STUDY OF SURFACE REACTIONS WITH X-RAY PHOTOELECTRON SPECTROSCOPY

Doctoral (Ph.D.) theses

Albert Oszkó

University of Szeged

Department of Solidstate and Radiochemistry

Preliminary and objectives

Technical progression in the last few decades brought about the development of a wealth of surface analytical methods, which gradually became available to researchers involved in surface science. In the beginning most of these techniques were applied to study nearly perfect surfaces under excessively clean conditions. In the possession of the knowledge and experience obtained this way, attention was drawn to problems with more practical aspects. One of the powerful techniques suitable for studying such problems is X-ray photoelectron spectroscopy (XPS).

In many cases the information provided by XPS is not available to other methods. Also, the information obtained may be used to corroborate data acquired by other methods.

The objective of this dissertation is to demonstrate the applicability of XPS in the study of solid surfaces used as catalysts, and also in the characterization of surface active sites. The discussion of measurements carried out on the adsorbed layer on surfaces was intended to display the use of XPS in the study of reactions occurring on these surfaces. These studiess may help us understand the elementary steps of catalytic reactions.

Experimental

Measurements were carried out with a Kratos XSAM 800 X-ray photoelectron spectrometer under ultrahigh vacuum (UHV) conditions. The ultimate pressure attainable by turbomolecular, iongetter and titanium sublimation pums was 2×10^{-10} mbar after the bakeout of the analyzing chamber.

Cooling of the metal single crystal was achieved by cooling with liquid nitrogen the tantalum wires spotwelded to the edge of the crystal. The samples were heated by electric current flowing through tantalum and tungsten wires fixed to the side of and below the crystals.

Catalytic reactions and heat-treatments of wafers pressed from supported and unsupported powder catalysts were performed in the flowing system of the reaction chamber directly attached to the analyzing chamber via a gate valve.

Novel results

1. Characterization of surfaces used as catalysts

1.1. On the spectra of MoO₃ and unsupported alkali metal molybdates the Mo(3d_{5/2}) binding energy was found the highest (233.0 eV) in MoO₃. The binding energy continuously decreased from Li₂MoO₄ (232.7 eV) to Rb₂MoO₄ and Cs₂MoO₄ (231.8 eV). The decrease of the binding energies can be explained by the increase of bonding lengths, which in turn is the consequence of the growing alkali metal cation size. There were only minor changes in the Mo(3d_{5/2}) binding energies on the spectra of SiO₂ supported MoO₃ and alkali metal molybdates. A possible reason is that the influence of cation on the anion is negligible on the support. The binding energies of the Mo(3d) doublets were nearly the same in K₂MoO₄/SiO₂ catalysts prepared in different ways.

1.2. On the spectra of WO₃ the W(4f_{7/2}) binding energy was nearly 1 eV higher (35.95 eV) than that measured on K_2WO_4 (35.0 eV). The W(4f_{7/2}) binding energies measured in K_2WO_4 on various supports as well as on WO₃/SiO₂ (35.7-36.05 eV) were closer to that found in WO₃ than to the value detected in K_2WO_4 . From this it follows that the support has only minor effect on the binding energy of electrons in tungsten atoms. Taking as unit the W(4f) peak area on the XP spectrum of the K_2WO_4/SiO_2 catalyst, we determined the number of tungsten atoms in the different samples. The number of W atoms decreased in the K+WO₃/SiO₂ > K_2WO_4/TiO_2 > WO_3/SiO_2 > K_2WO_4/Al_2O_3 > K_2WO_4/SiO_2 > K_2WO_4/MgO order. The K(2p)/W(4f) peak area ratios were also calculated for the potassium containing catalysts. The K/W ratio varied between 1.4-3 with the exception of K+WO₃/SiO₂; in this latter case its calculated value was cca. 25. From the W(4f_{7/2}) binding energy measured on this catalyst we concluded that doping with potassium does not lead to K_2WO_4 formation.

1.3. The XP spectra of oxidized (473 K, 30 min) Rh/TiO₂ revealed that a part of surface Rh is in the +3 oxidation state. The rest of the metal atoms is less oxidized. The ratio of the number of atoms in the two states is about 3:1. Following the reductions at increasing temperatures (473, 573 and 673 K, 1 hour) the binding energies of the Rh(3d_{5/2}) orbitals and full widths at half maximum (FWHM) of the peak decreased, but they did not reach the values characteristic of metallic Rh even after the reduction at the highest temperature. There are practically no changes in the Ti(2p) binding energies and FWHMs of the TiO₂ support. The decrease of the Rh(3d)

peak areas with the increasing reduction temperature is the consequence of the decrease in dispersity.

1.4. We studied the substitution of Al³⁺ ions for Fe³⁺ ions in Keggin ion salts with XP spectrometry. We demonstrated that in the sample containing only iron, Fe³⁺ ions are present possibly in FeO(OH) form. On the Fe(2p) spectra of the samples containing both iron and aluminium, a new shoulder – originating from Fe³⁺ ions – was detected on the high binding energy side of the photoelectron peak. The intensity of the shoulder increased with increasing iron content. Based on literature data we came to the conclusion that the appearance of the shoulder can be explained by the incorporation of Fe³⁺ ions into the octahedral positions of the Keggin ion salt.

1.5. We recorded the XP spectra of unsupported and ZSM-5 supported Mo-based catalysts. We established that supported molybdenum-oxide catalysts are reduced during the induction period that precedes the conversion of methane under non-oxidative conditions. Comparing the Mo(3d) and C(1s) spectra to those obtained on Mo₂C-containing catalysts prepared in different ways, we concluded that part of the MoO₃ was transformed into Mo₂C.

Characterization of catalyst surface changes due to adsorption and catalytic reactions

- 2.1. In the interaction of SiO₂ and ZSM-5 supported Mo₂C catalysts with carbon dioxide we established that CO₂ reacts with Mo₂C and as a consequence the latter gets partially oxidized. The complete oxidation into MoO₃ was not achieved even after several hours of interaction at the highest temperature (1073 K) applied. On both supports the share of the Mo⁶⁺ oxidation state was the greatest in the 973-1073 K temperature range. The reaction rate was higher on the SiO₂ supported catalysts than on the zeolite supported ones. The Mo(3d) peak areas of the XP spectra obtained on the SiO₂ supported samples gradually increased with the increase of reaction time. The reason of this is very likely the increase of Mo dispersity.
- 2.2. After the introduction of 12.5 % $C_3H_8 + 25$ % CO_2 /Ar gas mixture onto the Mo_2C/SiO_2 catalyst at 873 K, the Mo(3d) spectra only slightly changed. We explained the slow rate of changes by the fast reaction of propane and Mo-O groups formed in the CO_2+Mo_2C reaction.

- 2.3. The appearance of the XP peak characteristic of iodine atom $(I_{(a)})$ after the adsorption and heating of hydrocarbon halogenide layers on Mo₂C/Mo(111) or Mo₂C/Mo(100) surfaces was attributed to the dissociation of the molecule.
- 2.3.1 Methyl iodide adsorbed molecularly on the $Mo_2C/Mo(111)$ surface at 90-100 K; the dissociation of the molecule set on around 140 K. The presence of the molecularly bonded state, characterized by 620.1 eV binding energy, up to 300-350 K may be related to the fact that a fraction of adsorbed CH_3I is bonded strongly to the surface.
- 2.3.2 Methylene iodide adsorbed molecularly on Mo₂C/Mo(111) independently of the exposure. The dissociation of the molecule began at 190 K, after the desorption of the condensed layer. The dissociation was complete at around 250 K.
- 2.3.3 Ethyl iodide adsorbed molecularly on the $Mo_2C/Mo(111)$ surface at 90 K. The dissociation of C_2H_5I characterized by the development of a peak at 618.9 eV became obvious from 190 K. The 620.0 eV peak due to molecularly adsorbed C_2H_5I , could not be detected above 275 K.
- 2.3.4 Photoelectron spectra taken after the adsorption of propyl iodide on Mo₂C/Mo(100) surface at 100 K refer to molecular adsorption of the compound. Between 160-260 K the intensity of the peak originating from molecularly adsorbed C₃H₇I decreased. At the same time the peak broadened and its binding energy shifted to lower values. Above 260 K a single peak at 618.6 eV could be detected; this peak is due to I_(a) species formed in the dissociation of C₃H₇I.
- 2.3.5 According to measured binding energies, allyl iodide adsorbs partially dissociatively at low exposures on Mo₂C/Mo(100) surface at 100 K. The shift of the binding energies at higher surface concentrations is due to the formation of a molecularly adsorbed layer.
- 2.3.6 Independently of the exposure phenyl iodide adsorbed molecularly on $Mo_2C/Mo(100)$ at 100 K. The dissociation temperature of the molecule depended on the coverage. Exposing the surface to 2 L phenyl iodide the XP peak assigned to the dissociation of the molecule appeared at 120 K, while at 4 L exposure it developed only at 150 K.
- 2.4 Exposing the K + Mo₂C/Mo(100) surface to CO₂ at 100 K led to the increase of the work function at all K coverages. Heating the co-adsorbed layer to 300 K also increased the work function. This increase was attributed to the disproportionation of negatively charged CO₂ and to the species formed in the decomposition of carbonate groups. Adsorbed potassium significantly modified the adsorption and reactivity of

CO₂: it bonded weakly and reversibly on clean Mo₂C/Mo(100) surface. At low potassium coverage ($\Theta_K = 0,1$ ML) we could distinguish two kinds of adsorbed CO₂ states: $CO_{2(a)}^-$ and linearly adsorbed CO₂. At higher coverage ($\Theta_K = 1$ ML) the formation of carbonate species after CO₂ exposure started already at 115 K.

Methyl and ethyl iodide adsorbed molecularly both on clean and oxygen precovered Rh(111) at 100 K regardless of the exposure. Coadsorbed oxygen had only a minor effect on the uptake. The surface oxygen layer significantly enhanced the thermal stability of methyl and ethyl iodide: the dissociation of the molecules took place at temperatures 50-100 K higher than observed on clean Rh(111) surface. We think the reason of this phenomenon is the blocking of surface active sites by oxygen atoms.

Practical aspects

2.5

The results obtained are belong primarily to the scope of fundamental research. However, the knowledge of the elementary composition of catalytic surfaces, and that of the changes of these surfaces due to catalytic reactions may help us develop more active and selective catalysts. The exploration of the reactions of molecules adsorbed on metal single crystal surfaces at low temperature, and that of the behaviour of reaction intermediates may contribute to the understanding of how catalysts work.

List of publications

Publications related to the dissertation

- F. Solymosi, L. Bugyi, A. Oszkó: Generation of C₂H₅ Species: Thermal and Photoinduced Dissociation of C₂H₅I on Rh(111)
 Langmuir 12, (1996) 4145-4152
- L. Bugyi, A. Oszkó, F. Solymosi: Oxidation of Adsorbed CH₃ and C₂H₅ Species on Rh(111) [Effects of coadsorbed species on the chemistry of CH₃I on Rh(111)] Journal of Catalysis 159, (1996) 305-312
- F. Solymosi, J. Cserényi, A. Szőke, T. Bánsági, A. Oszkó: Aromatization of Methane over Supported and Unsupported Mo-Based Catalysts *Journal of Catalysis* 165, 150-161, (1997)
- F. Solymosi, L. Bugyi, A. Oszkó: Formation and Reactions of CH₃ Species over Mo₂C/Mo(111) Surface
 Catalysis Letters 57 (1999) 103-107
- A. Oszkó, J. Kiss, I. Kiricsi: XPS Investigations on the Feasibility of Isomorphous Substitution of Octahedral Al³⁺ for Fe³⁺ in Keggin Ion Salts Phys. Chem. Chem. Phys. 1 (1999) 2565-2568
- F. Solymosi, L. Bugyi, A. Oszkó, I. Horváth: Generation and Reactions of CH₂ and C₂H₅ Species on Mo₂C/Mo(111) Surface
 Journal of Catalysis 185 (1999) 160-169
- L. Bugyi, A. Oszkó, F. Solymosi: Spectroscopic Study on the Formation of CO₂⁻ on K-promoted Mo₂C/Mo(100) Surface
 Surface Science 461 (2000) 177-190

- A. Erdőhelyi, K. Fodor, R. Németh, A. Hancz, A. Oszkó: Partial Oxidation of Methane on Silica Supported Different Alkali Metal Molybdates *Journal of Catalysis* 199 (2001) 328-337
- A. Erdőhelyi, R. Németh, A. Hancz, A. Oszkó: Partial Oxidation of Methane on Potassium Promoted WO₃/SiO₂ and on K₂WO₄/SiO2
 Applied Catalysis A: General 211 (2001) 109-121
- F. Solymosi, R.Németh, A. Oszkó: The Oxydative Dehydrogenation of Propane with CO₂ over Supported Mo₂C Catalyst
 Studies in Surface Science and Catalysis 136 (2001) 339-344
- É. Novák, K. Fodor, T. Szailer, A. Oszkó, A. Erdőhelyi: CO₂ Hydrogenation on Rh/TiO₂ Previously Reduced at Different Temperatures Topics in Catalysis 20 (2002) 107-117
- F. Solymosi, A. Oszkó, T. Bánsági, P. Tolmacsov: Adsorption and Reaction of CO₂ on Mo₂C Catalyst
 Journal of Physical Chemistry, in press

Other publications

- Z. Homonnay, A. Vértes, Á. Cziráki, A. Oszkó, Gy. Menczel, L. Murgás: Mössbauer Study of Al₆(Fe, Mn) Formation in Al-rich Al-Fe-Mn Alloys J. Radioanal. Nucl. Chem. Articles 139 (1990) 127-134
- F. Solymosi, J. Raskó, E. Papp, A. Oszkó, T. Bánsági: Catalytic Decomposition and Oxidation of CH₃Cl on Cr₂O3-doped SnO₂
 Applied Catalysis A: General 131 (1995) 55-72
- G. Galbács, J. Sneider, A. Oszkó, F. Vanhaecke, L. Moens: X-ray Photoelectron Spectroscopic and Atomic Force Microscopic Studies of Pyrolytically Coated Graphite and Highly Oriented Pyrolytic Graphite Used for Electrothermal Vapourization"
 Journal of Analytical Atomic Spectroscopy 12 (1997) 951-955
- P. Fejes, J. B. Nagy, J. Halász, A. Oszkó: Heat-treatment of Isomorphously Substituted ZSM-5 and its Structural Consequences
 An X-ray Diffraction, ²⁹Si MAS-NMR, XPS and FT-IR Spectroscopy Study Applied Catalysis A: General 175 (1998) 89-104
- 5. Fejes Pál, Kiricsi Imre, Kukovecz Ákos, Kovács Kristóf, Lázár Károly, Marsi István, Oszkó Albert és Bánvölgyi György: Vas beépítése szodalitok szerkezetébe és átalakításuk más, vasat tartalmazó zeolitféleségekké Magyar Kémiai Folyóirat 107 (2001) 107-115
- Z. Kónya, J. Kiss, A. Oszkó, A. Siska, I. Kiricsi: XPS Characterization of Catalysts during Production of Multiwalled Carbon Nanotubes Phys. Chem. Chem. Phys. 3 (2001) 155-158
- P. Fejes, I. Kiricsi, K. Kovács, K. Lázár, I. Marsi, A. Oszkó, A. Rockenbauer, Z. Schay: Incorporation of Iron in Sodalite Structures and their Transformation into Other Iron Containing Zeolites Synthesis of Fe-NaA (LTA)
 Applied Catalysis A: General 223 (2002) 147-160

Presentatations and posters

- G. Galbács, F. Vanhaecke, J. Sneider and A. Oszkó: Study of Topographical and Compositional Changes on Pyrolythic Graphite Sample Holder Surfaces Used in ETV-ICP Spectroscopy
 - European Winter Conference on Plasma Spectrochemistry, Gent, January 1997
- F. Solymosi, L. Bugyi, A. Oszkó: Methane Conversion into Benzene: Reaction of CH₂, CH₃ and C₂H₅ Species on Mo₂C/Mo(111) Surface
 16th Meeting of the North American Catalysis Society, Boston (Massachusetts), USA May 30 June 4, 1999
- A. Erdőhelyi, R. Németh, A. Hancz, A. Oszkó: Partial Oxidation of Methane on K Promoted WO₃/SiO₂ and on K₂WO₄/SiO₂ Catalysts
 12th International Congress on Catalysis
 Granada, Spain, July 9-14, 2000
- A. Oszkó, R. Németh, J. Raskó, A. Erdőhelyi: Spectroscopcic Characterization of Alkali Metal Molybdates
 XIVthInternational Symposium on the Reactivity of Solids
 Budapest, Hungary, August 27-31, 2000
- E. Nigro, F. Testa, R. Aiello, P. Lentz, A. Fonseca, A. Oszkó, P. Fejes, A. Kukovecz, I. Kiricsi, J. B. Nagy: Synthesis and Characterization of Co-containing Zeolites of MFI Structure
 13th International Zeolite Conference
 Montpellier, France, 2001
- F. Solymosi, R. Németh, A. Oszkó: The Oxidative Dehydrogenation of Propane with CO₂ over Supported Mo₂C Catalyst
 6th Natural Gas Conversion Conference
 Girdwood, Alaska, June 2001