 6 of Alg. 2.3. Here we add r random node descriptors to the original set

making the protocol more explorative. The samples can be provided by e.g.

a NEWSCAST protocol instance which runs on each node separately from the

T-MAN protocol. Here r is another parameter of the protocol.

Numerous other overlay management protocols exist. Here we just high-

lighted two of them that are used intensively in the later chapters. For a more

detailed description of the above discussed protocols, please read [63, 64].
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CHAPTER 3

VMLS-SVM for Time Series Forecasting

In the automated data processing the time dimension appears very often. Basi-

cally each post that we share in the social network sites, each financial trans-

action that we execute during each payment, and any activities that are per-

formed on the web are stored together with the timestamp when the data was

produced. Later this huge amount of time related data is used by data-driven

companies to optimize their future revenue by making better decisions related

to their business model [45].

The processing of this type of data quite often involves the problem of time

series forecasting. Here we want to build statistical models based on the cur-

rently available data which make accurate predictions on the future. The appli-

cations of these models are almost as diverse as the variety of the related data-

sources mentioned above. You can easily find applications in finance where

the goal is to predict the changes of the markets, and entertainment where we

want to know e.g. how our social network will look like in the near future [66].

However time series forecasting problems are quite common, the appro-

aches that deal with it usually come from the field of regression. These mo-

dels—however they perform very well in general regression tasks—often lack
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of those design principles that make really accurate in these type of tasks.

For these reasons, in this chapter we propose a novel extension to the Least

Squares Support Vector Machines (LS-SVM) [112, 113]. This extension, called

Variance Minimization LS-SVM (VMLS-SVM) [89], refines the objective func-

tion of the original LS-SVM by introducing another parameter. The modifica-

tion is based on the preliminary observation that underlines the importance of

the variance term of the error function. We describe the theoretical details be-

hind the extension, and through a series of empirical evaluation we show that

it has a crucial role in solving time series forecasting tasks. We briefly discuss

the effect of the new parameter, and show how you can fine-tune it to avoid

overfitting.

The results of this chapter are based on our recent work published in [89].

3.1 Related Work and Background

Times series can be modelled by a large class of models which can be roughly

divided into two main subclasses, namely linear models and nonlinear ones.

The linear models (such as autoregressive (AR) models [19, 70], linear regres-

sion [29]) have been extensively investigated and are quite advanced, but they

only work well when the data dependency is closely linear.

The neural network based regression models can overcome these weak-

nesses i.e. they can model nonlinear relations. Both the Artificial Neural Net-

works (ANN) [42] and the Radial Basis Function Neural Networks (RBF) [104]

are commonly used in time series forecasting. Although they have some in-

herent drawbacks, such as the problem of multiple local minima, the choice of

number of hidden units, and the danger of overfitting. These problems often

make the use of neural network based approaches a bit difficult.

The application of SVMs in regression setting [31] (or SVRs as often re-

ferred) can avoid these problems by having unique and globally optimal so-

lution [31] and only one hyperparameter (C ∈ R, the margin maximization

trade-off, for more details see Sec. 2.1.1, particularly e.g. Eq. 2.6). Additionally,

they usually achieve a better generalization by applying the margin maximiza-

tion technique than the traditional neural networks. Another advantage of the
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SVM approach is the applicability of the kernel-trick which makes it more prac-

ticable. A slight drawback of training a classical formalized SVM is that it

solves a linearly constrained QP problem in the size of training examples, n,

which can be huge.

LS-SVM does not have this latter problem. This approach is a reformu-

lation of the principles of SVM, which applies equality instead of inequality

constraints. Based on this, its solution follows from a linear KKT [112] system

instead of a computationally hard QP Problem [24, 119].

To give a little insight to the main concept of the LS-SVM formalism, sup-

pose that we are in a supervised regression setting and given a training set

D = {(x1, y1), . . . , (xn, yn)} ⊆ R
d × R. With LS-SVM, one considers the fol-

lowing optimization problem (primal form):

minimizew,b,e
1
2
‖w‖2 + C

1
2

n

∑
i=1

e2
i

subject to yi = wTφ(xi) + b + ei (for each 1 ≤ i ≤ n),

(3.1)

where φ : R
d → R

h is the feature mapping, C is a trade-off parameter between

generalization and the error minimization, and ei ∈ R (0 ≤ i ≤ n) are the error

variables (their roles are similar to the slack variables in the case of classic SVM

formalism detailed in Sec. 2.1.1).

In the case of LS-SVM the model is given by:

f (x) = w⋆Tφ(x) + b⋆, (3.2)

where w⋆ ∈ R
h and b⋆ ∈ R are the solutions of the optimization problem

defined in Eq. 3.1.

The result of the optimization problem is obtained by taking the corre-

sponding Lagrange function, differentiating it, and establishing stationarity

constraints, which results the following linear equation system:

(

0 1T

1 Ω + 1
C I

)(

b

α

)

=

(

0

y

)

, (3.3)

where y = (y1, . . . , yn)
T, α = (α1, . . . , αn)

T, 1T = (1, . . . , 1) ∈ R
1×n and Ω ∈
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R
n×n where Ωi,j = φ(xi)

Tφ(xj) = K(xi, xj) (for each 1 ≤ i, j ≤ n). From the

result of the dual problem the optimal solution of the original problem can be

computed by w⋆ = ∑
n
i=1 αiφ(xi).

This formulation is quite simple and—as one can see above—the method

has all of the advantages of SVM, like the applicability of the kernel-trick and

it has a unique solution. Moreover, in the case of LS-SVM, the solution comes

from solving a linear system of equations, not a quadratic one, which results

in an increased efficiency in the computation of the model. But LS-SVM has

also one slight drawback. While the classic SVM chooses some samples from

the training data (the support vectors) to represent the model (that is, it has a

sparse solution shown in Eq. 2.9), the LS-SVM uses all the training data to pro-

duce the result. Sparseness can also be introduced with LS-SVM by applying

a pruning based method to select the most important examples [37, 74].

The model is quite general in the sense that it can also be shown to have

a connection with regularization networks [41]. When no bias term is used

in the LS-SVM formulation, as proposed in Kernel Ridge regression [107], the

expression in the dual form corresponds to the Gaussian Processes [123].

3.2 VMLS-SVM

Essentially VMLS-SVM is an extension of LS-SVM, where the objective func-

tion of optimization is refined by adding a weighted variance minimization

part. The motivation behind this modification is a preliminary observation

which can be explained as follows: if two time series forecasting models are

given with the same error, usually the better is the one that has a smaller vari-

ance, i.e. the one that can produce a smoother fitting. Applying the proposed

modification, we can adjust the weight of the variance term of the error func-

tion as well with an additional hyperparameter.

Now let us describe this method in detail. Suppose that we have a training

set D, like that defined in the previous subsection. Next, let us express the
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optimization problem of VMLS-SVM in the following way:

minimizew,b,e
1
2
‖w‖2 + C

1
2

n

∑
i=1

e2
i + D

1
2

n

∑
i=1

(

ei −
1
n

n

∑
j=1

ej

)2

subject to yi = wTφ(xi) + b + ei (for each 1 ≤ i ≤ n),

(3.4)

where φ, C and ei (1 ≤ i ≤ n) are the same as those of LS-SVM (see Eq. 3.1)

and the D parameter is a trade-off between generalization and variance mini-

mization. The regression function is the same as before, hence it is defined by

Eq. 3.2.

As in the case of LS-SVM, the solution of Eq. 3.4 is obtained from the corre-

sponding dual problem:

L (w, b, e, α) =
1
2
‖w‖2 + C

1
2

n

∑
i=1

e2
i + D

1
2

n

∑
i=1

(

ei −
1
n

n

∑
j=1

ej

)2

−

n

∑
i=1

αi

(

wTφ(xi) + b + ei − yi

)

.

(3.5)

The optimal solution of this function can be obtained by demanding that

the following conditions be satisfied:

∂L (w, b, e, α)

∂w
= 0→ w =

n

∑
i=1

αiφ(xi), (3.6)

∂L (w, b, e, α)

∂b
= 0→

n

∑
i=1

αi = 0, (3.7)

∂L (w, b, e, α)

∂ei
= 0→ αi = (C + D) ei −

D

n

n

∑
j=1

ej for each 1 ≤ i ≤ n, (3.8)

∂L (w, b, e, α)

∂αj
= 0→ wTφ(xj) + b + ej = yj for each 1 ≤ j ≤ n. (3.9)

From Eq. 3.7 and 3.8 we get the following:

0 =
n

∑
i=1

αi = (C + D)
n

∑
i=1

ei − D
n

∑
j=1

ej = C
n

∑
i=1

ei. (3.10)
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This constraint is encoded in the first equation of the final equation system

presented in Eq. 3.13. The additional constraints can be observed by perform-

ing the following. For each 1 ≤ j ≤ n, replacing w in Eq. 3.9 with the right

hand side of Eq. 3.6, and then replacing αi with the right hand side of Eq. 3.8.

After this manipulation, we get:

n

∑
i=1

(

(C + D) ei −
D

n

n

∑
k=1

ek

)

K(xi , xj) + b + ej = yj. (3.11)

With some additional algebraic manipulation, we arrive at the following:

n

∑
i=1

[

(C + D)K(xj, xi)−
D

n

n

∑
k=1

K(xk, xj)

]

︸ ︷︷ ︸

Ωj,i

ei + b + ej = yj. (3.12)

This constraint is encoded in the jth equation (row) of the final equation

system shown below in Eq. 3.13.

Using Eq. 3.10 and Eqs. 3.12 (for each 1 ≤ j ≤ n) we get the following

equation system (these equations do not contain the variables w and α since

they were eliminated):

(

0 CT

1 Ω + I

)(

b

e

)

=

(

0

y

)

, (3.13)

where 1, y are the same as in Eq. 3.3, CT = (C, . . . , C) ∈ R
1×n, and Ω ∈ R

n×n

where Ωj,i is defined in Eq. 3.12. By solving this equation system, we obtain

the optimal solution of the original optimization problem defined in Eq. 3.4.

Now the regression function becomes

f (x) =
n

∑
i=1

[

(C + D) e⋆i −
D

n

n

∑
j=1

e⋆j

]

K(xi, x) + b⋆, (3.14)

where e⋆ ∈ R
n, and b⋆ ∈ R are the solutions of the equation system shown in

Eq. 3.13.
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3.2.1 How Our Method Is Applied to Time Series Forecasting

In the above subsection we introduced the details of VMLS-SVM as a regres-

sion method. Let us now turn to discuss how we applied this method for

modelling time series. A time series is a sequence of vectors, x(t), t = 0, 1, . . .

where t represents the elapsed time. For the sake of simplicity, we will con-

sider only sequences of scalars here, although each technique can be readily

generalised to vector series.

For us, time series forecasting means predicting the value of a variable

from a series of observations of that variable up to that time. Usually we

have to forecast the value of x(t + k) from the following series of observa-

tions: x(t), . . . , x(t − N + 1). Formally this can be stated as: find a function

fk : R
N → R to obtain an estimate of x at time t + k, from the N time steps

back from time t. Hence for each time moment t

x(t + k) = fk(x(t), . . . , x(t− N + 1)). (3.15)

The observations (x(t), . . . , x(t− N + 1)) constitute a window and N is re-

ferred to as the window size. The technique which produces all the window-

value pairs as training samples for a regression method is called the sliding

window technique. This technique slides a window of length N + 1 over the full

time series and generates the training samples in the following form for every

possible value of i:

(xi, yi) = (x(t + i− N + 1), . . . , x(t + i), x(t + i + k)) , (3.16)

where N − t− 1 ≤ i, xi ∈ R
N, and yi ∈ R. In this way the size of the window

(N) determines the dimension of the regression problem (d).

3.3 Experimental Results

We performed experimental evaluation on several benchmark databases in dif-

ferent settings. Before we turn to present our results, we summarize shortly

how we performed these evaluations.



3.3. EXPERIMENTAL RESULTS 26

In order to perform time series forecasting using the VMLS-SVM method,

we employ the sliding window technique described in the previous subsection

which produces an initial training database. Afterwards, our system applies a

normalization on the input databases.

In our tests, we experimented with three types of kernels for the LS-SVM

and VMLS-SVM. These were the following: Polynomial kernel, RBF kernel,

Alignment kernel for time series [33]. The first two kernels are general pur-

pose, well-known kernels. The last one is especially designed to apply on

sequential data like time series. It applies a Dynamic Time Warping based

alignment of the samples.

3.3.1 Parameter Selection

As one can see, the VMLS-SVM has two hyperparameters, which makes it

more complicated to fine-tune the method and avoid overfitting. Here we de-

scribe shortly how we set these parameters.

In our first tests on the first two benchmarks, we applied a simulated an-

nealing based [71] optimization method, called parameter optimizer, which

optimized the parameters of the underlying learning method. This parame-

ter selection method can be viewed as a function minimizing method, where

the input of objective function is the parameter of the underlying learner. The

value of the function is the aggregated error of the underlying method on a

fixed validation set. Of course, the underlying regression method was trained

on a different, but also fixed training set using the input of the objective func-

tion as parameters. The applied error measure depends on the database eval-

uation metric, i.e. it is always the same as the error measure of the evaluation

process. The stopping criteria of the parameter selection method was deter-

mined by visual inspection, i.e. when the error was quite small and it did not

decrease, we stopped the process.

Using this optimization technique, we get a sequence of parameter sets,

which was provided by the parameter optimization method. This revealed a

trend of a correct parameter setup. Afterwards, we carried out some manually

parameterized tests, using experiments from the automatic parameter selec-
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tion. These tests were evaluated on the evaluation set, which is completely

different from the training and validation sets.

3.3.2 Results on CATS Benchmark

The CATS benchmark [40] is a publicly available database for time series fore-

casting. It was made for a competition organized during the IJCNN’04 con-

ference in Budapest. This artificial time series has 5,000 data points, among

which 100 are missing. The missing values are divided into 5 blocks, elements

between 981-1,000, 1,981-2,000, 2,981-3,000, 3,981-4,000, and 4,981- 5,000.

The goal of the competition was to predict these 100 missing values. Twenty-

four teams participated and seventeen of them uploaded acceptable predic-

tions. The evaluation metric was the mean squared error (MSE) metrics:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (3.17)

computed on the 100 missing values as evaluation set.

In order to make a comparison, we decided to use the LS-SVM and our

VMLS-SVM in the same way. We defined twenty different prediction functions

based on Eq. 3.15. In this setup the first prediction function ( f1) was used to

predict the first missing value, the second prediction function ( f2) was used to

predict the second missing value, and so on. Each prediction function used the

same parameter setting, which was provided1 by the parameter optimization

method in the early tests. This optimization process used a validation set to

test the goodness of different parameter setups. This validation set was gener-

ated in the following way: from the end of each training block we split the last

20 values. Afterwards, using the experiments of the automatic parameter opti-

mization, we carried out some tests, using the fixed parameterized prediction

method. In this phase, for each prediction function we trained its own LS-SVM

or VMLS-SVM learner with the same parameter values on the full training set.

The overall results are presented in Table 3.1.

1Here we changed just the values of D, C and the window size.
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Table 3.1: MSEs of forecasting of various configurations of the LS-SVM and
VMLS-SVM methods on the 100 missing values.

Method Value of D Value of C Kernel WS MSE

LS-SVM - 1,000 Poly, p=12 60 534.33
LS-SVM - 1,000 RBF, γ=0.001 60 412.27
LS-SVM - 1,000 Align, σ=12 60 432.66
VMLS-SVM 100 0.1 Poly, p=12 60 501.25
VMLS-SVM 100 0.1 RBF, γ=0.001 60 421.34
VMLS-SVM 100 0.1 Align, σ=12 60 437.45
VMLS-SVM 1,000 0.01 Poly, p=12 80 480.11
VMLS-SVM 1,000 0.01 RBF, γ=0.001 80 287.36
VMLS-SVM 1,000 0.01 Align, σ=12 80 312.28
VMLS-SVM 10,000 0.01 Poly, p=12 80 498.62
VMLS-SVM 10,000 0.01 RBF, γ=0.001 80 386.25
VMLS-SVM 10,000 0.01 Align, σ=12 80 408.17

In Table 3.1, “Poly” means Polynomial kernel and p denotes its parameter,

the exponent. “RBF” means the RBF kernel and γ denotes its parameter, the

gamma parameter. Similarly, “Align” means Alignment kernel and its param-

eter is denoted by σ. The notation WS means window size.

As can be seen in Table 3.1, the VMLS-SVM methods with the RBF kernel

are the most effective for predicting the 100 missing values, and VMLS-SVM

models are consequently more accurate than LS-SVM models with a similar

kernel function.

The weighting of the variance minimizing term helps the VMLS-SVM to

achieve a better performance on the evaluation set, but where the weight ex-

ceeded a threshold, the error on the evaluation set starts to increase. It means

that the overweighting of the variance term caused overfitting. But in this case

the error on the validation set starts to increase, while the training error de-

creases. Hence using the parameter selection technique defined above, we can

choose a better generalization model, which is about D = 1, 000, C = 0.01 and

WS = 80.

Table 3.2 shows a comparison between our method (labeled as VMLS-SVM)

and the best results reported for this series in the competition. Table 3.2 con-
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Table 3.2: Comparison between the main methods on CATS benchmark.

Method MSE

VMLS-SVM (RBF) 287
VMLS-SVM (Align) 312
Kalman Smoother 408
Recurrent Neural Networks 441
Competitive Associative Net 502
Weighted Bidirectional Multi-stream Extended Kalman Filter 530
SVCA Model 577
MultiGrid -Based Fuzzy Systems 644
Double Quantization Forecasting Method 653
Time -reversal Symmetry Method 660
BYY Harmony Learning Based Mixture of Experts Model 676
Ensemble Models 725
Chaotic Neural Networks 928
Evolvable Block-based Neural Networks 954
Time -line Hidden Markov Experts 103
Fuzzy Inductive Reasoning 1050
Business Forecasting Approach to
Multilayer Perceptron Modelling 1156
A hierarchical Bayesian Learning Scheme for
Autoregressive Neural Networks 1247
Hybrid Predictor 1425

tains just the best results of our models, using D = 1, 000, C = 0.01 and WS

= 80 parameter values.

3.3.3 Results on the Dataset of NN3 Neural Forecasting

Competition

To further investigate the capabilities of VMLS-SVM, we made a comparison

with ǫ-insensitive SVM regression method. Hence we applied our method to

forecast the reduced subset of time series of the NN3 Artificial Neural Network

and Computational Intelligence Forecasting Competition, which has reported

results using an ǫ-insensitive SVM regression approach [32].

The NN3 dataset contains 11 time series. The averaged length of the time
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Table 3.3: SMAPE of each time series using the VMLS-SVM and ǫ-insensitive
SVM regression methods.

Time series Length SMAPE(VMLS-SVM) SMAPE(ǫ-insensitive SVR)

1 126 0.5218 0.49
2 126 1.7432 2.5
3 126 8.7458 12.46
4 115 4.6944 5.4
5 126 0.3091 0.7
6 126 1.8892 3.38
7 126 0.9871 1.21
8 115 8.1293 9.35
9 123 1.1947 2.54

10 126 8.4968 12.7
11 126 3.7217 4.82

series is 1241, and there is no domain knowledge about the time series. In [32],

each the last 18 values of each time series were predicted. The evaluation met-

ric was the symmetric mean absolute percent error (SMAPE) [8, 60]:

SMAPE =
1
n

n

∑
i=1

|yi − ŷi|

(yi + ŷi) /2
· 100, (3.18)

where n is the number of prediction, ŷi is the ith prediction and yi is the ith

expected value from the evaluation set.

For each time series, we defined 18 different prediction functions based

on Eq. 3.15. Each prediction function used the same parameter setting, but

each times series used different parameter setting, which were determined by

parameter optimization. To carry out the parameter optimization, we made

three subsets from each time series e.g. the training set, the validation set and

the evaluation set. Each evaluation set contains the last 18 values from the

corresponding time series, and each validation set is made up from the last

18 values of the corresponding time series without the evaluation set. For each

set triplet, we made a hyper-parameter optimization for the VMLS-SVM based

prediction functions, using the training and validation sets. We adjusted only

1The length of each time series is available in Table 3.3.
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the D and C parameters during the optimization and used a fixed window

size WS = 12, and RBF kernel with parameter γ = 0.001. These optimizations

determined well-generalization parameter sets for each VMLS-SVM predictor.

Afterwards, we used the correct parameter setups; we trained each VMLS-

SVM prediction function on the training and validation sets and evaluated

them on the evaluation set as test set. Table 3.3 shows a comparison between

our method and the results reported for this series in [32].

The mean SMAPE of our method is 3.6757 and the same value of the ǫ-

insensitive SVM regression method is 5.05. Hence we can assess that our

method using VMLS-SVM methods and parameter optimization achieves a

significantly higher mean performance. As can be seen, our method achieves

lower SMAPE on each time series except the first one.

3.3.4 Results on the Santa Fe Data Set D

Here we present the results of our method on a widely-recognized benchmark,

the D data series from the Santa Fe competition [121]. The data set consists of

artificial data generated from a nine-dimensional periodically driven dissipa-

tive dynamical system with an asymmetrical four-well potential and a drift on

the parameters.

This database has a relatively high dimension, it is large (100,000 data points)

and highly dynamic. Moreover, we have no background information about it.

Our evaluation is measured by the Root Mean Squared Error (RMSE) met-

ric:

RMSE =

√

1
n

n

∑
i=1

(yi − ŷi)2, (3.19)

where the notation is similar to the one was used in Eq. 3.17, and we predict

25 missing values.

This data set is quite large, which implies that it is a computationally inten-

sive learning task. Hence we trained our system with only one configuration:

We used only the last 20,000 training samples applying the RBF kernel with

γ=0.001. The window size was 80, the value of parameter D was 1,000, and

the value of parameter C was 0.01. These parameters were determined using
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Table 3.4: Comparison between the methods on Santa Fe D data set.

Method RMSE

VMLS-SVM (RBF) 0.0628
SVM (ǫ-insensitive) 0.0639
SVM (Huber) 0.0653
RBF network 0.0677
ZH [126] 0.0665

our experiments with the earlier tested benchmarks.

Table 3.4 shows the results of our method relative to the methods proposed

by Müller et al. [87]. The presented results show that our methods can achieve

a better performance than others in this task as well.

3.4 Conclusions

In this chapter we presented a novel extension for LS-SVM based on weighting

the variance of error. After presenting the basic theory of the method, we eval-

uated it on publicly available benchmarks. These experiments show that the

proposed method can indeed achieve a higher efficiency on the three differ-

ent, widely-recognized benchmarks than the standard LS-SVM or other sim-

ilar methods. The nice results we obtained can probably be attributed to the

beneficial features of our novel method, since the data sets we used for exper-

iments are typical and widely-used benchmarks for testing machine learning

algorithms for time series prediction.

Moreover, we showed that with a carefully designed extension a basic SVM

approach (LS-SVM) can be successfully adapted to a specific task (time se-

ries forecasting) resulting a much suitable approach. Additionally, one can see

that formalizing a preliminary observation into the SVM-based framework is

straightforward. We believe that the proposed method—and additionally how

we obtained—confirms the robustness of the SVM-based learning.

This chapter is based on the results published previously in [89].



CHAPTER 4

Transformation-based Domain Adaptation

The generalization properties of most statistical machine learning approaches

are based on the assumption that the samples of the training dataset come

from the same underlying probability distribution than those that are used

in the prediction phase of the model. Unfortunately—mainly in real-world

applications—this assumption often fails. There are numerous Natural Lan-

guage Processing (NLP) tasks where plentiful labeled training databases are

available from a certain domain (source domain), but we have to solve the

same task using data taken from a different domain (target domain) where we

have only a small dataset. Manually labeling the data in the target domain is

costly and inefficient. However, if an accurate statistical model from the source

domain is presented, we can adapt it to the target domain [36]. This process is

called domain adaptation.

Opinion mining aims at automatically extracting emotional cues from texts

[72]. For instance, it can classify product reviews according to the customers

positive or negative polarity. This is a typical problem where the requirement

for domain adaptation is straightforward as there exists numerous slightly dif-

ferent domains (e.g. different products are different domains), and the con-
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struction of manually labeled training data for each of them would be costly.

Here, we will define a general framework to directly capture the relations

between domains. In order to experimentally evaluate our approach, SVM and

Logistic Regression [15] were plugged into the framework and the approach

was compared to a number of baseline algorithms and published results on

opinion mining datasets. We will show that SVM is a more suitable approach

to apply in the proposed framework.

The results presented here are mainly based on our earlier work [91].

4.1 Related Work

Numerous preliminary algorithms have been developed in the field of domain

adaptation, which roughly can be categorized into two mainstreams.

One of these types of methods tries to model the differences between the distri-

butions of the source and target domains empirically. In [28] the parameters of a

maximum entropy model are learnt from the source domain, while an adapted

Gaussian prior was used during training a new model on target data. A dif-

ferent technique proposed in [36] defines a general domain distribution that is

shared between source and target domains. In this way, each source (target)

example can be considered a mixture of source (target) and general distribu-

tions. Using these assumptions, their method was based on a maximum en-

tropy model and used the EM algorithm for training. Another approach was

proposed in [35], where a heuristic nonlinear mapping function was used to

map the data into a higher dimensional feature space where a standard super-

vised learner could be applied in order to perform the domain adaptation.

Another generation of domain adaptation algorithms are based on defin-

ing new features for capturing the correspondence between source and target do-

mains [12, 47]. In this way, the two domains appear to have very similar dis-

tributions, which enables effective domain adaptation. In [17], the authors

proposed a method—called Structural Correspondence Learning (SCL) algo-

rithm—which depends on the selection of pivot features that appear frequently

in both the source and the target domains. Although it was experimentally

shown that SCL can reduce the difference between domains based on a cer-
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tain distance measure [12], this type of feature selection may be sensitive to

different applications.

A more specific subtype of the above described algorithm family learns

a joint feature representation for the source and the target domain where the

corresponding marginal distributions are close to each other [96]. In [95], the

authors proposed a new dimensionality reduction algorithm, the Maximum

Mean Discrepancy Embedding (MMDE), for domain adaptation tasks. It aims

at learning a shared latent space underlying the source and target domains

where the distance between the distributions can be reduced. A feature space

transformation based method is described in [96]. They learnt transformations

for both the source and the target feature spaces that transform the data into

a common Reproducing Kernel Hilbert Space (RKHS) using the key approach

of MMDE.

Theoretical results on domain adaptation have been also proposed [79, 80,

81]. For instance in [80], the problem of multiple source domain adaptation is

considered and theoretical results of the expected loss of a combined hypothe-

ses space were presented on the target domain.

4.2 Transformation-based Domain Adaptation

Approach

As we mentioned earlier, the principal goal of domain adaptation is finding

out how we can best use a trained machine learning model in the learning of

a different database. In this section, we will give a more precise formalism of

the domain adaptation task, and we will describe our approach in detail.

4.2.1 Domain Adaptation Task

In the current context of domain adaptation, we will assume that there are two

feature spaces given—TS and TT
1—the feature spaces of “source domain” and

1Here T refers to the task, while S and T refer to the term “source” and “target”, respec-

tively.
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the “target domain”, respectively. We have two sets of labeled training samples

(supervised learning setting like the one introduced in Sec. 2.1), DS ⊆ TS and

DT ⊆ TT (|DT| ≪ |DS|). In addition, we will assume that both the source do-

main and the target domain use the same label set. We will call DS the “train-

ing database of the source domain” and DT the “training database of the target

domain”. The labels2 in both domains come from the L = {C1, . . . , Cl} set and

yi,S (yi,T) denotes the correct class label of sample i from DS (DT). The learning

problem of the domain adaptation task is to find a fT : TT → L prediction

function that achieves a high accuracy on the target domain. During the train-

ing, we are allowed to use a trained and accurate source model fS : TS → L,

and a small training database DT from the target domain, which excludes the

learning of an accurate statistical model applying purely this database from

the target domain.

4.2.2 Transformation-based Approach

One of the main assumptions of the domain adaptation task is that there exists

some kind of relation between the source domain and the target domain. Our

idea is to try to model this relation, i.e. try to find a φ : TT → TS transformation

or target-source domain mapping. This transformation maps the samples from

TT into the feature space of TS. In the feature space of the source domain, we

have a fS prediction function, which achieves a high accuracy, so if we can find

the φ, which transforms the samples from the target domain into the source

domain in such a way that the prediction error of the transformed samples

using the fixed fS is small, we can solve the task of domain adaptation.

More precisely, we look for a φ : TT → TS transformation which mini-

mizes the prediction error of each transformed sample taken from the training

database of the target domain. Our idea is to utilize the fS : TS → L model

(a prediction function on the source domain with a high prediction accuracy)

directly for this task. Hence the following optimization problem was formed:

2Our approach will focus on classification problems, but it can easily be extended to re-

gression problems as well.
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minimizeφ EDT , fS
(φ) + C ∑

x∈DT

‖φ(x)‖ . (4.1)

Here the DT and fS are the same as those defined in the previous subsec-

tion (Sec. 4.2.1), φ is the object of the optimization, the target-source domain

mapping. The EDT, fS
(φ) is a general error function which just depends on φ

and it will be defined later. We see that the optimization does not optimize

the fS model; it is assumed to be constant during the optimization. The first

term of the above optimization ensures that we get a transformed sample set

which has a small prediction error (i.e. a high accuracy) in the source domain

using the fS prediction function and transformation φ. The second term is a

weighted regularization term, where C (C ∈ R and 0 ≤ C) is the weight of the

regularization part.

If we can solve this optimization problem, we will get the prediction func-

tion of the target domain in the following form

fT(x) = fS(φ
⋆(x)). (4.2)

Here the φ⋆ : TT → TS mapping is the transformation which is the solution

of the above-defined minimization task (Eq. 4.1) and x ∈ TT is an arbitrary

sample from the target domain.

4.2.3 Transformation-based Approach Based on Linear

Transformation

We need to apply some constraints on the φ target-source domain mapping

when solving the defined optimization task. Our proposal is to use a mapping

which is as simple as possible, but not trivial. Thus in this chapter, we will

apply the following constraints on target-source domain mapping, and on the
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two domains:

TS = R
n,

TT = R
m,

φ : R
m → R

n,

x 7→Wx ∈ R
n (for each x ∈ R

m),

(4.3)

where W ∈ Rn×m. With these constraints, we will get the following specialized

optimization task:

minimizeW, ‖W‖=1 EDT, fS
(W). (4.4)

Here the regularization term is not necessary since it is replaced by the

‖W‖ = 1 constraint on the transformation matrix. This modification can be

interpreted as the regularization term in the original form without weighting.

To solve Eq. 4.4 optimization, we propose a simple gradient descent [110]

based optimization algorithm. This algorithm template is shown in Alg. 4.4.

To get a concrete algorithm, we only need to specify a EDT , fS
(W) error function,

and we have to compute its gradient (∇EDT , fS
(W)). In order to compute the

gradient of the error function (∇EDT, fS
(W)), we have to derive the fS source

model as well, which has not been defined until now.

In Alg. 4.4, we show the iterative method which was applied in our exper-

iments (in Sec. 4.3). Within the algorithm, we implemented a simple mech-

anism which tries to avoid that the learner gets stuck in local optima. The

evaluation, presented in Sec. 4.3, shows that this simple technique is usually

enough to get a suitable adaptation result.

In the next two subsections, we present in detail two particular algorithm

instances of Alg. 4.4 template. The first algorithm instance applies the well-

studied SVM [24] as source model, and the second one uses the Logistic Re-

gression [59] as source domain classifier.

4.2.4 Support Vector Machine as Source Model

First the widely used binary SVM [31] classification method is introduced as

the base prediction method to instantiate Alg. 4.4, and the following error func-
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Algorithm 4.4 Domain Mapping Learner (DML)
Input: DT, fS

Initialize
i = 0,
W(0) = randomMatrix(n, m),
r = 0, max_r = 10

repeat

W(i+1) = W(i) − ηi∇EDT, fS

(

W(i)
)

i = i + 1
W(i) = W(i)

‖W(i)‖

if EDT , fS

(

W(i)
)

not changed for a while and r < max_r then

r = r + 1
i = 0
W(0) = randomMatrix(n, m)

end if
until not converged

tion is applied:

EDT , fS
(W) =

1
2 ∑
(x,y)∈DT

(y− fS(Wx))2. (4.5)

The choice of binary SVM as source model determines that we will con-

sider only binary classification problems here. We assume that both the source

domain and the target domain are labeled with the following labels: L =

{−1,+1} (binary classification as introduced in Sec. 2.1). In this case, the pre-

diction function of the SVM classifier (similarly to the one was presented in

Eq. 2.10) in our formalism is:

fS(Wx) = ∑
(xi,yi)∈SVS

α⋆

i yiK(xi, Wx) + b⋆. (4.6)

Here SVS ⊆ DS denotes the set of support vectors in the source domain,

α⋆

i ∈ R is the learnt coefficient corresponding to the ith sample of DS and

b⋆ ∈ R is the bias part of the source model. The notation K : TS × TS → R is

a kernel function in the source domain (for more details, see: Sec. 2.1.1). The
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argument of the prediction function is Wx, which is the product of the trans-

formation matrix W and an arbitrary sample x ∈ TT from the target domain.

Here multiplying with W means the target-source domain mapping.

The kernel function in Eq. 4.6 is a parameter of the prediction function and

the gradient of the error function depends on it. Thus, to calculate the gradient

of the error function we have to specify the kernel function. We decided to

apply two commonly used kernel functions to compute the necessary gradient:

the Polynomial kernel and the RBF kernel [24, 31].

In Eq. 4.7, we can see the gradient of the error function applying the poly-

nomial kernel. The exact form of the kernel is shown in this equation as well.

The degree of the polynomial is denoted by p.

Kp(xi, Wx) = (xT
i Wx)p,

∇EDT, fS,Kp
(W) = − p ∑

(xi,yi)∈SVS

αiyi ∑
(x,y)∈DT

(y− fS (Wx))·

Kp−1(xi, Wx)xix
T

(4.7)

Similarly, in Eq. 4.8 we show the RBF kernel, and the gradient of the error

function using the RBF kernel. Here γ is a parameter of the RBF kernel.

Kγ(xi, Wx) = exp(−γ‖xi −Wx‖2),

∇EDT , fS,Kγ
(W) =− 2γ ∑

(xi,yi)∈SVS

αiyi ∑
(x,y)∈DT

(y− fS(Wx))·

Kγ(xi, Wx)(xi −Wx)xT

(4.8)

These gradients can be applied in the Alg. 4.4. The whole learning system is

referred to as POLYDML (in the case of instantiation applying the Polynomial

Kernel, and the gradient shown in Eq. 4.7) and RBFDML (in the algorithm

instance based on the RBF Kernel, and its gradient presented in Eq. 4.8).
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4.2.5 Logistic Regression as Source Model

Since the problem of domain adaptation usually comes from the field of NLP,

we decided to present another algorithm instance of Alg. 4.4 which is based

on the Logistic Regression [59] (LR) classification method—which is an often

used, and widely studied learner in NLP—as source model. Here we chose a

more specific error function (the Cross-Entropy error function) for the trans-

formation learning method:

EDT , fS
(W) = − ∑

(x,y)∈DT

∑
c∈L

tc(x) ln fS,c(Wx),

where tc(x) =

{

1 y = c

0 otherwise,

and fS,c(Wx) = P(c|Wx).

(4.9)

The chosen LR classification method can handle multi class classification

problems as well. Thus, we assume that L = {C1, . . . , Cl} (multi-class classifi-

cation setting, see: Sec. 2.1). Using the notation given in Eq. 4.9, we can express

the prediction function of the source model in the following form:

fS(Wx) = argmaxc∈L fS,c(Wx) = argmaxc∈L P (c|Wx) . (4.10)

In the case of the LR method, the posterior probability of class c ∈ L is

expressed in the form [15]:

fS,c(Wx) =
exp(α⋆

c
TWx)

∑k∈L exp(α⋆

k
TWx) + 1

, (4.11)

where α⋆

j ∈ R
n is the vector of learnt coefficients corresponding to the class

j ∈ L. Like in the previous subsection, the argument of the function presented

in Eq. 4.11 is Wx, which is the product of the transformation matrix W and an

arbitrary sample x ∈ TT. As earlier, multiplying with W means the transfor-

mation from the target domain to the source domain.

To get another particular algorithm from the gradient descent-based algo-
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rithm template (Alg. 4.4), applying the chosen setting, we have to calculate the

gradient of the selected error function. The necessary gradient, using Eq. 4.9

is:

EDT , fS
(W) = − ∑

(x,y)∈DT

∑
c∈L

tc(x)

(

αT
c Wx− ln

(

∑
k∈L

exp(αT
k Wx) + 1

))

,

∇EDT , fS
(W) = − ∑

(x,y)∈DT

∑
c∈L

tc(x)

(

αc −
∑k∈L exp(αT

k Wx)αk

∑k∈L exp(αT
k Wx) + 1

)

xT.

(4.12)

After having created the necessary gradient presented, we get a new in-

stance of Alg. 4.4, the Logistic Regression Domain Mapping Learner (LRDML)

method.

4.3 Experimental Results

In this section, we will provide an overview of the basic concepts of the eval-

uation process. Afterwards, the experimental results achieved on a synthetic

dataset and real-world opinion mining tasks will be presented.

4.3.1 Evaluation Methodology

In our evaluations, we mainly investigated whether it was better to apply our

domain adaptation approach, or to use a direct machine learning approach.

We hypothesized that domain adaptation is especially required when the tar-

get training dataset is small, thus experiments using target training data with

various sizes were carried out. In the case of extremely small datasets one eval-

uation per target domain size could not be trusted, thus for each size of the

target domain we performed multiple runs and computed the average value

of the elementary accuracy scores along with their variances.

Direct method (baseline): In this case we did not treat our task as a domain

adaptation task. We only used the databases of the target domain. On the

training part of the dataset of target domain we trained a model, and evalu-
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ated on the evaluation part simply. It is a typical baseline of several domain

adaptation tasks [35].

Transformation-based method: In each test setting we used three different

databases, one taken from the source domain, and two taken from the target

domain. The database from the source domain was used as a training database

for the underlying classification method ( fS). The two databases from the tar-

get domain were treated as a training and evaluation split for the appropriate

version of Alg. 4.4. This evaluation split was completely unknown during the

preprocessing and learning phases.

4.3.2 Synthetic Database

To gain insight into the behaviour of our transformation-based approach, we

first investigated synthetically generated source and target domains. In order

to visualize it, both domains were two dimensional. The positive samples of

the source domain were generated based on the sum of two Gaussian distribu-

tions, and the negative ones similarly, but using just one Gaussian distribution.

We generated 1,000 samples and used only the first 800 of them as the training

database of the source domain. The training and evaluation sets of the tar-

get domain were generated from the previously generated 1,000 samples by

rotating them by 90 degrees and the same train-test split was employed.

In Fig. 4.1 we can see a sample run of the POLYDML algorithm on the syn-

thetic database. We applied the Polynomial kernel with d = 1 (i.e. the linear

kernel), and set the value of the trade-off parameter C of SVM (for more detail,

see: Sec. 2.1.1) to 1.0. The samples from both the source and the target domain

are shown in the same figure. The figure shows six different states of the al-

gorithms. In each state we can see the data samples of the source domain and

the classification boundary, which are constants. The first state shows the posi-

tion of the original training samples of the target domain based on the samples

taken from the source domain. The second state called “Iteration 0” shows the

position of samples of the target domain which were transformed by applying

a W(0) random transformation proposed by the applied POLYDML learner.

The next four states show the first four iterations of the algorithm. For each
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Figure 4.1: The first 4 iterations of POLYDML algorithm on Synthetic Database
applying linear kernel.

state, we also included the error measured on the target training dataset. As

one can see, in the initial states (i.e. in the first two states) the error rate is quite

high, but in the first four iterations the error rate decreases fast and almost

monotonically. We can see that when the monotony is not realized (i.e. from

the iteration 1 to 2), the transformed samples of the target domain move to the

“correct direction” according to the error minimization. The result shown in

the figure suggests (empirically) that the proposed algorithm converges.

In the following evaluations, we compare the results of various Alg. 4.4 in-

stances with direct methods (baseline). In Fig. 4.2, we can see the results of

RBFDML (left hand side figure) and LRDML (right hand side figure) algo-

rithms and the corresponding direct methods. Each point of the curve shows

the averaged accuracy score and the corresponding variance of 100 runs of
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Figure 4.2: The average accuracies and variances of the RBFDML (left) and
LRDML (right) algorithms using different sizes of subsets of the target domain
of synthetic database.

transformation-based and 100 runs of direct methods. With SVM, we applied

an RBF kernel with parameters γ = 1 and C = 1 (default values).

Our first observation is that both methods outperform the corresponding

direct method when the size of the target domain is small. In the case of

RBFDML, this improvement is more significant compared to the correspond-

ing direct method than in the case of the LR method. However, it is more

stable in the sense that the accuracy changes more smoothly. Based on this

observation we can conclude that the SVM-based learning is more robust for

the proposed domain adaptation approach since it results a more powerful im-

provement (in the small training sized regions). Furthermore, we can see that

the variance of the accuracy decreases when we employ bigger datasets taken

from the target domain, which suggests that we have more stable methods in

these scenarios.

4.3.3 Results on the Multi-Domain Sentiment Dataset

The previous subsection empirically verified that the proposed transformation-

based framework, and thus the proposed algorithms can achieve higher aver-

age accuracy on synthetically generated domains. Next, we will show that the

proposed algorithms can achieve at least the same performance on real-world
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Figure 4.3: The average accuracies of RBFDML algorithm using different sizes
of subsets of the target domains of Multi-Domain Sentiment Dataset.

datasets as on a synthetically generated one.

In order to do this, we experimented some variants of Alg. 4.4 on an opin-

ion mining dataset [16] as well. This dataset contains product reviews taken

from Amazon.com for four product types (domains), namely: books, DVDs,

electronics and kitchen appliances. Originally the attributes of instances of

each dataset were the term frequencies of the words of the corresponding re-

view texts, and the labels of the instances were generated from the rating of the

reviews. More precisely, reviews with rating ≥ 3 were considered as positive,

while those with rating < 3 were labeled negative (binary classification prob-

lem, for more details see: Sec. 2.1). The datasets of each domain were balanced,

all of them having 1,000 positive and 1,000 negative samples with a very high

dimensionality (about 5,000 dimensions).



47 CHAPTER 4. TRANSFORMATION-BASED DOMAIN ADAPTATION

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 5  10  15  20  25  30  35  40  45  50

A
v
g
(A

cc
(T

ar
g
et

 E
v
al

))

Size of target train database

Book database as target domain

DVD
Electronics

Kitchen

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 5  10  15  20  25  30  35  40  45  50
A

v
g
(A

cc
(T

ar
g
et

 E
v
al

))
Size of target train database

DVD database as target domain

Books
Electronics

Kitchen

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 5  10  15  20  25  30  35  40  45  50

A
v
g
(A

cc
(T

ar
g
et

 E
v
al

))

Size of target train database

Electronics database as target domain

Books
DVD

Kitchen

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 5  10  15  20  25  30  35  40  45  50

A
v
g
(A

cc
(T

ar
g
et

 E
v
al

))

Size of target train database

Kitchen database as target domain

Books
DVD

Electronics

Figure 4.4: The average accuracies of LRDML algorithm using different sizes
of subsets of the target domains of Multi-Domain Sentiment Dataset.

We carried out some dimensional reductions before the experiments. First,

we split the datasets of each domain into two parts randomly (80% training

set and 20% evaluation set). Then, we performed a feature selection step se-

lecting the attributes where the so-called InfoGain score [15] was greater than

0 on the training set. Finally, we performed a Principle Component Analysis

(PCA) [15] on each training database. We performed the same preprocessing

on the evaluation set as well selecting exactly those features than in the case

of the training part, and applying the transformation (PCA) obtained from the

training database.

The scenario here was the same as that in the previous subsection except

that databases were replaced by the datasets of Multi-Domain Sentiment Da-

taset. Since we had four different domains, we investigated all the possible 12
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domain adaptation tasks applying both the algorithm RBFDML (Fig. 4.3) and

algorithm LRDML (Fig. 4.4). In both cases the results are presented depending

on the size of the database of the given target domain as earlier. The definition

of the domain adaptation task (that is, what the target domain is) can be seen

from the top labels of the elementary figures. In each subfigure the thinner

lines correspond to the direct methods, while the horizontal lines show the

result of the learner applying the full training database of the target domain.

This is independent of the values of the x axis and can be viewed as the “limit

values” of the corresponding results. At each point in the sub-figures we can

see average accuracy scores of 10 independent evaluations.

As can be seen in Fig. 4.3 and Fig. 4.4, when we use limited-sized datasets

from the target domain, in almost all of the cases, the proposed methods can

achieve a higher accuracy than the baseline methods. However, there are

two adaptation scenarios, namely the “Electronics to Books” and “Books to

Kitchen”, where the applied LRDML method got stuck in a local optima, and

did not converge. This never happened to the SVM-based RBFDML meth-

ods. Moreover, these methods achieved a higher relative improvement com-

pared to the corresponding direct methods. However—similar to the results

observed on synthetic data—the LRDML usually provided a smoother error

curve. In sum, these results implies that the RBFDML approach is more pre-

ferred against the LRDML approach.

Based on the simulations on synthetic and the real-world data, we can con-

clude that the approach presented in Alg. 4.4 is more suitable than the direct

method. The reason for this phenomenon might be that the baseline could

not made valid generalizations from the small number of samples—since the

database of the target domain might not contain enough information to build

a well-generalizing model—but the transformation-based approach using the

well-generalizing source model which can achieve real generalizations which

can be utilized by the transformation-based mechanism. Thus, in these cases

the transformation-based method is the better choice.

The Structural Correspondence Learning (SCL), mentioned briefly in Sec. 4.1,

is a related domain adaptation approach [16], which has published results on

the opinion mining datasets we used. In comparison with its results, our best
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approach (RBFDML) achieved better accuracy scores 10 times compared to

the base SCL, and 7 times compared to its extended version (SCL-MI) out of

the possible 12 scenarios.

4.4 Conclusions

In this chapter, we presented our novel, transformation-based approach for

handling the task of domain adaption. We described two instances of our

main algorithm, and experimentally showed that—applying them to a real

world dataset in 12 different scenarios—our methods outperform the baseline

approaches (direct methods), and published results of the same dataset.

Our experimental results proved that our general approach (Alg. 4.4) is ca-

pable of training models for the target domain which use a very limited num-

ber of labeled samples taken from the target domain. This is even true in the

scenarios where there are enough samples, but baseline methods cannot gen-

eralize well using such samples. On the other hand, our approach has a key

advantage against other domain adaptation procedures as it does not require

access to the source data just to a trained source model, which can be crucial

in specific scenarios (e.g. privacy issues).

Moreover—based on the sequence of thorough empirical evaluation—we

concluded that the SVM-based RBFDML algorithm is the most robust instance

of the Alg. 4.4. This result can be interpreted as another advantage of the SVM-

based learning, and shows the strength and generality of the SVM approach.

The results described in this chapter are based on one of our previous re-

sults presented in [91].
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CHAPTER 5

SVM Supported Distributed Recommendation

Offering useful recommendations to users of fully distributed systems is clearly

a desirable function in many application domains. Some examples for larger

efforts towards this goal are the Tribler platform [101], and more recently the

Gossple project [69]. A fully distributed approach is also more preferable rela-

tive to centralized solutions, due to the increasing concerns over privacy.

However, the problem is also extremely challenging. Apart from the fact

that centralized recommender systems—although working reasonably some-

times—are still far from perfect, offering good recommendations in fully dis-

tributed systems involves a number of special problems like efficiency, security

and reliability, to name just a few.

In this chapter we focus on a class of recommender systems, the so-called

user-based collaborative filtering algorithms that are fairly simple, yet provide

a reasonable performance [4]. The key concept is a similarity metric over the

users, and recommendations are made on the basis of information about simi-

lar users.

This idea also naturally lends itself to a distributed implementation, as it

can be easily supported by similarity-based overlay networks (like the T-MAN
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protocol, detailed in Sec. 2.2). Indeed, many distributed protocols from related

work follow this path in some way or another.

In this chapter, we would like to shed light on the effects of the basic design

choices in this domain with respect to recommendation performance, conver-

gence time, and the balancing of the network load that the system generates

during its operation. That is, we turn to investigate the problem of perform-

ing efficient machine learning in a radical different environment from the cen-

tralized one, referred to as fully distributed environment. Additionally, we

present an interesting application of the centralized SVMs for the problem of

user modelling to extract recommender datasets. However, this application is

unusual, it clearly shows the strength of the SVM learners.

Our contribution is threefold. First, we propose a mechanism for gener-

ating recommender datasets from implicit user feedbacks, and present some

interesting properties of these databases, which have direct effects on the per-

formance of the applied fully distributed recommender algorithms as we will

empirically validate in Sec. 5.5. Second, we draw attention to the potential load

balancing problem in distributed systems that manage similarity-based over-

lays for any purpose including recommendation or search. Third, we propose

novel algorithms for similarity-based overlay construction. Moreover, we per-

form extensive simulation experiments on large benchmark datasets and com-

pare our set of algorithms with each other and with a number of baselines. We

measure prediction performance, examine its convergence and dynamics, and

we measure load balancing as well.

This work is mainly based on our two previous publications [90, 92].

5.1 Related Work

First, we overview relevant ideas in recommender systems in general, and sub-

sequently we discuss related work in the fully distributed implementations of

these ideas, as well as additional related work that are based on similar ab-

stractions.

A recommender system can be viewed as a service which supports e-com-

merce activities by providing items of interest for the users [99]. These al-
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gorithms are often centralized and Web-based operating on huge amounts of

data—mainly on the previous ratings of the users. The algorithms which are

based on the previous ratings of other similar users follow the so-called col-

laborative filtering (CF) approach. They are based on the simple heuristic that

people who agreed (or disagreed) in the past will probably agree (or disagree)

again. Thus, the predicted rate of an unseen item for a given user can be esti-

mated on the basis of the rates of other users with similar tastes.

In the field of CF algorithms there exist numerous approaches. User-based

approaches try to model the rating of a given item for a user by an aggrega-

tion of ratings of other users on the same item [4]. Although these approaches

are very simple and intuitive, they provide a relatively good performance [57].

User-based CF algorithms are modular, hence they can be used with differ-

ent aggregation methods and similarity metrics. One widely-used aggregation

method is

r̂u,i =
∑v∈Nu

su,v (rv,i − r̄v)

∑v∈Nu
|su,v|

+ r̄u (5.1)

defined in [103], where ru,i and r̂u,i denote the known and the predicted rate of

item i by user u, r̄u and Nu denote the average rate and the neighbor set of user

u, and su,v measures the similarity between user u and v (e.g. cosine similarity

[4] or Pearson similarity [4] can be employed).

Our preliminary experiments showed that (among several variants) the ag-

gregation method shown in Eq. 5.1 combined with the cosine user similarity

gives the best performance on our particular benchmarks. Since the focus of

the present chapter is not recommendation performance per se, but the anal-

ysis of several distributed implementations of the basic idea of user-based CF,

we fixed these methods in our experiments.

We should mention that there are numerous other approaches for recom-

mendation such as the ones based on machine learning [14, 97], matrix fac-

torization [115], generative models [76], clustering [88, 97], and dimension-

reduction [14, 46].

Moving on to distributed methods, we emphasize that we focus on P2P

recommendation, that is, the computational environment in which our algo-

rithms work is identical with the one was mentioned in Sec. 2.2. Here, we do
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not consider the parallel or cloud based implementations of centralized recom-

mender techniques.

The largest group of methods define an overlay network based on some

sort of similarity, and define a recommender algorithm on this network. For

example, [99] and [25] follow this approach, although the overlay construction

itself is not discussed or it is assumed to be done offline. The recommender

algorithms then perform a search in this overlay up to a certain depth or up to

a certain level of similarity, and aggregate the matching users with a standard

method.

A slightly weaker approach is described in [117], where only a random

network is assumed and the recommendation problem is treated as a search

problem where a node needs to find similar users using a flooding based un-

structured search.

A somewhat surprising result is described by Bakker at al. [10], where they

argue that in fact it is enough to take a random sample of the network and

use the closest elements of that sample to make recommendations. Our results

are consistent with this observation, although we describe better and equally

cheap alternatives.

A more sophisticated approach is described by Bickson et al. [13]. They de-

fine recommendation as a smoothing operation over a social network, which

is expressed as a minimization problem using an objective function that ex-

presses the requirements for the recommendation. The problem is solved by

using an iterative method. Unfortunately no results are given on recommender

system benchmarks due to the slightly different formulation of the basic prob-

lem.

It is of course possible to apply distributed hash tables [50]. Here, users

are stored in a hash table and they are indexed by (item, rate) pairs as keys.

Using this data structure, the users for a given item and rate are available from

the distributed hash table (DHT) on demand. This method is not scalable if

there are many recommendations to be made in the system, since the necessary

information is not always available locally.

One of the most detailed studies on distributed recommender systems with

performance evaluation can be found in [120]. In their approach the predicted
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rate is defined as the expected value of the possible rates. Applying the Bayes’

rule, three different so-called relevance models were derived: the user-based

relevance model, the item-based relevance model and the unified relevance

model which can be considered as a mixture of the previous two models. To

estimate the necessary probabilities they applied kernel density estimation,

which makes their method modular by giving opportunity for using differ-

ent kernel functions. The proposed models were implemented on the basis of

the BUDDYCAST [102] overlay management service, which is the main over-

lay management method of the Tribler file sharing protocol [101]. We used

our own implementation of this model as a baseline method, since the original

study [120] did not carry out load balancing measurements.

5.2 Inferring Ratings from Implicit User Feedbacks

Approaches for recommender systems take ratings as input. The ratings are

often taken from a small numeric range, but in any case, one needs at least two

different values, which stand for “dislike” and “like”. These databases usually

contain explicit ratings of items by the users. Since users have to make an effort

to rate items, ratings are often scarce and of dubious quality. For this reason, it

has long been observed that inferring ratings from user behavior is an important

way of enhancing the ratings and thus the quality of recommendations. For

example, [67] provides an overview of many such methods.

In this section, we propose a method for inferring binary ratings from Bit-

Torrent networks. We will work with a large Filelist.org trace collected by the

Technical University of Delft. Moreover, we will argue that the inferred rat-

ings “make sense”, through demonstrating that both the “like” and “dislike”

classes of ratings can be captured by an SVM learner showing an unusual use-

case of the learning algorithm.

5.2.1 Filelist.org Trace

In this section we will provide a brief overview of the dataset that is the basis

of our benchmark. The data source we present originates from a BitTorrent-
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based [30] P2P file-sharing community called FILELIST.ORG [2].

In a BitTorrent P2P network, each peer (user) downloads and uploads data

simultaneously. The torrent file format describes one or more files that are to

be shared. A swarm is the set of peers participating in downloading a common

torrent. The peers that have completed downloading all the pieces of a torrent

are called seeds, whereas the ones still trying to get some of them are called

leeches.

The FILELIST.ORG is a private BitTorrent community[124, 125], meaning

that members have to be invited by a senior member in order to be able to join

the community website. Also, they have to comply with specific rules regard-

ing their overall sharing ratio. We will base our benchmark dataset on the trace

files gathered by Jelle Roozenburg at the Technical University of Delft [106] be-

tween 9th December, 2005 and 12th March, 2006. Over the course of 93 days,

91, 745 peers (users) were observed in 3, 068 swarms (sets of users participat-

ing in downloading the same file). For the files that were followed, 5, 477 TB

of data was reported to have been exchanged (2, 979 TB up, 2, 498 TB down1)

among all the users combined. The churn rate, 9, 574, 290 joins and leaves were

observed. For the measurements, the tracker website is periodically crawled

to obtain a partial state of the P2P network. The original trace is rich in data as

it consists of 691, 319, 475 events.

5.2.2 Inferring Ratings from the Trace

The original trace was first converted into a more convenient format, remov-

ing any unnecessary information, then the remaining table consisted of the

following fields: user ID, item ID, timestamp, online/offline, completion.

These discrete points define a sequence of online and offline sessions for

each user in each swarm. Using these sessions, we extrapolated file-ownership

at any point in time as follows. We first filled the inner parts of each online

session using the interpolation rules given in Tab. 5.1. Afterwards, we filled

the offline sessions of each user-file pair by applying the rules given in Tab. 5.2.

From these intervals we were able to generate a user-item database for any

1The difference between the two amounts come from measurement errors.
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Table 5.1: Online session interpolation
rules.

front end fill
0 0 0
0 1 1
1 0 0
1 1 1

Table 5.2: Offline session interpolation
rules.

front end fill
0 0 0
0 1 0
1 0 0
1 1 1

given point in time.

A user-item database that corresponds to a point in time contains two kinds

of entries: “has file” and “does not have file”. That is, if a user has already

completed downloading the given file, and has not removed the file, then he

has the file. Note that if a user is downloading a file, but has not yet completed

the downloads, then he does not have the file and is just like a user who has

never attempted to download it.

Note that we could have retained information on swarm membership as

well; that is, introduce the third label “downloading file”. Though possible,

we eventually decided not to do it so as to simplify the problem and avoid the

semantic problems associated with this label. Also note that it is possible that

a user has the file, but is not seeding it, so we still say “does not have file”.

However, it is impossible to decide whether a user removed the file because

he does not like it or because he does not want to seed it. Overall, one has to

be careful with interpreting these labels, but, as our evaluation will show, this

labeling does result in useful results despite these problematic issues.

Sparsity is the ratio of the known and unknown ratings. This is one of

the most important characteristics of recommender benchmarks [58]. If the

data is very sparse (as in the case of the BookCrossing benchmark [127]), then

numerous problems arise such as difficulties with measuring the similarity

between users or building statistical models.

For this reason, we examined the dynamics of sparsity as a function of time,

as shown in Fig. 5.1. In our case, we took the label “has file” to be the known

rating; otherwise we considered the rating as unknown. We can observe that
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sparsity is fairly stable, and has a small value; that is, the data is sparse. Based

on this observation, we conclude that—at least in this property—the database

that we infer is pretty similar to the BookCrossing benchmark dataset [127].

Fig. 5.1 shows the number of online users and the number of active files as

well, as a function of time. The plateaus of the curves correspond to missing

data.

In order to infer the preference of users, we first fixed a point in time, and

took the corresponding user-item matrix. Originally, we took three different

points in time, but our preliminary results indicated that there is no visible

difference in performance over time, so we kept the time point indicated by an

arrow in Figure 5.1.

Our baseline (or naive) dataset is given directly by the user-item matrix we

selected earlier. From the point of view of ratings, we took “has file” to be

a positive rating (indicated by the numeric value 1), otherwise we indicated

a lack of rating. In other words, in the baseline user-item matrix we did not

have any entries indicating a negative rating, since we have no basis to infer a

negative rating from this data.

To infer negative ratings, and to make the positive ratings more precise,

we used information that varied in time: we looked at file ownership before

and after the timestamp of the baseline dataset. The amount of shift in time
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Table 5.3: Rating conversion rules.

before actual after inference
0 0 0 unspecified
0 0 1 unspecified
0 1 0 0 (dislike)
0 1 1 1 (like)
1 0 0 0 (dislike)
1 0 1 unspecified
1 1 0 unspecified
1 1 1 1 (like)

was the same in both directions. This way, for each user-item pair we got a

triplet, which we converted to ratings, as indicated in Table 5.3. These rules

are entirely heuristic and are based on common sense. This way we can create

negative ratings (with a numeric value of 0).

It is interesting to observe the similarity of the user-item matrices (ratio of

entries with an identical label) as a function of time shift. Figure 5.2 shows

the difference between our baseline dataset and the user-item matrix with the

given time shift. The figure indicated that there is a significant change in the

user-item matrix, and thus the dynamics might indeed convey useful extra

information.

5.2.3 Evaluation

Since we do not have any ground truth available for the actual like/dislike

ratings of users, we need to apply an indirect approach to test the labels we

assigned to user-item pairs. The method we propose is based on the learnability

of the labels. That is, if a statistical learning algorithm is able to predict the

labels of an independent validation set based on that it learns from a training

set (where both the training and the validation sets are the disjoint subsets of

the data we generated), then we can at least say that the labels do correspond

to some regular property of the data. This regularity might come from an

unintended source as well. To deal with this possibility, during the evaluation
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we explicitly attempted to single out some trivial sources of regularity such as

one label being more frequent than the other, etc. In the experiment we could

not find any trivial or unintended reasons for the learnability of the labels.

For learning, we used the SMO [100] algorithm from the WEKA Java lib-

rary [49]. The SMO algorithm solves the optimization problem which arises

during the training of SVM defined in Eq. 2.8. To deal with the quadratic op-

timization problem in the size of the number of training examples, the SMO

applies an iterative optimization process. Each elementary optimization step

is performed in a subspace, referred to as working set, of the original feature

space. The working sets vary during the steps of the iterative optimization

process, but the dimensionality of each working set is always two. In these

two dimensional working sets, the optimization step can be solved analyti-

cally, which makes the solver pretty accurate, however—especially in the case

of large problems—it shows slow convergence due to the applied small sub-

space in which each particular optimization step is performed.

In order to generate features from the user-item ratings, we adopted the

proposals described in [97]. These features are specifically designed for sparse

datasets like ours.

For the baseline user-item matrix, the training set was generated by first

selecting 90% of the user-item entries with the “has file” (1) label, and then we

selected the same number of entries with the “does not have file” label. The

test set was composed of the remaining 10% of the “has file” entries, and the

same number of “does not have file” entries, disjunct from the training set.

A similar method was used for the time-shift based datasets, for all the given

time-shift values. The only difference is that there we had three labels: 1 (like),

0 (dislike) and null (don’t know). Accordingly, to define a two-class learning

problem, we created two pairs of training and test sets: one for the “like” class,

and one for the “dislike” class.

The results are shown in Figure 5.3. The F-measure is the usual indicator for

evaluating learning algorithms. It is defined as the harmonic mean of precision

and recall. Precision is defined as the number of true positive predictions di-

vided by all the positive predictions (how many of the positive predictions are

indeed positive), while recall is given by the true positive predictions divided
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by the sum of the true positive and false negative predictions (how many of

the positives do we catch).

It is evident that all the classes are learnable (randomly assigning labels

to data results in an F-measure of 0.5). Besides, it is also evident that both

classes achieve a higher F-measure score than the baseline does. That is, clearly,

applying the time-shift preprocessing, we were able to achieve a better quality

dataset.

The published time-shift based database is available for research purposes

and can be downloaded from [1]. Currently, an inferred dataset from the

[−60; +60] hour interval is available in the following format: three numeri-

cal columns separated by a tabulator, which are the user ID, the item ID, and

the rate (which is either 1 or 0, meaning the item was liked or disliked, respec-

tively).

We conducted experiments with the above-mentioned methods on this da-

tabase, whose results are shown in Fig. 5.4. In this evaluation case we split the

database into train and test sets in the ratio 9:1. We chose the samples of sets

at random from a uniform distribution, and we introduced different statistical

learning methods (SMO, J48, LogReg and Naive Bayes; all of them are from the

WEKA [49] machine learning library with default parametrization). We used
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the mean absolute error (MAE) measure to demonstrate the performance of the

baseline methods on the database. The results that we can observe in Fig. 5.4

are consistent with our previous results. However, it is interesting to notice

that the SMO solver significantly outperforms the other learning methods on

this task.

Based on the above results, we can conclude that the proposed inferring

method—while it is far from precise, because of its inherent heuristics nature—

can produce a dataset which definitely has an interesting inner structure which

can be caught applying different statistical learning methods. While this is

only implicit evidence (since we have no ground truth available), we believe

that our approach significantly improves the rating data reflecting real user

preferences. In the following sections, we replace this dataset with the similar

(in characteristics) BookCrossing [127] database, since it contains the ratings of

more users on more items (that is, more large scale), and it is more widely used

(that is, more comparable with other baseline algorithms) benchmark dataset.

5.3 Interesting Properties of CF Datasets

From this section, we introduce additional benchmark datasets, that are com-

monly used for evaluating recommender approaches. Before we propose our

main results, we take a closer look at these datasets and show some properties

that raise interesting—and so far largely overlooked—problems in distributed

environments. The mentioned benchmarks are the MovieLens [57] dataset, the

Jester [46] dataset and the BookCrossing [127] dataset.

Table 5.4 summarizes some basic statistics of our datasets. In the case of

MovieLens we used the official ra partition so that its evaluation set contained

10 ratings per user. For Jester and BookCrossing we produced the evaluation

set as proposed in [10]: we withheld 6 ratings from the training set where pos-

sible (if the user under consideration had at least 6 rated items). In this table

’# items ≥’ means the minimal number of items rated by some user. Spar-

sity denotes the ratio of existing and possible rates in the training sets. The

value MAE(med) is a trivial baseline for prediction performance; it is defined

as the mean absolute error (MAE) computed on the evaluation set using the
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Table 5.4: Basic statistics of datasets.

MovieLens Jester BookCrossing
# users 71,567 73,421 77,806
# items 10,681 100 185,974
size of train 9,301,274 3,695,834 397,011
sparsity 1.2168% 50.3376% 0.0027%
size of eval 698,780 440,526 36,660
eval/train 7.5127% 11.9195% 9.2340%
# items ≥ 20 15 1
rate set 1, . . . , 5 −10, . . . , 10 1, . . . , 10
MAE(med) 0.93948 4.52645 2.43277

median-rate of the training set as a prediction value. Clearly, a very significant

difference can be found in properties related to sparsity. This will have sig-

nificant implications on the performance of our algorithms, as we will show

later.

As mentioned before, in distributed settings one suitable and popular ap-

proach is to build and manage an overlay that connects similar users. This

overlay can be viewed as a graph where each node corresponds to a user and

there is a directed edge between user A and B if and only if user B belongs to

the most similar users of A.

This overlay plays an important role in a P2P recommender system. First,

the performance of the recommendation depends on the structure of the over-

lay. Second, the costs and load balancing of the overlay management protocol

depend on the topology of this similarity network.

To the best of our knowledge, the second role of the similarity overlay has

not been addressed so far in the literature. Nevertheless, it is an important

issue, since the load generated by the overlay management process might cor-

relate with the number of nodes that link to a given node as one of its most

similar nodes. More precisely, the load of a node might correlate with its in-

degree in the overlay network. Thus, if the in-degree distribution of the over-

lay network is extremely unbalanced (e.g. if it has a power-law distribution),

some of the nodes can experience a load that is orders of magnitude higher

than the average. Thus, it is very important to consider the in-degree distribu-
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Figure 5.5: In-degree distribution of the benchmark datasets.

tion of the overlay when planning a P2P recommender system, and examine

the incurred loads on the individual nodes as a function of this distribution.

Fig. 5.5 shows the in-degree distributions of the k nearest neighbor (kNN)

overlay of each benchmark dataset. In this overlay each node has k directed

outgoing edges to the k most similar nodes. As can be seen from the plots, the

BookCrossing dataset has an almost power-law in-degree distribution, with

many nodes having incoming links from almost every other node (note that

the size of this dataset is around 77,806 users).

To see whether this might be a general property of high dimensional datasets,

we need to consider some basic properties of high dimensional metric spaces.

If we generate high dimensional uniform random datasets from the unit cube

and construct their kNN graphs, we will find that most of the points lie on the

convex hull of the dataset. These points are mostly situated at the same dis-

tance from each other. The nodes corresponding to these points have a mostly

uniform and relatively small in-degree in the kNN graph. The very few points

inside the convex hull are close to a huge number of points on the convex hull,

and so have a high in-degree.

These observations indicate that we have to explicitly take into account

load balancing when building a recommender system in a fully distributed

manner.
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5.4 Algorithms

The algorithms we examine all rely on building and managing a user-similarity

overlay. In the top level of the protocol hierarchy, they apply the same user-

based CF algorithm for making recommendations, strictly using locally avail-

able information (that is, information about the neighbors in the overlay).

Since we focus on overlay management, we fix the recommender algorithm

and not discuss it any further. As it was mentioned in the previous sections, for

this we need an aggregation method and a user similarity metric. We selected

the aggregation shown in Eq. 5.1, proposed in [103]. Our similarity metric is

cosine similarity, which achieved the best performance on our benchmarks.

Note that the selected user similarity is of course known to the overlay man-

agement algorithm and is used to direct the overlay construction.

We also assume that the local views (or node related characteristics, as it

was referred to in Sec. 2.2) of the nodes contain not only the addresses of

the neighbors, but also a descriptor for each neighbor that contains ratings

made by the corresponding user. This implies that computing recommenda-

tion scores does not load the network since all the necessary information is

available locally. However, there is a drawback; namely the stored informa-

tion is not up-to-date. As we will show later, this is not a serious problem

since on the one hand, recommendation datasets are not extremely dynamic

and, on the other hand, the descriptors are in fact refreshed rather frequently

due to the management algorithms.

In sum, the task of overlay management is to build and maintain the best

possible overlay for computing recommendation scores, by taking into account

bandwidth usage at the nodes. We expect a minimal, uniform load from over-

lay management even when the in-degree distribution of the expected overlay

graph is unbalanced.

5.4.1 BUDDYCAST based Recommendation

As we mentioned earlier we applied the BUDDYCAST overlay management

protocol as a baseline method. Now we give a very brief overview of this

algorithm and its numerous parameters; for details please see [102].
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Algorithm 5.5 Random Nodes based Overlay Management
Require: k: the size of view; r: the number of randomly generated nodes

1: loop
2: samples ← getRandomPeers(r)
3: for i = 1 to r do
4: peer ← get(samples, i)
5: peerDescriptor ← descriptor(peer)
6: insert(view, peerDescriptor)
7: end for
8: end loop

The algorithm maintains a number of lists containing node descriptors. The

taste buddy list contains the most similar users (peers), all those who commu-

nicated with the node before. The recommendation for a peer is calculated

based on this list.

The BUDDYCAST algorithm contains a mechanism for load balancing: a

block list. Communication with a peer on the block list is not allowed. If a

node communicates with another peer, it is put on the block list for four hours.

Finally, a node also maintains a candidate list which contains close peers for

potential communication, as well as a random list that contains random sam-

ples from the network. For overlay maintenance, each node periodically (in

every 15 seconds by default) connects to the best node from the candidate list

with probability α, and to a random list with probability 1− α, and exchanges

its buddy list with the selected peer.

5.4.2 kNN Graph from Random Samples

We assume that a node has a local view of size k that contains node descriptors.

These will be used by the recommender algorithm.

In Algorithm 5.5 each node is initialized with k random samples from the

network, and they iteratively approximate the kNN graph. The convergence

is based on a random sampling process which generates r random nodes from

the whole network in each iteration. These nodes are inserted into the view

which is implemented as a bounded priority queue. The size of this queue is

k and the priority is based on the similarity function provided by the recom-
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mender module.

Applying a priority queue here on the basis of similarities means that nodes

remember the most similar nodes from the past iterations. This means that

since random samples are taken from the entire network, each node will con-

verge to its kNN view with positive probability.

The method GETRANDOMPEERS can be implemented, for example, using

the NEWSCAST protocol (for more details, please visit Sec. 2.2).

This algorithm does converge, as argued above, albeit very slowly. How-

ever, it is guaranteed to generate an almost completely uniform load since the

only communication that takes place is performed by the underlying peer sam-

pling implementation (NEWSCAST), which has this property.

5.4.3 kNN Graph by T-MAN

We can manage the overlay with the T-MAN algorithm as well (for a brief in-

troduction to the main concepts of T-MAN, please see Sec. 2.2). This algorithm

manages a view of size k, as in the random algorithm above. T-MAN period-

ically updates this view by first selecting a peer node to communicate with,

then exchanging its view with the peer, and finally merging the two views and

keeping the closest k descriptors. This is very similar to Algorithm 5.5, but

instead of r random samples the update is performed using the k elements of

the view of the selected peer.

In this chapter we examine the following methods for T-MAN which are

employed as peer selection methods:

Global: This approach selects the node for communication from the whole

network randomly. This can be done by using a NEWSCAST layer as it was

described in the previous section. We expect this approach to distribute the

load in the network uniformly since with this selection the incoming commu-

nication requests do not depend on the in-degree of the kNN graph at all.

View: In this approach the node for communication is selected from the

view of the current node uniformly at random. The mechanism of this selec-

tion strategy is similar to the previous one, but the spectrum of the random

selection is smaller since it is restricted to the view instead of the whole net-
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work.

Proportional: This approach also selects a node for view exchange from the

view of the current node, but here we define a different probability distribu-

tion. This distribution is different for each node and it is reversely proportional

to the value of a selection counter, which measures the load of the node in the

previous time interval. The exact definition of the selection probability for a

neighbor j of node i is

pi,j =

1
selj+1

∑k∈Viewi

1
selk+1

, (5.2)

where selk is the value of the selection counter of the kth neighbor. This in-

formation is stored in the node descriptors. The motivation for this selection

method is to reduce the load on the nodes that have a high in-degree in the

kNN graph, while maintaining the favorable convergence speed of the T-MAN

algorithm.

Best: The strategy that selects the most similar node for communication

without any restriction. We expect that this strategy converges the most ag-

gressively to the perfect kNN graph, but at the same time it results in the most

unbalanced load.

5.4.4 Randomness Is Sometimes Better

Our experimental results (to be presented in Section 5.5) indicated that in cer-

tain cases it is actually not optimal to use the kNN view for recommendation.

It appears to be the case that a more relaxed view can give a better recommen-

dation performance.

To test this hypothesis, we designed a randomization technique that is com-

patible with any of the algorithms above. The basic idea is that we introduce an

additional parameter, n ≤ k. The nodes still have a view of size k, and we still

use the same recommender algorithm based on these k neighbors. However,

we apply any of the algorithms above to construct a (k-n)NN overlay graph

(not a kNN graph), and we fill the remaining n elements in the following way:

we take r ≥ n random samples (not necessarily independent in each cycle) and

we take the closest n nodes from this list. With n = k we get the algorithms
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proposed in [10], and with n = 0 this modification has no effect, so we get the

original algorithm for constructing the kNN graph.

5.5 Empirical Results

As our system model, we consider the fully distributed system model, which

was introduced in Sec. 2.2. That is, a huge number of nodes communicate via

messaging along an overlay network without any central control. Each node

holds a partial view (node descriptors) about its direct neighbors.

Although the class of algorithms we discuss has been shown to tolerate

unpredictable message delays and node failures well [63, 64], in this work we

focus on load balancing and prediction performance, so we assume that mes-

sages are delivered reliably and without delay, and we assume that the nodes

are stable.

We implemented our protocols and performed our experiments in Peer-

Sim [85]. We performed a set of simulations of our algorithms with the fol-

lowing parameter value combinations: view update is random or T-MAN; peer

selection for T-MAN is GLOBAL, VIEW, BEST or PROPORTIONAL; and the number

of random samples is 20, 50, or 100 for random, and 0 or 100 for T-MAN.

The BUDDYCAST algorithm was implemented and executed with the fol-

lowing parameters: the size of the buddy list and the candidate list was 100,

the size of the random list was 10, and α was 0.5. The size of the block list

had to be restricted to be 100 as well, in order to be able to run our large scale

simulations. The view size for the rest of the protocols was fixed at k = 100

in all experiments for practical reasons: this represents a tradeoff between a

reasonably large k and the feasibility of large scale simulation.

In these simulations we observe the prediction performance in terms of the

MAE measure and the distribution of the number of incoming messages per

cycle at a node. Note that the number of outgoing messages is exactly one in

each case.

Let us first discuss the effect of parameter r. This is a crucial parameter for

random view update, while in the case of T-MAN the role of random samples

is merely to help the algorithm to avoid local optima, and to guarantee con-
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Figure 5.6: Effect of parameter r in a few settings.

vergence. Fig. 5.6 shows the effect of r in the case of the MovieLens database.

The effect of r on the other databases and for other settings is similar.

We can observe that in the case of a random view update, r simply is a

multiplicative factor that determines the speed of convergence: twice as many

samples per cycle result in a halving of the necessary cycles to achieve the

same value. In the case of T-MAN, the version with random samples converges

faster, while the generated load remains the same (not shown). Accordingly, in

the following we discuss T-MAN algorithms only with r = 100, and random

view update algorithms only with r = 100.

In Fig. 5.7 we show the results of the experiments, where the MAE and

the maximal load is illustrated. The maximal load is defined as the maximal

number of incoming messages any node receives during the given cycle. The

first interesting observation is that the load balancing property of the differ-

ent algorithms shows a similar pattern over the three datasets, however, the

convergence of the MAE is rather different (see also Table 5.4). In particular,

in the case of the MovieLens and BookCrossing benchmarks the MAE reaches

a minimum, after which it approaches the top-k based prediction from below,

whereas we do not see this behavior in the much denser Jester database.

Indeed, the reason for this behavior lies in the fact that for the sparse datasets

a larger k is a better choice, and our setting (k = 100) is actually far from opti-
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Figure 5.7: Experimental results. The scale of the plots on the right is logarith-
mic.

mal. In the initial cycles the view approximates a random sample from a larger

k parameter. To verify this, we calculated the MAE of the predictions based on

the algorithm described in Section 5.4.4. The results are shown in Figure 5.8

later on.
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It is clear that for a small k it is actually better not to use the top k from

the entire network; rather it is better to fill some of the views with the closest

peers in a relatively small random sample from the network. Especially for

the smallest k we examined (k = 100) this technique results in a significant

improvement in the MAE compared to the recommendation based on the clos-

est k peers in all datasets. This algorithm can easily be implemented, since we

simply have to combine any of the convergent algorithms with an appropriate

setting for k (such as k = 50) and use a peer sampling service to add to this list

the best peers in a random sample of a given size.

As a closely related note, the random view update algorithms can be “frozen”

in the state of minimal MAE easily, without any extra communication, pro-

vided we know in advance the location (that is, the cycle number) of the min-

imum. Let us assume it is in cycle c. Then we can use, for a prediction at any

point in time, the best k peers out of the union of c · r random samples collected

in the previous c cycles, which is very similar to the approach taken in [10].

Clearly, the fastest convergence is shown by the T-MAN variants, but these

result in unbalanced load at the same time. The PROPORTIONAL variant dis-

cussed in Section 5.4.3 reduces the maximal load, however, only when the

topology has already converged. During the convergence phase, PROPOR-
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TIONAL behaves exactly like the variant VIEW.

Quite surprisingly, the best compromise between speed and load balanc-

ing seems to be GLOBAL, where the peer is selected completely at random by

T-MAN. In many topologies, such as a 2-dimensional grid, a random peer pos-

sesses no useful information for another node that is far from it in the topology,

so we can in fact expect to do worse than the random view update algorithm.

However, in target graphs such as kNN graphs based on similarity metrics,

a large proportion of the network shares useful information, namely the ad-

dresses of the nodes that are more central.

On such unbalanced graphs T-MAN GLOBAL is favorable because it offers

a faster convergence than a pure random search (in fact, it converges almost

as fast as the more aggressive T-MAN variants), however, the load it gener-

ates over the network is completely identical to that of random search, and

therefore the maximal load is very small: the maximum of N samples from a

Poisson distribution with a mean of 1 (where N is the network size). In addi-

tion, the node with the maximal load is different in each cycle.

Finally, we can observe that on the BookCrossing database some algorithms,

especially BuddyCast and T-MAN with BEST peer selection, result in an ex-

tremely unbalanced degree distribution (note the logarithmic scale of the plot).

This correlates with the fact that the BookCrossing database has the most un-

balanced degree distribution (see Figure 5.5). Even though we have not opti-

mized the parameters of BuddyCast, this result underlines our point that one

has to pay attention to the in-degree distribution of the underlying kNN graph.

5.6 Conclusions

In this chapter we tackled the problem of the fully distributed recommendation

including producing a dataset from explicit user feedbacks applying SVM as a

validation method, and the construction of similarity-based overlay networks

with user-based collaborative filtering as an application. We pointed out that

one can generate meaningful (that is, learnable) recommender database with-

out any ground truth, similarity-based overlays, built based on such a dataset,

can have a very unbalanced degree distribution, and this fact might have a
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severe impact on the load balancing of some overlay management protocols.

The main conclusion that we can draw is that in highly unbalanced over-

lays (that are rather frequent among similarity-based networks) the overlay

construction converges reasonably fast even in the case of random updates;

or, with T-MAN, uniform random peer selection from the network. At the

same time, the traditional, aggressive peer selection strategies that have been

proposed by other authors should be avoided because they result in a highly

unbalanced load experienced by the nodes.

In sum, in this domain T-MAN with global selection is a good choice be-

cause it has a fully uniform load distribution combined with an acceptable

convergence speed, which is better than that of the random view update. How-

ever, care should be taken because this conclusion holds only in these unbal-

anced domains, and in fact this algorithm is guaranteed to perform extremely

badly in large-diameter topologies.

The results of the current chapter are mainly based on our earlier works [90,

92].



CHAPTER 6

P2PEGASOS—A Fully Distributed SVM

As we underlined many times in the previous chapters, data mining has nu-

merous practical applications and these applications can be improved by sup-

porting them with carefully designed, specific machine learning algorithms. In

the previous chapters, we mainly focused on the algorithmic aspect of the de-

sign space. Here we turn to investigate the system model dimension deeply1.

Particularly, we analyse how we can implement sophisticated machine learn-

ing algorithms in a specific fully distributed system efficiently and robustly.

In these types of fully distributed (peer-to-peer, P2P) systems, the problem

of data aggregation has long been considered an important aspect. In the past

decade, an extensive literature has accumulated on the subject. Research has

mainly focused on very simple statistics over fully distributed databases, such

as the average of a distributed set of numbers [62, 68], separable functions [86],

or network size [82]. General SQL queries have also been implemented in

this fashion [118]. The main attraction of the known fully distributed (mostly

1However, in the previous chapter we have already introduced the concept of learning in
a P2P network, but there the learning itself was performed locally using data provided by the
neighborhood.
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gossip-based) algorithms for data aggregation is their impressive simplicity

and efficiency, combined with robustness to benign failure.

Simple statistics or queries are very useful, but often more is needed. For

example, for a P2P platform that offers rich functionality to its users includ-

ing spam filtering, personalized search, and recommendation [9, 23, 101], or

for P2P approaches for detecting distributed attack vectors [27], complex sta-

tistical learning models have to be built based on fully distributed, and often

sensitive, data. At the same time, it would be highly desirable to build these

models without sacrificing any of the nice properties of the aggregation algo-

rithms mentioned above.

In sum, we need to find fully distributed, efficient, and lightweight data

mining algorithms that make no or minimal assumptions about the synchrony

and reliability of communication, work on fully distributed datasets without

collecting the data to a central location, and make the learnt models available

to all participating nodes.

In this chapter, we propose a SVM-based learning algorithm based on sto-

chastic gradient search that meets the above mentioned requirements gener-

ated by the fully distributed environment. The key idea of our solution is that

many models perform random walk over the network while being gradually

adjusted to fit the data they encounter. Furthermore, we can even improve

the performance of sequential stochastic gradient methods, exploiting the fact

that there are many interacting models making random walks at the same time.

These models can be combined applying local voting mechanisms.

The results presented in this chapter are based on those presented in our

previous work [93].

6.1 System and Data Model

We assume that the system model of the fully distributed network that runs

the proposed learning protocol is identical to that presented in Sec. 2.2. That

is, a huge number of nodes communicate with each other without any cen-

tral coordination along an overlay network. Both node and communication

failures can occur.



77 CHAPTER 6. P2PEGASOS—A FULLY DISTRIBUTED SVM

Moreover, we assume that the overlay network is proposed by an instance

of the NEWSCAST protocol [64]. That provides uniform random nodes for the

learning protocol from the network, which are likely online at the time of the

request. The API of the service consists of a local function GETRANDOMPEER(),

which returns a random node address. For more detailed description of the

system model and the NEWSCAT protocol, please see Sec. 2.2.

Related to the data model, we assume that each node stores exactly one

supervised feature vector. This setting excludes the possibility of any local sta-

tistical processing. Moreover, we assume that these feature vectors never leave

the node that stores them (i.e. considered as private for the nodes). This ex-

treme data distribution model allows us to support applications that require

extreme privacy, e.g. where the feature vectors are generated from profile in-

formation. Our goal is to build supervised classification models without col-

lecting the data. For a more detailed description related to the data model and

in general to the supervised learning, please read through Sec. 2.1.

6.2 Background

The proposed learning protocol is directly related to the Pegasos SVM algo-

rithm [108]. Here we briefly overview the main characteristics of this learner

and motivate why it is a suitable choice as a basis for our protocol.

Suppose that we are in a supervised binary classification setting and a

D = {(x1, yi), . . . , (xn, yn)} ∈ R
d × {−1,+1} training database is given. The

Pegasos solver formalizes the SVM learning problem as follows [108] (primal

form):

minimizew
λ

2
‖w‖2 +

1
m

n

∑
i=1

max(0, 1− yiw
Txi) (6.1)

In this form of the SVM (unlike in those presented in Sec. 2.1.1), the b bias

term is omitted, and the problem is represented as an unconstrained empirical

loss minimization applying the Hinge loss and a penalty term for the norm of

the classifier that is being learnt. The Pegasos learner solves the optimization
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problem presented in Eq. 6.1 applying stochastic gradient method.

The stochastic gradient search based training is a common mechanism ap-

plied in the machine learning. Without going into too much detail, the basic

idea is that we iterate over the training examples in a random order repeatedly,

and for each training example, we calculate the gradient of the error function

(which describes classification error), and modify the model along this gradi-

ent to reduce the error on this particular example. At the same time, the step

size along the gradient is gradually reduced. In many instantiations of the

method, it can be proven that the converged model minimizes the sum of the

errors over the examples [39].

As we mentioned, the Pegasos solver directly optimizes the above men-

tioned objective function (shown in Eq. 6.1). In this primal form, the desired

model w is explicitly represented, and is evaluated directly over the training ex-

amples. Contrary, the standard SVM algorithms usually solve the dual prob-

lem (in the form shown in Eq. 2.8) instead of the primal one [31]. Here the

model w is given indirectly, as the sum of some training examples (the support

vectors) weighted with the corresponding Lagrangian variables (shown in e.g.

Eq. 2.9, the variables α⋆

i ). These Lagrangian variables specify how important

the corresponding sample is from the point of view of the model.

However, the primal and dual formalizations are equivalent, both in terms

of theoretical time complexity and the optimal solution1. A crucial difference

is that, the methods that deal with the dual form require frequent access to the

entire database to update the Lagrangian variables, which is unfeasible in our

system model. Besides, the number of Lagrangian variables equals the num-

ber of training samples, which could be orders of magnitude larger than the

dimension of the primal problem, d. Finally, there are indications that apply-

ing the primal form can achieve a better generalization on some databases [26].

6.3 Related Work

In this section, we consider the fully distributed data mining algorithms only,

since some non-distributed SVM-based learning algorithms have been dis-

1However, solving the dual problem has some advantages as mentioned in Sec. 2.1.1; most
importantly, one can take full advantage of the kernel-based extensions.
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cussed in Sec. 2.1.1 and in the previous chapters. Moreover, we do not con-

sider here the parallel and different cloud-based data mining algorithms either.

These fields have a large literature, but the rather different underlying system

model means it is of little relevance to us here.

In the area of P2P computing, a large number of fully distributed algo-

rithms are known for calculating global functions over fully distributed data,

generally referred to as aggregation algorithms. The literature of this field is

vast, we mention only two examples: Astrolabe [118] and gossip-based averag-

ing [62]. These algorithms are simple and robust, but are capable of calculating

only simple functions such as the average. Nevertheless, these simple func-

tions can serve as key components for more sophisticated methods, such as

the EM algorithm [73], unsupervised learners [109], or the collaborative filter-

ing based recommender algorithms [10, 51, 92, 117]. Usually, these approaches

use other well-studied P2P services like some kind of overlay support, for ex-

ample, T-MAN [61] (for more details related to the T-MAN protocol, please see

Alg. 2.3 in Sec. 2.2).

In the past few years there has been an increasing number of proposals for

P2P machine learning algorithms as well, like those in [5, 6, 7, 34, 56, 77, 109].

The usual assumption in these studies is that a peer has a subset of the training

data on which a model can be learnt locally. After learning the local models,

algorithms either aggregate the models to allow each peer to perform local

prediction, or they assume that prediction is performed in a distributed way.

Clearly, distributed prediction is a lot more expensive than local prediction;

however, model aggregation is not needed, and there is more flexibility in the

case of changing data. In our approach we adopt the fully distributed model,

where each node holds only one data record. In this case we cannot talk about

local learning: every aspect of the learning algorithm is inherently distributed.

Since we assume that data cannot be moved, the models need to visit data

instead. In a setting like this, the main problem we need to solve is to efficiently

aggregate the various models that evolve slowly in the system so as to speed

up the convergence of prediction performance.

As for SVM algorithms, we are aware of only one comparable P2P SVM im-

plementation called Gadget SVM [56]. This implementation applies the above
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Algorithm 6.6 P2P Stochastic Gradient Descent Algorithm
1: initModel()
2: loop
3: wait(∆)
4: p ← selectPeer()
5: send currentModel to p
6: end loop

7: procedure ONRECEIVEMODEL(m)
8: m← updateModel(m)
9: currentModel← m

10: modelCache.add(m)
11: end procedure

detailed mechanism (that is, it applies local learning) as well. Additionally,

it requires round synchronization as well, which is clearly different from our

asynchronous model. It applies the Push-Sum algorithm [68] as its main build-

ing block.

To the best of our knowledge there is no other learning approach designed

to work in our fully asynchronous and unreliable message passing model, and

which is capable of producing a large array of state-of-the-art models.

6.4 The Algorithm

The skeleton of the algorithm we propose is shown in Algorithm 6.6. This

algorithm is run by every node in the network. When joining the network,

each node initializes its model via INITMODEL(). After the initialization each

node starts to periodically send its current model to a random neighbor that is

selected using the peer sampling service (see Sec. 2.2 and Sec. 6.1). When re-

ceiving the model, the node updates it using a stochastic gradient descent step

based on the training sample it stores, and subsequently it stores the model.

The model queue can be used for voting, as we will explain later.

Recall that we assumed that each node stores exactly one training sample.

This is a worst case scenario; if more samples are available locally, then we can

use them all to update the model without any network communication, thus

speeding up convergence.

In this skeleton, we do not specify what kind of models are used and what

algorithms operate on them. For example, a model is a d dimensional hyper-

plane in the case of SVM, as described earlier, which can be characterized by

a d dimensional real vector. In other learning paradigms other model types
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Algorithm 6.7 P2Pegasos
1: procedure UPDATEMODEL(m)
2: η ← 1/(λ ·m.t)
3: if y ·m.wTx < 1 then
4: m.w← (1− ηλ)m.w + ηyx
5: else
6: m.w← (1− ηλ)m.w
7: end if
8: m.t← m.t + 1
9: return m

10: end procedure

11: procedure INITMODEL

12: if stored modelCache exists then
13: m←modelCache.freshest()
14: else
15: m.t← 0
16: m.w← (0, . . . , 0)T

17: end if
18: send model(m) to self
19: end procedure

are possible (not investigated here). To instantiate the skeleton, we need to im-

plement INITMODEL() and UPDATEMODEL(). This can be done based on any

learning algorithm that utilizes the stochastic gradient descent approach. In

this chapter we will focus on the Pegasos algorithm [108], which implements

the SVM method. The two procedures are shown in Algorithm 6.7.

We assume that the model m has two fields: m.t ∈ N, which holds the

number of times the model was updated, and m.w ∈ R
d that holds the linear

model. The parameter λ ∈ R is the regularization constant. In our experiments

we used the setting λ = 10−4. Vector x ∈ R
d is the local feature vector at the

node, and y ∈ {−1, 1} is its correct classification. At line 4 the method updates

the model executing the update mechanism. Here the local training sample is

used. This mechanism gets executed if the local example x is misclassified by

the received model m.w (see the condition at line 3). Otherwise the model is

only deflated at line 6 due to the regularization constraint.

The effect of the algorithm will be that the models will perform a random

walk in the network while being updated using the update rule of the Pegasos

algorithm. In this sense, each model corresponds to an independent run of

the sequential Pegasos, hence the theoretical results of the Pegasos algorithm

are applicable. Accordingly, we know that all these models will converge to

an optimal solution of the SVM primal optimization problem [108]. For the

same reason, the algorithm does not need any synchronization or coordination.

Although we do not give a formal discussion of asynchrony, it is clear that

as long as each node can contact at least one new uniform random peer in a
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Algorithm 6.8 P2Pegasos prediction procedures

1: procedure PREDICT(x)
2: w← currentModel.w
3: return sign(wTx)
4: end procedure

5: procedure VOTEDPREDICT(x)
6: pRatio← 0
7: for m ∈ modelCache do
8: if sign(m.wTx) ≥ 0 then
9: pRatio← pRatio +1

10: end if
11: end for
12: pRatio← pRatio/modelCache.size()
13: return sign(pRatio−0.5)
14: end procedure

bounded time after each successful contact, the protocol will converge to the

optimal solution.

An important aspect of our protocol is that every node has at least one

model available locally, and thus all the nodes can perform a prediction with-

out performing communication. Moreover, since there are N models in the

network (where N is the network size), we can apply additional techniques

to achieve a higher predictive performance than that of an output model of a

simple sequential implementation. Here we implement a simple voting mech-

anism, where nodes will use more than one model to make predictions. Algo-

rithm 6.8 shows the procedures used for prediction in the original case, and in

the case of voting.

Here the vector x is the unseen example to be classified. In the case of

linear models, the classification is simply the sign of the inner product with

the model, which essentially describes on which side of the hyperplane the

given point lies. We note that MODELCACHE is assumed to be of a bounded

size. When storing a new model in it, an old one will be removed if the queue

is full. In our experiments we used a queue implementation, where the queue

holds the 10 latest added models.

6.5 Experimental Results

We investigated the proposed P2PEGASOS algorithm against several baseline

approaches, in numerous scenarios, applying three different data sets. First,

we describe the exact evaluation setting, then present and discuss our results.
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Table 6.1: The main properties of the data sets, and the prediction error of the
baseline sequential algorithms.

Iris1 Iris2 Iris3 Reuters SpamBase Malicious10
Training set size 90 90 90 2,000 4,140 2,155,622
Test set size 10 10 10 600 461 240,508
Number of features 4 4 4 9,947 57 10
Classlabel ratio 1:1 1:1 1:1 1:1 1,813:2,788 792,145:1,603,985
Pegasos 20000 iter. 0 0 0 0.025 0.111 0.080 (0.081)
Pegasos 1000 iter. 0 0 0.4 0.057 0.137 0.095 (0.060)
SVMLight 0 0 0.1 0.027 0.074 0.056 (–)

6.5.1 Experimental Setup

Data Sets. We selected data sets of different types including small and large

sets containing a small or large number of features. Our selection includes

the commonly used Fiser’s Iris data set [43]. The original data set contains

three classes. Since the SVM method is designed for the binary (two-class)

classification problem, we transformed this database into three two-class data

sets by simply removing each of the classes once, leaving classes 1 and 2 (Iris1),

classes 1 and 3 (Iris2), and classes 2 and 3 (Iris3) in the data set. In addition, we

included the Reuters [48], the Spambase, and the Malicious URLs [78] data sets

as well. All the data sets were obtained from the UCI database repository [44].

Table 6.1 shows the main properties of these data sets, as well as the predic-

tion performance of the baseline algorithms. SVMLight [65] is an efficient SVM

implementation. Note that the Pegasos algorithm can be shown to converge to

the same value as SVMlight [108].

The original Malicious URLs data set has about 3,000,000 features, hence

we first reduced the number of features so that we could carry out simula-

tions. The message size in our algorithm depends on the number of features,

therefore in a real application this step might also be useful in such extreme

cases. We used a simple and well-known method, namely we calculated the

correlation coefficient of each feature with the class label, and kept the ten

features with the maximal absolute values. If necessary, this calculation can

also be carried out in a gossip-based fashion [62], but we performed it offline.
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The effect of this dramatic reduction on the prediction performance is shown

in Table 6.1, where the results of Pegasos on the full feature set are shown in

parentheses (SVMlight could not be run due to the large size of the database).

Scenarios. The experiments were carried out in the event based engine of the

PeerSim simulator [85]. The peer sampling service was provided by the NEWS-

CAST protocol (see Sec. 2.2 for more details). The network size is the same as

the database size; each node has exactly one sample. Each node starts running

the protocol at the same time. The protocol does not require a synchronized

startup, but we need it here to analyze convergence in a clearly defined setting.

In our experimental scenarios we modeled message drop, message delay,

and churn. The drop probability of each message was 0.5. This can be con-

sidered an extremely large drop rate. Message delay was modeled as a uni-

form random delay from the interval [∆, 10∆], where ∆ is the gossip period,

as shown in Algorithm 6.6. This is also an extreme delay, which is orders of

magnitude higher than what can be expected in a realistic scenario.

We also modeled a realistic churn based on probabilistic models proposed

in [111]. Accordingly, we approximated the online session length with a log-

normal distribution, and we approximated the parameters of the distribution

using a maximum likelihood estimate based on a trace from a private BitTor-

rent community called FileList.org, obtained from Delft University of Technol-

ogy [106]. We set the offline session lengths so that at any moment in time

90% of the peers were online. In addition, we assumed that when a peer came

back online, it retained its state that it had at the time of leaving the network.

We now list the scenarios we experimented with: No failure: there is no mes-

sage drop, no delay and no churn; Drop only: we simulate message drop as

described, but no other types of failure; Delay only: we simulate message delay

only; Churn only: we simulate node churn only; All failures: we apply message

drop, delay and churn at the same time.

Metrics. The evaluation metric we focus on is prediction error. To measure

prediction error, we need to split the datasets into training sets and test sets.

The ratios of this splitting are shown in Table 6.1. At a given point in time, we
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select 100 peers at random (or all the peers, if there are fewer than 100) and we

calculate the average misclassification ratio of these 100 peers over the test set

using the current models of the peers. The misclassification ratio of a model is

simply the number of the misclassified test examples divided by the number

of all test examples, which is the so called 0-1 error.

Moreover, we calculated the similarities between the models circulating in

the network using the cosine similarity measure. This was done only for the

Iris databases, where we calculated the similarity between all pairs of models,

and calculated the average. This metric is useful for studying the speed at

which the actual models converge. Note that under uniform sampling it is

known that all models converge to an optimal model.

6.5.2 Results

Figure 6.1 shows the results over the Iris datasets for algorithm variants that

do not apply voting for prediction. The plots show results as a function of cy-

cles. One cycle is defined as a time interval of one gossip period ∆. Although

the size of each data set is the same, the dynamics of the convergence is rather

different. The reason is that the learning complexity of a database depends

primarily on the inner structure of the patterns of the data, and not on the size

of data set. In trivially learnable patterns a few examples are enough to con-

struct a good model, while under complex patterns a large number of samples

as well as many iterations might be required. Since Pegasos also has a similar

convergence behavior, we can be sure that this is not an artifact of paralleliza-

tion.

Let us now turn to the analysis of the individual effects of the different

failures we modeled, comparing them to two baseline algorithms. The first

baseline algorithm is SVMLight, a sequential efficient SVM solver [65] that op-

timizes the dual SVM problem given in Eq. 2.8. It is independent of the cycles,

hence its performance is shown as a horizontal line. The second baseline al-

gorithm is Pegasos. We ran Pegasos 100 times, and show the average error at

each cycle. Note that for Pegasos each cycle means visiting another random

teaching example.
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Figure 6.1: Experimental results over the Iris databases.

Clearly, the best performance is observed under no failure. This perfor-

mance is very close to that of Pegasos, and converges to SVMlight (like Pega-

sos does). The second best performance is observed with churn only. Adding

churn simply introduces an extra source of delay since models do not get for-
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gotten as mentioned in 6.5.1. The situation would be different in an adaptive

scenario, which we do not consider here. In the scenario with message drop

only, the performance is still very close to the ideal case. Considering the ex-

tremely large drop rates, this result is notable. This extreme tolerance to mes-

sage drop comes from the fact that the algorithm is fully asynchronous, and

a 50% drop rate on average causes only at most a proportional slowdown of

the convergence. Among the individual failure types, extreme message delay

is the most significant factor. On average, each message takes as much as 5 cy-

cles to reach its destination. The resulting slowdown is less than a factor of 5,

since some messages do get through faster, which speeds up the convergence

of the prediction error.

In Figure 6.1 we also present the convergence of the averaged cosine sim-

ilarities over the nodes together with their prediction performance under no

failures, without voting. We can see that in the case of each data set the models

converge, so the observed learning performance is due to the good models as

opposed to random influences.

Although, as mentioned above, in our case convergence speed depends

mainly on data patterns, and not on the database size, to demonstrate scala-

bility we performed large scale simulations as well with our large data sets.

The results can be seen in Figure 6.2. Here we plotted just the two scenarios

with no failures and with all the failures. The figure also shows results for the

variants that use voting.

A general observation regarding the distinction between the P2PEGASOS

variants with and without voting is that voting results in a better performance

in all scenarios, after a small number of cycles. In the first few cycles, the

version without voting outperforms voting because there is insufficient time

for the queues to be filled with models that are mature enough. On some of

the databases the improvement due to voting can be rather dramatic. We note

that where the test data sets were larger (see Table 6.1) we obtained smoother

convergence curves.



6.6. CONCLUSIONS 88

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10  100

A
v
er

ag
e 

o
f 

0
-1

 E
rr

o
r 

(o
v
er

 n
o
d
es

)

Cycles

Iris1

AllFailures
AllFailuresV

NoFailure
NoFailureV

Pegasos
SVMLight

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1  10  100  1000

A
v
er

ag
e 

o
f 

0
-1

 E
rr

o
r 

(o
v
er

 n
o
d
es

)

Cycles

Reuters

AllFailures
AllFailuresV

NoFailure
NoFailureV

Pegasos
SVMLight

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1  10  100  1000  10000

A
v
er

ag
e 

o
f 

0
-1

 E
rr

o
r 

(o
v
er

 n
o
d
es

)

Cycles

SpamBase

AllFailures
AllFailuresV

NoFailure
NoFailureV

Pegasos
SVMLight

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1  10  100

A
v
er

ag
e 

o
f 

0
-1

 E
rr

o
r 

(o
v
er

 n
o
d
es

)

Cycles

Malicious URLs

AllFailures
AllFailuresV

NoFailure
NoFailureV

Pegasos
SVMLight

Figure 6.2: Experimental results over the large databases, and the Iris1
database. Labels marked with a ‘V’ are variants that use voting.

6.6 Conclusions

In this chapter we proposed a fully distributed SVM algorithm called P2PEG-

ASOS. Nodes in the network gossip models that are continuously updated at

each node along their random walk. Our main conclusion is that the approach

is able to produce SVM models in a very hostile environment, with extreme

message drop rates and delays, with very limited assumptions about the com-

munication network. The only service that is needed is uniform peer sampling.

The quality of the models are very similar to that of the centralized SVM algo-

rithms.

Furthermore, we can also outperform the centralized Pegasos algorithm

with the help of a voting technique that makes use of the fact that there are



89 CHAPTER 6. P2PEGASOS—A FULLY DISTRIBUTED SVM

many independent models in the network passing through each node. The

models are available at each node, so all the nodes can perform predictions as

well. At the same time, nodes never reveal their data, so this approach is a

natural candidate for privacy preserving solutions.

The results shown in this chapter are mainly based on our previous study [93].
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CHAPTER 7

Speeding Up the Convergence of P2PEGASOS

As we partially highlighted in the previous chapters, the main attraction of

P2P technology for distributed applications and systems is acceptable scalabil-

ity at a low cost (no central servers are needed) and a potential for privacy

preserving solutions, where data never leaves the computer of a user in a

raw form. Recently, there has been an increasing effort to develop machine

learning algorithms—as we also proposed similar approaches in the previous

chapters—that can be applied in P2P networks. This progress was motivated

by the various potential applications such as spam filtering, user profile anal-

ysis, recommender systems and ranking.

In the previous chapter, we introduced an asynchronous learning protocol

called P2PEGASOS. This protocol operates on the top of a fully distributed

network performing an SVM-style supervised learning on the data available

in the network. The learning approach we proposed there involves models

that perform a random walk in the P2P network along the nodes proposed

by the peer sampling service. Reaching each node, the models update them-

1In Chapter 6, we assumed that one training example is available per node. However, all
the methods presented there can be extended to use more samples.
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selves using the supervised training sample(s)1 stored by the node. There are

many models in the network which take random walks, so all nodes will ex-

perience a continuous stream of models passing through them. Apart from

using these models for prediction directly, we introduced a simple ensemble

technique which applies a voting mechanism on the recently observed models.

There we showed that the protocol has accurate learning properties while it is

extremely robust to different network failure scenarios. We observed pretty

nice convergence properties as well.

Our goal—similarly to the goals of the previous chapter—is to develop al-

gorithms for fully distributed learning, but here we want to achieve approxi-

mately an order of magnitude higher convergence speed than that presented in the

case of original P2PEGASOS in Chapter 6. The design requirements—apart

from the fast convergence speed—are the following. First, the algorithm has

to be extremely robust. Even in extreme failure scenarios it should maintain a

reasonable performance. Second, prediction should be possible at any time in

a local manner; that is, all nodes should be able to perform high quality predic-

tion immediately without any extra communication. Third, the algorithm has

to have a low communication complexity; both in terms of the number of mes-

sages sent, and the size of these messages as well. Privacy preservation is also

one of our main goals, although in this chapter we do not analyze this aspect

explicitly.

The original P2PEGASOS algorithm presented in the previous chapter has

two main cornerstones: the implementation of the random walk and an online

learning algorithm. Here we extend these with a third component called en-

semble component. That is, we consider model combination techniques which

implement a distributed “virtual” ensemble learning method similar to bag-

ging. In this we in effect calculate a weighted voting over an exponentially

increasing number of linear models.

Our particular contributions include the following: (1) we introduce a novel,

efficient distributed ensemble learning method for linear models which virtu-

ally combines an exponentially increasing number of linear models; and (2) we

provide a theoretical and empirical analysis of the convergence properties of

the method in various scenarios.
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The results of this chapter are based on our previous work [94].

7.1 Fully Distributed Data

Our system and data model is identical with the one described in the previous

chapter (for more details, please see Sec. 2.2 and Sec. 6.1). That is, we assume

the network consists of a huge number of nodes that communicate with each

other using messaging. Additionally, we expect that an instance of NEWSCAST

protocol as peer sampling is available. Related to the data distribution, we

assume that each node has a single feature vector that cannot be moved to

a server or to other nodes. Since this model is not usual in the data mining

community, we elaborate on the motivation and the implications of the model.

In the distributed computing literature the fully distributed data model is

typical. In the past decade, several algorithms have been proposed to calcu-

late distributed aggregation queries over fully distributed data, such as the

average, the maximum, and the network size (e.g., [20, 62, 118]). Here, the as-

sumption is that every node stores only a single record, for example, a sensor

reading. The motivation for not collecting raw data but processing it in place is

mainly to achieve robustness and adaptivity through not relying on any central

servers. In some systems, like in sensor networks or mobile ad hoc networks,

the physical constraints on communication also prevent the collection of the

data.

An additional motivation for not moving data is privacy preservation, where

local data is not revealed in its raw form, even if the computing infrastructure

made it possible. This is especially important in smart phone applications [3,

75, 98] and in P2P social networking [38], where the key motivation is giving

the user full control over personal data. In these applications it is also common

for a user to contribute only a single record, for example, a personal profile, a

search history, or a sensor reading by a smart phone.

Clearly, in P2P smart phone applications and P2P social networks, there is

a need for more complex aggregation queries, and ultimately, for data models,

to support features such as recommendations and spam filtering, and to make

the system more robust with the help of, for example, distributed intruder de-
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tection. In other fully distributed systems data models are also important for

monitoring and control. Motivated by the emerging need for building com-

plex data models over fully distributed data in different systems, we work

with the abstraction of fully distributed data, and we aim at proposing generic

algorithms that are applicable in all compatible systems.

In the fully distributed model, the requirements of an algorithm also dif-

fer from those of parallel data mining algorithms. Here, the decision factor

is the cost of message passing. Besides, the number of messages each node

is allowed to send in a given time window is limited, so computation that

is performed locally has a cost that is typically negligible when compared to

communication delays. For this reason, prediction performance has to be in-

vestigated as a function of the number of messages sent, as opposed to wall clock

time. Since communication is crucially important, evaluating robustness to

communication failures, such as message delay and message loss, also gets a

large emphasis.

The approach we present here is applicable successfully also when each

node stores many records (and not only one); but its advantages to known

approaches to P2P data mining become less significant, since communication

plays a smaller role when local data is already usable to build reasonably good

models. In the following we focus on the fully distributed model.

7.2 Background and Related Work

The main aspects of the supervised learning (Sec. 2.1), the SVM-based learning

(Sec. 2.1.1), and the fully distributed learning (Sec. 6.3) are mostly covered in

previous chapters. Thus, we focus on the discussion of the ensemble learning

techniques only.

In the applied data mining, it is often hard to find a good model that fits

the data well, even if the model space contains such a model for the partic-

ular problem. Ensemble learners combine multiple supervised models to form

a probably better one. That is, the ensemble learning provides techniques for

combining many learners, usually referred to as weak learners, in an attempt

to produce a final learner (strong learner). Several ensemble techniques are
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Algorithm 7.9 Generalized Gossip Learning Scheme
1: initModel()
2: loop
3: wait(∆)
4: p← selectPeer()
5: m←modelCache.freshest()
6: send m to p
7: end loop

8: procedure ONRECEIVEMODEL(m)
9: cm← createModel(m, lastModel)

10: modelCache.add(cm)
11: lastModel ← m
12: end procedure

known, like bagging, boosting, and the Bayesian Model Averaging. In prac-

tice, applying these techniques can improve the prediction performance pretty

well, however some of them are theoretically investigated as well.

Turning to investigate the distributed setting, most distributed large scale

algorithms apply some form of ensemble learning to combine models learnt

over different samples of the training data. Rokach presents a survey of ensem-

ble learning methods [105]. We apply a method for combining the models in

the network that is related to both bagging [21] and “pasting small votes” [22]:

when the models start their random walk, initially they are based on non-

overlapping small subsets of the training data due to the large scale of the sys-

tem (the key idea behind pasting small votes) and as time goes by, the sample

sets grow, approaching the case of bagging (although the samples that belong

to different models will not be completely independent in our case).

7.3 Gossip Learning: the Basic Idea

Alg. 7.9 provides a slightly generalized skeleton of the gossip learning ap-

proach (compared to the one proposed in the previous chapter, in Alg. 6.6).

As before, the same algorithm runs at each node in the network. Similarly,

the algorithm consists of two distinct parts: an active loop of periodic activity

(between lines 1-7), and a method to handle incoming models (function ON-

RECEIVEMODEL starting at line 8).

The active part is mainly responsible for performing the periodic activities.

First, at line 1, the implementation tries to load the value of the modelCache

from the previous run meaning that the nodes hold their model while they are
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offline. If it does not exist—that is, it is the first time when the protocol is used

by the node—a new model is initialized by adding the single data point avail-

able on the node. This behavior is encoded within the function INITMODEL

which is detailed previously in Alg. 6.7. Then, the main loop of the active part

is followed. That is, in roughly each ∆ time moment (line 3), the protocol se-

lects a random neighbor (at line 4) using the peer sampling service, and sends a

copy of its freshest model, stored in the modelCache, to that neighbor (at line 6).

Basically, this is the way how the random walk of the models is implemented.

We make no assumptions about either the synchrony of the loops at the dif-

ferent nodes or the reliability of the messages. We do assume that the length of

the period of the loop, ∆, is the same at all nodes. However, during the evalu-

ations ∆ was modeled as a random variable N(µ, σ) where the parameters are

µ = ∆ and σ2 = ∆/10. For simplicity, here we assume that the active loop is

initiated at the same time at all the nodes, and we do not consider any stopping

criteria, so the loop runs indefinitely. The assumption about the synchronized

start allows us to focus on the convergence properties of the algorithm, but it

is not a crucial requirement in practical applications.

The message handler function of the learning system, ONRECEIVEMODEL,

runs when a node receives a model. In this function, the received model is

passed through the abstract function CREATEMODEL together with the previ-

ously received, non-updated model stored in the variable lastModel (at line 9).

The various instantiations of the function CREATEMODEL result different en-

semble components that will be discussed later in this section. The resulted

new model, which is based on the above mentioned two models (ensemble as-

pect) and the sample hold by the node (update functionality), is added to the

modelCache (at line 10). That is, the freshest element of the model cache is a

combination of the last two received models updated by the training sample

available locally. The cache has a fixed size. When the cache is full, the model

stored for the longest time is replaced by the newly added model. The cache

provides a pool of recent models that can be used to implement, for exam-

ple, voting based prediction. We discuss this possibility in Section 7.5. Finally

the received model m is stored in variable lastModel for further processing (at

line 11).
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Algorithm 7.10 CREATEMODEL: three implementations
1: procedure CREATEMODELRW(m1 , m2)
2: return update(m1)
3: end procedure

4: procedure CREATEMODELMU(m1 , m2)
5: return update(merge(m1, m2))
6: end procedure

7: procedure CREATEMODELUM(m1 , m2)
8: return merge(update(m1),update(m2))
9: end procedure

The algorithm contains abstract methods that can be implemented in differ-

ent ways to obtain a concrete learning algorithm. The main placeholders are

SELECTPEER and CREATEMODEL. As before, the method SELECTPEER is the

interface for the peer sampling service, as described in the previous chapters

(in Section 2.2). Again, we use the NEWSCAST algorithm [64] as a gossip-based

implementation of peer sampling.

The core of the approach is the function CREATEMODEL. Its task is to create

a new updated model based on locally available information—the two models

received most recently, and the local single training data record—to be sent

on to a random peer. Algorithm 7.10 lists three implementations that are still

abstract. They represent those three possible ways of breaking down the task

that we will study in this chapter.

The abstract method UPDATE can represent an arbitrary online learning me-

chanism—the second main component of our framework besides peer samp-

ling—that updates the model based on one example (the locally available train-

ing example of the node). Here we focus on two online learning components

only, the Adaline Perceptron model [122] as a toy example, and the Pega-

sosSVM model [108], which is a sophisticated, SVM-based learning algorithm.

The procedure CREATEMODELRW implements the case where models inde-

pendently perform random walks over the network. This implementation

is identical with the gossip-based SVM approach introduced in the previous

chapter. Here we use this algorithm as a baseline.

The remaining two variants apply a method called MERGE, either before
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the update (MU) or after it (UM). The method MERGE helps implement the

third component: ensemble learning. A completely impractical example for an

implementation of MERGE is the case where the model space consists of all the

sets of basic models of a certain type. Then MERGE can simply merge the two

input sets, UPDATE can update all the models in the set, and prediction can be

implemented via, for example, majority voting (for classification) or averaging

the predictions (for regression). With this implementation, all nodes would

collect an exponentially increasing set of models, allowing for a much better

prediction after a much shorter learning time in general than based on a single

model [21, 22], although the learning history for the members of the set would

not be completely independent.

This implementation is of course impractical because the size of the mes-

sages in each cycle of the main loop would increase exponentially. Our main

contribution is to discuss and analyze a special case: linear models. For lin-

ear models we will propose an algorithm where the message size can be kept

constant, while producing the same (or similar) behavior as the impractical im-

plementation above. The subtle difference between the MU and UM versions

will also be discussed.

Let us close this section with a brief analysis of the cost of the algorithm in

terms of computation and communication. As of communication: each node

in the network sends exactly one message in each ∆ time unit. The size of the

message depends on the selected hypothesis space; normally it contains the

parameters of a single model. In addition, the message also contains a small

constant number of network addresses as defined by the NEWSCAST protocol

(typically around 20). The computational cost is one or two update steps in

each ∆ time units for the UM or the MU variants, respectively. The exact cost

of this step depends on the selected online learner.

7.4 Merging Linear Models through Averaging

The key observation we make is that in a linear hypothesis space, in certain

cases the voting-based prediction is equivalent to a single prediction by the

average of the models that participate in the voting. Furthermore, updating a
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set of linear models and then averaging them is sometimes equivalent to av-

eraging the models first, and then updating the resulting single model. These

observations are valid in a strict sense only in special circumstances. However,

our intuition is that even if this key observation holds only in a heuristic sense,

it still provides a valid heuristic explanation of the behavior of the resulting

averaging-based merging approach.

In the following we first give an example of a case where there is a strict

equivalence of averaging and voting to illustrate the concept, and subsequently

we discuss and analyze a practical and competitive algorithm, where the cor-

respondence of voting and averaging is only heuristic in nature.

7.4.1 The Adaline Perceptron

We consider here the Adaline perceptron [122], which arguably has one of the

simplest update rules due to its linear activation function. Without loss of gen-

erality, we ignore the bias term. The error function to be optimized is defined

as

Ex(w) =
1
2
(y−wTx)2 (7.1)

where w is the linear model, and (x, y) is a training example (x, w ∈ R
d,

y ∈ {−1, 1}) (that is, it is a supervised binary classification problem, for more

explanation, please see Sec. 2.1). The gradient at w for x is given by

∇w =
∂Ex(w)

∂w
= −(y−wTx)x (7.2)

that defines the learning rule for (x, y) by

w(k+1) = w(k) + η(y−w(k)T
x)x, (7.3)

where η is the learning rate. In this case it is a constant.

Now, let us assume that we are given a set of models w1, . . . , wm, and let us

define w̄ = (w1 + . . . + wm)/m for a given m ∈ N. In the case of a regression

problem, the prediction for a given point x and model w is wTx. It is not hard
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to see that

h(x) = w̄Tx =
1
m

(
m

∑
i=1

wi

)T

· x =
1
m

m

∑
i=1

wT
i x, (7.4)

which means that the voting-based prediction is equivalent to prediction based

on the average model.

In the case of classification, the equivalence does not hold for all voting

mechanisms. But it is easy to verify that in the case of a weighted voting ap-

proach, where vote weights are given by |wTx|, and the votes themselves are

given by sgn(wTx), the same equivalence holds:

h(x) = sgn(w̄Tx) = sgn





(

1
m

m

∑
i=1

wi

)T

· x



 =

= sgn

(

1
m

m

∑
i=1

wT
i · x

)

= sgn

(

1
m

m

∑
i=1
|wT

i x| sgn(wT
i x)

)

.

(7.5)

A similar approach to this weighted voting mechanism has been shown to

improve the performance of simple vote counting [11]. Our preliminary ex-

periments also support this.

In a very similar manner, it can be shown that updating w̄ using an example

(x, y) is equivalent to updating all the individual models w1, . . . , wm and then

taking the average:

w̄ + η(y− w̄Tx)x =
1
m

m

∑
i=1

(

wi + η(y−wT
i x)x

)

. (7.6)

The above properties lead to a rather important observation. If we imple-

ment our gossip learning skeleton using Adaline, as shown in Algorithm 7.11,

then the resulting algorithm behaves exactly as if all the models were simply

stored and then forwarded, resulting in an exponentially increasing number of

models contained in each message, as described in Section 7.3. That is, aver-

aging effectively reduces the exponential message complexity to transmitting

a single model in each cycle independently of time, yet we enjoy the benefits of

the aggressive, but impractical approach of simply replicating all the models
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Algorithm 7.11 Adaline update, and merging

1: procedure UPDATEADALINE(m)
2: m.w← m.w + η(y− 〈m.w, x〉)x
3: return m
4: end procedure

5: procedure MERGE(m1 ,m2)
6: m.t← max(m1.t, m2.t)
7: m.w← (m1.w + m2.w)/2
8: return m
9: end procedure

and using voting over them for prediction.

It should be mentioned that—even though the number of „virtual” models

is growing exponentially fast—the algorithm is not equivalent to bagging over

an exponential number of independent models. In each gossip cycle, there are

only N independent updates occurring in the system overall (where N is the

number of nodes), and the effect of these updates is being aggregated rather

efficiently. In fact, as we will see in Section 7.5, bagging over N independent

models actually outperforms the gossip learning algorithms.

7.4.2 Pegasos

Here we discuss the adaptation of Pegasos SVM [108] used for classification

into our gossip-based learning system. The specific learning components re-

quired for the adaptation are detailed in the previous chapter and shown in

Alg. 6.7, where the method UPDATEMODEL is taken from [108]. A brief ex-

planation of the algorithm can be found in Sec. 6.4 as well. For a complete

implementation of the framework, one also needs to select an implementa-

tion of CREATEMODEL from Alg 7.10. In the following, the three versions

of a complete Pegasos–based implementation defined by these options will

be referred to as P2PEGASOSRW, P2PEGASOSMU, and P2PEGASOSUM. Here

P2PEGASOSRWis considered as a baseline (in which the ensemble aspect is ig-

nored). This implementation is identical with that discussed in the previous

chapter, and there referred to simply as P2PEGASOS.

The main difference between the Adaline perceptron and Pegasos is the

context dependent update rule that is different for correctly and incorrectly clas-

sified examples. Due to this difference, there is no strict equivalence between

averaging and voting, as in the case of the previous section. To see this, con-
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sider two models, w1 and w2, and a training example (x, y), and let w̄ =

(w1 + w2)/2. In this case, updating w1 and w2 first, and then averaging them

results in the same model as updating w̄ if and only if both w1 and w2 classify

x in the same way (correctly or incorrectly). This is because when updating w̄,

we virtually update both w1 and w2 in the same way, irrespective of how they

classify x individually.

This seems to suggest that P2PEGASOSUM is a better choice. We will test

this hypothesis experimentally in Section 7.5, where we will show that, sur-

prisingly, it is not always true. The reason could be that P2PEGASOSMU and

P2PEGASOSUM are in fact very similar when we consider the entire history

of the distributed computation, as opposed to a single update step. The histo-

ries of the models define a directed acyclic graph (DAG), where the nodes are

merging operations, and the edges correspond to the transfer of a model from

one node to another. In both cases, there is one update corresponding to each

edge: the only difference is whether the update occurs on the source node of

the edge or on the target. Apart from this, the edges of the DAG are the same

for both methods. Hence we see that P2PEGASOSMU has the favorable prop-

erty that the updates that correspond to the incoming edges of a merge op-

eration are done using independent samples, while for P2PEGASOSUM they

are performed with the same example. Thus, P2PEGASOSMU guarantees a

greater independence of the models.

In the following, we present our theoretical results for both P2PEGASOSMU

and P2PEGASOSUM. We note that these results do not assume any coordina-

tion or synchronization; they are based on a fully asynchronous communica-

tion model. First, let us formally define the optimization problem at hand, and

let us introduce some notation.

Let D = {(xi, yi) : 1 ≤ i ≤ n, xi ∈ R
d, yi ∈ {+1,−1}} be a distributed

training set (which defines a supervised binary classification problem, for more

details, please review Sec. 2.1) with one data point at each network node. Let

f : R
d → R denote here the objective function of the Pegasos SVM shown in

Eq. 6.1 (applying the Hinge loss in the general form of the SVM optimization

problem shown in Eq. 2.6). Note that f is strongly convex with a parameter

λ [108]. Let w⋆ denote the global optimum of f . For a fixed data point (xi, yi)
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we define

fi(w) =
λ

2
‖w‖2 + max(0, 1− yiw

Txi), (7.7)

which is used to derive the update rule for the Pegasos algorithm. Obviously,

fi is λ–strongly convex as well, since it has the same form as f with m = 1.

The update history of a model can be represented as a binary tree, where

the nodes are models, and the edges are defined by the direct ancestor relation.

Let us denote the direct ancestors of w(i+1) as w
(i)
1 and w

(i)
2 . These ancestors

are averaged and then updated to obtain w(i+1) (assuming the MU variant is

applied). Let the sequence w(0), . . . , w(t) be defined as the path in this history

tree, for which

w(i) = argmax
w∈{w

(i)
1 ,w(i)

2 }
‖w−w⋆‖, i = 0, . . . , t− 1. (7.8)

This sequence is well defined. Let (xi, yi) denote the training example, that

was used in the update step that resulted in w(i) in the series defined above.

Theorem 1 (P2PEGASOSMU convergence). We assume that (1) each node re-

ceives an incoming message after any point in time within a finite time period

(eventual update assumption), (2) there is a subgradient ∇ of the objective

function such that ‖∇w‖ ≤ G for every w. Then,

1
t

t

∑
i=1

fi(w̄
(i))− fi(w

⋆) ≤
G2(log(t) + 1)

2λt
(7.9)

where w̄(i) = (w
(i)
1 + w

(i)
2 )/2.

Proof. During the running of the algorithm, let us pick any node on which at

least one subgradient update has been already performed. There is such a node

eventually, due to the eventual update assumption. Let the model currently

stored at this node be w(t+1).

We know that w(t+1) = w̄(t)−∇(t)/(λt), where w̄(t) = (w
(t)
1 +w

(t)
2 )/2 and

where ∇(t) is the subgradient of ft. From the λ-convexity of ft it follows that

ft(w̄
(t))− ft(w

⋆) +
λ

2
‖w̄(t) −w⋆‖2 ≤ (w̄(t) −w⋆)T · ∇(t). (7.10)

On the other hand, the following inequality is also true, following from the
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definition of w̄(t+1), G and some algebraic rearrangements:

(w̄(t) −w⋆)T · ∇(t) ≤
λt

2
‖w̄(t) −w⋆‖2 −

λt

2
‖w(t+1) −w⋆‖2 +

G2

2λt
. (7.11)

Moreover, we can bound the distance of w̄(t) from w⋆ with the distance of the

ancestor of w̄(t) that is further away from w⋆ with the help of the Cauchy–

Bunyakovsky–Schwarz inequality:

‖w̄(t) −w⋆‖2 =

∥
∥
∥
∥
∥

w
(t)
1 −w⋆

2
+

w
(t)
2 −w⋆

2

∥
∥
∥
∥
∥

2

≤ ‖w(t) −w⋆‖2. (7.12)

From Eqs. 7.10, 7.11, 7.12 and the bound on the subgradients, we derive

ft(w̄
(t))− ft(w

⋆) ≤
λ(t− 1)

2
‖w(t) −w⋆‖2 −

λt

2
‖w(t+1) −w⋆‖2 +

G2

2λt
. (7.13)

Note that this bound also holds for w(i), 1 ≤ i ≤ t. Summing up both sides of

these t inequalities, we get the following bound:

t

∑
i=1

fi(w̄
(i))− fi(w

⋆) ≤ −
λt

2
‖w(t+1) −w⋆‖2 +

G2

2λ

t

∑
i=1

1
i
≤

G2(log(t) + 1)
2λ

,

(7.14)

from which the theorem follows after division by t.

The bound in Eq. 7.14 is analogous to the bound presented in [108] in the

analysis of the PEGASOS algorithm. It basically means that the average error

tends to zero. To be able to show that the limit of the process is the optimum

of f , it is necessary that the samples involved in the series are uniform random

samples [108]. Investigating the distribution of the samples is left to future

work; but we believe that the distribution closely approximates uniformity for

a large t, given the uniform random peer sampling that is applied.

For P2PEGASOSUM, an almost identical derivation leads us to a similar

result (omitted due to the similarity).
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7.5 Experimental Results

Here we experiment with two algorithms: P2PEGASOSUM and P2PEGASOSMU.

In addition, to shed light on the behavior of these algorithms, we include a

number of baseline methods as well.

7.5.1 Experimental Setup

Data Sets. We used three different data sets: Reuters [48], Spambase, and the

Malicious URLs [78] data sets, which were obtained from the UCI database

repository [44]. These data sets are of different types including small and large

sets containing a small or large number of features. We used exactly these

data sets in the previous chapter; there, in Sec. 6.5.1, you can find a detailed

description of how we preprocessed this data. We just emphasize here that

all these preprocessing steps can be done in a gossip-based manner, however,

we performed it offline. One can check Table 6.1, which summarizes the main

properties of the applied data sets.

Modeling failure. Just like in the previous chapter, we use the event based en-

gine of the PeerSim [85] and, as we mentioned previously, we apply the NEWS-

CAST protocol (for further description, please see Sec. 2.2) as peer sampling

service implementation.

In a set of experiments, referred to as failure scenarios, we model extreme

message drop, message delay, and churn. The exact setting of the failure sce-

narios are identical with those applied in the experiments of the previous chap-

ter. In this way, we get comparable results with those. Here we just enumerate

through the settings of the failure scenarios quickly. For more details on how

these parameter values were generated (especially related to the churn model),

what their exact meaning is, please visit Sec. 6.5.1. In these scenarios the drop

probability is set to be 0.5. Message delay is modeled as a uniform random

variable from the interval [∆, 10∆], where ∆ is the waiting period of our learn-

ing protocol shown in Alg. 7.9. We model churn based on the probabilistic

models proposed in [111].
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Evaluation metric. Similar to the previous chapter, the main evaluation met-

ric here we focus on is prediction error measure on an independent (that is,

it is unknown to the training algorithm) set of examples. To measure predic-

tion error, we split the datasets into training sets and validation sets before

the training process was started. The splits we applied are exactly the same

as those performed in the previous chapter, which are shown in Table 6.1. In

our experiments with P2PEGASOSMU and P2PEGASOSUM, we track the mis-

classification ratio over the validation set of 100 randomly selected peers. The

misclassification ratio of a model is calculated by dividing the number of the

misclassified validation examples by the number of all test examples. This is

the so-called 0-1 error.

For the baseline algorithms we used all the available models for calculat-

ing the error rate, which equals the number of training samples. From the

Malicious URLs database we used only 10,000 examples selected at random,

to make the evaluation computationally feasible. Note that we found that in-

creasing the number of examples beyond 10,000 does not result in a noticeable

difference in the observed behavior.

Here we calculated the similarities between the models circulating in the

network just like in the previous chapter. The metric we used was the co-

sine similarity measure. First, we calculated the similarity between all pairs of

models, and calculated the average.

Baseline Algorithms. The first baseline we use is P2PEGASOSRW1 , which is

equivalent to the algorithm P2PEGASOS proposed in the previous chapter. If

there is no message drop or message delay, then this is equivalent to the Pe-

gasos algorithm, since in cycle t all peers will have models that are the result

of Pegasos learning on t random examples. In the case of message delay and

message drop failures, the number of samples will be less than t, as a function

of the drop probability and the delay.

We also examine two variants of weighted bagging. The first variant (WB1) is

1We changed the name of the algorithm to make it clear which ensemble component was
applied.
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defined as

hWB1(x, t) = sgn

(
N

∑
i=1

w
(t)
i

T
x

)

, (7.15)

where N is the number of nodes in the network, and the linear models w
(t)
i are

learnt with Pegasos over an independent sample of size t of the training data.

This baseline algorithm can be thought of as the ideal utilization of the N inde-

pendent updates performed in parallel by the N nodes in the network in each

cycle. The gossip framework introduces dependencies among the models, so

its performance can be expected to be worse.

In addition, in the gossip framework a node has influence from only 2t

models on average in cycle t. To account for this handicap, we also use a

second version of weighted bagging (WB2):

hWB2(x, t) = sgn





min(2t ,N)

∑
i=1

w
(t)
i

T
x



 . (7.16)

Note that initially this version can be expected to perform worse than WB1,

but still better than the gossip framework, because WB2 uses at least as much

updates as the gossip framework, but in a more independent fashion. After

log N cycles the two versions of weighted bagging become identical.

The weighted bagging variants described above are not practical alterna-

tives, these algorithms serve as a baseline only. The reason is that an actual im-

plementation would require N independent models for prediction. This could

be achieved by P2PEGASOSRW with a distributed prediction, which would

impose a large cost and delay for every prediction. This could also be achieved

by all nodes running up to O(N) instances of P2PEGASOSRW, and using the

O(N) local models for prediction; this is not feasible either. In sum, the point

that we want to make is that our gossip algorithm approximates WB2 quite

well using only a single message per node in each cycle, due to the technique

of merging models.

The last baseline algorithm we experiment with is PERFECT MATCHING. In

this algorithm we replace the peer sampling component of the gossip frame-

work: instead of all nodes picking random neighbors in each cycle, we create a
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random perfect matching among the peers so that every peer receives exactly

one message. Our hypothesis was that—since this variant increases the effi-

ciency of mixing—it will maintain a higher diversity of models, and so a better

performance can be expected due to the “virtual bagging” effect we explained

previously. Note that this algorithm is not intended to be practical either.

Using the local models for prediction. An important aspect of our protocol is that

every node has at least one model available locally, and thus all the nodes can

perform a prediction. Moreover, since the nodes can remember the models

that pass through them at no communication cost, we cheaply implement a

simple voting mechanism, where nodes will use more than one model to make

predictions. Algorithm 6.8 shows the procedures used for prediction in the

original case, and in the case of voting.

Here the vector x is the unseen example to be classified. In the case of

linear models, the classification is simply the sign of the inner product with

the model, which essentially describes on which side of the hyperplane the

given point lies. In our experiments we used a cache of size 10.

7.5.2 Results and Discussion

The experimental results for prediction without local voting are shown in Fig-

ures 7.1 and 7.2.

Note that all variants can be mathematically proven to converge to the same

result, so the difference is in convergence speed only. Bagging can temporarily

outperform a single instance of Pegasos, but after enough training samples, all

models become almost identical, so the advantage of voting disappears.

In Figure 7.1 we can see that our hypothesis about the relationship of the

performance of the gossip algorithms and the baselines is validated: the stan-

dalone Pegasos algorithm is the slowest, while the two variants of weighted

bagging are the fastest. P2PEGASOSMU approximates WB2 quite well, with

some delay, so we can use WB2 as a heuristic model of the behavior of the al-

gorithm. Note that the convergence is several orders of magnitude faster than

that of Pegasos (the plots have a logarithmic scale).
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Figure 7.1: Experimental results without failure (left column) and with extreme
failure (right column). AF means all possible failures are modeled.

Figure 7.1 also contains results from our extreme failure scenario. We can

observe that the difference in convergence speed is mostly accounted for by

the increased message delay. The effect of the delay is that all messages wait

5 cycles on average before being delivered, so the convergence is proportion-
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Figure 7.2: Prediction error (left column) and model similarity (right column)
with PERFECT MATCHING and P2PEGASOSUM.

ally slower. In addition, half of the messages get lost too, which adds another

factor of about 2 to the convergence speed. Apart from slowing down, the

algorithms still converge to the correct value despite the extremely unreliable

environment, as expected.
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Figure 7.3: Experimental results applying local voting without failure (left col-
umn) and with extreme failure (right column).

Figure 7.2 illustrates the difference between the UM and MU variants. Here

we model no failures. In Section 7.4.2, we pointed out that—although the UM

version looks favorable when considering a single node—when looking at the
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full history of the learning process, P2PEGASOSMU maintains more indepen-

dence between the models. Indeed, the MU version clearly performs better

according to our experiments. We can also observe that the UM version shows

a lower level of model similarity in the system, which probably has to do with

the slower convergence.

In Figure 7.2 we can see the performance of the perfect matching variant

of P2PEGASOSMU as well. Contrary to our expectations, perfect matching

does not clearly improve performance, apart from the first few cycles. It is

also interesting to observe that model similarity is correlated with prediction

performance also in this case. We also note that in the case of the Adaline-

based gossip learning implementation, perfect matching is clearly better than

random peer sampling (not shown). This means that this behavior is due to

the context-dependence of the update rule discussed in 7.4.2. Perfect matching

also has an UM and an MU variant, and here UM indeed performs slightly

better than MU, but the difference between the MU and UM variants is rather

small (not shown).

The results with local voting are shown in Figure 7.3. The main conclusion

is that voting results in a significant improvement when applied along with

P2PEGASOSRW, the learning algorithm that does not apply merging. When

merging is applied, the improvement is less dramatic. In the first few cycles,

voting can result in a slight degradation of performance. This could be ex-

pected, since the models in the local caches are trained on fewer samples on

average than the freshest model in the cache. Overall, since voting is for free,

it is advisable to use it.

7.6 Conclusions

Here we proposed a general technique by introducing an ensemble learning

component to learn P2PEGASOS models much faster than we proposed in the

previous chapter. In sum, the basic idea of our proposal is that many Pegasos

SVM models perform a random walk over the network, while being updated

at every node they visit, and while being combined (merged) with other mod-

els they encounter. The algorithm was shown to be extremely robust to mes-
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sage drop and message delay, furthermore, a very significant speedup was

demonstrated with respect to the baseline PEGASOS algorithm detailed in the

previous chapter due to the model merging technique and the prediction algo-

rithm that is based on local voting.

Moreover, the algorithm makes it possible to compute predictions locally

at every node in the network at any point in time, yet the message complexity

is acceptable: every node sends one model in each gossip cycle. The main

features that differentiate this approach from related work are the focus on

fully distributed data and its modularity, generality, and simplicity.

An important promise of the approach is the support for privacy preser-

vation, since data samples are not observed directly. Although in this chapter

we did not focus on this aspect, it is easy to see that the only feasible attack

is the multiple forgery attack [83], where the local sample is guessed based

on sending specially crafted models to nodes and observing the result of the

update step. This is very hard to do even without any extra measures, given

that models perform random walks based on local decisions, and that merge

operations are performed as well. This short informal reasoning motivates our

ongoing work towards understanding and enhancing the privacy-preserving

properties of gossip learning, while we extend the basic idea to tackle with dif-

ferent learning scenarios (like concept drift [53, 55]), and different models (like

boosting models [54], multi–armed bandit models [114]).

The presented results are mainly based on our previous paper [94].
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CHAPTER 8

Summary

8.1 Summary in English

The main goal of this thesis was to investigate the adaptivity of various sup-

port vector-based learning approaches. Along this, we focused on two distinct

aspects of the adaptivity. First, we investigated the so-called algorithmic adap-

tivity of the support vector-based learners. That is, we examined how the basic

idea of the algorithm family, the maximal margin heuristic, can be applied to

handle tasks which cannot be tackled with the traditional formalisms of the

SVMs. Second, in the latter part of the thesis, we gradually moved the focus

from the algorithmic aspects to the system model aspects of the adaptivity.

Here our main question was how we can adapt efficiently the SVMs to a spe-

cific system model, the fully distributed system model, which introduced a

number of challenges, like the handling of network errors, user dynamics and

the unbalanced load in the network.

In this chapter, we overview the main goals and results of this thesis by

giving a brief summary of each chapter (Chapters 3-7). During the summa-

rization, we reveal our contributions as well by giving a itemized list of the
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key contributions of the given chapter.

8.1.1 VMLS-SVM for Time Series Forecasting

In Chapter 3, we investigated the problem of time series forecasting. That is,

how we can extend the Least Squares SVMs to become more suitable algorithm

for predicting the future values of a time series. Our proposal (the VMLS-

SVM algorithm) introduced a weighted variance term in the objective function

of the LS-SVM. This idea is based on the preliminary observation which says

that if we have two time series forecasting models with the same prediction

error, the one with the smaller variance results in a better overall performance

aside from the overfitting. The proposed method can be considered as the

generalization of the LS-SVM algorithm, which keeps all the advantages of

the original algorithm, like the applicability of the kernel-trick, unique and

linear solution. However, it introduces a new hyperparameter which makes

the fine-tuning of the algorithm more complicated.

The first part of the chapter briefly overviewed the related approaches and

introduced the basic properties of the original LS-SVM approach, then it gave

a detailed description of the proposed method. It proposed a mechanism for

handling the above mentioned increased complexity of parameter setting as

well. A thorough empirical evaluation closed the chapter which points out

that with appropriate parameter tuning the proposed method achieves a sig-

nificantly better performance against a numerous state-of-the-art baseline al-

gorithms measured on three different, widely used benchmark datasets.

The key contributions and their effects are:

• The theoretical and algorithmic introduction of the VMLS-SVM algo-

rithm.

• Parameter optimization mechanism for the VMLS-SVM algorithm.

• The proposed algorithm outperforms significantly a number of baseline

approaches on three widely used benchmark datasets.
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8.1.2 Transformation-based Domain Adaptation

This chapter (Chapter 4) investigated the problem of domain adaptation on

an opinion mining task. We proposed a general framework, called DOMAIN

MAPPING LEARNER (DML) and two instantiations of this general idea: the

first one is based on SVMs a source model and the second one applies the Lo-

gistic Regression (LR) as source model. The main idea of the general approach

can be summarized as follows: it models the relation between the source and

target domain by applying a model transformation mechanism which can be

learnt by using labeled data of a very limited size taken from the target do-

main.

In the chapter, we briefly overviewed the related approaches for the task

of domain adaptation. Then, we formally defined the problem and proposed

our general, transformation-based approach, the DML algorithm. We intro-

duced the novel instantiation of this abstract algorithm, based on SVMs and

LR methods. Our experiment evaluations validated that our approach is capa-

ble of training models for the target domain which use a very limited number

of labeled samples taken from the target domain. This phenomenon is even

true when we have enough samples, but the baseline methods cannot gener-

alize well. From this evaluation, we also concluded that the SVM-based in-

stantiation is a more suitable choice since it is more robust than the LR-based

variant.

The key contributions and their effects are:

• The transformation-based formalism of the problem of domain adapta-

tion.

• The introduction of the general algorithm.

• The two instantiations of the general idea based on SVM and LR based

models.

• The proposed algorithms result in models which have a better perfor-

mance than the direct method (baseline), and two other state-of-the-art

baseline algorithms (SCL and SCL-MI).
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8.1.3 SVM Supported Distributed Recommendation

In this chapter (Chapter 5), we dealt with the problem of distributed recom-

mendation. The goal of this chapter is twofold, first we described and moti-

vated the process of inferring ratings from implicit user feedbacks, then we

introduced two heuristic approaches (direct and time-shift based approaches)

to overcome the problem. Here we presented an interesting use-case of the

SVMs. We use them to validate our inferring heuristics indirectly and proved

that—without any ground truth—the inferred dataset has some interesting

properties, and the one generated based on the improved heuristics variant

(time-shift based variant) has a more interesting inner structure. Second, we

introduced a novel overlay management protocols which support the imple-

mentation of user-based collaborative filtering (CF) approaches in fully dis-

tributed systems, while keeping low the overall network load.

In the chapter, first we reviewed both the centralized and distributed CF

approaches. Then, we introduced our inferring heuristics, described the val-

idation methodology through learnability, and performed this validation ap-

plying the SMO SVM solver. Later, we pointed out that most of the CF dataset

has almost power-law in-degree distribution which can cause serious issues in

distributed setting. To overcome this problem, we introduced a bunch of over-

lay management approaches (random sampling based kNN approach, T-MAN

based variants (GLOBAL, VIEW, BEST and PROPORTIONAL) and their random-

ized variants) and performed a thorough empirical evaluation against each

other and a real world overlay management protocol called BUDDYCAST. We

can draw multiple conclusions: the aggressive peer sampling can cause un-

treatable network load, while the proposed T-Man based approach with the

GLOBAL peer selection strategy is a good choice considering that it has a fully

uniform load distribution with an acceptable convergence speed.

The key contributions and their effects are:

• The inferring heuristics (direct and time-shift based approaches).

• Learnability based indirect validation technique.

• The FileList.org inferred recommender dataset [1].
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• Overlay management approaches: random sampling based kNN approach,

T-MAN based variants (GLOBAL, VIEW, BEST and PROPORTIONAL) and

their randomized variants

• The GLOBAL peer selection based overlay management tool provides a

good trade-off between the convergence speed and network load.

8.1.4 P2PEGASOS—A Fully Distributed SVM

This chapter (Chapter 6) focused on the problem of fully distributed data min-

ing. That is, our goal here was to propose an SVM-based algorithm which

performs in a fully distributed network realizing good quality models with

an affordable communication complexity while assuming as little as possible

about the underlying communication model. Our proposal, the P2PEGASOS

algorithm, introduces a conceptually simple, yet powerful SVM implementa-

tion. The key of our contribution is that many models perform a random walk

over the network while updating themselves applying an online update rule.

At the beginning of the chapter, we carefully defined the system and data

model. Then, we overviewed the basic concept of the Pegasos SVM solver,

and the related fully distributed machine learning approaches. After a detailed

algorithmic description of our proposal, we turned to evaluate our approach.

Here we considered a number of baseline algorithms (mainly centralized SVM

implementations) and investigated the speed of the convergence in various

scenarios including ones with extreme network failures. These experimental

evaluations show that our approach is robust against various network failures,

while provides reasonable models with affordable network load.

The key contributions and their effects are:

• The P2PEGASOS algorithm.

• Local voting mechanism for improving the prediction performance.

• The algorithm shows amazing convergence properties even in scenarios

with extreme network failures.
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8.1.5 Speeding Up the Convergence of P2PEGASOS

In Chapter 7, we continued to investigate the fully distributed setting and pro-

posed a mechanism which increases the convergence speed of the P2PEGASOS

with almost an order of magnitude. These algorithms are referred to as P2PE-

GASOSMU and P2PEGASOSUM. The idea of the proposed algorithms is based

on applying an ensemble component by introducing a mechanism which av-

erages the models that “meet” a on certain node. We demonstrated that in

the Adaline model our proposal behaves exactly as if an exponentially increas-

ing number of model would be collected and voted through the prediction,

but in our case the model requires only a constant size! We pointed out that

in the case of the P2PEGASOS algorithm, the exact equality is not true, how-

ever, the behavior of the approach is pretty similar. A convergence proof of the

P2PEGASOSMU was provided as well.

The chapter began with a motivating section of fully distributed data, then

the related work of ensemble learning was briefly discussed. The detailed

algorithmic description of the proposed mechanism followed with the dis-

cussion of the Adaline model, the Pegasos model and the convergence proof

of P2PEGASOSMU algorithm. The empirical evaluation shows that the im-

proved approaches can result in almost an order of magnitude faster conver-

gence speed than the original P2PEGASOS algorithm, while they keep all the

advantages of the method. We pointed out that P2PEGASOSMU maintains

more independence between the models, hence this is the favorable variant

between the two proposals.

The key contributions and their effects are:

• The merging mechanism for the P2PEGASOS algorithm (resulting in the

P2PEGASOSMU and P2PEGASOSUM algorithms).

• The convergence proof of P2PEGASOSMU.

• The algorithms show even faster convergence speed than the original

P2PEGASOS algorithm while keeping all the advantages of the original

one.
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8.2 Summary in Hungarian

A tézis fő célkitűzése, hogy a különböző support vektor alapú tanuló mód-

szerek adaptációs lehetőségeit vizsgálja. Ezen belül az adaptációs lehetőségek

két eltérő aspektusára fókuszáltunk. Először az úgynevezett algoritmikus adap-

táció lehetőségét vizsgáltuk. Azaz arra kerestük a választ, hogy az említett

algoritmuscsalád alapötlete, a maximális margó heurisztika, hogyan használ-

ható olyan feladatok megoldására, amelyekre az eredeti SVM-formalizmusok

nem térnek ki. Másodszor, a tézis későbbi felében az algoritmikus adaptivitás-

ról fokozatosan átirányítottuk a fókuszt az adaptáció rendszermodell aspek-

tusára. Ebben a részben a fő kérdés az, hogy vajon hogyan tudjuk hatékonyan

alkalmazni az SVM algoritmusokat egy különleges, az úgynevezett teljesen

elosztott rendszermodellben. A rendszermodell alkalmazása számos kihívást

foglal magában, mint a hálózati hibák kezelése, a felhasználói kör dinamikus

változása, illetve a kiegyensúlyozatlan hálózati terhelés.

Ebben a fejezetben áttekintjük a tézis fő céljait és eredményeit. Ennek során

egy rövid összegzést adunk minden fejezetről (3-7. fejezetek). Az összegzés

során felsorolás jelleggel kiemeljük az adott fejezet főbb hozzájárulásait és azok

hatását.

8.2.1 VMLS-SVM idősorelemzésre

A 3. fejezetben az idősorelemzés problémáját vizsgáltuk, vagyis azt, hogy

hogyan tudjuk kiterjeszteni a Least Squares SVM-eket, hogy az idősorok előre-

jelzésére megfelelőbb algoritmust kapjunk. Az általunk ajánlott algoritmus

(VMLS-SVM) egy súlyozott variancia taggal bővíti az LS-SVM eredeti célfügg-

vényét. A módosítás alapötlete azon az előzetes megfigyelésen alapul, hogy

két, azonos predikciós teljesítménnyel rendelkező, idősorelemzésre alkalmas

modell közül, a kisebb varianciával illesztő modell nyújt összegzett teljesít-

ményt a túlillesztéstől (overfitting) eltekintve. Az ajánlott módszer az LS-SVM

egy kiterjesztésének tekinthető, amely megtartja az eredeti algoritmus összes

előnyét, mint pl. a kernel-trükk alkalmazhatósága és lineáris megoldás. Min-

damellett egy új hiperparamétert hoz be az algoritmus, ami megnehezíti a

módszer finomhangolását.
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Főbb hozzájárulások és azok hatása:

• A VMLS-SVM elméleti és algoritmikus levezetése

• Egy, a hiperparaméterek finomhangolására alkalmas módszer

• Az algoritmus szignifikánsan felülmúl számos baseline módszert három

elterjedt benchmark adatbázison

8.2.2 Transzformációalapú doménadaptáció

A 4. fejezetben a doménadaptáció problémáját vizsgálta véleménydetekciós

feladaton. A fejezetben egy általános keretrendszert ajánlunk (DOMÉN MAP-

PING LEARNER (DML)) és annak két példányosítását: az első SVM-alapú mo-

delleket használ forrásmodellként, míg a második logisztikus regresszió (LR)

alapú tanulókat alkalmaz mint forrásmodell. Az általános módszer alapötlete

a következőképpen foglalható össze: a forrás- és céldomének között fennálló

relációt egy olyan modelltranszformációs mechanizmussal modellezi, amely

egy, a céldomén-ből származó, nagyon kis méretű tanuló adatbázis alapján

tanulható.

Főbb hozzájárulások és azok hatása:

• A doménadaptációs feladat transzformációalapú formalizmusa.

• Az általános DML megközelítés.

• Az általános megközelítés két példányosítása (SVM és LR alapú megkö-

zelítések)

• Az ajánlott algoritmusok jobb teljesítményt érnek el, mint a direkt meg-

közelítés (baseline) és két state-of-the-art algoritmus (SCL és SCL-MI).

8.2.3 SVM-mel támogatott elosztott ajánlás

Ebben a fejezetben (5. fejezet) az elosztott ajánlás problémájával foglalkoz-

tunk. A fejezet célja kettős. Először bemutatja és motiválja az implicit fel-

használói tevékenységekből történő értékelések előrejelzését. Ezután két újsz-
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erű heurisztikus eljárást (direkt és időcsúsztatásos módszer) vezet be a prob-

léma megoldására. Ennek során egy érdekes, mindazonáltal rendhagyó al-

kalmazását mutattuk be az SVM-nek az SMO algoritmus használatával. Arra

használjuk az SVM-et, hogy validáljuk a heurisztikáinkat és empirikusan bi-

zonyítsuk azt, hogy az előrejelzett adatbázisnak “érdekes” tulajdonságai van-

nak, továbbá a szofisztikáltabb heurisztika olyan adatbázist eredményez, amely

még inkább érdekes belső struktúrával rendelkezik. Másodsorban újszerű over-

lay kezelő protokollokat vezettünk be, amelyek a teljesen elosztott collabora-

tive filtering (CF) alapú ajánló algoritmusok teljesen elosztott környezetben

történő hatékony megvalósítását teszik lehetővé.

Főbb hozzájárulások és azok hatása:

• Előrejelzési heurisztikák (direkt és időcsúsztatásos módszer).

• Tanulhatóságalapú indirekt validációs technika.

• A FileList.org-ból kinyert ajánló adatbázis [1].

• Overlay kezelő megközelítések: véletlen minta alapú kNN megközelítés,

T-MAN alapú variánsok (GLOBAL, VIEW, BEST és PROPORTIONAL) és

azok randomizált változatai.

• A GLOBAL peer választáson alapuló technika megfelelő kompromisszu-

mot eredményez a konvergenciasebesség és a hálózati terhelés között.

8.2.4 P2PEGASOS—Egy teljesen elosztott SVM

A 6. fejezetben a teljesen elosztott adatbányászat problémájára fókuszáltunk.

A célunk egy általános SVM-alapú algoritmus kidolgozása volt, amely egy tel-

jesen elosztott hálózatban jó minőségű modellek tanulására képes elfogadható

kommunikációs komplexitás mellett, mialatt a lehető legkevesebb elvárást tá-

masztjuk a kommunikációs modellel szemben. Az ajánlott algoritmus a P2PE-

GASOS algoritmus egy koncepcionálisan egyszerű, mégis erőteljes SVM-imp-

lementáció. Az alapötlet szerint sok modell végez véletlen sétát a hálózat-

ban, mialatt egy grádiens alapú, online tanuló szabály alkalmazásával javítják

magukat.
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Főbb hozzájárulások és azok hatása:

• A P2PEGASOS algoritmus.

• Szavazásalapú mechanizmus a predikciós teljesítmény javítására.

• Az algoritmus meglepően jó konvergenciatulajdonságokat mutat még az

extrém hibákkal terhelt szimulációkban is.

8.2.5 A P2PEGASOS konvergenciájának további gyorsítása

A 7. fejezetben folytattuk a teljesen elosztott környezetben történő tanulás

vizsgálatát, és egy olyan mechanizmust dolgoztunk ki, amely közel egy nagysá-

grenddel gyorsítja a P2PEGASOS algoritmus konvergenciasebességét. A létre-

jött algoritmusok a P2PEGASOSMU és a P2PEGASOSUM. Az alapötlet az, hogy

vezessünk be egy modellkombinációs eljárást, amely átlagolja a találkozó mo-

delleket. A fejezetben bemutattuk, hogy az ajánlott eljárás az Adaline mo-

dell esetében éppen úgy viselkedik, mintha exponenciálisan növekvő számú

modellt gyűjtenénk és szavaztatnánk a predikció során, de konstans tárral.

Továbbá megmutattuk, hogy habár a P2PEGASOS algoritmus esetén az egzakt

ekvivalencia nem valósul meg, a viselkedése nagyon hasonló. A P2PEGASOSMU

algoritmus konvergencia bizonyítását is közöljük.

Főbb hozzájárulások és azok hatása:

• Az egyesítő (merging) mechanizmus a P2PEGASOS algoritmushoz, ami

a P2PEGASOSMU és P2PEGASOSUM algoritmusokat eredményezi.

• A P2PEGASOSMU algoritmus konvergenciájának bizonyítása.

• Az algoritmusok jelentősen gyorsabb konvergenciasebességet mutatnak,

mint az eredeti P2PEGASOS, mialatt megőrzik annak összes előnyös tu-

lajdonságát.
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