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Introduction

The concept of modular lattices is as old as that of lattices itself. Both are due

to Richard Dedekind, although there were others, e.g., Charles S. Pierce or Ernst

Schröder, who also found the concept of lattices, cf. also the Foreword of George

Grätzer [42]. A lattice is said to be modular if it satisfies the following identity:

x ∨ (y ∧ (x ∨ z)) = (x ∨ y) ∧ (x ∨ z).

Dedekind showed around 1900 that the submodules of a module form a modular

lattice with respect to set inclusion. Many other algebraic structures are closely

related to modular lattices: both normal subgroups of groups and ideals of rings

form modular lattices; distributive lattices (thus also Boolean algebras) are special

modular lattices. Later, it turned out that, in addition to algebra, modular lattices

appear in other areas of mathematics as well, such as geometry and combinatorics.

The first nontrivial result for modular lattices was proved by R. Dedekind [31] as

well, who found the free modular lattice on three generators, which has 28 elements.

Comparing this with a result of Garrett Birkhoff, see ,e.g., [8], which proves that

the free lattice on three generators is infinite, one can think that modular lattices

are less complicated structures than lattices itself. However, the situation is just

the opposite. Birkhoff also showed that the free modular lattice on four generators

is already infinite. Furthermore this comparison becomes more interesting if we

consider the respective word problems. Philip M. Whitman [85, 86] proved that the

word problem for any free lattice is solvable, that is, there is an algorithm which

can decide for arbitrary lattice terms p and q whether p = q holds identically in

all lattices. (Note that Thoralf Skolem gave a much more effective algorithm more

than 20 years earlier, but it was forgotten till Stan Burris found it, see Freese,

Ježek, Nation [37, page 14] for details.) In view of Whitman’s result, it is quite

astonishing that the word problem for free modular lattices is unsolvable, which was

independently proved by George Hutchinson [57] and Leonard M. Lipshitz [66].
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INTRODUCTION 2

Later, Ralph Freese [35] improved Hutchinson’s and Lipshitz’s result by showing

that the word problem is unsolvable even for the free modular lattice on five gener-

ators. One can derive easily from Dedekind’s result that the word problem for the

free modular lattice on three generators is solvable. Thus Christian Herrmann [51]

reached the lower bound when he proved that the word problem for the free mod-

ular lattice on four generators is unsolvable. Therefore, many of the computations

in modular lattices with at least four variables need particular ideas; they are not

automatic at all.

In Chapter 1, we introduce the concept of von Neumann frames, which is the

basic concept of coordinatization theory, one of the deepest and most amazing part of

modular lattice theory. After introducing frames and recalling the most important

examples and lemmas, we define the concept of product frames, which is due to

Gábor Czédli [18]. He used product frames in connection with fractal lattices,

cf. [18]. Finally we present a theorem that shows that modular lattices with product

frames and matrix rings are closely related. This part is based on a joint paper with

Czédli [27].

One of the most fruitful generalization of modularity is the so-called semimodu-

larity. A lattice is said to be (upper) semimodular if it satisfies the following Horn

formula

x ≺ y⇒ x ∨ z ⪯ y ∨ z.

In contrast to modular lattices, the class of semimodular lattices cannot be char-

acterized by identities. In the preface of his book titled Semimodular Lattices, Man-

fred Stern [79] attributes the abstract concept of semimodularity to Birkhoff [8]. He

also mentions that classically semimodular lattices came from closure operators that

satisfies the nowadays usually called Steinitz-Mac Lane Exchange Property, cf. [79,

page ix, 2 and 40]. One of the most important class of semimodular lattices that

was systematically studied at first is the class of geometric lattices, which are semi-

modular, atomistic algebraic lattices, cf. Birkhoff [8, Chapter IV] and Crawley and

Dilworth [13, Chapter 14]. Since one can think of finite geometric lattices as (sim-

ple) matroids, it is not surprising that the theory of semimodular lattices has been

developing simultaneously with matroid theory since the beginning, cf. the Preface

of Stern [79].

The dual concept of semimodularity, called lower semimodularity, has also a

strong connection to certain closure operators that satisfies the so-called Antiex-

change Property. An important class of lower semimodular lattices, the class of
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meet distributive lattices, was introduced by Robert P. Dilworth under the name

of (lower) locally distributive lattices. The corresponding combinatorial objects are

convex geometries and their combinatorial duals, the antimatroids.

One can say that semimodular lattices provide a bridge between lattice theory

and combinatorics. For getting a better picture about them, we refer to the already

mentioned book of Stern, who offers his work as “a supplement to certain aspects

to vol. 26 (Theory of Matroids), vol. 29 (Combinatorial Geometries), and vol. 40

(Matroid Applications) of Encyclopedia of Mathematics and its Applications”.

It seems that the research of semimodular lattices have recently come again into

focus of several lattice theorists. Let us pick out some of the latest results. We

already mentioned that the normal subgroups of a group form a modular lattice.

By a classical result of Helmut Wielandt [88], subnormal subgroups of a group

form a (lower) semimodular lattice. Lattice theoretic formulation of the classical

Jordan-Hölder theorem for groups is well-known, cf. Rotman [76, Theorem 5.12]

and Grätzer [41, Theorem 1 in Section IV.2]. It is less-known that the original

theorem follows from the lattice theoretic one. Grätzer and James Bryant Nation

[47] pointed out that there is a stronger version for semimodular lattices. Using their

technique, Czédli and E. Tamás Schmidt [24] strengthened these Jordan-Hölder

theorems both for groups and semimodular lattices. For more details, see also

Grätzer [41, Section V.2].

On the other hand, it is worth mentioning that several new results have ap-

peared recently about some geometric aspects of semimodular lattices; only to refer

to planar semimodular lattices, see Grätzer and Edward Knapp [44, 45, 46] and

Czédli and Schmidt [25, 26], or to semimodular lattices that can be “represented” in

higher dimensional spaces, see the web site of Schmidt (http://www.math.bme.hu/

~schmidt/) for more details. As for convex geometries, there has been some recent

improvement as well, see, e.g., the papers of Adaricheva, Gorbunov, Tumanov and

Czédli [2, 1, 19].

In Chapter 2, we deal with lattice embeddings into geometric lattices, which also

have nice consequences for semimodular lattices. After that we formulate a classical

result of Dilworth [13, Theorem 14.1] and its generalization by Grätzer and Emil W.

Kiss [43] for finite lattices, we present our extension of Grätzer and Kiss’ theorem

for some class of infinite lattices. This part is based on [78].

Congruence lattices of algebras play a central role in universal algebra. Many

lattice theorists have also studied congruence lattices and congruence lattice vari-
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eties, only to mention Bjarni Jónsson, Grätzer or Schmidt, cf. ,e.g., [64] and [48].

This concept was generalized by Ivan Chajda [11], who dealt with algebras with a

constant operation symbol in their type. He studied lattices formed by those classes

of congruences that contains the constant.

In Chapter 3, we return to modularity. After defining the concept of a Mal’cev

condition, we show that a classical result of Alan Day [28], which says that congru-

ence modular varieties can be defined by a Mal’cev condition, can be generalized for

lattices observed by Chajda. This part is based on [77].



Chapter 1

Von Neumann frames

Von Neumann normalized frames, frames shortly, are due to von Neumann [69].

Although he worked in lattice theory just for two years between 1935 and 1937,

many lattice theorists, including Grätzer [41, p. 292], say that his results belong to

the deepest part of lattice theory. For instance, Birkhoff, the founder and pioneer

of universal algebra and lattice theory, wrote in a paper [7] about him: “John

von Neumann’s brilliant mind blazed over lattice theory like a meteor.” Also, it was

Birkhoff who turned von Neumann’s attention to lattice theory. Then von Neumann

began to think that he could probably use lattice theory as a tool. At that time he

was trying to find an appropriate concept of space for modern physics. In contrast

to the usual concept of dimension, where the dimension function has a discrete range

(0,1,2, . . . ), he was looking for a dimension function with a continuous range. In

full extent, his work was published much later, see [69]. It is centered around the

concept of continuous geometries, which are special complemented modular lattices.

On his way to continuous geometries, von Neumann introduced the concept of

frames, and he used them to extend the classical Veblen-Young coordinatization

theorem of projective spaces [82, 83] to arbitrary complemented modular lattices

with frames. Note that the best known method for the classical coordinatization

is “von Staudt’s algebra of throws”, cf. Grätzer [42, p. 384]. As a first step, von

Neumann associated a ring, the so-called coordinate ring, with each frame. It turned

out that in case of a complemented modular lattice with a frame, the coordinate ring

satisfies some additional property, which is nowadays called von Neumann regularity.

It is worth mentioning that this property has proved to be particularly useful. The

theory of von Neumann regular rings has become an independent discipline later.

5



CHAPTER 1. VON NEUMANN FRAMES 6

Since there is a one to one correspondence between modular geometric lattices

and projective spaces, many properties, including Desargues’ theorem, can be formu-

lated in the language of lattices, see, e.g., Grätzer [42, Section V.5]. Von Neumann’s

work exemplifies that lattice theory can be helpful to handle geometric problems

in a more elegant and compact way. Analogous applications of lattice theory were

given later by others. For example, Jónsson [60] provided lattice identities that hold

in a modular geometric lattice if and only if Desargues’ theorem holds in the asso-

ciated projective space. Note that there exists a similar characterization of Pappus’

theorem, see Day [29]. For more examples, see Jónsson [62] or Takách [80].

Although von Neumann considered a complemented modular lattice L of length

n ≥ 4, his construction of the coordinate ring (without coordinatization) extends to

arbitrary modular lattices without complementation, see Artmann [3] and Freese [34],

and even to n = 3 if L is Arguesian, see Day and Pickering [30].

A concept equivalent to frames is that of Huhn diamonds, see Huhn [54]. Since

distributive lattices played a central role already in the beginning of lattice theory,

cf. Grätzer [42, p. xix], Huhn’s original purpose was to generalize the distributive

law. He also wanted to find generalizations for many well known theorems and ap-

plications of distributive lattices. His new identity, called n-distributivity, proved to

be a particularly fruitful generalization of distributivity. While distributive lattices

among modular lattices are characterized by excluding M3’s (Birkhoff’s criteria), in

case of n-distributive lattices, M3’s are replaced by Huhn diamonds, see Remark 1.2

for more details. Huhn diamonds are connected to many interesting theorems, for in-

stance, Huhn proved with them that the automorphism group of a finitely presented

modular lattice can be infinite, see [55].

Frames and Huhn diamonds are used in the proof of several deep results showing

how complicated modular lattices are, only to mention Freese [34], Huhn [55], and

Hutchinson [58]. Frames or Huhn diamonds were also used in the theory of congru-

ence varieties, see Hutchinson and Czédli [59], Czédli [17], and Freese, Herrmann

and Huhn [36]; and in commutator theory, see Freese and McKenzie [38, Chapter

XIII].

Dealing with quasi-fractal generated non-distributive modular lattice varieties,

Czédli [18] introduced the concept of product frames. This chapter is based on a

joint work with Czédli [27]. We show that product frames are closely related to
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matrices. Namely, the coordinate ring of the so-called outer frame of a product

frame is a matrix ring over the coordinate ring of the so-called inner frame of the

product frame, see Theorem 1.7.

Overview of the chapter

Finally, let us give a short overview of this chapter. In Section 1.1 we give an

introduction to coordinatization theory. In Section 1.2 we introduce the concept

of product frames and prove some lemmas. In Section 1.3 we prove our result on

product frames and give some further comments.

Note that in coordinatization theory, the lattice operations join and meet are

traditionally denoted by + and ⋅ (mostly juxtaposition) such that meets take prece-

dence over joins. In this chapter we follow this tradition. As a general convention for

the whole chapter, the indices we use will be positive integers, so i ≤ n is understood

as 1 ≤ i ≤ n.

1.1 Basic definitions and notions

For definition, let 2 ≤m, let L be a nontrivial modular lattice with 0 and 1, and let

a⃗ = (a1, . . . , am) ∈ Lm and c⃗ = (c12, . . . , c1m) ∈ Lm−1. We say that (a⃗, c⃗) = (a1, . . . , am,

c12, . . . , c1m) is a spanning m-frame (or a frame of order m) of L, if a1 ≠ a2 and the

following equations hold for all j ≤m and 2 ≤ k ≤m:

∑
i≤m

ai = 1, aj ∑
i≤m, i/=j

ai = 0,

a1 + c1k = ak + c1k = a1 + ak, a1c1k = akc1k = 0.

(1.1)

Notice that if (a⃗, c⃗) is a spanning m-frame, then

the ai are the distinct atoms of a Boolean sublattice 2m, (1.2)

and {a1, c1k, ak} generates an M3 with bottom 0 = 0L for k ∈ {2, . . . ,m}. In

particular, a frame of order two is simply an M3 with 0M3 = 0L and 1M3 = 1L.

By the order of the frame we mean m. If (a⃗, c⃗) is a spanning m-frame of a

principal ideal of L, then we will call it a frame in L. Note that von Neumann [69,

page 19] calls c1k the axis of perspectivity between the intervals [0, a1] and [0, ak],
and we will shortly call c1k as the axis of ⟨a1, ak⟩-perspectivity.
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Given an m-frame (a⃗, c⃗), we define ck1 = c1k for 2 ≤ k ≤ n, and for 1, j, k distinct,

let cjk = (c1j + c1k)(aj + ak). From now on, a frame is always understood in this

extended sense: c⃗ includes all the cij, i ≠ j, i, j ≤m. Then, according to Lemma 5.3

in von Neumann [69, page 118] (see also Freese [33]), for i, j, k distinct we have

cik = cki = (cij + cjk)(ai + ak),

ai + cij = aj + cij = ai + aj,

aicij = ajcij = aiaj = 0.

(1.3)

This means that the index 1 has no longer a special role.

23ca3

a1 ={(0,0,0),(1,0,0)}
a2 ={(0,0,0),(0,1,0)}
a3 ={(0,0,0),(0,0,1)}
c12={(0,0,0),(1,1,0)}
c13={(0,0,0),(1,0,1)}
c23={(0,0,0),(0,1,1)}

13c 12c
a1

a2

Figure 1.1: Sub(Z3
2) and its canonical 3-frame

Example 1.1 (Canonical m-frame). Let K be a ring with 1. Let vi denote the

vector (0, . . . ,0,1,0, . . . ,0) ∈ Km (1 at the ith position). Letting ai = Kvi and

cij = K(vi − vj), we obtain a spanning m-frame of the submodule lattice Sub(Km),
where Km is, say, a left module over K in the usual way. This frame is called the

canonical m-frame of Sub(Km). For m = 3 and K = Z2, see Figure 1.1.

This example shows that, sometimes, to unify some definitions or arguments,

it is reasonable to allow the formal definition of a trivial axis cii = 0, i ≤ m; this

convention makes formula (1.3) valid also for k ∈ {i, j}. However, according to

tradition, the trivial axes do not belong to the frame.

Remark 1.2 (Huhn diamonds). One of many concepts closely related to n-frames

is the so-called m-diamond, cf. Herrmann and Huhn [53]. Let 1 ≤ m, let L be a
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nontrivial modular lattice, and let a⃗ = (a1, . . . , am+1) ∈ Lm+1 and b ∈ L. We say that

(a⃗, b) is an m-diamond if the ai are the distinct atoms of a Boolean sublattice 2m+1

and b is a relative complement of each atom in [a1a2, a1 + ⋅ ⋅ ⋅ + am+1]. This concept

was introduced by Huhn [54], cf. also Freese [34].

If L is a nontrivial modular lattice with 0, and (a⃗, b) = (a1, . . . , am, b) is an (m−1)-
diamond in a modular lattice such that a1a2 = 0 then (a⃗, c⃗) = (a⃗, c12, . . . , c1m) is an

m-frame, where c1j = (a1 + aj)b. Conversely if (a⃗, c⃗) = (a1, . . . , am, c12, . . . , c1m) is

an m-frame then (a⃗, b) is an (m − 1)-diamond, where b = c12 + ⋅ ⋅ ⋅ + c1m, cf. [53] and

[34]. This connection between frames and diamonds allows us to define the canonical

m-diamond. For m = 2 and K = Z2, see Figure 1.2.

As a generalization of distributivity, Huhn defined a modular lattice to be n-

distributive iff it satisfies the following identity:

x ∨
n

⋀
i=0
yi =

n

⋀
j=0

(x ∨
n

⋀
i=0
i≠j

yi).

Since 1-distributivity gives back the distributive law and 1-diamonds generates M3,

Birkhoff’s criteria says that a modular lattice is distributive if and only if it does

not contain a 1-diamond. Huhn showed that a modular lattice is n-distributive if

and only if it does not contain an n-diamond, see [54] for more details.

a1 ={(0,0,0),(1,0,0)}
a2 ={(0,0,0),(0,1,0)}
a3 ={(0,0,0),(0,0,1)}
b ={(0,0,0),(1,1,0),(1,0,1),(0,1,1)}

a1

a2

b

a3

Figure 1.2: The canonical 2-diamond of Sub(Z3
2)

In the sequel, assume that L is a modular lattice, and either m ≥ 4, or m = 3

and L is Arguesian. Next, we define the coordinate ring of (a⃗, c⃗) in two, slightly

different ways. For p, q, r ∈ {1, . . . ,m} distinct, consider the following projectivities:

R(p
r
q
q
)∶ [0, ap + aq]→ [0, ar + aq], x↦ (x + cpr)(ar + aq),

R(p
p
q
r
)∶ [0, ap + aq]→ [0, ap + ar], x↦ (x + cqr)(ap + ar);

(1.4)
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these are almost the original notations, see von Neumann [69] and Freese [33], the

only difference is that we write R rather than P . They are lattice isomorphisms

between the indicated principal ideals. For i, j, k ∈ {1, . . . ,m} distinct, let

R⟨i, j⟩ = R⟨ai, aj⟩ = {x ∈ L ∶ x + aj = ai + aj, xaj = 0},

x ⊕ijk y = (ai + aj)((x + ak)(cik + aj) + yR( i
k
j
j
)) and

x ⊗ijk y = (ai + aj)(xR( i
i
j
k
) + yR( i

k
j
j
)) for x, y ∈ R⟨i, j⟩.

(1.5)

Then the operations ⊕ijk and ⊗ijk do not depend on the choice of k, and this

definition turns R⟨i, j⟩ into a ring. Moreover, R⟨i, j⟩ ≅ R⟨i′, j′⟩ for every i′ ≠ j′, see

von Neumann [69] or Herrmann [52]. (Notice that von Neumann uses the opposite

multiplication.) This R⟨i, j⟩ is called the coordinate ring of the frame.

While the above definition seems to be the frequently used one, see Herrmann [52],

our needs are better served by von Neumann’s original definition, which is more

complicated but carries much more information. Following Freese [33], for i, j, k, h ∈
{1, . . . ,m} pairwise distinct, let

R( i
k
j
h
) = R( i

k
j
j
) ○R(k

k
j
h
).

We always compose mappings from left to right, that is, x(R( i
k
j
j
) ○ R(k

k
j
h
)) =

(xR( i
k
j
j
))R(k

k
j
h
). Now, the notation R( i

k
j
h
) makes sense whenever i ≠ j and k ≠ h;

notice that R( i
i
j
j
) is the identical mapping.

Next, we consider two small categories. The first one, C1(a⃗, c⃗), consists of the

pairs (i, j), i ≠ j and i, j ≤ m, as objects, and for any two (not necessarily distinct)

objects (i, j) and (k, h), there is exactly one (i, j) → (k, h) morphism. The second

category, C2(a⃗, c⃗), consists of the coordinate rings R⟨i, j⟩ of our frame, i ≠ j, as

objects, and all ring isomorphisms among them, as morphism. For a morphism

(i, j)→ (k, h) in the first category, let R send this morphism to the mapping R( i
k
j
h
).

Of course, for an object (i, j) in C1(a⃗, c⃗), R sends (i, j) to R⟨i, j⟩. The crucial point

is captured in the following lemma.

Lemma 1.3 (von Neumann [69], Day and Pickering [30]). R is a functor from the

category C1(a⃗, c⃗) to the category C2(a⃗, c⃗).

Proof. The notion of categories came to existence only after von Neumann’s fun-

damental work in lattice theory, recorded later in [69]. Hence it is not useless to

give some hints how to extract the above lemma from [69]. If m ≥ 4, then it follows

from pages 119–123 that R is functor, see also Freese [33]. Although von Neumann
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does not consider R⟨i, j⟩ a ring in itself, it is implicit in [69] that the R( i
k
j
h
) are

ring isomorphisms. (This becomes a bit more explicit in Freese [33]. With slightly

different notation, it is fully explicit in Theorem 2.2 of Herrmann [52].) If m = 3,

then the lemma follows from Lemma (4.1) of Day and Pickering [30].

By an L-number (related to the frame (a⃗, c⃗)) von Neumann means a system

(xij ∶ i, j ≤ m, i ≠ j) of elements such that xij ∈ R⟨i, j⟩ and xijR( i
k
j
h
) = xkh for all

i ≠ j and k ≠ h. (Because there will be lattice entries later, here we use superscripts

rather than von Neumann’s subscripts.) Clearly, for every (i, j), i ≠ j, each L-

number x is determined by its (i, j)th component xij. Conversely,

Lemma 1.4 (page 130 of [69], see also Lemma 2.1 in [33]). If u ∈ R⟨i, j⟩, then there

is a unique L-number x such that xij = u.

Let R∗ be the set of L-numbers related to (a⃗, c⃗). Von Neumann made R∗ into a

ring (R∗,⊕R∗,⊗R∗) such that R∗ → R⟨i, j⟩, x↦ xij is a ring isomorphism for every i ≠
j. (Of course, von Neumann defined (R∗,⊕R∗,⊗R∗) first, and later others, including

Herrmann [52], transferred the ring structure of R∗ to R⟨i, j⟩ by the bijection R∗ →
R⟨i, j⟩, x↦ xij.)

According to Lemma 1.4 and the previous paragraph, we can perform compu-

tations with L-numbers componentwise, and it is sufficient to consider only one

component. For w ∈ R⟨i, j⟩, let w∗ ∈ R∗ denote the unique L-number in R∗ such

that (w∗)ij = w. However, we usually make no difference between w and w∗.

To help the reader to understand our calculations in modular lattices while we

save a lot of space, the following notations will be in effect. We use

=i, =f, or =Lj

to indicate that formula (i), some basic property of frames, or Lemma j is used,

respectively. In many cases, =f means the same as =1.3. When an application of

the modular law uses the relation x ≤ z then, beside using =m, x resp. z will be

underlined resp. doubly underlined. For example,

(x + y)(x + z) =m x + y(x + z).

The use of the shearing identity (see Grätzer [42, Theorem 347]) is indicated by =s

and underlining the subterm “sheared”:

x(y + z) =s x(y(x + z) + z).
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Even in some other cases, subterms worth noticing are also underlined. If x1 ≥
x2 . . . xk for some easy reason, then we write

x1x2 . . . xk

to indicate that this expression is considered as x2 . . . xk. In other words, overlined

meetands will be omitted in the next step. Combining our notations like

=m,1.2,L3,

we can simultaneously refer to properties like modularity, formulas and lemmas.

Formulas, like (1.2), will also be used for the product frame, whose definition comes

in the next section.

1.2 The product frame

In this section, we recall the concept of product frame from Czedli [18]. In order

to get a detailed picture about product frames, we quote not only the lemmas but

also their proofs from [18]. From now on, the general assumption throughout the

chapter is that n ≥ 2, L is a modular lattice, and either m ≥ 4, or m = 3 and L

is Arguesian. Let (a⃗, c⃗) be a spanning m-frame of L, and let (u⃗, v⃗) be a spanning

n-frame of [0, a1] ≤ L. We define a spanning mn frame as follows. For i, j ≤ n and

p, q ≤m, let

bpi = (ui + c1p)ap, d1
1
q
j = (v1j + c1q(uj + aq))(u1 + bqj) (1.6)

Let b⃗ denote the vector of all the bpi such that b11 is the first component. Let d⃗ denote

the vector of all the d1
1
q
j such that (q, j) ≠ (1,1).

Lemma 1.5 (Czédli [18, Theorem 1(A)]). (b⃗, d⃗) is a spanning mn-frame of L, where

d1
1
q
j plays the role of the axis of ⟨b11, b

q
j⟩-perspectivity.

We say that (b⃗, d⃗) is the product frame of (a⃗, c⃗) and (u⃗, v⃗), while (a⃗, c⃗) resp.

(u⃗, v⃗) will be called the outer resp. inner frame.

Before we prove the previous lemma, we need some preparations. First, let us

reformulate (1.6) without relying on trivial axes and providing simpler expressions
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for some particular values of indices:

b1i = ui for i ≤ n,

bpi = (ui + c1p)ap for i ≤ n and 2 ≤ p ≤m,

d1
1
q
1 = (u1 + aq)c1q for 2 ≤ q ≤m,

d1
1
1
j = v1j for 2 ≤ j ≤ n,

d1
1
q
j = (v1j + c1q(uj + aq))(u1 + bqj) for 2 ≤ j ≤ n and 2 ≤ q ≤m.

(1.7)

Second, for k ≤ n, define

Bp
k = ∑

i≤n, i≠k
bpi . (1.8)

Now, (1.1) together with the isomorphism theorem of modular lattices (cf. Grätzer

[42, Theorem 348]) yield that the map ϕp∶ [0, a1] → [0, ap], x ↦ (x + c1p)ap is an

isomorphism. Therefore formulas (1.7) together with (1.8) and the definition of the

inner frame give

ap =∑
i≤n
bpi = B

p
k + b

p
k for k ≤ n. (1.9)

Proof of Lemma 1.5. From (1.9) we conclude

∑
p≤m

∑
i≤n
bpi = ∑

p≤m
ap =f 1.

Further, for i ≤ n and p ≤m,

bpi ∑
j≤n, q≤m
(q,j)≠(p,i)

bqj = b
p
i (∑
q≤m
q≠p

∑
j≤n

bqj +B
p
i ) =1.9

bpi ( ∑
q≤m,q≠p

aq +Bp
i ) =s,1.9,f b

p
iB

p
i = (b1iB1

i )ϕp =f 0ϕp = 0.

This ends the proof of the first two equations of (1.1). Now, we have to show that

if j ≤ n, q ≤m, (q, j) ≠ (1,1) then {b11, d
1
1
q
j , b

q
j} generates an M3 with bottom 0.

If q = 1 and j > 1, then, by the definition of the inner frame, {b11, b1j , d
1
1
1
j } =1.7

{u1, v1j, uj} generates an M3 with bottom 0. If q ≥ 2 and j = 1 then we have to show

that {b11, d
1
1
q
1 , b

q
1} =1.7 {u1, (u1 + aq)c1q, (u1 + c1q)aq} generates an M3 with bottom 0.

Indeed, we have

u1 + (u1 + aq)c1q =m (u1 + aq)(u1 + c1q),

u1 + (u1 + c1q)aq =m (u1 + c1q)(u1 + aq),

(u1 + aq)c1q + (u1 + c1q)aq =m (u1 + c1q)(aq + (u1 + aq)c1q) =m

(u1 + c1q)(u1 + aq)(aq + c1q) =f (u1 + c1q)(u1 + aq)(a1 + aq),
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while the meet of any two is 0, since u1c1q ≤ a1c1q =f 0, u1aq ≤ a1aq =f 0 and c1qaq =f 0.

From now on, let 2 ≤ j ≤ n and 2 ≤ q ≤m. We have to show that {b11, d
1
1
q
j , b

q
j} =1.7

{u1, (v1j + c1q(uj + aq))(u1 + bqj), (uj + c1q)aq} generates an M3 with bottom 0. The

meets are obtained easily:

b11b
q
j =1.7 u1b

q
j ≤1.7 a1aq =f 0,

b11d
1
1
q
j =

1.7 u1(v1j + c1q(uj + aq))(u1 + bqj) =sf u1v1j =f 0,

d1
1
q
j b
q
j =1.7 (v1j + c1q(uj + aq))(u1 + bqj)b

q
j =1.7 (v1j + c1q(uj + aq))(uj + c1q)aq =m

(v1j(uj + c1q) + c1q(uj + aq))aq =m

(uj + c1q)(v1j + c1q(uj + aq))aq =sf (uj + c1q)v1jaq =f 0.

The next task is to show that each of the three elements is below the join of the

other two. Clearly,

d1
1
q
j ≤

1.7 u1 + bqj =1.7 b11 + b
q
j .

Further,

d1
1
q
j + b

q
j =1.7 (v1j + c1q(uj + aq))(u1 + bqj) + b

q
j =m

(u1 + bqj)(v1j + b
q
j + c1q(uj + aq)) =1.7

(u1 + bqj)(v1j + (uj + c1q)aq + c1q(uj + aq)) =m

(u1 + bqj)(v1j + (uj + aq)((uj + c1q)aq + c1q)) =m

(u1 + bqj)(v1j + (uj + aq)(uj + c1q)(aq + c1q)) =f

(u1 + bqj)(v1j + (uj + aq)(uj + c1q)(a1 + aq)) ≥ (u1 + bqj)(v1j + uj) ≥f u1 =1.7 b11,

and finally,

b11 + d
1
1
q
j =

1.7 u1 + (v1j + c1q(uj + aq))(u1 + bqj) =m

(u1 + bqj)(u1 + v1j + c1q(uj + aq)) =f (u1 + b
q
j)(u1 + uj + c1q(uj + aq)) =m

(u1 + bqj)(u1 + (uj + c1q)(uj + aq)) ≥ bqj(u1 + (uj + c1q)(uj + aq)) =1.7 bqj .

Note that one can define dpi
q
j for “arbitrary” i, j, p, q as we defined cij for “ar-

bitrary” i, j in Section 1.1. We also mentioned that frames are understood in an

extended sense: d⃗ includes all the dpi
q
j , i, j ≤ n, p, q ≤ m, (p, i) ≠ (q, j). Note that

dpi
q
j are the axis of ⟨bpi , b

q
j⟩-perspectivity. (To comply with forthcoming notations, we

suggest to read the indices of bpi downwards, ”pi”, and column-wise for dpi
q
j , ”pi qj”.)
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The following lemma follows easily from the fact that the elements b1i = ui and

d1
1
1
j = v1j determine both the coordinate ring of the inner frame and the coordinate

ring of the product frame, cf. the comments after (1.5).

Lemma 1.6 (Czédli [18]). If n ≥ 4, or n ≥ 3 and L is Arguesian, then (b⃗, d⃗) and

(u⃗, v⃗) have isomorphic coordinate rings.

In sense of the previous lemma, the same notation can be used for the rings

associated to the product frame and the inner frame. From now on,

S∗ = (S∗,⊕S∗,⊗S∗) is the coordinate ring of (b⃗, d⃗), and

Mn(S∗) = (Mn(S∗),⊕Mn,⊗Mn) is the n × n matrix ring over S∗.
(1.10)

This makes sense, since mn ≥ 4.

Analogously to Lemma 1.3, the product frame gives rise to a functor and the

S⟨pi
q
j
⟩ = S⟨bpi , b

q
j⟩ coordinate rings. The previous notations tailored to the product

frame are as follows:

S⟨pi
q
j
⟩ = {x ∈ L ∶ xbqj = 0, x + bqj = b

p
i + b

q
j},

S( pirk
qj
qj
)∶S⟨pi

q
j
⟩→ S⟨ rk

q
j
⟩, x↦ (x + dpi

r
k)(brk + b

q
j),

S(pipi
qj
rk
)∶S⟨pi

q
j
⟩→ S⟨pi

r
k
⟩, x↦ (x + d qj

r
k)(b

p
i + brk).

(1.11)

(Since we have agreed in reading the indices of, say, d qj
r
k column-wise, the space-

saving entries qj and rk in S(pipi
qj
rk
), rather than q

j and r
k , should not be confusing.)

Let us agree that, unless otherwise stated, the superscripts of b and d belong

to {1, . . . ,m}, while all their subscripts to {1, . . . , n}. For example, if dpi
q
j occurs

in a formula, then p, q ≤ m and i, j ≤ n, and also (p, i) ≠ (q, j), are automatically

stipulated. Similarly, the subscripts of a and c are automatically in {1, . . . ,m}.

This convention allows us, say, to write ∑i ai instead of ∑m
i=1 ai without causing

any ambiguity. Let us also agree that, unless otherwise stated, we understand our

formulas with universally quantified indices, that is, for all meaningful values for the

occurring indices.

Finally, we need one more formula:

cpq =∑
i

dpi
q
i . (1.12)

First, we prove

c1q =∑
i

d1
i
q
i . (1.13)



CHAPTER 1. VON NEUMANN FRAMES 16

As a preparation, we show that

(v1i + c1q(ui + aq))(ui + aq) ≤ c1q. (1.14)

Indeed, (v1i + c1q(ui + aq))(ui + aq) =m v1i(ui +aq)+ c1q(ui +aq) =sf c1q(ui +aq), which

gives formula (1.14). For 2 ≤ i ≤ n, we have

d1
i
q
i = (d1

1
1
i + d

1
1
q
i )(b

1
i + b

q
i ) =1.7 (v1i + (v1i + c1q(ui + aq))(u1 + bqi ))(ui + b

q
i ) =m

(v1i + c1q(ui + aq))(v1i + u1 + bqi )(ui + b
q
i ) =f

(v1i + c1q(ui + aq))(u1 + ui + bqi )(ui + b
q
i ) =1.7

(v1i + c1q(ui + aq))(ui + (ui + c1q)aq) =m

(v1i + c1q(ui + aq))(ui + c1q)(ui + aq).

Hence

∑
i≤n
d1
i
q
i = ∑

2≤i≤n
(d1

1
q
1 + d

1
i
q
i ) =

1.7

∑
2≤i≤n

((u1 + aq)c1q + (v1i + c1q(ui + aq))(ui + c1q)(ui + aq)) =m

∑
2≤i≤n

(ui + c1q)((u1 + aq)c1q + (v1i + c1q(ui + aq))(ui + aq)) =m1.14

∑
2≤i≤n

(ui + c1q)c1q(u1 + aq + (v1i + c1q(ui + aq))(ui + aq)) =m

∑
2≤i≤n

c1q(u1 + (ui + aq)(aq + v1i + c1q(ui + aq))) =m

∑
2≤i≤n

c1q(u1 + (ui + aq)(v1i + (aq + c1q)(ui + aq))) =f

∑
2≤i≤n

c1q(u1 + (ui + aq)(v1i + (a1 + aq)(ui + aq))) =f

∑
2≤i≤n

c1q(u1 + ui + aq) = c1q(u1 + u2 + aq) + ∑
3≤i≤n

c1q(u1 + ui + aq) =m

c1q(u1 + u2 + aq + ∑
3≤i≤n

c1q(u1 + ui + aq)) =

c1q(u1 + u2 + ∑
3≤i≤n

(aq + c1q(u1 + ui + aq))) =m

c1q(u1 + u2 + ∑
3≤i≤n

(aq + c1q)(u1 + ui + aq)) =f

c1q(u1 + u2 + ∑
3≤i≤n

(a1 + aq)(u1 + ui + aq)) =

c1q(u1 + u2 + ⋅ ⋅ ⋅ + un + aq) =f c1q(a1 + aq) = c1q.
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This proves (1.13). Now, for p, q ≠ 1, we have

dpi
q
i =

f (d1
i
p
i + d

1
i
q
i )(b

p
i + b

q
i ) ≤

(∑
j

d1
j
p
j +∑

j

d1
j
q
j )(∑

j

bpj +∑
j

bqj) =1.9,1.13 (c1p + c1q)(ap + aq) =f cpq.

This and formula (1.13) give that

dpi
q
i ≤ cpq. (1.15)

Hence

aq +∑
i

dpi
q
i =

1.9 ∑
i

bqi +∑
i

dpi
q
i =∑

i

(bqi + d
p
i
q
i ) =

f

∑
i

(bpi + b
q
i ) =∑

i

bpi +∑
i

bqi =1.9 ap + aq =f aq + cpq.

This together with aqcpq = 0 and formula (1.15) show that ∑i d
p
i
q
i and cpq are com-

parable complements of aq in [0, ap + aq], whence modularity yields (1.12).

1.3 The ring of an outer von Neumann frame

In this section we prove the following theorem.

Theorem 1.7.

(a) Let L be a lattice with 0,1 ∈ L, and let m,n ∈ N with n ≥ 2. Assume that

L is modular and m ≥ 4. (1.16)

Let (a1, . . . , am, c12, . . . , c1m) be a spanning von Neumann m-frame of L and

(u1, . . ., un, v12, . . . , v1n) be a spanning von Neumann n-frame of the interval

[0, a1]. Let R∗ denote the coordinate ring of (a1, . . . , am, c12, . . . , c1m). Then

there is a ring S∗ such that R∗ is isomorphic to the ring of all n × n matrices

over S∗. If

n ≥ 4, (1.17)

then we can choose S∗ as the coordinate ring of (u1, . . . , un, v12, . . . , v1n).
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(b) The previous part of the theorem remains valid if (1.16) and (1.17) are replaced

by

L is Arguesian and m ≥ 3 (1.18)

and

n ≥ 3, (1.19)

respectively.

Notice that Arguesian lattices are necessarily modular. If m = 2, then R∗ =
R⟨1,2⟩ = {x ∈ L ∶ xa2 = 0 and x+ a2 = a1 + a2}, see (1.5) and Subsection 1.3.1, is just

a set, not a ring. If L is not Arguesian and m = 3, then R∗ is not necessarily a ring.

Hence the theorem does not make sense if m = 2, or m = 3 and L is not Arguesian.

Nevertheless, the forthcoming proof still shows that

Remark 1.8. Lemma 1.10 holds even for m = 2,3, provided L is modular.

Next, we give an example to enlighten Theorem 1.7; for n ≥ 4, the details can be

checked based on Theorems II.4.2 and II.14.1 of von Neumann [69].

Example 1.9. Let R be the ring of all n × n matrices over a field S. Consider the

canonical m-frame, with R instead of K, defined in Example 1.1. The coordinate

ring R∗ of this m-frame is isomorphic to R. Remember from Example 1.1 that

a1 = R(E,0, . . . ,0) ∈ Sub(Rm), where E is the unit matrix in R. Hence the interval

[0, a1] in Sub(Rm) is isomorphic to the lattice of all left ideals of R. The lattice of

these left ideals is known to be isomorphic to the subspace lattice Sub(Sn) of the

vector space Sn. Fix an appropriate isomorphism; it sends the canonical n-frame

of Sub(Sn) to a spanning n-frame (u1, . . . , un, v12, . . . , v1n) of [0, a1]. Clearly, the

coordinate ring S∗ of this n-frame is isomorphic to S. Hence R∗ is isomorphic to

the ring of all n × n matrices over S∗.

While Sub(Rm) is coordinatizable by its construction in Example 1.9, it is worth

pointing out that L in Theorem 1.7 is not coordinatizable in general. Although some

ideas of the proof have been extracted from Example 1.9, Linear Algebra in itself

seems to be inadequate to prove Theorem 1.7. (Even if it was an adequate tool,

modular lattice theory would probably offer a more elegant treatment, see the last

paragraph of Section 2 in [18].) Notice that Herrmann [52] reduces many problems

of frame generated modular lattices to Linear Algebra, but our L is not frame-

generated in general by evident cardinality reasons.
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1.3.1 A pair of reciprocal mappings

For i, j ≤ n, we define a mapping ϕij ∶R∗ → S∗ as follows. We identify R∗ with

R⟨1,2⟩ = R⟨a1, a2⟩. So we define xϕij for x ∈ R⟨1,2⟩, and, without over-complicating

our formulas with writing x∗, we understand x∗ϕij as xϕij. Similarly, we define the

value xϕij in S⟨1i
1
j
⟩ but we understand it as (xϕij)∗ ∈ S∗ without making a notational

distinction between xϕij and (xϕij)∗. Finally, we will put these ϕij together in the

natural way to obtain a mapping ϕ∶R∗ →Mn(S∗): the (i, j)th entry of the matrix

xϕ is defined as xϕij. So, the definition of ϕ is completed by

ϕij ∶R⟨1,2⟩→ S⟨1i
2
j
⟩, x↦ xij = (x +B2

j )(b1i + b2j). (1.20)

(We will prove soon that ϕij maps R⟨1,2⟩ into S⟨1i
2
j
⟩.)

In the reverse direction, we will rely on the possibility offered by L-numbers

even more: distinct entries of a matrix in Mn(S∗) will be represented with their

components of different positions. Let (eij ∶ i, j ≤ n) be a matrix over S∗, that is, an

element of Mn(S∗). The truth is that eij belongs to S∗. However, we identify eij

with its component belonging to S⟨1i
2
j
⟩, and, again, we do this without notational

difference between eij and its corresponding component in S⟨1i
2
j
⟩. Introduce the

notation

E∗k =∑
i

eik.

With this convention, we define

ψ∶Mn(S∗)→ R∗, (eij ∶ i, j ≤ n)↦∏
k

(E∗k +B2
k). (1.21)

We will prove soon that ∏k(E∗k +B2
k) belongs to R⟨1,2⟩, which is identified with

R∗.

Next, we formulate an evident consequence of modularity:

R⟨i, j⟩ and S⟨pi
q
j
⟩ are antichains in L. (1.22)

Indeed, if, say, we had x < y and x, y ∈ R⟨i, j⟩, then x and y would be comparable

complements of aj, a contradiction. We will often have to prove that two elements

of R⟨i, j⟩ or S⟨pi
q
j
⟩ are equal; then (1.22) reduces this task to showing that the two

elements are comparable.

The rest of this subsection is devoted to the following lemma.

Lemma 1.10. ϕ and ψ are bijections, and they are inverse mappings of each other.
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Before proving this lemma, two preliminary statements are necessary.

Lemma 1.11. Let j ≤m, and suppose that, for all i ∈ {1, . . . ,m}∖ {j}, wi ∈ R⟨i, j⟩.
Then aj∑i≠j wi = 0.

Proof. Let Ik denote the induction hypothesis “if ∣{i ∶ wi ≠ ai}∣ ≤ k, then aj∑i≠j wi =
0”. Then I0 clearly holds by (1.2), and Im−1 is our target.

Assume Ik−1 for an arbitrary k < m. We will refer to it with the notation =ih.

We want to show Ik. By symmetry, we can assume that j = m and wi ≠ ai holds

only for i ≤ k. Then

aj∑
i≠j
wi = am(w1 +⋯ +wk−1 + ak+1 +⋯ + am−1 +wk)

=s am((w1 +⋯ +wk−1 + ak+1 +⋯ + am−1)(wk + am) +wk)

=1.5 am((w1 +⋯ +wk−1 + ak+1 +⋯ + am−1)(ak + am) +wk)

=s,ih am((w1 +⋯ +wk−1 + ak+1 +⋯ + am−1)ak +wk)

≤1.5 am((a1 + am +⋯ + ak−1 + am + ak+1 +⋯ + am−1)ak +wk)

=1.2 amwk =1.5 0.

The following easy statement on elements of a modular lattice belongs to the

folklore; it also occurs as (1) in Huhn [56].

Lemma 1.12. If fi ≤ gj for all i ≠ j, i, j ≤ k, then

∏
i≤k
gi +∑

i≤k
fi =∏

i≤k
(gi + fi).

Proof of Lemma 1.10. Let∏k(E∗k+B2
k) from (1.21) be denoted by e, and remember

that eij ∈ S⟨1i
2
j
⟩. We have to show that e ∈ R⟨1,2⟩. Let us compute:

a2e =∏
k

(a2(E∗k +B2
k)) =m ∏

k

(a2E∗k +B2
k) =1.9 ∏

k

((b2k +B2
k)E∗k +B2

k)

=s ∏
k

((b2k(E∗k +B2
k) +B2

k)E∗k +B2
k).

Focusing on the last underlined subterm, observe that the summands eik of E∗k

belong to S⟨1i
2
k
⟩, and the summands b2j , j ≠ k, of B2

k belong to S⟨2j
2
k
⟩. Hence,

applying Lemma 1.11 to the product frame, we conclude that b2k(E∗k + B2
k) = 0.

Therefore,

a2e =∏
k

(B2
kE∗k +B2

k) =∏
k

B2
k =1.2 0. (1.23)



CHAPTER 1. VON NEUMANN FRAMES 21

Next, we compute

a2 + e =1.9 ∑
k

b2k +∏
k

(E∗k +B2
k) =L1.12 ∏

k

(E∗k +B2
k + b2k)

=1.9 ∏
k

∑
j

(ejk + b2k + a2) =1.11 ∏
k

∑
j

(b1j + b2k + ak)

=1.9 ∏
k

(a1 + a2) = a1 + a2.

This and (1.23) imply e ∈ R⟨1,2⟩. Hence ψ maps into R∗, as desired.

Next, let x ∈ R⟨1,2⟩. To show that ϕ maps into Mn(S∗), we have to show that

xij = xϕij = (x +B2
j )(b1i + b2j) belongs to S⟨1i

2
j
⟩. This follows easily, since

xijb
2
j = (x +B2

j )(b1i + b2j)b2j =s (x(b2j +B2
j ) +B2

j )b2j
=1.9 (xa2 +B2

j )b2j =1.5 B2
j b

2
j =f 0, and

xij + b2j = (x +B2
j )(b1i + b2j) + b2j =m (b1i + b2j)(x +B2

j + b2j)

=1.9 (b1i + b2j)(x + a2) =1.5 (b1i + b2j)(a1 + a2) =1.9 b1i + b2j .

Next, we show that ϕ ○ ψ is the identical mapping. Let x ∈ R⟨1,2⟩. Then

x(ϕ ○ ψ) = (xϕ)ψ = (xϕij ∶ i, j ≤ n)ψ

=1.20 ((x +B2
j )(b1i + b2j) ∶ i, j ≤ n)ψ

=1.21 ∏
k

yk, where yk = B2
k +∑

i

(x +B2
k)(b1i + b2k).

Observe that it suffices to show that x ≤ yk for all k ≤ n, since then (1.22) implies

x = y. Let us compute:

yk =∑
i

(B2
k + (x +B2

k)(b1i + b2k)) =m ∑
i

(x +B2
k)(b1i + b2k +B2

k)

≥1.9 ∑
i

x(b1i + a2) = x(b11 + a2) +∑
2≤i
x(b1i + a2)

=m x(b11 + a2 +∑
2≤i
x(b1i + a2)) = x(b11 +∑

2≤i
(a2 + x(b1i + a2)))

=m x(b11 +∑
2≤i

(a2 + x)(b1i + a2)) =1.5 x(b11 +∑
2≤i

(a2 + a1)(b1i + a2))

=1.9 x(b11 +∑
2≤i

(b1i + a2)) = x(a2 +∑
i

b1i ) =1.9 x(a2 + a1) =1.5 x.

Hence x ≤ yk, as requested, and ϕ ○ ψ is the identical mapping.

Next, to show that ψ ○ϕ is the identical mapping, let eij ∈ S⟨1i
2
j
⟩ for i, j ≤ n, and

denote (eij ∶ i, j ≤ n)ψ =∏k(E∗k +B2
k) by e. We have already shown that e ∈ R⟨1,2⟩,
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see (1.21), and eϕij = (e + B2
j )(b1i + b2j) ∈ S⟨1i

2
j
⟩, see (1.20). Since eij ≤ b1i + b2j by

(1.11), eij ≤ e +B2
j would imply eij ≤ eϕij, and we could derive eij = eϕij by (1.22).

So, it suffices to show that eij ≤ e +B2
j . Let us compute:

e +B2
j = B2

j +∏
k

(E∗k +B2
k) = B2

j + (E∗j +B2
j )∏

k≠j
(E∗k +B2

k)

=m (E∗j +B2
j )(∑

k≠j
b2k +∏

k≠j
(E∗k +B2

k))

=L1.12 (E∗j +B2
j )∏

k≠j
(E∗k +B2

k + b2k) =1.9 (E∗j +B2
j )∏

k≠j
∑
h

(ehk + b2k + a2)

=1.11 (E∗j +B2
j )∏

k≠j
∑
h

(b1h + b2k + a2) =1.9 (E∗j +B2
j )∏

k≠j
(a1 + a2).

Since a1 + a2 ≥1.9 b1i + b2j ≥1.11 eij and E∗j ≥ eij, the above calculation shows that

eij ≤ e +B2
j . This completes the proof of Lemma 1.10.

1.3.2 Addition and further lemmas

Lemma 1.13. ϕ and, therefore, ψ are additive.

Proof. Let x, y ∈ R⟨1,2⟩, z = x ⊕123 y, x′ = xϕij = (x + B2
j )(b1i + b2j), y′ = yϕij =

(y +B2
j )(b1i + b2j) and z′ = zϕij = (z +B2

j )(b1i + b2j). It suffices to show that, in S⟨1i
2
j
⟩,

we have x′ ⊕1
i
2
j
3
i y

′ = z′. Let us compute:

x′ ⊕1
i
2
j
3
i y

′ = (b1i + b2j)((x′ + b3i )(d
1
i
3
i + b

2
j) + y′S(

1i
3i

2j
2j
))

= (b1i + b2j)((x′ + b3i )(d
1
i
3
i + b

2
j) + (y′ + d1

i
3
i )(b

3
i + b2j)). (1.24)

On the other hand,

z′ = (z +B2
j )(b1i + b2j)

= (b1i + b2j)((a1 + a2)((x + a3)(c13 + a2) + yR(1
3
2
2
)) +B2

j )

= (b1i + b2j)((a1 + a2)((x + a3)(c13 + a2) + (y + c13)(a3 + a2)) +B2
j )

=m (b1i + b2j)(a1 + a2)((x + a3)(c13 + a2) + (y + c13)(a3 + a2) +B2
j )

= (b1i + b2j)((x + a3)(c13 + a2) +B2
j + (y + c13)(a3 + a2) +B2

j )

=m (b1i + b2j)((x +B2
j + a3)(c13 + a2) + (y +B2

j + c13)(a3 + a2)). (1.25)

Now, we can see that the subterms obtained in (1.24) are less than or equal to the

corresponding subterms obtained in (1.25). Indeed, x′ ≤ x + B2
j and y′ ≤ y + B2

j

by definitions, and b3i ≤ a3, b2j ≤ a2 and d1
i
3
i ≤ c13 by (1.15). Hence (1.22) yields

x′ ⊕1
i
2
j
3
i y

′ = z′.
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Lemma 1.14. bij + cik = bkj + cik and Bi
j + cik = Bk

j + cik.

Proof. It suffices to deal only with the first equation: bij + cik =1.15 bij + d
i
j
k
j + cik =f

bkj + d
i
j
k
j + cik =1.15 bik + cik.

Lemma 1.15. Assume that x, y ∈ S⟨ 1
u
2
v
⟩. Then xR(1

1
2
3
) = xS(1u

1u
2v
3v
) and, similarly,

yR(1
3
2
2
) = yS(1u

3u
2v
2v
).

Proof. If i, j, k ≤m are pairwise distinct, then we have

cjk(ai + ak) =s cjk(ai(cjk + ak) + ak)

=1.3 cjk(ai(aj + ak) + ak) =1.2 cjkak =1.3 0.
(1.26)

The outer projectivities R(1
1
2
3
) and R(1

3
2
2
) are lattice isomorphisms that send the

interval [0, a1 + a2] onto [0, a1 + a3] and [0, a3 + a2], respectively. Since S⟨ 1
u
2
v
⟩ ⊆

[0, a1 + a2] is defined in the terminology of lattices and

b1uR(1
1
2
3
) = (b1u + c23)(a1 + a3) =m b1u + c23(a1 + a3) =1.26 b1u,

b2vR(1
1
2
3
) = (b2v + c23)(a1 + a3) =L1.14 (b3v + c23)(a1 + a3) =m,1.26 b3v,

b1uR(1
3
2
2
) = (b1u + c13)(a3 + a2) =L1.14 (b3u + c13)(a3 + a2) =m,1.26 b3u,

b2vR(1
3
2
2
) = (b2v + c13)(a3 + a2) =m,1.26 b2v,

we conclude that these outer projectivities send (the support set of) S⟨ 1
u
2
v
⟩ onto

S⟨ 1
u
3
v
⟩ and S⟨ 3

u
2
v
⟩, respectively. Lattice terms are monotone, so we obtain

xS(1u
1u

2v
3v
) = (x + d 2

v
3
v)(b1u + b3v) ≤1.15 (x + c23)(a1 + a3) = xR(1

1
2
3
). (1.27)

We have seen that both sides of (1.27) belong to S⟨ 1
u
3
v
⟩, whence they are equal in

virtue of (1.22). The other equation of the lemma follows the same way.

1.3.3 Multiplication

By an almost zero matrix we mean a matrix in which all but possibly one entries

are zero. We say that ψ, defined in (1.21), preserves the multiplication of almost

zero matrices, if (E ⊗Mn F )ψ = (Eψ) ⊗R∗ (Fψ) holds for all almost zero matrices

E,F ∈Mn(S∗).

Lemma 1.16. If ψ is additive and preserves the multiplication of almost zero ma-

trices, then it is a ring homomorphism.
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Proof. Since each matrix in Mn(S∗) is a sum of almost zero matrices, the lemma

follows trivially by ring distributivity.

Next, we introduce some notations, which will be permanent in the rest of the

chapter. Let E = (eij ∶ i, j < n) ∈ Mn(S∗) and F = (fij ∶ i, j < n) ∈ Mn(S∗) be two

almost zero matrices. According to the earlier convention and keeping in mind that

b1i is the zero of the ring S⟨1i
2
j
⟩, this means that there are indices p, q, r, s, fixed from

now on, such that

x ∶= epq ∈ S⟨1p
2
q
⟩, eij = b1i ∈ S⟨

1
i
2
j
⟩ for (i, j) ≠ (p, q),

y ∶= frs ∈ S⟨1r
2
s
⟩, fkh= b1k ∈ S⟨

1
k
2
h
⟩ for (k, h) ≠(r, s).

(1.28)

Let G = (gij ∶ i, j < n) = E ⊗MnF . By definitions, including the everyday’s definition

of a product matrix, we have

gij = b1i , the zero of S⟨1i
2
j
⟩, if q ≠ r or (i, j) ≠ (p, s); (1.29)

gps = xS(1p
1p

2r
2s
) ⊗1

p
2
s
α
β yS( 1r

1p
2s
2s
), if q = r; (1.30)

where α and β are arbitrary, provided (1, p) ≠ (α,β) ≠ (2, s). We also define

e ∶= Eψ, f ∶= Fψ, and, differently, g ∶= e ⊗123 f.

The plan is to show that gϕ = G, that is, gϕij = gij for all i, j ≤ n, since this is

equivalent to Gψ = g. To prepare a formula for the gϕij, we need the following

technical lemma.

Lemma 1.17. For all j ≤ n, we have

B2
j + (y +B1

r +B2
s)∏

k≠s
(a1 +B2

k) = y +B1
r +B2

j , (1.31)

B2
r + (x +B1

p +B2
q)∏

k≠q
(a1 +B2

k) = x +B1
p +B2

r . (1.32)

Proof. It suffices to show (1.31), since it implies (1.32) by replacing (y, r, s, j) with

(x, p, q, r). Let u denote the left hand side of (1.31). If j = s, then

u = B2
j + (y +B1

r +B2
j )∏

k≠j
(a1 +B2

k) =m (y +B1
r +B2

j )(B2
j +∏

k≠j
(a1 +B2

k))

=L1.12 (y +B1
r +B2

j )∏
k≠j

(a1 +B2
k + b2k) =1.9 (y +B1

r +B2
j )∏

k≠j
(a1 + a2)

=1.9,1.5 y +B1
r +B2

j .
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If j ≠ s, then

u = B2
j + (y +B1

r +B2
s)(a1 +B2

j ) ∏
k≠j,s

(a1 +B2
k)

=m (a1 +B2
j )(B2

j + (y +B1
r +B2

s) ∏
k≠j,s

(a1 +B2
k))

= (a1 +B2
j )(b2s + ∑

k≠j,s
b2k + (y +B1

r +B2
s) ∏

k≠j,s
(a1 +B2

k))

=L1.12 (a1 +B2
j )(y +B1

r +B2
s + b2s) ∏

k≠j,s
(a1 +B2

k + b2k)

=1.9 (a1 +B2
j )(y +B1

r + a2 + b2s)∏
k≠j,s

(a1 + a2)

=1.11,1.9 (a1 +B2
j )(a1 + a2) =1.9 B1

r + b1r + b2s +B2
j

=1.11 B1
r + y + b2s +B2

j =1.9 y +B1
r +B2

j

Lemma 1.18. For every i, j ≤ n, we have

gϕij = (b1i + b2j)(B1
p +B2

j +B3
r + xS(

1p
1p

2q
3q
) + yS(1r

3r
2s
2s
)).

Proof. Firstly, we express e and, to obtain f , we replace (x, p, q) with (y, r, s):

e = Eψ =1.21 ∏
k

(E∗k +B2
k) = (E∗q +B2

q)∏
k≠q

(E∗k +B2
k)

=1.28,1.9 (x +B1
p +B2

q)∏
k≠q

(a1 +B2
k); (1.33)

f = (y +B1
r +B2

s)∏
k≠s

(a1 +B2
k). (1.34)

We need some auxiliary equations:

B2
j + fR(1

3
2
2
) =1.4 B2

j + (f + c13)(a3 + a2) =m (a3 + a2)(B2
j + f + c13)

=1.34 (a3 + a2)(c13 +B2
j + (y +B1

r +B2
s)∏

k≠s
(a1 +B2

k))

=1.31 (a3 + a2)(c13 + y +B1
r +B2

j )

=L1.14 (a3 + a2)(c13 + y +B3
r +B2

j )

=m B3
r + (a3 + a2)(c13 + y +B2

j ), and (1.35)



CHAPTER 1. VON NEUMANN FRAMES 26

B3
r + eR(1

1
2
3
) =1.4 B3

r + (e + c23)(a1 + a3) =m (a1 + a3)(B3
r + e + c23)

=L1.14 (a1 + a3)(c23 +B2
r + e)

=1.33 (a1 + a3)(c23 +B2
r + (x +B1

p +B2
q)∏

k≠q
(a1 +B2

k))

=1.32 (a1 + a3)(c23 + x +B1
p +B2

r)

=m B1
p + (a1 + a3)(c23 + x +B2

r). (1.36)

Armed with the previous equations, we obtain

gϕij =1.20 (b1i + b2j)(g +B2
j )

=1.5 (b1i + b2j)(B2
j + (a1 + a2)(eR(1

1
2
3
) + fR(1

3
2
2
)))

=m (b1i + b2j)(a1 + a2)(B2
j + eR(1

1
2
3
) + fR(1

3
2
2
))

=1.35 (b1i + b2j)(eR(1
1
2
3
) +B3

r + (a3 + a2)(c13 + y +B2
j ))

=1.36 (b1i + b2j)(B1
p + (a1 + a3)(c23 + x +B2

r) + (a3 + a2)(c13 + y +B2
j ))

=L1.14 (b1i + b2j)(B1
p + (a1 + a3)(c23 + x +B3

r) + (a3 + a2)(c13 + y +B2
j ))

=m (b1i + b2j)(B1
p +B3

r + (a1 + a3)(c23 + x) +B2
j + (a3 + a2)(c13 + y))

=1.4 (b1i + b2j)(B1
p +B2

j +B3
r + xR(1

1
2
3
) + yR(1

3
2
2
)),

whence Lemma 1.18 follows by Lemma 1.15.

Lemma 1.19. ψ preserves the multiplication of almost zero matrices.

Proof. Keep the previous notations, and let

x′ ∶= xS(1p
1p

2q
3q
) ∈ S⟨1p

3
q
⟩, y′ ∶= yS(1r

3r
2s
2s
) ∈ S⟨3r

2
s
⟩. (1.37)

We know from Lemma 1.18 that

gϕij = (b1i + b2j)(B1
p +B2

j +B3
r + x′ + y′). (1.38)

According to (1.29), our first goal is to show that gϕij = b1i whenever q ≠ r or

(i, j) ≠ (p, s). Notice that if

b1i ≤ B1
p +B2

j +B3
r + x′ + y′, (1.39)

then gϕij = b1i follows from (1.22), so we can aim at (1.39). Since x′ ∈ S⟨1p
3
q
⟩ and

y′ ∈ S⟨3r
2
s
⟩, (1.3) and (1.11) provide us with the following computation rules:

α ≠ qÔ⇒ B3
α + x′ ≥ b1p, (1.40)

β ≠ s Ô⇒ B2
β + y′ ≥ b3r. (1.41)
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We can assume that i = p, since otherwise b1i ≤ B1
p gives (1.39). If r ≠ q, then

B3
r + x′ ≥1.40 b1p yields (1.39) again. Hence we assume that q = r. If j ≠ s, then

B2
j + y′ ≥1.41 b3r together with b3r + x′ = b3q + x′ ≥1.11 b1p yields (1.39) once more.

Therefore, we can assume that j = s.
Now, our task is restricted to the case i = p, q = r, j = s. Substituting these

indices into (1.38) and computing:

gϕps = (b1p + b2s)(B1
p +B2

s +B3
r + x′ + y′)

≥ (b1p + b2s)(x′ + y′) =1.37 (b1p + b2s)(xS(
1p
1p

2r
3r
) + yS(1r

3r
2s
2s
))

=L1.3 (b1p + b2s)(xS(
1p
1p

2r
2s
)S(1p

1p
2s
3r
) + yS( 1r

1p
2s
2s
)S(1p

3r
2s
2s
))

=1.5 xS(1p
1p

2r
2s
) ⊗1

p
2
s
3
r yS(

1r
1p

2s
2s
) =1.30 gps.

Hence (1.22) yields that gϕps = gps, indeed.

Proof of Theorem 1.7. Lemmas 1.10, 1.13, 1.16 and 1.19.



Chapter 2

Isometrical embeddings

In this chapter we focus on lattice embeddings. They have been heavily studied

since the beginning of lattice theory. The first important result was published by

Birkhoff [6] in 1935. He proved that every partition lattice is embeddable into the

lattice of subgroups of some group. Later, in 1946, Whitman [87] showed that every

lattice is embeddable into a partition lattice. These two results together imply that

every lattice is embeddable into the lattice of subgroups of some group. These em-

beddings have considerable consequences; for example, there is no nontrivial lattice

identity that holds in all partition lattices or in all subgroup lattices.

Perhaps the best-known proof for Whitman’s theorem is due to Jónsson [60].

However, both in Whitman’s and Jónsson’s proofs, the constructed partition lattices

are much bigger than the original ones, for instance, they are infinite even for finite

lattices. The question whether a finite lattice is embeddable into a finite partition

lattice arose already in Whitman [87]. He conjectured that this question had a

positive answer.

Partition lattices belong to a larger class of lattices; they are geometric lattices.

A finite geometric lattice is an atomistic semimodular lattice. The first step towards

Whitman’s conjecture was a result of Finkbeiner [32]. He proved that every finite

lattice can be embedded into a finite semimodular lattice. His construction is based

on two steps. On the one hand, he showed that every finite lattice that has a so-

called pseudo rank function can be embedded into a finite semimodular lattice. On

the other hand, he pointed out that every finite lattice has a pseudo rank function.

His embedding “preserves” the pseudorank function; that is, if L is embedded into

S, say L ≤ S, and p denotes the pseudorank function of L, and h denotes the height

function of S then p and h coincide on L. Note that Finkbeiner credits his proof as

28
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an unpublished result of Dilworth. The second step towards Whitman’s conjecture

was a result of Dilworth, which was published later in Crawley and Dilworth [13].

He showed that every finite lattice can be embedded into a finite geometric lattice.

The last step was made by Pudlák and Tůma [74, 75], who showed in 1977 that

Whitman’s conjecture is true.

Although Finkbeiner did not manage to prove Whitman’s conjecture, his proof

drew attention to embeddings that preserve pseudo rank functions. Such embed-

dings are called isometrical. In 1986, blending the results of Finkbeiner and Dil-

worth, Grätzer and Kiss [43] showed that every finite lattice with a pseudorank

function has an isometrical embedding into a finite geometric lattice, see also The-

orem 2.3. The question whether a finite lattice with a pseudorank function has

an isometrical embedding into a partition lattice is still open. Grätzer and Kiss’

theorem has a straightforward corollary for semimodular lattices. Given a finite

semimodular lattice, its height function is a pseudorank function, and an isometri-

cal embedding (with respect to the height function) is an embedding that preserves

the height of each element. It is equivalent to the condition that the embedding

preserves the covering relation. Such embeddings are called cover-preserving. Now,

Grätzer and Kiss’ theorem implies that every finite semimodular lattice has a cover-

preserving embedding into a finite geometric lattice, see also Corollary 2.4. Note that

this corollary together with Finkbeiner’s result imply Grätzer and Kiss’ theorem.

Finkbeiner, Grätzer and Kiss focused on finite lattices. The question arises

naturally whether their results can be generalized for infinite lattices. Czédli and

Schmidt [23] proved that the corollary of Grätzer and Kiss’ theorem can be extended

for semimodular lattices of finite length. In [78] we managed to show that Grätzer

and Kiss’ theorem can also be extended for lattices of finite length, moreover, it

can be extended for a larger class of lattices that we called finite height generated

lattices.

Overview of the chapter

In Section 2.1, as a motivation, we recall some basic examples and prove the corollary

of Grätzer and Kiss’ theorem, see Corollary 2.4. The construction is due to Wild [89],

who noticed that the technique used by Finkbeiner and Dilworth is actually matroid

theory. He also noticed that their construction gives a different proof for the corollary

of Grätzer and Kiss’ theorem. In Section 2.2, we introduce the notion of finite height
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generated lattices and prove that they can be embedded isometrically into geometric

lattices, see Theorem 2.8.

Notation for the chapter

Given a set S, we define a collection L of subsets of S to be a complete lattice of

subsets of S if ∅, S ∈ L and L is closed under arbitrary intersection, cf. Crawley

and Dilworth [13, Chapter 14]. That is, L is a complete meet-subsemilattice of the

powersetlattice (2S;⋂,⋃). Note that a collection of subsets of S is closed under

arbitrary intersection iff it is the lattice of closed sets of S with respect to an appro-

priate closure operator, see , e.g., Burris and Sankappanavar [9]. We will use this

concept if we want to emphasize that the lattice L comes from a closure operator. If

S is finite, we usually drop the adjective “complete” and say L is a lattice of subsets.

We will use ∩ resp. ∪ for set theoretical intersection resp. union and ∧,∨ for

lattice operations. Sometimes, for example, if we have a complete lattice of subsets,

∧ will coincide with ∩. In these cases, we will usually use ∩ in order to emphasize

this coincidence. Let (a] resp. [a) denote the principal ideal resp. filter generated

by a. For the sake of simplicity, sometimes we will write x instead of {x}, e.g., X ∪x
instead of X ∪ {x}, if it is clear that X denotes a set and x denotes an element.

X − Y will denote the set theoretical difference of X and Y .

2.1 Motivation: the finite case

Throughout this section let L denote a finite lattice. A map p∶L→ N = {0,1, . . .} is

called a pseudorank function if

(i) it preserves 0, i.e., p(0) = 0,

(ii) it is strictly monotone, i.e., a < b implies p(a) < p(b), and

(iii) it is submodular, i.e., p(a ∧ b) + p(a ∨ b) ≤ p(a) + p(b).

Example 2.1. Define h∶L → N to be the height function on L, that is, for a ∈ L,

h(a) is the maximum of lengths of chains in [0, a]. Now, if L is semimodular, that

is a ≺ b implies a ∨ c ⪯ b ∨ c for all a, b, c ∈ L, then h is a pseudorank function on L,

see, e.g., Grätzer [42, Theorem 375].

Example 2.2. Every finite lattice has a pseudorank function, cf. Crawley and Dil-

worth [13, Lemma 14.1.A] and Finkbeiner [32]. Let us recall Finkbeiner’s exam-

ple. Let p be the map p∶L → N, a ↦ 2h(1) − 2h(1)−h(a), where h denotes the height
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function of L. Then p is a pseudorank function. Indeed, h(0) = 0 implies that

p(0) = 2h(1) − 2h(1)−h(0) = 2h(1) − 2h(1) = 0, which shows that p preserves 0. If

a < b then h(a) < h(b) implies p(a) = 2h(1) − 2h(1)−h(a) < 2h(1) − 2h(1)−h(b), which

shows that p is strictly monotone. Now, to prove the submodularity, let a, b ∈ L.

If a ≤ b or a ≥ b then p(a ∧ b) + p(a ∨ b) = p(a) + p(b) trivially holds. Assume

that a∥b. Then a, b < a ∨ b, hence 2h(1)−h(a),2h(1)−h(b) ≤ 2h(1)−h(a∨b)/2. This implies

2h(1)−h(a) + 2h(1)−h(b) − 2h(1)−h(a∨b) ≤ 0 ≤ 2h(1)−h(a∧b). Therefore

2h(1)−h(a) + 2h(1)−h(b) ≤ 2h(1)−h(a∧b) + 2h(1)−h(a∨b).

The required p(a ∧ b) + p(a ∨ b) ≤ p(a) + p(b) follows immediately, which shows that

p is submodular.

4 2

0 0

37

6

4

2

1

Figure 2.1: Finkbeiner’s (left) and another pseudorank function on N5

Given a finite lattice L with a pseudorank function p, an embedding ϕ of L into

a finite semimodular lattice S is called isometrical, if p = h ○ϕ, where h denotes the

height function of S, cf. Grätzer and Kiss [43]. Since h is a pseudorank function of

S, one can think of an isometrical embedding as “a lattice embedding that preserves

the pseudorank function”. Observe that if L is semimodular and p is the height

function of L then the embedding ϕ of L into S is isometrical if and only if it

preserves the covering relation, i.e., a ≺ b implies ϕ(a) ≺ ϕ(b) for all a, b ∈ L. Indeed,

if L is semimodular then L satisfies the Jordan-Hölder Chain Condition, see, e.g.,

Grätzer [42, Theorem 374] or Stern [79, Theorem 1.9.1], hence maximal chains of
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intervals have the same length. It implies that, for any a ≤ b, a ≺ b iff p(b) =
p(a) + 1. Since S is semimodular, the same holds for S and h. Now, assume that

ϕ is isometrical and let a ≺ b. Then h(ϕ(b)) = p(b) = p(a) + 1 = h(ϕ(a)) + 1, hence

ϕ(a) ≺ ϕ(b), which implies that ϕ is cover-preserving. On the other hand, if ϕ is

cover-preserving then it is isometrical, since the covering relation determines the

height function, and the Jordan-Hölder Chain Condition holds in S.

Recall that a finite geometric lattice is an atomistic, semimodular lattice, see,

e.g., Grätzer [42]. In this section, we focus on the following two results.

Theorem 2.3 (Grätzer and Kiss [43, Theorem 3]). Every finite lattice with a pseu-

dorank function can be embedded isometrically into a geometric lattice.

Corollary 2.4 (Grätzer and Kiss [43, Lemma 17]). Every finite semimodular lattice

has a cover-preserving embedding into a geometric lattice.

We will show Wild’s construction [89, Theorem 4], which proves Corollary 2.4 and

helps better understand the proof of Theorem 2.8. We do not prove Theorem 2.3,

since its proof can be obtained from Wild’s construction, but it is more complicated,

and the main goal of this section is to give some motivation for the next one. On the

other hand, both Theorem 2.3 and Corollary 2.4 are special cases of Theorem 2.8

and Corollary 2.9. Before the proof, we need some elementary matroid theory.

2.1.1 Matroids

Matroids are finite structures. This concept is closely related to both linear algebra

and graph theory. For example, given a finite subset S of vectors in a vector space,

the linearly independent subsets of S form the “independent sets” of a matroid. On

the other hand, given the edge set E of a finite graph, the subsets of E that are

circuits in the graph form the “circuits” (or “minimal dependent sets”) of a matroid.

These two examples show that one can think of matroids as a generalization of vector

spaces and graphs.

A characteristic feature of matroids is that they can be defined in many different

ways: via independent sets, circuits, rank functions, and closure operators. To a

certain extent, this property is responsible for the fact that matroid theory can be

applied in many different ways. We need only the definition via rank functions and

closure operators. For a detailed introduction to matroid theory, see, e.g., Oxley [71].
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Given a finite set S, the map r∶2S → N is defined to be the rank function of a

matroid if for any A,B ⊆ S,

(R1) 0 ≤ r(A) ≤ ∣A∣;
(R2) A ⊆ B implies r(A) ≤ r(B);
(R3) r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

In this case we say that the pair (S, r) forms a matroid. If S is a finite subset

of vectors and A ⊆ S then the linear algebraic rank of A (the maximal number of

linearly independent vectors in A) defines a rank function of a matroid. If S is

the edge set of a finite graph then the map, which maps to each subset A ⊆ S the

maximal number of edges in A whose set contains no circuits, is a rank function of

a matroid.

Given a finite set S, the map cl∶2S → 2S is a closure operator of a matroid if for

any A,B ⊆ S and a, b ∈ S,

(CL1) A ⊆ cl(A);
(CL2) A ⊆ B implies cl(A) ⊆ cl(B);
(CL3) cl(cl(A)) = cl(A);
(CL4) b ∈ cl(A ∪ a) − cl(A) implies a ∈ cl(A ∪ b).

In this case we say that the pair (S, cl) forms a matroid. A map is called

extensive, monotone and idempotent, if it satisfies the first, second, and the third

identity, respectively. The first three properties ensure that cl is a closure operator.

The last property is the so-called Exchange Property.

Lemma 2.5.

(i) If (S, r) forms a matroid then the map CL(r)∶2S → 2S, A ↦ {b ∈ S ∶ r(A) =
r(A ∪ b)} is a closure operator of a matroid.

(ii) If (S, cl) forms a matroid then the set of closed sets forms a geometric lattice

Lcl. Moreover, if h denotes the height function of L then the map R(cl)∶2S →
N, A↦ h(cl(A)) is the rank function of a matroid.

(iii) R(CL(r)) = r and CL(R(cl)) = cl.

Proof. (i) Assume that (S, r) forms a matroid. The fact that cl is extensive follows

from the definition. To prove that cl is monotone and idempotent, we need the

following property. For any A ⊆ B ⊆ S and a ∈ S,

r(A ∪ a) = r(A) implies r(B ∪ a) = r(B). (2.1)

If a ∈ B then r(B ∪ a) = r(B) obviously holds. If a /∈ B then (R2) and (R3) implies

r(B) ≤ r(B∪a) = r(A∪B∪a) ≤ r(A∪a)+r(B)−r((A∪a)∩B) = r(A)+r(B)−r(A) =
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r(B). Notice that (2.1) implies immediately that cl is monotone. To show that cl is

idempotent, observe that, for any A ⊆ S, cl(A) ⊆ cl(cl(A)), since cl is extensive. To

establish the reverse direction, we need the following property. For any A ⊆ S and

a1, . . . , ak ∈ cl(A),
r(A ∪ a1 ∪ ⋅ ⋅ ⋅ ∪ ak) = r(A). (2.2)

We argue by induction on k. If k = 1 then (2.2) holds by the definition of cl. Assume

that (2.2) holds for 1 ≤ k ≤ n and let k = n+1. Then, using the induction assumption

and (2.1) for A, B = A ∪ {a1, . . . , an} and a = an+1, we obtain (2.2) for k = n + 1.

Thus, by induction, (2.2) holds. Since S is finite, it follows immediately from (2.2)

that

r(cl(A)) = r(A). (2.3)

Hence for any a ∈ cl(cl(A)), we have r(A ∪ a) ≤ r(cl(A) ∪ a) = r(cl(A)) = r(A) ≤
r(A ∪ a). Therefore a ∈ cl(A), which implies that cl(cl(A)) ⊆ cl(A).

We saw that cl is a closure operator. To prove that cl satisfies the Exchange

Property, we need the following fact. For any A ⊆ S and a ∈ S,

r(A) ≤ r(A ∪ a) ≤ r(A) + r(a) − r(A ∩ a) ≤ r(A) + 1. (2.4)

Now, suppose that b ∈ cl(A∪a)−cl(A) for some A ⊆ S and a, b ∈ S. Then r(A∪a∪b) =
r(A ∪ a) and r(A ∪ b) ≠ r(A). From the last inequality and (2.4), we deduce that

r(A ∪ b) = r(A) + 1. Thus r(A ∪ a ∪ b) = r(A ∪ a) = r(A) + 1 = r(A ∪ b), hence

a ∈ cl(A ∪ b).
(ii) Assume that (S, cl) forms a matroid. The closed sets trivially form a lattice: if

A,B ∈ Lcl then A∧B = A∩B ∈ Lcl and A∨B = cl(A∪B) = ⋂(C ∈ Lcl ∶A∪B ⊆ C). Since

the sets cl(a) (a ∈ S) are atoms in Lcl and, for any A ∈ Lcl, A = ⋃(cl(a) ∶a ∈ A), the

lattice Lcl is atomistic. To show that it is semimodular, let A,B,C ∈ Lcl, A ≺ B. We

have to show that A∨C ⪯ B∨C. Picking any b ∈ B−A, A ≺ B implies cl(A∪b) = B.

This yields B ⊆ cl(A ∪ b ∪ C). Thus we have A ∨ C = cl(A ∪ C) ⊆ cl(A ∪ b ∪ C) =
cl(B ∪C) = B ∨C. Now, the Exchange Property implies that there is not any closed

sets between cl(A ∪C) and cl(A ∪ b ∪C), that is, cl(A ∪C) ⪯ cl(A ∪ b ∪C).
Let r be the map defined in (ii). Then (R1) and (R2) hold by definition. To prove

(R3), let A,B ⊆ S. Then the definition of r and the fact that h is the height function

of a geometric lattice imply r(A ∪ B) + r(A ∩ B) = h(cl(A ∪ B)) + h(cl(A ∩ B)) ≤
h(cl(A) ∨ cl(B)) + h(cl(A) ∩ cl(B)) ≤ h(cl(A)) + h(cl(B)) = r(A) + r(B).

(iii) If (S, r) is a matroid then LCL(r) is a geometric lattice and r and the

height function of LCL(r) coincide on the closed sets. This together with (2.3) yield
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R(CL(r)) = r. Let (S, cl) be a matroid and A ⊆ S. Then A ∈ Lcl if and only if for

any a ∈ S −A, R(cl)(A ∪ a) = h(cl(A ∪ a)) > h(cl(A)), where h denotes the height

function of Lcl. This implies that the closed sets with respect to cl and the closed

sets with respect to CL(R(cl)) are the same. Thus cl = CL(R(cl)).

2.1.2 Embeddings with matroids

Now, we are in position to show Wild’s embedding with matroids [89, Theorem 4],

which proves Corollary 2.4.

Recall that every finite lattice is isomorphic to a lattice of subsets. Moreover, the

base set can be chosen to be the set of nonzero join-irreducible elements of L. An

element a ∈ L is join irreducible if for all x, y ∈ L, a = x∨y implies a = x or a = y, see,

e.g., Grätzer [42, Section I.6]. Let J(L) denote the set of nonzero join-irreducible

elements of L. For any element a ∈ J(L), let a0 denote its unique lower cover. For

x ∈ L, let «x = (x] ∩ J(L). Then the set {«x ∶x ∈ L} forms a closure system and

the corresponding lattice of subsets L is isomorphic to L. Indeed, L → L, x ↦ «x
defines an isomorphism. Assume that L ≅ L is semimodular and let h denote the

height function of L.

Lemma 2.6 (Wild [89, Lemma 3] and Welsh [84, Theorem 2 of Chapter 8]). The

map r∶2J(L) → N, A ↦ min{h(«x) + ∣A − «x∣ ∶x ∈ L} defines a rank function of a

matroid.

Proof. It is straightforward that r satisfies (R1) and (R2). To check (R3), observe

that for any A,B,X,Y ⊆ J(L),

∣A −X ∣ + ∣B − Y ∣ ≥ ∣(A ∪B) − (X ∪ Y )∣ + ∣(A ∩B) − (X ∩ Y )∣,

hence

r(A) + r(B) = min
x,y∈L

{h(«x) + ∣A − «x∣ + h(« y) + ∣B − « y∣}

≥ min
x,y∈L

{h(«x ∨ « y)+

+ h(«x ∩ « y) + ∣(A ∪B) − («x ∪ « y)∣ + ∣(A ∩B) − («x ∩ « y)∣}

≥ min
x,y∈L

{h(«x ∨ « y)+

+ h(«x ∩ « y) + ∣(A ∪B) − («x ∨ « y)∣ + ∣(A ∩B) − («x ∩ « y)∣}

≥ r(A ∪B) + r(A ∩B).
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Notice that the last proof uses the fact that L is semimodular, since h must be a

pseudorank function. Otherwise the map r would not be necessarily a rank function

of a matroid.

Lemma 2.7. Let r be the rank function of the previous lemma and let cl = CL(r).

Then, for any x ∈ L, r(«x) = h(«x) and cl(«x) = «x.

Proof. To show the first part of the lemma, observe that for any x, y ∈ L

∣ «x − « y∣ = ∣ «x − («x ∩ « y)∣ ≥ h(«x) − h(«x ∩ « y) ≥ h(«x) − h(« y), (2.5)

hence

h(«x) = h(«x) + ∣ «x − «x∣

≥ r(«x) = min
y∈L

{h(« y) + ∣ «x − « y∣} ≥ h(« y) + h(«x) − h(« y) = h(«x).

To show the second part of the lemma, it is enough to prove that for any x ∈ L and

a ∈ J(L)− «x, r(«x∪ a) > r(«x). Let x ∈ L and a ∈ J(L)− «x. Observe that for any

y ∈ L,

h(«x ∨ « y) − h(« y) ≤ ∣ «x − « y∣,

hence

r(«x) < h(«x) + 1 ≤ min
y∈L

{h(«x ∨ « y) + ∣(«x ∪ a) − («x ∨ « y)∣}

= min
y∈L

{h(« y) + (h(«x ∨ « y) − h(« y)) + ∣(«x ∪ a) − («x ∨ « y)∣}

≤ min
y∈L

{h(« y) + ∣ «x − « y∣ + ∣(«x ∪ a) − («x ∨ « y)∣}

≤ min
y∈L

{h(« y) + ∣(«x ∪ a) − « y∣} = r(«x ∪ a).

Proof of Corollary 2.4. Assume that L is a finite semimodular lattice. Let us iden-

tify L with the lattice L defined above, and let h be its height function. By Lemma

2.6 and 2.5(ii), we can define r, cl, and Lcl. Then Lcl is a geometric lattice, whose

height function is the restriction of r to it. We show that L is a cover-preserving

sublattice of Lcl, that is, L is a sublattice of Lcl and two elements cover each other

in L iff they cover each other in Lcl. By Lemma 2.7, L ⊆ Lcl, and for any x ∈ L,

r(«x) = h(«x), which yields that L is a meet-subsemilattice of Lcl and two elements

cover each other in L iff they cover each other in Lcl.
To show that L is also a join-subsemilattice of Lcl, let «a∨ « b denote the join of

two elements in Lcl. It means that «a ∨ « b = cl(«a ∪ « b). We show

«a ∨ « b = « (a ∨ b) (2.6)
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by induction on h(a) + h(b). If h(a) + h(b) ≤ 1 then (2.6) holds trivially. Assume

that k > 1 and (2.6) holds if h(a) + h(b) < k. Let a, b ∈ L such that h(a) + h(b) =
k. We may assume that h(a) > 0 and a has a lower cover c ≺ a. Then, by the

semimodularity, c ∨ b ⪯ a ∨ b. If c ∨ b = a ∨ b then, by the induction hypothesis,

«a∨ « b ≤ « (a∨ b) = « (c∨ b) = « c∨ « b ≤ «a∨ « b. If c∨ b ≺ a∨ b then, by the induction

hypothesis, «a ∨ « b = «a ∨ (« c ∨ « b) = «a ∨ « (c ∨ b). Observe that «a ⊊ « (c ∨ b), and

« (c∨b) ≺ « (a∨b), since L is a meet-subsemilattice of Lcl and r(« (a∨b)) = h(a∨b) =
h(c ∨ b) + 1 = r(« (c ∨ b)) + 1. Thus «a ∨ « b = «a ∨ « (c ∨ b) = « (a ∨ b).

a b c

d
a{ }

b{ }

c{ }d{ }

b,d{ }
c,d{ }

a,d{ }

a,b,c,d{ }

Figure 2.2: The cover-preserving embedding of L (left) into G (right)

Before we turn to the general case, let us show an example. Let L be the six

element lattice of Figure 2.2. It is a modular lattice, thus it is also semimodular.

We want to use Wild’s construction to find a cover-preserving embedding of L into

a geometric lattice. Now, J(L) = {a, b, c, d}, and the corresponding lattice of subsets

is L = {∅,{d},{a, d},{b, d},{c, d},{a, b, c, d}}. One can easily check that the rank

function r, which is defined in Lemma 2.6, is:

r(A) A

0 ∅
1 {a}, {b}, {c}, {d}
2 {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}
3 {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}
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Using Lemma 2.5, one can determine the closure operator cl = CL(r). Indeed, every

subset is closed except the three-element subsets. The corresponding geometric

lattice is

G = {∅,{a},{b},{c},{d},{a, b},{a, c},{a, d},{b, c},{b, d},{c, d},{a, b, c, d}},

see Figure 2.2.

2.2 The general case

The matroid theoretical approach of Section 2.1 helps us understand the general

proof. However, instead of using the toolkit of (infinite) matroid theory, we gener-

alize the concepts of rank function and closure operator of a matroid. Thus we do

not mention any possible concept of an infinite matroid. It seems less complicated,

since the theory of infinite matroids is much more difficult than the theory of finite

ones. Indeed, even the definition of infinite matroids is not clear, since there are

various reasonable ways to define them, see Oxley [70, 72].

First, we need to generalize the concept of pseudorank function. For any semi-

modular lattice, we want the height function to be a pseudorank function, cf. Ex-

ample 2.1. Given a lattice L with a lower bound 0, the height of an element

a ∈ L is defined to be the supremum of lengths of chains in [0, a]. Let a func-

tion p∶L→ N∞ = {0,1, . . . ,∞} be called a pseudorank function if it has the following

properties:

(i) p(0) = 0;

(ii) a ≤ b implies p(a) ≤ p(b) for all a, b ∈ L;

(iii) a < b implies p(a) < p(b) for all a, b ∈ L of finite height;

(iv) p(a ∧ b) + p(a ∨ b) ≤ p(a) + p(b) for all a, b ∈ L;

(v) p(a) <∞ iff a is of finite height.

Note that if L is finite, the new definition of pseudorank function coincides the old

one. It is an easy consequence of the Jordan-Hölder Chain Condition, see, e.g.,

Stern [79, Theorem 1.9.1], that in any semimodular lattice, the elements of finite

height form a sublattice. Indeed, let S be a semimodular lattice with 0 and let

x, y ∈ S be elements of finite height, say h(x), h(y) < ∞. Then any maximal chain

of [0, x∧y] can be extended to a maximal chain of [0, x], whose lengths are at most

h(x), hence h(x ∧ y) < ∞. On the other hand, if 0 ≺ x1 ≺ ⋅ ⋅ ⋅ ≺ xk = x is a maximal

chain of [0, x] then, by the semimodularity, y ⪯ x1 ∨ y ⪯ ⋅ ⋅ ⋅ ⪯ xk ∨ y = x ∨ y is a
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maximal chain of [y, x ∨ y]. Together with a maximal chain of [0, y], it shows that

[0, x∨y] contains a finite maximal chain. Now, the Jordan-Hölder Chain Condition

implies that all maximal chains of [0, x ∨ y] are finite, moreover, they have the

same length, hence h(x ∨ y) <∞. This shows that in any semimodular lattice, the

elements of finite height form a sublattice. Hence the height function of an arbitrary

semimodular lattice is a pseudorank function.

Again, for a lattice L with a pseudorank function p, an embedding ϕ of L into a

semimodular lattice S is called isometrical, if p = h ○ ϕ, where h denotes the height

function of S. Recall that a geometric lattice is an atomistic, semimodular algebraic

lattice, see, e.g., Grätzer [42].

To formulate the general statements corresponding to Theorem 2.3 and Corol-

lary 2.4, we need the concept of a finite height generated lattice. A lattice is said

to be finite height generated if it is complete and every element is the join of some

elements of finite height. Note that lattices of finite length are finite height gener-

ated. To show a finite height generated lattice that is not of finite length, consider,

for instance, N∞ with the usual ordering.

Theorem 2.8. Every finite height generated algebraic lattice with a pseudorank

function can be embedded isometrically into a geometric lattice.

Corollary 2.9. Every finite height generated semimodular algebraic lattice has a

cover-preserving embedding into a geometric lattice.

2.2.1 Basic concepts and lemmas

We say that a pseudorank function r on a complete lattice L of subsets of S is a

rank function if

r(A) − r(B) ≤ ∣A −B∣ for all A,B ∈ L of finite height. (2.7)

Note that this concept differs from that of rank function of a matroid. However, they

are very close to each other. Notice that if B = ∅ then (2.7) and (R1) are similar.

Also note that if S is finite, our rank function on a complete lattice of subsets of S

is a strictly increasing rank function in sense of P. Crawley and R.P. Dilworth [13].

For every finite height generated lattice with a pseudorank function, we are going

to construct a complete lattice of subsets, which is isomorphic to the lattice and on

which the pseudorank function becomes a rank function. Note that our construction

is an extension of that of P. Crawley and R.P. Dilworth [13, Lemma 14.1.B].
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For the rest of this subsection, let us fix a finite height generated lattice L with

a pseudorank function p. Note that join-irreducible elements are defined the same

way in general as we did in the finite case, cf. Grätzer [42, Section I.6]. Let J ⊆ J(L)
denote the set of nonzero join-irreducible elements of finite height. Recall that, for

f ∈ J , f0 denotes the unique lower cover of f . The set J is a poset with respect to

the restriction of the partial ordering of L. Since L is finite height generated, the

set {(a] ∩ J ∶a ∈ L} of order-ideals of J forms a complete lattice of subsets that is

isomorphic to L. However, (2.7) does not necessarily hold. To avoid this problem,

we need sufficiently many elements in the ground set of the required complete lattice

of subsets.

Let {Xf ∶ f ∈ J} be a collection of pairwise disjoint sets such that ∣Xf ∣ = p(f) −
p(f0). Set S = ⋃(Xf ∶ f ∈ J). For each a ∈ L, define «a = ⋃(Xf ∶ f ∈ J, f ≤ a).
Then «0 = ∅, «1 = S and « (⋀A) = ⋂(«a ∶a ∈ A) for all A ⊆ L. Consequently, the

collection L = {«a ∶a ∈ L} forms a complete lattice of subsets of S. Since L is finite

height generated, the map ϕ∶L → L, a ↦ «a is an isomorphism. For each a ∈ L,

define r(«a) = p(a).

Lemma 2.10. The above defined r is a rank function on L with p = r ○ ϕ.

Proof. Certainly, r is a pseudorank function. This fact will be used hereafter without

further reference. To prove (2.7), observe that it suffices to show, that

r(«a) − r(« b) ≤ ∣ «a − « b∣ for all a, b ∈ L,a ≥ b of finite height. (2.8)

Indeed, if (2.8) holds then for any c, d ∈ L of finite height, we have r(« c) − r(«d) ≤
r(« c) − r(« c ∩ «d) ≤ ∣ « c − (« c ∩ «d)∣ and « c − (« c ∩ «d) = « c − «d.

We prove (2.8) by induction on h(a), where h denotes the height function of L.

Let a, b ∈ L,a ≥ b be arbitrary elements of finite height. The case h(a) = 0 is trivial.

Suppose that h(a) > 0.

If a = b then (2.8) holds trivially. If a ≻ b and a is join-irreducible then b = a0 and

(2.8) holds by definition. If a ≻ b and a is not join-irreducible then there exists an

element f ∈ J such that a = b∨ f and f < a. Using the induction hypothesis and the

submodularity of r, we obtain r(«a)−r(« b) ≤ r(« f)−r(« b∩« f) ≤ ∣ « f −(« b∩« f)∣ ≤
∣ «a − « b∣.

If a > b and a /≻ b then there is an element c ∈ L such that b < c ≺ a. Hence

the induction hypothesis and the previous paragraph yields r(«a)− r(« b) = r(«a)−
r(« c) + r(« c) − r(« b) ≤ ∣ «a − « c∣ + ∣ « c − « b∣ = ∣ «a − « b∣.
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Observe that if L is semimodular and p is the height function of L then ∣Xf ∣ = 1

for all f ∈ J . Thus Xf can be chosen to be {f} and S = J . Besides, if L is also

finite then «a denotes exactly the same set here and in Section 2.1. Consequently,

the corresponding (complete) lattices of subsets coincide as well.

Let F ⊆ L denote the set of elements of finite height. Since L has a pseudorank

function, F is a sublattice. Notice that

for any finite A ⊆ S there is x ∈ F such that A ⊆ «x. (2.9)

For each x ∈ F , we define rx to be the map

rx∶2S → N = {0,1, . . .}, A↦min{r(« y) + ∣(A ∩ «x) − « y∣ ∶ y ∈ F} .

Observe that the above definition is an extension of the one in Lemma 2.6. Given

a set A ⊆ S and an element x ∈ F , we say that y ∈ F represents rx(A) if rx(A) =
r(« y)+∣(A ∩ «x) − « y∣. Some important properties of rx can be found in the following

statements. Some of them might be familiar from Lemmas 2.6 and 2.7.

Lemma 2.11.

(i) rx(A) = min{r(« y) + ∣(A ∩ «x) − « y∣ ∶ y ∈ [0, x]} for all A ⊆ S.

(ii) 0 ≤ rx(A) = rx(A ∩ «x) ≤ min{∣A ∩ «x∣, r(«x)} for all A ⊆ S.

(iii) A ⊆ B implies rx(A) ≤ rx(B) for all A,B ⊆ S.

(iv) rx(A) = ry(A) for all A ⊆ S and x, y ∈ F satisfying A ⊆ «x ∩ « y.

(v) If x ≥ y then rx(« y) = r(« y) for all x, y ∈ F .

Proof. The first four statements follow easily from the definition. To prove (v), let

x ≥ y be elements of F . By (iv) and (ii), we have rx(« y) = ry(« y) ≤ r(« y). To

prove the opposite direction, let u ∈ F represent ry(« y). Then by (2.7), we obtain

ry(« y) = r(«u) + ∣ « y − «u∣ ≥ r(«u) + r(« y) − r(«u) = r(« y).

Lemma 2.12. Let A ⊆ B ⊆ S and x ∈ F . Suppose that u ∈ F represents rx(A) and

v ∈ F represents rx(B). Then u ∧ v represents rx(A) and u ∨ v represents rx(B),

that is

rx(A) = r(«u ∩ « v) + ∣(A ∩ «x) − («u ∩ « v)∣ and (2.10)

rx(B) = r(«u ∨ « v) + ∣(B ∩ «x) − («u ∨ « v)∣ . (2.11)
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Proof. First, we need some elementary calculations.

∣(A ∩ «x) − («u ∩ « v)∣ = ∣(A ∩ «x) − «u∣ + ∣(A ∩ «x ∩ «u) − « v∣ ≤

≤ ∣(A ∩ «x) − «u∣ + ∣(B ∩ «x ∩ «u) − « v∣ =

= ∣(A ∩ «x) − «u∣ + ∣(B ∩ «x) − « v∣ − ∣(B ∩ «x) − («u ∪ « v)∣ ≤

≤ ∣(A ∩ «x) − «u∣ + ∣(B ∩ «x) − « v∣ − ∣(B ∩ «x) − («u ∨ « v)∣.

Now, using the definition of rx, the submodularity of r and the above calculations,

we obtain the following inequalities

rx(A) ≤ r(«u ∩ « v) + ∣(A ∩ «x) − («u ∩ « v)∣ ≤

≤ r(«u) + r(« v) − r(«u ∨ « v) + ∣(A ∩ «x) − («u ∩ « v)∣ ≤

≤ r(«u) + r(« v) − r(«u ∨ « v)+

+ ∣(A ∩ «x) − «u∣ + ∣(B ∩ «x) − « v∣ − ∣(B ∩ «x) − («u ∨ « v)∣ =

= rx(A) + rx(B) − r(«u ∨ « v) − ∣(B ∩ «x) − («u ∨ « v)∣ ≤ rx(A).

Therefore the above inequalities are equalities. Thus the underlined part is zero,

which gives (2.11), while (2.10) is the first inequality.

Corollary 2.13. For any A ⊆ S and x ∈ F , there exists a smallest and a largest

element in [0, x] that represents rx(A).

Lemma 2.14. Let A ⊆ S and a ∈ S. If rx(A ∪ a) = rx(A) and y ∈ F represents

rx(A ∪ a) then the following hold:

(i) y also represents rx(A) and

(ii) a /∈ «x or a ∈ « y.

Proof. rx(A ∪ a) = r(« y) + ∣((A ∪ a) ∩ «x) − « y∣ ≥ r(« y) + ∣(A ∩ «x) − « y∣ ≥ rx(A) =
rx(A∪a) implies that y also represents rx(A) and ∣((A∪a)∩«x)−« y∣ = ∣(A∩«x)−« y∣.
Hence a /∈ «x or a ∈ « y.

Lemma 2.15. Let A ⊆ S and B = {b ∈ S ∶ rx(A ∪ b) = rx(A)}. Then rx(B) = rx(A).

Proof. By the monotonicity of rx, that is Lemma 2.11(iii), we know that rx(A) ≤
rx(B). By Corollary 2.13, there exists a largest element y ∈ [0, x] that represents

rx(A). Let b ∈ B − A be an arbitrary element. Let z ∈ [0, x] represent rx(A ∪ b).
Then Lemma 2.14(i) implies that z represents rx(A), and Lemma 2.14(ii) implies

that b /∈ «x or b ∈ « z. We also have « z ⊆ « y, because y is the largest element that
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represents rx(A). Hence b /∈ «x or b ∈ « y. Consequently, (B −A) ∩ «x ⊆ « y, which

yields that

rx(A) = r(« y) + ∣(A ∩ «x) − « y∣ = r(« y) + ∣(B ∩ «x) − « y∣ ≥ rx(B).

We saw in Section 2.1 that finite geometric lattices and closure operators of

matroids are closely related. In general, let cl∶S → S be a closure operator. We say

that cl is algebraic, if for any set A ⊆ S and any element a ∈ cl(A) there is a finite

subset A0 ⊆ A such that a ∈ cl(A0). The Exchange Property is defined the same way

in general as we did in the finite case. Now, for an algebraic closure operator that

satisfies the Exchange Property, the lattice of closed sets forms a geometric lattice.

Indeed, it is algebraic, since the closure operator is algebraic. It is atomistic, since

the Exchange Property ensures that closures of one element sets are atoms, and

every closed set is the join of the closures of its one element subsets. Finally, the

semimodularity follows from the Exchange Property.

Although we do not use it, let us mention the fact that every geometric lattice

can be obtained from an appropriate algebraic closure operator that satisfies the

Exchange Property, see, e.g., Grätzer [42, Section V.3].

Using rx, we define two kinds of closure operators on S: clx for each x ∈ F and

cl. Namely, for any A ⊆ F ,

clx(A) = {a ∈ S ∶ ry(A ∪ a) = ry(A) for all y ∈ F ∩ [x)} ,

cl(A) =⋃{cly(A) ∶ y ∈ F}.

Notice that

clx(A) ⊆ cly(A) if x ≤ y. (2.12)

Lemma 2.16. The functions clx∶2S → 2S,A ↦ clx(A) and cl∶2S → 2S,A ↦ cl(A)
are algebraic closure operators. Moreover, cl satisfies the Exchange Property.

Proof. The extensivity of clx is immediate from the definition. To prove the mono-

tonicity, let A ⊆ B ⊆ S. By the definition of clx, it is enough to prove that

ry(B ∪ a) = ry(B) for all a ∈ clx(A) and all y ∈ F ∩ [x). Suppose indirectly that

there are elements a ∈ clx(A) and y ∈ F ∩ [x) such that ry(B ∪ a) > ry(B). Then

ry(B ∪ a) = ry(B) + 1. By Corollary 2.13, there exists a smallest element u ∈ [0, y]
that represents ry(A ∪ a). Let v ∈ [0, y] represent ry(B). Then v also represents

ry(B ∪ a), thus a ∈ « y and a /∈ « v must hold. Using Lemma 2.12 for A ∪ a ⊆ B ∪ a,

we obtain that u ∧ v represents ry(A ∪ a). Then u ≤ u ∧ v gives «u ⊆ « v. By
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Lemma 2.14(ii) for ry(A ∪ a) and u, we have that a /∈ « y or a ∈ «u ⊆ « v, which

contradicts the fact that a ∈ « y and a /∈ « v. Consequently, clx is monotone.

To prove that clx is idempotent, let A ⊆ S. For any y ∈ F ∩ [x), we have

A ⊆ clx(A) ⊆ By = {b ∈ S ∶ ry(A ∪ b) = ry(A)}. By Lemma 2.15 and the monotonicity

of ry, we also have ry(A) = ry(clx(A)) = ry(By). Now, for any a ∈ clx(clx(A)) and

any y ∈ F ∩ [x),

ry(A) ≤ ry(A ∪ a) ≤ ry(clx(A) ∪ a) = ry(clx(A)) = ry(A).

Hence a ∈ clx(A) and clx(clx(A)) ⊆ clx(A). The other direction follows immediately

from the extensivity of clx. Consequently, clx is idempotent. We conclude that clx

is a closure operator.

To prove that clx is algebraic, let A ⊆ S and a ∈ clx(A). Let y = ⋀{z ∈ F ∩[x) ∶a ∈
« z}. By (2.9), we obtain y ∈ F . First, let A0 ⊆ A ∩ « y be a finite subset such that

ry(A0) is maximal. Then ry(A0) = ry(A). Indeed, the maximality of ry(A0) implies

that ry(A0 ∪ b) = ry(A0) for all b ∈ A. Using Lemma 2.15 for B = {b ∈ S ∶ ry(A0 ∪ b) =
ry(A0)}, we obtain ry(A0) = ry(B). Therefore ry(A0) = ry(A) = ry(B) by the

monotonicity of ry. Now, we have ry(A0) ≤ ry(A0 ∪ a) ≤ ry(A ∪ a) = ry(A) = ry(A0),
hence ry(A0 ∪a) = ry(A0). Finally, let z ∈ F ∩ [x). If a /∈ « z then rz(A0) = rz(A0 ∪a)
trivially holds. If a ∈ « z then y ≤ z by the definition of y. Using Lemma 2.11(iv)

for A0 ∪ a ⊆ « y ⊆ « z, we obtain rz(A0) = ry(A0) = ry(A0 ∪ a) = rz(A0 ∪ a). Hence

a ∈ clx(A0). We conclude that clx is an algebraic closure operator.

The extensivity and monotonicity of cl follow immediately from those of clx.

To prove the idempotency of cl, let A ⊆ S and suppose that a ∈ cl(cl(A)). By

definition, a ∈ clx(cl(A)) for some x ∈ F . Since clx is algebraic, there is a finite subset

A0 ⊆ cl(A) such that a ∈ clx(A0). By (2.12) and the definition of cl, A0 ⊆ cly(A)
for some y ∈ F . By (2.12) and the monotonicity and idempotency of clx, we have

a ∈ clx(cly(A)) ⊆ clx∨y(clx∨y(A)) = clx∨y(A) ⊆ cl(A). Hence cl(cl(A)) ⊆ cl(A). The

other direction follows immediately from the extensivity of cl. Consequently, cl is a

closure operator. It is algebraic since clx is algebraic for all x ∈ F .

To prove that cl satisfies the Exchange Property, let A ⊆ S and a, b ∈ S such

that a ∈ cl(A ∪ b) − cl(A). Since cl is algebraic, there is a finite subset A0 ⊆ A such

that a ∈ cl(A0 ∪ b) − cl(A0). Hence a ∈ clx(A0 ∪ b) − clx(A0) for some x ∈ F . By

(2.9) and (2.12), we can assume that A0 ∪{a, b} ⊆ «x. By the definition of clx, there

are u, v ∈ F ∩ [x) such that ru(A0 ∪ a) = ru(A0) + 1 and rv(A0 ∪ b) = rv(A0) + 1,

since a, b /∈ clx(A0). Using this and Lemma 2.11(iv) for A0 ∪ {a, b} ⊆ «x, we obtain
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that ry(A0 ∪ a) = ry(A0 ∪ b) = ry(A0) + 1 for all y ∈ F ∩ [x). The assumption

a ∈ clx(A0 ∪ b) implies ry(A0 ∪ {a, b}) = ry(A0 ∪ b) = ry(A0 ∪ a) for all y ∈ F ∩ [x).
Now, b ∈ clx(A0 ∪a) ⊆ cl(A∪a) follows immediately. Hence cl satisfies the Exchange

Property.

2.2.2 The main proofs

Before the proof of Theorem 2.8, we need a short technical lemma about finite height

generated algebraic lattices.

Lemma 2.17. If L is a finite height generated algebraic lattice and the elements

of finite height form a sublattice then its elements of finite height are exactly its

compact elements.

Proof. Suppose that a ∈ L is compact. Then a = ⋁B for some elements B ⊆ L of

finite height, because L is finite height generated. Since a is compact, there is a

finite B0 ⊆ B with a = ⋁B0. Hence a is of finite height. Now, suppose that b ∈ L
is of finite height. Then b = ⋁A for some compact elements A ⊆ L, because L is

algebraic. Since b is of finite height, there is a finite A0 ⊆ A with b = ⋁A0. Hence b

is compact.

Proof of Theorem 2.8. Given a finite height generated algebraic lattice L with a

pseudorank function p, define L and r as we did in Subsection 2.2.1. We will also

use S for the ground set of L and F ⊆ L for the set of elements of finite height. Recall

that F is a sublattice, since L has a pseudorank function. Denote Lcl the complete

lattice of subsets that corresponds to the closure operator cl. By Lemma 2.16, Lcl is

a geometric lattice. It is enough to prove that L is a sublattice of Lcl such that r and

the height function of Lcl coincide on L. Then ϕ∶L → Lcl, x ↦ «x is an isometrical

embedding.

First, we show that L ⊆ Lcl. Let x ∈ L and a ∈ S−«x. Suppose, for a contradiction,

that a ∈ cl(«x). Then, by definition, there is a y ∈ F with a ∈ cly(«x). By (2.9) and

(2.12), we can assume that a ∈ « y. Notice that a ∈ cly(«x) implies that ry(«x∪ a) =
ry(«x). Let z ∈ F represent ry(«x ∪ a). Then Lemma 2.14(ii) and a ∈ « y implies

that a ∈ « z. Since a ∈ « z − «x, we have « z ≠ «x ∩ « z = « (x ∧ z), hence x ∧ z < z.

However, («x ∩ « y) − « (x ∧ z) = («x ∩ « y) − («x ∩ « z) = («x ∩ « y) − « z = ((«x ∪
a) ∩ « y) − « z. Since r is strictly monotone for elements of finite height, we obtain

that ry(«x) ≤ r(« (x ∧ z)) + ∣(«x ∩ « y) − « (x ∧ z)∣ < r(« z) + ∣(«x ∩ « y) − « (x ∧ z)∣ =



CHAPTER 2. ISOMETRICAL EMBEDDINGS 46

r(« z) + ∣((«x ∪ a) ∩ « y) − « z∣ = ry(«x ∪ a), which contradicts ry(«x) = ry(«x ∪ a).
This proves that «x ∈ Lcl and L ⊆ Lcl. Moreover, the meet operation both on L and

Lcl is the intersection, therefore L is a meet-subsemilattice of Lcl.
To prove that L is a sublattice of Lcl, observe that the join of two elements

«x, « y ∈ L in the larger lattice Lcl is cl(«x ∪ « y). Since cl(«x ∪ « y) ⊆ « (x ∨ y), it is

enough to show that cl(«x∪« y) ⊇ « (x∨y). Let a ∈ « (x∨y). By definition, it means

that a ∈ Xb for some b ∈ J ∩ (x ∨ y]. Since L is finite height generated, x = ⋁X and

y = ⋁Y for some X, Y ⊆ F . By Lemma 2.17, b is compact, hence b ≤ ⋁X0 ∨⋁Y0 for

some finite X0 ⊆X, Y0 ⊆ Y . Let x0 = ⋁X0 and y0 = ⋁Y0. By Lemma 2.17, x0, y0 ∈ F .

Now, b ≤ x0 ∨ y0 implies a ∈ « (x0 ∨ y0). In order to prove that a ∈ cl(«x ∪ « y), it is

enough to show that a ∈ cl(«x0 ∪ « y0). We prove that a ∈ clx0∨y0(«x0 ∪ « y0), which

yields a ∈ cl(«x0 ∪ « y0). As a preparation for this, we show that

rz(«x0 ∪ « y0) = rz(« (x0 ∨ y0)) for all z ∈ F ∩ [x0 ∨ y0). (2.13)

Since rz(«x0) = r(«x0) by Lemma 2.11(v), x0 represents rz(«x0). Similarly, y0

represents rz(« y0). Assume that z0 represents rz(«x0 ∪ « y0). Using Lemma 2.12

twice for «x0 ⊆ «x0 ∪ « y0 and « y0 ⊆ «x0 ∪ « y0, we obtain that x0 ∨ y0 ∨ z0 represents

rz(«x0 ∪ « y0). However, «x0 ∪ « y0 ⊆ « (x0 ∨ y0 ∨ z0), hence rz(«x0 ∪ « y0) = r(« (x0 ∨
y0∨z0))+ ∣((«x0∪« y0)∩« z)−« (x0∨y0∨z0)∣ = r(« (x0∨y0∨z0)). On the other hand,

«x0 ∪ « y0 ⊆ « (x0 ∨ y0), which implies rz(«x0 ∪ « y0) ≤ r(« (x0 ∨ y0)) + ∣((«x0 ∪ « y0) ∩
« z) − « (x0 ∨ y0)∣ = r(« (x0 ∨ y0)) ≤ r(« (x0 ∨ y0 ∨ z0)). Together with r(« (x0 ∨ y0 ∨
z0)) = rz(«x0 ∪ « y0), we obtain that rz(«x0 ∪ « y0) = r(« (x0 ∨ y0)). Lemma 2.11(v)

yields that r(« (x0 ∨ y0)) = rz(« (x0 ∨ y0)), which finishes the proof of (2.13). Now,

«x0 ∪ « y0 ⊆ «x0 ∪ « y0 ∪a ⊆ « (x0 ∨ y0), the monotonicity of rz and (2.13) implies that

rz(«x0∪« y0∪a) = rz(«x0∪« y0) for all z ∈ F ∩ [x0∨y0). Hence a ∈ clx0∨y0(«x0∪« y0).
We conclude that L is a sublattice of Lcl.

To prove that the embedding is isometrical, we have to show that r(«x) = h(«x)
for all x ∈ L, where h denotes the height function of Lcl. By the definition of finite

height generated lattices, it suffices to prove that r(«x) = h(«x) for all x ∈ F . We

use induction on the height of x ∈ F . If x = 0 then r(«0) = 0 = h(«0).
Suppose that 0 ≤ x ≺ y and r(«x) = h(«x). Since r is a rank function on

L, we have a set A = {a1, . . . , ak−1, ak} ⊆ « y − «x with k = r(« y) − r(«x) distinct

elements. Let A0 = «x and Ai = «x ∪ a1 ∪ ⋅ ⋅ ⋅ ∪ ai for all i ∈ {1, . . . , k}. Assume that

z ∈ F ∩ [y). Clearly, rz(Ai) ≤ r(«x) + i. By Lemma 2.11(v), rz(«x) = r(«x). Hence

rz(Ai) ≤ rz(«x)+i. The opposite direction is also true. Suppose, for a contradiction,
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that rz(Ai) < r(«x) + i for some i ∈ {1, . . . , k}. Let i be minimal for this property,

that is rz(Ai) < r(«x)+ i and rz(Ai−1) = r(«x)+ i− 1. Note that such i exists, since

rz(A0) = r(«x). Then, by the monotonicity of rz, rz(Ai) = r(«x) + i − 1 = rz(Ai−1).
Let ui represent rz(Ai). Applying Lemma 2.14(ii) for rz(Ai) and ui, we obtain that

ai ∈ «ui, since ai ∈ « y ⊆ « z. Notice that x represents rz(«x) by Lemma 2.11(v).

Using Lemma 2.12 for «x ⊆ Ai, we obtain that x∨ui represents rz(Ai). We conclude

from «x ⊂ Ai ⊆ « y, x ≺ y, ai ∈ «ui and the construction of S and L that x ∨ ui ≥ y.

Now, we have

r(«x) + i > rz(Ai) = r(« (x ∨ ui)) + ∣(Ai ∩ « z) − « (x ∨ ui)∣ =

= r(« (x ∨ ui)) ≥ r(« y) = r(«x) + k ≥ r(«x) + i,

which is a contradiction. Therefore

rz(Ai) = rz(«x) + i for all i ∈ {1, . . . , k} and all z ∈ F ∩ [y). (2.14)

Hence for every f ∈ F , we have that rz(Ai−1) ≠ rz(Ai) for z = f ∨y, which shows that

ai /∈ clf(Ai−1) for all f ∈ F , that is ai /∈ cl(Ai−1). This gives that cl(Ai−1) ≠ cl(Ai).
Clearly, cl(Ai−1) ⪯ cl(Ai−1 ∪ ai) = cl(Ai). Thus

«x = cl(A0) ≺ cl(A1) ≺ ⋅ ⋅ ⋅ ≺ cl(Ak). (2.15)

We know from (2.14) and the definition of k that rz(Ak) = rz(« y) for all z ∈ F ∩ [y).
Since rz is monotone, rz(Ak) = rz(Ak ∪ b) for all b ∈ « y − Ak. Hence b ∈ cly(Ak) ⊆
cl(Ak) for all b ∈ « y − Ak, and we obtain that « y ⊆ cl(Ak). This, together with

Ak ⊆ « y, yields that cl(Ak) = « y. Consequently, we conclude from (2.15), the

semimodularity of Lcl and the induction hypothesis that h(« y) = h(«x)+k = r(«x)+
k = r(« y).

Proof of Corollary 2.9. Let L be a finite height generated semimodular algebraic

lattice. Consider the height function hL∶L → N∞. We conclude from Theorem 2.8

that L has an isometrical embedding ψ into a geometric lattice G with respect to hL.

Assume that x ≺ y in L and choose a minimal element f of finite height in (y]− (x].
Let g be a lower cover of f . Then x = x ∨ g and y = x ∨ f . Now, ψ(f) covers

ψ(g), since hG(ψ(f)) − hG(ψ(g)) = hL(f) − hL(g) = 1, where hG denotes the height

function of G. Hence the semimodularity of G implies that ψ(y) = ψ(x) ∨ ψ(f)
covers ψ(x) = ψ(x) ∨ ψ(g). Therefore ψ is cover-preserving.

Remark 2.18. If L is of finite length, the construction of Lcl becomes more simple:

we need only r1 since cl = cl1. Note that in this case r1 is a rank function on Lcl.
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2.2.3 Examples

Let L1 be the five element lattice of Figure 2.3. It is not semimodular. Although

Example 2.2 gives a pseudorank function L1 → N, 0 ↦ 0, r ↦ 4, s ↦ 6, t ↦ 4 and

1↦ 7, one can easily find a “nicer” one, which has smaller values. Let p be the map

p∶L → N, p(0) = 0, p(r) = 2, p(s) = 2, p(t) = 1 and p(1) = 3. It is a pseudorank

function. See also Figure 2.1.

a{ }

b{ }

c{ }d{ }

c,d{ }a,b{ }

a,b,c,d{ }

sr

t

Figure 2.3: The isometrical embedding of L1 (left) into G1 (right)

We want to embed L1 isometrically into a geometric lattice. Notice that the

nonzero join-irreducible elements are r, s and t. Since p(r) − p(r0) = 2 and p(s) −
p(s0) = p(t) − p(t0) = 1, ∣Xr∣ = 2 and ∣Xs∣ = ∣Xt∣ = 1. Let Xr = {a, b}, Xs = {c} and

Xt = {d}. Thus S = {a, b, c, d}. Considering Remark 2.18, it is enough to calculate

r1:

r1(A) A

0 ∅
1 {a}, {b}, {c}, {d}
2 {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}
3 {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}



CHAPTER 2. ISOMETRICAL EMBEDDINGS 49

Now, one can easily determine cl = cl1. Indeed, every subset is closed, except the

three element subsets. The corresponding geometric lattice is

G1 = {∅,{a},{b},{c},{d},{a, b},{a, c},{a, d},{b, c},{b, d},{c, d},{a, b, c, d}},

see in Figure 2.3.

Let L2 = N with the usual ordering, see Figure 2.4. We want to embed L2 into

a geometric lattice. Although it is not a finite height generated lattice, it can be

extended to a finite height generated lattice N = [0,∞) ≤ N∞, which is also an

algebraic lattice. Indeed, the elements of N are exactly the compact elements of N∞

and ∞ = ⋁N.

{1}

{1,2}

{2} {3}

2

3

1

0

{1,2,3}

Figure 2.4: The isometrical embedding of L2 (left) into G2 (right)

Let p denote the height function of N∞, which is a pseudorank function, since N∞

is semimodular. Notice that the nonzero join irreducible elements of finite height

are N− {0}. Since p is the height function, it is also a rank function, cf. (2.7). Thus

S can be chosen to be N − {0}. Observe that for any x ∈ N, «x = (0, x], and any

A ⊆ S, rx(A) = ∣A ∩ «x∣. For any a ∈ S −A, if x ≥ a then rx(A ∪ a) = ∣(A ∪ a) ∩ «x∣ =
∣(A∩ «x)∪ a∣ > ∣A∩ «x∣ = rx(A). Hence, clx(A) = A. This implies that cl(A) = A for

every subset A ⊆ S. The corresponding geometric lattice G2 is the Boolean lattice

of all subsets of S, see Figure 2.4.



Chapter 3

Mal’cev conditions

The classic theorem of Mal’cev [67] states that the congruences of any algebra of a

variety V permute if and only if there is a ternary term p such that V satisfies the

following identities:

p(x, y, y) = x and p(x,x, y) = y.

Jónsson [63] and Day [28] proved similar results for distributivity and modularity.

These results led to the concept of Mal’cev(-type) conditions, see Grätzer [40]. Us-

ing Grätzer’s concept, Jónsson’s resp. Day’s result says that the class of congruence

distributive resp. congruence modular varieties can be defined by a Mal’cev condi-

tion, cf. Theorem 3.1 and 3.2. Later, beside the concept of Mal’cev condition, two

similar concepts appeared, the strong and weak Mal’cev conditions, cf. Taylor [81].

After Mal’cev’s, Jónsson’s and Day’s results, many classes of varieties have

proved to be definable by (strong/weak) Mal’cev conditions. Both permutability

and distributivity have some generalizations, the so-called n-permutability and n-

distributivity. Hagemann and Mitschke [50] characterized n-permutability (n ≥ 2)
by a strong Mal’cev condition. On the other hand, n-distributivity, which was intro-

duced by Huhn [54], turned out to be equivalent with distributivity in congruence

varieties, cf. Nation [68]. Thus Jónsson’s result [63] also characterizes congruence

n-distributivity by a Mal’cev condition. Let us mention here that distributivity and

n-distributivity are not equivalent in general. Distributivity implies n-distributivity,

but, e.g., M3 is an n-distributive lattice that is not distributive (if n > 2), cf. Re-

mark 1.2.

As for congruence modularity, Gumm [49] improved Day’s result and found a

Mal’cev condition for congruence modularity that contains ternary terms, see also

Lakser, Taylor and Tschantz [65]. Then Czédli and Horváth [21] proved that every

50
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lattice identity that implies modularity in congruence varieties can be characterized

by a Mal’cev condition. Their proof is heavily based on one of their former paper

with Radeleczki [22]. Note that it is still an open problem whether all congruence

lattice identities can be characterized by a Mal’cev condition. On the other hand,

Wille [90] and Pixley [73] showed that every congruence lattice identity can be

characterized by a weak Mal’cev condition.

In connection with Mal’cev conditions, we consider important to mention that

Csákány was the first person from Szeged, who dealt with Mal’cev condition, for

example, one of his results is the characterization of regular varieties by a Mal’cev

condition [14]. He also wrote his thesis for the doctor of science degree about Mal’cev

conditions and their applications [15].

Nowadays, Mal’cev conditions, especially Jónsson’s, Day’s and Gumm’s terms,

are frequently used in universal algebra and related areas such as CSP, cf., e.g.,

Barto and Kozik [4, 5].

Observe that, in case of groups, rings and modules, congruences are determined

by normal subgroups, ideals and submodules. Although one congruence class does

not usually determine the whole congruence, these examples show that given an

algebra with a constant operation symbol c, the congruence class that contains

c can play a special role. To recall a related concept from Chajda [11], let λ ∶
p(x1, . . . , xn) ≤ q(x1, . . . , xn) be a lattice identity, and let V be a variety with a

constant operation symbol 0 in its type. We say that λ holds for the congruences

of V at 0 if for every A ∈ V and for all congruences α1, . . . , αn of A, we have

[0]p(α1, . . . , αn) ⊆ [0]q(α1, . . . , αn). In particular, if λ is α1 ∧ (α2 ∨α3) ≤ (α1 ∧α2) ∨
(α1 ∧ α3) resp. (α1 ∨ α2) ∧ (α1 ∨ α3) ≤ α1 ∨ (α2 ∧ (α1 ∨ α3)), then we say that V is

congruence distributive resp. congruence modular at 0.

This concept is not as trivial as it may seem. For example, while the variety S of

meet semilattices with 0 is congruence distributive at 0, the dual of the distributive

law does not hold for congruences of S at 0, see Example 3.9.

Returning to Mal’cev conditions, Chajda [11] has given a Mal’cev condition

characterizing congruence distributivity at 0, and Czédli [16] has pointed out that

the satisfaction of λ for congruences at 0 can always be characterized by a weak

Mal’cev condition. (This is particularly useful when each congruence α is determined

by [0]α, see the comment following Prop. 2 in Czédli [16].) Later, Chajda and

Halaš [12] took some steps towards characterizing congruence modularity at 0. Then

we gave a Mal’cev condition in [77] that characterizes congruence modularity at
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0. Note that Jónsson’s and Day’s characterization of congruence distributivity and

congruence modularity follows from the characterization of congruence distributivity

and congruence modularity at 0, cf. Remark 3.6.

Overview of the chapter

In Section 3.1 we recall the precise definition of Mal’cev conditions, and we formulate

Jónsson’s and Day’s results. In Section 3.2 we show Chajda’s characterization of

congruence distributivity at 0 and our characterization of congruence modularity

at 0. We close this section with some examples and concluding remarks.

Notation for the chapter

Throughout this chapter, algebras are typeset in bold capital letters, e.g., A, their

underlying sets are typeset in capital letters, e.g., A, and varieties are typeset in

calligraphy letters, e.g., V . For a given algebra A ∈ V and elements a, b ∈ A, Θ(a, b)
denotes the smallest congruence of A that contains (a, b).

3.1 Definition of a Mal’cev condition

A class K of varieties is defined by a strong Mal’cev condition iff there exist polyno-

mial symbols p1, . . . , pk and a finite set Σ of equations in p1, . . . , pk such that a variety

V of type τ belongs to K if and only if each polynomial symbol can be associated

with a term of type τ such that the equations of Σ become identities that hold in V .

The classical result of Mal’cev says that the class of congruence permutable varieties

is definable by a strong Mal’cev condition.

A class K of varieties is defined by a Mal’cev condition iff there exists a sequence

Ki (i ∈ N) of classes such that each Ki is defined by a strong Mal’cev condition,

Ki ⊆ Ki+1 for all i ∈ N, and K = ⋃∞
i=0Ki. The following two theorems show the

two most known examples of classes defined by a Mal’cev condition: the class of

congruence distributive resp. congruence modular varieties.

Theorem 3.1 (Jónsson [63, Theorem 2.1]). For a variety V of algebras, the following

conditions are equivalent:

(i) V is congruence distributive, that is ConA is distributive for all A ∈ V;
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(ii) there is a natural number n and a sequence of terms D0,D1, . . . ,Dn in three

variables such that V satisfies the following identities:

D0(x, y, z) = x and Dn(x, y, z) = z; (D1)

Di(x, y, x) = x for all i; (D2)

Di(x, z, z) =Di+1(x, z, z) for i odd; (D3)

Di(x,x, z) =Di+1(x,x, z) for i even. (D4)

Theorem 3.2 (Day [28, Theorem 1]). For a variety V of algebras, the following

conditions are equivalent:

(i) V is congruence modular, that is ConA is modular for all A ∈ V;

(ii) there is a natural number n and a sequence of terms M0,M1, . . . ,Mn in four

variables such that V satisfies the following identities

M0(x, y, z,w) = x and mn(x, y, z,w) = w; (M1)

Mi(x, y, y, x) = x for all i; (M2)

Mi(x, y, y,w) =Mi+1(x, y, y,w) for i odd; (M3)

Mi(x,x,w,w) =Mi+1(x,x,w,w) for i even. (M4)

Note that the terms Di resp. Mi are usually called Jónsson terms resp. Day

terms.

Finally, a class K of varieties is defined by a weak Mal’cev condition iff there

exists a sequence Ki (i ∈ N) of classes such that each Ki is defined by a Mal’cev

condition and K = ⋂∞
i=0Ki.

3.2 Congruences of algebras with constants

Recall that congruences of a given variety V with a constant satisfy the identity

λ ∶ p(x1, . . . , xn) ≤ q(x1, . . . , xn) at 0 iff for every A ∈ V and for all congruences

α1, . . . , αn of A, we have [0]p(α1, . . . , αn) ⊆ [0]q(α1, . . . , αn). Notice that if the

congruences of V satisfy λ then they satisfy λ at 0, too. Chajda [11] pointed out

that some slight modification of Jónsson’s proof of Theorem 3.1 gives a Mal’cev

condition for congruence distributivity at 0.

Theorem 3.3 (Chajda [11, Theorem 1]). For a variety V of algebras with a constant

0, the following conditions are equivalent:
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(i) ConA is distributive at 0 for all A ∈ V;

(ii) there is a natural number n and there are binary terms di (i = 0, . . . , n) such

that V satisfies the following identities:

d0(x, y) = 0 and dn(x, y) = y; (d1)

di(x,0) = 0 for all i; (d2)

di(x,x) = di+1(x,x) for i odd; (d3)

di(0, y) = di+1(0, y) for i even. (d4)

Instead of a proof, we only note that the terms di(x, y) are obtained from the

Jónsson terms: di(x, y) = Di(0, x, y). Chajda and Halaš [12] observed that in vari-

eties that are congruence modular at 0 the terms mi(x, y, z) =Mi(0, x, y, z) obtained

from the Day terms must hold. However, they did not manage to prove that these

terms also characterize congruence modularity at 0. In the next theorem we show

that an appropriate modification of Day’s proof of Theorem 3.2 works.

Theorem 3.4. For a variety V of algebras with a constant 0, the following conditions

are equivalent:

(i) ConA is modular at 0 for all A ∈ V;

(ii) there is a natural number n and there are ternary terms mi (i = 0, . . . , n) such

that V satisfies the following identities:

m0(x, y, z) = 0 and mn(x, y, z) = z; (m1)

mi(x,x,0) = 0 for all i; (m2)

mi(x,x, z) =mi+1(x,x, z) for i odd; (m3)

mi(0, z, z) =mi+1(0, z, z) for i even. (m4)

For a fixed algebra A, congruences β, γ ∈ ConA and integer k ≥ 0, let ∆k =
∆k(A, β, γ) denote the relation β ○ γ ○ ⋅ ⋅ ⋅ ○ γ ○ β with 2k + 1 factors. Notice that ∆k

is reflexive, symmetric and it is compatible with the operations of A. Such relations

are called tolerances, cf. Chajda [10]. Before the proof we need the following lemma.

Lemma 3.5. Suppose that we have the ternary terms mi given above. Let us fix

an algebra A ∈ V, congruences α,β, γ ∈ ConA and elements a, d ∈ A. If α ≥ γ,

(0, a) ∈ (α∧β)∨γ and for some integer k ≥ 0, (a, d) ∈ α∩∆k then (0, d) ∈ (α∧β)∨γ.

Proof. We prove the lemma by induction over k. The lemma is trivially true for

k = 0. Suppose that the lemma is true for some integer k ≥ 0 and let (0, a) ∈ (α∧β)∨γ
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and (a, d) ∈ α∩∆k+1. We have to prove that (0, d) ∈ (α∧β)∨γ. As (a, d) ∈ α∩∆k+1 =
α ∩ (∆k ○ γ ○ β), there exist elements b, c ∈ A such that

a ∆k b, b γ c, c β d.

Define ei = mi(b, c, d) for i ≤ n. We show (by induction over i) that (0, ei) ∈
(α ∧ β) ∨ γ for i ≤ n. Then by (m1), we have (0, d) = (0, en) ∈ (α ∧ β) ∨ γ. By (m1),

we have e0 = 0, hence (0, e0) ∈ (α ∧ β) ∨ γ is obvious. Suppose that for some i < n,

we have (0, ei) ∈ (α ∧ β) ∨ γ. We show that (0, ei+1) ∈ (α ∧ β) ∨ γ.

For arbitrary j ≤ n, by (m2), we have

ej =mj(b, c, d) ∆k mj(a, d, d);

ej =mj(b, c, d) γ mj(b, b, a) (α ∧ β) ∨ γ mj(b, b,0) =

=mj(0,0,0) (α ∧ β) ∨ γ mj(a, a, a) α mj(a, d, d).

Since γ ≤ (α ∧ β) ∨ γ ≤ α, we have

ej α ∩∆k mj(a, d, d). (3.1)

For i even, by (m4), we have

mi(a, d, d) (α ∧ β) ∨ γ mi(0, d, d) =

mi+1(0, d, d) (α ∧ β) ∨ γ mi+1(a, d, d). (3.2)

By the induction hypothesis over i, we have (0, ei) ∈ (α∧β)∨γ. Using the induction

hypothesis over k for (3.1) with j = i, we obtain (0,mi(a, d, d)) ∈ (α ∧ β) ∨ γ. Then

by (3.2), we have (0,mi+1(a, d, d)) ∈ (α∧β)∨γ. Using the induction hypothesis over

k for (3.1) with j = i + 1, we obtain (0, ei+1) ∈ (α ∧ β) ∨ γ.

For i odd, by (m3), we have

ei =mi(b, c, d) γ mi(b, b, d) =mi+1(b, b, d) γ mi+1(b, c, d) = ei+1

By the induction hypothesis over i, we have (0, ei) ∈ (α ∧ β) ∨ γ, hence we obtain

(0, ei+1) ∈ (α ∧ β) ∨ γ.

Proof of Theorem 3.4. (i)⇒(ii). Let F = FV(x, y, z) denote the V-free algebra over

{x, y, z}. The variety V is closed under forming subalgebras and direct products,

therefore V contains F. We define congruence relations on F by

α = Θ(x, y) ∨Θ(0, z), β = Θ(0, x) ∨Θ(y, z), γ = Θ(x, y).
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By (i), we have z ∈ [0]α∧(β ∨γ) = [0](α∧β)∨γ, which means (0, z) ∈ (α∧β)∨γ. It

follows that there is a natural number n and there are ternary terms mi (i = 0, . . . , n)

such that

m0(x, y, z) = 0 and mn(x, y, z) = z; (3.3)

mi(x, y, z) α ∧ β mi+1(x, y, z) for i even; (3.4)

mi(x, y, z) γ mi+1(x, y, z) for i odd. (3.5)

As F is a V-free algebra with free generators x, y and z, Equation (3.3) proves (m1).

Equation (m2), (m3) and (m4) also follow from (3.3), (3.4) and (3.5). For example,

to prove (m2), let us consider the homomorphism ϕ defined by xϕ = x, yϕ = x and

zϕ = 0. Both α ∧ β and γ are contained by kerϕ, hence (3.4) and (3.5) imply

mi(x,x,0) =mi(xϕ, yϕ, zϕ) =mi(x, y, z)ϕ

=mi+1(x, y, z)ϕ =mi+1(xϕ, yϕ, zϕ)

=mi+1(x,x,0)

for all i. Using (m1), this proves (m2). Similar arguments prove (m3) and (m4).

The details are left to the reader.

(ii)⇒(i). For any A ∈ V and α,β, γ ∈ ConA, α ∧ (β ∨ γ) = ⋃∞
k=0α ∩∆k. Hence, using

Lemma 3.5 for a = 0, we obtain (i).

Remark 3.6. Since both Chajda’s resp. our proof is heavily based on Jónsson’s

resp. Day’s original ones, it is not surprising that Theorem 3.3 resp. Theorem 3.4

imply the nontrivial direction (ii)⇒(i) of Theorem 3.1 resp. Theorem 3.2. Indeed,

let V be a variety of algebras of type τ . Let us extend τ with a (new) constant

operator 0 and let τ0 denote the extended type. For any algebra A ∈ V and for any

element a ∈ A, let Aa denote the algebra of type τ0, where 0A = a. Let V0 be the

variety of algebras of type τ0 generated by all algebras of the form Aa. If T0, . . . , Tn

are Jónsson resp. Day terms over V then T0, . . . , Tn are Jónsson resp. Day terms

over V0, too. Now, substitute 0 for the first variable of Ti to obtain ti. Then we can

apply either Theorem 3.3 or Theorem 3.4 to the terms t0, . . . , tn, which implies that

the original variety V is congruence distributive resp. congruence modular.

Remark 3.7. Congruence distributivity at 0 obviously implies congruence modu-

larity at 0. Note that the converse is not true: congruence modularity at 0 is in

fact a weaker concept than congruence distributivity at 0. Indeed, in the variety
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of groups, congruences are determined by normal subgroups, hence congruences of

groups satisfy any identity λ iff they satisfy λ at 0. Therefore the variety of groups

is congruence modular at 0 but it is not congruence distributive at 0.

Example 3.8. Let G0 denote the variety of idempotent groupoids with zero (idem-

potent groupoids that have a constant operation symbol 0 satisfying 0x = x0 = 0).

Then

� G0 is both congruence distributive and modular at 0, but

� G0 is neither congruence distributive nor modular in the usual sense.

To show that G0 is congruence distributive at 0 use Theorem 3.3 with n = 2 and

d0(x, y) = 0, d1(x, y) = xy, d2(x, y) = y.

Congruence modularity at 0 follows from congruence distributivity at 0, but for the

sake of completeness, note that it also follows from Theorem 3.4 with n = 3 and

m0(x, y, z) = 0, m1(x, y, z) = xz

m2(x, y, z) = yz, m3(x, y, z) = z.

To verify the second part, observe that the variety S of meet semilattices with 0 is a

subvariety of G0, and recall from Freese and Nation [39] that S satisfies no nontrivial

congruence lattice identity.

0 0 0

a a a ccc bb b

Figure 3.1: The meet semilattice S ∈ S and its congruences

Example 3.9 (Czédli [16]). We have just seen that S is congruence distributive

at 0. The following semilattice shows that the dual of the distributive law does not
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hold for congruences of S at 0. Consider the seven element semilattice S depicted in

Figure 3.1 and its congruences α, β and γ corresponding to the following partitions.

α ∶ {{a, b, a ∧ b, a ∧ c, b ∧ c,0},{c}},

β ∶ {{a, c, a ∧ c},{b},{a ∧ b, b ∧ c,0}},

γ ∶ {{a},{a ∧ c, a ∧ b,0},{b, c, b ∧ c}}.

Then [0](α ∨ β) ∧ (α ∨ γ) = S ⊊ S ∖ {c} = [0]α ∨ (β ∧ γ), which shows that the dual

of the distributive law fails for congruences of S at 0.

The core of this counterexample is the fact that [0](Φ∨Ψ) = [0]Φ∪[0]Ψ need not

hold for all congruences Φ and Ψ. On the other hand, [0](Φ∧Ψ) = [0]Φ∩[0]Ψ holds

for all congruences Φ and Ψ. This yields that the dual of the distributive law implies

distributivity for congruences at 0. Indeed, assume that the dual of the distributive

law holds for congruences of a variety V , and let A ∈ V and α,β, γ ∈ ConA. Then

[0](α ∧ β) ∨ (α ∧ γ) = [0]((α ∧ β) ∨ α) ∧ ((α ∧ β) ∨ γ)

= [0]α ∧ ((α ∧ β) ∨ γ) = [0]α ∩ [0]((α ∧ β) ∨ γ)

= [0]α ∩ [0]((α ∨ γ) ∧ (β ∨ γ)) = [0]α ∧ ((α ∨ γ) ∧ (β ∨ γ))

= [0]α ∧ (β ∨ γ).

b
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Figure 3.2: The meet semilattice T ∈ S and its congruences
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Remark 3.10. One may feel that there is a hope to combine Theorem 3.4 with the

result of Czédli and Horváth [21]. However, this seems difficult, since [21] is based

on the following fact, see Czédli and Horváth [20] and [21]: for any two tolerances in

a congruence modular variety, the transitive closure commutes with the intersection;

in their notation Φ∗ ∩Ψ∗ = (Φ ∩Ψ)∗. For varieties that are congruence modular at 0,

the analogous statement, [0]Φ∗ ∩Ψ∗ = [0](Φ ∩Ψ)∗, is not true. Indeed, consider the

seven element meet semilattice T ∈ S depicted in Figure 3.2, and the congruences

α, β, γ, δ and κ represented by the following partitions.

α ∶ {{a},{c},{f},{0, e},{b, d}}, β ∶ {{0, d, f},{a, b},{c, e}},

γ ∶ {{a},{b},{d},{0, e},{c, f}}, δ ∶ {{0, d, f},{b, e},{a, c}},

κ ∶ {{a}, T ∖ {a}}.

Then Φ = α ○ β ○ α and Ψ = γ ○ δ ○ γ are tolerances of T. Since 0 α 0 β d α b β a and

0 γ 0 δ f γ c δ a, we have (0, a) ∈ Φ∗ ∩Ψ∗. On the other hand, Φ ∩Ψ ⊆ κ yields that

(0, a) /∈ (Φ ∩Ψ)∗.



Summary

In my doctoral dissertation, three problems of modular and semimodular lattices are

studied. Modularity and semimodularity are two closely related concepts of lattice

theory. Indeed, the concept of semimodularity is proved to be the most useful

generalization of modularity. The class of semimodular lattices contains properly

the class (variety) of modular lattices. However, if a lattice is of finite length and

both itself and its dual are semimodular then it is also modular. The three chapters

of my dissertation are based on the papers [27, 78] and [77].

In the first chapter, we are dealing with a problem of coordinatization theory,

one of the oldest and deepest part of lattice theory. In the first section, we introduce

the concept of a von Neumann frame and mention a related concept called Huhn

diamond. Without any proof, we recall some basic results of coordinatization theory,

which are used later in the chapter. In the second section, we define the concept

of a product frame and some related concepts: the outer and inner frames. These

concepts are due to Gábor Czédli. In the third section, we prove a joint result with

Gábor Czédli, which says that the coordinate ring associated to the outer frame is

the matrix ring of the coordinate ring associated to the product frame, see [27].

In the second chapter, we study isometrical embeddings of lattices with pseu-

dorank functions into geometric lattices. This problem has a close connection to

semimodular lattices. First of all, geometric lattices form the best known class of

semimodular lattices. On the other hand, if L is a semimodular lattice then its

height function is a pseudorank function, and the isometrical embedding of L pre-

serves the height of each element, moreover it also preserves the covering relation

under some necessary conditions. In the first section, we recall a proof of Marcel

Wild [89], which shows that every finite semimodular lattice has a cover-preserving

embedding into a geometric lattice. This argument is a motivation for the second

section, where we prove a generalization of an embedding result of George Grätzer

and Emil W. Kiss [43], see [78].

60
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In the third chapter, we are dealing with Mal’cev conditions, which play a central

role in universal algebra. We characterize a generalization of congruence modularity

by a Mal’cev condition. Assume that the type of an algebra A has a constant

operation symbol 0. Then those classes of congruences of A that contain 0 form a

lattice with respect to set inclusion. In contrast to, e.g., groups or rings, this lattice

differs from the congruence lattice in general. Similarly to congruence modularity,

we call A congruence modular at 0, if the above defined lattice is modular. Proving

the conjecture of Ivan Chajda, we show that congruence modularity at 0 can be

characterized by a Mal’cev condition, see [77].

To understand the dissertation, we assume basic knowledge of lattice theory and

universal algebra, but the reader is also directed to Grätzer [42] and Burris and

Sankappanavar [9]. We define any deeper concept that occurs in the dissertation,

but the reader also can find some references to them.

Now, we recall the major results of the dissertation chapter by chapter.

Von Neumann frames

For definition, let 2 ≤m, let L be a nontrivial modular lattice with 0 and 1, and let

a⃗ = (a1, . . . , am) ∈ Lm and c⃗ = (c12, . . . , c1m) ∈ Lm−1. We say that (a⃗, c⃗) = (a1, . . . , am,

c12, . . . , c1m) is a spanning m-frame (or a frame of order m) of L, if a1 ≠ a2 and the

following equations hold for all j ≤m and 2 ≤ k ≤m:

∑
i≤m

ai = 1, aj ∑
i≤m, i/=j

ai = 0,

a1 + c1k = ak + c1k = a1 + ak, a1c1k = akc1k = 0.

Let us mention here that in coordinatization theory, the lattice operations join and

meet are traditionally denoted by + and ⋅ (mostly juxtaposition) such that meets

take precedence over joins.

To understand the concept of von Neumann frames better, let us consider the fol-

lowing example. Let K be a ring with 1. Let vi denote the vector (0, . . . ,0,1,0, . . . ,0)
∈Km (1 at the ith position). Letting ai =Kvi and c1j =K(v1−vj), we obtain a span-

ning m-frame of the submodule lattice Sub(Km), where Km is, say, a left module

over K in the usual way. This frame is called the canonical m-frame of Sub(Km).
We also need the concept of a coordinate ring. If m ≥ 4 and (a⃗, c⃗) = (a1, . . . , am,

c12, . . . , c1m) is a spanning m-frame of L then one can define addition and multipli-

cation on the set R⟨1,2⟩ = {x ∈ L ∶ x + a2 = a1 + a2, xa2 = 0} such that R⟨1,2⟩ forms
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a ring with a unit. This ring is called the coordinate ring of (a⃗, c⃗). Note that the

ring construction also works if m = 3 and L is Arguesian.

Now, we are in position to formulate the main result of the first chapter.

Theorem ([27, Theorem 1.1]).

(a) Let L be a lattice with 0,1 ∈ L, and let m,n ∈ N with n ≥ 2. Assume that

L is modular and m ≥ 4. (a1)

Let (a⃗, c⃗) = (a1, . . . , am, c12, . . . , c1m) be a spanning von Neumann m-frame of

L and (u⃗, v⃗) = (u1, . . . , un, v12, . . . , v1n) be a spanning von Neumann n-frame

of the interval [0, a1]. Let R∗ denote the coordinate ring of (a⃗, c⃗). Then there

is a ring S∗ such that R∗ is isomorphic to the ring of all n × n matrices over

S∗. If

n ≥ 4, (a2)

then we can choose S∗ as the coordinate ring of (u⃗, v⃗).

(b) The previous part of the theorem remains valid if (a1) and (a2) are replaced

by

L is Arguesian and m ≥ 3 (b1)

and

n ≥ 3, (b2)

respectively.

We could formulate the theorem without recalling the concepts of a product

frame and the corresponding outer and inner frames. However, it is worth mention-

ing here that S∗ is the coordinate ring associated to the product frame that occurs

in the proof of the theorem. While (a⃗, c⃗) and (u⃗, v⃗) are the corresponding outer and

inner frames, respectively.

Isometrical embeddings

Given a lattice L with a lower bound 0, a function p∶L→ N∞ = {0,1, . . . ,∞} is called

a pseudorank function if it has the following properties:

(i) p(0) = 0;

(ii) a ≤ b implies p(a) ≤ p(b) for all a, b ∈ L;
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(iii) a < b implies p(a) < p(b) for all a, b ∈ L of finite height;

(iv) p(a ∧ b) + p(a ∨ b) ≤ p(a) + p(b) for all a, b ∈ L;

(v) p(a) <∞ iff a is of finite height.

In case of finite lattices, this definition coincide that of Finkbeiner [32] and Stern [79].

It is an easy consequence of the Jordan-Hölder Chain Condition that the height

function of any semimodular lattice is a pseudorank function.

Consider a lattice L with a lower bound 0, a pseudorank function p∶L→ N∞ and

a geometric lattice G whose height function is denoted by h. Then L is embeddable

isometrically into G iff there is a lattice embedding ϕ∶L → G such that p = h ○ ϕ,

cf. Grätzer and Kiss [43].

We need one more concept in order to formulate the main result of this chapter,

which generalizes a result of Grätzer and Kiss [43]. A lattice is said to be finite

height generated iff it is complete and every element is the join of some elements of

finite height. Note that lattices of finite length are finite height generated. To show

a finite height generated lattice that is not of finite length, consider, for instance,

N∞ with the usual ordering.

Theorem ([78, Theorem 1]). Every finite height generated algebraic lattice with a

pseudorank function can be embedded isometrically into a geometric lattice.

This theorem has a straidforward corollary for semimodular lattices. A lattice

embedding is said to be cover-preserving iff it preserves the covering relation.

Corollary ([78, Corollary 2]). Every finite height generated semimodular algebraic

lattice has a cover-preserving embedding into a geometric lattice.

Mal’cev conditions

Let V be a variety that has a constant operation symbol 0 in its type. We say that

V is congruence modular at 0 iff for every algebra A ∈ V and for all congruences

α,β and γ of A, we have [0]α ∨ (β ∧ (α ∨ γ)) = [0](α ∨ β) ∧ (α ∨ γ), cf. Chajda [11]

and Chajda and Halaš [12]. Notice that congruence modularity implies congruence

modularity at 0, for instance, any group or ring variety is congruence modular at 0,

since it is congruence modular. However, the converse is not true.

The main result of the third chapter characterizes congruence modularity at 0

by a Mal’cev condition. A similar result for congruence modularity was published

by Day [28]. Note that our proof is heavily based on that of Day.
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Theorem ([77, Theorem 1]). For a variety V of algebras with a constant 0, the

following conditions are equivalent:

(i) ConA is modular at 0 for all A ∈ V;

(ii) there is a natural number n and there are ternary terms mi (i = 0, . . . , n) such

that V satisfies the following identities:

m0(x, y, z) = 0 and mn(x, y, z) = z; (m1)

mi(x,x,0) = 0 for all i; (m2)

mi(x,x, z) =mi+1(x,x, z) for i odd; (m3)

mi(0, z, z) =mi+1(0, z, z) for i even. (m4)



Összefoglaló

Doktori értekezésem a moduláris és féligmoduláris hálók témakörének egy-egy prob-

lémájával foglalkozik. Már a neveik alapján is sejthető, hogy a két emĺıtett háló-

tulajdonság szoros kapcsolatban áll egymással. A féligmodularitás a modularitásnak

az egyik legismertebb általánośıtása. Moduláris hálók mindig féligmodulárisak,

valamint – mivel a modularitás önduális tulajdonság – moduláris hálók duálisa is

féligmoduláris. Érdemes megjegyezni, hogy véges magasságú hálók esetén a fenti

észrevétel megford́ıtható: ha egy véges magasságú háló és duálisa is féligmoduláris,

akkor moduláris. Az értekezés három fejezete rendre az [27, 78] és [77] dolgozatok

eredményein alapul.

Az első fejezetben a moduláris hálók egyik legrégebbi és legmélyebb témakörével,

a Neumann-féle koordinátázáselmélettel foglalkozom. A fejezet első részében beve-

zetem a Neumann-féle keret fogalmát és röviden kitérek az ezzel ekvivalens Huhn-

gyémánt fogalmára. Bizonýıtás nélkül hivatkozom a témakör azon eredményeire,

amelyekre a fejezetben később szükségem lesz. A fejezet második részében a Czédli

Gábor által definiált szorzatkeret, valamint a hozzá tartozó külső és belső keret

fogalmát ismertetem. A fejezet harmadik részében a Czédli Gáborral közös ered-

ményünket bizonýıtom, mely szerint a külső kerethez tartozó koordinátagyűrű a

szorzatkerethez tartozó koordinátagyűrű feletti mátrixgyűrű [27].

A második fejezetben pszeudorang függvénnyel rendelkező hálók geometriai há-

lókba történő izometrikus beágyazásával foglalkozom. Ez több ponton is szervesen

kötődik a féligmoduláris hálók témaköréhez. Egyrészt a geometriai hálók a féligmo-

duláris hálók egyik legismertebb részosztálya. Másrészt ha a fent emĺıtett beágyazás

során tetszőleges háló helyett féligmoduláris hálót veszünk, valamint a pszeudo-

rang függvényt a (féligmoduláris) háló magasságfüggvényének választjuk, akkor

az erre vonatkozó izometrikus beágyazás olyan hálóbeágyazás, ami megőrzi a ma-

gasságfüggvényt, sőt, bizonyos feltételek mellett a fedés relációt is. A fejezetben

Grätzer György és Kiss Emil [43] véges hálókra vonatkozó izometrikus beágyazását

65
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általánośıtom algebrai hálók egy ,,szép” osztályára. A fejezet első részében Marcel

Wild [89] matroidokkal történő fedésőrző beágyazása található véges féligmoduláris

hálókra, ami motivációt ad az általános eset bizonýıtásához, amit a fejezet második

részében közlök [78].

A harmadik fejezetben Mal’cev feltételekkel foglalkozom. Algebrák kongruen-

ciahálóinak számos tulajdonságára született Mal’cev feltétel. A fejezetben a kong-

ruencia-modularitás egy általánośıtására mutatok Mal’cev feltételt. Olyan algebrák

esetén, amiknek a t́ıpusában a csoportokhoz vagy a gyűrűkhöz hasonlóan szerepel

konstans műveleti jel, az adott konstanst tartalmazó kongruenciaosztályok hálót

alkotnak. Ellentétben a csoportokkal és gyűrűkkel, általános esetben a konstanst

tartalmazó kongruenciaosztály nem feltétlenül határozza meg a teljes kongruenciát,

és a konstanst tartalmazó kongruenciaosztályok hálója nem feltétlenül egyezik meg

a kongruenciahálóval. A kongruencia-modularitáshoz hasonló fogalom definiálható

ebben az esetben is, amit 0-nál vett kongruencia-modularitásnak h́ıvunk. Ivan

Chajda sejtését igazolva megmutatom, hogy a 0-nál vett kongruencia-modularitás

jellemezhető Mal’cev feltétellel [77].

Az értekezés megértéséhez elegendőek a hálóelmélet és az univerzális algebra

alapfogalmai, amelyek mindegyike előfordul az egyetemi tanulmányok során, de meg-

található Grätzer [42], valamint Burris és Sankappanavar [9] könyveiben is. Minden

egyéb fogalmat, melynek ismeretét előre nem feltételeztem, az értekezésben külön

definiáltam és hivatkozással láttam el.

A következőkben fejezetenként röviden ismertetem az értekezésben található

eredményeimet.

Neumann-féle keretek

Rögźıtsünk egy L korlátos moduláris hálót és egy m ≥ 2 egész számot, továbbá

legyen a⃗ = (a1, . . . , am) ∈ Lm és c⃗ = (c12, . . . , c1m) ∈ Lm−1. Azt mondjuk, hogy

(a⃗, c⃗) = (a1, . . . , am, c12, . . . , c1m) az L háló fesźıtő m-kerete, ha a1 ≠ a2 és minden

j ≤m és 2 ≤ k ≤m indexre teljesülnek az alábbi összefüggések:

∑
i≤m

ai = 1, aj ∑
i≤m, i/=j

ai = 0,

a1 + c1k = ak + c1k = a1 + ak, a1c1k = akc1k = 0.

Ezen a ponton érdemes megjegyezni, hogy a koordinátázáselméletben a hálóműve-

leteket (∨ és ∧) hagyományosan rendre összeadás (+) és szorzás (⋅) jelöli.
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Ahhoz, hogy a Neumann-féle keretek fogalmát jobban megértsük, tekintsük a

következő példát. LegyenK egységelemes gyűrű. Ekkor rögźıtettm ≥ 2 egész számra

Km tekinthető K feletti baloldali modulusnak. Jelölje vi a (0, . . . ,0,1,0, . . . ,0) ∈Km

vektort, ahol az 1 az i-edik koordinátában szerepel. Könnyen ellenőrizhető, hogy a

Km (baloldali) részmodulusai által alkotott (korlátos, moduláris) hálóban az ai =
Kvi és c1j = K(v1 − vj) elemek fesźıtő m-keretet alkotnak. Ezt a keretet nevezik

kanonikus m-keretnek.

A későbbiekben szükségünk lesz még a koordinátagyűrű fogalmára. Ha m ≥ 4

és (a⃗, c⃗) = (a1, . . . , am, c12, . . . , c1m) az L moduláris háló fesźıtő m-kerete, akkor az

R⟨1,2⟩ = {x ∈ L ∶ x + a2 = a1 + a2, xa2 = 0} halmazon definiálható egy összeadás és

egy szorzás művelet, melyre nézve R⟨1,2⟩ egységelemes gyűrűt alkot. Ezt nevezzük

az (a⃗, c⃗) keret koordinátagyűrűjének. Mindez akkor is érvényben marad, ha m = 3

és L Désargues-féle.

A fent felsorolt fogalmak seǵıtségével már megfogalmazható az értekezés első

fejezetének fő eredménye.

Tétel ([27, Theorem 1.1]).

(a) Legyen L korlátos háló, és legyenek m,n ≥ 2 egész számok. Tegyük fel, hogy

L moduláris és m ≥ 4. (a1)

Legyen (a⃗, c⃗) = (a1, . . . , am, c12, . . . , c1m) az L háló fesźıtő m-kerete és (u⃗, v⃗) =
(u1, . . ., un, v12, . . . , v1n) a [0, a1] intervallum fesźıtő n-kerete. Jelölje R∗ az

(a⃗, c⃗) kerethez tartozó koordinátagyűrűt. Ekkor létezik olyan S∗ gyűrű, amire

R∗ izomorf az S∗ feletti (n × n)-es mátrixok gyűrűjével. Ha

n ≥ 4, (a2)

akkor S∗ választható az (u⃗, v⃗) kerethez tartozó koordinátagyűrűnek.

(b) A tétel előző része érvényben marad akkor is, ha az (a1) és (a2) feltételeket

rendre a következőkre cseréljük

L Désargues-féle és m ≥ 3, (b1)

valamint

n ≥ 3. (b2)
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Bár a tétel megfogalmazásához nem szükséges ismerni a már emĺıtett szorzatkeret

valamint a külső és belső keret fogalmát, jegyezzük meg, hogy a tételben szereplő

(a⃗, c⃗) m-keretet nevezzük külső, az (u⃗, v⃗) n-keretet pedig belső keretnek. Érdemes

azt is megemĺıteni a szorzatkeret tényleges defińıciója nélkül, hogy az S∗ gyűrű

lényegében a szorzatkerethez tartozó koordinátagyűrűt jelöli.

Izometrikus beágyazások

Adott L alulról korlátos háló esetén a p∶L→ N∞ = {0,1, . . . ,∞} függvényt pszeudo-

rang függvénynek nevezzük, ha teljesülnek rá az alábbi feltételek:

(i) p(0) = 0;

(ii) minden a ≤ b elemre p(a) ≤ p(b);
(iii) minden a < b véges magasságú elemre p(a) < p(b);
(iv) p(a ∧ b) + p(a ∨ b) ≤ p(a) + p(b) minden a, b elemre és

(v) p(a) <∞ pontosan akkor teljesül, ha a véges magasságú elem.

A fenti defińıció véges hálók esetén megegyezik Finkbeiner [32] valamint Stern [79]

defińıciójával. Vegyük észre, hogy ha L féligmoduláris, akkor a Jordan–Hölder-

láncfeltétel közvetlen következménye, hogy a magasságfüggvény teljeśıti a fenti fel-

tételeket, ezért pszeudorang függvény.

Legyen adott egy (alulról korlátos) L háló, egy p∶L→ N∞ pszeudorang függvény

és egy G geometriai háló, melynek magasságfüggvényét jelölje h. Azt mondjuk,

hogy L izometrikusan beágyazható G-be, ha létezik olyan ϕ∶L→ G beágyazás, amire

p = h ○ ϕ teljesül, vö. Grätzer és Kiss [43].

Ahhoz, hogy megfogalmazzuk az értekezés második fejezetének fő eredményét,

amely Grätzer és Kiss [43] véges hálókra vonatkozó hasonló eredményét általánośıtja,

szükségünk van még egy fogalomra. Egy teljes hálót nevezzünk majdnem alacsony-

nak, ha minden eleme előáll véges magasságú elemek egyeśıtéseként. Például N∞ a

szokásos rendezésre nézve majdnem alacsony.

Tétel ([78, Theorem 1]). Minden majdnem alacsony pszeudorang függvénnyel ren-

delkező algebrai háló beágyazható izometrikusan egy geometriai hálóba.

Az előző tételnek megfogalmazható féligmoduláris hálókra egy közvetlen követ-

kezménye. Nevezzünk egy hálóbeágyazást fedésőrzőnek, ha megőrzi a fedés relációt.

Következmény ([78, Corollary 2]). Minden majdnem alacsony féligmodulárs al-

gebrai hálónak létezik fedésőrző beágyazása egy geometriai hálóba.
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Mal’cev feltételek

Legyen V olyan varietás, aminek a t́ıpusában szerepel a 0 konstans műveleti jel.

Ekkor azt mondjuk, hogy V kongruencia-moduláris a 0-nál, ha tetszőleges A ∈ V
algebra bármely α,β és γ kongruenciájára teljesül a következő összefüggés: [0]α ∨
(β ∧ (α ∨ γ)) = [0](α ∨ β) ∧ (α ∨ γ), vö. Chajda [11] valamint Chajda és Halaš [12].

Jegyezzük meg, hogy a kongruencia-modularitásból következik a kongruencia-modu-

laritás a 0-nál, például bármilyen csoport- vagy gyűrűvarietás mindig kongruencia-

moduláris a 0-nál, hiszen kongruencia-moduláris. Ezzel szemben a kongruencia-

modularitás nem feltétlenül következik a 0-nál vett kongruencia-modularitásból.

Az értekezés harmadik fejezetének fő eredménye Day [28] kongruencia-modula-

ritásra vonatkozó eredményének megfelelőjeként a 0-nál vett kongruencia-modulari-

tást jellemzi Mal’cev feltétellel.

Tétel ([77, Theorem 1]). Legyen V olyan varietás, aminek a t́ıpusában szerepel a 0

konstans műveleti jel. Ekkor az alábbi álĺıtások ekvivalensek:

(i) V kongruencia-moduláris a 0-nál;

(ii) létezik n természetes szám és léteznek mi (i = 0, . . . , n) háromváltozós kife-

jezések úgy, hogy V-ben teljesülnek az alábbi azonosságok:

m0(x, y, z) = 0 és mn(x, y, z) = z; (m1)

mi(x,x,0) = 0 minden i indexre; (m2)

mi(x,x, z) =mi+1(x,x, z) minden páratlan i indexre; (m3)

mi(0, z, z) =mi+1(0, z, z) minden páros i indexre. (m4)
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[31] Dedekind, R.: Über die von drei Moduln erzeugte Dualgruppe. Math. Ann. 53,

371–403 (1900) (German)

[32] Finkbeiner, D.T.: A semimodular imbedding of lattices. Canad. J. Math. 12,

582–591 (1960)

[33] Freese, R.: Projective geometries as projective modular lattices. Trans. Amer.

Math. Soc. 251, 329–342 (1979)

[34] Freese, R.: The variety of modular lattices is not generated by its finite members.

Trans. Amer. Math. Soc. 255, 277–300 (1979)

[35] Freese, R.: Free modular lattices. Trans. Amer. Math. Soc. 261, 81–91 (1980)

[36] Freese, R., Herrmann, C., Huhn, A.P.: On some identities valid in modular

congruence varieties. Algebra Universalis 12, 322–334 (1981)
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