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1 Introduction

Various observations (galaxy rotation curves, cosmic microwave back-
ground, Ia supernovae) confirm that the universe contains dark matter
and dark energy. It was once assumed that dark matter consists of com-
pact, astrophysical objects (MACHOs) distributed within galactic halos,
as well as asteroid-like primordial black holes. Observations developed
to detect these objects, such as gamma-ray bursts, microlensing, X-ray
pulsar lensing, and gravitational wave measurements, have not confirmed
that they can constitute the entire amount of dark matter [1, 2]. Experi-
ments relying on the participation of dark matter in weak interaction also
ended unsuccessfully concerning the observation of dark matter particles
[3]-16]-

Dark energy, associated with the accelerating expansion of the uni-
verse, could be a cosmological constant A, which has been proposed to
represent the universe vacuum energy density. However, the measured
value of the cosmological constant A differs by orders of magnitude from
the prediction given by quantum field theory [7, 8]. Hence, the origin
of such a constant remained unclear. Numerous models have been de-
veloped to reproduce the measurements related to the dark energy. For
example, in Unified Dark Energy and Unified Dark Matter theories, dark
matter and dark energy are identified with different states of an exotic
fluid [9, 10].

Modified theories of gravity altering general relativity have been
introduced to explain the observational results linked to dark matter
and dark energy. The simplest representative of modified theories of
gravity is the Ostrogradsky-instability-free Horndeski theory, which ex-
tends the metric degrees of freedom with a scalar field. These theories
are constrained by observations. Due to the restrictions obtained from
the GW170817 gravitational wave and GRB170817A gamma-ray burst
events, the Kinetic Gravity Braiding subclass of Horndeski theory pro-



vides a viable model [11, 12], which also includes the k-essence theory
appearing in the title of the dissertation [13].

Alongside the problem of identifying dark matter and dark energy,
there has also been a growing demand for a theory that unifies the four
fundamental interactions in physics. This requires a quantum field the-
ory reformulation of the gravitational interaction currently described by
general relativity, known as the theory of quantum gravity. Neverthe-
less, general relativity is not renormalizable [14, 15]. Considering quan-
tum field theory, the ’correct’ classical theory of gravity — regardless
it is the general relativity or a modified gravity model — may originate
from a low-energy effective field theory (EFT) approximation of a yet-to-
be-formulated quantum gravity theory [16, 17]. From this perspective,
modified theories of gravity, such as Kinetic Gravity Braiding and the
k-essence theory, can be regarded as theories containing higher-order
corrections to the general relativity [18, 19].

The derivation of spacetimes containing black holes or other objects
and analyzing their stability, the examination of gravitational waves fo-
cusing on the ringdown phase, and the fitting of cosmological models to
observational data without material dark matter and dark energy all pro-
vide opportunities for investigating new theories and testing their viabil-
ity [20]-[22]. The derivation and study of exact solutions in the individual
theories requires complex and intricate calculations. To make the calcu-
lations more manageable, new mathematical techniques have emerged,
one of which concentrates on the decomposition of the 4-dimensional
spacetime. From the perspective of this dissertation, the spacetime de-
composition methods to be highlighted are the 1 + 1 + 2 dimensional
covariant formalism introducing kinematic quantities [23, 24], and the
orthogonal s+ 1+ 1 dimensional double foliation employing metric vari-
ables [25]. The latter is based on the 3+ 1 dimensional ADM (Arnowitt—
Deser—Misner) formalism developed for the Hamiltonian formulation of
gravity [26].



2 DMotivations and goals

Linear order perturbations of spherically symmetric and static space-
times in Horndeski theory and in its extension the Gleyzes—Langlois—
Piazza—Vernizzi (GLPV) theory [28] were analized in Ref. [27]. The
perturbation variables and equations were decomposed into even- and
odd-parity sectors. The perturbation equations were derived from an
EFT action using the orthogonal s + 1 + 1 dimensional spacetime de-
composition (s = 2). An additional Helmholtz-like decomposition of
the two-dimensional vectors and the metric tensor was also applied. A
conformal and radial unitary gauge was chosen, reducing the number of
odd-parity perturbation variables from three to two. By introducing a
Lagrange multiplier and spherical harmonics, two dynamical equations
were derived for the odd-parity variables. Thanks to a suitable variable
transformation a master equation was obtained for the odd-parity grav-
itational sector. Similar calculations were planned to be carried out for
the even-parity sector. There was a constraint during the gauge fixing
namely, that the orthogonality of the 2+ 1+ 1 spacetime decomposition
had to be maintained. This led to an ambiguous gauge fixing, as one of
the even-parity perturbation variables contained an arbitrary function.

For the reasons mentioned above, it is necessary to generalize the
orthogonal 2+ 1+ 1 dimensional spacetime decomposition, aiming to de-
velop a mathematical formalism, where the 3-dimensional hypersurfaces
are not orthogonal to each other. Returning to the problem described
in Ref. [27], one of the goals of generalizing the orthogonal 2 + 1+ 1
formalism is to achieve an unambiguous gauge fixing. The Hamiltonian
formalism of general relativity was discussed in Ref. [29] using the or-
thogonal s + 1 + 1 decomposition introduced in Ref. [25]. It is also
worthwhile to derive the canonical equations of general relativity using
the nonorthogonal 2 + 1 + 1 formalism.

Ref. [27] includes the derivation of the field equations for Horndeski



theory using the EFT approximation in the case of spherically symmetric
and static background. The Horndeski Lagrangians L, LY and LI
were expressed in terms of variables used in the orthogonal 2 +1 + 1
spacetime decomposition. The functional dependence of the EFT action
were chosen accordingly, and the formal field equations were derived
from this EFT action. However, Ref. [27] does not address the analysis
of spacetime solutions. Therefore, by applying the nonorthogonal 2+1+1
dimensional spacetime decomposition and choosing conformal and radial
unitary gauge, it is useful to determine the field equations for spherically
symmetric and static backgrounds in the case of an EFT action and to
compare them with the results of [27]. It is also worth considering the
derivation of spacetime solutions in the viable Horndeski subtheories,
like in k-essence theories based on the obtained field equations.

Ref. [30] revealed that the energy-momentum tensor of a minimally
coupled Klein-Gordon scalar field with a timelike gradient can be de-
scribed as an ideal fluid. The metric’s 1 + 3 decomposed form was used
during these calculations. The gradient of the scalar field was identified
with the timelike unit vector u® used in the spacetime decomposition.
It was proven that the resulting energy-momentum tensor with isotropic
pressure p”’ " and energy density p©'F can equivalently be derived from
an Ly = pP’F or an Ly = —pF Lagrangian, provided that the scalar
field is either massless and free (with V (¢) = 0 and X = 0,¢0%¢/2 # 0)
or purely potential (with X = 0 and V (¢) # 0). The characteristics of
the energy-momentum tensor associated with a minimally coupled scalar
field having a spacelike gradient were studied in Ref. [31]. The formulae
(4) and (5) of Ref. [31], derived by using the 3 4+ 1 spacetime decom-
position and relied on a scalar field with a timelike gradient, contain
errors. Ref. [32] pointed out that the timelike unit vector u® cannot be
associated with spacelike or null scalar field gradient. The equations (4)
and (5) of Ref. [31] with regard to the Klein—Gordon scalar field were
corrected in Ref. [32], and it was demonstrated that when the scalar



field gradient is spacelike or null, the corresponding energy-momentum
tensor describes an imperfect fluid.

Since an imperfect fluid features different tangential and radial pres-
sure components, it may be necessary to use the 2+ 1+ 1 spacetime de-
composition. Hence, it is recommended to revisit the energy-momentum
tensor of the minimally coupled scalar field with timelike, spacelike, and
null scalar field gradients with the application of the 2+ 1+ 1 decompo-

sition.

3 Thesis points

T1 I developed the formalism of the nonorthogonal 2 +1+1
spacetime decomposition. With the help of this formalism,
I achieved an unambiguous gauge fixing for the description of
spherically symmetric, static spacetime perturbations in Horn-
deski theory. Additionally, I derived the canonical equations
of motion for general relativity within the framework of this
formalism. (publications: A1, A2, A3, A4)

T1/a For the nonorthogonal double foliation of the 4-dimensional
spacetime, I determined the (n%, m®) and (k%, I*) bases adapted to the
families of 3-dimensional hypersurfaces characterized by ¢t =const. (de-
noted as S;) and x =const. (denoted as 9, respectively, along with
the relations between the two bases using duality relations. The trans-
formation between the two bases corresponds to a hyperbolic rotation,
where the rapidity is proportional to the metric variable A'. When the
foliation is orthogonal, A = 0. I gave the forms of the 4-dimensional
metric, together with the evolution vectors (9/9t)" and (9/9x)" in both
bases. I derived the geometric quantities characterizing the embedding
of the 2-dimensional surface X, into the 4-dimensional spacetime in
both the (n%, m®) and (k% I*) bases. In the formalism, the embedding



of ¥4y is determined by four extrinsic curvatures (K, L%, Lap, K7p),
two normal fundamental forms (K,, £,), two additional forms (K%, L),
four normal fundamental scalars (K, £L*, £, K*), and four accelerations
(aq, b2, by, al).

T1/b I determined the 2- and 3-dimensional vorticities of the hy-
persurface normals n® and [, and of the vectors m® and k%, through
calculating Lie brackets of the bases and considering the Frobenius theo-
rem. The projections of the 3-dimensional vorticities of m® and k* along
the normals are related to the forms £} and K, therefore, these forms do
not exhibit the symmetry properties of the normal fundamental forms.

T1/c Iderived the dependence of the embedding variables expressed
in the (n*, m®) and (k% {*) bases from the metric variables and their
derivatives.

T1/d I derived gauge transformation rules for the even-parity (d¢,
ON, M, N, P, V, A, B) and odd-parity (Q, W, C) perturbation vari-
ables of spherically symmetric, static background within the framework
of nonorthogonal 2 + 1 + 1 spacetime decomposition (similarly to Ref.
[27]). I chose radial unitary and conformal gauge by fixing S(E =0 and
B= 0, C = 0. Then I achieved an unambiguous gauge fixing by imposing
an additional condition: P = 0.

T1/e I expressed the Ricci scalar in terms of the quantities used
in the (n% m?) and (k% {*) bases for the Hamiltonian formulation of
gravity. I found that, for studying the time evolution of the canonical
variables, it is advantageous to continue the calculations in the (n?,
m®) basis. To express the Lagrangian in Liouville form, I formulated
the Hamiltonian and the two momentum constraints. I replaced the
embedding variables K, K% K with the canonical momenta 7, p,,
p, which were then substituted back into the Lagrangian. I determined
the equations of motion for the canonical coordinates gqp, M*, M. 1
derived the equations of motion for the canonical momenta 7, p,, p by

calculating the Poisson brackets defined for the canonical pairs.



T2 1Iderived the EFT field equations using the nonorthogonal
2 + 1+ 1 dimensional spacetime decomposition. I showed that
in the nonminimally coupled k-essence theory, the
Schwarzschild solution emerges exclusively from the general
relativity limit of the theory. The derived spacetime solutions
can contain a singularity without a horizon, or a black hole
with one/two horizons, or a black hole with a logarithmic-type
singularity in addition to the central singularity, which located
either outside the event horizon or between the two horizons.
(publication: A6)

T2/a 1 expressed the Horndeski theory Lagrangian contributions
LY LY L in terms of the quantities introduced when using either (n?,
m®) or (k%, I*) bases in the formalism of the nonorthogonal 2 + 1 + 1
spacetime decomposition. I found that due to the radial unitary gauge,
the equations take a simpler form when using the (k%, [*) basis.

T2/b I assumed that the EFT action depends functionally on the
variables N, N, M, K*, K*, L, L, A\, R, ¢ at first order, which appear

in the decomposed form of the Lagrangian L

, L and LI, when using
the (k“, 1*) basis. Contrarily, the action depends on the variables N,
N, M, K, K, L*, L*, \*, R, ¢ when using the (n®, m®) basis. I derived
the field equations for the spherically symmetric and static background
by varying the EFT action, employing both the (n*, m®) and (k%, I%)
bases.

T2/c 1 specialized the EFT field equations to nonminimally cou-
pled k-essence theories by choosing G5 (¢, X), Gs (¢, X) = 0,
G4 (¢, X) =G4 (¢) and G5 (¢, X) = 0. I showed that the Schwarzschild
solution can only be derived from the Einstein—Hilbert action within
this subclass. An additional simplification is achieved by imposing the
condition N = M~! on the metric functions. I derived the equations
governing the functions 1\72, GQX, @2¢ and G4¢. These are necessary for
finding the spacetime solutions. When a specific form of Gy (¢) is given,



the remaining functions can be computed. The given Gy (¢) fixes the
theory.

T2/d First, I considered the case, where G4 (¢) = ¢* = r®, with
o > 0. When a = 0, I chose G4 (¢) = (167G)"". Depending on the
value of the integration constant A appearing during the integration of
the N? metric component, I obtained the Schwarzschild (A = 0) and the
Schwarzschild-(anti) de Sitter solutions (A # 0). I have found different
spacetime solutions depending on the signs of the integration constants
A and @ in the case of & = 1. The spacetime contains a black hole
with two horizons for A > 0 and @ < 0. The spacetime contains a
black hole with a single horizon, if A > 0, @ > 0, or A < 0, Q < 0,
while the spacetime contains a naked singularity when A < 0, Q > 0.
In case of @ > 1, I identified different solutions affected by the signs of
the integration constants A and @. I employed Descartes’ rule of signs
to establish these results. If A = 0 while C # 0, the spacetime contains
a black hole with a single horizon. Regarding the number of horizons,
I found similar results as for = 1. Given that A # 0 and C' # 0, the
spacetime contains the following objects: A > 0, C' < 0 - a black hole
with two horizons; A > 0, C > 0 or A < 0, C < 0 - a black hole with
one horizon; A < 0, C' > 0 - a naked singularity. None of the derived
spacetime solutions are asymptotically flat, even if A = 0.

T2/e Upon choosing G4 (¢) = B (¢ + A), I derived additional space-
time solutions. After fixing one of the integration constants, I plotted
the function N? and used its disappearance to determine the locations
of the event horizons. In the case of Bm = 1, if Am? < 0, the spacetime
contains a black hole with one horizon, whereas for Am? > 0, a singu-
larity without a horizon appears at » = 0. When choosing Bm = —1,
if Am? < 0, in addition to the single horizon concealing the central sin-
gularity, a horizonless singularity also emerges. If Am? > 0, the central
singularity is covered by two horizons, and a logarithmic type singular-

ity is also present between the horizons. When choosing Am? = 1, the



central singularity is always hidden behind a horizon, and for Bm < 0,

an additional logarithmic-type singularity appears outside the horizon.

T3 I derived the energy-momentum tensor of the minimally
coupled Klein—Gordon scalar field and the general scalar field
defined by L (¢, X), using the 2+ 1+ 1 decomposed form of the
4-dimensional metric. In either case, the following apply to
the energy-momentum tensors: perfect fluid if the scalar field
gradient is timelike; type I imperfect fluid if the scalar field
gradient is spacelike; type II imperfect fluid if the scalar field
gradient is null. In addition, I determined the energy condi-

tions for the energy-momentum tensors. (publication: A5)

T3/a If the gradient of the Klein-Gordon scalar field is timelike,
the weak energy condition implies —V.¢Vh > —2V, the dominant
energy condition V > 0, and the strong energy condition —V.¢V¢ > V.
All energy conditions are satisfied if 0 <V < —VepVEp.

T3/b If the Klein-Gordon scalar field has a spacelike gradient,
I found the following energy conditions for the type I imperfect fluid
energy-momentum tensor: i) weak: VepVep > —2V; ii) dominant:
V > 0; iii) strong: V < 0; iv) all: V = 0, the latter implies V,$V%¢ > 0.
The derived energy-momentum tensor can be interpreted as a superpo-
sition of the energy-momentum tensors corresponding to an ideal fluid
and two radiation (null dust). In the case of spherical symmetry, the
null dusts represent an ingoing and an outgoing radiation.

T3/c Considering a Klein—Gordon scalar field with null gradient,
the weak, dominant, and strong energy conditions imply V (¢) = 0
for the type II imperfect fluid energy-momentum tensor, and then the

energy-momentum tensor of the scalar field represents a null dust.
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