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1 Introduction

The study of integrable, exactly solvable systems is an important branch of mathematical 

physics. Many examples of integrable systems arise in non-linear optics, particle physics and 

general relativity. One of the reasons for their importance is that these models may provide 

suitable starting points for the analysis of more complicated problems. Realistic models can be 

often investigated as perturbations of integrable systems. Integrable systems can be used also 

for testing the accuracy of numerical methods.

It is easier to illustrate integrability with examples than to define it precisely. The Korteweg- 

de Vries (KdV) equation is a well-known example for integrable systems in classical field theory 

[5, 14], The KdV equation describes one-dimensional water waves in a shallow channel. Such 

wave was first observed by Scott Russell in 1834 [5], The wave was localized and travelled with 

constant velocity, while maintaining its shape. The solutions with these properties are called 

solitons. In the KdV equation the non-linear term cancels the effect of the dispersive term, so the 

wave packet does not spread. Another remarkable integrable model with soliton solutions is the 

sine-Gordon equation, which first appeared in studies of pseudospherieal surfaces, A mechanical 

model of the sine-Gordon equation can be constructed using a series of pendulums connected 

to an elastic rubber band. The many-soliton solutions possess the interesting property that 

the solitons can ’’pass through” each other, after the interaction their phases change but their 

shapes remain the same.

The two best-known examples of integrable classical mechanical systems are the harmonic 

oscillator and the Kepler problem. The Toda chain, the Calogero-Sutherland and Ruijsenaars- 

Sehneider type systems are important examples of integrable many-particle systems [3, 9], In 

several eases these systems can be derived by symmetry reduction. The Calogero-Sutherland 

type systems are finite dimensional dynamical systems that are integrable both at the clas­

sical and quantum mechanical level [3, 9, 15], These models describe the pair interaction 

of arbitrary (n > 2) number of point particles moving on the line or on the circle. In the 

most important eases the pair potential is proportional to a particular rational, hyperbolic,
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trigonometric or elliptic function of the particle coordinate differences. The integrability of 

the n-partiele rational Calogero system was first proved in the quantum mechanical frame­

work by Calogero [2], later Moser proved the classical integrability of the system [7], The 

Ruijsenaars-Sehneider type integrable systems also describe the pair interaction of n point 

particles moving in one-dimensional space [3, 13], In the most important eases their general­

ized pair potentials are again proportional to a rational, hyperbolic, trigonometric or elliptic 

function of the particle coordinate differences. The defining Hamiltonians of the Ruijsenaars- 

Sehneider systems are one-parameter deformations of the corresponding Calogero-Sutherland 

Hamiltonians, The extra parameter is often interpreted as the speed of light. The ’’relativis­

tic” Ruijsenaars-Sehneider systems posses a translation and a boost generator, which together 

with the Hamiltonian generate the Poincaré algebra in 1 + 1 dimension through the Poisson 

bracket. In the non-relativistic limit the Ruijsenaars-Sehneider Hamiltonians become equal to 

the corresponding Calogero-Sutherland Hamiltonians, Some variants of the systems mentioned 

above are suitable for analysing solutions of soliton equations. The motion of the ’’Calogero 

particles” is equivalent to the time evolution of the poles and zeros of certain KdV solutions 

[4], The Ruijsenaars-Sehneider systems also have interesting applications to integrable partial 

differential equations. The n-partiele hyperbolic Ruijsenaars-Sehneider system describes the 

n-soliton solutions of the sine-Gordon equation [11, 13],

2 Research aims and m ethods

The principal aim of my work was the investigation of some interesting aspects of classical 

integrable many-particle systems, I focused on certain variants of the Calogero-Sutherland and 

Ruijsenaars-Sehneider type integrable systems, I concentrated on three research topics, namely: 

the application of symmetry reduction, superintegrability and duality in concrete systems,

I relied on Hamiltonian reduction to investigate the many-particle systems. The relevant 

systems were all obtained by reduction of some higher dimensional ’’free systems”. Starting
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from an integrable system with rich symmetries one may obtain integrable reduced systems un­

der suitable conditions. Since the method of Hamiltonian reduction plays a central role in the 

thesis, I briefly comment on the relevant concept of symmetry. In addition to its mathematical 

beauty, symmetries are also very important theoretical physics. In many eases symmetries lead 

to conservation laws and combined with the reduction method are often useful for simplifying 

complicated problems. We here use the word “symmetry” in the context of Hamiltonian dy­

namical systems, i.e,, assume that the Hamiltonian and the Poisson brackets of the system are 

invariant with respect to the action of some Lie group on the phase space. Then the system 

can be projected to a lower dimensional phase space by fixing the values of the constants of 

motion (that generate the symmetry) and implementing the Marsden-Weinstein reduction pro­

cedure [1], In essence, one obtains a lower dimensional reduced system by factorization with 

the symmetry, which permits elimination of some degrees of freedom,

3 Studied topics

1. A Liouville integrable system is called superintegrable if it admits more time-independent 

constants of motions than the maximal number that can be Poisson commuting [16], Probably 

the best-known superintegrable system is the Kepler problem. Another frequently cited exam­

ple is the rational Calogero system [17], I investigated the superintegrabilitv of the rational 

Euijsenaars-Sehneider system, which can be viewed as a relativistic deformation of the rational 

Calogero system. The analysis is based on the derivation of the Euijsenaars-Sehneider system 

by Hamiltonian reduction [6], I considered two ways for demonstrating its superintegrabilitv, 

one relies on an explicit construction and the other on the so-called global action-angle map of 

maximally non-eompaet type,

2 . There exist generalizations of the Sutherland system that describe ’’charged” particles, 

where the different charges attract and the identical charges repulse each other in a special 

manner. The first Sutherland type system with charged particles was introduced by Calogero
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[3] by the trick of shifting m < n coordinates in the usual n-partiele Sutherland system by (i |  ). 

In this model the interaction potential is attractive between the particles with different charges 

and it is proportional to the cosh-2 function of particle position differences, while the repulsive 

interaction potential between the particles with identical charges is proportional to the sinh-2 

function. Later this system was derived by Olshanetsky and Rogov by reduction [8], In the 

dissertation I derived a generalized Sutherland system with the aid of Hamiltonian reduction, 

which describes charged particles and contains three independent coupling constants,

3. In the impressive series of papers [10, 11, 12] Ruijsenaars investigated the dynamics and 

the duality relations of various Calogero type integrable many-particle systems. The phase 

spaces of dual pairs of integrable many-particle systems are related by a symplectomorphism 

that identifies the action variables of the ’’first” system as the particle positions of the ’’second” 

system, and vice versa. This symplectomorphism is also known as ’’duality transformation”. 

The n-partiele trigonometric Sutherland system admits three different physical interpretations 

depending on the choice of the domain of the position variables. It can be regarded as a system 

of n indistinguishable particles moving on the circle, or as systems of distinguishable particles 

moving either on the circle or one the line. The following configuration spaces correspond to 

these choices:

Q(n), U(1) x SQ (n), R x SQ (n).

By using a direct method, Ruijsenaars constructed canonical transformations between the phase 

spaces of the three variants of the trigonometric Sutherland system and their duals, and also 

constructed covering maps between the dual pairs associated with the above alternative con­

figuration spaces [12], In my work I examined the group theoretic interpretation of the web of 

duality transformations and covering maps.

4



4 N ew  results

Next I summarize my new results, which were mainly obtained by Hamiltonian reduction. 

The results are arranged in three paragraphs according to the topics,

1. I presented an explicit construction of the extra constants of motion of the rational 

Euijsenaars-Sehneider system that are responsible for its maximal superintegrability [Al], The 

construction is based on the following Poisson bracket algebra

{Ik, Ij } m = 0 , {I I , I )}m =  (j -  k)Ik+j , { i l J j  }m = jlj+k,

which generalizes a similar algebra exhibited by Wojeieehowski for the rational Calogero system 

[17], I explained how can the above Poisson algebra be used to construct additional constants 

of motion for the Hamiltonians depending only on the Poisson commuting Ik functions. In [Al], 

I gave a new realization of this Poisson bracket algebra utilizing the derivation of the rational 

Euijsenaars-Sehneider system in the symplectic reduction framework based on the reduction 

of the T *GL(n, C) cotangent bundle [6], The claimed Poisson bracket relations were proved by 

studying suitable invariant functions. Based on [ A 1. A2]. I explained how does superintegrability 

follow from the existence of a global action-angle map of maximally non-eompaet type, and 

described the connection between duality and superintegrability in the ease of those Calogero­

Sutherland and Euijsenaars-Sehneider systems that possess purely scattering motions,

2. In [A3], I studied a generalized Sutherland system that describes ’’charged” particles and 

possesses three independent coupling constants, I obtained the system by reducing the free 

geodesic motion on the group G =  SU(n,n).  Two commuting involutions were introduced 

on the group G having corresponding hxed-point groups G+ and G+, The reduction of the 

T *G cotangent bundle was based on the symmetry group G+ x G+, where G+ is the maximal 

compact subgroup of G, and it was analyzed using a generalized Cartan decomposition of 

G. The Hamiltonian of the reduced system describes attractive-repulsive interactions of n 

charged particles moving on the half-line, which are influenced also by their mirror images and
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a positive charge fixed at the origin. The attractive interaction of the particles with different 

charges is defined by the cosh-2 function and the repulsive interaction between identical charges 

is governed by the sinh-2 function, I have shown that the Liouville integrabilitv of the system is 

a direct consequence of the Hamiltonian reduction. By utilizing the geometric picture and the 

‘Tree flows”, I gave a linear-algebraic method for constructing the time evolution of the particle 

positions and their canonical conjugates,

3. In [A4], I investigated the dual pairs associated with three different physical interpretation 

of the trigonometric Sutherland system from a group theoretic viewpoint, and described the 

connection between the symplectic covering maps of Euijsenaars [12] and the group theoretic 

covering homomorphisms

G2 := R x SU (n) — ► Gi := U(1) x SU (n) — ► G := U(n)

I derived the dual pairs by svmpleetie reduction of the phase spaces T*G, T*G1; T *G2 using 

the symmetry group G = G /Zg ~  G1/Z Gl ~  G2/Z G2 (where ZG is the center of G), Mv main 

result is the group theoretic interpretation of the following commutative diagram:

T*R x T *SQ(n) -

G2
T *U(1) x T *SQ(n)

Gl

P  = T *Q(n) —

ld2XRo
^T*R x Cn-i

II2
idi xRo >T*U(1) x Cn-i

R
Gi1

Cn-i x Cx

On the left side the alternative Sutherland phase spaces can be seen, on the right the 

corresponding Euijsenaars-Sehneider ones. The vertical lines denote the svmpleetie covering 

maps and the horizontal lines denote duality sympleetomorphisms. The dual pairs in the three 

horizontal lines of the diagram involve the three physically different versions of the trigonomet­

ric Sutherland model. The first line corresponds to distinguishable particles moving on the line, 

the second to distinguishable particles moving on the circle, and the third to indistinguishable
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particles moving on the circle. The diagram was first constructed by Euijsenaars [12] with the 

aid of direct methods, I described the group theoretic-geometric interpretation of this web 

of dualities and coverings, which permitted to significantly simplify the proof of the Poisson 

bracket preserving property of the duality transformations [A4],
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5 Publications

My results reported in the thesis are based on the following publications:

[Al] V, Ayadi, L, Fehér, On the superintegrability of the rational Ruijsenaars-Schneider model, 

Phvs. Lett. A 374, 1913 (2010)

[A2] V. Ayadi, L. Fehér, T.F, Görbe, Superintegrability of rational Ruijsenaars-Schneider sys­

tems and their action-angle duals, J. Geom. Symmetry Phvs. 27, 27 (2012)

[A3] V. Ayadi, L. Fehér, An integrable BC(n) Sutherland model with two types of particles, J. 

Math. Phvs. 52, 103506 (2011)

[A4] L. Fehér, V. Ayadi, Trigonometric Sutherland systems and their Ruijsenaars duals from 

symplectic reduction, J. Math. Phvs. 51, 103511 (2010)
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