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1 Introduction

Various observations (galaxy rotation curves, cosmic microwave back-

ground, Ia supernovae) con�rm that the universe contains dark matter

and dark energy. It was once assumed that dark matter consists of com-

pact, astrophysical objects (MACHOs) distributed within galactic halos,

as well as asteroid-like primordial black holes. Observations developed

to detect these objects, such as gamma-ray bursts, microlensing, X-ray

pulsar lensing, and gravitational wave measurements, have not con�rmed

that they can constitute the entire amount of dark matter [1, 2]. Experi-

ments relying on the participation of dark matter in weak interaction also

ended unsuccessfully concerning the observation of dark matter particles

[3]-[6].

Dark energy, associated with the accelerating expansion of the uni-

verse, could be a cosmological constant Λ, which has been proposed to

represent the universe vacuum energy density. However, the measured

value of the cosmological constant Λ di�ers by orders of magnitude from

the prediction given by quantum �eld theory [7, 8]. Hence, the origin

of such a constant remained unclear. Numerous models have been de-

veloped to reproduce the measurements related to the dark energy. For

example, in Uni�ed Dark Energy and Uni�ed Dark Matter theories, dark

matter and dark energy are identi�ed with di�erent states of an exotic

�uid [9, 10].

Modi�ed theories of gravity altering general relativity have been

introduced to explain the observational results linked to dark matter

and dark energy. The simplest representative of modi�ed theories of

gravity is the Ostrogradsky-instability-free Horndeski theory, which ex-

tends the metric degrees of freedom with a scalar �eld. These theories

are constrained by observations. Due to the restrictions obtained from

the GW170817 gravitational wave and GRB170817A gamma-ray burst

events, the Kinetic Gravity Braiding subclass of Horndeski theory pro-
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vides a viable model [11, 12], which also includes the k-essence theory

appearing in the title of the dissertation [13].

Alongside the problem of identifying dark matter and dark energy,

there has also been a growing demand for a theory that uni�es the four

fundamental interactions in physics. This requires a quantum �eld the-

ory reformulation of the gravitational interaction currently described by

general relativity, known as the theory of quantum gravity. Neverthe-

less, general relativity is not renormalizable [14, 15]. Considering quan-

tum �eld theory, the 'correct' classical theory of gravity � regardless

it is the general relativity or a modi�ed gravity model � may originate

from a low-energy e�ective �eld theory (EFT) approximation of a yet-to-

be-formulated quantum gravity theory [16, 17]. From this perspective,

modi�ed theories of gravity, such as Kinetic Gravity Braiding and the

k-essence theory, can be regarded as theories containing higher-order

corrections to the general relativity [18, 19].

The derivation of spacetimes containing black holes or other objects

and analyzing their stability, the examination of gravitational waves fo-

cusing on the ringdown phase, and the �tting of cosmological models to

observational data without material dark matter and dark energy all pro-

vide opportunities for investigating new theories and testing their viabil-

ity [20]-[22]. The derivation and study of exact solutions in the individual

theories requires complex and intricate calculations. To make the calcu-

lations more manageable, new mathematical techniques have emerged,

one of which concentrates on the decomposition of the 4-dimensional

spacetime. From the perspective of this dissertation, the spacetime de-

composition methods to be highlighted are the 1 + 1 + 2 dimensional

covariant formalism introducing kinematic quantities [23, 24], and the

orthogonal s+1+1 dimensional double foliation employing metric vari-

ables [25]. The latter is based on the 3+1 dimensional ADM (Arnowitt�

Deser�Misner) formalism developed for the Hamiltonian formulation of

gravity [26].
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2 Motivations and goals

Linear order perturbations of spherically symmetric and static space-

times in Horndeski theory and in its extension the Gleyzes�Langlois�

Piazza�Vernizzi (GLPV) theory [28] were analized in Ref. [27]. The

perturbation variables and equations were decomposed into even- and

odd-parity sectors. The perturbation equations were derived from an

EFT action using the orthogonal s + 1 + 1 dimensional spacetime de-

composition (s = 2). An additional Helmholtz-like decomposition of

the two-dimensional vectors and the metric tensor was also applied. A

conformal and radial unitary gauge was chosen, reducing the number of

odd-parity perturbation variables from three to two. By introducing a

Lagrange multiplier and spherical harmonics, two dynamical equations

were derived for the odd-parity variables. Thanks to a suitable variable

transformation a master equation was obtained for the odd-parity grav-

itational sector. Similar calculations were planned to be carried out for

the even-parity sector. There was a constraint during the gauge �xing

namely, that the orthogonality of the 2+1+1 spacetime decomposition

had to be maintained. This led to an ambiguous gauge �xing, as one of

the even-parity perturbation variables contained an arbitrary function.

For the reasons mentioned above, it is necessary to generalize the

orthogonal 2+1+1 dimensional spacetime decomposition, aiming to de-

velop a mathematical formalism, where the 3-dimensional hypersurfaces

are not orthogonal to each other. Returning to the problem described

in Ref. [27], one of the goals of generalizing the orthogonal 2 + 1 + 1

formalism is to achieve an unambiguous gauge �xing. The Hamiltonian

formalism of general relativity was discussed in Ref. [29] using the or-

thogonal s + 1 + 1 decomposition introduced in Ref. [25]. It is also

worthwhile to derive the canonical equations of general relativity using

the nonorthogonal 2 + 1 + 1 formalism.

Ref. [27] includes the derivation of the �eld equations for Horndeski
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theory using the EFT approximation in the case of spherically symmetric

and static background. The Horndeski Lagrangians LH
2 , LH

3 and LH
4

were expressed in terms of variables used in the orthogonal 2 + 1 + 1

spacetime decomposition. The functional dependence of the EFT action

were chosen accordingly, and the formal �eld equations were derived

from this EFT action. However, Ref. [27] does not address the analysis

of spacetime solutions. Therefore, by applying the nonorthogonal 2+1+1

dimensional spacetime decomposition and choosing conformal and radial

unitary gauge, it is useful to determine the �eld equations for spherically

symmetric and static backgrounds in the case of an EFT action and to

compare them with the results of [27]. It is also worth considering the

derivation of spacetime solutions in the viable Horndeski subtheories,

like in k-essence theories based on the obtained �eld equations.

Ref. [30] revealed that the energy-momentum tensor of a minimally

coupled Klein�Gordon scalar �eld with a timelike gradient can be de-

scribed as an ideal �uid. The metric's 1 + 3 decomposed form was used

during these calculations. The gradient of the scalar �eld was identi�ed

with the timelike unit vector ua used in the spacetime decomposition.

It was proven that the resulting energy-momentum tensor with isotropic

pressure pPF and energy density ρPF can equivalently be derived from

an L1 = pPF or an L2 = −ρPF Lagrangian, provided that the scalar

�eld is either massless and free (with V (ϕ) = 0 and X = ∂aϕ∂
aϕ/2 ̸= 0)

or purely potential (with X = 0 and V (ϕ) ̸= 0). The characteristics of

the energy-momentum tensor associated with a minimally coupled scalar

�eld having a spacelike gradient were studied in Ref. [31]. The formulae

(4) and (5) of Ref. [31], derived by using the 3 + 1 spacetime decom-

position and relied on a scalar �eld with a timelike gradient, contain

errors. Ref. [32] pointed out that the timelike unit vector ua cannot be

associated with spacelike or null scalar �eld gradient. The equations (4)

and (5) of Ref. [31] with regard to the Klein�Gordon scalar �eld were

corrected in Ref. [32], and it was demonstrated that when the scalar
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�eld gradient is spacelike or null, the corresponding energy-momentum

tensor describes an imperfect �uid.

Since an imperfect �uid features di�erent tangential and radial pres-

sure components, it may be necessary to use the 2+ 1+1 spacetime de-

composition. Hence, it is recommended to revisit the energy-momentum

tensor of the minimally coupled scalar �eld with timelike, spacelike, and

null scalar �eld gradients with the application of the 2+1+1 decompo-

sition.

3 Thesis points

T1 I developed the formalism of the nonorthogonal 2+ 1+ 1

spacetime decomposition. With the help of this formalism,

I achieved an unambiguous gauge �xing for the description of

spherically symmetric, static spacetime perturbations in Horn-

deski theory. Additionally, I derived the canonical equations

of motion for general relativity within the framework of this

formalism. (publications: A1, A2, A3, A4)

T1/a For the nonorthogonal double foliation of the 4-dimensional

spacetime, I determined the (na, ma) and (ka, la) bases adapted to the

families of 3-dimensional hypersurfaces characterized by t =const. (de-

noted as St) and χ =const. (denoted as Mχ) respectively, along with

the relations between the two bases using duality relations. The trans-

formation between the two bases corresponds to a hyperbolic rotation,

where the rapidity is proportional to the metric variable N . When the

foliation is orthogonal, N = 0. I gave the forms of the 4-dimensional

metric, together with the evolution vectors (∂/∂t)a and (∂/∂χ)
a in both

bases. I derived the geometric quantities characterizing the embedding

of the 2-dimensional surface Σtχ into the 4-dimensional spacetime in

both the (na, ma) and (ka, la) bases. In the formalism, the embedding
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of Σtχ is determined by four extrinsic curvatures (Kab, L∗
ab, Lab, K∗

ab),

two normal fundamental forms (Ka, La), two additional forms (K∗
a, L∗

a),

four normal fundamental scalars (K, L∗, L, K∗), and four accelerations

(aa, b∗a, ba, a
∗
a).

T1/b I determined the 2- and 3-dimensional vorticities of the hy-

persurface normals na and la, and of the vectors ma and ka, through

calculating Lie brackets of the bases and considering the Frobenius theo-

rem. The projections of the 3-dimensional vorticities of ma and ka along

the normals are related to the forms L∗
a and K∗

a, therefore, these forms do

not exhibit the symmetry properties of the normal fundamental forms.

T1/c I derived the dependence of the embedding variables expressed

in the (na, ma) and (ka, la) bases from the metric variables and their

derivatives.

T1/d I derived gauge transformation rules for the even-parity (δϕ,

δN , δM , N , P , V , A, B) and odd-parity (Q, W , C) perturbation vari-

ables of spherically symmetric, static background within the framework

of nonorthogonal 2 + 1 + 1 spacetime decomposition (similarly to Ref.

[27]). I chose radial unitary and conformal gauge by �xing δ̂ϕ = 0 and

B̂ = 0, Ĉ = 0. Then I achieved an unambiguous gauge �xing by imposing

an additional condition: P̂ = 0.

T1/e I expressed the Ricci scalar in terms of the quantities used

in the (na, ma) and (ka, la) bases for the Hamiltonian formulation of

gravity. I found that, for studying the time evolution of the canonical

variables, it is advantageous to continue the calculations in the (na,

ma) basis. To express the Lagrangian in Liouville form, I formulated

the Hamiltonian and the two momentum constraints. I replaced the

embedding variables Kab, Ka, K with the canonical momenta πab, pa,

p, which were then substituted back into the Lagrangian. I determined

the equations of motion for the canonical coordinates gab, Ma, M . I

derived the equations of motion for the canonical momenta πab, pa, p by

calculating the Poisson brackets de�ned for the canonical pairs.
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T2 I derived the EFT �eld equations using the nonorthogonal

2+ 1+ 1 dimensional spacetime decomposition. I showed that

in the nonminimally coupled k-essence theory, the

Schwarzschild solution emerges exclusively from the general

relativity limit of the theory. The derived spacetime solutions

can contain a singularity without a horizon, or a black hole

with one/two horizons, or a black hole with a logarithmic-type

singularity in addition to the central singularity, which located

either outside the event horizon or between the two horizons.

(publication: A6)

T2/a I expressed the Horndeski theory Lagrangian contributions

LH
2 , L

H
3 , L

H
4 in terms of the quantities introduced when using either (na,

ma) or (ka, la) bases in the formalism of the nonorthogonal 2 + 1 + 1

spacetime decomposition. I found that due to the radial unitary gauge,

the equations take a simpler form when using the (ka, la) basis.

T2/b I assumed that the EFT action depends functionally on the

variables N , N , M , K∗, K∗, L, L, λ, R, ϕ at �rst order, which appear

in the decomposed form of the Lagrangian LH
2 , L

H
3 and LH

4 , when using

the (ka, la) basis. Contrarily, the action depends on the variables N ,

N , M , K, K, L∗, L∗, λ∗, R, ϕ when using the (na, ma) basis. I derived

the �eld equations for the spherically symmetric and static background

by varying the EFT action, employing both the (na, ma) and (ka, la)

bases.

T2/c I specialized the EFT �eld equations to nonminimally cou-

pled k-essence theories by choosing Ḡ2 (ϕ,X), Ḡ3 (ϕ,X) = 0,

Ḡ4 (ϕ,X) = Ḡ4 (ϕ) and Ḡ5 (ϕ,X) = 0. I showed that the Schwarzschild

solution can only be derived from the Einstein�Hilbert action within

this subclass. An additional simpli�cation is achieved by imposing the

condition N̄ = M̄−1 on the metric functions. I derived the equations

governing the functions N̄2, Ḡ2X , Ḡ2ϕ and Ḡ4ϕ. These are necessary for

�nding the spacetime solutions. When a speci�c form of Ḡ4 (ϕ) is given,
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the remaining functions can be computed. The given Ḡ4 (ϕ) �xes the

theory.

T2/d First, I considered the case, where Ḡ4 (ϕ) = ϕα = rα, with

α ≥ 0. When α = 0, I chose Ḡ4 (ϕ) = (16πG)
−1. Depending on the

value of the integration constant Λ appearing during the integration of

the N̄2 metric component, I obtained the Schwarzschild (Λ = 0) and the

Schwarzschild-(anti) de Sitter solutions (Λ ̸= 0). I have found di�erent

spacetime solutions depending on the signs of the integration constants

Λ and Q in the case of α = 1. The spacetime contains a black hole

with two horizons for Λ > 0 and Q < 0. The spacetime contains a

black hole with a single horizon, if Λ > 0, Q > 0, or Λ < 0, Q < 0,

while the spacetime contains a naked singularity when Λ < 0, Q > 0.

In case of α ≥ 1, I identi�ed di�erent solutions a�ected by the signs of

the integration constants Λ and Q. I employed Descartes' rule of signs

to establish these results. If Λ = 0 while C ̸= 0, the spacetime contains

a black hole with a single horizon. Regarding the number of horizons,

I found similar results as for α = 1. Given that Λ ̸= 0 and C ̸= 0, the

spacetime contains the following objects: Λ > 0, C < 0 - a black hole

with two horizons; Λ > 0, C > 0 or Λ < 0, C < 0 - a black hole with

one horizon; Λ < 0, C > 0 - a naked singularity. None of the derived

spacetime solutions are asymptotically �at, even if Λ = 0.

T2/e Upon choosing Ḡ4 (ϕ) = B (ϕ+A), I derived additional space-

time solutions. After �xing one of the integration constants, I plotted

the function N̄2 and used its disappearance to determine the locations

of the event horizons. In the case of Bm = 1, if Λm2 < 0, the spacetime

contains a black hole with one horizon, whereas for Λm2 > 0, a singu-

larity without a horizon appears at r = 0. When choosing Bm = −1,

if Λm2 < 0, in addition to the single horizon concealing the central sin-

gularity, a horizonless singularity also emerges. If Λm2 > 0, the central

singularity is covered by two horizons, and a logarithmic type singular-

ity is also present between the horizons. When choosing Λm2 = 1, the
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central singularity is always hidden behind a horizon, and for Bm < 0,

an additional logarithmic-type singularity appears outside the horizon.

T3 I derived the energy-momentum tensor of the minimally

coupled Klein�Gordon scalar �eld and the general scalar �eld

de�ned by L (ϕ,X), using the 2 + 1 + 1 decomposed form of the

4-dimensional metric. In either case, the following apply to

the energy-momentum tensors: perfect �uid if the scalar �eld

gradient is timelike; type I imperfect �uid if the scalar �eld

gradient is spacelike; type II imperfect �uid if the scalar �eld

gradient is null. In addition, I determined the energy condi-

tions for the energy-momentum tensors. (publication: A5)

T3/a If the gradient of the Klein�Gordon scalar �eld is timelike,

the weak energy condition implies −∇̃cϕ∇̃cϕ ≥ −2V , the dominant

energy condition V ≥ 0, and the strong energy condition −∇̃cϕ∇̃cϕ ≥ V .

All energy conditions are satis�ed if 0 ≤ V ≤ −∇̃cϕ∇̃cϕ.

T3/b If the Klein�Gordon scalar �eld has a spacelike gradient,

I found the following energy conditions for the type I imperfect �uid

energy-momentum tensor: i) weak: ∇̃cϕ∇̃cϕ ≥ −2V ; ii) dominant:

V ≥ 0; iii) strong: V ≤ 0; iv) all: V = 0, the latter implies ∇̃aϕ∇̃aϕ ≥ 0.

The derived energy-momentum tensor can be interpreted as a superpo-

sition of the energy-momentum tensors corresponding to an ideal �uid

and two radiation (null dust). In the case of spherical symmetry, the

null dusts represent an ingoing and an outgoing radiation.

T3/c Considering a Klein�Gordon scalar �eld with null gradient,

the weak, dominant, and strong energy conditions imply V (ϕ) = 0

for the type II imperfect �uid energy-momentum tensor, and then the

energy-momentum tensor of the scalar �eld represents a null dust.
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