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tások és homogén megoldások Ḡ4 (ϕ) különböz® megválasztásaival 123

3.4.5. Megoldások az Einstein-rendszerben . . . . . . . . . . . . . . . . 132

3.5. Összefoglalás . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



4. Minimálisan csatolt skalármez®, mint nem ideális folyadék 135

4.1. Minimálisan csatolt Klein�Gordon skalármez® . . . . . . . . . . . . . . 138

4.1.1. Id®szer¶ skalármez® gradiens . . . . . . . . . . . . . . . . . . . . 139

4.1.2. Térszer¶ skalármez® gradiens . . . . . . . . . . . . . . . . . . . 140

4.1.3. Nullszer¶ skalármez® gradiens . . . . . . . . . . . . . . . . . . . 143

4.2. Minimálisan csatolt általános skalármez® . . . . . . . . . . . . . . . . . 144

4.2.1. Id®szer¶ skalármez® gradiens . . . . . . . . . . . . . . . . . . . . 145

4.2.2. Térszer¶ skalármez® gradiens . . . . . . . . . . . . . . . . . . . 146

4.2.3. Nullszer¶ skalármez® gradiens . . . . . . . . . . . . . . . . . . . 146

5. Összefoglalás 149

6. Summary 153

7. Köszönetnyilvánítás 157

Hivatkozások 158



Kivonat

A galaxis forgásgörbék, a kozmikus mikrohullámú háttérsugárzás, az Ia supernóvák és

még számos meg�gyelés támasztja alá azt, hogy az univerzum nemcsak a Standard Mo-

dellb®l ismert anyagfajtákat tartalmazza. A Planck Kollaboráció 2020-ban bejelentett

eredményei alapján a Standard Modellhez köthet® (ún. barionikus) anyag, mintegy

4, 93%-a az univerzum teljes anyagának. A fennmaradó részt a sötét anyag (26, 42%)

és a sötét energia (68, 67%) alkotja, amelyek mibenléte nem tisztázott. Ezzel párhu-

zamosan szintén elgondolkodtató, hogy a �zika alapvet® kölcsönhatásai közül a térid®

geometriáját, illetve az azon történ® mozgást meghatározó gravitáció a kvantumtér-

elmélet keretei között nem renormálható. Ezen problémák megoldásának egy irányát

képviseli az általános relativitáselméletet egy skalármez® bevezetésével módosító Horn-

deski elmélet, amely a skalármez®re és a metrikára legfeljebb másodrend¶ dinamikai

egyenleteket eredményez. A Horndeski elméletre egy olyan az általános relativitásel-

mélethez képest magasabb rend¶ járulékokat tartalmazó elméletként is tekinthetünk,

amely a még nem ismert, nagy energiás kvantumgravitációs elmélet alacsony energi-

ás e�ektív térelméleti közelítéséb®l származik. A módosított gravitációelméletekre a

kozmológiai és asztro�zikai meg�gyelések kényszereket jelentenek. A gravitációs hul-

lámok fénysebességét nagy pontossággal bizonyító GW170817 gravitációs hullám és

GRB170817A gamma sugárzási események miatt a Horndeski elmélet Kinetic Gravity

Braiding alosztálya fogadható el életképes �zikai elméletnek.

A disszertáció els® részében bemutatom a nemmer®leges 2+1+1 dimenziós térid®-

felbontást, amely a mer®leges s+ 1 + 1 formalizmus általánosítása amennyiben s = 2.

A nemmer®leges 2+1+1 térid®felbontás alkalmazása mellett biztosítható az egyértel-

m¶ mértékrögzítés a Horndeski elméleten belüli gömbszimmetrikus, sztatikus térid®k

perturbációinak tárgyalásakor, mivel a 3-dimenziós hiperfelületek mer®legességét nem

szükséges megkövetelni a perturbáció során. A nemmer®leges 2+1+1 formalizmus ki-

dolgozásához származtattam a beágyazást jellemz® geometriai mennyiségeket, továbbá

a geometriai mennyiségek és a metrikus változók, valamint a metrikus változók koor-

dináta deriváltjai közötti összefüggéseket. Ez lehet®vé teszi a Ricci-skalár felbontását

mind a t =konst. id® koordináta által meghatározott 3-dimenziós hiperfelület sereghez

adaptált (na,ma) bázisban, mind a χ =konst. tér koordináta által meghatározott 3-

dimenziós hiperfelület sereghez adaptált (ka, la) bázisban. Levezettem a nemmer®leges

2+1+1 formalizmus (na,ma) bázisában az általános relativitáselmélet kanonikus moz-



gásegyenleteit. Összehasonlítottam a nemmer®leges 2 + 1 + 1 formalizmus geometiai

mennyiségeit az 1 + 1 + 2 kovariáns formalizmus kinematikai mennyiségeivel. Megál-

lapítottam, hogy az 1 + 1 + 2 kovariáns formalizmus ξ, Ω, Ωa örvény komponenseinek

megfelel® geometriai mennyiségek nem jelennek meg a nemmer®leges 2 + 1 + 1 forma-

lizmusban.

A disszertáció második részében bemutatom az LH
5 = 0 Horndeski elméletbeli

Lagrange-s¶r¶ségek kifejtéseit a térid® nemmer®leges 2 + 1 + 1 felbontása során az

(na,ma), illetve a (ka, la) bázisokban használt geometriai mennyiségekkel. Megállapí-

tom, hogy a Lagrange-s¶r¶ségek felbontott alakja egyszer¶bb a (ka, la) bázisban. Leve-

zettem a gömbszimmetrikus, sztatikus háttérre vonatkozó mez®egyenleteket a (ka, la)

bázisban felbontott e�ektív térelméleti hatásból. A mez®egyenleteket felírtam a Kine-

tic Gravity Braiding alosztályba tartozó k-eszencia elméletekre. Ezen alosztály esetén

megállapítottam, hogy csak az Einstein�Hilbert hatásból származtatható a Schwarz-

schild megoldás. Egy, a metrikus függvényekre vonatkozó feltevés mellett több új szta-

tikus, gömbszimmetrikus térid® megoldást származtattam analitikusan. Ezek aszimp-

totikusan nem sík térid®k. A származtatott megoldások horizont nélküli szingularitást,

egy vagy két horizonttal rendelkez® fekete lyukat tartalmaznak, avagy olyan térid®k,

amelyekben a központi szingularitás mellett a bels®, vagy az egyetlen horizonton kívül

logaritmikus szingularitás jelenik meg.

A disszertáció harmadik részében bemutatom a minimálisan csatolt Klein�Gordon,

valamint az általános skalármez®re vonatkozó folyadékleírásokat id®szer¶, térszer¶ és

nullszer¶ skalármez® gradiens választása mellett felhasználva a 4-dimenziós metrikus

tenzor nemmer®leges 2 + 1 + 1 felbontott alakját. Az Einstein�Hilbert hatáshoz mi-

nimálisan csatolt Klein�Gordon mez®, vagy az L (ϕ,X) Lagrange-s¶r¶séggel de�niált

skalármez®, amennyiben az id®szer¶ gradienssel rendelkezik, úgy a skalármez®re vonat-

kozó energia-impulzus tenzor ideális folyadékot ír le. Térszer¶, vagy nullszer¶ skalár-

mez® gradienssel rendelkez® Klein�Gordon, vagy L (ϕ,X)-el adott általános skalármez®

energia-impulzus tenzora I-es, vagy II-es típusú nem ideális folyadék.



Abstract

Galaxy rotation curves, the cosmic microwave background, type Ia supernovae, and

several other observations support that the universe contains more than just those

kind of matters known from the Standard Model. According to the results announced

by the Planck Collaboration in 2020, the Standard Model-related (so-called baryonic)

matter accounts for about 4.93% of the total matter in the universe. The remaining

part is made up of dark matter (26.42%) and dark energy (68.67%). The nature of

these matter types is unclear. Parallel with this, it is also thought-provoking that,

one of the fundamental interactions in physics determining the geometry of spacetime,

cannot be renormalized within the framework of quantum �eld theory. One direction

for solving these problems is represented by the Horndeski theory, which modi�es the

general relativity by introducing a scalar �eld and it contains dynamical equations of

at most second order for the scalar �eld and the metric. The Horndeski theory can

also be viewed as a theory containing higher-order contributions to general relativity,

derived from the low-energy e�ective �eld theory approximation of as-yet-unknown,

high-energy quantum gravity theory. Modi�ed gravity theories are constrained by

cosmological and astrophysical observations. Due to the GW170817 gravitational wave

and GRB170817A gamma ray burst events, which prove that the gravitational waves

propagate with the speed of light, only the Kinetic Gravity Braiding subclass of the

Horndeski theory can be accepted as a physical theory.

In the �rst part of the dissertation, I present the nonorthogonal 2 + 1 + 1 space-

time decomposition, which is a generalization of the orthogonal s + 1 + 1 formalism

provided s = 2. By using the nonorthogonal 2+1+1 spacetime decomposition, unam-

biguous gauge �xing can be ensured during the perturbation of spherically symmetric,

static spacetimes discussed in the Horndeski theory, since the orthogonality of the 3-

dimensional hypersurfaces does not need to be required. To develop the nonorthogonal

2 + 1 + 1 formalism, I derived the geometric quantities characterizing the embedding,

the relations between the geometric quantities and the metric variables as well as the

relations between the geometric quantities and the coordinate derivatives of metric va-

riables. This enables the decomposition of the Ricci scalar both in the (na,ma) basis

adapted to the family of 3-dimensional hypersurfaces de�ned by the t =const. timelike

coordinate, and in the (ka, la) basis adapted to the family of 3-dimensional hypersur-

faces de�ned by the χ =const. spacelike coordinate. I derived the canonical equations



of motion of general relativity in the (na,ma) basis of the nonorthogonal 2+ 1+ 1 for-

malism. I compared the geometric quantities of the nonorthogonal 2+1+1 formalism

with the kinematic quantities of the 1 + 1 + 2 covariant formalism. I found that there

are no geometric quantities in the nonorthogonal 2+ 1+ 1 formalism corresponding to

the vorticity components ξ, Ω, Ωa of the 1 + 1 + 2 covariant formalism.

In the second part of the dissertation, I present the Horndeski Lagrangian with

LH
5 = 0 in terms of variables occurring in the nonorthogonal 2 + 1 + 1 spacetime

decomposition using either (na,ma) or (ka, la) basis. The decomposed Lagrangian takes

a sipmler form when using the (ka, la) basis. I derive the �eld equations for spherically

symmetric, static background from a generic e�ective �eld theory action depending

on variables occurring in using (ka, la) basis. I give the �eld equations for k-essence

theories of the subclass of Kinetic Gravity Braiding. For these theories, I established

that the Schwarzschild solution can only be derived from the Einstein�Hilbert action.

I found new static and spherically symmetric spacetime solutions analitically when

using a certain additional assumption for the metric functions. These solutions are

not asymptotically �at. The derived solutions contain i) a central singularity without

horizons, ii) black holes with one or two horizons, iii) beside the central singularity, a

logarithmic singularity occurring outside the single horizon or the internal horizon.

In the third part of the dissertation, I present the �uid description of a minimally

coupled Klein�Gordon and a generic scalar �eld with Lagrangian L (ϕ,X), where ϕ is

the scalar �eld, while X = ∂aϕ∂
aϕ/2. I investigated all the cases, when the scalar �eld

gradient is i) timelike, ii) spacelike and iii) null, using the nonorthogonal 2 + 1 + 1 de-

composition of 4-dimensional metric. I concluded that the energy-momentum tensor of

the scalar �eld describes a perfect �uid, a type I imperfect �uid and a type II imperfect

�uid, when the scalar �eld gradient is timelike, spacelike and null, respectively.
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1. Bevezetés

A mai modern kozmológia és gravitációelméletek kialakulását számos ókori, reneszánsz

�lozófus, �zikus és csillagász alapozta meg. Leírták az els® törvényeket, például a boly-

gók egymáshoz képesti mozgásáról, földi körülmények között lév® kiterjedt testek, vagy

tömegpontok dinamikájáról, és a szabadesésr®l. Mérföldkövek voltak Kopernikusz els®

Nap középpontú, illetve homogén és izotróp kozmológiai elve, amely ellentmondott az

arisztotelészi tanoknak; az atomisták két képvisel®je, Leucippus és Democritus által

tett feltételezés, miszerint minden anyag oszthatatlan épít®elemekb®l, ún. atomokból

épül fel, amelyekb®l végtelen mennyiség található a végtelen univerzumban; Epicurus

Letter to Herodotus c. m¶ve, amelyben els®ként esik szó a multiverzumok létezésének

lehet®ségér®l; Kepler által a Mars mozgásának meg�gyelései alapján a bolygómozgáso-

kat tárgyaló három törvény; Galilei kísérleti bizonyítéka az ekvivalencia elvére, amely

kimondja, hogy a szabadesés sebessége a testek tömegét®l független.

Newton jegyezte le az els® gravitációs törvényt 1687-ben a Philosophiae Naturalis

Principia Mathematica-ban. A newtoni gravitáció alap elve, hogy a gravitáció tömeggel

rendelkez® testek között létrejöv® vonzó er®, amely a tömegekkel �egyid®ben keletkezik�

és a közöttük lév® távolságtól függetlenül �azonnal hat�, azaz a gravitációs er® végtelen

sebességgel terjed. Gravitációelmélete földi léptékben, homogén, gyenge gravitációs tér

esetén közel pontos eredményeket adott a testek mozgására a Földön és az égitestek

mozgására a Naprendszer bels® régióiban. Bevezette az inerciarendszer fogalmát, esz-

közrendszert adott a kor csillagászainak, amellyel az asztro�zikai objektumok tömegét

meg tudták határozni azok meg�gyelt mozgása alapján. Ennek következményeként az

Uránusz keringési anomáliáit meg�gyelve jelentette ki U. Le Verrier és J. C. Adams egy

újonnan feltételezett naprendszerbeli bolygó jelenlétét, amely direkt észlelése után J.

Galle a Neptunusz nevet adta [1]. Ehhez hasonlóan a Merkúr perihélium vándorlását

is egy addig nem meg �gyelt bolygóval, a Vulkánnal próbálta magyarázni Le Verrier,

ebben az esetben hibásan [2].

A gravitáció leírásában a következ® paradigma váltást Einstein általános relativi-

táselmélete jelentette. Az általános relativitáselméletben a gravitációt a geodetikus-

egyenlet és az Einstein-egyenlet geometriai módon írja le, azaz a gravitáció azonos a

térid® görbületével. Az Einstein-i gravitációt a Gravitation cím¶ könyvben C. W. Mis-

ner, K. S. Thorne és J. A. Wheeler a következ®képpen szemlélteti: �Space tells matter

how to move. Matter tells space how to curve� [3], azaz �A tér megmondja az anyag
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hogyan mozogjon. Az anyag megmondja a térnek hogyan görbüljön�. A Newton-i

gravitációs törvénnyel ellentétben, az általános relativitáselmélet alapján a gravitá-

ció (például gravitációs hullámként) fénysebességgel terjed; nem er®, hanem görbület,

amelynek geometriáját a metrika 10 db független komponense határozza meg; tömeg-

gel nem rendelkez® elemi részecskékre, hullámokra is �hat�, azaz az elemi részecskék a

görbült térid®re vonatkozó geodetikus-egyenlet által meghatározott pályán haladnak.

Az általános relativitáselmélet ezek mellett új jelenségeket is jósolt. Gyenge gravitáció

esetén leírja a Naprendszer bolygóinak perihélium vándorlását, a gyenge gravitáci-

ós lencsézést, a gravitációs mikrolencsézést, a gravitációs fényelhajlást, a gravitációs

hullámokat, a gravitációs vöröseltolódást, a radarvisszhangot. Er®s gravitációban Sch-

warzschild vezette le az els® fekete lyukat [4], de a féreg lyukak és az er®s gravitációs

lencsézés is az általános relativitáselmélet megoldásaiból adódnak extrém görbült tér-

id®ben.

Az általános relativitáselmélet számos meg�gyelési eredményt igazolt és Naprend-

szer léptékben (∼ 5 · 109km sugárban) a kor legmegbízhatóbb elmélete volt, ennek

ellenére nem minden problémát oldott meg. A galaxis klaszterekben a galaxisok, to-

vábbá a galaxisok széls® régióiban a barionikus anyag detektált mozgása sötét anyag

bevezetése nélkül nem magyarázható. Az Ia típusú szupernóvák luminozitás távolsága

és vöröseltolódása között fennálló relációból kapott Hubble-paraméter érték alapján

az univerzum gyorsulva tágul, amely akkor lehetséges, ha az univerzum sötét energiát

is tartalmaz. Ugyancsak probléma volt, hogy a Standard Modellben szerepl® anyag-

formákkal nem feloldható a standard kozmológiai modell horizont, síkság és mágneses

molopólus problémái, amelyek megoldását az univerzum keletkezésének dinamikáját

leíró in�ációra vonatkozó elméletek t¶zték ki célul.

1.1. Sötét anyag

F. Zwicky az 1930-as években tanulmányozta a Coma klaszter galaxisainak mozgását.

Folyóiratcikkeiben A. van Maanen által mért látszólagos szögsebességeket, valamint E.

Hubble által meghatározott távolságokat és mért látszólagos radiális sebességeket [5]

használta fel. Eredményei szerint a Coma klaszter galaxisiainak számolt valódi radi-

ális sebességei a vártnál nagyobbak, mint az következne a látható anyag feltételezett

tömegéb®l. Az NGC 4051 és M33 galaxisok esetén ez a különbség körülbelül két nagy-

ságrend volt. F. Zwicky a vizsgált galaxisok tömegét a viriál tétel alkalmazásával adta
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meg a meg�gyelési adatokra alapozva. Úgy gondolta, hogy amennyiben a mérések

nem hibásak, akkor a galaxisokban és klaszterekben detektált látható anyagon kívül az

ún. �sötét objektumok� is nagy mennyiségben jelen vannak [6], [7]. Az említett sötét

objektumokat számos cikkében sötét anyagnak nevezte el.

F. Zwicky-vel párhuzamosan �gyelte meg a Virgo klasztert S. Smith, majd megha-

tározta a klaszter teljes tömegét és a galaxisok átlag tömegét. E. Hubble által megadott

átlag galaxis tömegnél két nagyságrenddel nagyobbat számolt. Erre magyarázata az

volt, hogy nagy tömeg¶ és alacsony luminozitású hideg köd található a klaszter gala-

xisai között [8].

F. Zwicky és S. Smith állításaira sokan évekig csak hibaként tekintettek. F. Zwic-

ky eredményei valóban nem voltak pontosak, mivel azokat befolyásolta E. Hubble

és M. Humason által megadott Hubble-paraméter mai értéke, azaz a H0 = 558 ±
56kms−1Mpc−1 Hubble-konstans [5]. Ez viszont majdnem egy nagyságrenddel nagyobb

volt, mint a H0 = 68, 4+1,0
−0,8kms

−1Mpc−1 érték, amit a Planck Kollaboráció 2020-ban

publikált [9].

C. V. Rubin 1960-as években W. K. Ford-al az Andromeda-galaxis különböz® régi-

óit vizsgálta a centrumától mért R = 0− 24kpc (∼ 0− 120 ívperc) között DTM csöves

spektrográ�al az [N II] és Hα emissziós vonalak rögzítésével. Mérési eredményeiket

1970-ben az American Astronomical Society egy konferenciáján mutatták be. Az M31

látható anyagának (V ) keringési sebességét körmozgás feltételezése mellett származ-

tatták, továbbá szerkezeti modelleket alakítottak ki a spirálgalaxisokra, többek között

a Tejútrendszerre is. A méréseiket felhasználva, az általuk alkalmazott modellek ered-

ményeit összefoglaló 3. táblázat alapján megállapították, hogy a galaxis középpont-

jának R = 0, 4kp tartományában a látható anyag sebessége a V ∼ 227km/s lokális

maximumot éri el. A centrumot alkotó s¶r¶, körülbelül M ∼ 6 · 109M⊙ tömeg¶

(M⊙ = 1, 9891 · 1030kg), gyorsan kering® látható anyag R = 2kp körül ugrásszer¶en

megritkul, sebességéb®l veszít. Az R = 4 − 14kp-ig a galaxis teljes tömege lineárisan

növekszik, majd lelassul és R = 24kp-en belül eléri az M ∼ 1, 85 ·1011M⊙-et. Megjegy-

zik továbbá, hogy a galaxis központjában mért sebességek megegyeznek a HI 21-cm

rádiómeg�gyelésekkel, viszont az általuk mért ∼ 270km/s maximum sebesség ∼ 9kp

távolságban magasabbnak adódott, mint a 21 cm-es mérés esetén. Eredményeik egy

kiragadott részét az 1. ábra szemlélteti. A tömeg számolása során a Kuzmin (1952) és

Brandt (1960) által bemutatott tömeg-sebesség összefüggést alkalmazták [10].

C. V. Rubin és W. K. Ford munkája ösztönözte a csillagászokat és a �zikusokat,

hogy a galaxis forgásgörbéket tovább tanulmányozzák. Közöttük kiemelked® volt K.

C. Freemann [11], D. H. Rogstad, G. S. Shostak [12], M. S. Roberts, A. H. Rots [13],

R. N. Whitehurst [14], majd kés®bb T. S. van Albada és társai [15], Carignan és társai
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1. ábra. Az M31 galaxis forgásgörbéje, ahol a 123 darab [N II] emissziós spektrum

alapján meghatározott keringési sebességek negyedrend¶ polinommal vannak illesztve

R ≤ 12 ívperc esetén, míg R ≥ 12 ívperc távol a galaxis centrumtól ötödrend¶ polinom

illesztést alkalmaztak [10].

[16], akik számos galaxis esetén alátámasztották, hogy a galaxis forgásgörbék mind-

egyikénél a barionikus anyag emissziós vonalaiból származtatott kerületi sebességek

közel konstansok a galaxisok centrumtól mért távoli tartományaiban. 1978-ban C. V.

Rubin, W. K. Ford és N. Thonnard cikkükben újabb 10 darab nagy intenzitású spirál

galaxis forgásgörbéjét mutatták be, ahol a meg�gyelést kiterjesztették a galaxisok cent-

rumtól mért még távolabbi tartományaiba is. Ezen eredmények egy részét a 2. ábra

szemlélteti. Kimondták továbbá, hogy minden galaxis a centrumától 50kpc távolságig

konstans forgásgörbével rendelkezik. Szintén el®ször beszéltek a galaxis küls® régióiban

gömbszer¶en, ún. halókban elhelyezked® �hiányzó� (nem látható) többlet anyagról. Ez

utóbbi, csupán elméleti feltételezés volt, hiszen vizsgálatuk csak a galaxis korongjára

terjedt ki [17].

Az egymást igazoló mérési eredmények miatt elkezd®dött a hiányzó tömeg, azaz a

sötét anyag keresése, továbbá annak a meghatározása, hogy mekkora részét teszi ki az

univerzum teljes anyagának. Legbiztosabb sötét anyag jelöltnek gondolták a kompakt

objektumokat, például fehér, barna és vörös törpéket, forró Jupitereket és egyéb boly-

gókat, neutron csillagokat, kis tömeg¶, inaktív fekete lyukakat, amelyek összefoglaló
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2. ábra. Hét galaxis forgásgörbéje, ahol az illesztések során a kiugró keringési sebességek

nem lettek �gyelembe véve [17].

neve a Massive Astrophysical Compact Halo Objects, röviden MACHOs. A kompakt

objeltumok detektálását gravitációs mikrolencsézés meg�gyelésével végzik, amelynek

elméleti alapjait Einstein fektette le, viszont gyakorlatba ültetésére kés®bb került sor

[18]. 1986-ban B. Pazcynski javasolta C. V. Rubin, W. K. Ford és N. Thonnard cikkére

hivatkozva, hogy célszer¶ lenne mikrolencsézési meg�gyeléseket végezni a Tejútrendszer

és más galaxisok feltételezett sötét anyag halójában [19]. A MACHOs detektálására

kialakított mikrolencsézési meg�gyelések során nagy számú csillag csoportosulásokat

monitoroztak a kiválaszott galxisok közelében, �gyelve a csillagok intenzitás változá-

sát. Ezen meg�gyelések egyik jelent®s célpontja a Nagy Magellán-felh® törpegalaxis

volt. Megalapult 1993-ban a MACHO Kollaboráció. Körülbelül 6 év alatt 14-17 darab

mikrolencsézés eseményt detektáltak a Mount Stromlo Obszervatórium 1, 27m átmér®-

j¶ távcsövével. A 40 · 106 darab csillag folyamatos meg�gyelése során megállapították,

hogy a Tejútrendszer halójának 8−50%-a lehet 0, 15−0, 9M⊙ tömeg¶ kompakt objek-

tum [20]. A velük párhuzamosan m¶ködö EROS és EROS-2 (azaz Experience pour la

Recherche d'Objects Sombres) kollaborációk majdnem ugyanennyi id® alatt egyetlen

nem kizárt mikrolencsézést észleltek a várt 39 helyett, így sz¶kítve 8%-ra a kompakt

objektumok jelenlétét a Tejútrendszer halójában [21],[22].

A 20. század közepe fele sokakat elkezdett foglalkoztatni az egyre több felfede-
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zett elem eredete. Modelleket állítottak fel a csillagokban lezajló fúziós folyamatokra,

megállapítva hogyan keletkezhettek a hidrogénnél és héliumnál nehezebb elemek az uni-

verzumban. 1939-ben H. Bethe levezette a proton-proton lánchoz és a szén-nitrogén-

oxigén ciklushoz kötött energiatermelést a csillagokban [23]. F. Hoyle bemutatta, hogy

masszív csillagokban a vasnál könyebb elemb®l álló mag kialakulása lehetséges, továb-

bá a vasnál nehezebb elemek szupernóva robbanásból származhatnak [24]. Azonban

sokkal több héliumot találtak meg�gyelésekkel, mint ami a csillagokban zajló fúziós

folyamatok során létrejöhet. Nem sokkal kés®bb R. A. Alpher, H. Bethe és G. Gamow

a fúzió mellett egy új lehetséges magyarázatott talált az elemek kialakulására. Cikkük

szerint mind a könny¶, mind a nehéz elemek keletkezhettek az univerzum korai id®-

szakaszában annak h¶lése következtében neutron befogással [25]. Számolásaikat R. A.

Alpher javította J. W. Follin és R. C. Herman segítségével, pontosítva a korai univer-

zumban kialakult hélium mennyiségét, amely alapján arra jutottak, hogy a héliumnál

nehezebb elemek eredete nem erre az id®szakra tehet® [26], így keletkezésük továbbra

is a csillagok energiatermelésére volt visszavezetve. A kozmikus mikrohullámú háttér-

sugázás (Cosmic Microwave Background, azaz CMB) felfedezése új utat nyitott a korai

univerzum fejl®désének és a nukleoszintézis kutatásának [27]. A CMB h®mérseklete

alapján kimondták, hogy a megtalálható nagy mennyiség¶ hélium 26-28%-a, továbbá

a 6Li, 9Be, 10B, 11B nagy része, míg a 7Li körülbelül 20%-a nukleoszintézis következ-

tében jöhetett létre [28]. A nukleoszintézisb®l származó deutérium mennyiséget nagy

pontossággal S. Burles, K. M. Nollett és M. S. Turner �gyelték meg el®ször, majd

Ωbh
2 = 0, 020 ± 0, 002 értékre, azaz 4, 35%-ra becsülték az univerzumban megtalál-

ható barionikus anyag s¶r¶ségét, ahol h = H0/100 = 0, 678kms−1Mpc−1 a redukált

Hubble-konstans [29]. A CMB h®mérséklet �uktuációjának elméleti levezetése, vala-

mint az azzal kapcsolatos teljesítmény spektrum l páros és páratlan módusainak il-

lesztése, a barionikus akusztikus osszcillációk (Baryon Acoustic Oscillation vagy BAO)

vizsgálata további lehet®séget biztosított az univerzum fejl®désének és anyagi összeté-

telének megállapítására, és a Hubble-konstans pontosítására [30], [31]. Mivel a sötét

anyag nem vesz részt elektromágneses kölsönhatásban, ezért a CMB közvetlen infor-

mációt nem szolgáltat mennyiségér®l. Azonban a sötét anyag a galaxisok halójában

a barionikus anyaghoz csoportosul, így a struktúra képz®désben jelent®s szerepe volt.

Ennek következtében a teljesítményspektrum csúcsainak mért elhelyezkedése, alakja,

közvetett információt szolgáltat a sötét anyag s¶r¶ségr®l, amelyet a 3. ábra szem-

léltet. M¶holdak épültek, kollaborációk alapultak azért, hogy a CMB h®mérséklet

�uktuációit pontosabban, �nomabb felbontással tudják rögzíteni. Az erre szánt leg-

sikeresebb mér®m¶szerek a 2010-ben küldetését befejez® WMAP, a Planck, a Baryon

Oscillation Spectroscopic Survey (BOSS), amely utóbbi a BAO mérésére specializáló-
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3. ábra. A CMB h®mérséklet �uktuációira vonatkozó teljesítmény spektrum illeszté-

sek különböz® Ωb barionikus anyag és Ωdm sötét anyag s¶r¶ség esetén, felhasználva a

WMAP adatait úgy, hogy 1 = Ωb + Ωdm + ΩΛ, ahol ΩΛ a sötét energia s¶r¶sége [30],

[32].

dott [33]. A WMAP és a BAO mérések adatai alapján a barionikus anyag mennyisége

Ωbh
2 = 0, 02223 ± 0, 00033, a sötét anyag mennyisége Ωch

2 = 0, 1153 ± 0, 0019, míg

a Hubble-konstans H0 = 69, 32 ± 0, 80kms−1Mpc−1 [34]. A Planck kollaboráció és

a BAO mérések alapján a sötét anyag Ωch
2 = 0, 120 ± 0, 001 és a barionikus anyag

Ωbh
2 = 0, 0224 ± 0, 0001 mennyiségben található meg az univerzumban, továbbá a

Hubble-konstans értéke H0 = 67, 4± 0, 5kms−1Mpc−1 [9].

A korai univerzumban lezajló nukleoszintézis elmélet sikereire alapozva tették fel,

hogy a nagy mennyiség¶ sötét anyag ún. primordiális fekete lyukak formájában a

nukleoszintéziskor, vagy azt megel®z® id®szakban jöhetett létre. A legkorábbi id®szak,

amikor primordiális fekete lyuk keletkezhetett B. J. Carr és S. W. Hawking szerint a

Planck id®re tehet® ∼ 10−43s. Ekkor a részecske-plazma inhomogenitásaiból származó

lokális s¶r¶södések által keletkezett fekete lyuk tömege 10−5g, sugara 10−33cm, míg

hasonló módon, de a nukleoszintézis idejében kialakult fekete lyuk tömege 107M⊙ lenne
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[35]. A primordiális fekete lyuk létrejötte után tömeget tud nyerni, amennyiben a

környezetében lév® részecskék akkréció útján beleesnek. Ezt az ún. Zeldovich�Novikov

féle lassú akrécióval írták le, amely szerint

M ∼ t

1 + t
t0

(
t0
M0

− 1
) ,

ahol M0 a primordiális fekete lyuk keletkezés-kori tömege M⊙-ben kifejezve, t0 a pri-

mordiális fekete lyuk keletkezésének ideje, míg M a t id®beli primordiális fekete lyuk

tömege. Amennyiben az univerzum kezdeti id®szakában M0 ∼ t0, akkor a lassú akk-

réció miatt a primordiális fekete lyuk tömege azonos arányban n®, mint ahogy az id®

telik. Ez azt eredményezi, hogy a jelenben olyan nagy lenne egy ilyen primordiális fe-

kete lyuknak a horizontja, hogy az akkréció következtében vagy már beleestünk, vagy

elkezdtünk beleesni. Ez nagy valószín¶séggel nem történt meg a meg�gyelések és ta-

pasztalataink alapján. Feltették, hogy a Zeldovich�Novikov akkréció csak a háttér

energias¶r¶ségének egy bizonyos mértékéig zajlik, az univerzum ún. sugárzás általt

dominált id®szakában. Az ilyen módon keletkez® primordiális fekete lyukak tömege a

sugárzás dominált id®szak és az akkréció leálta után kürölbelül 1015−1017M⊙-re n®ne,

amely magyarázata lehetne a meg�gyelt szupermasszív fekete lyukaknak a galaxisok

középpontjában. Az univerum ilyen korai id®szakában keletkezett nagy tömeg¶ fekete

lyukak azonban a CMB szerkezetében jelent®s �uktuációként jelennének meg, ame-

lyet a CMB mérései nem mutatnak. Ezért, vagy nem keletkeztek primordiális fekete

lyukak, vagy nem a Zeldovich�Novikov akkréciós folyamat írja le keletkezésük utáni

fejl®désüket, vagy keletkezésükkor fennállt az M0 < t0 feltétel. Ha M0 < t0, úgy a

primordiális fekete lyuk akkréciója elhanyagolható mérték¶, ezért mérete és tömege

nem változik, így napjainkban tömegük nem sokkal 10−5g felett lehet. Hawking egy

következ® folyóiratcikkében bemutatta a fekete lyukak (és fehér lyukak) termodinami-

kai leírását. Levezette azok er®s gravitációs terének köszönhet® spontán részecske-pár

keltésb®l adódó 1, 2 ·1026M−1K h®mérséklet¶ sugárzását [36]. A Hawking sugárzás so-

rán a �lyukak� veszítenek tömegükb®l, miközben horizontjuk csökken és h®mérsékletük

n®. A folyamat során ∼ 10−26M3s alatt párolognak el teljesen (itt M az adott fekete

lyuk grammban megadott tömege). Egy fekete lyuk párolgásából származó részecske

sugárzás detektálása szinte lehetetlen, mivel h®mérséklete 10−7K, amely az univerzum

2, 73K h®mérsékletéhez képest elenyész®. D. N. Page és Hawking új tömegkritériu-

mot határozott meg a primordiális fekete lyukakra, �gyelembe véve azok párolgását

is. Megállapították, hogy azok a primordiális fekete lyukak, amelyek kezdeti tömege

kevesebb, mint 5 · 1014g volt mára tejesen elpárologtak. Azonban az 5 · 1014g-nál csak
egy kicsit nagyobb tömeg¶ primordiális fekete lyukak jelenleg 2, 5 · 1011K = 20MeV
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h®mérséklet¶ek, ami alapján ∼ 2, 5 · 1017ergs/s energiát sugároznak. Ezen sugárzás

1%-a graviton, 45% neutrínó, 45% elektron vagy pozitron, és 9% foton. Feltételezéseik

alapján a primordiális fekete lyukaktól származó sugárzás foton formájában eljuthat

a Földre és detektálható 120MeV -os nagy energiájú gamma sugárzásként bármely

irányból [37]. Sötét anyag szerepet betölt® primordiális fekete lyukak tömegét nagy

százalékban körülbelül naptömeg¶nek, vagy a naptömeg néhányszorosának gondolták,

amelyek jelent®s számban kett®s rendszereket alkothatnak [38].

A LIGO és Virgo kollaborációk által végzett gravitációs hullám detektálás [39] után

számos folyóiratcikk foglalkozott a primordiális fekete lyukak kimutatásával sztochasz-

tikus gravitációs hullám háttér formájában. A 2016 után megnövekv® gravitációs hul-

lám észlelések nem igazolták ezt, amelynek oka az is lehet, hogy a primordiális fekete

lyuk kett®sök összeolvadásából származó sztochasztikus gravitációs hullám háttér ala-

csonyabb frekvenciájú, mint amin LIGO és Virgo detektorok mérnek [40]-[42].

A MeV energiájú gamma kitörési, mikrolencsézési, röntgen pulzár általi lencsézé-

si meg�gyelésekb®l származó eredmények arra mutatnak, hogy bolygó méret¶, vagy

naptömeg¶, vagy a naptömeg több tízszerese méret¶ primordiális fekete lyukak nem

adják ki a jelenleg ismert teljes sötét anyag mennyiséget. A további ismeretek szerint a

1017 − 1022g, azaz aszteroid tömeg¶ primordiális fekete lyukak lehetnek jó sötét anyag

jelöltek, amelyekkel kapcsolatban is felmerült néhány probléma:

- Jelenleg a MeV gamma detektorral és mikrolencsézéssel észlelhet® aszteroid töme-

g¶ primordiális fekete lyukak tömege 1022g, vagy e fölötti, emiatt szükséges technikai

fejlesztéseket bevezetni a teljes aszteroid tömeg¶ primordiális fekete lyuk spektrum

meg�gyelése érdekében [43];

- A primordiális fekete lyukak kialakulását biztosító lokális s¶r¶södések leírásához

az ún. ultra-lassú-gördülés in�ációs modell alkalmazása az elterjedt. Ez a modell

azonban további �nomhangolást igényel ahhoz, hogy a CMB teljesítmény spektrumot

a méréseknek megfelel®en adja vissza továbbá, hogy a meg�gyelésekkel kompatibilis

számú és eloszlású primordiális fekete lyukak keletkezését írja le [44], [45];

- Galaxis és klaszter léptékben a primordiális fekete lyukak eloszlásának egyeznie kell

a meg�gyelt sötét anyag eloszlással a homogén és izotróp univerzumban. Amennyiben

a primordiális fekete lyukak tekinthet®k sötét anyagnak, akkor az univerzum fejl®désé-

nek a sugárzás és anyag energias¶r¶ségek egyenl®ségének id®szaka után elkezd®dött a

primordiális fekete lyukak klaszterez®dése. Az így kialakult kett®s vagy többes rendsze-

rek születésének és fejl®désének elméleti tanulmányozása máig zajlik, �gyelembe véve

a sötét anyag halókban történ® csoportosulását [46].

A sötét anyag azonosítására keletkeztek részecske�zikai modellek is, amelyek a Stan-

dard Modell problémáinak megoldására épültek. Ezek például a Higgs/hierarchia prob-
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léma és az er®s CP-probléma. A Higgs/hierarchia probléma szerint nem lehet tudni,

hogy az elektrogyenge szimmetria sértésb®l származó Higgs bozon tömege miért kicsi,

azaz miért éppen mh ∼ 100GeV ≪ MPl. Az er®s CP-problémában az er®s kölcsönha-

tást leíró kvantum-színdinamika (quantum chromodynamics, azaz QCD) esetén nem

�gyelhet® meg töltés (C) és paritás (P) szimmetria sértés, annak ellenére, hogy az el-

mélet megengedi. A Higgs/hierarchia probléma egy megoldásaként az ún. WIMP-eket

(azaz Weakly Interacting Massive Particles), míg az er®s CP-problémánál az ún. axio-

nokat vezették be, amelyek ugyancsak megfelel® sötét anyag jelöltnek mutatkoztak.

Tekintve a mért CMB h®mérséklet �uktuációt a struktúrafejl®dést leíró numerikus szi-

mulációk alapján a megfelel® sötét anyag részecske nem relativisztikus, avagy �hideg�,

nem barionikus, és stabil az univerzum korát tekintve, továbbá gravitációsan, esetleg

gyengén kölcsönható. Ezeknek a feltételeknek megfeleltek a WIMP-ek, az axionok, az

ún. steril neutrinók, de felmerültek az extra dimenziókat, vagy a szuperszimmetriát

(SUSY) tárgyaló elméletek is a sötét anyag magyarázatára [47].

Kézenfekv® feltételezésnek t¶nt els®re, hogy a hosszú ideig stabil, gyenge és gravi-

tációs kölcsönhatásban résztvev® neutrinókra essen a választás, mint sötét anyag. A

neutrinók keletkezésének és a neutrínóoszcilláció magyarázatával számos kutató foglal-

kozott megállapítva, hogy az univerzum kezdeti szakaszában nagy mennyiség¶ neutrinó

keletkezett [48]. A neutrínók azonban kis tömegük miatt forró sötét anyag jelöltek, en-

nek következtében vagy kizárták ®ket vagy alternatív elméletekkel magyarázták sötét

anyag jellegüket [32], [49]-[53]. Egy ilyen elméleti ötlet abból a tényb®l származik, hogy

a Standard Modellben a fermionok és anti párjaik jobb és bal kezesek is lehetnek, azon-

ban nem detektáltak még jobb kezes neutrínót, vagy bal kezes antineutrínót. 1994-ben

S. Dodelson és L. Widrow a jobb kezes neutrínókról, azaz steril neutrínókról tették fel,

hogy lehetnek hideg vagy forró sötét anyag részecskék. Steril neutrínó keletkezhet ki-

rális oszcilláció során [47], [54], [55]. Jelenlétükre szóródási anomáliák meg�gyelésével

következtetnek, amelyek detektálását a Liquid Scintillator Neutrino Detector (LSND)

kísérlet [56] t¶zte ki célul. Jelenleg a steril neutrinók ki lettek zárva, mint sötét anyag

részecskék a Chandra [57], a MiniBooNE [58] detektor és az IceCube [59] mérései alap-

ján, mivel nem találtak anomáliákat a mérésekben.

A WIMP egy mweak ∼ 10GeV − TeV tömeg¶ részecske, amely kölcsönhat a W

és Z bozonokkal. Keletkezését a részecske sötét anyag feltételezett létrejöttével azo-

nosnak gondolják, azaz az ún. termikus kifagyás (thermal freeze out) folyamatához

kötik [60]. A termikus kifagyás szerint, az univerzum sugárzás dominált id®szakában

a kezdeti forró és s¶r¶ sötét anyag termikus egyensúlyban van a Standard Modell

részecske-plazmával. Az univerzum tágulása során azonban h®mérséklet lecsökkent az

ún. Tf kifagyási h®mérsékletre. A Tf az a h®mérséklet, amikor a tágulás sebessége
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meghaladja a sötét anyag bomlási sebességét, azaz a sötét anyag részecskék annyira

eltávolodtak egymástól, hogy nem tudtnak annihilálódni. A termikus kifagyás után a

sötét anyag részecskék mennyisége a Tf �pillanatbeli� számukkal közel azonos maradt

az univerzumban. A folyamatot a Boltzmann egyenlet numerikus megoldásával mo-

dellezték [61]. A Higgs/hierarchia probléma egy másik megoldásaként lett bevezetve

a SUSY, amely szerint minden Standard Modell részecskének létezik egy szuperszim-

metrikus részecske párja, amelyek a spin kivételével ugyanolyan kvantumszámúak. Az

egyik ilyen szuperszimmetrikus részecske a neutralínó vagy a gravitínó, amelyek szintén

megfelel® WIMP és SuperWIMP (azaz nagyon gyengén kölcsönható WIMP) jelöltek

[62]. WIMP részecske lehet az univerzális extra dimenziók (Universal Extra Dimen-

sions, UED) elmélete alapján bevezetett ún. Klauza�Klein sötét anyag is, amely T.

Klauza és O. Klein nevéhez köthet® [63], [64]. Az UDE elméletben minden Standard

Modell részecskének van végtelen Klauza�Klein részecske párja, egy darab minden ún.

Klauza�Klein szinten. Azonban a Standard Modell részecskének és Klauza�Klein ré-

szecske párjának a spinjük azonos, ezért ez az elmélet a Higgs/hierarchia problémát

nem oldotta meg [47]. A WIMP-ek detektálása érdekében több kollaboráció is meg-

alapult, például a Fermi-LAT [65], a XENON [66], a LUX [67], és a DarkSide [68].

Két Standard Modell részecske ütköztetésekor keletkez® Standard Modell részecskék

mellett kerestek WIMP-eket az LHC részecske gyorsítóban is sikertelenül [69].

Axion sötét anyag bevezetésekor, az er®s CP-probléma feloldása érdekében egy

a pszeudoskalármez®t tartalmazó kölcsönhatási taggal egészítik ki a QCD Lagrange-

s¶r¶séget, amelyben az fa axion bomlási paraméter adja meg, hogy a CP szimmetria

mennyire van sértve. Az fa arányos az a pseudoskalármez® ma tömegével úgy, hogy

ma =
1

fa

√
mumd

mu +md

mπfπ ≈ 6µeV

(
1012GeV

fa

)
,

ahol mu a �fel� (�up�) kvark tömege, md a �le� (�down�) kvark tömege, mπ a pion töme-

ge és fπ a pion bomlási konstansa. A er®s CP-probléma els® elméleti megoldása R. D.

Peccei és H. R. Quinn nevéhez köthet® [47], [70]-[72]. Az axionok kölcsönhatnak glu-

onokkal, fermionokkal és fotonokkal, ezért az axion tömegének számos független kény-

szert kell teljesítenie. Az axionok meg�gyelése egy Standard Modell elemi részecskével

való szóródás útján laboratóriumi, vagy kozmológai mérésekkel történik. A kezdeti

elképzelések szerint ma ∼ MeV , majd ma ≥ 10keV , amely ugyancsak ki lett zárva,

mivel gyorsabb müon bomlást eredményezne, mint amit meg�gyelnek. Amennyiben

ma ∼ 1eV nagyságú, úgy a vörös óriások gyorsabban h¶lnének [18], az 1987A szuper-

nóva meg�gyelés szerint pedig ma ≲ 10−3eV [73]. Kifejezetten sötét anyag axionok

keresése érdekében alapult meg az ún. Axion Dark Matter Experience (ADMX) és
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ADMX-HF (HF, mint High Frequency), amely az aγ∗ → γ Primako� folyamaton

alapszik, kihasználva a galaxis halókban a feltételezett axion-foton csatolódást. Sötét

anyag axionok keletkezésére utaló jeleket keresnek a Nap koronájában [74]. A KA-

GRA gravitációshullám detektor szintén alkalmas axion sötét anyag keresésre a lézerek

polarizációjában történ® változások detektálása útján [75]. Az axionok kialakulhat-

tak termikus folyamatok útján, mint a Standard Modell elemi részecskék az univezum

sugárzás dominált id®szakában, azonban ebben az esetben nem tudja kitenni a teljes

sötét anyag mennyiséget [76]. Az axionok keletkezhetnek nem termális úton is, ami-

kor az univerzum h®mérséklete elérte T ∼ fa értéket. Ekkor következik be az ún.

Peccei�Quinn fázisátmenet, azaz az axion mez® helyr®l helyre más értéket vehet fel a

minimálistól eltér®en. A Peccei�Quinn fázisátmenet külöböz® jóslatokat ad az axio-

nok mennyiségére az univerzumban attól függ®en, hogy az az in�áció el®tt, vagy után

következik be, amely esetek bizonyítása és elemzése jelenleg is kutatott [47].

1.2. Sötét energia

Az általános relativitáselméletb®l levezethet® az univerzum tágulása, viszont az 1920-as

években az ún. �steady-state� vagy �állandó állapotú� univerzum-kép volt elfogadott,

amelynek biztosítása érdekében Einstein a Λ kozmológiai konstanssal egészítette ki

az Einstein-egyenletet. Hubble 1929-ben meg�gyeléseivel bizonyította az univerzum

tágulását [77], ezért Einstein a Λ kozmológiai konstansról kés®bb úgy nyilatkozott,

hogy �the biggest blunder of my life�, azaz az �élete legnagyobb baklövése� [3].

A sötét energia fogalmának tényleges és tudatos kialakulása az univerzum kései

szakaszának gyorsuló tágulásához köthet®, amely felismeréséhez az ún. �standard vagy

standardizálható gyertyának� nevezett Ia típusú szupernóvák meg�gyelései vezettek.

Ezen felfedezésért S. Perlmutter, B. Schmidt és A. Reiss 2011-ben Nobel-díjat kapott

[78]-[81]. Az Ia típusú szupernóva különlegessége annak kialakulásának folyamatához

köthet®. Egy kett®s rendszert alkotó fehér törpe és vörös óriás közötti tömeg akkré-

ció során a fehér törpe tömege n®. Amennyiben a fehér törpe tömege átlépi az ún.

1, 44M⊙ Chandrasekhar határtömeget, akkor fekete lyukká zuhan össze a gravitáció

hatására [82]. Az így kialakult Ia típusú szupernóvák luminozitása közelít®leg meg-

egyezik. A luminozitás változása és értékei a közeli, azaz kis vöröseltolódású (z < 0, 1)

Ia szupernóvák meg�gyeléséb®l ismert adat. A detektált maximum luminozitással (L)
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és �uxussal (f ) direkt módon kiszámolható az objektum dL luminozitás távolsága:

d2L =
L

4πf
.

Egy asztro�zikai objektum dL luminozitás távolsága kapcsolatban van a vöröseltoló-

dással, amelyb®l további kozmológiai paraméterek származtathatók.

A homogén és izotróp univerzumot a Friedmann�Lemaître�Robertson�Walker

(FLRW) térid® írja le, amely a

ds2 = −dt2 + a2 (t)

[
dr2

1− κr2
+ r2dΩ2

]
,

ívelemnégyzettel rendelkezik, ahol −∞ < t < ∞, 0 ≤ r < ∞, dΩ2 = dθ2 + sin2 θdφ2

úgy, hogy 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. A κ = ±1, 0 a görbületi index, amely kifejezi a térbeli

geometriát: 0 euklideszi, −1 hiperbolikus, +1 gömbi, valamint a (t) a skálafaktor. Az

FLRW térid® az

Rab = 8πG

(
Tab −

1

2
gabT

)
Einstein-egyenlet alapján megköveteli, hogy az univerzum anyagára vonatkozó Tab

energi-impulzus tenzor ideális folyadék legyen, amelynek elemei: T00 = ρ az ener-

gias¶r¶ség; T0µ = 0 ; Tµν = a2pgµν , ahol p az izotróp nyomás. A továbbiakban az

a, b = 0, 1, 2, 3 latin indexek a térid®indexek, míg a µ, ν = 1, 2, 3 görög indexek a

térindexek, továbbá a kifejezések a fénysebesség c = 1 egységben értend®ek. Ezek

ismeretében a kozmológia két dinamikai egyenlete származtatható. Az egyik az

ä

a
= −4πG

3
(ρ+ 3p) (1.1)

Raychaudhuri-egyenlet, amely az Einstein-egyenlet 00 komponense. A másik az

ȧ2 + κ

a2
=

8πG

3
ρ (1.2)

Friedmann-egyenlet, amely az Einstein-egyenlet 00 és µν komponenseinek különbségé-

b®l vezethet® le. A ∇aTab = 0 összefüggésb®l a

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (1.3)

a folytonossági-egyenlet, amely a Raychaudhuri- és Friedmann-egyenletb®l is kapható.

A dinamikai egyenletek megoldásához szükség van a ρ és p között fenálló állapot-

egyenletre, különben az egyenletrendszer nem zárt. A kezdeti univerzum sugárzás-

dominált volt, ezért p = ρ/3, valamint ρR ∼ a−4 ∼ t−2 és aR ∼ t1/2. A foton le-

csatólódás után (T ∼ 3000K, z ∼ 1100) az univerzum anyaga porral modellezhet®,
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4. ábra. Az univerzum korai id®szakában a ρR energias¶r¶ség volt domináns (piros),

ezért ezt nevezik a sugárzás-dominált (radiation-dominated) id®szaknak. A sugárzás-

dominált id®szak az anyag-sugárzás egyenl®ségig (matter-radiation equality) tartott.

Az anyag-sugárzás egyenl®ség után a ρM energias¶r¶ség (kék) volt meghatározó. Az

anyag-dominált (matter-dominated) id®szak vége körülbelül z ∼ 0, 55. Ezután a w =

−1 ± 0, 2 állapotegyenlettel rendelkez® sötét energia ρΛ energias¶r¶sége (zöld) vált

dominánssá. A sötét energia-dominált (dark energy-dominated) id®szak napjainkig

tart [83].

ekkor p = 0, így ρM ∼ a−3 ∼ t−2 és aM ∼ t2/3. A kés®i univerzum struktúrakép-

z®dési szakaszában feltették, hogy az univerzumban a Λ kozmológiai konstans, azaz

sötét energia-dominancia van. Ekkor p = −ρ, amelyb®l ρΛ ∼ áll. illetve aΛ ∼ eHt.

Az univerzum egyes korszakaiban a ρR, ρM és ρΛ energias¶r¶ségek egymáshoz képesti

arányát a 4. ábra mutatja be.

Az (1.2) Friedmann-egyenlet átírható a

H2

H2
0

= − κ

H2
0a

2
0

a20
a2

+
8πG

3H2
0

(ρΛ + ρM + ρR)

módon. Amennyiben behelyettesítjük az energias¶r¶ség id®fejl®désére vonatkozó össze-
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függéseket, és elvégezzük az x = a/a0 változócserét, akkor az

ẋ2

H2
0x

2
= Ωκx

−2 + ΩΛ + ΩMx
−3 + ΩRx

−4

egyenletet kapjuk úgy, hogy

Ωκ = − κ

H2
0a

2
0

, ΩΛ =
8πG

3H2
0

ρΛ , ΩM =
8πG

3H2
0

ρM0 , ΩR =
8πG

3H2
0

ρR0 .

Az új változókban az a0 a skálafaktor �mai� értéke, az ΩM magába foglalja a barionikus

anyagot és a sötét anyagot, az ΩR elhanyagolható, ha az univerzum kés®i id®szakát

vizsgáltuk, valamint 1 = Ωκ + ΩΛ + ΩM + ΩR.

A kozmológiával kapcsolatos meg�gyelések egyik célja az a (t) skálafaktor id®beli

fejl®désének lehet® legpontosabb meghatározása, ezért az a (t) Taylor-sorából a követ-

kez® kozmológiai paramétereket de�niálták:

H (t) =
ȧ

a
, q (t) = − äa

ȧ2
, Q (t) =

...
a a2

ȧ3
,

X (t) =

....
a a3

ȧ4
, Y (t) =

d5a

dt5
a4

ȧ5
, Z (t) =

d6a

dt6
a5

ȧ6
.

Itt H (t) a Hubble-paraméter, q (t) a lassulási paraméter, Q (t) � jerk� azaz �hirtelen

rántás�, X (t) �snap� azaz �hirtelen mozdulat�, Y (t) �crackle� azaz �ropogás�, Z (t)

�pop� azaz �pattogás�, valamint magasabb rend¶ id® deriváltjai is lehetnek kozmológiai

paraméterek [84]-[87]. A q (t) lassulási paraméter mai értéke alapján lehet eldönteni,

hogy a jelenben az univerzum tágulása lassul (q0 > 0), vagy gyorsul (q0 < 0).

Tekintve, hogy a detektált foton (ds2 = 0) radiálisan terjed (dθ = 0, dφ = 0), jöv®

irányítottságú és κ = 0, akkor

(1 + z) =
νe
νo

=
a (to)

a (te)
,

azaz

(1 + z) =
a0
a (t)

,

ahol νe a foton kibocsájtáskori frekvenciája, νo a foton meg�gyelt frekvenciája, te a

foton kibocsájtásának id®pontja, to a foton meg�gyelésének id®pontja, a0 = a (to). A

luminozitás távolságot a

dL ∼ a0r (z) (1 + z) (1.4)

adja meg, ahol a0r (z) a szögátmér® távolságból származtatható [88]-[90]. FLRW térid®
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esetén az (1.4) összefüggésben

r (z) =



sin

[
to∫

t(z)

dt
a(t)

]
, ha κ = +1

to∫
t(z)

dt
a(t)

, ha κ = 0

sinh

[
to∫

t(z)

dt
a(t)

]
, ha κ = −1 .

Amennyiben κ = 0, úgy a

dL ∼ (1 + z)

H0

1∫
(1+z)−1

dx
[
x2
√

ΩΛ + Ωκx−2 + ΩMx−3 + ΩRx−4
]−1

a luminozitás távolság [91].

Az Ia típusú szupernóva meg�gyelések során a

dL ∼ 1

H0

[
z + z2

(1− q0)

2

]
közelítést alkalmazták, amely segítségével a lassulási paraméter

q0 ∼
1

2

∑
J

ΩJ (1 + 3wI) .

A mérésekb®l a q0 ∼ −0, 55, valamint a H0 = 74, 8 ± 3, 1kms−1Mpc−1 értékeket kap-

ták [80], [81], ahol J = Λ, κ,M,R és wJ = pJ/ρJ . Az univerzumban megtalálható

anyagformák s¶r¶ségét és a kozmológiai paramétereket több száz nagy vöröseltolódású

(z ∼ 1) Ia típusú szupernóva meg�gyelésb®l származtatták. Ezen szupernóva meg�gye-

léseket például a SuperNova Legacy Survay (SNLS) [92], Hubble Teleszkóp [93] és az

ESSENCE (Equation of State: SupErNovae trace Cosmic Expansion) [94] felmérések

végeztek.

A kés®i univerzum gyorsulva tágulásának megállapítása után köztudottá vált, hogy

a homogén, izotróp univerzum a barionikus anyagon és a hideg sötét anyagon kívül sötét

energiát is tartalmaz. A gravitációsan taszító sötét energiát el®ször a Λ kozmológiai

konstanssal vezették be, amelyet a ΛCDM (Λ → pDE = −ρDE, wDE = −1, CDM

→ pCDM = 0, ΩM = Ωb + ΩCDM) modellnek, vagy standard kozmológia modellnek

neveznek.

Az Ia típusú szupernóva meg�gyelések feldolgozásával lehet®ség adódott a kozmo-

lógiai paraméterek CMB és BAO mérésekt®l független meghatározására. A Planck

Kollaboráció és a BAO mérései alapján a ΛCDM modellre kapott H0 = 67, 4 ±
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5. ábra. Az ábrán a CMB (narancssárga) és Ia típusú szupernóva (zöld) meg�gyelések-

b®l származtatott H0 értékek összehasonlítása látható a [96] folyóiratcikk szerz®inek

eredményeivel (piros, kék).

0, 5kms−1Mpc−1 [9] azonban hibahatáron kívül eltér a Hubble Teleszkóp és a SH0ES

kutatócsoport Ia típusú szupernóva (UV-IR) meg�gyeléseib®l származtatott H0 =

73, 30± 1, 04kms−1Mpc−1 értékét®l [95]. Számos kollaborációt és kutatócsoportot fog-

lalkoztat napjainkig a H0 meghatározása, de jelenleg sem lehet tudni, hogy az Ia típusú

szupernóvák meg�gyeléseib®l vagy a CMB és BAO mérésekb®l származó eredmények

adják meg a valódi H0-t. Ezt nevezik Hubble-feszültségnek (�Hubble-tension�), amely

feloldása érdekében tett kísérleteket az 5. ábra szemlélteti [96].

A Hubble-feszültség végs® eldöntését remélték egy további, az eddigiekt®l eltér® mé-

rési módszer biztosításával, például a gravitációs hullámok mérésével, amelyt®l ígéretes
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6. ábra. Az ábrán a Planck (levendula), a SH0ES (türkiz), továbbá a neutroncsillag

kett®s összeolvadásából származó GW170817 gravitációs hullám eseményb®l és elekt-

romágneses társ-eseményéb®l (kék) származtatott H0 értékek összehasonlítása látható

a [104] folyóiratcikk alapján. A GW170817 esemény és a társ-esemény hibáját a füg-

g®leges kék és narancssárga szaggatott vonalak jelölik.

eredményeket vártak a sötét anyag kérdésben is (primordiális fekete lyukak egybeolva-

dásának detektálása, sztochasztikus gravitációs hullám háttér). A gravitációs hullám a

Minkowski metrika els®rend¶ perturbációja esetén a vákuum Einstein-egyenlet megol-

dása. A gravitációs hullám egy h+ plusz és h× kereszt polarizácóból áll, amely a térid®

két pontja közötti távolság periodikus változása. A gravitációs hullám fénysebesség-

gel terjed, viszont eltér®en az elektromágneses sugárzástól, a forrása a tömegeloszlásra

vonatkozó kvadrupól-momentum változás. Az els® kett®s rendszert alkotó pulzár de-

tektálása és egyúttal a gravitációs hullám létezésének els®, de közvetett észlelése R. A.

Hulse és J. H. Taylor nevéhez köthet® az 1974-1975-es években [97]. A mérés során

nagy pontossággal igazolták egy neutron csillagból és egy pulzárból álló kett®s forgási

sebességének id®beli változásának elméleti jóslatát, amit a rendszer áltat kisugárzott

gravitációs hullám okoz. Az els®, közvetlen fekete lyukak összeolvadásából létrejött

gravitációs hullám rögzítése az általános relativitáselmélet után egy évszázaddal ké-

s®bb, 2015-ben történt [98]. A gravitációs hullám esemény detektálását a LIGO majd

az aLIGO (advanced LIGO) kollaboráció végezte, amelyek m¶szerrendszerét és infra-
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struktúráját évtizedekig építették. Az aLIGO detektorrendszer két lézer interferométer

Livingston és Hanford területén. A gravitációs hullám esemény ∼ 10−18m periodikus

távolságváltozást okozott a detektorok karjaiban. Ezt azóta számos további gravitáci-

ós hullám detektálás követte, amelyek két fekete lyuk, egy fekete lyuk és egy neutron

csillag, vagy két neutron csillag összeolvadásából jöttek létre [99]-[103]. Kés®bb to-

vábbi gravitációs hullám detektorokat építettek, ezek a Pisa melletti Virgo detektor és

Japánban a KAGRA detektor. Habár az aLIGO, a Virgo és a KAGRA megfelel® érzé-

kenység¶ a gravitációs hullám detektálásohoz, viszont a Hubble-feszültséget nem tudta

feloldani, mivel az aLIGO és Virgo adatai alapján H0 ∼ 68, 7+17,0
−7,8 kms

−1Mpc−1 [104]-

[107], amelyet a 6. ábra mutat be.

1.3. Módosított gravitációelméletek

A sötét anyagként és sötét energiaként értelmezett meg�gyelési eredmények magyará-

zatanák egy másik irányát képvisel® elméletek az általános relativitáselmélet (eseten-

ként a Newton-i gravitáció [108], [109]) módosítását javasolják. Ezek szerint nem új

anyag- vagy energiaformák bizonyítékai a meg�gyelések, hanem annak, hogy nem az

általános relativitáselmélet a megfelel® elmélet, amely leírja az univerzum dinamikáját

asztro�zikai és kozmológiai léptékben.

Egy általános relativitáselméleten túli elmélet megalkotásának számos módja van,

például: egy, kett®, s db dimenzós b®vítéssel {Klauza�Klein gravitáció [110], [111],

Dvali�Gabadadze�Porrati (DGP) [112], ún. Dark Dimension (DD) forgatókönyvek

[113] és egyéb Brán elménetek [114]}; a metrikus tenzor szabadsági fokai mellett az

elmélet kiegészítése skalármez®vel {Galileon elméletek, Horndeski elméletek, Kine-

tic Gravity Braiding vagy KGB elméletek, Einstein�Dilaton�Gauss�Bonnet gravitáció

[115]}, vektormez®vel {Einstein�æther gravitáció [116]}, tenzorral {Bimetric elméletek

[117], Multimetric elmélet [118]}, esetleg ezek kombinációjával vagy megtöbbszörözé-

sével {Tensor-Vector-Scalar azaz TeVeS gravitációs elméletek [119], két skalármez®t

tartalmazó k-eszencia elmélet [120]}; tömeges gravitonnal {Massive Gravity [121]};

az általános relativitáselmélethez képest magasabb rend¶ görbületi tagok behozásával

{Ho°ava�Lifschitz gravitácós elmélet [122], [123], f(R) gravitáció}, nem-lokális operáto-

rok hozzáadásával {Non-local gravitációs elméletek [124]}; stb. A módosításokat szük-

ségszer¶ úgy bevezetni, hogy az adott új elmélet Naprendszer léptékben az Einstein-i

gravitációt adja és megfeleljen a meg�gyelésekb®l adódó kényszereknek.
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Az általános relativitáselmélet publikációja után pár évvel egyrészt a tudományos

kíváncsiság által vezérelve [125], másrészt az Einstein�Hilbert hatás nem-renormalizálha-

tóságának megoldása érdekében korrekciós tagok bevezetésével [126], [127] jelentek

meg az els® olyan � Extended Theory of Gravity (ETG) névvel összefogott � elméle-

tek, amelyek a Ricci-skalár mellett/helyett magasabb rend¶ görbületi tagokat (RabRab,

RabcdRabcd, R□R, stb.) is tartalmaztak. Ezeknek az elméleteknek egy ága az f (R)

elmélet, amelyben az R Ricci-skalárt egy t®le függ® általános függvénnyel helyettesítik.

A metrikus f (R) elméletek Lagrange-s¶r¶sége az

Lf(R) = f (R)

alakú, ahol

f (R) = ...+
α2

R2
+
α1

R
− 2Λ + R +

R2

β2
+
R3

β3
...

és az αi, βi konstansok. Kés®bb újabb alternatívák jelentek meg: a Palatini f (R)

gravitáció [128], és a metric-a�n f (R) gravitáció [129], [130].

Az ETG esetén, viszont instabilitások is felmerültek [131]. Közülük kiemelend®

�gyelmet kapott (de nem az egyetlen) az Ostrogradsky-instabilitás, amelyre sokkal ko-

rábban, 1850-ben M. V. Ostrogradsky már rámutatott [132], [133]. Levezette, hogy a

változók els®rendnél magasabb rend¶ id®deriváltjait tartalmazó Lagrange-függvényb®l

(pl. L (x, ẋ, ẍ) vagy L
(
ϕa, ϕ̇a, ϕ̈a

)
) származtatott Hamilton-függvény lineárisan insta-

bil. Ezt a [134] hivatkozásban ismertették, amelyben a ϕ̈ másodrend¶ id®deriváltat

tartalmazó Lagrange-függvény els® tagjának (2− 1) szorzásával, a ϕ̈ = ψ változócseré-

vel, mad egy teljes id®derivált elhagyásával, végül a q = (ϕ+ ψ) /
√
2, Q = (ϕ− ψ) /

√
2

újabb változócserével ([134] folyóiratcikk (2), (3) egyenletek) az

L = − b
2
q̇2 +

b

2
Q̇2 − U (ϕ) (1.5)

csak els®rend¶ id®deriváltakat tartalmazó Lagrange-függvényt alakították ki. Az (1.5)

egyenletben a negatív el®jel¶ kinetikus tagot hívják �ghost�, azaz �szellem� instabili-

tásnak.

Az els®, skalármez®vel módosított gravitáció elmélet P. Jordan dolgozta ki, amely-

ben a φ skalármez® a φγR nem minimális csatolási tagon és egy kinetikus tagon ke-

resztül jelenik meg a gravitációs hatásban, ahol γ =konst [135], [136]. P. Jordan

skalár-tenzor elméletére alapozva C. Brans és R. H. Dicke az

LBD = φR− ω

φ
gab∂aφ∂bφ− V (φ)

(γ = 1) Lagrange-s¶r¶séget vezette be a [137] folyóiratcikkben, ahol ω dimenziómentes

csatolási konstans és a φ skalármez® reciproka arányos az e�ektív gravitácóis állan-

dóval. Amennyiben V (φ) = 0 és ω → ∞, úgy a származtatott mozgásegyenlet az
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Einsten-egyenlet. Brans és Dicke szerint �in any sensible theory ω must be of the

general order of magnitude of unity�, azaz az ω csatolási konstansnak egy nagyságred-

nyinek kell lennie, ellenkez® esetben elhanyagolható mértékben térne el az általános

relativitáselmélett®l. Az 1947-ben rögzített Merkúr perihélium vándorlás szöge alap-

ján 8%-os hibával ω ≳ 6 nagyságot adták meg [137], [138]. Az ω csatolási konstans

értékét kés®bb a bolygók perihélium vándorlásának és a Shapiro-késés (radarvisszhang)

mérésével pontosították, például: a Viking projekt alapján ω ≳ 1000 [139]; a VLBI

(Very Long Baseline Interferometry rádiótávcs® rendszer) mérései szerint ω ≳ 3600

[140], kés®bb ω ≳ 40000 [141].

Egy skalár-tenzor elmélet megalkotása kiindulhat szimmetriai megfontolásból, amely-

nek egyik képvisel®je a Galileon elméletcsalád. A Galileon elmélet megalkotását a sötét

energia problémát Λ kozmológiai konstans nélkül megoldó, de ghost-instabilitást mu-

tató DGP 5-dimenziós, �self-accelerating� (azaz �ön-gyorsító�) brán-modell inspirálta

[112], [142]. A Galileon elmélet, a klasszikus Galilei csoport analógiájára, a skalár-

mez® gradiensére vonatkozó ∂aπ −→ ∂aπ + ba eltolás szimmetriával rendelkezik (azaz

π −→ π + bax
a + c). Az

LGal = c1π + c2X − c3□π + c4X
[
(□π)2 −∇a∇bπ∇a∇bπ

]
−c5

3
X
[
(□π)3 − 3□π∇a∇bπ∇a∇bπ + 2∇a∇bπ∇a∇cπ∇b∇cπ

]
4-dimenziós Lagrange-s¶r¶ség a π skalármez® másodrend¶ derivátjait tartalmazza,

Ostrogradsky-instabilitásoktól mentes, továbbá c1, ..., c5 =konst., X = −1
2
∇aπ∇aπ,

∇a a 4-es kovariáns deriválás, míg □ = gab∇a∇b a d'Lambert operátor [143]. Ez

a Lagrange-s¶r¶ség módosítható újabb tagok bevezetésével, amelyek mellett a mez®-

egyenletek továbbra is mind a metrikára, mind a skalármez®re másodrend¶ dinamikai

egyenleteket adnak. Ekkor kapjuk a kovariáns Galileon elméletet [144], [145], ahol

LkGal = c1π + c2X − c3X□π + c4X

[
1

2
XR + (□π)2 −∇a∇bπ∇a∇bπ

]
−c5X

[
−XGab∇a∇bπ +

1

3
(□π)3 −□π∇a∇bπ∇a∇bπ

+
2

3
∇a∇bπ∇a∇cπ∇b∇cπ

]
.

Ennél még általánosabb esetben vezették be az ún. általánosított Galileon (azaz ge-

neralized Galileon) elméletet, amely ugyancsak ghost-mentes, míg a Lagrange-s¶r¶ség

∇a∇bπ-ben polinomiális [145]. Az általánosított Galileon elmélet 4-dimenzióban meg-

egyezik a Horndeski elmélettel, amiben a hatás az

SH =

∫
d4x
√
−g̃LH , (1.6)
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ahol az

LH =
5∑

K=2

LH
K , (1.7)

Horndeski Lagrange-s¶r¶ség egy összegb®l épül fel [146]. Ennek tagjai az

LH
2 = G2(ϕ,X) , (1.8)

LH
3 = G3(ϕ,X)□ϕ , (1.9)

LH
4 = G4(ϕ,X)R− 2G4X(ϕ,X)

[
(□ϕ)2 −∇a∇bϕ∇a∇bϕ

]
, (1.10)

LH
5 = G5(ϕ,X)Gab∇a∇bϕ

+
1

3
G5X(ϕ,X)

[
(□ϕ)3 − 3□ϕ∇a∇bϕ∇a∇bϕ

+2∇a∇bϕ∇a∇cϕ∇b∇cϕ
]
. (1.11)

A GI (ϕ,X) és I = 1, ..., 5 általános függvények, a GIX a GI függvény X szerinti deri-

váltja. A Horndeski elmélet a legáltalánosabb egy skalármez®t tartalmazó módosított

gravitációelmélet, amely Ostrogradsky-instabilitástól mentes, azaz ezen elméletben a

metrikára és a skalármez®re is legfeljebb másodrend¶ dinamikai egyenletek vonatkoz-

nak. A skalár-tenzor elméletek egy nagy csoportja a Horndeski elmélet részét képezi,

például az f (R) gravitáció legegyszer¶bb változatánál G3 = 0 = G5 és G2 = V (ϕ),

G4 = ϕ; Brans�Dicke elméleteknél G3 = 0 = G5 és G2 = ω
ϕ
X − V (ϕ) , G4 = ϕ

stb. (ld. [134], [147]). Léteznek a Horndenski elméleteken túli elméletek, ilyenek

az ún. Degenerate Higher Order Scalar-Tensor (DHOST) gravitációs elméletek [148],

a Gleyzes�Langlois�Piazza�Vernizzi (GLPV) elméletek [149], [150] stb. A Horndeski

Lagrange-s¶r¶ség összegében szerepl® tagok bizonyos mechanizmusokat írnak le, ame-

lyek a továbbiakban lesznek bemutatva.

A meg�gyelések alapján a ΛCDM modell álltal bevezetett sötét energia állapot-

egyenlete a WMAP, eCMB, BAO, H0 és SNe adatok felhasználásával a következ®-

nek adódott: ha wDE konstans, úgy sík univerzum esetén az értéke −1, 71 < wDE <

−1, 084±0, 063; nem sík univerzumban a wDE > −1, 122+0,068
−0,067; ha az állapotegyenletet a

w (a) = w0+wa (1− a) módon adják meg, akkor sík univerzumban a w0 = −1, 17+0,13
−0,12,

míg wa = 0, 35+0,50
−0,49 [34]. A 20. század második felét®l a Λ kozmológia konstanst,

az univerzum vákuum energias¶r¶ségével, azaz null-ponti energiájával azonosították.

Azonban a kozmológiai meg�gyelésekb®l adódó energias¶r¶sége a Λ kozmológiai kons-

tansnak ∼ 120 nagyságrenddel kisebb volt, mint amit a kvantumtérelmélet keretei

között származtattak [151]. A felt¶n® különbség miatt a Quintessence elméletben egy

�dinamikus kozmológiai konstanst� vezettek be, amelynek a sötét energia helyettesítése
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mellett a korai univerzum in�ációjának leírása is célja volt [152], [153]. Az elméletben

a Q önkölcsönható skalármez® (Q, mint �quintessence�, azaz kvinteszencia) dinamikája

a V (Q) ∼ Q−α potenciál által van meghatározva (α > 0). Hátránya, hogy a kapott

kvinteszencia energias¶r¶ség és nyomás csak folyamatos �nomhangolás útján illeszt-

kedik a CMB és BAO meg�gyelési eredményekb®l kapott sötét energia fejl®déshez,

továbbá a wDE > −1 állapotegyenletet eredményezi [154], [155]. A kvinteszencia beve-

zetése ellenére meglév® kozmológiai problémák megoldása érdekében alakultak ki az ún.

Uni�ed Dark Energy (UDE) vagy Uni�ed Dark Matter (UDM) modellek. Ezek szerint

a sötét anyag és a sötét energia ugyanazon �folyadék� különböz® állapotai. Ennek leírá-

sához egzotikus állapotegyenleteket kerestek és vizsgáltak meg az univerzum különböz®

id®szakaira nézve [156]-[160]. Egy másik megközelítés során a Lagrange-s¶r¶séget egy

skalármez®re vonatkozó nem-lineáris kinetikus taggal egészítették ki, így kapva a k-

eszencia (k-essence) elméletet [161], [162]. A k-eszencia elméletben a Lagrange-s¶r¶ség

az

Lk−essence =
1

6
R− Lk (φ,X) + LM

(
gab,Ψ

)
,

amelyben

Lk = K (φ) p̃ (X) , X =
1

2
∇aφ∇aφ , K (φ) ∼ 1

φ2

a 8πG/3 = 1 egységben, továbbá

ρk = 2Xp̃X − p̃ , pk = K (φ) p̃ (X) .

A dinamikus k-mez® a sugárzás-dominált id®szakra jellemz® állapotegyenlettel (wk ∼
1/3) rendelkezik. A porra vonatkozó állapotegyenletet azonban nem tudja teljesíteni,

mivel z = 1000 esetén befagy, ekkor wk ∼ −1. Az anyag-dominált id®szak végén, nem

teljesen igazodva a mérési eredményekhez (z ∼ 3−5 estén kezd el wk növekedni), lassan

beindítja az univerzum gyorsulva tágulását. A k-eszencia elméletnek is megjelentek

további alternatívái, például k-eszencia UDM [163], �fantom� (�phantom�) k-eszencia

[164], �fantom� brán kozmológia [165], k-eszencia két skalármez® bezevetésével [120].

A k-eszencia elmélet tagjainak legnagyobb része a Horndeski elmélet alesetei. Ezen

elméletek a megfelel® LH
2 választásával vezethet®k be, így a Horndeski elméletben az

LH
2 Lagrange-s¶r¶ség írja le a kései univerzum gyorsulva tágulását.

A Horndeski elméletben az LH
3 Lagrange-s¶r¶ség a különböz® árnyékolási tagokat

tartalmazza, amely biztosítja az Einstein-i elmélet érvényességét Naprendszer lépték-

ben. Vainshtein nevéhez köthet® az els® árnyékolási mechanizmus felismerése, amikor

az ún. Fierz�Pauli tömeges graviton elmélet van Dam�Veltman�Zakharov (vDVZ) disz-

kontinuitását próbálta megoldani [166]-[168]. A vDVZ diszkontinuitás szerint, bármi-

lyen kis graviton tömeg esetén a Fierz�Paul elmélet jelent®s eltérést mutat az általános
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relativitáselmélett®l, például a fényelhajlás, vagy a perihélium vándorlás mértékében.

Vainshtein megállapította, hogy a vDVZ diszkontinuitás a gravitációs forrástól bizonyos

(rV , azaz Vainshtein-sugár) távolságon belül nem linearitást okoz a perturbációs egyen-

letekben. Ennek megoldásaként bevezetett egy rV alatt domináns és a nem linearitást

kompenzáló tömeg tagot, amely rV felett elhanyagolható [134], [169], [170]. Kés®bb

Vainshtein módszerét nem tömeges gravitációs elméletekre is alkalmazták, kifejezetten

Galileon és Horndeski elméleteknél annak érdekében, hogy a gravitációs források egy

bizonyos környezetében az általános relativitáselmélet határesetét kapják vissza [134],

[171]. Tömeges skalármez® esetén az árnyékoló mechanizmus kialakítását az ún. cham-

eleon elméletek tárgyalják [172], [173]. Léteznek további árnyékolási módszerek például

a k-Mou�age [174] és symmetron elméletek [175], [176].

Hasonlóan a kvantumtérelmélet ún. e�ektív térelméleti közelítéséhez (E�ective

Field Theory, EFT), a módosított gravitációelméletek tekinthet®k úgy is, mint az

Einstein�Hilbert hatás magasabb rend¶ korrekciói. A gravitáció EFT közelítését el®-

ször az egy skalármez®t tartalmazó in�ációs modellekben alkalmazták. A kozmoló-

giai perturbációkat az ún. Goldstone bozon id® transzláció sértése alapján vezették

be [177]-[180], amely leírás a Standard Modell részecske�zikában az SU (2) × U (1)

spontán szimmetriasértésb®l származó Higgs bozon analógiájára történ [181]-[185]. Az

FLRW térid®ben a kozmológai perturbációszámítás során az in�ációt generáló skalár-

mez® id®függ®, amely perturbációkra változatlan marad a δϕ (t, x̄) = 0 unitáris mérték

választásával. Ebb®l a mértékválasztásból következik, hogy a ϕ =konst. meghatároz

egy id®skálát, továbbá a 3 + 1 térid®felbontás térszer¶ 3-dimenziós hiperfelületekre

mer®leges id®szer¶ na normálisát. Az EFT alapján az általános relativitáselmélet a

jelenleg még nem ismert, a gravitációt kvantum skálán leíró, nagy energiás térelmélet

alacsony energiás közelítésének tekinthet® [186]. Az említett nagy energiás térelméle-

tek például a Loop Quantum Gravity (LQG) [187], DD [113], M-elmélet [188], és egyéb

elméletek [189]. Alacsony energiás EFT-nek tekinthet®k például a gravitációt klasszi-

kusan kezel® módosított gravitációelméletek, így a Horndeski elmélet is, a változók jó

megválasztásával [190]-[197].

Már a fentebb említett módosított gravitációelméletek száma is sok, így felmerül

a kérdés �Melyik a jó elmélet?�, �Szükséges-e, hogy ennyi legyen?�, erre viszont nem

létezik egyértelm¶ válasz a jelenlegi ismeretek alapján. A meg�gyelésekb®l származta-

tott kényszerekkel dönthet® el, hogy az új elméletek közül, melyek megfelel®k a valóság

leírására. Az �egészséges� módosított gravitációelméletekre rámutató meg�gyelési ered-

mény volt az els® gravitációs hullám mérés, az els® neutroncsillag-fekete lyuk kett®st®l

származó gravitációs hullám és gamma kitörés (gamma-ray burst, GRB) detektálása,

valamint az Event Horison Teleszkóppal felvett els® fekete lyuk fénykép [198]-[209]. Ez
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utóbbi esetben még szükséges megvárni a nagyobb felbontású képalkotást a pontosabb

paraméter meghatározásokhoz. Szintén módosított gravitációelmélet �sz¶r®vé� válhat

a jöv®ben a gravitációs hullám lecsengési fázisának mérése, azaz a gravitációs hul-

lám visszhangok (echo) meg�gyelése, mivel a visszhang alakja elméletenként változik

[210]. A módosított gravitációelméleteket jelent®sen korlátozta a gravitációs hullám

és Fermi detektorokkal érzékelt GW170817 és GRB170817A események között mért

id®különbség, amelyb®l nagy pontossággal határozták meg a gravitációs hullám ter-

jedési sebességét [211], [212]. Az ebb®l megadott EFT és további paraméter értékek

[213] alapján a Horndeski családban a G4 (ϕ,X) = G4 (ϕ) és G5 (ϕ,X) =konst. kor-

látokat adták meg, amelynek például a KGB [214], a k-eszencia [215], az f (R) és a

Brans�Dicke elméletek megfelelnek. A GW170817 és GRB170817A események alap-

ján kizárták a tömeges gravitációs elméleteket, valamint a magasabb rend¶ görbületi

tagokat tartalmazó elméleteket szükítették. A kényszerek folyamatos pontosítása elmé-

letcsoportokként jelenleg is zajlik a növekv® meg�gyelési események alapján [216]. A

gravitációs hullám terjedési sebességével kapcsolatos cT (k) paraméter szerint kizártnak

és korlátozottnak kimondott elméleteknek lehet létjogosulságuk extrém er®s gravitációs

körülmények között. Ennek oka, hogy az aLIGO és Virgo detektorok 10 − 100Hz kö-

zötti frekvencia tartományban mérnek, azonban az EFT által jósolt sötét energia skála

20 nagyságrenddel kisebb. Emiatt ezen elméletekre a jöv®ben felépül® és 10−1 − 1Hz

frekvencia tartományon belül mér® LISA (Laser Interferometer Space Antenna) által

rögzített, szupermasszív fekete lyukak összeolvadásából származó gravitációs hullám

mérések jelentenek majd kényszereket [217]-[223].

Az újszer¶ elméletekben kérdés, hogy megjelennnek e olyan objektumok (példá-

ul fekete lyukak), mint amik az általános relativitáselméletben, ha igen, akkor azok

stabilak e. Szintén érdekes kérdés, hogy a kozmológia jelleg¶ meg�gyelésekkel illeszt-

kednek e ezek a modellek sötét energia és/vagy sötét anyag nélkül, azaz lehet e a sötét

anyagnak, illetve a sötét energiának tulajdonított jelenségeket alternatív gravitációs

elméletként felfogni. Ezért érdemes a módosított gravitációelméletekkel generált fekete

lyuk megoldások megkeresése különböz® szimmetriával rendelkez® térid®kben (gömb-

szimmetrikus és sztatikus, tengelyszimmetrikus és forgó, esetleg töltéssel rendelkez®),

perturbációszámítással stabilitásvizsgálat elvégzése, a származtatott gravitációs hullá-

mok elemzése, a fényelhajlás vizsgálata, kozmológiai modelleknél a struktúraképz®dés

tanulmányozása stb. [224]-[231].
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1.3.1. Fekete lyukak

A fekete lyukak létezését els®ként J. Michell feltételezte 1784-ban, kett®s és hármas

rendszerek vizsgálatakor. Megállapította, hogy az univerzumban lehetnek olyan nem

világító objektumok, amelyek átmér®jükhöz képest olyan s¶r¶ek, hogy az információ

fény formájában nem tudna eljutni egy meg�gyel®höz, ezért ezen objektumok jelen-

létére csak a társcsillag mozgásából lehet következtetni. J. Michell publikációjától

függetlenül, 10 évvel kés®bb P. S. Laplace ugyanezt írta le. Azonban a fekete lyukak

elméleti levezetésére több, mint 100 évet kellett várni [232].

A fekete lyukak matematikai alapjait az általános relativitáselmélet biztosította,

aminek a felhasználásával K. Schwarzschild levezette a gömbszimmetrikus, sztatikus

vákuum térid® fekete lyukat [4]. A fekete lyuk megnevezést kés®bb, J. A. Wheeler

adta. A fekete lyuk a térid® egy olyan régiója ahonnan a fény sem tud kijutni, az-

az �region of no escape� vagy �a regon of spacetime in wich gravity is so strong that

light cannot escape� [233], [234]. A �region of no escape� a fekete lyuk ún. esemény-

horizontja, amely mögött vagy van szingularitás, vagy nincs. Az eseményhorizonton

kívül számos különböz® horizont de�níció ismert, például látszó (apparent) horizont,

csapdázó (trapping) horizont, Killing-horizont, Rindler-horizont, kauzális horizont .stb

[235]. Azonban sztatikus vagy stacionárius fekete lyukak esetén a látszó, a csapdázó és

a Killing horizont egybe esik az eseményhorizonttal. A térid® tartalmaz szingularitást,

amennyiben legalább egy metrika komponens és legalább egy görbületi skalár (például

a K = RabcdRabcd Kretschmann-skalár) a végtelenbe tart a térid® egy tartományában.

A gömbi koordinátában megadott

ds2 = −
(
1− 2Gm

r

)
dt2 +

1

1− 2Gm
r

dr2 + r2dΩ2 (1.12)

Schwarzschild térid®ben �zikai szingularitás van az r = 0-ban, mivel K ∼ r−6 → ∞.

A Schwarzschild térid® eseményhorizontja az rs = 2Gm Schwarzschild-sugárnál he-

lyezkedik el, ahol grr → ∞, de a K skalár nem divergál. Ez a Schwarzschild ko-

ordinátákban egy koordináta szingularitás. A metrika vizsgálatakor érdemes a fény

terjedését követ® radiális null geodetikusokhoz rendelt (ds2 = 0, dθ = 0, dφ = 0) ún.

Eddington�Finkelstein koordinátákba való áttérés [236]. Ekkor az (1.12) ívelemnégyzet

az u = t−r∗ retardált (kimen®) és a v = t+r∗ avanzsált (bemen®) id® koordinátákban

a

ds2 = −
(
1− 2Gm

r

)
du2 − 2dudr + r2dΩ2
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vagy

ds2 = −
(
1− 2Gm

r

)
dv2 + 2dvdr + r2dΩ2 (1.13)

alakú, ahol r∗ =
∫ (

1− 2Gm
r

)−1
dr a �tekn®c� koordináta. Az (1.13) alapján az Eddington�

Finkelstein koordinátákba írt gvv metrika komponense csak r = 0 esetén tart a végte-

lenbe. Radiálisan terjed® fényjelet tekintve az (1.13) ívelemnégyzet az

0 =

[(
1− 2Gm

r

)
dv − 2dr

]
dv (1.14)

egyenletre egyszer¶södik, amelyb®l

dv = 0 → v = konst.

és
dv

dr
=

(
1

2
− Gm

r

)−1

.

Legyen t̄ = v − r egy újra de�niált Eddington�Finkelstein koordináta [91], ekkor az

(1.14) egyenletb®l

t̄+ r = konst. ,

dt̄ =
(r + 2Gm)

(r − 2Gm)
dr ,

azaz

t̄ = −r + konst. ,

t̄ = r + 4Gm ln
∣∣∣ r

2Gm
− 1
∣∣∣+ konst.

Ezek alapján az r = rs esetén a foton pályája egy függ®leges egyenes, azaz a fény a

horizonton �ragad�. Ha r < rs a foton az rs horizont alatt marad és a szingularitás

felé tart. A Schwarzschild térid®ben az rs eseményhorizontnak nevezett matematikai

határ(felület) elválasztja a térid®nek az I: rs < r < ∞ és II: 0 < r < rs részeit, ahol

a foton I→ II haladása megengedett, míg a II → I nem megengedett. Ezt a 7. ábra

szemlélteti (lásd b®vebben a [91], [233], [237], [238] hivatkozásokban).

A gömbszimmetrikus, sztatikus Schwarzschild megoldás után sok �gyelem összpon-

tosult az egzakt megoldások vizsgálatára. A fekete lyukak létezését véglegesen akkor

fogadták el, amikor J. R. Oppenheimer és H. Snyder egy nagytömeg¶ csillag fejl®désé-

nek leírásakor a gravitációs kollapszus végálapotaként a Schwarzschild megoldást kapta

[3], [239].
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7. ábra. A Schwarzschild fekete lyuk szerkezete az újra de�niált Eddington�Finkelstein

koordinátákban. A hullámos függ®leges vonal jelöli a szingularitást (singularity) r = 0-

ban. A függ®leges egyenes vonal r = 2µ-nél a fekete lyuk horizontja. A pont-vonal egy

radiálisan a fekete lyukba es® részecske (radially infalling particle) pályája [91].

Majdnem Schwarzschild-al egy id®ben H. Reissner és G. Nordström egymástól füg-

getlenül mutatták be a gömbszimmetrikus, sztatikus és töltéssel rendelkez® térid® vá-

kuum megoldásait. A töltés és a tömeg arányától függ®en a Reissner�Nordström térid®

tartalmazhat kett®, vagy egy horizonttal rendelkez® fekete lyukakat, továbbá horizont

nélküli ún. csupasz szingularitásokat [91], [240]-[242].

Az 1960-as években R. P. Kerr egy komlex null tetráddal felépített ívelemnégyzet-

tel való �kísérletezés� során kapta meg az els® tengelyszimmetrikus, forgó fekete lyukat

[243]-[248]. A Kerr metrika az r = 0 esetében szinguláris, ahol a szingularitás a szim-

metriatengely körül, θ = π/2 síkban egy a sugarú korong peremén található gy¶r¶ (a

felület többi pontja reguláris). Az m2 > a2 esetén a metrika két koordináta szingulari-

tást tartalmaz, így a gy¶r¶s szingularitást, egy r− sugarú bels® és egy r+ sugarú küls®

eseményhorizont veszi körül. Amennyiben m = a, akkor a gy¶r¶s szingularitást egy

eseményhorizont takarja, míg nem rendelkezik horizonttal, ha m2 < a2 [91], [249]. A

Kerr megoldást Newmann általánosította elektromos töltés bevezetésével [251].

A térid® megoldásokra több feltétel is vonatkozik, ezek közül az egyik a kozmikus
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cenzor hipotézis, amely szerint csupasz szingularitások nem léteznek az univerzumban,

azaz egy valós fekete lyuknak mindig van eseményhorizontja [252]. A hipotézisnek

létezik er®s és gyenge változata és további pontosításai a kizárandó szingularitásokkal

kapcsolatban [253].

Egy másik feltétel a fekete lyukakat jellemz® paraméterekre vonatkozik. Egy álta-

lános relativitáselméleti fekete lyukat három paraméter határoz meg, az m fekete lyuk

tömeg, a q töltés és az a = hc/Gm forgási paraméter, ahol h az egységnyi tömegre jutó

impulzusmomentum egy térbeli végtelenben lév® meg�gyel® szemszögéb®l [254]. Ezek

alapján a Schwarzschild fekete lyukat m jellemzi, a Reissner�Nordström fekete lyukat

az m és q, a Kerr fekete lyukat az m és az a (a2 < m2), míg a Kerr�Newmann fekete

lyukat mindhárom paraméter.

Az általános relativitáselmélet helyébe lép®, vagy azt kiegészít® módosított gravi-

tációelméletek megjelenése új térid® megoldásokat is hozott. Felmerült a kérdés, hogy

ezen fekete lyukak mennyiben térhetnek el az általános relativitáselméletben megjele-

n®kt®l, valamint a módosított gravitáció elméleti nagy tömeg¶ csillagok végállapotai

milyen megoldások lehetnek. Hawking megmutatta, hogy a Brans�Dicke elméletben

(úgy, hogy V (ϕ) = 0) egy csillag végállapotaként el®álló fekete lyuknak stacionáriusnak

(azaz tengelyszimmetrikusnak vagy sztatikusnak) kell lennie, amely akkor lehetséges,

ha a skalármez® gradiense zérus, azaz ϕ =konst. Ebb®l az következik, hogy az így el®-

álló stacionárius Brans�Dicke megoldás azonos az általános relativitáselméletbelivel,

tehát ugyanúgy csak az m, q, a paraméterek határozzák meg. Ez az ún. �Nincs-haj

tétel�, azaz �No-hair theorem� [255]. A Nincs-haj tétel bizonyítva lett gömbszimmet-

rikus, sztatikus és aszimptotikusan sík, vagy aszimptotikusan de Sitter térid®kre több

skalármez®t tartalmazó elméletekben [256]. Numerikus szimulációkkal igazolták a té-

tel helyességét sztatikus, d-dimenziós térid® megoldásai esetén, olyan elméletekben,

ahol a skalármez® úgy csatolódik az Einstein�Hilbert hatáshoz, hogy teljesíti a szuper-

szimmetrikus húrelmélet pozitív energia tételét (Positive Energy Theorem, azaz PET)

[257]. Sotiriou és Faraoni kimondta a Nincs-haj tételt stacionárius, izolált, aszimpto-

tikusan sík fekete lyukakra az ω = ω (ϕ) csatolási függvénnyel és V (ϕ) potenciállal

rendelkez® általánosított Brans�Dicke elméletekben [258]. Kovariáns 1 + 1 + 2 for-

malizmus alkalmazása mellett egy általános potenciállal rendelkez®, nem minimálisan

csatolt Klein�Gordon skalármez® esetén is igaznak bizonyult a tétel [259]. Sztati-

kus és asszimptotikusan sík megoldások elemzése során, Horndeski, Horndeski-n túli,

Einstein�Scalar�Gauss�Bonnet és Chern�Simons elméletekben, meg�gyelésekkel kom-

patibilis esetekben is azt találták, hogy a kapott fekete lyukaknak vagy nincs haja,

vagy �elhanyagolható haja� van. Az utóbbi esetben, ha a skalármez® kozmológiailag

releváns (Ωϕ ∼ O (1)), akkor a skalár haj elhanyagolhatóan kicsi lesz a fekete lyuk



1.3 Módosított gravitációelméletek 37

környezetében [260].

Galileon elméletekben gömbszimmetrikus, sztatikus térid®knél a tételt szintén igaz-

nak találták, viszont L. Hui és A. Nicolis úgy nyilatkozott, hogy �black holes famously

have no hair � except when they do� [261]. A Nincs-haj tétel alóli kivételekre E. J.

Weinberg mutatott rá. Úgy gondolta, hogy a tétel általános anyagra és csak asztro�zi-

kai méret¶, szabályos szimmetriával rendelkez®, stabil fekete lyukakra lett kimondva, el-

lenben nem vonatkozik például szubatomi méret¶ vagy egyéb komplex anyag-gravitáció

csatolással rendelkez® elméletekbeli fekete lyukakra. Állítását bizonyította mágnesesen

töltött fekete lyukra spontán szimmetriasért® Yang�Mills�Higgs elméletekben [262].

Hasonló eredményt kaptak nem-Ábeli fekete lyukakra is az Einstein�Yang�Mills el-

méletekben [263]. Asszimptotikusan sík térid®ben minimálisan csatolt, önkölcsönható

skalármez® esetén exponenciálisan elt¶n® skalár hajjal rendelkez® sztatikus, izotróp fe-

kete lyukat találtak, ahol a V (ϕ) kölcsönható skalárpotenciál negatív értékeket is felvesz

(sértve a domináns energiafeltételt) [264]. Konformisan csatolt önkölcsönható tömeges

skalármez®vel rendelkez® elméletben skalár hajas, sztatikus fekete lyukat is származ-

tattak [265]. Szintén vannak olyan gömbszimmetrikus, sztatikus, hajas fekete lyukak

a Galileon elméletekben, amikor Jr Noether áram komponens zérus (mivel ∇aJ
a = 0),

viszont ∂rϕ ̸= 0. Ez olyan esetekben állt el®, amikor a Galileon Lagrange-s¶r¶séghez

lineárisan csatolódik a

G = RabcdRabcd − 4RabRab +R2

Gauss�Bonnet invariáns, például G5 ∼ ln |X|+Ḡ5 (X) [266]. Gömbszimmetrikus, szta-

tikus térid® esetén származtattak egy els®dleges és másodlagos skalár hajjal rendelkez®,

aszimptotikusan sík fekete lyuka. Ekkor egy ϕ (t, r) skalármez®b®l felépített Galileon

elmélet a βGab∂aϕ∂bϕ Einstein-tenzorral kialakított tagot tartalmazza (β =konst.) úgy,

hogy ∂G4/∂X ̸= 0 és Jr = 0, míg ∂rϕ ̸= 0 [267]. Els®dleges skalár haja van egy fekete

lyuknak, ha az m, q, a paraméterekt®l eltér® ún. skalár töltés is jellemzi. Másodlagos

skalár haja van egy fekete lyuknak, ha a metrika olyan eltérést tartalmaz az általános

relativitáselméleti vákuum megoldáshoz képest, amely az m, q, a paraméterekt®l függ

[260]. A KGB elméletben (azaz G4 (ϕ,X) = G4 (ϕ) és G5 (ϕ,X) = 0) származtattak

gömbszimmetrikus, sztatikus hajas fekete lyuk megoldásokat, amennyiben G3(X) ̸= 0

úgy, hogy Jr = 0, míg ∂rϕ ̸= 0 [268].

Az említetteket összefoglalva tehát elmondható, hogy térid®szingularitás esetén a

görbületi tagok közül legalább egy a végtelenbe tart, csupasz szingularitás a valóságban

nem létezik, továbbá �a fekete lyukaknak nincs haja, kivéve mikor van�.
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1.3.2. Energia-impulzus tenzor alakjai és energiafeltételek

Az adott gravitációelméleti hatás vákuum megoldásai tartalmazhatnak például fekete

lyukakat, horizont nélküli szingularitásokat. Az univerzum anyagának vizsgálatához,

viszont szükséges az anyagi hatást is bevezetni. Anyag �gyelembevételével a

Gab = κ2TM
ab ,

az Einstein-egyenlet, ahol

TM
ab = − 2

κ2
√
−g

δLM

δgab

az anyag energia-impulzus tenzora, ahol κ2 = 8πG, c = 1, g a metrika determinánsa.

Az energia-impulzus tenzorra a

∇aTM
ab = 0 (1.15)

megmaradási tétel igaz általában.

Az energia-impulzus tenzorok osztályokba sorolhatók és osztálytól függ®en ener-

giafeltételeknek felelnek meg, amelyekkel számos könyv és folyóiratcikk foglalkozik

[91], [233], [238], [269]-[275]. Az osztályozás szerint, az I-es típusba sorolandó energia-

impulzus tenzorok a

Tab =


ρ 0 0 0

0 p1 0 0

0 0 p2 0

0 0 0 p3


módón épülnek fel egy E0, E1, E2, E3 ortonormált bázisban, ahol E0 id®szer¶, továbbá

ρ és pµ a folyadékkal együtt mozgó meg�gyel® által detektált energias¶r¶ség és nyomás.

Ebbe a típusba tartozik az ideális folyadék energia-impulzus tenzora, amely nyomása

izotróp (p1 = p2 = p3 = p), ekkor

Tab = (ρ+ p) uaub + pgab , (1.16)

ahol ua az ideális folyadék id®szer¶ 4-es vektora (uaua = −1). Megjegyzend®, hogy

nem ideális folyadék esetén az energia-impulzus tenzor a

Tab = ρuaub + 2q(aub) + (phab + πab) (1.17)

alakba írható. Itt p = p̄+ pvi az izotróp nyomás, amely a p̄ nem viszkóz és pvi viszkóz

tagok összege, hab = uaub + gab az ua-ra mer®leges 3-dimenziós tér metrikája, qa az

energiaáram s¶r¶ség, πab az anizotróp nyomás tenzor (πa
a = 0, π(ab) = 1

2!
(πab + πba) =
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πab). Továbbá teljesülnek a h(ab) = hab, habub = 0, πabub = 0 és qaua = 0 összefüggések

[233], [276].

A II-es típusba tartozó energia-impulzus tenzorok

Tab =


b+ k b 0 0

b b− k 0 0

0 0 p2 0

0 0 0 p3


alakúak, ahol k =konst., b = ±1 megfelel® normálással, továbbá az E0 és E1 nullszer¶

sajátvektorok.

A III-as típusba sorolandók a

Tab =


b 0 1 0

0 −b 1 0

1 1 −b 0

0 0 0 p


alakú energia-impulzus tenzorok, ahol az E0, E1, E2 nullszer¶ sajátvektorok.

A IV-es típusba tartoznak a

Tab =


0 b 0 0

b −k 0 0

0 0 p2 0

0 0 0 p3


alakú energia-impulzus tenzorok (k2 < 4b2), amelyeknek nincs egyetlen id®szer¶ vagy

nullszer¶ sajátvektora sem, ezért nem �zikaiak.

Az univerzumban ismert anyagfajták eneria-impulzus tenzorai nem rendelkeznek

negatív energias¶r¶séggel, nem jellemeznek olyan tömeges vagy tömegnélküli anyag-

formát, amelyek fénysebességnél gyorsabban mozognak. A meg�gyelések alapján a

nem megvalósuló anyagformák kisz¶rése érdekében egy energia-impulzus tenzornak a

következ® feltételeknek kell eleget tennie:

� Gyenge energiafeltétel : Tabvavb ≥ 0, azaz bármely meg�gyel® által mért energia-

s¶r¶ség nem negatív. A va egy 4-es id®szer¶ egységvektor (vagy fényszer¶, ekkor

null energiafeltételr®l beszélünk) egy meg�gyel® világvonalának az érint®je egy

tetsz®leges P, P ∈ M pontban. A feltétel a következ® esetekben teljesül: I-es

típus → ρ ≥ 0, ρ+ pµ ≥ 0; II-es típus → p2 ≥ 0, p3 ≥ 0 , k ≥ 0, b = +1; III-as és

IV-es típusokra nem teljesül.



1.3 Módosított gravitációelméletek 40

� Domináns energiafeltétel: Tabv
avb ≥ 0 és Tabva nem térszer¶, továbbá va id®-

szer¶, azaz bármely ortonormált bázisban az energias¶r¶ség domináns a többi

komponenshez képest: T00 ≥ |Tab|. Az energias¶r¶ség dominanciája az ismert

anyagformákra természetesen mindig teljesül. A feltétel a következ® módon áll

fenn: I-es típus → ρ ≥ 0, −ρ ≤ pµ ≤ ρ; II-es típus → 0 ≤ p2 ≤ k, 0 ≤ p3 ≤ k,

k ≥ 0, b = +1; III-as és IV-es típusokra nem teljesül.

� Er®s energiafeltétel : Rabv
avb ≥ 0, továbbá amennyiben va nullszer¶ vektor, akkor

a (
Tab −

1

2
Tgab

)
vavb ≥ 0 ,

a null konvergencia feltétel teljesül, míg id®szer¶ va esetén a

Tabv
avb ≥ vava

(
1

2
T − 1

κ2
Λ

)
id®szer¶ konvergencia feltétel, ahol T ≡ T a

a és Λ a kozmológiai konstans. E sze-

rint, ha egy id®szer¶ kongruencia (vektormez® integrálvonalainak kötege) örvény-

mentes, úgy θ expanziója a geodetikusok mentén folyamatosan csökken (θ̇ < 0),

amely a gravitáció vonzó jellegének felel meg. A feltétel teljesül, ha: I. típus →
ρ + pµ ≥ 0, ρ + Σµpµ − Λ

2κ2 ≥ 0; II. típus → p2 ≥ 0, p3 ≥ 0, p2 + p3 − Λ
2κ2 ≥ 0,

k ≥ 0, b = +1.

Van olyan eset, amikor az energiafeltételek nem teljesülnek bizonyos anyagformák

energia-impulzus tenzoraira, mégis tekinthet®k �zikainak, vagy egy jó modellnek, amely

egy adott �zikai problémát megold. Ebben az esetben az említett osztályozási típusok

és energiafeltételek módosulnak, kiegészülnek. Például az er®s energiafeltételt vizsgál-

va, vegyünk egy egyszer¶ minimálisan csatolt Klein�Gordon skalármez®vel kialakított

S = κ2
∫
d4x

√
−g
[
R− 1

2
∇aϕ∇aϕ− V (ϕ)

]
+ SM

[
gab,Ψ

]
(1.18)

hatást. Az er®s energiafeltétel akkor teljesül, ha V (ϕ) ≥ 0 id®szer¶ és térszer¶ skalár-

mez® gradiens mellett. Ha a skalármez® gradiense fényszer¶, akkor V (ϕ) = 0. Azonban

az in�ációs elméletekben az in�áció beindításához szükséges, hogy V (ϕ) < 0, azaz az

er®s energiafeltétel sérül, ld. [177], [272]-[276].

A hatás egy tetsz®leges, egy skalármez®t tartalmazó skalár-tenzor elméletben for-

málisan az

S [.] = SG
[
gab, ϕ

]
+ Sϕ

[
gab, ϕ

]
+ SM

[
gab,Ψ

]
(1.19)

alakban írható, ahol SM
[
gab,Ψ

]
reprezentálja az anyagi hatást, amely Ψ tetsz®leges

anyagi mez®t®l és a gab metrikától függ. Az SG
[
gab, ϕ

]
hatás olyan tagokat tartalmaz,
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amelyben a skalármez® nem minimálisan csatolódik a metrikához. Az Sϕ
[
gab, ϕ

]
a

skalármez®re vonatkozó hatás. Az SG
[
gab, ϕ

]
és Sϕ

[
gab, ϕ

]
tag els®rend¶ variációiból

kapjuk meg az Einstein-egyenletet és a ϕ skalármez®re vonatkozó mez®egyenletet. A

skalármez®nek az energia-impulzus tenzora a

T ϕ
ab = − 2√

−g
δSϕ

δgab

módon adható meg, ahol T ϕ
ab függ a skalármez® metrikához való csatolódásától. Legyen

S = κ2
∫
d4x

√
−g
[
ξ (ϕ)R− 1

2
∇aϕ∇aϕ− V (ϕ)

]
+ SM

[
gab,Ψ

]
, (1.20)

ahol

SG
[
gab, ϕ

]
= κ2

∫
d4x

√
−g [ξ (ϕ)R]

és

Sϕ
[
gab, ϕ

]
= −κ2

∫
d4x

√
−g
[
1

2
∇aϕ∇aϕ+ V (ϕ)

]
.

Az (1.20) hatás esetén a skalármez® nem minimálisan csatolódik a metrikához, míg mi-

nimálisan csatolódik az anyaghoz. Az (1.18) alapján a skalármez® csatolása minimális,

mind a gravitációs, mind az anyagi szektorhoz, ha ξ (ϕ) = 1.

A V (ϕ) = 0 Brans�Dicke hatás esetén, azaz

S =
1

8π

∫
d4x

√
−g
[
ϕR− ω

ϕ
∇aϕ∇aϕ

]
+ SM

[
gab,Ψ

]
, (1.21)

ahol

SG
[
gab, ϕ

]
=

1

8π

∫
d4x

√
−g [ϕR]

és

Sϕ
[
gab, ϕ

]
= − 1

8π

∫
d4x

√
−g
[
ω

ϕ
∇aϕ∇aϕ

]
,

megmutatták a [277], [278] folyóiratcikkekben, hogy Weyl vagy konformis transzformá-

ció után az SG
[
gab, ϕ

]
+ Sϕ

[
gab, ϕ

]
+ SM

[
gab,Ψ

]
hatást az S̆EH

[
ğab
]
+ S̆ϕ

[
ğab, ϕ̆

]
+

S̆M
[
ğab, ϕ̆, Ψ̆

]
alakba átírható. Azaz a transzformáció utáni hatás egy átparaméte-

rezett S̆EH
[
ğab
]
Einstein�Hilbert hatásból, egy a gravitációs szektorral minimálisan

csatolódó skalármez® S̆ϕ
[
ğab, ϕ̆

]
hatásból, és a skalármez®vel nem minimálisan csato-

lódó S̆M
[
ğab, ϕ̆, Ψ̆

]
anyagi hatásból áll. Az els® rendszert, ahol SG

[
gab, ϕ

]
tartalmazza

a skalármez® nem minimális csatolású hozzájárulását Jordan-rendszernek (azaz Jordan-

frame) nevezik, amelyb®l konformis transzformációval lehet az Einstein-rendszerbe (az-

az Einstein-frame) jutni [277]-[281]. Amennyiben a skalár-tenzor elmélet a metrikához
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minimálisan csatolódó skalármez®t tartalmaz, úgy az Einstein- és Jordan-rendszer egy-

beesik. Konformis transzformáció során legyen (M, gab) egy térid®, ahol M egy n di-

menziós sokaság, a gab rajta értelmezett metrikával. Ha az Ω (x) egy sima és pozitív

függvény, amely a x = (x̄, t) térid®koordinátáktól függ, akkor a gab metrika konformis

transzformációja egy ğab metrikába a

gab → ğab = Ω2 (x) gab (1.22)

módon történik. A konformis transzformáció az ívelemnégyzet egy

ds∗2 = Ω2 (x) ds2

lokális átskálázása, azaz nem koordináta transzformáció. A [277] hivatkozásban a kon-

formis transzformáció során az (1.21) hatást az

Ω =
√
Gϕ

konformis faktorral az

S̆ =

∫
d4x

{√
−ğ

[
R̆

8πG
− 1

2
∇aϕ̆∇aϕ̆

]
+ exp

(
−8

√
πG

2ω + 3
ϕ̆

)
L̆M

(
ğab, Ψ̆

)}
,

alakba írták át, ahol

dϕ̆ =

√
2ω + 3

16πG

dϕ

ϕ

és ω > −3/2. A megmaradási tétel nem invariáns a konformis transzformációra csak

abban az esetben, ha T = 0 [233], [277], ekkor az Einstein-rendszerben is igaz, hogy

∇aT̆ab = 0 és T̆ = 0. A Jordan-rendszerben az anyag energia-impulzus tenzorára igaz

az (1.15) egyenlet (egzotikus anyagokat kivéve), azonban ez a T ϕ
ab esetén nem min-

dig teljesül. Az Einstein-rendszerben rendszerbe történ® áttérés után általánosságban

elmondható, hogy a kontrahált Bianchi azonosság teljesül [277], [282], [283], azaz

∇aĞab = ∇aT̆ ϕ
ab +∇aT̆M

ab = 0 .

Konformis rendszerekb®l több is létezik, és minden konformis rendszerben a �zikai

egyenletek különböz®ek [283]-[285].

A skalár-tenzor gravitációelméletekben a skalármez®re vonatkozó energia-impulzus

tenzor elemzésével, a skalármez® folyadék reprezentációjával számos folyóiratcikk fog-

lalkozott az in�ációs kozmológiában , UDE, EDM elméletekben, és a k-eszencia el-

méletben is [177], [286]-[291]. A [292] hivatkozásban egy anizotróp folyadék energia-

impulzus tenzorának két ideális folyadékból történ® konstrukcióját mutatták be. Az
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Einstein�Hilbert hatás egy Klein�Gordon típusú skalármez®vel és egy (Lint = −1
2
ξϕ2R)

kölcsönhatási taggal történ® kiegészítése esetén levezették hogy, ha ξ → 0, úgy a skalár-

mez® egy ideális folyadékkal reprezentálható, míg ξ ̸= 0 esetén nem ideális folyadékként

írható le [293], [294]. A skalármez® nem ideális folyadék leírását általános Brans�Dicke

és f (R) elméletekben is bevezették [278], [295], [296]. Radiális irányítottságú qa ener-

giaáram s¶r¶séggel rendelkez® anizotróp folyadékot vizsgáltak a [297] hivatkozásban,

és összefüggésbe hozták töltéssel, térfogati- vagy nyírási viszkozitással rendelkez® fo-

lyadékkal, valamint fényszer¶ folyadékkal. Kanonikus, minimálisan csatolt skalármez®t

null pornak feleltettek meg a [298] folyóiratcikkben.

A [299] folyóiratcikkben az (1.18) minimálisan csatolt Klein�Gordon mez® folyadék-

leírását vizsgálták. Id®szer¶ skalármez® gradiens esetén a Klein�Gordon skalármez®

energia-impulzus tenzora egy ideális folyadék, amelynek az energias¶r¶sége a

ρPF = −1

2
∇aϕ∇aϕ+ V (ϕ)

és izotróp nyomása a

pPF = −1

2
∇aϕ∇aϕ− V (ϕ) .

Igazolták a [293] hivatkozás eredményeit, amely szerint az L1 = pPF és L2 = −ρPF

Lagrange-s¶r¶ségek ekvivalensen leírják az ideális folyadékot, ha V (ϕ) = 0 vagy∇aϕ∇aϕ =

0 [238], [300]-[302]. Térszer¶ skalármez® gradiens választásával, viszont a

ρ =
1

2
∇aϕ∇aϕ− V (ϕ) (1.23)

energias¶r¶séget és a

p = −1

6
∇aϕ∇aϕ− 5

3
V (ϕ) (1.24)

nyomást kapták. Az (1.23) és (1.24) összefüggéseket, úgy származtatták, hogy a [299]

cikk (4) és (5) egyenleteit alkalmazták térszer¶ skalármez® gradiensre. Ekkor az L1 ̸= p

és az L2 = ±ρ Lagrange-s¶r¶ségeket kapták, valamint amikor levezették a mez®egyen-

leteket az el®álló skalármez® energia-impulzus tenzor nem az (1.23) energias¶r¶séget

és az (1.24) nyomást tartalmazta. Ez onnan eredt, hogy a [299] cikk (4) és (5) össze-

függéseit a hab = uaub + gab felbontásból vezették le, ahol uaua = −1. Azonban, ha ua
id®szer¶, akkor térszer¶ vagy nullszer¶ skalármez® gradiens választásakor az ua ∼ ∇aϕ

összefüggés nem alkalmazható. A [299] hivatkozásba felmerült problémát a [303] fo-

lyóiratcikkben orvosolták. A [303]-ben bemutatták a p nyomásra és ρ energias¶r¶ségre

vonatkozó helyes összefüggéseket, amelyekb®l származtatták térszer¶ és nullszer¶ gra-

diens¶ minimálisan csatolt skalármez® energia-impulzus tenzorát.
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1.4. Térid®felbontások

A térid® felbontásának módszerével a gravitációt leíró mennyiségek dinamikai infor-

mációt hordozó részei szeparálhatók, így ezen paraméterek fejl®dése közvetlenül ele-

mezhet®. A módszer során a változók száma növekszik, amely szimmetria választással

és mértékrögzítéssel csökkenthet®. A térid® felbontásnak tárgyalási módjai, továbbá

alkalmazásai többfélék. A felbontási módszerek két széles körben használt technikai

csoportja a kovariáns, illetve az ADM formalizmus [304], azonban kidolgoztak további

formalizmusokat is lásd a [305]-[316] hivatkozásokban.

1.4.1. Kovariáns formalizmus

A térid® 1 + 3 �f¶zési� (�threading�) módszerét, vagyis más néven az 1 + 3 kovariáns

formalizmust 1998-ban G. F. R. Ellis és J. Ehlers foglalta össze és ismertette alkalma-

zását az FLRW univerzumra [317]-[320]. Az 1+3 kovariáns formalizmusban az FLRW

univerzum dinamikáját a kinematikai mennyiségekre és az ún. gravito-elektro-mágneses

mennyiségekre vonatkozó els®rend¶ di�erenciál egyenlet rendszer írja le. A formaliz-

musban az ua = dxa/dτ az univerzumot kitölt® anyagra jellemz® id®szer¶ (uaua = −1)

4-es vektor, amellyel projektor-tenzorokat határoztak meg. Az egyik az

Ua
b = −uaub ,

amely az ua vektorral párhuzamosan vetít® projektor-tenzor. A másik a

hab = gab + uaub ,

amely az ua vektorra mer®leges 3-dimenziós pillanatnyi nyugalmi tér (azaz �rest space�)

metrikus tenzora. A gab a 4-dimenziós metrikus tenzor, τ pedig az anyag világvonala

mentén értelmezett id® paraméter. A projektor-tenzorokra az alábbi összefüggések

igazak:

Ua
c U

c
b = Ua

b , Ua
a = 1 , Uabu

b = ua ,

hach
c
b = hab , haa = 3 , habu

b = 0 .

A 3-dimenziós pillanatnyi nyugalmi térhez de�niált Levi-Civita szimbólum az

εabc = udηdabc = −ηabcdud ,



1.4 Térid®felbontások 45

amelyre igaz, hogy

εabc = ε[abc] =
1

3!
[εabc + εbca + εcab − εbac − εcba − εacb] ,

εabcu
c = 0 .

Az ηabcd a 4-dimenziós Levi-Civita tenzor, ahol ηabcd = η[abcd] és η0123 =
√

|det gab|. A
világvonal menti kovariáns id® derivált egy tetsz®leges T ab

..cd tenzor esetén a

Ṫ ab
..cd = ue∇eT

ab
..cd . (1.25)

Egy tetsz®leges T ab
..cd tenzor 4-es kovariáns deriváltjának a minden indexében, a lokális

3-dimenziós térre vett projekciója pedig a

DeT
ab
..cd = hakh

b
lh

j
ch

m
d h

i
e∇iT

kl
..jm .

Örvénymentes esett®l eltekintve ez a projekció nem azonos a T ab
..cd tenzor 3-dimenziós

kovariáns deriváltjával. Egy tetsz®leges va vektor ua vektorra mer®leges projekcióját a

v⟨a⟩ = habv
b

módón jelölték, míg egy tetsz®leges T ab tenzor szimmetrikus, nyommentes 3-dimenziós

térre vett projekciója a

T ⟨ab⟩ =

[
h(ac h

b)
d − 1

3
habhcd

]
T cd .

Ezen utóbbi jelölésekkel egy tetsz®leges va vektor és T ab tenzor (1.25) szerinti id®deri-

váltjának 3-dimenziós térre vett projekciója pedig:

v̇⟨a⟩ = hab v̇
b ,

Ṫ ⟨ab⟩ =

[
h(ac h

b)
d − 1

3
habhcd

]
Ṫ cd .

Kinematikai mennyiségeket az ua vektor 4-es kovatriáns deriváltjának felbontásából

de�niáltak:

∇aub = gcag
d
b∇cud = (hca − uau

c)
(
hdb − ubu

d
)
∇cud

= hcah
d
b∇cud − hcaubu

d∇cud − uau
chdb∇cud + uau

cubu
d∇cud

= −uauchdb∇cud + hcah
d
b∇cud

= −uahdbAd +
1

2
hcah

d
b∇cud +

1

2
hcah

d
b∇cud +

1

2
hdah

c
b∇cud −

1

2
hdah

c
b∇cud

= −uaAb + h(ca h
d)
b ∇cud + h[ca h

d]
b ∇cud +

1

3
habh

cd∇cud −
1

3
habh

cd∇cud

= −uaAb +

(
h(ca h

d)
b − 1

3
habh

cd

)
∇cud + h[ca h

d]
b ∇cud +

1

3
habh

cd∇cud

= −uaAb +Daub = −uaAb + σab + ωab +
1

3
θhab . (1.26)
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Itt felhasználták, hogy ud∇cud = 0. Az

Ab = u̇b = uc∇cub (1.27)

az ua gyorsulás vektora. Ez geodetikus pályán elt¶nik. A

θ = Dau
a = hab∇aub (1.28)

az ua vektormez® integrálgörbéib®l álló görbesereg expanziója. Az expanzió repre-

zentálja az ua sebességgel mozgó anyagfolyam térfogati tágulásának mértékét. FRLW

térid®n a Hubble-paraméter: H = θ/3. A görbesereg nyírás tenzora a

σab = D⟨au b⟩ =

[
h(ia h

j)
b − 1

3
habh

ij

]
∇iuj , (1.29)

amely az anyagfolyam áramlási irányra mer®leges torzulását írja le, miközben térfogata

változatlan marad. A nyírás tenzorra az alábbi összefüggések vonatkoznak:

σab = σ(ab) , σabu
b = 0 , σa

a = 0 .

A görbesereg örvény tenzora az

ωab = D[au b] =
1

2

(
hiah

j
b − hibh

j
a

)
∇iuj , (1.30)

amely az anyagfolyam forgását jellemzi annak áramlási iránya mentén egy nem forgó

lokális inerciarendszerhez képest. Továbbá ωab = ω[ab], ωabu
b = 0. Az örvény tenzorból

bevezethet® az

ωa =
1

2
εabcωbc (1.31)

örvény vektor, amelyre teljesül, hogy

ωaωab = 0 , ωaua = 0 .

Az ωa 3 darab független komponenssel rendelkezik, ahogy ωab is. A kinematikai mennyi-

ségekb®l származtatott skalárok, az

ω2 =
1

2
ωabω

ab ,

azaz az örvény mértéke, és a

σ2 =
1

2
σabσ

ab ,

azaz a nyírás mértéke. Az expanzió, nyírás és örvény hatását egy egységni térfogatú

folyadék gömbön a 8. ábra mutatja be.



1.4 Térid®felbontások 47

8. ábra. Az a) ábra oszlopban látható egy gömb térfogategységnyi folyadék expanziója,

a b) ábra oszlopban a nyírás, míg a c) ábra oszlopban az örvény hatása látható [317].

A b) és c) esetekben a folyadék térfogata változatlan.

A gravito-elektro-mágneses mennyiségek a Cabcd Weyl-tenzor 1 + 3 felbontásából

származnak a következ®képpen. A 4-dimenziós Riemann-tenzor felbontható az alábbi

módon:

Rabcd = Cabcd −
1

2
(Racgbd +Rbdgac −Radgbc −Rbcgad) +

1

6
R (gacgdb − gadgcb) .

Ennek spúrja az Ra
.bad = Rbd Ricci-tenzor és a spúrmentes része a Cabcd Weyl-tenzor,

továbbá Rab
..ab = Rb

.b = R a Ricci-skalár, míg Ca
.bad = 0 = Cab

..ab [320], [321]. A Riemann-

tenzor teljesíti a következ® azonosságokat:

R[ab][cd] = Rabcd = Rcdab , Ra[bcd] = 0 ,

amelyeket a Weyl-tenzor úgyszintén teljesít. Az

Rab −
1

2
gabR + Λgab = κ2Tab ⇐⇒ Rab = Λgab + κ2

(
Tab −

1

2
gabT

)
, (1.32)

Einstein-egyenlet határozza meg a Riemann-tenzor spúrját, azaz a Ricci-tenzort, a

térid® minden pontjában, az adott pontban lév® anyag alapján. A Riemann-tenzor

spúrmentes részének az 1 + 3 kovariáns felbontása hasonló az elektrodinamikában az

ugyancsak antiszimmetrikus és spúrmentes 4-dimenziós Fab elektromágneses tértenzor

felbontásához. Az Fab tenzor az Ea = Fabu
b elektromos és Ha = 1

2
εabcF

bc mágneses
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3-dimenziós vektorokból áll, ahol Eau
a = 0 = Hau

a. A Weyl-tenzor ehhez hasonlóan

az ua vektorra mer®leges, 3-dimenziós pillanatnyi nyugalmi tereken de�niált

Eab = Cajblu
jul , Eab = E(ab) , Ea

a = 0 , Eabu
b = 0

elektromos Weyl görbületi részre és a

Hab =
1

2
εajlC

jl
..bku

k , Hab = H(ab) , Ha
a = 0 , Habu

b = 0

mágneses Weyl görbületi részre bontható.

Az ua 4-es sebességgel mozgó anyag energia-impulzus tenzorát az (1.17) összefüggés

határozza meg, amelyb®l leolvasható, hogy

ρ = Tabu
aub ,

p =
1

3
Tabh

ab ,

qa = −Tbcubhca ,
πab = hc⟨a|h

d
|b⟩Tcd .

Felhasználva az (1.32) Einstein-egyenletet és a Tab felbontását, a

2∇[a∇ b]uc = Rabcdu
d

Ricci-azonosság, a

∇[eRab]cd = 0

Bianchi-azonosság és az (1.15) egyenlet 1 + 3 kovariáns felbotásából végül számos el-

s®rend¶ dinamikai- és kényszeregyenlet vezethet® le. A Ricci-azonosság felbontásából

3 mozgásegyenlet, a Raychaudhuri-egyenlet, az örvény és a nyírás fejl®désegyenletei,

valamint 3 kényszeregyenlet származtatható. A Bianchi-azonosság felbontása további

2 kényszeregyenlet mellett 2 fejl®désegyenletet eredményez. Az utóbbiak az elektro-

mos és mágneses Weyl görbületi részekre vonatkozó fejl®désegyenletek. Az energia- és

impulzusmegmaradásra vonatkozó (1.15) egyenlet 1 + 3 kovariáns felbontása szintén 2

mozgásegyenletet eredményez. Az örvény fejl®désegyenletének további kontrakciójából

pedig az általánosított Friedmann-egyenlet adódik.

Az 1 + 3 kovariáns formalizmus további felbontását, az 1 + 1 + 2 kovariáns forma-

lizmust dolgozta ki C. A. Clarkson és R. K. Barret a [322] folyóiratcikkükben. Az új

formalizmus egyik célja az inhomogén térid®k vizsgálata volt asztro�zikai léptékben

az 1 + 3 kovariáns formalizmushoz hasonló matematikai módszerrel. Feltették, hogy a

háttér rendelkezik egy szimmetriával, ami térszer¶ irányt jelöl ki, például lokális forgás-

szimmetria vagy gömbszimmetria esetén. Bevezettek az ua 4-es vektorra mer®leges na
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4-es radiális irányítottságú térszer¶ vektort (uana = 0, nan
a = 1), amellyel de�niáltak

egy az na-ra és ua-ra mer®leges 2-dimenziós felületre vetít®

N b
a ≡ hba − nan

b = gba + uau
b − nan

b

projektort teljesítve az

Na
a = 2, Nabn

a = 0, Nabu
a = 0

kifejezéseket. A 2-dimenziós Levi-Civita 2-tenzor az

εab = εabcn
c = udηdabcn

c , (1.33)

amely teljesíti az alábbiakat:

εabn
b = 0 , εabc = naεbc − nbεac + ncεab ,

εabε
cd = N c

aN
d
b −Nd

aN
c
b , ε.ca εcb = Nab , εabε

ab = 2 . (1.34)

Bármely ψ..cb
ab tenzor esetén az 1 + 3 formalizmus során ismertetett, a 4-dimenziós

kovariáns deriváltnak az ua-ra minden indexben mer®leges projekciója tovább bontható

az na-val párhuzamos és mer®leges részekre:

ψ̂..cb
ab = niDiψ

..cb
ab ,

δeψ
..cb
ab = N i

eN
k
aN

m
b N

c
jN

d
l Diψ

..jl
km . (1.35)

A δa derivált az na tekintetében minden indexben mer®leges projekciója a Da derivált-

nak. Az 1 + 1 + 2 formalizmusban további kinematikai mennyiségek is megjelennek,

amelyek az na vektor Da deriváltjának a 2-dimenziós felületre vetítésekor jelennek meg:

Danb = hiah
j
b∇inj = hiah

j
bg

m
i g

k
j∇mnk = hiah

j
b (h

m
i − uiu

m)
(
hkj − uju

k
)
∇mnk

= hiah
j
b

(
hmi h

k
j − hmi uju

k − uiu
mhkj + uiu

muju
k
)
∇mnk

= hiah
j
bh

m
i h

k
j∇mnk = hiah

j
bDinj =

(
N i

a + nina

) (
N j

b + njnb

)
Dinj

= N i
aN

j
bDinj +

1

2
N i

bN
j
aDinj −

1

2
N i

bN
j
aDinj

+N j
bn

inaDinj +N i
an

jnbDinj + ninan
jnbDinj

= N i
(aN

j
b)Dinj +N i

[aN
j
b]Dinj +N j

bn
inaDinj

+N i
an

jnbDinj + ninan
jnbDinj

=

(
N i

(aN
j
b) −

1

2
NabN

ij

)
Dinj +

1

2
NabN

ijDinj

+N i
[aN

j
b]Dinj +N j

bn
inaDinj +N i

an
jnbDinj + ninan

jnbDinj

= ζab +
1

2
Nabϕ+ ξεab + naab . (1.36)
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Itt felhasználták, hogy

0 = Da

(
nbnb

)
= nbDanb + nbDan

b = nbDanb + nbh
i
ah

b
j∇in

j

= nbDanb + nbh
i
ah

b
j∇i

(
gjmnm

)
= nbDanb + njh

i
ag

jm∇inm

= nbDanb + nb

(
hjm − ujum

)
hbjh

i
a∇inm = nbDanb + nbh

b
jh

jmhia∇inm

= nbDanb + nkgbkh
b
jh

jmhia∇inm = nbDanb + nkhbkh
b
jh

jmhia∇inm

= nbDanb + nkhkjh
jmhia∇inm = nbDanb + nbhmb h

i
a∇inm

= nbDanb + nbDanb = 2nbDanb , (1.37)

és

ξεkm =
1

2
εkmε

abN i
aN

j
bDinj =

1

2

(
Na

kN
b
m −N b

kN
a
m

)
N i

aN
j
bDinj

=
1

2

(
N i

kN
j
m −N j

kN
i
m

)
Dinj = N i

[kN
j
m]Dinj . (1.38)

Az (1.36) összefüggésben a

ϕ = δan
a = N b

aN
a
c Dbn

c = N b
aDbn

a = NabDbna , (1.39)

amely a 2-dimenziós felület expaziójának mértéke. A

ζab = δ{an b} =

[
N c

(aN
d
b) −

1

2
NabN

cd

]
Dcnd (1.40)

a nyírás, amely a 2-dimenziós felület torzulásából származik. Az

aa = n̂a = nbDbna = nbhibh
k
a∇ink = nbhibh

k
a∇i (g

m
k nm)

= gmk n
bhibh

k
a∇inm = (hmk − umuk)n

bhibh
k
a∇inm

= nbhkah
i
bh

m
k ∇inm = nbhkaDbnk = nb

(
Nk

a + nan
k
)
Dbnk

= nbNk
aDbnk = n̂ā (1.41)

a gyorsulás. Az na örvényének mértéke a

ξ =
1

2
εabδanb , (1.42)

amely a 2-dimenziós felület elfordulását reprezentálja. Az na vektor 4-es kovariáns

deriváltjának ua-val párhuzamos projekciója az

ṅa = ub∇bna = ub∇b (ncg
c
a) = gcau

b∇bnc

= (N c
a − ucua + ncna) u

b∇bnc

= N c
au

b∇bnc − ucuau
b∇bnc

= Nacu
b∇bn

c + uancu
b∇bu

c

= αa +Aua , (1.43)
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ahol

A = naAa = naub∇bua ,

αa = ṅā = Nabṅ
b = Nabu

c∇cn
b . (1.44)

Az (1.43) származtatásakor felhasználták, hogy uaub∇bn
a = −naub∇bua és nc∇bn

c = 0.

Bármely 4-dimenziós Y a vektor az 1+3 kovariáns felbontással az ua-val párhuzamos

vetítés útján egy ψ skalárra, míg az ua-ra mer®leges projekcióból egy 3-dimenziós ψa

vektorra bontható fel. A 3-dimenziós ψa vektor egy további 1+2 kovariáns felbontással

az na-va párhuzamos projekcióból származó Ψ skalárra, valamint az na-ra és az ua-ra

mer®leges projekcióból egy 2-dimenziós Ψa vekorra szeparálható úgy, hogy

ψa = naΨ+Ψa , Ψ = ψan
a , Ψa = ψbN

ba . (1.45)

Egy 3-dimenziós, szimmetrikus, spúrmentes ψab tenzor további 1 + 2 felbontása a

ψab = ψ⟨ab⟩ = Ψ

(
nanb −

1

2
Nab

)
+Ψ(anb) +Ψab (1.46)

alakú, ahol

Ψ = nanbψab = −Nabψab ,

Ψa = N b
an

cψbc ,

Ψab = ψ{ab} =

[
N c

(aN
d
b) −

1

2
NabN

cd

]
ψcd . (1.47)

A 2-dimenziós Ψ skalár, a Ψa vektor és a Ψab tenzorDa deriváltjának az 1+2 projekciója

a következ®:

DaΨ = hbaDbΨ =
(
N b

a + nan
b
)
DbΨ = N b

aDbΨ+ nan
bDbΨ

= δaΨ+ naΨ̂ ,

DaΨb = hdah
c
bDdΨc =

(
Nd

a + nan
d
)
(N c

b + nbn
c)DdΨc

= Nd
aN

c
bDdΨc + nbn

cNd
aDdΨc + nan

dN c
bDdΨc + nanbn

cndDdΨc

= δaΨb − nbΨcN
d
aDdnc + naN

c
bn

dDdΨc − nanbΨcn
dDdn

c

= δaΨb − nbΨ
iN c

iN
d
aDdnc + naN

c
b Ψ̂c − nanbΨcn

dDdn
c

= δaΨb + naN
c
b Ψ̂c − nanbΨca

c − nbΨ
iN c

iN
d
aDdnc

= δaΨb + naΨ̂b̄ − nanbΨca
c − nb (ξεia + ζia)Ψ

i − 1

2
nbΨaϕ ,
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DaΨbc = hdah
e
bh

m
c DdΨem =

(
Nd

a + nan
d
)
(N e

b + nbn
e) (Nm

c + ncn
m)DdΨem

= Nd
aN

e
bN

m
c DdΨem +Nd

aN
e
bncn

mDdΨem + nan
dN e

bN
m
c DdΨem

+nan
dN e

bncn
mDdΨem +Nd

anbn
eNm

c DdΨem +Nd
anbn

encn
mDdΨem

+nan
dnbn

eNm
c DdΨem + nanbncn

enmndDdΨem

= δaΨbc − 2nan(bΨc)ia
i −Nd

aN
e
bncΨemDdn

m −Nd
anbΨemN

m
c Ddn

e

+Nd
anbncn

enmDdΨem + nanbncn
enmndDdΨem + naN

e
bN

m
c n

dDdΨem

= δaΨbc − 2nan(bΨc)ia
i − ncΨ

i
bN

e
(iN

d
a)Ddne − ncΨ

i
bN

e
[iN

d
a]Ddne

−nbΨ
i
cN

e
(iN

d
a)Ddne − nbΨ

i
cN

e
[iN

d
a]Ddne + naN

e
bN

m
c n

dDdΨem

= δaΨbc − 2nan(bΨc)ia
i − ncΨ

i
bξεia − nbΨ

i
cξεia − ncΨ

i
bζia − nbΨ

i
cζia

−1

2
ncΨ

i
bNiaN

edDdne −
1

2
nbΨ

i
cNiaN

edDdne + naN
e
bN

m
c n

dDdΨem

= δaΨbc − 2nan(bΨc)ia
i − n(c|Ψa|b)ϕ− 2n(c|Ψ

i
|b) (ξεia + ζia) + naΨ̂bc .

Az el®z® számolásnál felhasználták, hogy

naΨ̂b = naN
j
bn

iDiΨj = naΨ̂b ,

naΨ̂bc = naN
k
bN

j
cn

iDiΨkj = naΨ̂bc ,

Ψcn
c = 0 ,

Ψcmn
m = 0 ,

0 = ndDd (Ψcn
c) = Ψcn

dDdn
c + ncndDdΨc ,

0 = ndDd (Ψacn
c) = Ψacn

dDdn
c + ncndDdΨac ,

0 = nandDd (Ψacn
c) = naΨacn

dDdn
c + nancndDdΨac

= nancndDdΨac ,

és

nbΨ
iN c

iN
d
aDdnc =

1

2
nbΨ

iN c
iN

d
aDdnc +

1

2
nbΨ

iN c
iN

d
aDdnc

=
1

2
nbΨ

iN c
iN

d
aDdnc −

1

2
nbΨ

iN c
aN

d
i Ddnc

+
1

2
nbΨ

iN c
aN

d
i Ddnc +

1

2
nbΨ

iN c
iN

d
aDdnc

=
1

2
nbΨ

i
(
N c

iN
d
a −N c

aN
d
i

)
Ddnc + nbΨ

iN c
(aN

d
i)Ddnc

=
1

2
nbΨ

i
(
N c

iN
d
a −N c

aN
d
i

)
Ddnc + nbΨ

i
[
N c

(aN
d
i)

−1

2
NaiN

cd

]
Ddnc +

1

2
nbΨ

iNaiN
cdDdnc
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= nbξεiaΨ
i + nbΨ

iζia +
1

2
nbΨaN

cdDdnc

= nb

[
(ξεia + ζia)Ψ

i +
1

2
Ψaϕ

]
,

valamint az (1.34), (1.35) és (1.38) összefüggéseket.

Az (1.45)-(1.47) egyenletekben de�niált mennyiségekhez hasonló váltózók kialakí-

tásával az 1+3 kovariáns formalizmusban ismertetett kinematikai mennyiségek felbon-

tásai az

Aa = u̇a = uc∇cu
a = gabA

b = (hab − ubu
a)Ab

= (Na
b + nanb)A

b = Aa +Ana ,

ωa = Na
b ω

b + nanbω
b = Ωna + Ωa ,

σab = Σ

(
nanb −

1

2
Nab

)
+ 2Σ(anb) + Σab , (1.48)

továbbá a gravito-elektro-mágneses mennyiségek a

Eab = E
(
nanb −

1

2
Nab

)
+ 2E(anb) + Eab ,

Hab = H
(
nanb −

1

2
Nab

)
+ 2H(anb) +Hab , (1.49)

amelyeket a

σab = gcag
d
bσcd = (N c

a − ucua + ncna)
(
Nd

b − udub + ndnb

)
σcd

= (N c
a + ncna)

(
Nd

b + ndnb

)
σcd

= N c
aN

d
b σcd +N c

an
dnbσcd + ncnaN

d
b σcd + ncnan

dnbσcd

= N c
(aN

d
b)σcd +N c

[aN
d
b]σcd +N c

an
dnbσcd + ncnaN

d
b σcd + nanbn

cndσcd

= N c
(aN

d
b)σcd −

1

2
NabN

cdσcd + naN
d
b n

cσcd

+nbN
c
an

dσcd + nanbn
cndσcd −

1

2
Nabn

cndσcd

= Σab + naΣb + nbΣa +

(
nanb −

1

2
Nab

)
Σ (1.50)

példa alapján származtattak felhasználva, hogy a σab, az Eab és a Hab szimmetrikus

tenzorok. Az na vektor 4-es kovariáns deriváltjának felbontása

∇anb = gcag
d
b∇cnd = (hca − uau

c)
(
hdb − ubu

d
)
∇cnd

= hcah
d
b∇cnd − hcaubu

d∇cnd − uau
chdb∇cnd + uau

cubu
d∇cnd
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= −uaubndu
c∇cu

d +Danb + ubndh
c
a∇cu

d − ua
(
Nd

b + nbn
d
)
uc∇cnd

= −uaubndu
c∇cu

d +Danb + ubndh
c
a∇cu

d

−uaNd
b u

c∇cnd − uanbn
duc∇cnd

= −uaαb − uaubA+Danb + ubndh
c
a∇cu

d

= −uaαb − uaubA+Danb + ubh
c
an

d

(
−ucAd + σcd + ωcd +

1

3
θhcd

)
= −uaαb − uaubA+Danb + ubn

dN c
aσcd + ubn

dN c
aωcd

+ubnan
cndσcd + ubnan

cndωcd +
1

3
θnaub

= −uaαb − uaubA+Danb +

(
Σ +

1

3
θ

)
naub + Σaub + ubn

dN c
aωcd

= −uaαb − uaubA+Danb +

(
Σ +

1

3
θ

)
naub + Σaub

−ubn[cN d]
a ωcd + ubn

(dN c)
a ωcd

= −uaαb − uaubA+ ζab +
1

2
Nabϕ+ ξεab + naab

+

(
Σ +

1

3
θ

)
naub + Σaub − ubεacΩ

c (1.51)

felhasználva, hogy

ωb =
1

2

(
nbεij − niεbj + njεbi

)
ωij ,

Ω = nbω
b =

1

2
nbε

bijωij =
1

2
nb

(
nbεij − niεbj + njεbi

)
ωij =

1

2
εijωij ,

Ωa = Na
b ω

b =
1

2
Na

b ε
bijωij =

1

2
Na

b

(
nbεij − niεbj + njεbi

)
ωij

=
1

2
Na

b

(
−niεbj + njεbi

)
ωij

εcaΩ
a = εcaN

a
b ω

b =
1

2
Na

b

(
−niεbj + njεbi

)
ωij

=
1

2
Na

b

[
−ni

(
N b

cN
j
a −N j

cN
b
a

)
+ nj

(
N b

cN
i
a −N i

cN
b
a

)]
ωij

=
1

2

[
−ni

(
Na

bN
b
cN

j
a −Na

bN
j
cN

b
a

)
+ nj

(
Na

bN
b
cN

i
a −Na

bN
i
cN

b
a

)]
ωij

=
1

2

[
−ni

(
N j

c − 2N j
c

)
+ nj

(
N i

c − 2N i
c

)]
ωij

=
1

2

(
niN j

c − njN i
c

)
D[iu j] = n[iN j]

c ωij, (1.52)

továbbá az (1.26), (1.31), (1.33), (1.34), (1.36), (1.43), (1.48) és (1.50) összefüggéseket.
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Az ua vektor 4-es kovariáns deriváltjának felbontása pedig

∇aub = −uaAb +Daub = −ua (Anb +Ab) +
1

3
θhab + σab + ωab

= −ua (Anb +Ab) +
1

3
θ (Nab + nanb) + Σab + naΣb + nbΣa

+

(
nanb −

1

2
Nab

)
Σ + εabΩ + naεbiΩ

i − nbεaiΩ
i , (1.53)

úgy, hogy

ωab = giag
j
bωij = hiah

j
bωij = h[ia h

j]
b ωij =

1

2

(
hiah

j
b − hibh

j
a

)
ωij

=
1

2

(
N i

a + nan
i
) (
N j

b + nbn
j
)
ωij −

1

2

(
N i

b + nbn
i
) (
N j

a + nan
j
)
ωij

=
1

2

(
N i

aN
j
b +N i

anbn
j + nan

iN j
b

)
ωij −

1

2

(
N i

bN
j
a + nan

jN i
b + nbn

iN j
a

)
ωij

=
1

2
N i

aN
j
bωij +

1

2
nbn

jN i
aωij +

1

2
nan

iN j
bωij −

1

2
N i

bN
j
aωij

−1

2
nan

jN i
bωij −

1

2
nbn

iN j
aωij

=
1

2

(
N i

aN
j
b −N i

bN
j
a

)
ωij +

1

2
na

(
niN j

b − njN i
b

)
ωij −

1

2
nb

(
niN j

a − njN i
a

)
ωij

=
1

2
εabε

ijωij + nan
[iN

j]
b ωij − nbn

[iN j]
a ωij

= εabΩ + naεbiΩ
i − nbεaiΩ

i ,

ahol a (1.34), (1.48), (1.50) és (1.52) összefüggéseket alkalmazták, valamint az ωab =

ω[ab] tulajdonságot [323].

A formalizmus matematikai kidolgozása után gömbszimmetrikus, sztatikus háttér

választása mellett és vákuumban (Tab = 0, Gab = 0) származtatták az 1 + 3 kovariáns

formalizmus dinamikai- és kényszeregyenleteinek további 1+2 felbontását. Eredményül

11 darab �propagációs� (na menti fejl®dés) egyenletet, 11 darab �evolúciós� (ua menti

fejl®dés) egyenletet, 5 darab kevert fejl®désegyenletet és 3 darab kényszeregyenletet

kaptak. A propagációs egyenletek a mennyiségek els®rend¶ �∧� és �δ� deriváltjait tar-

talmazzák, az evolúciós egyenletekben a változóknak az els®rend¶ � ·� és �δ� deriváltjai

szerepelnek, a kevert fejl®désegyenletekben a változók els®rend¶ � ·�, �∧� és �δ� deri-

váltjai is megjelennek, míg a kényszeregyenletekben a változóknak csak az els®rend¶

�δ� deriváltjai vannak a további derivált nélküli tagokon kívül. Megállapították, hogy

Schwarzschild megoldás esetén az {A, E , ϕ} változók és �∧� deriváltjaik nem elt¶n®k.

A Schwarzschild fekete lyuk környezetében gravitációs hullámokat vizsgáltak származ-

tatva a Regge�Wheeler és Zerilli egyenleteket az 1 + 1 + 2 kovariáns formalizmusban.

A 4-dimenziós térid® 1+1+2 kovariáns felbontási módszerének számos alkalmazá-

sa van. A formalizmus bevezetése után C. A. Clarkson általános forgási szimmetriával
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rendelkez® térid®k esetén ugyancsak megadta a háttérre vonatkozó dinamikai egyenle-

teket, valamint levezette az els®rend¶ perturbációs egyenleteket [323]. Az általánosabb

szimmetria választás miatt, ekkor a háttér térid®re 11 darab propagációs egyenlet, 5

darab evolúciós egyenlet, 5 darab kevert fejl®désegyenlet és 3 darab kényszeregyenlet

vonatkozik. A formalizmust alkalmazták a Kerr-térid® esetén az ergorégión kívüli rész

geometriai vizsgálatára [324]. Nyírásmentes, lokálisan forgásszimmetrikus (azaz Lo-

cally Rotationally Symmetric, LRS-II) ideális folyadékként leírható rendszerek dinami-

káját és geometriai osztályozását ismertették az 1+1+2 kovariáns leírás alkalmazásával

a [325] munkában. Kantowski�Sachs háttér esetén örvénymentes, ideális folyadék per-

turbációs egyenleteit mutatták be a kovariáns formalizmusban a [326] hivatkozásban.

Általánosítva a kovariáns felbontást, 5-dimenziós, lokális forgásszimmetriával rendel-

kez® térid®nél kidolgozták az 1 + 1+ 3 kovariáns térid®felbontást, majd alkalmazták a

Brán elméletekben a fejl®dés egyenletek és kényszeregyenletek meghatározásához [327].

A disszertációban az ADM formalizmus nemmer®leges 2 + 1 + 1 általánosítását

mutatom be, azonban az 1 + 1 + 2 kovariáns formalizmusban megismert kinematikai

mennyiségek és a disszertációban használt geometria mennyiségek között van átjárás,

amelyet a 2.3. alfejezetben mutatok be.

1.4.2. ADM formalizmus

A gravitáció kanonikus mozgásegyenleteit 1962-ben publikálta R. Arnowitt, S. Deser és

C. W. Misner, amelyhez kidolgozták és alkalmazták a térid® ún. metrikus változók sze-

rinti 3+1 dimenziós felbontását, azaz az ADM formalizmust [328], [329]. Munkájukban

bemutatták az általános relativitáselmélet hamiltoni tárgyalását, amely során származ-

tatták a gravitációra vonatkozó kanonikus egyenleteket. Az általános relativitáselmé-

leti Lagrange-s¶r¶séget új paraméterek bevezetésével átalakították Liouville-formába

úgy, hogy 4 darab Lagrange-multiplikátort vezettek be a 4 darab kényszeregyenletnek

megfelel®en, amelyek a 3-dimenziós Na shift vektor és az N lapse függvény.

A formalizmus kidolgozásakor az Einstein�Hilbert hatásban szerepl® Lagrange-

s¶r¶ség ún. Palatini-alakjából indultak ki, ekkor

S =

∫
dx4g̃abR̃ab

(
Γ̃
)
, (1.54)

ahol g̃ab =
√
−g̃g̃ab, g̃ab 4-dimenziós metrika inverze, g̃ a 4-dimenziós metrika determi-

nánsa, míg a 4-dimenziós Ricci-tenzor az

R̃ab

(
Γ̃
)
= ∂iΓ̃

.i
a.b − ∂bΓ̃

.i
a.i + Γ̃.i

a.bΓ̃
.k
i.k − Γ̃.i

a.kΓ̃
.k
b.i ,
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amely az ún. Γ̃.b
a.c a�nitástól vagy a�n konnexió együtthatótól függ [328], [329]. A

továbbiakban a 4-dimenziós mennyiségeket hullámvonal jelöli. A hatás inverz metrika

szerinti variációjából a

G̃ab = R̃ab −
1

2
g̃abR̃ = 0

Eintein-egyenletet, és az a�nitás szerinti els® rend¶ variációból a

∇̃cg̃
ab ≡ ∂cg̃

ab + g̃aiΓ̃.b
i.c + g̃biΓ̃.a

i.c − g̃biΓ̃.a
i.c = 0 (1.55)

összefüggést kapták, ahol ∇̃ a 4-dimenziós a�n konnexió. Torziómentes térid®n az

(1.55) háttérre vonatkozó egyenletb®l következik, hogy

Γ̃.i
a.b = {̃.ia.b} =

1

2
g̃ik (∂ag̃bk + ∂bg̃ak − ∂kg̃ab) ,

azaz az a�nitás a Christo�el-szimbólum, amely a metrikával kompatibilis Levi-Civita

konnexió együtthatója [329], ekkor

∇̃ag̃bc = 0 .

A 3 + 1 formalizmusban a 4-dimenziós metrikát felbontották az

N ≡
(
−g̃00

)−1/2

lapse függvényre, az

Na ≡ g̃µ0

shift vektorra és a

gab ≡ g̃µν

3-dimenziós metrikára, továbbá ezek alapján kapható, hogy

g̃00 = −
(
N2 −NaN

a
)
, g̃00 = − 1

N2
,

g̃µ0 =
Na

N2
, Na = g̃abNb .

Ekkor a 4-dimenziós metrika inverze a

g̃ab = gab − NaN b

N2
,

valamint a 4-dimenziós metrika determinánsa a√
−g̃ = N

√
g .
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Bevezették a

πab =
√

−g̃
(
Γ̃.0
i.j − gijΓ̃

.0
k.mg

km
)
giagjb

kanonikus impulzust. A kanonikus impulzussal helyettesíthet® a

Kµν = −∇̃µnν = −gcµgdν∇̃cnd =⇒ Kab = −∂anb + niΓ̃
.i
a.b = N Γ̃.0

a.b

a beágyazásra jellemz® küls® görbület úgy, hogy

πab = −√
g
(
Kab − gabK

)
.

A Kab az na = −Nδ0a id®szer¶ normális 4-dimenziós kovariáns deriváltjának a telje-

sen térszer¶ része, valamint K = Kabg
ab = Ka

a . Megjegyzend®, hogy bár az a, b, c...

térid®indexek, viszont csak a hullámvonallal jelölt mennyiségek 4-dimenziósak, ezért a

µ, ν, α... térindexek külön használata nem szükségszer¶. Az (1.54) Palatini Lagrange-

s¶r¶ség Liouville-formáját kialakították a 3 + 1 formalizmusban, amely az

L = −gab∂tπab −NR0 −NaR
a − 2∂a

(
πabNb −

1

2
πNa +

√
gDaN

)
, (1.56)

ahol π = gabπ
ab = πa

a és 3-dimenzióban a �D� esetén igaz, hogy Dagbc = 0. Az

R0 = −√
g

[
R +

1

g

(
1

2
π2 − πabπab

)]
,

Ra = −2Dbπ
ab

a kényszerek, továbbá R a 3-dimenziós Ricci-skalár, amely a 3-dimenziós gab metrikától

függ. Az (1.56) felbontott alak alapján az Einstein-i gravitáció Hamilton-s¶r¶sége

vákuumban a

H = NR0 +NaR
a .

Levezették az (1.56) Lagrange-s¶r¶séget tartalmazó hatás πab és gab szerinti variáci-

ójából a kanonikus koordinátákra és kanonikus impulzusokra vonatkozó mozgásegyen-

leteket, amelyek a

∂tgab =
2N
√
g

(
πab −

1

2
gabπ

)
+ 2D(aNb) ,

∂tπ
ab = −N√

g

(
Rab − 1

2
gabR

)
+
Ngab

2
√
g

(
πijπij −

1

2
π2

)
−2N
√
g

(
πaiπ.b

i − 1

2
ππab

)
+
√
g
(
DaDbN − gabDiD

iN
)

+Di

(
N iπab

)
− 2πi(aDiN

b) ,
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9. ábra. EgyM térid® fóliázása látható Σt térszer¶ hiperfelület sereggel, ahol n id®szer¶

normális mer®leges a (Σt)t∈R hiperfelületekre [329].

továbbá a kényszerekre az

R0 = 0 = Ra

eredményt kapták vissza az N és Na szerinti variációkból. Ezután a Poisson-zárójelek

bevezetésével megadták a kanonikus egyenleteket. Megállapították, hogy az Na és

N Lagrange-multiplikátorok a koordináták felj®dését határozzák meg az id®szer¶ na

normálisra mer®leges t =konst. hiperfelületekr®l hiperfelületekre, viszont nem töltenek

be dinamikai szerepet. Az ADM térid®felbontást mutatja be a 9. ábra. A gravitáció

kanonikus formalizmusának tárgyalása mellett ismertették a gravitáció kvantálásának

lehet®ségét és korlátait. A Palatini formalizmusban [330], a 3 + 1 dimenziós ADM

térid®felbontással levezették a Gauss�Codazzi relációkat és az illesztési feltételeket is

a [331], [332] folyóiratcikkekben. Megállapították, hogy a kapott határtag az általános

relativitáselméleti Gibbons�Hawking�York határtaggal azonos vákuum térid®k esetén,

de eltérhet anyagi hatás jelenlétében.

Az ADM formalizmust a Palatini formalizmuson kívül a nem metrikus módosított

gravitációelméletekben is felhasználták, ezek a Teleparallel Gravity (TG) és a Sym-

metric Teleparallel Gravity (STG) [333]. A TG és STG elméletekben a gravitáció

geometria, viszont nem azonosítják csak a térid® görbületével. A bevezetett Γ̃c
ab a�n

konnexió együttható a {̃cab} Christo�el-szimbólum mellett a T̃ c
.ab = 2Γ̃c

.[ab] torziót és a
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10. ábra. Az A) rajz szemlélti az általános relativitáselmélet által megfogalmazott

gravitációt. Amennyiben egy vektort eltolunk végig egy zárt görbe mentén, akkor a

vektor elfordulásának mértékét fogja megadni az Ra
.bcd. A B) rajz mutatja be TG

változatát az általános relativitáselméletnek. Ebben az esetben két vektor egymás

mentén történ® eltolása során keletkez® nem záródást adja meg a T a
.bc. A C) rajz az

általános relativitás STG analógiáját ábrázolja, amiben egy vektor transzformációjakor

keletkez® változás a vektor hosszában a Qa
.bc nemmetricitásoz köt®dik [333].

Q̃cab = ∇̃cg̃ab nemmetricitást tartalmazza úgy, hogy

Γ̃c
.ab = {̃cab}+

1

2
T̃ c
.ab + T̃ .c

(a.b) +
1

2
Q̃c

.ab − Q̃.c
(a.b) . (1.57)

Az (1.57) összefüggésben a 2. és 3. tag a

K̃c
.ab =

1

2
T̃ c
.ab + T̃ .c

(a.b)

kontorzió (contorsion), a 4. és 5. tag az

L̃c
.ab =

1

2
Q̃c

.ab − Q̃.c
(a.b)

diszformáció (disformation). A {̃cab} Christo�el-szimbólum a D̃ 4-dimenziós Levi�Civita

konnexió együtthatója, mivel D̃ag̃bc = 0. A 4-dimenziós Riemann-tenzort az

R̃c
.dab = ∂aΓ̃

c
.bd + ∂bΓ̃

c
.ad + Γ̃c

.aiΓ̃
i
.bd − Γ̃c

.biΓ̃
i
.ad

kifejezés adja. A fenti fogalmak bevezetése alapján, tehát egy módosított gravitációel-

mélet metrikus amennyiben Q̃c
.ab

(
Γ̃, g̃
)
= 0, torziómentes amennyiben T̃ c

.ab

(
Γ̃, g̃
)
= 0,
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továbbá a térid® sík, ha R̃c
.dab

(
Γ̃
)
= 0 [333]. A Q̃c

.ab, a T̃
c
.ab és az R̃

c
.dab jelentését egy

vektor transzformációja során a 10. ábra mutatja be. A nem metrikus TG elméletek

közé sorolható a TEGR (Teleparallel Equivalent of General Relativity) elmélet, amelyre

a fenti jellemzést alkalmazva igaz, hogy Q̃c
.ab

(
Γ̃, g̃
)
= 0, T̃ c

.ab

(
Γ̃, g̃
)
̸= 0, R̃c

.dab

(
Γ̃
)
= 0,

míg az STG elmélet STEGR (Symmetric Teleparallel Equivalent of General Relati-

vity) alosztályára a Q̃c
.ab

(
Γ̃, g̃
)

̸= 0, T̃ c
.ab

(
Γ̃, g̃
)

= 0, R̃c
.dab

(
Γ̃
)

= 0 összefüggések

vonatkoznak [333], [332]. A TEGR és STEGR elméletek egyik célja az Einstein-i

gravitációelmélet eredményeinek származtatása, például a naprendszerbeli tesztek, ál-

talános relativitáselméleti fekete lyukak reprodukálása. A TG és STG elméletekben

szintén felhasználták az ADM térid®felbontást [334].

Az ADM formalizmust alkalmazták továbbá a metrikus módosított gravitációelmé-

letekben. A 3+1 térid®felbontásban tárgyalták a kozmológiai perturbációszámítás EFT

közelítését unitáris mérték választásával [335]. Horndeski elmélet b®vítése során a me-

z®egyenleteket ADM változókba írták, majd megadták a megfelel® Hamilton-s¶r¶séget

a [336] folyóiratcikkben. Az ADM formalizmus használatával a Ricci-skalárral csatolt

Scalar�Gauss�Bonnet (sGB) gravitációselméletben sztatikus, vagy forgó térid® megol-

dásokat vezettek le [338]. Bemutatták az általános relativitáselméleti ideális folyadék

hidrodinamikai egyenleteit az ADM formalizmusban, amelyet egy kifejlesztett kód se-

gítségével vezettek le, továbbá a kód lehet®vé teszi, hogy bármilyen relativisztikus ide-

ális folyadék szimulációját elkészítsék [337]. A Mathematica-ban írt ún. GRAVITAS

kód az általános relativitáselméleti mozgásegyenletek megoldására és töltéssel nem ren-

delkez®, nemforgó fekete lyukak gráf diagrammjainak ábrázolására alakítottak ki [339].

A GRAVITAS fejlesztése során beépítették a gráf diagrammok 3 + 1 dimenziós ADM

felbontáson belüli reprodukálását is [340].

Az ADM formalizmus esetén szintén felmerült a térid® további felbontása, amely-

nek f® oka az id®fejl®dés vizsgálata mellett egy térbeli szimmetria menti térbeli terjedés

tanulmányozása. Azonban ennek is többféle megközelítése létezik, például a Killing-

vektormez®t alkalmazó [(2 + 1) + 1] dimenziós térid®felbontás [341], az általános rela-

tivitáselméleti fekete lyukak spinor analíziséhez kifejlesztett 1 + 1 + 1 + 1 dimenziós

Newman�Penrose formalizmus [342]-[344], valamint az ún. mer®leges s+1+1 dimenziós

ADM-szer¶ térid®felbontás [345], [346].

A mer®leges s+1+1 formalizmus a disszertáció 2. fejezetében és a [347]-[351] hivat-

kozásokban bemutatott formalizmus el®zménye. A mer®leges s+1+1 formalizmusban

az (s+ 2)-dimenziós B térid® fóliázható (s+ 1)-dimenziós térszer¶ St (t =konst.) hi-

perfelület sereggel, amelynek normálisa na id®szer¶, továbbá az (s+ 1)-dimenziós Mχ

(χ =konst., ahol χ térszer¶ koordináta) hiperfelület sereggel, amelynek normálisa ma
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11. ábra. Az (s+ 2) dimenziós B térid® fóliázása (s+ 1) dimenziós térszer¶ St és

id®szer¶ Mχ hiperfelület seregekkel. Az ábrán a ∂/∂t és a ∂/∂χ fejl®dés vektorok

felbontása is látható [345].

térszer¶ [345]. Az s + 1 + 1 dimenziós formalizmusban a fóliázás mer®leges, ekkor

az na és ma normálisok ugyancsak mer®legesek egymásra, valamint az N = 0, amely

a térszer¶ fóliázásból adódó (s+ 1)-dimenziós shift vektor egyik komponense (ld. 2.

fejezetben). Ebb®l következik, hogy mind az St mind az Mχ hiperfelület seregekhez

adaptálható az fA = {n,m, Fi} ortonormált bázis és fB =
{
n̄, m̄, F j

}
duális bázisa,

amelyben az (s+ 2)-dimenziós metrika

gab = −nanb +mamb + hab

alakú, továbbá (
∂

∂t

)a

≡ Nna +Na ,(
∂

∂χ

)a

≡ Mma +Ma .

A hab az St ésMχ hiperfelület seregek metszete által meghatározott s-dimenziós Σtχ hi-

perfelületen értelmezett indukált metrika. Az Na és Ma vektorok az (s+ 1)-dimenziós
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megfelel® shift vektorok s-dimenziós komponensei, amelyek a Σtχ érint®i, amíg N ésM

lapse-függvények. A következ® relációk teljesülnek: naN
a = 0, maM

a = 0, maN
a = 0,

naM
a = 0, habna = 0, habma = 0. A fóliázást a 11. ábra mutatja be. A formalizmussal

a gab helyettesíthet® a hab, Na, Ma, N , M metrikus változókkal. Az na és ma 1-formák

(s+ 2)-dimenziós deriváltjaival bevezették a beágyazást jellemz® mennyiségeket, ame-

lyek a metrikus változókkal állnak kapcsolatban és a fóliázás geometriai leírását teszik

lehet®vé. A formalizmust alkalmazták a gravitáció hamiltoni dinamikájának leírására

ahol, mint a 3+1 dimenziós ADM térid®felbontásban, a beágyazási mennyiségek kano-

nikus változók szerepét töltik be [346]. Kozmológiai vizsgálatokat végeztek a formaliz-

mus alkalmazásával Brán elméletekben [352]. Használták gömbszimmetrikus, sztatikus

háttér mellett egy EFT hatásból származtatott mez®egyenletek bemutatására, vala-

mint gömbszimmetrikus, sztatikus térid®k perturbációszámítása során [197]. Azonban

a fóliázás mer®legességének megválasztása miatt nem tudtak megfelel® mértékrögzítést

tenni a perturbáció páros szektorában [197], [348].

A [197] hivatkozásban a

ds2 =
(
−N2 +N 2 +NaN

a
)
dt2 + 2 (MN +NaM

a) dtdχ

+
(
M2 +MaM

a
)
dχdχ+ 2Nadtdx

a + 2Madχdx
a

+habdx
adxb (1.58)

mer®leges 2+1+1 dimenziós térid®felbontással kialakított ívelemnégyzetet veszik [345].

A továbbiakban a háttér gömbszimmetrikus és sztatikus, s = 2, valamint a hullámvonal

jelöli a 4-dimenziós mennyiségeket. Az (1.58) ívelemnégyzet az els®rend¶ perturbáció

után a

ds2 = ds̄2 + δ1
(
ds2
)
+ δ2

(
ds2
)
,

ds̄2 = −N̄2dt2 + M̄2dr2 + h̄abdx
adxb ,

δ1
(
ds2
)

= −2N̄δNdt2 + 2M̄δMdr2 + 2M̄Ndtdr

+2δNadtdx
a + 2δMadrdx

a + δ1habdx
adxb ,

δ2
(
ds2
)

= −
(
(δN)2 −N 2 − δNaδN

a
)
dt2

+
(
(δM)2 + δMaδM

a
)
dr2

+2 [N δM + δNaδM
a] dtdr + δ2habdx

adxb .

Perturbáció során a mennyiségek az

N = N̄ + δN

módon változnak. A felülvonás jelzi a változók háttéren vett értékét, míg δ az attól

való eltérés. Kezdetben a fóliázás mer®legességét csak a háttére szabták ki (N̄ =
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0). A perturbációs változóktól függ® mennyiségek variációja különbözhet rendenként,

amelyet a δ1 és δ2 jelöl. A perturbatív vektorok és szimmetrikus tenzorok az alábbi

módon bonthatók fel gömbszimmetrikus, sztatikus háttéren:

δNa = DaP + Eb
.aDbQ ,

δMa = DaV + Eb
.aDbW ,

δhab = habA+DaDbB +
1

2
(Ec

.aDcDb + Ec
.bDcDa)C . (1.59)

A rotációmentes rész a páros, míg a divergenciamentes rész a páratlan szektor. Az

Eab =
√
h̄εab egy tenzor s¶r¶ség, amelyben az εab a Levi-Civita 2-tenzor, h̄ pedig a

2-dimenziós indukált metrika determinánsa. Ezek alapán a mer®leges 2 + 1 + 1 di-

menziós térid®felbontás és az (1.59) alkalmazásával, a gömbszimmetrikus, sztatikus

háttéren a perturbációk páros szektorát a δN , δM , N , P , V , A, B változók, míg a

páratlan szektorát a Q, W , C változók írják le. A [197] hivatkozásban a Horndeski

és a GLPV skalár-tenzor elméletekben alkalmazták a mer®leges 2 + 1 + 1 dimenziós

térid®felbontást a perturbációs egyenletek levezetéséhez. Ekkor a ϕ skalármez® pertur-

bációja, mint páros változó ugyancsak megjelenik. A páros és páratlan változók száma

mértékrögzítéssel csökkenthet®. A mértéktranszformáció során az

̂̃xa = x̃a + ξ̃a , (1.60)

in�nitezimális koordináta transzformációt vezették be, ahol a

ξ̃a =
(
ξt, ξr, D̄aξ + EbaD̄bη

)
(1.61)

generátor 2-dimenziós részét az (1.59)-nek megfelel®en bontották fel. Itt és a kés®b-

biekben a �̂ � jelöi a transzformáció utáni mennyiségeket. A [197] hivatkozásban a

4-dimenziós metrika generátor menti Lie-deriváltjával megadták a metrika perturbáci-

óját egy új koordináta rendszerben úgy, hogy

L̃ξg̃ab = δg̃ab − δ̂g̃ab

δ̂g̃ab = δg̃ab + ∇̃aξ̃b + ∇̃bξ̃a . (1.62)

A páros perturbációs változók a mértéktranszformáció után

δ̂N = δN − N̄∂tξ
t − ∂rN̄ξ

r ,
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N̂ = N − N̄2

M̄
∂rξ

t + M̄∂tξ
r ,

δ̂M = δM + ξr∂rM̄ + M̄∂rξ
r ,

P̂ = P − N̄2ξt + ∂tξ ,

V̂ = V + M̄2ξr + ∂rξ −
2

r
ξ ,

Â = A+
2

r
ξr ,

B̂ = B + 2ξ ,

δ̂ϕ = δϕ− ξr∂rϕ̄ . (1.63)

A páratlan perturbációs változók esetén a

Q̂ = Q+ ∂tη ,

Ŵ = W + ∂rη −
2η

r
,

Ĉ = C + 2η (1.64)

eredményt kapták. A [197] hivatkozásban a módosított gravitációelméletek EFT köze-

lítésének alkalmazása miatt az unitér mérték választása mellett döntöttek, azaz δ̂ϕ = 0,

amelyb®l következik, hogy

ξr =
δϕ

∂rϕ̄
.

Ennek a megfontolásnak szintén oka volt, hogy az id®szer¶ fóliázást a ϕ =konst. hiper-

felületek által határozták meg. Ezt a választást radiális unitér mértéknek is nevezik,

továbbá mivel ϕ határozza meg a radiális fejl®dést, így független változóként nem jele-

nik meg a hatásban. Következ®nek a konformis mértéket választották, ekkor a háttér

indukált metrika és a perturbáció utáni metrika között konformis transzformációt szab-

tak meg, azaz

hab = e2ζ h̄ab . (1.65)

A konformis mértékben a 2-dimenziós indukált metrika perturbációja

δhab = hab − h̄ab = e2ζ h̄ab − h̄ab

= h̄ab
(
1 + 2ζ + 2ζ2

)
− h̄ab

=
(
2ζ + 2ζ2

)
h̄ab = δ1hab + δ2hab ,

δ1hab = 2ζh̄ab ,

δ2hab = 2ζ2h̄ab , (1.66)
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az inverzé pedig a

δhab = hab − h̄ab = e−2ζ h̄ab − h̄ab

= h̄ab
(
1− 2ζ + 2ζ2

)
− h̄ab

=
(
−2ζ + 2ζ2

)
h̄ab = δ1h

ab + δ2h
ab ,

δ1h
ab = −2ζh̄ab ,

δ2h
ab = 2ζ2h̄ab . (1.67)

A konformis mértékben B̂ = 0 és Ĉ = 0, azaz

ξ = −B
2
, η = −C

2
,

valamint az A perturbációs változó helyét a ζ konformis faktor veszi át. Az utolsó

szabadsági fokot végül a mer®leges 2 + 1 + 1 dimenziós formalizmus miatt a fóliázó

hiperfelület seregek mer®legességének megtartására kellett használniuk, azaz N̂ = 0.

Ekkor a

ξt =

∫
dr

2M̄

N̄

(
N +

M̄

2
∂tξ

r

)
+ F (t, θ, φ)

integrált kapták, ahol az integrációs konstans egy tetsz®leges F (t, θ, φ) függvény, amely

miatt a mértékrögzítés nem tehet® egyértelm¶vé. Az egyértelm¶ mértékrögzítéshez

szükségük lett volna még egy szabadsági fokra, amellyel a P̂ = 0.

A [197] folyóiratcikkben bemutatott nem egyértelm¶ mértékrögzítés oka a fóliázás

mer®legességének megkövetelése a perturbáció után is. Ennek feloldása érdekében dol-

goztam ki a nemmer®leges 2 + 1 + 1 dimenziós térid®felbontást, amely segítségével

elértem az egyértelm¶ mértékrögzítést, ezt a 2. fejezetben részletezem.

1.4.3. A disszertáció saját eredményeit bemutató fejezetek rövid összefog-

lalása

A nemmer®leges 2 + 1 + 1 felbontás alkalmazásának alap ötlete az EFT elméletekbeli

gömbszimmetrikus, sztatikus megoldások és a perturbációk vizsgálata volt, kifejezet-

ten a páros szektorra összpontosítva, mivel a páratlan szektor perturbációs egyenletei

megegyeznek mer®leges és nemmer®leges dupla fóliázásban.

A 2. fejezetben a [347]-[351] hivatkozásokban kidolgozott matematikai formalizmust,

a formalizmussal elért egyértelm¶ mértékrögzítést és az általános relativitáselmélet

hamiltoni tárgyalását mutatom be.

A 3. fejezetben a nemmer®leges dupla fóliázás formalizmusának alkalmazásával

egy EFT hatás esetén, gömbszimmetrikus és sztatikus térid® megoldásokat ismertetek
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radiális unitér és konformis mértékben. A megoldások a nem minimálisan csatolt k-

eszencia elmélet esetére specializáltak, ahol a G4 függvény különböz® választásával több

eset is adódott. Ezeket az eredményeket a [353] hivatkovás foglalja össze.

A 4. fejezetben a [354] hivatkozásban ismertetett minimálisan csatolt skalármez®

folyadék leírását tárgyalom, ahol a skalármez® energia-impulzus tenzorát a 4-dimenziós

metrika 2 + 1 + 1 felbontott alakjának segítségével adom meg nullszer¶, id®szer¶ és

térszer¶ skalármez® gradiens esetén.

A dolgozat további részében az alkalmazott jelölések: a latin- illetve görög indexek

absztrakt indexek 4-, illetve 3-dimenzióban, a vastag kis- és nagybet¶s latin indexek

pedig (például i, illetve A) 2, illetve 4-dimenziós bázisvektorok nevében jelennek meg,

és a −,+,+,+ szignatúrát használom.
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2. A nemmer®leges 2 + 1 + 1 felbontás

A kés®bbiekben alkalmazásra kerül® nemmer®leges 2 + 1 + 1 térid®felbontást foglalom

össze ebben a fejezetben, amely a [347]-[351] hivatkozásokban található. A nemmer®le-

ges 2+1+1 formalizmus a [345] által bemutatott mer®leges s+1+1 kett®s fóliázásból

indul ki úgy, hogy s = 2 és N ̸= 0.

A kétszeresen fóliázható 4-dimenziós térid® B felbontható 3-dimenziós id®szer¶ Mχ

(χ =konst.) és 3-dimenziós térszer¶ St (t =konst.) hiperfelület seregekkel. Az id®szer¶

és térszer¶ 3-dimenziós hiperfelületek metszete egy 2-dimenziós Σtχ felület, amelyen a

2-dimenziós indukált metrika a gab. Az eA = {∂/∂t, ∂/∂χ,Ei} és az eB =
{
dt, dχ,Ej

}
a B-n értelmezett ortonormált bázis, illetve ennek duális bázisa. Az fA = {n,m, Fi} és

az fB =
{
n̄, m̄, F j

}
az St-n értelmezett ortonormált bázis, illetve ennek duális bázisa,

ahol n̄a = −na, m̄a = ma, nan
a = −1, mam

a = 1, man
a = 0. A gA = {k, l, Gi} és

a gB =
{
k̄, l̄, Gj

}
az Mχ-n értelmezett ortonormált bázis, illetve ennek duális bázisa,

ahol k̄a = −ka, l̄a = la, kaka = −1, lala = 1, laka = 0. Továbbá

Ei = Fi = Gi =
∂

∂yi
. (2.1)

A 4-dimenziós metrika felbontott alakjai az St és Mχ hiperfelületeken értelmezett bá-

zisokban:

g̃ab = −nanb +mamb + gab

= −kakb + lalb + gab . (2.2)

Az na az St hiperfelületek, amíg az la az Mχ hiperfelületek normálisai, továbbá a gab
indukált metrika gab vegyes index¶ alakja Σtχ-re történ® projekciós tenzor. Az ma, ka,

na és la a Σtχ felületre mer®legesek.

A t és χ koordináta vonalak tangens vektorainak felbontása az (na,ma) bázisban az(
∂

∂t

)a

= Nna +Na +Nma , (2.3)(
∂

∂χ

)a

= Mma +Ma +Mna (2.4)

alakú, ahol N a lapse függvény, Na és N pedig a 3-dimenziós shift vektor 2 + 1 fel-

bontásából származó komponensek. Az M egy lapse függvény, továbbá Ma és M
egy 3-dimenziós shift vektor 2 + 1 felbontásából származó komponensek. A következ®

relációk igazak:

maN
a = 0 , naN

a = 0 , kaN
a = 0 , laN

a = 0 ,

naM
a = 0 , maM

a = 0 , kaM
a = 0 , laM

a = 0 .
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Az Na térszer¶, a ∂/∂t id®szer¶ és jöv®irányított, ezért

N2 −N 2 > gabN
aN b ≥ 0 ,

valamint N pozitív. Az eB, fB és gB bázisok közötti kapcsolat származtatása során

az
〈
eB, eA

〉
= δBA =

〈
fB, fA

〉
és
〈
fB, fA

〉
= δBA =

〈
gB, gA

〉
dualitási relációkat hasz-

náltam. A ⟨dt, ∂/∂χ⟩ = 0 eredményb®l adódott, hogy a 3-dimenziós shift vektor M
komponense zérus. Az

〈
fB, fA

〉
= δBA =

〈
gB, gA

〉
dualitási relációk számolása során

kaptam meg a ∂/∂t és ∂/∂χ fejl®désfektorok felbontását a (ka, la) bázisban, amelyek a(
∂

∂t

)a

=
N

c
ka +Na , (2.5)(

∂

∂χ

)a

= M (−ska + cla) +Ma . (2.6)

Az (na,ma) és (ka, la) bázisok közötti transzformáció a(
ka

la

)
=
(
N2 −N 2

)−1/2

(
N N
N N

)(
na

ma

)
, (2.7)

azaz a (
ka

la

)
=

(
c s

s c

)(
na

ma

)
(2.8)

Lorentz-forgatás, ahol s = sinhψ és c = coshψ. A (2.7) és (2.8) összefüggések alapján

N = N tanhψ . (2.9)

A nemmer®leges 2+1+1 dimenziós térid®felbontást a 12. ábra mutatja be az (na,ma)

és (ka, la) bázisokban.

Az na és la normálisok kovariáns deriváltjának a felbontott alakja a saját bázisaik-

ban a

∇̃anb = g̃ca∇̃c

(
g̃dbnd

)
= g̃cag̃

d
b ∇̃cnd

= (gca − ncna +mcma)
(
gdb +mdmb

)
∇̃cnd

=
(
gcag

d
b − gdbn

cna + gdbm
cma + gcam

dmb − ncnam
dmb +mcmam

dmb

)
∇̃cnd

= gcag
d
b ∇̃cnd + gcam

dmb∇̃cnd + gdbm
cma∇̃cnd − ncnag

d
b ∇̃cnd

−ncnam
dmb∇̃cnd +mcmam

dmb∇̃cnd

= gcag
d
b ∇̃cnd +mb

(
gcam

d∇̃cnd

)
+ma

(
gdbm

c∇̃cnd

)
+mamb

(
mdmc∇̃cnd

)
−na

(
gdbn

c∇̃cnd

)
− namb

(
ncmd∇̃cnd

)
= Kab + 2m(aKb) +mambK − na (ab −mbL∗) , (2.10)
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(a) (b)

12. ábra. Az a) és b) ábrák mutatják be a 4-dimenziós B térid® nemmer®leges fóliázását

a térszer¶ St és az id®szer¶ Mχ 3-dimenziós hiperfelületekkel. Az a) ábrán a ∂/∂t és

∂/∂χ fejl®désvektorok felbontása az St-hez adaptált (na,ma) bázisban, míg a b) ábrán

a fejl®désvektorok felbontása az Mχ-hez adaptált (ka, la) bázisban látható [347]-[351].

valamint hasonló számolás útján a

∇̃alb = Lab + 2k(aLb) + kakbL+ la (bb + kbK∗) . (2.11)

A (2.10) és (2.11) felbontások számolása során felhasználtam a

gabna = 0 = gabma , gabka = 0 = gab la ,

na∇̃bna = 0 = ma∇̃bma , la∇̃bla = 0 = ka∇̃bka

gbc∇̃an
c = −nc∇̃agbc , gbc∇̃am

c = −mc∇̃agbc ,

gbc∇̃ak
c = −kc∇̃agbc , gbc∇̃al

c = −lc∇̃agbc ,

na∇̃bma = −ma∇̃bna , ka∇̃bla = −la∇̃bka (2.12)

összefüggéseket, valamint a Dagbc = 0. A �D� a 4-dimenziós �∇̃� projekciója a Σtχ

felületre, így egy tetsz®leges 4-dimenziós T̃ a1...ar
b1...br

tenzor 4-es kovariáns deriváltjának

projekciója a

DaT̃
a1...ar
b1...bq

≡ gcag
a1
c1
...garcr g

d1
b1
...g

dq
bq
∇̃cT̃

c1...cr
d1...dq

. (2.13)

A (2.10) és (2.11) felbontásokban a

Kab ≡ Danb , Lab ≡ Dalb (2.14)
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2-dimenziós tenzorok az (na,ma) és (ka, la) bázisban kifejtett küls® görbületek. A

Ka ≡ gcam
d∇̃cnd = gcam

d∇̃dnc ,

La ≡ −gcakd∇̃cld = −gcakd∇̃dlc = Ka +Daψ (2.15)

a normális fundamentális formák az (na,ma) és (ka, la) bázisokban. A

K ≡ mdmc∇̃cnd ,

L ≡ kdkc∇̃cld (2.16)

a normális fundamentális skalárok az (na,ma) és (ka, la) bázisokban. További normális

fundamentális skalárok a

K∗ ≡ ldlc∇̃ckd ,

L∗ ≡ ncnd∇̃cmd , (2.17)

amelyek az na és la normálisok αa ≡ nb∇̃bn
a és βa ≡ lb∇̃bl

a nem gravitációs gyorsulá-

sainak az ma és ka vektorokkal párhuzamos projekcióiból származnak. Az

ab = gdbn
c∇̃cnd (2.18)

az αa gyorsulásnak a Σtχ felületre projektált része, míg a βa gyorsulásnak a Σtχ pro-

jekciója a

bb = gdb l
c∇̃cld . (2.19)

A �∗� jelölést azok a beágyazási változók kapták, amelyek az na és la normálisokra

mer®leges ma és ka bázisvektorok 4-es kovariáns deriváltjainak vetítése de�niál.

Felhasználva a (2.12) összefüggéseket, a ka és ma bázisvektorok kovariáns derivált-

jainak felbontása a megfelel® bázisokban:

∇̃akb = K∗
ab + laK∗

b + lbLa + lalbK∗ − ka (a
∗
b − lbL) , (2.20)

∇̃amb = L∗
ab + naL∗

b + nbKa + nanbL∗ +ma (b
∗
b + nbK) , (2.21)

ahol a küls® görbületek a

K∗
ab ≡ Dakb , L∗

ab ≡ Damb . (2.22)

A normális fundamentális formákhoz hasonló mennyiségek a

K∗
a ≡ gdal

c∇̃ckd ,

L∗
a ≡ −gdanc∇̃cmd (2.23)
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a megfelel® bázisokban. Az

a∗b = gibk
a∇̃aki ,

b∗b = gibm
a∇̃ami (2.24)

az α∗
b = ka∇̃akb és β∗

b = ma∇̃amb gyorsulások Σtχ projekciói.

Az St és Mχ hiperfelületek létezésének feltétele az na és la normálisok örvénymen-

tessége [233], amelyet a [m,Fj]
a Lie-zárójel na irányú tagjának és a [k,Gj]

a Lie-zárójel

la irányú tagjának elt¶nése biztosít. Azaz az {m,Fi} és {l, Gi} vektorok az St és Mχ

hiperfelületek érint®tereit határozzák meg. Ezzel szemben az [n, Fj]
a és [l, Gj]

a Lie

zárójelek esetén az ma és ka irányú tagok nem zérusak. Így az ma és ka örényes vek-

tormez®k. Az fA és gA bázisokra vonatkozó Lie-zárójel komponenseket az 1. és a 2.

táblázat foglalja össze.

[n,m]a [n, Fj]
a [m,Fj]

a

na 1
M

[
∂χ (lnN)− 1

M
M j∂j (lnN)

]
∂j (lnN) 0

ma 1
MN

[
−∂tM + ∂χN +N j∂jM −M j∂jN

]
M
N
∂j
(
N
M

)
∂j (lnM)

F a
i

1
MN

(
−∂tM i + ∂χN

i +N j∂jM
i −M j∂jN

i
)

1
N

[
∂jN

i − N
M
∂jM

i
] ∂jM

i

M

1. táblázat. Az fA bázisra vonatkozó Lie-zárójel komponensek [348].

[k, l]a [k,Gj]
a [l, Gj]

a

ka
{
∂t
(

s
N

)
+ s

N

[
∂t ln (MN)−N j∂j ln (MN)

]
∂j
(
ln N

c

)
− N

c2M
∂j
(
scM
N

)
−N j∂j

(
s
N

)
+ 1

cM

[
∂χ ln

(
N
c

)
−M j∂j ln

(
N
c

)]}
la 1

MN

[
−∂t (cM) +N j∂j (cM)

]
0 ∂j ln (cM)

Ga
i

1
MN

[
−∂tM i + ∂χN

i −M j∂jN
i +N j∂jM

i
]

c
N

(
∂jN

i
)

s
N
∂jN

i + 1
cM
∂jM

i

2. táblázat. A gA bázisra vonatkozó Lie-zárójel komponensek [348].

A [345] hivatkozásban, a mer®legesség megválasztása miatt (azazN = 0) na, la, ma,

ka vektorok hiperfelület normálisok, ezért az na = ka, ma = la áll fenn. A (2.23) módon

de�niált formák nem tekinthet®k igazi normális fundamentális formáknak, amely a

ka és ma vektormez®k örvényességéb®l következik. A Frobenius-tétel alkalmazásával

belátható, hogy az na, la, ma és ka vektorok 2-dimenziós örvényei elt¶nnek [233], [355],
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azaz

ω
(n)
ab ≡ gc[ag

d
b]∇̃cnd = 0 ,

ω
(l)
ab ≡ gc[ag

d
b]∇̃cld = 0 ,

ω
(k)
ab ≡ gc[ag

d
b]∇̃ckd = 0 ,

ω
(m)
ab ≡ gc[ag

d
b]∇̃cmd = 0 . (2.25)

Emiatt a Kab, Lab, K∗
ab és L∗

ab szimmetrikus, �igazi� küls® görbületek. Legyen a 4-

dimenzós metrika most a

g̃ab = −nanb + ĝab = lalb + ḡab (2.26)

és a

g̃ab = mamb + h̄ab = −kakb + ĥab (2.27)

alakú úgy, hogy

ĝab = mamb + gab ,

ḡab = −kakb + gab ,

h̄ab = −nanb + gab ,

ĥab = lalb + gab . (2.28)

Ekkor a Frobenius-tétel miatt a 3-dimenziós örvények a

ω̂
(n)
ab ≡ ĝc[aĝ

d
b]∇̃cnd = 0 , (2.29)

ω̄
(l)
ab ≡ ḡc[aḡ

d
b]∇̃cld = 0 , (2.30)

a normálisokra, míg

ω̂
(k)
ab ≡ ĥc[aĥ

d
b]∇̃ckd = l[ag

d
b]l

c
(
∇̃ckd − ∇̃dkc

)
̸= 0 , (2.31)

ω̄
(m)
ab ≡ h̄c[ah̄

d
b]∇̃cmd = −n[ag

d
b]n

c
(
∇̃cmd − ∇̃dmc

)
̸= 0 (2.32)

a normálisokra mer®leges bázisvektorokra. A (2.31) és (2.32) normálisok szerinti kont-

rakcióiból a

2ω̂
(k)
ab l

b = −gdalc
(
∇̃ckd − ∇̃dkc

)
= −K∗

a − gdak
c∇̃dlc , (2.33)

2ω̄
(m)
ab nb = −gdanc

(
∇̃cmd − ∇̃dmc

)
= L∗

a − gdam
c∇̃dnc (2.34)

relációk adódnak. A (2.29) és (2.30) eredményb®l következnek a (2.15) de�níciók, azaz

Ka és La �igazi� normális fundamentális formák. Ezzel szemben a (2.33) és (2.34)
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szerint

K∗
a = La − 2ω̂

(k)
ab l

b ,

L∗
a = Ka + 2ω̄

(m)
ab nb . (2.35)

Azaz K∗
a és L∗

a nem rendelkezik a (2.15) szerinti szimmetria tulajdonságokkal, így nem

�igazi� normális fundamentális formák.

A metrikus változók, valamint a (na,ma) és (ka, la) bázisban megadott geometriai

mennyiségek közötti kapcsolatok megállapításához szükséges bevezetni a Lie-deriválás

Σtχ projekcióját. Egy tetsz®leges f függvény, egy W a vektor, egy ωa 1-forma és egy

T a
b tenzor 4-dimenziós Lie-deriváltját V a mentén az

L̃V f = V (f) = V a∂af = V a∇̃af ,

L̃VW
a = [V,W ]a = V b∇̃bW

a −W b∇̃bV
a ,

L̃V ωa = V b∇̃bωa + ωb∇̃aV
b ,

L̃V T
a
b = V c∇̃cT

a
b − T c

b ∇̃cV
a + T a

c ∇̃bV
c (2.36)

összefüggések adják meg. Ezek alapján egy tetsz®leges 2-dimenziós T a1...ar
b1...bq

tenzor 4-

dimenziós Lie-deriváltjának a 2-dimenziós felületre vetítése az

LV T
a1...ar
b1...bq

= ga1c1 ...g
ar
cr g

d1
b1
...g

dq
bq
L̃V T

c1...cr
d1...dq

(2.37)

de�nícióval fejezhet® ki. A (2.37) felhasználásával a 2-dimenziós gab indukált metrika

(∂/∂t)a és (∂/∂χ)a folyamok menti 2-dimenziós Lie-deriváltából következik, hogy

Kab =
1

N

[
1

2
∂tgab −D(aNb)

]
− s

c
L∗
ab ,

Lab =
c

M

[
1

2
∂χgab −D(aMb)

]
+ sKab ,

K∗
ab =

c

N

[
1

2
∂tgab −D(aNb)

]
,

L∗
ab =

1

M

[
1

2
∂χgab −D(aMb)

]
. (2.38)

A többi geometriai mennyiség metrikus változóktól való függését a

g̃
(
fA, ∇̃fBfC

)
= g̃ ([fA, fB] , fC)− g̃

(
fC, ∇̃fAfB

)
(2.39)

azonossággal származtattam feltéve, hogy g̃ (fA, fB) =állandó. Az [fA, fB] az fA és

fB tetsz®leges bázisvektorok Lie-zárójelei, valamint a számolás során a jelöléseket az

g̃
(
fA, ∇̃fBfC

)
= g̃abf

a
A∇̃fBf

b
C és ∇̃fB = fa

B∇̃a módon fejtettem ki. A (2.39) de�níció



A nemmer®leges 2 + 1 + 1 felbontás 75

használatakor �gyelembe kell venni, hogy az (na,ma) bázisban fA = {n,m, Fi}, míg

(ka, la) bázisban fA → gA = {k, l, Gi}. A normális fundamentális skalárok és a gyor-

sulások Σtχ projekcióinak származtatása során az fB = fC, ezért a g̃
(
fC, ∇̃fAfB

)
= 0

(hasonlóan a fA → gA választáskor). Az na∇̃anb = g̃
(
fA, ∇̃nn

)
fA
b , az ma∇̃amb =

g̃
(
fA, ∇̃mm

)
fA
b , a ka∇̃akb = g̃

(
gA, ∇̃kk

)
gAb és az la∇̃alb = g̃

(
gA, ∇̃ll

)
gAb számolása

során az

L∗ = − 1

M

[
∂

∂χ
(lnN)−MaDa (lnN)

]
,

K =
1

MN
[∂tM − ∂χN −NaDaM +MaDaN ] ,

L = −∂t
( s

N

)
+NaDa

( s

N

)
− s

N
[∂t ln (MN)−NaDa ln (MN)]

− 1

cM

[
∂χ ln

(
N

c

)
−MaDa ln

(
N

c

)]
,

K∗ =
1

MN
[∂t (cM)−NaDa (cM)] , (2.40)

és az

aa = Da (lnN) ,

b∗a = −Da (lnM) ,

a∗a = Da

(
ln
N

c

)
,

ba = −Da ln (cM) (2.41)

eredményeket kaptam. A normális fundamentális formákra és azokhoz hasonló mennyi-

ségekre a

Ka =
1

2MN

(
∂tMa − ∂χNa −N bDbMa +M bDbNa

)
− M

2N
Da

(
N
M

)
,

La =
1

2MN

(
∂tMa − ∂χNa −N bDbMa +M bDbNa

)
+

N

2c2M
Da

(
scM

N

)
,

L∗
a = Ka +

M

N
Da

(
N
M

)
,

K∗
a = La −

N

c2M
Da

(
scM

N

)
(2.42)

összefüggések adódtak az na∇̃amb = g̃
(
fA, ∇̃nm

)
fA
b , az ma∇̃anb = g̃

(
fA, ∇̃mn

)
fA
b ,

a ka∇̃alb = g̃
(
gA, ∇̃kl

)
gAb és az la∇̃akb = g̃

(
gA, ∇̃lk

)
gAb kifejtéséb®l.
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A 3. fejezetben a beágyazási változókból kialakított további skalárokat fogom fel-

használni, mint változók, amelyek a

κ ≡ KabKab , λ ≡ LabLab ,

K ≡ KaKa , k ≡ LaLa ,

K ≡ Ka
a , L ≡ La

a , (2.43)

illetve a

κ∗ ≡ K∗abK∗
ab , λ∗ ≡ L∗abL∗

ab ,

K∗ ≡ K∗aK∗
a , k∗ ≡ L∗aL∗

a ,

K∗ ≡ K∗a
a , L∗ ≡ L∗a

a . (2.44)

A beágyazási mennyiségek és az azokból képezett skalárok nem függetlenek egymástól,

transzformációk útján egymásba alakíthatók, így a �∗� csillaggal jelölt mennyiségek is

kifejezhet®k az anélküli mennyiségekkel. Felhasználva a (2.42) összefüggést, továbbá a

(2.8) és a (2.12) alapján a

K∗
ab =

1

c
(Kab + sLab) ,

L∗
ab =

1

c
(Lab − sKab) ,

kapcsolatot a küls® görbületek között. A (2.43) és (2.44) skalárok esetén az átjárás a

κ∗ =
1

c2
(
κ + 2sKabL

ab + s2λ
)
,

λ∗ =
1

c2
(
λ− 2sKabL

ab + s2κ
)
,

K∗ = K+ 2
s

c
KaDa ln

N

cM
+
(s
c

)2(
Da ln

N

cM

)2

,

k∗ = k+ 2
s

c
LaDa ln

N

cM
+
(s
c

)2(
Da ln

N

cM

)2

,

K∗ =
1

c
(K + sL) ,

L∗ =
1

c
(L− sK) , (2.45)

ahol (DaF )
2 ≡ (DaF ) (D

aF ) bármely F függvény esetén. Hasonló módon a (2.40)

skalárokra a

K∗ =
1

c
(K − sL) + c

M
(∂χ −MaDa)

(
N
N

)
,

L∗ =
1

c
(sK + L) + c2

N
(∂t −NaDa)

(
N
N

)
(2.46)
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vonatkozik. A (2.46) származtatása során felhasználtam az

na =
1

N

(
∂

∂t

)a

− s

c

1

M

(
∂

∂χ

)a

− 1

N
Na +

s

c

1

M
Ma ,

ma =
1

M

(
∂

∂χ

)a

− 1

M
Ma ,

la =
s

N

(
∂

∂t

)a

+
1

cM

(
∂

∂χ

)a

− s

N
Na − 1

cM
Ma ,

ka =
c

N

(
∂

∂t

)a

− c

N
Na (2.47)

összefüggéseket, amelyek a (2.3)-(2.6) de�níciók inverzeib®l következnek. Szintén al-

kalmaztam, hogy

la − sna =
c

M

[(
∂

∂χ

)a

−Ma

]
,

sla + na =
c2

N

[(
∂

∂t

)a

−Na

]
. (2.48)

A (2.42) esetén pedig a

K = k− 2c2LaDa

(
N
N

)
+ c4

[
Da

(
N
N

)]2
(2.49)

összefüggést kaptam.

Amennyiben a 2 + 1 + 1 felbontás esetén a fóliázást mer®leges (azaz s = 0 = N
és c = 1) a (2.45), (2.46) és (2.49) egyenletekbeli �∗� csillagos mennyiségek a nekik

megfelel® csillagtalannal lesznek azonosak, valamint K = k.

2.1. Egyértelm¶ mértékrögzítés

A nemmer®leges 2+1+1 dimenziós térid®felbontás kidolgozása után újravizsgáltam a

[197] hivatkozásban ismertetett mértékrögzítést. Az in�nitezimális koordináta transz-

formáció legyen az (1.60) szerint megadva és tekintsük a ξ̃a generátor (1.61) felbontását,

valamint legyen a háttér gömbszimmetrikus, sztatikus, mint a [197] folyóiratcikkben.

A metrika ξ̃a mentén vett Lie-deriváltja a

L̃ξg̃ab = δg̃ab − δ̂g̃ab , (2.50)
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ahol a Lie-deriválás az

L̃ξg̃ab = ξ̃c∂cg̃ab + g̃cb∂aξ̃
c + g̃ac∂bξ̃

c

= g̃cb∇̃aξ̃
c − g̃cbΓ̃

c
aiξ̃

i + g̃ac∇̃bξ̃
c − g̃acΓ̃

c
biξ̃

i

+ξ̃c∇̃cg̃ab + ξ̃cΓ̃i
cag̃ib + ξ̃cΓ̃i

cbg̃ia

= ξ̃c∇̃cg̃ab + g̃cb∇aξ̃
c + g̃ac∇bξ̃

c

= g̃cb∇̃aξ̃
c + g̃ac∇̃bξ̃

c

= ∇̃aξ̃b + ∇̃bξ̃a , (2.51)

így

δ̂g̃ab = δg̃ab − ∇̃aξ̃b − ∇̃bξ̃a . (2.52)

A (2.52) összefüggés kibontott alakja a

δ̂g̃ab = δg̃ab − ∂aξ̃b − ∂bξ̃a + 2Γ̃i
abξ̃i,

= δg̃ab − ∂a

(
g̃biξ̃

i
)
− ∂b

(
g̃aiξ̃

i
)
+ 2g̃ijΓ̃

i
abξ̃

j , (2.53)

amely els®rend¶ perturbáció esetén

δ̂g̃ab = δg̃ab − ∂a

(˜̄gbiξ̃i)− ∂b

(˜̄gaiξ̃i)+ 2˜̄gijΓ̄i
abξ̃

j . (2.54)

Megjegyzend®, hogy ebben az alfejezetben a 4-dimenziós Γ̄c
ab háttér Christo�el-szimbólum

esetén a hullámvonal jelölést nem alkalmazva, míg a 4-dimenziós háttérmetrikánál a

hullámvonal alkalmazása mellett az a, b, c... térid®indexeket és az α, β, µ... a térinde-

xeket használtam az összegzések felbontása során. A 4-dimenziós metrika és inverze a

háttéren a

˜̄gab = diag
(
−N̄2 (r) , M̄2 (r) , r2, r2 sin2 θ

)
, (2.55)˜̄gab = diag

(
−N̄−2 (r) , M̄−2 (r) , r−2, r−2 sin−2 θ

)
, (2.56)

amelyekb®l a 4-dimenziós háttér Christo�el-szimbólumok a következ®k:

Γ̄t
ab =

1

2
ḡtt
(
δta∂bḡtt + δtb∂aḡtt

)
=

1

2
ḡtt
(
δtaδ

r
b∂rḡtt + δtbδ

r
a∂rḡtt

)
,

Γ̄t
rt = Γ̄t

tr =
1

2
ḡtt∂rḡtt =

∂rN̄

N̄
, (2.57)

Γ̄r
ab =

1

2
ḡrr
(
δra∂bḡrr + δrb∂aḡrr − ∂r ˜̄gab)

=
1

2
ḡrr
(
δrbδ

r
a∂rḡrr − δtbδ

t
a∂rḡtt − δθbδ

θ
a∂rḡθθ − δφb δ

φ
a ∂rḡφφ

)
,
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Γ̄r
rr =

1

2
ḡrr∂rḡrr =

∂rM̄

M̄
, (2.58)

Γ̄r
tt = −1

2
ḡrr∂rḡtt =

N̄∂rN̄

M̄2
, (2.59)

Γ̄r
θθ = −1

2
ḡrr∂rḡθθ = − r

M̄2
, (2.60)

Γ̄r
φφ = −1

2
ḡrr∂rḡφφ = −r sin

2 θ

M̄2
, (2.61)

Γ̄θ
ab =

1

2
ḡθθ
(
δθa∂bḡθθ + δθb∂aḡθθ − ∂θ ˜̄gab)

=
1

2
ḡθθ
(
δrbδ

θ
a∂rḡθθ + δraδ

θ
b∂rḡθθ − δφb δ

φ
a ∂θḡφφ

)
,

Γ̄θ
rθ = Γ̄θ

θr =
1

2
ḡθθ∂rḡθθ =

1

r
, (2.62)

Γ̄θ
φφ = −1

2
ḡθθ∂rḡθθ = − sin θ cos θ , (2.63)

Γ̄φ
ab =

1

2
ḡφφ (δφa ∂bḡφφ + δφb ∂aḡφφ)

=
1

2
ḡφφ

(
δφa δ

r
b∂rḡφφ + δφa δ

θ
b∂θḡφφ + δraδ

φ
b ∂rḡφφ + δθaδ

φ
b ∂θḡφφ

)
,

Γ̄φ
rφ = Γ̄φ

φr =
1

2
ḡφφ∂rḡφφ =

1

r
, (2.64)

Γ̄φ
θφ = Γ̄φ

φθ =
1

2
ḡφφ∂θḡφφ = cot θ . (2.65)

Az (1.59), (1.61), (2.54)-(2.65) részeredmények felhasználásával származtattam a met-

rikus tenzor komponensek perturbációit a mértéktranszformáció után. A lapse függvé-

nyekre a

δ̂g̃tt = δg̃tt − ∂t

(˜̄gitξ̃i)− ∂t

(˜̄gitξ̃i)+ 2˜̄gijΓ̄i
ttξ̃

j

= δg̃tt − 2∂t
(
ḡttξ

t
)
+ 2ḡrrΓ̄

r
ttξ

r ,

−2N̄ δ̂N = −2N̄δN + 2N̄2∂tξ
t + 2M̄2 N̄∂rN̄

M̄2
ξr

δ̂N = δN − N̄∂tξ
t − ∂rN̄ξ

r , (2.66)

és a

δ̂g̃rr = δg̃rr − 2∂r

(˜̄girξ̃i)+ 2˜̄gijΓ̄i
rrξ̃

j

= δg̃rr − 2ξr∂rḡrr − 2ḡrr∂rξ
r + 2ḡrrΓ̄

r
rrξ

r ,

2M̄ δ̂M = 2M̄δM − 4M̄ξr∂rM̄ − 2M̄2∂rξ
r + 2M̄2∂rM̄

M̄
ξr

δ̂M = δM − ξr∂rM̄ − M̄∂rξ
r (2.67)
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eredményeket kaptam. A 3-dimenziós shift vektor komponens esetén a

δ̂g̃rt = δg̃rt − ∂r

(˜̄gitξ̃i)− ∂t

(˜̄girξ̃i)+ 2˜̄gijΓ̄i
rtξ̃

j

= δg̃rt − ξt∂rḡtt − ḡtt∂rξ
t − ḡrr∂tξ

r + 2ḡttΓ̄
t
rtξ

t ,

M̄ δ̂N = M̄δN + 2N̄ξt∂rN̄ + N̄2∂rξ
t − M̄2∂tξ

r − 2N̄2ξt
∂rN̄

N̄
,

δ̂N = δN +
N̄2

M̄
∂rξ

t − M̄∂tξ
r (2.68)

összefüggés adódott. A 2-dimenziós perturbált Na shift vektor a mértéktranszformáció

után a

δ̂g̃tα = δg̃tα − ∂t

(˜̄giαξ̃i)− ∂α

(˜̄gitξ̃i)+ 2˜̄gijΓ̄i
tαξ̃

j

= δg̃tα − ∂t
(˜̄giαξi)− ḡtt∂αξ

t

= δg̃tα − ∂t
(
D̄aξ + Eb

.aD̄bη
)
− ḡttD̄aξ

t ,

δ̂Na = δNa − D̄a (∂tξ)− Eb
.aD̄b (∂tη) + N̄2D̄aξ

t ,

amelynek páratlan részére a

̂̄DaP = D̄aP − D̄a (∂tξ) + N̄2D̄aξ
t ,

P̂ = P − ∂tξ + N̄2ξt , (2.69)

míg páros komponensére a

Êb
.aD̄bQ = Eb

.aD̄bQ− Eb
.aD̄b (∂tη) ,

Q̂ = Q− ∂tη (2.70)

eredményt kaptam. A 2-dimenziós Ma shift-vektor perturbációja a mértéktranszfor-

máció után a

δ̂g̃rα = δg̃rα − ∂rξ̃α + Γ̄i
rαξ̃i − ∂α (ḡrrξ

r) + Γ̄i
αrξ̃i

= δg̃rα − ∂r
(
D̄aξ + Eb

.aD̄bη
)
− ∂α (ḡrrξ

r) + Γ̄i
rαξ̃i + Γ̄i

αrξ̃i

= δg̃rα − ∂r
(
D̄aξ + Eb

.aD̄bη
)
− ∂α (ḡrrξ

r) + 2˜̄gijΓ̄i
rαξ̃

j ,

δ̂Ma = δMa − D̄a (∂rξ)− Eb
.aD̄b (∂rη)− M̄2D̄aξ

r

+2
(
ḡθθδ

θ
αΓ̄

θ
rθξ

θ + ḡφφδ
φ
αΓ̄

φ
rφξ

φ
)

= δMa − D̄a (∂rξ)− Eb
.aD̄b (∂rη)− M̄2D̄aξ

r

+
2

r
ḡab
(
D̄bξ + EibD̄iη

)
,
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amelynek a páros része a

̂̄DaV = D̄aV − D̄a (∂rξ)− M̄2D̄aξ
r +

2

r
D̄aξ

V̂ = V − ∂rξ − M̄2ξr +
2

r
ξ , (2.71)

és a páratlan része a

Êb
.aD̄bW = Eb

.aD̄bW − Eb
.aD̄b (∂rη) +

2

r
Eb

.aD̄bη

Ŵ = W − ∂rη +
2η

r
(2.72)

módon transzformálódik. A 2-dimenziós inverz metrika perturbációja esetén a

δ̂gab = δgab − ∂α

(˜̄giβ ξ̃i)− ∂β

(˜̄giαξ̃i)+ 2˜̄gijΓ̄i
αβ ξ̃

j

= δgab − ∂α

(˜̄giβ ξ̃i)− ∂β

(˜̄giαξ̃i)+ 2ḡrrΓ̄
r
αβξ

r + 2 ˜̄gµνΓ̄µ
αβ ξ̃

ν

= δgab − ∂αξ̃β + Γ̄µ
αβ ξ̃µ − ∂β ξ̃α + Γ̄µ

βαξ̃µ + 2ḡrrΓ̄
r
αβξ

r

= δgab − D̄aξb − D̄bξa + 2ḡrrδ
θ
αδ

θ
βΓ̄

r
θθξ

r + 2ḡrrδ
φ
αδ

φ
β Γ̄

r
φφξ

r ,

= δgab − D̄a

(
D̄bξ + Ei

.bD̄iη
)
− D̄b

(
D̄aξ + Ei

.aD̄iη
)

−2M̄2ξr
(
δθαδ

θ
β

r

M̄2
+ δφαδ

φ
β

r sin2 θ

M̄2

)
= δgab − 2D̄aD̄bξ −

(
Ei

.bD̄iD̄a + Ei
.aD̄iD̄b

)
η − 2ξr

r
ḡab

a mértéktranszformáció, ahol felhasználva az (1.59) felbontást a

̂̄gabA = ḡabA− 2ξr

r
ḡab ,

Â = A− 2ξr

r
, (2.73)

¯̂DaD̄bB = D̄aD̄bB − 2D̄aD̄bξ ,

B̂ = B − 2ξ , (2.74)

és

̂(
Ec

.aD̄cD̄b + Ec
.bD̄cD̄a

)
C =

(
Ec

.aD̄cD̄b + Ec
.bD̄cD̄a

)
C

−2
(
Ei

.bD̄iD̄a + Ei
.aD̄iD̄b

)
η ,

Ĉ = C − 2η (2.75)
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eredményeket kaptam. A [197] cikkel való összehasonlítás érdekében a skalármez®

perturbációjára vonatkozó mértéktranszformációt is származtattam, amely a

δ̂ϕ = δϕ− ξ̃α∂αϕ̄ (r) = δϕ− ξr∂rϕ̄ . (2.76)

Összefoglalva a páros perturbációs változókra a

δ̂N = δN − N̄∂tξ
t − ∂rN̄ξ

r ,

δ̂N = δN +
N̄2

M̄
∂rξ

t − M̄∂tξ
r ,

δ̂M = δM − ξr∂rM̄ − M̄∂rξ
r ,

P̂ = P − ∂tξ + N̄2ξt ,

V̂ = V − ∂rξ − M̄2ξr +
2

r
ξ ,

Â = A− 2ξr

r
,

B̂ = B − 2ξ ,

δ̂ϕ = δϕ− ξr∂rϕ̄ (2.77)

mértéktranszformáció vonatkozik, míg a páratlan perturbációs változókra a

Q̂ = Q− ∂tη ,

Ŵ = W − ∂rη +
2η

r
,

Ĉ = C − 2η . (2.78)

A mérték rögzítése során hasonlóan a [197] hivatkozáshoz a radiális unitér és kon-

formis mértéket választottam, ekkor a δ̂ϕ = 0, míg B̂ = 0, Ĉ = 0, amelyb®l

ξr =
δϕ

∂rϕ̄
, ξ =

B

2
, η =

C

2
. (2.79)

Mivel a nemmer®leges 2 + 1 + 1 formalizmusban nem kell megkövetelni a fóliázás me-

r®legességét a perturbáció után is, így a következ® feltételt választottam

P̂ = 0 → ξt =
P + ∂tξ

N̄2
, (2.80)

amellyel egyértelm¶vé vált a mértékrögzítés [197] hivatkozáshoz képest [348].

2.2. Az általános relativitáselmélet hamiltoni formalizmusa

A nemmer®leges 2 + 1 + 1 formalizmus beágyazási változóival az

SEH =

∫
d4x
√
−g̃R̃ (2.81)
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Einstein�Hilbert hatásban szerepl® 4-dimenziós metrika determinánsa a√
−g̃ = NM

√
g . (2.82)

A 4-dimenziós Ricci-skalár felbontására a kétszer kontrahált Gauss-azonosság vonat-

kozik, ekkor az (na,ma) bázisban az

R = gikgjlR̃ijkl + (L∗)2 −K2 − L∗
abL

∗ab +KabK
ab (2.83)

és a (ka, la) bázisban az

R = gikgjlR̃ijkl + L2 − (K∗)2 − LabL
ab +K∗

abK
∗ab , (2.84)

ahol

gikgjlR̃ijkl = R̃ + 2
(
njnl −mjml

)
R̃jl + 2minjnkmlR̃ijkl , (2.85)

gikgjlR̃ijkl = R̃ + 2
(
kjkl − ljll

)
R̃jl + 2likjkkllR̃ijkl (2.86)

az (na,ma) és a (ka, la) bázisokban. A (2.85) összefüggésben a 4-dimenziós Riemann-

tenzor (na,ma) bázisbeli projekciói a

minjnkmlR̃ijkl = minkml
(
∇̃k∇̃l − ∇̃l∇̃k

)
ni = minkml

(
∇̃k∇̃lni − ∇̃l∇̃kni

)
= minkml∇̃k (Kli +mlKi +miKl +mlmiK − nlai + nlmiL∗)

−minkml∇̃l (Kki +mkKi +miKk +mkmiK − nkai + nkmiL∗)

= mink∇̃kKi + nkml∇̃kKl + nk∇̃kK + L∗nkml∇̃knl

−nkml∇̃l (Kk)−Knkml∇̃lmk −miml∇̃lai +ml∇̃lL∗

= −2Kink∇̃kmi +Kkml∇̃lnk − L∗nknl∇̃kml +Kmkml∇̃lnk

+aag
iaml∇̃lmi +ml∇̃lL∗ + nk∇̃kK

= 2KaL∗a +KaKa − L∗L∗ −KK + aab
∗a

+∇̃a (n
aK +maL∗) , (2.87)

njnlR̃jl = −KabKab − 2KaKa +K2 + 2KK
+∇̃a [a

a −maL∗ − na (K +K)] , (2.88)

mjmlR̃jl = −L∗abL∗
ab + 2L∗

aKa + (L∗)2 − 2L∗L∗

+∇̃a [b
∗a + naK −ma (L∗ − L∗)] , (2.89)
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míg a (2.86) esetén a (ka, la) bázisbeli projekciók az

lnkhkilmR̃nhim = LaLa + 2LaK∗
a −K∗K∗ − LL+ a∗aba

+∇̃a (k
aK∗ + laL) , (2.90)

khkmR̃hm = −K∗abK∗
ab − 2LaK∗

a + (K∗)2 + 2K∗K∗

+∇̃a [a
∗a − laL − ka (K∗ +K∗)] , (2.91)

lhlmR̃hm = −LabLab + 2LaLa + L2 − 2LL
+∇̃a [b

a +K∗ka − la (L− L)] . (2.92)

A (2.87)-(2.92) összefüggésben felhasználtam, hogy

∇̃an
a = g̃ab∇̃anb = K +K ,

∇̃am
a = g̃ab∇̃amb = L∗ − L∗ ,

∇̃ak
a = g̃ab∇̃akb = K∗ +K∗ ,

∇̃al
a = g̃ab∇̃alb = L− L . (2.93)

A 4-dimenziós Ricci-skalár nemmer®leges 2 + 1 + 1 dimenziós felbontása az (na,ma)

bázisban az

R̃ = R +KabK
ab − L∗

abL
∗ab + 2KaKa + (L∗)2 −K2 − 2KK − 2L∗L∗

−2aab
∗a − 2∇̃a [a

a − b∗a − na (K +K) +ma (L∗ − L∗)] , (2.94)

míg a (ka, la) bázisban

R̃ = R +K∗
abK

∗ab − LabL
ab + 2LaLa + L2 − (K∗)2 − 2LL− 2K∗K∗

−2a∗ab
a − 2∇̃a [a

∗a − ba + la (L− L)− ka (K∗ +K∗)] . (2.95)

A hamiltoni formalizmus tárgyalása során az (na,ma) bázisbeli felbontott Einstein�

Hilbert hatásból inultam ki, amelynek Lagrange-s¶r¶sége az

LEH = NM
√
g
{
Kab

[
Kab − gab (K + 2K)

]
+ 2KaKa

+R− L∗
abL

∗ab + (L∗)2 − 2L∗L∗ + 2Da (lnN)Da (lnM)

−2∇̃a [D
a (lnNM)− na (K +K) +ma (L∗ − L∗)]

}
(2.96)

ahol, felhasználtam a (2.41), a (2.82) és az (2.94) összefüggéseket. A Lagrange-s¶r¶ség

Liouville-formába írásakor a (2.96) els® sorában lév® beágyazási változók (2− 1) szor-

zatát vettem, míg a többi tagot megtartottam. A Kab, Ka, K beágyazási változók

2-vel szorzott részébe visszahelyettesítettem a (2.38), (2.40) és (2.42) összefüggéseket.
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Kialakítottam a hamiltoni és impulzus kényszereket, amelyeket az N , Na, N metrikus

változók szoroznak, ekkor az

LEH = M
√
g
[
Kab − gab (K +K)

]
ġab + 2

√
gKaṀ

a − 2
√
gKṀ

−NH⊥ −NaHa −NHN +BEH (2.97)

Lagrange-s¶r¶séget kaptam. A BEH = Bt +Bχ +BD határtag, amelyben

Bt = 2∂t [
√
gM (K +K)] ,

Bχ = 2∂χ [
√
g (NL∗ −NaKa −NK)] ,

BD = −2
√
gDa

[
MDaN +NMaL∗ +N b (MKa

b −MaKb)

+N (MKa −MaK)] . (2.98)

A (2.97) származtatásához az alábbi összefüggéseket használtam fel:

L∗ = − 1

M
(∂χ − LM) (lnN) ,

(∂χ − LM)
√
g =

√
gML∗ ,

LM (f
√
g) = Da (f

√
gMa) ,

δgab = −gacgbdδgcd ,

δ
√
g =

1

2

√
ggabδgab ,

δ
(√

ggab
)

=
√
gδgcd

(
1

2
gabgcd − gacgbd

)
.

A (2.97)-ben szerepl® hamiltoni kényszer a

H⊥ =
√
g
{
−M

(
R + 3L∗abL∗

ab − L∗2)+ 2gab∂χL
∗
ab

+M
[
KabK

ab + 2KaKa −K2 − 2KK
]

−2
(
M cDcL

∗ + 2L∗
abD

aM b
)
+ 2DaDaM

}
, (2.99)

a 2-dimenziós impulzuskényszer a

Ha = −2
√
g
{
Db

[
Kb

aM −Mgba (K +K)
]
+KDaM

+KaML∗ + ∂χKa −M bDbKa −KbDaM
b
}
, (2.100)

valamint a kiválasztott térbeli irányhoz tartozó impulzuskényszer a

HN = −2
√
g
{
M
[
L∗K − L∗

abK
ab
]
+MDaKa + 2KaDaM

−∂χK +MaDaK} . (2.101)
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A (2.98) határtagban a t, χ és D deriváltas tagok kialakításához az

nb∇̃b =
1

N

[
∂

∂t
− N
M

∂

∂χ
−
(
N b − N

M
M b

)
Db

]
,

mb∇̃b =
1

M

[
∂

∂χ
−M bDb

]
,

∂

∂t

√
g =

1

2

√
ggab

∂

∂t
gab =

√
g [NK +NL∗ +DaN

a] ,

∂

∂t
M = MNK +

∂N
∂χ

+NaDaM −MaDaN ,

∂χ
√
g =

√
ggab

(
ML∗

ab +D(aMb)

)
,

∂χN = MaDaN −NML∗ (2.102)

összefüggésseket alkalmaztam.

A [328] és [346] hivatkozásokhoz hasonlóan, a kanonikus sebességek szerepét betölt®

Kab, Ka, K beágyazási változók helyett a

πab =
∂LEH

∂ġab
=

√
gM

[
Kab − gab (K +K)

]
,

pa =
∂LEH

∂Ṁa
= 2

√
gKa ,

p =
∂LEH

∂Ṁ
= −2

√
gK (2.103)

kanonikus impulzusokat vezettem be, amelyek behelyettesítésével a Lagrange-s¶r¶ség:

LEH = πabġab + paṀ
a + pṀ −NH⊥ −NaHa −NHN

+Bt +Bχ +BD . (2.104)

A (2.104) Lagrange-s¶r¶ségben a hamiltoni és impulzus kényszerek, amennyiben a

kanonikus koordinátákkal és impulzusokkal fejezzük ki, a következ®k:

H⊥ =
√
g
[
−M

(
R + 3L∗abL∗

ab − L∗2)+ 2gab (∂χ − LM)L∗
ab + 2DaDaM

]
+

1
√
gM

(
πabπ

ab − π2

2

)
+

M

2
√
g
pap

a +
M

8
√
g
p2 − πp

2
√
g
, (2.105)

Ha = −2Dbπ
b
a + pDaM − (∂χ − LM) pa , (2.106)

HN = 2L∗
abπ

ab − 2paDaM −MDap
a − (∂χ − LM) p , (2.107)
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ahol a

Kab =
1

M
√
g

(
πab − π

2
gab
)
− p

4
√
g
gab ,

Ka =
1

2
√
g
pa ,

K =
1

4
√
g

(
p− 2π

M

)
(2.108)

összefüggéseket használtam. A határtagok a kanonikus impulzusokkal pedig az

Bt = −∂t
(
π +

Mp

2

)
,

Bχ = ∂χ

[
2
√
gNL∗ −Nap

a +N
( π
M

− p

2

)]
,

BD = −Da

[
2
√
g (MDaN +NMaL∗) + 2N bπa

b −
(
π +

Mp

2

)
Na

−MaN bpb +N
[
Mpa +Ma

( π
M

− p

2

)]]
(2.109)

alakúak.

A (2.38), (2.40) és (2.42) összefüggések invertálásával a kanonikus koordinátákra

vonatkozó dinamikai egyenletek, azaz a hamiltoni mozgásegyenletek egyik része egy-

szer¶en származtatható, ezek a

ġab =
N

M
√
g

[
2πab −

(
π +

Mp

2

)
gab

]
+ LNgab +

N
M

(∂χ − LM) gab ,

Ṁa =
MN
√
g
pa + (∂χ − LM)Na +MDaN −NDaM ,

Ṁ =
MN

4
√
g

(
p− 2π

M

)
+ LNM + (∂χ − LM)N . (2.110)

A hamiltoni mozgásegyenletek levezetéséhez szükséges bevezetni a gA ≡ {gab,Ma,M}
és πA ≡

{
πab, pa, p

}
kanonikus változókra vonatkozó Poisson-zárójelet. Két tetsz®-

leges f (χ, y) ≡ f
(
χ, y; gA (χ, y) , πB (χ, y)

)
és h (χ, y) ≡ h

(
χ, y; gA (χ, y) , πB (χ, y)

)
függvény Poisson-zárójele az

{f (χ, y) , h (χ′, y′)} =

∫
dχ′′

∫
dy′′

(
δf (χ, y)

δgC (χ′′, y′′)

δh (χ′, y′)

δπC (χ′′, y′′)
− δf (χ, y)

δπC (χ′′, y′′)

δh (χ′, y′)

δgC (χ′′, y′′)

)
módon adható meg. Az y = {y1, y2} a Σtχ-n értelmezett koordináták, valamint az

integrálást az adott változó teljes tartományára kell elvégezni. A kanonikus párokra a{
gA (χ, y) , gB (χ′, y′)

}
= 0 ,

{πA (χ, y) , πB (χ′, y′)} = 0 ,{
gA (χ, y) , πB (χ′, y′)

}
= δABδ (χ− χ′) δ (y − y′)
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összefüggések teljesülnek. A [346] folyóiratcikkhez hasonlóan bevezettem a simított

Hamilton-s¶r¶séget, amely a

HEH [N ] = H⊥ [N ] +Ha [N
a] +HN [N ] ,

H⊥ [N ] =

∫
dχ

∫
dyN (χ, y)H⊥ (χ, y) ,

Ha [N
a] =

∫
dχ

∫
dyNa (χ, y)Ha (χ, y) ,

HN [N ] =

∫
dχ

∫
dyN (χ, y)HN (χ, y) .

A simított Hamilton-s¶r¶séggel a kanonikus egyenletek a

ġA ≡
{
gA (χ, y) ,HEH [N ]

}
=
δHEH [N ]

δπA (χ, y)
,

π̇A ≡
{
πA (χ, y) ,HEH [N ]

}
= −δH

EH [N ]

δgA (χ, y)

módon származtathatók. A Poisson-zárójelek számolása során megkaptam, hogy a

kanonikus koordináták id®fejl®désére vonatkozó

ġcd =
δHEH [N ]

δπcd (χ, y)

=
N
√
g

[
1

M
(2πcd − gcdπ)−

1

2
gcdp

]
+ 2D(cNd) + 2NL∗

cd ,

Ṁ c =
δHEH [N ]

δpc (χ, y)
= N

M
√
g
pc + (∂χ − LM)N c −NDcM +MDcN ,

Ṁ =
δHEH [N ]

δp (χ, y)
=

N

2
√
g

(
1

2
Mp− π

)
+ LNM + (∂χ − LM)N (2.111)

egyenletek azonosak a (2.110) egyenletekkel.

A kanonikus impulzusokra vonatkozó Poisson-zárójelek esetén, az impulzus tenzorra

a

π̇cd = −δH
EH [N ]

δgcd (χ, y)

= NScd +NVcd + LNπ
cd −NM

√
gL∗ (L∗cd − gcdL∗)

+
√
ggcd (∂χ − LM) (NL∗) +

N
M

(∂χ − LM) πcd

+
√
g
[
MDdDcN − gcd (DaM) (DaN)− gcdMDaD

aN
]

−
[
Nπcd

M2
(∂χ − LM) +N p(cDd)

]
M

+

[
πcd

M
(∂χ − LM) +Mp(cDd)

]
N (2.112)
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dinamikai egyenlet adódott, ahol

Scd = − 2
√
gM

(
πc
bπ

db − π

2
πcd
)
+

p

2
√
g
πcd

+
1

2
√
gM

gcd
(
πabπ

ab − π2

2

)
+

M

2
√
g
pcpd

+
M

2
√
g
gcd
[
1

2
pap

a +
1

8
p2 − πp

2M

]
, (2.113)

míg

Vcd = −√
gM

(
Gcd + 2L∗dbL∗c

b − L∗L∗cd)+√
gDcDdM

+
M

2

√
ggcd

(
3L∗abL∗

ab − L∗2)−√
ggcdDaD

aM

+
√
g
(
gacgbd − gcdgab

)
(∂χ − LM)L∗

ab , (2.114)

valamint Gab a 2-dimenziós Einstein-tenzor. A kanonikus mozgásegyenlet az impulzus

vektor esetén a

ṗc = − δHEH [N ]

δM c (χ, y)

= NVa − 2
√
g [L∗

acD
aN +Dc (NL∗)]− 2N

M
Daπac

+
2N
M2

πacD
aM + LNpc +

(
pgac −

2

M
πac

)
DaN , (2.115)

ahol

Va = −2
√
g (DaL∗

ac −DcL
∗) . (2.116)

Az impulzus skalárra pedig a

ṗ = −δH
EH [N ]

δM (χ, y)

= NV +NS + LNp+ 2
√
g (NL∗L∗ −DaD

aN)

+N
(

2

M
πabL∗

ab −Dap
a

)
− 2paDaN , (2.117)

mozgásegyenletet kaptam, ahol

V =
√
g
(
R + L∗abL∗

ab − L∗2) ,
míg

S =
1
√
g

[
1

M2

(
πabπ

ab − π2

2

)
− 1

2
pap

a − 1

8
p2
]
.
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2.3. A nemmer®leges 2 + 1 + 1 térid®felbontás és az 1 + 1 + 2

kovariáns formalizmus

A [322] folyóiratcikkben bevezetett 1+1+2 kovariáns formalizmus kinematikai mennyi-

ségei kapcsolatba hozhatók a nemmer®leges 2 + 1 + 1 formalizmusban bevezetett be-

ágyazást jellemz® geometriai mennyiségekkel.

Az (1.51) és (1.53) eredmények a térszer¶ na vektor és a rá mer®leges id®szer¶ ua

vektor 4-es kovariáns deriváltjainak 1+ 1+ 2 kovariáns felbontásai. A két formalizmus

összehasonlításához az (1.51) és (1.53) összefüggésekben szerepl® kinematikai mennyi-

ségek átírásával foglalkoztam. A 2-dimenziós id®szer¶ felület expaziójának mértékét az

(1.39) de�níció adja meg, amely a

ϕ(1+1+2) = δan
a = N b

aN
a
c Dbn

c = NabDbna

= N b
aDbn

a = N b
ah

a
jh

i
b∇in

j

= N b
a

(
Na

j + njn
a
) (
N i

b + nbn
i
)
∇in

j . (2.118)

Amennyiben a Nab → gab, na → ma és ∇ → ∇̃ megfeleltetéseket vesszük, akkor a

ϕ(2+1+1) = gbag
i
b

(
gaj +mjm

a
)
∇̃im

j = gbag
i
bg

a
j ∇̃im

j

= gbag
i
bg

aj
(
L∗
ij + niL∗

j + njKi + ninjL∗ +mi

(
b∗j + njK

))
= L∗a

a = L∗ (2.119)

az expanzió a nemmer®leges 2+1+1 formalizmusban, felhasználva a (2.21) felbontást.

Az (1.40) 2-dimenziós nyírás részletezett alakja a

ζ
(1+1+2)
ab = δ{an b} =

[
N c

(aN
d
b) −

1

2
NabN

cd

]
Dcnd

=

[
N c

(aN
d
b) −

1

2
NabN

cd

]
hjch

i
d∇jni

=

[
N c

(aN
d
b) −

1

2
NabN

cd

] (
N j

c + ncn
j
) (
N i

d + ndn
i
)
∇jni

=
1

2

[
N c

aN
d
b +N c

bN
d
a −NabN

cd
] (
N j

c + ncn
j
)
N i

d∇jni , (2.120)

amely a nemmer®leges 2 + 1 + 1 formalizmusban a

ζ
(2+1+1)
ab =

1

2

[
gcag

d
b + gcbg

d
a − gabg

cd
] (
gjc +mcm

j
)
gid∇̃jmi

=
1

2

[
gcag

d
b + gcbg

d
a − gabg

cd
]
gjcg

i
d∇̃jmi

+
1

2

[
gcag

d
b + gcbg

d
a − gabg

cd
]
mcg

i
dm

j∇̃jmi



2.3 A nemmer®leges 2 + 1 + 1 térid®felbontás és az 1 + 1 + 2 kovariáns
formalizmus 91

=
1

2

[
gcag

d
b + gcbg

d
a − gabg

cd
]
L∗
cd

+
1

2

[
gcag

d
b + gcbg

d
a − gabg

cd
]
mcb

∗
d

=
1

2
[L∗

ab + L∗
ba − gabL

∗]

= L∗
ab −

1

2
gabL

∗ (2.121)

felhasználva a (2.17) és (2.22) de�níciókat. Az (1.41) na vektorral párhuzamos 2-

dimenziós gyorsulás komponens az

a(1+1+2)
a = n̂a = nbDbna = nbhibh

j
a∇inj

= nb
(
N i

b + nbn
i
) (
N j

a + nan
j
)
∇inj , (2.122)

amely az

a(2+1+1)
a = mb

(
gib +mbm

i
) (
gja +mam

j
)
∇̃imj

= mbmbm
igja∇̃imj = gjam

i∇̃imj = b∗a (2.123)

módon fejezhet® ki, felhasználva a (2.24) összefüggést. Az (1.42)-ben bevezetett 2-

dimenzós örvény kifejtve a

ξ(1+1+2) =
1

2
εabδanb =

1

2
εabN i

aN
j
bDinj

=
1

2
εabN i

aN
j
bh

c
ih

d
j∇cnd

=
1

2
εabN i

aN
j
b (N

c
i + nin

c)
(
Nd

j + njn
d
)
∇cnd , (2.124)

amely a nemmer®leges 2 + 1 + 1 formalizmusban a

ξ(2+1+1) =
1

2
εabgiag

j
b (g

c
i +mim

c)
(
gdj +mjm

d
)
∇̃cmd

=
1

2
εabgiag

j
b (g

c
i +mim

c) gdj ∇̃cmd

=
1

2
εabgiag

j
b

(
gci g

d
j ∇̃cmd +mig

d
jm

c∇̃cmd

)
=

1

2
εabgiag

j
b

(
L∗
ij +mib

∗
j

)
=

1

2
εabL∗

ab = 0 . (2.125)

Ez utóbbi eredmény várható volt, mivel azma vektor 2-dimenziós örvénye zérus a (2.25)

alapján. Ezt ellen®rizve az (1.51) felbontásban a

ξε
(1+1+2)
km =

1

2

(
N i

kN
j
m −N i

mN
j
k

)
hai h

b
j∇anb

=
1

2

(
N i

kN
j
m −N i

mN
j
k

)
(Na

i + nin
a)
(
N b

j + njn
b
)
∇anb , (2.126)



2.3 A nemmer®leges 2 + 1 + 1 térid®felbontás és az 1 + 1 + 2 kovariáns
formalizmus 92

míg a nemmer®leges 2 + 1 + 1 formalizmusban

ξε
(2+1+1)
km =

1

2

(
gikg

j
m − gimg

j
k

)
(gai +mim

a)
(
gbj +mjm

b
)
∇̃amb

=
1

2

(
gikg

j
m − gimg

j
k

) (
gai g

b
j∇̃amb +mim

agbj∇̃amb

)
=

1

2

(
gikg

j
m − gimg

j
k

) (
L∗
ij +mib

∗
j

)
= 0 . (2.127)

Az (1.44) mennyiségek átírására az

α(1+1+2)
a = Nacu

b∇bn
c → α(2+1+1)

a = gcan
b∇̃bmc = −L∗

a ,

A(1+1+2) = ncu
b∇bu

c → A(2+1+1) = mcn
b∇̃bn

c = −ncnb∇̃bmc = −L∗ (2.128)

összefüggések adódtak, ahol az ua → na megfeleltetést tettem. Az ω(1+1+2)
ab , ωa(1+1+2)

örvények kivételével az ua vektor 4-es kovariáns deriváltjának 1+1+2 kovariáns felbon-

tásából származó (1.27)-(1.29) és (1.48) kinematikai mennyiségek kifejtve a következ®k:

Aa(1+1+2) = Na
bA

b = Na
b u

i∇iu
b = Na

b u
i∇iu

b ,

θ(1+1+2) = Dau
a = hab∇aub =

(
Nab + nanb

)
∇aub ,

σ
(1+1+2)
ab = D⟨au b⟩ =

1

2
hiah

j
b∇iuj +

1

2
hjah

i
b∇iuj −

1

3
habh

ij∇iuj

=
1

2

(
N i

a + nan
i
) (
N j

b + nbn
j
)
∇iuj +

1

2

(
N j

a + nan
j
) (
N i

b + nbn
i
)
∇iuj

−1

3
(Nab + nanb)

(
N ij + ninj

)
∇iuj ,

Σ
(1+1+2)
ab =

(
N c

(aN
d
b) −

1

2
NabN

cd

)
σcd ,

Σ(1+1+2)
a = N c

an
dσcd ,

Σ(1+1+2) = nanbσab = −Nabσab . (2.129)

Ezeknek a nemmer®leges 2 + 1 + 1 formalizmusbeli megfelel®i az

Aa(2+1+1) = gabn
i∇̃in

b = aa , (2.130)

θ(2+1+1) =
(
gab +mamb

)
∇̃anb = K +K , (2.131)

σ
(2+1+1)
ab =

1

2

(
gia +mam

i
) (
gjb +mbm

j
)
∇̃inj

+
1

2

(
gja +mam

j
) (
gib +mbm

i
)
∇̃inj

−1

3
(gab +mamb)

(
gij +mimj

)
∇̃inj
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=
1

2

(
giag

j
b∇̃inj + giambm

j∇̃inj + gjbmam
i∇̃inj +mam

imbm
j∇̃inj

)
+
1

2

(
gjag

i
b∇̃inj + gjambm

i∇̃inj + gibmam
j∇̃inj +mam

jmbm
i∇̃inj

)
−1

3

(
gabg

ij∇̃inj + gabm
imj∇̃inj +mambg

ij∇̃inj +mambm
imj∇̃inj

)
=

1

2

(
Kab + 2m(aKb) +mambK

)
+

1

2

(
Kba ++2m(aKb) +mambK

)
−1

3
(gabK + gabK +mambK +mambK)

= Kab + 2m(aKb) +mambK

−1

3
(gabK + gabK +mambK +mambK) , (2.132)

Σ
(2+1+1)
ab =

1

2

(
gcag

d
b + gcbg

d
a − gabg

cd
)
σcd

=
1

2

(
gcag

d
b + gcbg

d
a − gabg

cd
) [
Kcd + 2m(cKd) +mcmdK

−1

3
(gcdK + gcdK +mcmdK +mcmdK)

]
= Kab −

1

3
gab (K +K)− 1

2
gabK +

1

3
gab (K +K)

= Kab −
1

2
gabK , (2.133)

Σ(2+1+1)
a = gcam

d
[
Kcd + 2m(cKd) +mcmdK

−1

3
(gcdK + gcdK +mcmdK +mcmdK)

]
= Ka , (2.134)

Σ(2+1+1) = mamb
[
Kab + 2m(aKb) +mambK

−1

3
(gabK + gabK +mambK +mambK)

]
= K − 1

3
(K +K) , (2.135)

A 3-dimenziós (1.30) örvény az

ω
(1+1+2)
ab = D[au b] =

1

2

(
hiah

j
b − hibh

j
a

)
∇iuj

=
1

2

[(
N i

a + nan
i
) (
N j

b + nbn
j
)

−
(
N i

b + nbn
i
) (
N j

a + nan
j
)]

∇iuj (2.136)

amelynek a további 1+ 2 dimenziós felbontásával az (1.48) kinematikai mennyiségeket

vezették be. A (2.136) kifejtést, ha átírjuk a nemmer®leges 2 + 1 + 1 formalizmusba,
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akkor

ω
(2+1+1)
ab =

1

2

[(
gia +mam

i
) (
gjb +mbm

j
)
−
(
gib +mbm

i
) (
gja +mam

j
)]

∇̃inj

=
1

2

[
ĝiaĝ

j
b − ĝibĝ

j
a

]
∇̃inj = ĝi[a ĝ

j
b]∇̃inj = 0 , (2.137)

Az ω(2+1+1)
ab = 0 eredmény azért adódótt, mert a dupla fóliázáshoz meg kellett követelni,

hogy a hiperfelület normálisok 3- és 2-dimenziós örvényei elt¶njenek tekintve a (2.25),

(2.26)-(2.29), (2.32), (2.34) és (2.35) összefüggéseket. Emiatt az 1 + 1 + 2 kovariáns

formalizmus Ω, Ωa kinematikai mennyiségei nem jelennek meg a nemmer®leges 2+1+1

formalizmusban. A ξ(2+1+1) = 0 az ma 2-dimenziós örvényével arányos, amelynek

ugyancsak zérusnak kell lennie a nemmer®leges 2+1+1 dimenziós térid®felbontásban az

(2.25) összefüggés szerint. A nemmer®leges 2+1+1 formalizmusban az ma bázisvektor

na normálissal párhuzamosan projektált 3-dimenziós örvénye azonban az(
ω̄
(m)
ab nb

)(2+1+1)

= h̄c[ah̄
d
b]n

b∇̃cmd =
1

2

(
h̄cah̄

d
bn

b∇̃cmd − h̄cbh̄
d
an

b∇̃cmd

)
=

1

2

[
(gca − nan

c)nd∇̃cmd −
(
gda − nan

d
)
nc∇̃cmd

]
=

1

2

(
gcan

d∇̃cmd − gdan
c∇̃cmd

)
=

1

2

(
−gcamd∇̃cnd − gdan

c∇̃cmd

)
=

1

2
(L∗

a −Ka) . (2.138)

Ebb®l kaptam, hogy L∗
a nem rendelkezik a (2.15) normális fundamentális formákra jel-

lemz® szimmetria tulajdonságokkal. A (2.128) és (2.134) alapján az ma 3-dimenziós

örvényének na normálissal párhuzamos komponense az 1 + 1 + 2 kovariáns formaliz-

musban a következ® kinematikai mennyiségekkel azonos:(
ω̄
(m)
ab nb

)(2+1+1)

=
1

2
(L∗

a −Ka) →
(
ω̄
(m)
ab nb

)(1+1+2)

= −1

2
(αa + Σa) .

Az 1 + 1 + 2 dimenziós kovariáns formalizmusban, tekintve az (1.51) összefüggést,

az na térszer¶ vektor 4-dimenziós kovariáns deriváltjának a felbontása

(∇anb)
(1+1+2) = −uaαb − uaubA+ ζab +

1

2
Nabϕ+ ξεab

+naab +

(
Σ +

1

3
θ

)
naub + Σaub − ubεacΩ

c ,

amely a nemmer®leges 2+1+1 dimenziós térid®felbontásban bevezetett mennyiségekkel
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a

(∇anb)
(2+1+1) = naL∗

b + nanbL∗ + L∗
ab −

1

2
gabL

∗ +
1

2
gabL

∗ +mab
∗
a + nbKa

+

(
K − 1

3
(K +K) +

1

3
(K +K)

)
manb + (ξεab − nbεacΩ

c)1+1+2

= L∗
ab + naL∗

b + nbKa + nanbL∗ +ma (b
∗
a + nbK)

+ (ξεab − nbεacΩ
c)(1+1+2) (2.139)

alakú. A (2.21) és (2.139) felbontások szerint a (∇anb)
(2+1+1) = ∇̃amb, ha ξ és Ωc

mennyiségek zérusak az 1 + 1 + 2 kovariáns formalizmusban.

Az 1 + 1 + 2 dimenziós kovariáns formalizmusban, tekintve a (1.53) összefüggést,

az ua id®szer¶ vektor 4-dimenziós kovariáns deriváltjának felbontása

(∇aub)
(1+1+2) = −ua (Anb +Ab) +

1

3
θ (Nab + nanb) + Σab + naΣb + nbΣa

+

(
nanb −

1

2
Nab

)
Σ + εabΩ + naεbiΩ

i − nbεaiΩ
i ,

amely a nemmer®leges 2+1+1 dimenziós térid®felbontásban bevezetett mennyiségekkel

(∇aub)
(2+1+1) = nambL∗ − naab +

1

3
(K +K) (gab +mamb) +Kab −

1

2
gabK

+2m(aKb) +

(
mamb −

1

2
gab

)(
K − 1

3
(K +K)

)
+
(
εabΩ + naεbiΩ

i − nbεaiΩ
i
)1+1+2

= Kab + 2m(aKb) +mambK − na (ab −mbL∗)

+
(
εabΩ + naεbiΩ

i − nbεaiΩ
i
)1+1+2

. (2.140)

alakú. A (2.10) és (2.140) eredményeket összehasonlítva a (∇aub)
(2+1+1) = ∇̃anb, ha

az Ω és Ωc mennyiségek zérusak az 1 + 1 + 2 kovariáns formalizmusban.

A [322] folyóiratcikkben bemutatot 1 + 1+ 2 formalizmust alkalmazták a Schwarz-

schild térid®re vonatkozó dinamikai egyenletek levezetésére. C. Clarkson általános

forgási szimmetriával rendelkez® térid®k esetén ugyancsak megadta a háttérre vonat-

kozó dinamikai egyenleteket [323]. Az általános relativitáselmélet 2.2. alfejezetben

bemutatott hamiltoni tárgyalása szintén általános forgás szimmetriával rendelkez® tér-

id®kre vonatkozik, mivel a nemmer®leges 2 + 1 + 1 formalizmusban a χ kiválasztott

térbeli koordinátát nem specializáltam. Éppen ezért az 1 + 1 + 2 kovariáns forma-

lizmus és a nemmer®leges 2 + 1 + 1 formalizmus összehasonlítására lehet®séget ad a

[323]-ben bemutatott a evolúciós, propagációs és kényszeregyenletek átírása a nemme-

r®leges 2+1+1 formalizmusban megadott mennyiségekben. A [323] folyóiratcikk (71)
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propagációs egyenlete a

Σ̂− 2

3
θ̂ = −3

2
ϕΣ− 2ξΩ− δaΣ

a − εabδ
aΩb

+2Σaa
a − 2εabAaΩb + Σabζ

ab −Q (2.141)

amely a kinematikai mennyiségeknek csak a kiválasztott térszer¶ irány menti derivált-

jait, valamint a térszer¶ na és az id®szer¶ ua vektorokra teljesen mer®leges kovariáns

deriváltjait tartalmazza. Ez az egyenlet megfeleltethet® a (2.101) impulzus kényszer-

nek.

Mivel a 2.2. alfejezetben anyagi hatás bevezetése nélkül származtattam a dinami-

kai és kényszeregyenleteket, ezért a q(1+1+2)
a energiaáram s¶r¶ség 1 + 2 felbontásából

származó Q skalár vehet® zérusnak. A nemmer®leges 2+1+1 felbontásban a ξ, Ω, Ωa

mennyiségek nem jelennek meg, így ezeket a

Π(1+1+2) = 2ξΩ + εabδ
aΩb + 2εabAaΩb

jelöléssel csoportosítottam a (2.141) egyenletben. Ezek alaján a

Σ̂− 2

3
θ̂ = −3

2
ϕΣ− δaΣ

a + 2Σaa
a + Σabζ

ab − Π(1+1+2) (2.142)

átírásával foglalkozom a továbbiakban. Legyen a (2.142) egyenlet bal oldala

B(1+1+2) = Σ̂− 2

3
θ̂ = niDiΣ− 2

3
niDiθ

= nihai∇aΣ− 2

3
nihai∇aθ

= ni (Na
i + nin

a)∇aΣ− 2

3
ni (Na

i + nin
a)∇aθ , (2.143)

míg jobb oldala

J (1+1+2) = −3

2
ϕΣ− δaΣ

a + 2Σaa
a + Σabζ

ab − (Π)1+1+2

= −3

2
ϕΣ−N i

aN
a
j DiΣ

j + 2Σaa
a + Σabζ

ab − (Π)1+1+2

= −3

2
ϕΣ−N i

aN
a
j h

c
ih

j
d∇cΣ

d + 2Σaa
a + Σabζ

ab − (Π)1+1+2

= −3

2
ϕΣ−N i

aN
a
j (N

c
i + nin

c)
(
N j

d + ndn
j
)
∇cΣ

d

+2Σaa
a + Σabζ

ab − (Π)1+1+2 . (2.144)
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A (2.143) bal oldal a nemmer®leges 2 + 1 + 1 formalizmusban a

B(2+1+1) =

(
Σ̂− 2

3
θ̂

)(2+1+1)

= mi (gai +mim
a) ∇̃aΣ

(1+1+2) − 2

3
mi (gai +mim

a) ∇̃aθ
(1+1+2)

= ma∇̃aΣ
(1+1+2) − 2

3
ma∇̃aθ

(1+1+2)

= ma∇̃a

(
K − 1

3
(K +K)

)
− 2

3
ma∇̃a (K +K)

= −ma∇̃aK

= − 1

M

[
∂χK −M bDbK

]
, (2.145)

felhasználva a (2.102), (2.131) és (2.135) összefüggéseket. A (2.144) jobb oldal a

nemmer®leges 2 + 1 + 1 formalizmusban a

J (2+1+1) = −3

2
(ϕΣ)(1+1+2) − giag

a
j (g

c
i +mim

c)
(
gjd +mdm

j
)
∇̃cΣ

d(1+1+2)

+2 (Σaa
a)(1+1+2) +

(
Σabζ

ab
)(1+1+2) − (Π)(1+1+2)

= −3

2
(ϕΣ)(1+1+2) − gcjg

j
d∇̃cΣ

d(1+1+2) + 2 (Σaa
a)(1+1+2)

+
(
Σabζ

ab
)(1+1+2) − Π(1+1+2)

= −3

2
L∗
(
K − 1

3
(K +K)

)
− gcjg

j
d∇̃cKd + 2Kab

∗a

+

(
Kab −

1

2
gabK

)(
L∗
ab −

1

2
gabL

∗
)
− Π(1+1+2)

= −L∗K +
1

2
L∗K − gcjg

j
d∇̃c

(
Kd
)
+ 2Kab

∗a

+

(
Kab −

1

2
gabK

)(
L∗ab − 1

2
gabL∗

)
− Π(1+1+2)

= −L∗K +
1

2
L∗K −DaKa − 2

M
KaDaM

+

(
KabL∗

ab −
1

2
KL∗ − 1

2
KL∗ +

1

2
KL∗

)
− Π(1+1+2)

= −DaKa − 2

M
KaDaM +KabL∗

ab − L∗K − Π(1+1+2) , (2.146)

felhasználva a (2.41), (2.119), (2.121), (2.123), (2.133) és (2.134) összefüggéseket. A
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(2.145) és (2.146) eredményekb®l a (2.101) impulzuskényszer kialakítása során a

J (2+1+1) − B(2+1+1) = −DaKa − 2

M
KaDaM +KabL∗

ab

−L∗K +
1

M

[
∂χK −M bDbK

]
+ (Π)1+1+2

= − 1

M

{
M
[
L∗K −KabL∗

ab

]
+MDaKa + 2KaDaM

−∂χK +M bDbK
}
+Π(1+1+2) ,

amelyb®l

HN + 2
√
gMΠ(1+1+2) = 2

√
gM

(
J (2+1+1) − B(2+1+1)

)
= −2

√
g
{
M
[
L∗K −KabL∗

ab

]
+MDaKa + 2KaDaM

−∂χK +M bDbK
}
. (2.147)

A (2.147) alapján a (2.141) egyenlet akkor azonos a kiválasztott térszer¶ irány menti

HN impulzus kényszerrel, ha Π(1+1+2) = 0, ami teljesül Ω = 0 = Ωa esetén. Más

megfeleltetések is tehet®k, amelyeket nem részletezek, mert nem tartozik a dolgozat

céljai közé.
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2.4. Összefoglalás

A 2. fejezetben bemutattam a nemmer®leges 2 + 1 + 1 dimenziós térid®felbontást.

Ennek alapja a mer®leges s + 1 + 1 dimenziós formalizmus, amely az ADM forma-

lizmusban el®ször bevezetett metrikus változók szerinti térid®felbontást általánosítja

[345], [346]. A mer®leges s + 1 + 1 formalizmust az s = 2 választással alkalmazták

gömbszimmetrikus, sztatikus térid® perturbációs egyenleteinek levezetéséhez [197]. A

[197] folyóiratcikkben a gömbszimmetria miatt a vektorokat és a szimmetrikus ten-

zorokat egy Helmholtz-szer¶ felbontással rotációmentes (páros) és divergenciamentes

(páratlan) részekre szeparálták. A perturbációs egyenletek ekkor szétcsatolódnak páros

és páratlan szektorokra, ahol a páros szektor perturbációs egyenletei 8 darab változót

tartalmaznak, míg a páratlan szektor perturbációs egyenletei 3 darabot. A pertur-

bációs változók számának csökkentése érdekében mértékrögzítést hajtottak végre. A

mértékrögzítés során 3 darab szabadsági fokot elhasználtak a radiális unitér mérték és

a konformis mérték rögzítése érdekében. Az utolsó szabadsági fokot a fóliázó hiperfelü-

letek mer®legességének megkövetelésére használták el, azonban ezzel a mértékrögzítés

nem lett egyértelm¶. Amennyiben a [197] folyóiratcikkben a fóliázás mer®legességét

nem kell kiszabniuk a perturbáció után, akkor egyértelm¶ mértékrögzítést tudtak volna

elérni.

A nemmer®leges 2+1+1 formalizmusban a 4-dimenziós B térid®t 3-dimenziós tér-

szer¶ hiperfelületekkel (St) és 3-dimenziós id®szer¶ hiprefelületekkel (Mχ) bontottam

fel, amelyek nem mer®legesek egymásra és metszetük a 2-dimenziós Σtχ felület. Az

St hiperfelületeket a t = konst., míg az Mχ hiperfelületeket a χ =konst. koordiná-

ták határozzák meg. Az St hiperfelületeken bevezettem az (na,ma) módon elnevezett

ortonolmált bázist, majd az Mχ hiperfelületeken a (ka, la) ortonormált bázist. Az

(na,ma) bázisban na az id®szer¶ hiperfelület normális, ma az arra mer®leges térszer¶

bázisvektor. A (ka, la) bázisban la a térszer¶ hiperfelület normális, és a ka az arra

mer®leges id®szer¶ bázisvektor. Dualitási relációkból kiderült, hogy az na, ma és ka,

la vektorok közötti transzformáció egy Lorenz-forgatás, amelynek szöge arányos az N
metrikus komponenssel. AzN egy 3-dimenziós shift vektor 2+1 felbontásából származó

függvény. A mer®leges s+1+1 formalizmusban a fóliázás mer®legességének megköve-

telésekor az N = 0 feltételt kellett választaniuk [345]. Az na, ma, ka, la vektorok ko-

variáns deriváltjainak felbontásaiból származtattam a Σtχ felület beágyazását jellemz®

küls® görbületeket, normális fundamentális formákat és azokhoz hasonló mennyisége-

ket, továbbá a normális fundamentális skalárokat és a gyorsulásokat. Megállapítottam

a hiperfelület-bázisok Lie-zárójeleinek számolásából, hogy az na és la normálisok 2-
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és 3-dimenziós örvényei is elt¶nnek. Az ma és ka bázisvektoroknak 2-dimenziós ör-

vénye nincs, azonban van nem elt¶n® 3-dimenziós örvény komponensük, emiatt nem

hiperfelület mer®legesek. Az ma és ka vektorok normálisokkal párhuzamos örvényei

miatt az L∗
a és K∗

a formák nem rendelkeznek a normális fundamentális formákra jellem-

z® szimmetriával. A beágyazási változók és a metrikus változók közötti kapcsolatokat

levezettem, és kialakítottam a 3. fejezetben használt beágyazási változókból képezett

skalárokat.

A 2.1. alfejezetben a nemmer®leges 2+ 1+ 1 dimenziós térid®felbontásban levezet-

tem egy egyértelm¶ mértékrögzítést. A [197] folyóiratcikkhez hasonlóan radiális unitér

és konformis mértéket választottam, azonban az utolsó szabadsági fok rögzítésekor a

mer®legesség megtartása helyett a P̂ = 0 feltételt választottam.

A 2.2. alfejezetben a nemmer®leges 2+1+1 formalizmus (na,ma) bázisában tárgyal-

tam az általános relativitáselmélet hamiltoni formalizmusát. Származtattam a kétszer

kontrahált Gauss-azonosságból a 4-dimenziós R̃ Ricci-skalár felbontását, majd megad-

tam az Einstein�Hilbert hatás nemmer®leges 2 + 1 + 1 felbontott alakját. Átírtam a

Lagrange-s¶r¶séget Liouville-formába, amelyben azonosítottam a hamiltoni és impul-

zus kényszereket. A Kab, Ka, K beágyazási változók helyett bevezettem a πab, pa, p

kanonikus impulzusokat. A Poisson-zárójel és a simított Hamilton-s¶r¶ség segítségével

levezettem a kanonikus mozgásegyenleteket.

A 2.3. alfejezetben összehasonlítottam az 1 + 1 + 2 kovariáns formalizmus kinema-

tikai mennyiségeit a nemmer®leges 2 + 1 + 1 térid®felbontásban de�niált beágyazási

változókkal. A mennyiségek kapcsolatainak származtatása után a [323] hivatkozásban

bemutatott egyik propagációs egyenletet azonosítottam a 2.2. alfejezetben levezetett

impulzus kényszerrel.
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3. Gömbszimmetrikus, sztatikus megoldások nem mi-

nimálisan csatolt k-eszencia elméletben

Az 1.3. fejezetben bevezetett módosított gravitációelméletek közül, a továbbiakban a

Horndeski-elméleten belüli gömbszimmetrikus és sztatikus megoldásokat fogom meg-

vizsgálni EFT közelítésben. Ehhez a nemmer®leges 2 + 1 + 1 formalizmust fogom

alkalmazni. A felbontást az (na,ma) és (ka, la) bázisban is be fogom mutatni, azonban

a térid® megoldások levezetéséhez a (ka, la) bázist fogom használni. A két bázisban

habár az egyenletek eltér®ek, viszont azonos információval rendelkeznek. A következ®

alfejezet számolásai az [353] folyóiratcikken alapulnak.

3.1. A Horndeski hatás nemmer®leges 2+1+1 felbontása a (ka, la)

bázisban

A ∇̃aϕ skalármez® gradiens a továbbiakban a χ koordinátától függ. Ekkor a térszer¶

fóliázást a χ =konst. helyett ϕ =konst. határozza meg, így az Mχ hiperfelületre

mer®leges normálvektor az

la =
∇̃aϕ√
X
, (3.1)

ahol X = g̃ab∇̃aϕ∇̃bϕ a kinetikus tag. A skalármez® második kovariáns deriváltjának

felbontása a (ka, la) bázisban a

∇̃a∇̃bϕ = ∇̃a

(
lb
√
X
)
= lb∇̃a

(√
X
)
+
√
X∇̃alb

=
lb

2
√
X
∇̃a

(
∇̃cϕ∇̃cϕ

)
+
√
X∇̃alb

=
lb√
X
∇̃cϕ∇̃a∇̃cϕ+

√
X∇̃alb =

lb√
X
∇̃cϕ∇̃c

(√
Xla

)
+
√
X∇̃alb
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=
∇̃cϕ∇̃cX

2X
lbla +

lb√
X

(
X
∇̃cϕ√
X

∇̃cla

)
+
√
X∇̃alb

=
∇̃cϕ∇̃cX

2X
lbla +

√
Xlbl

c∇̃cla +
√
X∇̃alb

=
∇̃cϕ∇̃cX

2X
lalb +

√
X
[
Lab + Lkakb + 2K∗l(akb)

+2k(aLb) − 2l(aDb) ln (cM)
]
. (3.2)

A (1.6)-(1.10) Horndeski Lagrange-s¶r¶ségeket tekintve, az

LH
3 = G3(ϕ,X)□̃ϕ , (3.3)

ahol

□̃ϕ =
∇̃aϕ∇̃aX

2X
+
√
X (L− L) (3.4)

felhasználva a (3.2) egyenlet g̃ab inverz metrikával képezett spúrját. A [149] hivatkozás

alapján G3 függvény a

G3(ϕ,X) = F3(ϕ,X) + 2XF3X(ϕ,X) (3.5)

alakját használtam. A (3.3) Lagrange-s¶r¶ség az

LH
3 = (F3 + 2XF3X) ∇̃a

(
la
√
X
)

= 2XF3X

√
X∇̃al

a + F3∇̃a

(
la
√
X
)
+ 2XF3X l

a∇̃a

√
X

= 2X3/2F3X (L− L) + F3∇̃a

(
la
√
X
)
+ la

√
X
(
∇̃aF3 − ∇̃aϕF3ϕ

)
= 2X3/2F3X (L− L)−XF3ϕ + ∇̃a

(
la
√
XF3

)
,

amelyb®l az

LH+

3 = 2X3/2F3X (L− L)− F3ϕX , (3.6)

ahol felhasználtam a (2.93), (3.1) és (3.4) összefüggéseket és elhagytam a teljes 4-es

kovariáns deriváltat tartalmazó határtagot.

Az (1.10) LH
4 Lagrange-s¶r¶ségben a 4-dimenziós R̃ Ricci-skalár található. A Ricci-

skalár (ka, la) bázisbeli felbontott alakja a (2.95), amelybe behelyettesítve a (2.41)

összefüggéseket kapjuk, hogy

R̃ = R +K∗abK∗
ab − LabLab + 2LaLa −K∗ (K∗ + 2K∗)

+L (L− 2L) + 2Da

(
ln
N

c

)
Da ln (cM)

−2∇̃a [D
a (lnNM)− (K∗ +K∗) ka + (L− L) la] . (3.7)
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Az (1.10) LH
4 Lagrange-s¶r¶ség nemmer®leges 2 + 1 + 1 felbontásához az

∇̃aX =
la∇̃cϕ∇̃cX√

X
+ 2X [Da ln (cM) + kaK∗] , (3.8)(

□̃ϕ
)2

=
1

4X2
∇̃aϕ∇̃aX∇̃bϕ∇̃bX +

1√
X

(L− L) ∇̃aϕ∇̃aX

+X (L− L)2 , (3.9)

∇̃a∇̃bϕ ∇̃a∇̃bϕ = XLabL
ab − 2XLbLb +XL2 − 2X (K∗)2

+2XDa ln (cM)Da ln (cM) +

(
∇̃cϕ∇̃cX

)2
4X2

(3.10)

összefüggéseket használtam fel, ekkor

LH
4 = G4(ϕ,X)

[
R +K∗abK∗

ab − LabLab + 2LaLa −K∗ (K∗ + 2K∗)
]

+G4(ϕ,X)

[
L (L− 2L) + 2Da

(
ln
N

c

)
Da ln (cM)

]
+G4(ϕ,X)

[
−2∇̃a [D

a (lnNM)− (K∗ +K∗) ka + (L− L) la]
]

−2G4X(ϕ,X)

[
1

4X2
∇̃aϕ∇̃aX∇̃bϕ∇̃bX +

1√
X

(L− L) ∇̃aϕ∇̃aX

]
+2G4X(ϕ,X)

[
XLabL

ab − 2XLbLb +XL2 − 2X (K∗)2 −X (L− L)2
]

+2G4X(ϕ,X)

+2XDa ln (cM)Da ln (cM) +

(
∇̃cϕ∇̃cX

)2
4X2


= G4(ϕ,X)

[
R +K∗abK∗

ab − LabLab + 2LaLa − (K∗)2 − 2K∗K∗ + L2

−2LL+ 2Da

(
ln
N

c

)
Da ln (cM)

]
+ 2XG4X(ϕ,X)

[
LabL

ab − 2LaLa

+L2 − 2 (K∗)2 − L2 + 2LL − L2 + 2Da ln (cM)Da ln (cM)
]

−2∇̃a {G4(ϕ,X) [Da (lnNM)− (K∗ +K∗) ka + (L− L) la]}

−2G4X(ϕ,X)

[
(L− L) ∇̃

cϕ∇̃cX√
X

]
+ 2

√
XG4ϕ(ϕ,X) (L− L)

+2XG4X(ϕ,X)
[
2Da (lnNM)Da ln (cM) + 2K∗K∗ + 2 (K∗)2

]
+2G4X(ϕ,X) (L− L)

(
∇̃cϕ∇̃cX√

X

)
.
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Egyszer¶sítések alkalmazásával

LH
4 = G4

(
R +K∗abK∗

ab −K∗2)+ 2
√
XG4ϕ(ϕ,X) [(L− L)]

−G4

[
LabLab − 2LaLa − L2 + 2LL+ 2K∗K∗ − 2Da

(
ln
N

c

)
Da ln (cM)

]
+2XG4X

[
LabL

ab − 2LaLa − L2 + 2LL+ 2K∗K∗]
+2XG4X

[
−2Da ln

(
N

c

)
Da ln (cM)

]
−2∇̃a {G4 [D

a (lnNM)− (K∗ +K∗) ka + (L− L) la]} . (3.11)

A beágyazási változókból képezett (2.43) és (2.44) skalárok behelyettesítése után a

(3.11) kifejezés az

LH+

4 = G4

(
R + κ∗ −K∗2)+ 2

√
XG4ϕ (L− L)

− (G4 − 2XG4X)
[
λ− 2k+ 2K∗K∗ − L2 + 2LL

]
+2 (G4 − 2XG4X)

[(
Da ln

N

c

)
Da ln (cM)

]
(3.12)

alakra egyszer¶södik, ahol a (3.11) utolsó sorában lév® határtagot elhagytam.

A nemmer®leges 2 + 1+ 1 formalizmusban a Horndeski Lagrange-s¶r¶ség (G5 = 0)

függ az N , N , M metrikus változóktól, a

K∗, k, K∗,κ∗,L, L, λ (3.13)

beágyazási változókból képezett skalároktól, továbbá nem explicit módon a G2 (ϕ,X),

F3 (ϕ,X), G4 (ϕ,X) tetsz®leges függvényeken és az X kinetikus tagon keresztül a ϕ

skalármez®t®l is.

AzX kinetikus tag függése megadható a [345] hivatkozásban bemutatott (B3) inverz

metrika koordináta bázisbeli alakjával. Radiális unitér mértékben a ϕ = ϕ (χ), ezért

csak a g̃χχ = (N2 −N 2) /N2M2 = (cM)−2 inverz metrika komponens ad nem nulla

eredményt, amely szerint az

X = g̃χχ (∂χϕ)
2 =

(
∂χϕ

cM

)2

. (3.14)

A 2-dimenziós gab indukált metrikával de�niált 2-dimenziós Ricci-skalár, mint vál-

tozó, szintén megjelenik a Horndeski Lagrange-s¶r¶ségben. Konformis mértékben az

R az (1.22), (1.65)-(1.67) összefüggésekben bevezetett ζ konformis faktortól függ [233].

Két 2-dimenziós inverz metrika között a konformis transzformáció a

gab = e−2ζ ḡab ,
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ekkor a 2-dimenziós Ricci skalár transzformációja az

R = e−2ζ
{
R̄− 2ḡabD̄aD̄b

(
ln eζ

)}
. (3.15)

A (3.15) alapján az R a ζ-t tartalmazza, mint független változót.

Ezek alapján a Horndeski Lagrange-s¶r¶ség a nemmer®leges 2 + 1 + 1 felbontás

(ka, la) bázisában az

N , N,M,K∗, k, K∗,κ∗,L, L, λ, ζ, ϕ (3.16)

változóktól függ radiális unitér és konformis mértékben.

3.2. A Horndeski hatás nemmer®leges 2 + 1 + 1 felbontása az

(na,ma) bázisban

Az (1.10) Lagrange s¶r¶ség (na,ma) bázisbeli nemmer®leges 2 + 1 + 1 felbontásához

felhasználtam a (3.1), (3.2), (3.4), (3.7)-(3.10) összefüggések (na,ma) bázisbeli alakjait,

amelyek a következ®k:

∇̃aϕ√
X

= (sna + cma) , (3.17)

∇̃a∇̃bϕ = s
√
X
(
Kab + 2m(aKb) +mambK − naab + nambL∗) (3.18)

+c
√
X (L∗

ab + naL∗
b + nbKa + nanbL∗ +mab

∗
b +manbK)

+
√
Xnb∇̃as+

√
Xmb∇̃ac+

1

2X
(sna + cma) (snb + cmb) ∇̃cϕ∇̃cX

+
√
X (snb + cmb)

[
sc (Ka − L∗

a) + s2Da (lnN)− c2Da (lnM)
]

+
√
Xna (snb + cmb) (sn

c + cmc) ∇̃cs

+
√
Xma (snb + cmb) (sn

c + cmc) ∇̃cc

+
√
X (cna + sma) (snb + cmb) (cK − sL∗) , (3.19)

□̃ϕ =
1

2X
∇̃aϕ∇̃aX +

√
X [s (K +K) + c (L∗ − L∗)

+c2 (cna + sma) ∇̃a
s

c

]
, (3.20)
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∇̃aX =

[
s
(√

X
)−1

∇̃cϕ∇̃cX + 2Xc (−sL∗ + cK)

]
na

+
[
2Xsc2 (snc + cmc)

(
∇̃c lnN − ∇̃c lnN

)]
na

+

[
c
(√

X
)−1

∇̃cϕ∇̃cX + 2Xs (cK − sL∗)

]
ma

+
[
2Xs2c (snc + cmc)

(
∇̃c lnN − ∇̃c lnN

)]
ma

+2X
[
sc (Ka − L∗

a) + s2Da (lnN)− c2Da (lnM)
]
, (3.21)

(□ϕ)2 = s2X (K +K)2 + 2scX (L∗ − L∗) (K +K) (3.22)

+c2X (L∗ − L∗)2 + 2sX (K +K)
(
na∇̃as+ma∇̃ac

)
+2cX (L∗ − L∗)

(
na∇̃as+ma∇̃ac

)
+

1

4X2

(
∇̃cϕ∇̃cX

)2
+

s√
X

(K +K) ∇̃cϕ∇̃cX +
c√
X

(L∗ − L∗) ∇̃cϕ∇̃cX

+
(√

X
)−1 (

na∇̃as+ma∇̃ac
)
∇̃cϕ∇̃cX

+X
(
na∇̃as+ma∇̃ac

)2
, (3.23)

∇̃a∇̃bϕ ∇̃a∇̃bϕ = s2XKabK
ab + 2scXL∗

abK
ab + c2XL∗

abL
∗ab − s2Xaaa

a

+c2Xb∗ab
∗a − c2XL∗

aL∗a −
(
1− s2

)
XKaKa + 2scXb∗aKa

+2csXL∗
aa

a +X
[
sc (Ka − L∗a) + s2Da (lnN)− c2Da (lnM)

]2
−2scXKa (Da lnN −Da lnN)−

(
1 + c2

)
XK2 +

(
1− s2

)
X (L∗)2

+2scXKL∗ − 2s2c2XKna
(
∇̃a lnN − ∇̃a lnN

)
+

1

4X2

(
∇̃cϕ∇̃cX

)2
−s2c2X

[
(sna + cma)

(
∇̃a lnN − ∇̃a lnN

)]2
−2sc

(
1 + c2

)
XKma

(
∇̃a lnN − ∇̃a lnN

)
−2sc

(
1− s2

)
XL∗na

(
∇̃a lnN − ∇̃a lnN

)
+2s2c2XL∗ma

(
∇̃a lnN − ∇̃a lnN

)
−s2c2X

(
∇̃a lnN − ∇̃a lnN

)2
. (3.24)

Az (1.10) Lagrange-s¶r¶ség felbontásához a 4-dimenziós Ricci skalár (2.94) (na,ma)

bázisbeli alakját használtam fel. Az (1.10) Lagrange-s¶r¶ség következ® részeit a kezel-

het®ség kedvéért külön számoltam a felbontás elvégzése során, ezek a

E = −2G4(ϕ,X)
{
∇̃a [a

a − b∗a − na (K +K) +ma (L∗ − L∗)]
}
, (3.25)

U = (□ϕ)2 −
[
∇̃a∇̃bϕ

] [
∇̃a∇̃bϕ

]
. (3.26)
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A (3.25) (na,ma) bázisbeli felbontása a

E = −2∇̃a {G4(ϕ,X) [aa − b∗a − na (K +K) +ma (L∗ − L∗)]}
+2s

√
XG4ϕ (K +K) + 2c

√
XG4ϕ (L

∗ − L∗)

+2G4X

{
s√
X

(K +K) ∇̃cϕ∇̃cX +
c√
X

(L∗ − L∗) ∇̃cϕ∇̃cX

+2Xc
(
cK2 − sKL∗ + cKK − sKL∗)+ 2Xs (L∗ − L∗) (cK − sL∗)

+2Xsc (aa − b∗a) (Ka − L∗
a) + 2Xs2 (aa − b∗a)Da (lnN)

+2Xsc2 (K +K) (snc + cmc)
(
∇̃c lnN − ∇̃c lnN

)
+2Xs2c (L∗ − L∗) (snc + cmc)

(
∇̃c lnN − ∇̃c lnN

)
−2Xc2 (aa − b∗a)Da (lnM)

}
. (3.27)

A (3.26) felbontása az (na,ma) bázisban az

U = s2X (K +K)2 + 2scX (L∗ − L∗) (K +K) + c2X (L∗ − L∗)2

+2sX (K +K)
(
na∇̃as+ma∇̃ac

)
+ 2cX (L∗ − L∗)

(
na∇̃as+ma∇̃ac

)
+

1√
X

(
na∇̃as+ma∇̃ac

)
∇̃cϕ∇̃cX +

s√
X

(K +K) ∇̃cϕ∇̃cX

+
c√
X

(L∗ − L∗) ∇̃cϕ∇̃cX − s2XKabK
ab − 2scXL∗

abK
ab − c2XL∗

abL
∗ab

+s2Xaaa
a − c2Xb∗ab

∗a + c2XL∗
aL∗a +

(
1− s2

)
XKaKa − 2scXb∗aKa

−2csXL∗
aa

a + 2scXKa (Da lnN −Da lnN) +X
(
na∇̃as+ma∇̃ac

)2
−X

[
sc (Ka − L∗a) + s2Da (lnN)− c2Da (lnM)

]2 − 2cXL∗ma∇̃ac

+
(
1 + c2

)
XK2 −

(
1− s2

)
X (L∗)2 − 2scXKL∗ + 2sXKna∇̃as

+2scXKma
(
∇̃a lnN − ∇̃a lnN

)
+ 2scXL∗na

(
∇̃a lnN − ∇̃a lnN

)
+2sc3XKma

(
∇̃a lnN − ∇̃a lnN

)
− 2s3cXL∗na

(
∇̃a lnN − ∇̃a lnN

)
+s2c2X

[
(sna + cma)

(
∇̃a lnN − ∇̃a lnN

)]2
+s2c2X

(
∇̃a lnN − ∇̃a lnN

)2
. (3.28)

A (3.27) és (3.28) részek számolása során a teljes 4-es kovariáns deriváltakat elhagytam,

továbbá a (2.41), (2.43), (2.44) összefüggéseket és az

1 =
(
c2 − s2

)2
= c4 − 2s2c2 + s4 ,

∇̃as = c3∇̃a

(s
c

)
= sc2

(
∇̃a lnN − ∇̃a lnN

)
,

∇̃ac = sc2∇̃a

(s
c

)
= s2c

(
∇̃a lnN − ∇̃a lnN

)
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kifejezéseket használtam. A (3.27) és (3.28) részekkel az (1.10) Horndeski Lagrange-

s¶r¶ség nemmer®leges 2 + 1 + 1 felbontására az

LH+

4 (na,ma) = G4

[
R +KabK

ab − L∗
abL

∗ab −K2 + (L∗)2
]

+2
√
XG4ϕ

[
s (K +K) + c (L∗ − L∗) + c2 (cna + sma) ∇̃a

s

c

]
− (G4 − 2XG4X)

{
2KK + 2L∗L∗ − 2

(
Ka + c2Da s

c

)(
Ka + c2Da

s

c

)
+2c2

[
(cK + sL∗) (sna + cma) ∇̃a

s

c
− (cL∗+sK) (cna + sma)

]
∇̃a

s

c

−Da

(
ln
N

c

)
Da ln (cM)

}
+ 2XG4X

[
s2KabK

ab + c2L∗
abL

∗ab

−s2K2 − c2 (L∗)2 + 2scL∗
abK

ab − 2scL∗K
]

(3.29)

eredményt kaptam az (na,ma) bázisban.

Az (na,ma) bázisban felírt Lagrange-s¶r¶ség a (3.29) egyenlet szerinti alakja alap-

ján az M , K, K, L∗, L∗ változóktól, az s és c függvényeken keresztül az N , N metri-

kus változóktól, az R Ricci-skaláron keresztül a ζ konformis faktortól függ, továbbá a

Kab, L
∗
ab,Ka beágyazási változókból képezett κ, λ∗, K skalároktól. A (2.42) összefüg-

gésekb®l az

L∗
a = Ka +

M

N
Da

(
N
M

)
,

tehát az L∗
a formából képezett L∗

aL∗a skalár nem független változó a (3.29) felbontott

Lagrange-s¶r¶ségben, ezért bevezetése nem szükséges.
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3.3. Az EFT hatás els® rend¶ variációja, a mez®egyenletek

Az (1.8), (3.6) és (3.12) Horndeski Lagrange-s¶r¶ségek nemmer®leges 2 + 1 + 1 fel-

bontott alakjai a (3.16)-ban felsorolt változóktól függnek. Emiatt a mez®egyenletek

származtatása során a (3.16) változóktól funkcionálisan függ® EFT hatásból indultam

ki. A továbbiakban a nemmer®leges 2 + 1 + 1 formalizmus (ka, la) bázisában vezet-

tem le az EFT hatás variációját, azonban a 3.3.3. alfejezet után bemutatom a kapott

mez®egyenleteket az (na,ma) bázisban is.

3.3.1. Az EFT hatás változói a gömbszimmetrikus és sztatikus háttéren

Az ívelemnégyzet alakja a t, r, θ, φ Schwarzschild koordinátákban a

ds2 = −N̄2dt2 + M̄2dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (3.30)

ahol −∞ < t < ∞, 0 ≤ r < ∞, 0 ≤ θ ≤ π és 0 ≤ φ ≤ 2π. A felülvonás jelöli a

változók háttértérid®n vett értékét. A háttéren

N̄a = M̄a = N̄ = s̄ = 0 , c̄ = 1 , (3.31)

valamint

n̄a = k̄a =
(
−N̄ , 0, 0, 0

)
,

m̄a = l̄a =
(
0, M̄ , 0, 0

)
. (3.32)

A kialakított (3.13) skalárok egy része a háttéren elt¶nik a de�níciójukból következ®en,

így

K̄∗ = k̄ = K̄∗ = κ̄∗ = 0 . (3.33)

Nem elt¶n® skalárok az

L̄ = − ∂rN̄

M̄N̄
,

L̄ =
1

2M̄
ḡab∂rḡab =

2

M̄r
,

λ̄ =
2

M̄2r2
, (3.34)

továbbá az

L̄ab =
1

2M̄
∂rḡab =

1

2
L̄ḡab . (3.35)
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A 2-dimenziós indukált metrika gömbszimmetria és sztatikusság esetén

ḡab = r2diag
(
1, sin2 θ

)
. (3.36)

Az egység gömbön vett konformis faktor ζ̄ = ln r. A 2-dimenziós Ricci-skalár az

R̄ = ḡabR̄ab = ḡθθR̄θθ + ḡφφR̄φφ + ḡθφR̄θφ

= ḡθθR̄θθ + ḡφφR̄φφ

=
1

r2
+

1

r2 sin2 θ
sin2 θ =

2

r2
, (3.37)

amely az alábbiakból következik:

Rbd = Ra
bad = ∂aΓ

a
bd − ∂dΓ

a
ab + Γa

iaΓ
i
bd − Γa

idΓ
i
ba ,

R̄θθ = ∂aΓ̄
a
θθ − ∂θΓ̄

a
aθ + Γ̄a

iaΓ̄
i
θθ − Γ̄a

iθΓ̄
i
θa

= −∂θΓ̄φ
φθ − Γ̄φ

φθΓ̄
φ
θφ = −∂θ cot θ − cot2 θ =

1− cos2 θ

sin2 θ
= 1 ,

R̄φφ = ∂θΓ̄
θ
φφ − Γ̄φ

φθΓ̄
θ
φφ = −∂θ (sin θ cos θ) + cot θ sin θ cos θ

= − cos2 θ + sin2 θ + cos2 θ = sin2 θ (3.38)

és

Γ̄θ
φφ = −1

2
ḡθθ∂rḡθθ = − sin θ cos θ ,

Γ̄φ
θφ = Γ̄φ

φθ =
1

2
ḡφφ∂θḡφφ = cot θ . (3.39)

3.3.2. Az EFT hatás els®rend¶ variációja

Formálisan a hatás els® rend¶ variációja a

δS =

∫
d4x
√

−g̃ δS
δGA

δGA , (3.40)

ahol GA egy tetsz®leges függvény, δS/δGA a hatás GA szerinti funkcionális deriváltja

a háttéren kiértékelve. A (3.40)-b®l és az extrémális hatás elvéb®l következik az

√
−g̃ δS

δGA

=
∂
(√

−g̃L
)

∂GA

− ∂a
∂
(√

−g̃L
)

∂ (∂aGA)
(3.41)
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Euler�Lagrange egyenlet. Amennyiben
√
−g̃ nem függ egyetlen változó deriváltjaitól

sem, akkor

1
√
−g̃

∂a
∂
(√

−g̃L
)

∂ (∂aGA)
=

1
√
−g̃

∂a

(√
−g̃ ∂L

∂ (∂aGA)

)
= ∇̃a

∂L

∂ (∂aGA)
. (3.42)

Ezt felhasználva a (3.41) egyenlet az alábbivá válik:

δS

δGA

=
∂L

∂GA

− ∇̃a
∂L

∂ (∂aGA)
+ L̄

∂ ln
√
−g̃

∂GA

. (3.43)

A (3.40) hatás els®rend¶ variációja

δS =

∫
d4x
√

−g̃
(
δL+ Lδ ln

√
−g̃
)

(3.44)

alakú lesz, ahol egy teljes divergencia elhagyásával

δL =

(
∂L

∂GA

− ∇̃a
∂L

∂ (∂aGA)

)
δGA (3.45)

és

δ ln
√

−g̃ =
∂
(
ln
√
−g̃
)

∂GA

δGA . (3.46)

Mivel a háttér mennyiségek csak az r radiális koordinátától függnek, a (3.45) egyenlet

egyszer¶síthet® a

δL =

(
∂L

∂GA

− ∇̃r
∂L

∂ (∂rGA)

)
δGA (3.47)

alakra.

3.3.3. Az EFT mez®egyenletek

Konformis mértéket választottam, ekkor

gab = e2ζ ḡab , (3.48)

azaz a 2-dimenziós indukált metrika perturbációja a

δgab = gab − ḡab =
(
e2ζ − 1

)
ḡab

= (1 + 2ζ − 1) ḡab

= 2ζḡab .
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Konformis mértékben a 4-dimenziós metrika determinánsának az els®rend¶ variációja

a

δ ln
√

−g̃ = 2δζ + δ lnN + δ lnM , (3.49)

míg a 2-dimenziós Ricci-skalárnak a

δR = R− R̄ = −2R̄δζ − 2ḡabD̄aD̄bδζ , (3.50)

ahol felhasználtam a (3.15) összefüggést [233].

Az (1.8), (3.6), (3.12), (3.49) és (3.50) egyenletek alapján, valamint a nemmer®le-

ges 2 + 1 + 1 felbontott Horndeski Lagrange-s¶r¶ség (3.16) változók szerinti függését

tekintve, az EFT hatás funkcionális függése:

SEFT [N , N,M,K∗, k, K∗,κ∗,L, L, λ, ζ, ϕ] . (3.51)

A [197] hivatkozás (3.1) egyenletével öszehasonlítva a (3.51) EFT hatást, az M =

MaMa skalár függése hiányzik. A (3.51) hatásban ez a változó nincs külön bevezetve,

mivel az (1.8), (3.6), (3.12) Horndeski Lagrange-s¶r¶ségekben az k skalár tartalmazza

az M-et. A [197] folyóiratcikk (3.1) egyenletében nem szerepel az N , mivel a mer®leges

2+1+1 formalizmusban azN = 0 feltételt szükséges volt megválasztaniuk. A mer®leges

2+1+1 dimenziós térid®felbontásban az (na,ma) és (ka, la) bázisok egybeesnek, ezért

nem használnak �∗� jelölést a mennyiségek megnevezésében.

Az k és κ∗ skalárok a (2.43) és (2.44) de�níciók alapján másodrend¶ek. A (3.14)

kinetikus tag miatt az (1.8), (3.6) és (3.12) Horndeski Lagrange-s¶r¶ségekben ϕ′ = ∂rϕ,

M - illetve N -függ® tagok fognak megjelenni a variációszámításkor. A (3.12) Lagrange-

s¶r¶ségnek csak a −2
(
Da ln N

c

)
Da ln (cM) tagja tartalmazza explicite a változók de-

riváltjait, azonban ez a tag másodrend¶. Ezeket �gyelembe véve az EFT Lagrange-

s¶r¶ség függése az

LEFT (N , N,M,K∗, K∗,L, L, λ,R, ϕ, ϕ′) (3.52)

alakra egyszer¶s®dik, ahol a (3.50) összefüggésb®l származó ζ függés kés®bb lesz �gye-

lembe véve.

Az EFT Lagrange-s¶r¶ség variációja a

δLEFT = LEFT
N δN + LEFT

N δN + LEFT
M δM

+LEFT
K∗ δK∗ + LEFT

K∗ δK∗ + LEFT
L δL

+LEFT
L δL+ LEFT

λ δλ+ LEFT
R δR + LEFT

ϕ δϕ . (3.53)

Itt a GA = {N , N,M,K∗, K∗,L, L, λ,R} változó esetén

LEFT
GA

=
∂ (LEFT )

∂GA

, (3.54)
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valamint

LEFT
ϕ =

∂ (LEFT )

∂ϕ
− 1

√
−g̃

∂r

(√
−g̃ ∂ (L

EFT )

∂ϕ′

)
, (3.55)

�gyelembe véve a (3.47), (3.52) egyenleteket.

A (2.43), (3.34) és (3.35) egyenletekb®l a

δλ =
2

M̄r
δL , (3.56)

így ∫
d4x
√

−g̃
(
LEFT
L δL+ LEFT

λ δλ
)

=

∫
d4x
√
−g̃
(
LEFT
L +

2

M̄r
LEFT
λ

)
δL

=

∫
d4x

√
ḡM̄N̄FδL , (3.57)

ahol

F = LEFT
L +

2

M̄r
LEFT
λ . (3.58)

A (2.11) és (3.34) egyenletekb®l a δL-re következik, hogy

L− L = ∇̃al
a ,

δL+ L̄− L̄ − δL = ∇̃al
a ,

δL = ∇̃al
a − L̄+ L̄+ δL ,

δL =

[
∇̃al

a − N̄ ′

M̄N̄
− 2

M̄r

]
+ δL . (3.59)

Bármely GA skalár esetén és felhasználva a (2.5)-(2.6) egyenleteket kapjuk, hogy

la∇̃aGA =

[
s

N
∂t +

1

cM
∂r −

(
1

cM
Ma +

s

N
Na

)
Da

]
GA , (3.60)

amelyb®l

la∇̃aF (r) =
1

cM
∂rF . (3.61)

A c Taylor-sorából kapjuk, hogy

c = coshψ = 1 +
ψ2

2
+O

(
ψ4
)
,

azaz c csak másodrend¶ járulékot ad. A (3.59) és (3.61) összefüggéseket, továbbá

felhasználva az

1

M̄ + δM
=

1

M̄

(
1− δM

M̄

)
,

√
ḡ = r2 sin θ (3.62)
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kifejezéseket, a (3.57) egyenletb®l kapjuk, hogy∫
d4x
√

−g̃FδL =

∫
d4x

[√
ḡM̄N̄∇̃a (F la)− ∂r

(√
ḡN̄F

)]
+

∫
d4x

√
ḡM̄N̄

(
∂rF
M̄2

δM + FδL
)
. (3.63)

A (3.32) összefüggések és a√
−g̃ =

√
−g̃
(
1− δ ln

√
−g̃
)
,

∇̃al̄
a =

1

M̄

(
2

r
+
N̄ ′

N̄

)
miatt a (3.63) tag átírható egy teljes 4-es kovariáns derivált, továbbá a δM , δL,
δ ln

√
−g̃ variációkat tartalmazó tagok összegévé:∫

d4x
√

−g̃FδL =

∫
d4x
√

−g̃∇̃a

(
F l̄aδ ln

√
−g̃
)

+

∫
d4x

√
ḡM̄N̄

(
∂rF
M̄2

δM + FδL
)

−
∫
d4x∂r

(√
ḡN̄F

)
δ ln

√
−g̃ . (3.64)

A (2.40)-ben felsorolt összefüggések alapján a

δL = −∂tδN
N̄2

− ∂rδN

M̄N̄
+

N̄ ′

M̄N̄

(
δN

N̄
+
δM

M̄

)
. (3.65)

A δK∗ és δK∗ variációi kapcsolatba hozhatók egymással úgy, hogy∫
d4x
√

−g̃LEFT
K∗ δK∗ =

∫
d4x
√

−g̃∇̃a

(
LEFT
K∗ ka

)
−
∫
d4x
√

−g̃LEFT
K∗ δK∗ , (3.66)

ahol felhasználtam, hogy

∇̃ak
a = K∗ +K∗ . (3.67)

A (2.40) alapján

δK∗SEFT + δK∗SEFT =

∫
d4x
√

−g̃LEFT
K∗ δK∗ +

∫
d4x
√
−g̃LEFT

K∗ δK∗

=

∫
d4x
√

−g̃∇̃a

(
LEFT
K∗ ka

)
+

∫
d4x
√
−g̃∂t

[(
LEFT
K∗ − LEFT

K∗

) δM
M̄N̄

]
−
∫
d4x
√
−g̃ δM

M̄N̄
∂t
(
LEFT
K∗ − LEFT

K∗

)
. (3.68)
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A (3.68) egyenlet utolsó sorában a

∂t
(
LEFT
K∗ − LEFT

K∗

)
= 0

a sztatikus háttér miatt, a maradék határtagok pedig elhagyhatók.

A kiegészít® számolások alapján az EFT hatás els® rend¶ variációja

δGA
SEFT = δGA

SEFT
(B) +

∫
d4x
√

−g̃
{
LEFT
N δN

+

[
L̄EFT + N̄LEFT

N +
1

M̄

(
2

r
+
N̄ ′

N̄
+ ∂r

)
LEFT
L

]
δN

N̄

+

[
L̄EFT + M̄LEFT

M +
N̄ ′

M̄N̄
LEFT
L − 2F

M̄r

]
δM

M̄

+2

[
LEFT − 2

r2
LEFT
R − 1

M̄

(
2

r
+
N̄ ′

N̄
+ ∂r

)
F
]
δζ

}
, (3.69)

ahol a határtag

δGA
SEFT
(B) =

∫
d4x
√
−g̃∇̃a

[
F l̄aδ ln

√
−g̃

+LEFT
K∗ ka +

(
LEFT
K∗ − LEFT

K∗

)
ka
δM

M̄

−
(
F + LEFT

L
)(

ka
δN
N̄

+ la
δN

N̄

)]
. (3.70)

Itt felhasználtam az ∫ π

0

dθ

∫ 2π

0

dφ
√
ḡD̄a

(
ḡabD̄bδζ

)
= 0 (3.71)

összefüggést, ahol az integrálban szerepl® 2-dimenziós kovariáns deriváltból készíthet®

egy egységgömb határán történ® integrál, amely értéke nulla.

A mez®egyenletek a (3.69) alapján az

LEFT
N = 0 , (3.72)

L̄EFT + N̄LEFT
N +

1

M̄
DrL

EFT
L = 0 , (3.73)

L̄EFT + M̄LEFT
M +

N̄ ′

M̄N̄
LEFT
L − 2F

M̄r
= 0 , (3.74)

L̄EFT − 2

r2
LEFT
R − 1

M̄
DrF = 0 , (3.75)

ahol

Dr =

(
N̄ ′

N̄
+

2

r
+ ∂r

)
. (3.76)
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A ϕ skalármez® szerinti variációból a következ®t kapjuk:

δS [ϕ, ϕ′] =

∫
d4x
√

−g̃δLEFT (ϕ)

=

∫
d4x
√

−g̃
(
LEFT
ϕ − ∇̃rL

EFT
ϕ′

)
δϕ

=

∫
d4x sin θ

[
r2N̄M̄LEFT

ϕ +
(
r2N̄M̄LEFT

ϕ′

)′]
δϕ

+

∫
d4x
√

−g̃LEFT
ϕ′ δϕ′ −

∫
d4x∇̃r

(√
−g̃LEFT

ϕ′ δϕ
)
, (3.77)

amely szerint (
r2M̄N̄LEFT

ϕ′

)′
= r2M̄N̄LEFT

ϕ . (3.78)

A nemmer®leges 2 + 1 + 1 formalizmus (ka, la) bázisban a Horndeski-elméletbeli

gömbszimmetrikus, sztatikus térid®kre vonatkozó mez®egyenletek a (3.72)-(3.75) és a

(3.78). Ezek a mez®egyenletek azonosak a [197] hivatkozás mer®leges 2 + 1 + 1 for-

malizmusban kapott (3.29)-(3.31) mez®egyenletekkel, mivel mindkét formalizmusban a

háttér fóliázása mer®leges. Emiatt a (3.72) mez®egyenlet triviálisan teljesül.

3.3.4. Az EFT mez®egyenletek az (na,ma) bázisban

A nemmer®leges 2 + 1 + 1 formalizmus (na,ma) bázisában az EFT hatás az

SEFT (nm) [N , N,M,K,K, K,κ,L∗, L∗, λ∗, R, ϕ] (3.79)

funkcionális függéssel rendelkezik. Itt R a 2-dimenziós Ricci-skalár, K, K, L∗, L∗ be-

ágyazási skalárok és K, κ, λ∗ beágyazási változókból képezett skalárok, amelyeket a

(2.43) és (2.44) egyenletek foglalják össze. A (ka, la) bázisból (na,ma) bázisba tör-

tén® transzformáció nem azonos a csillagos és csillagtalan mennyiségek cseréjével. Az

(na,ma) bázisban megjelennek például aKabL
ab és LaDa

(N
N

)
skalárok a (2.45) és (2.49)

összefüggések alapján. Az k∗ és K∗ skalárok nem normális fundamentális formákból áll-

nak, ezért az k, K, k∗ és K∗ közötti átjárás is új tagokat hoz be az egyenletekbe.

A 3.3.1.�3.3.3. alfejezetekben szerepl® lépések elvégzése után a nemmer®leges 2+1+

1 formalizmus (na,ma) bázisában a gömbszimmetrikus és sztatikus térid®re vonatkozó
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mez®egyenletek:

L
EFT (nm)
N +

∂r

(
r2L

EFT (nm)
K

)
r2N̄M̄

− 2L
EFT (nm)
K

rN̄M̄
= 0 , (3.80)

L̄EFT (nm) + N̄L
EFT (nm)
N +

1

M̄
DrL

EFT (nm)
L∗ = 0 , (3.81)

L̄EFT (nm) + M̄L
EFT (nm)
M +

N̄ ′

M̄N̄
L
EFT (nm)
L∗ − 2F (nm)

rM̄
= 0 , (3.82)

L̄EFT (nm) − 2L
EFT (nm)
R

r2
− 1

M̄
DrF (nm) = 0 , (3.83)

ahol

F (nm) = L
EFT (nm)
L∗ +

2

M̄r
L
EFT (nm)
λ∗ . (3.84)

A (3.73)-(3.75) és (3.81)-(3.83) egyenletek közötti ekvivalencia azonnal, jelölés szintjén

láthatók. Egy adott EFT Lagrange-s¶r¶ség esetén annak parciális deriváltjai azonban

eltérhetnek a (ka, la) és (na,ma) bázisokban, de ugyanazt a �zikai információt hordoz-

zák. A (3.80) egyenlet esetén belátható, hogy a (3.72)-hez hasonló triviális eredményt

ad.
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3.4. Fekete lyukak és csupasz szingularitások

A (3.73)-(3.75) és (3.78) mez®egyenletekb®l speciális gömbszimmetrikus és sztatikus

megoldásokat vezettem le a nemmer®leges 2 + 1 + 1 formalizmus (ka, la) bázisában. A

térid® megoldások a k-eszencia elméletcsaládra vonatkoznak.

3.4.1. A Schwarzschild határeset

Ebben az alfejezetben a (3.73)-(3.75) és (3.78) egy egyszer¶ alkalmazását mutatom be.

Amennyiben az EFT hatás az Einstein�Hilbert hatás, akkor a (3.73)-(3.75) és (3.78)

mez®egyenletekb®l a Schwarzschild megoldás következik.

Felhasználva a (3.7) Ricci-skalár felbontását a (ka, la) bázisban, akkor az EFT

Lagrange-s¶r¶ség az

LEFT = LEH = R− λ+ L (L− 2L) , (3.85)

alakra egyszer¶södik, amennyiben a másodrend¶ tagokat elhagyjuk. A (3.85) Lagrange-

s¶r¶ség a gömbszimmetrikus, sztatikus háttéren kiértékelve az

L̄EH =
2

r2
+

2

M̄2r2
+

4N̄ ′

M̄2N̄r
. (3.86)

A (3.85) Lagrange-s¶r¶ség GA = {N,M,R, λ, L,L} változók szerinti funkcionális deri-

váltjai (ezek jelen esetben megegyeznek a parciális deriváltakkal):

LEH
N = 0 ,

LEH
M = 0 ,

LEH
R = 1 ,

LEH
λ = −1 ,

LEH
L = 2L̄ =

4

M̄r
,

LEH
L = −2L̄ = − 4

M̄r
, (3.87)

valamint

F =
4

M̄r
− 2

M̄r
=

2

M̄r
. (3.88)
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Felhasználva a (3.34)-(3.37) és (3.58) összefüggéseket a (3.73)-(3.75) mez®egyenletek:

M̄2 − 1 + 2r
M̄ ′

M̄
= 0 , (3.89)

M̄2 − 1− 2r
N̄ ′

N̄
= 0 , (3.90)

r

N̄

(
rN̄ ′)′ − r2

M̄ ′

M̄

(
1

r
+
N̄ ′

N̄

)
= 0 . (3.91)

A (3.89) és (3.90) egyenletb®l az

N̄ ∝ M̄−1 (3.92)

összefüggés következik, amely az r koordináta átde�niálásával [233] megválasztható

úgy, hogy

N̄ = M̄−1 . (3.93)

A (3.91) egyenlet bal oldala átalakítás után az alábbivá válik:

r

N̄

(
rN̄ ′)′ + r2

N̄ ′

N̄

(
1

r
+
N̄ ′

N̄

)
=

[
r2
(
N̄2
)′]′

2N̄2
, (3.94)

amelyb®l

N̄2 = C2

(
1− C1

r

)
. (3.95)

A t koordináta átde�niálásával pedig C2 = 1 választható, amelyb®l gyenge tér közelí-

tés esetén C1 = 2m [233]. Érdemes megjegyezni, hogy N̄2 < 0-át megengedve kapható

meg (3.95)-b®l a Schwarzschild térid® eseményhorizont alatti része Schwarzschild ko-

ordinátákban. Tulajdonképpen N̄2 ≶ 0-át megengedve nem szükséges külön tárgyalni

a térid® horizont feletti, illetve horizont alatti részének felbontását.

3.4.2. A mez®egyenletek nem minimálisan csatolt k-eszencia elméletben

A (3.73)-(3.75) és (3.78) mez®egyenletek következ® alkalmazása során az LEFT Lagrange-

s¶r¶ség legyen a Horndeski-elmélet k-eszencia alosztályának Lagrange-s¶r¶sége. Ekkor

az (1.8), (3.6) és (3.12) Horndeski Lagrange-s¶r¶ségek szabad függvényei a G2 (ϕ,X)

és a G4(ϕ,X) = G4(ϕ), míg G3 = G5 = 0.

Az LEFT Lagrange-s¶r¶ség a k-essence elméletben, a nemmer®leges 2 + 1 + 1 fel-

bontás (ka, la) bázisában az

LEFT = G2 (ϕ,X) +G4 (ϕ)
(
R− λ+ L2 − 2LL

)
+ 2

√
XG4ϕ (ϕ) (L− L) (3.96)
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alakú. A (3.96) Lagrange-s¶r¶ség a gömbszimmetrikus és sztatikus háttéren:

L̄EFT = Ḡ2 + 2Ḡ4

(
1

r2
+

1

M̄2r2
+

2N̄ ′

M̄2N̄r

)
+

2ϕ′

M̄2
Ḡ4ϕ

(
2

r
+
N̄ ′

N̄

)
. (3.97)

A (3.73)-(3.75) és a (3.78) mez®egyenletek a következ® alakot öltik:

M̄2 − 1 +
2rM̄ ′

M̄
=

r2

Ḡ4

[(
2

r
− M̄ ′

M̄
+ ∂r

)(
Ḡ4ϕϕ

′)− M̄2

2
Ḡ2

]
,

(3.98)

M̄2 − 1− 2rN̄ ′

N̄
=

r2

Ḡ4

[(
2

r
+
N̄ ′

N̄

)
Ḡ4ϕϕ

′ − M̄2

2
Ḡ2 + ϕ′2Ḡ2X

]
,

(3.99)

r
(
rN̄ ′)′
N̄

− r2M̄ ′

M̄

(
1

r
+
N̄ ′

N̄

)
=

r2

Ḡ4

[
−
(
1

r
+
N̄ ′

N̄
− M̄ ′

M̄

)(
Ḡ4ϕϕ

′)
M̄2

2
Ḡ2 − ∂r

(
Ḡ4ϕϕ

′)] , (3.100)(
r2N̄

M̄
ϕ′Ḡ2X

)′

− r2

2
M̄N̄Ḡ2ϕ =

N̄

M̄

[
M̄2 − 1 + r2

M̄ ′

M̄

(
2

r
+
N̄ ′

N̄

)
−2rN̄ ′

N̄
− r2

N̄ ′′

N̄

]
Ḡ4ϕ . (3.101)

A [258] hivatkozásban Sotiriou és Faraoni rámutatnak arra, hogy az Einstein-

rendszerben aszimptotikusan sík megoldásokat csak akkor kaphatunk, ha: i) a ska-

lármez® konstans; ii) a V (ϕ) = 0. Az i) és ii) teljesülése esetén a G2 = 0, így a hatás

az Einstein�Hilbert hatás lesz.

Az i) és ii) pontok �gyelembe vételével a (3.98)-(3.100) mez®egyenletek jobb oldala

zérus, míg bal oldala azonos lesz a (3.89)-(3.91) egyenletekkel, amelyb®l következik,

hogy N̄ ∝ M̄−1. Az (3.101) egyenlet bal oldala ugyancsak zérus, míg jobb oldalára

kapjuk, hogy

N̄

M̄

{(
M̄2 − 1− 2rN̄ ′

N̄

)
−
[
r2
N̄ ′′

N̄
− r2

M̄ ′

M̄

(
1

r
+
N̄ ′

N̄

)]
+
rM̄ ′

M̄

}
Ḡ4ϕ = 0 . (3.102)

A (3.90) és a (3.91) egyenletekb®l kapjuk, hogy

r2N̄ ′′

N̄
− r2

M̄ ′

M̄

(
1

r
+
N̄ ′

N̄

)
= −rN̄

′

N̄
. (3.103)

A (3.103) összefüggéssel a (3.102) egyenlet az alábbi alakú lesz:

N̄

M̄

[
rN̄ ′

N̄
+
rM̄ ′

M̄

]
Ḡ = 0 . (3.104)
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Az N̄ = M̄−1 összefüggést alkalmazva a Schwarzschild megoldás adódik.

Másfelöl a (3.98)-(3.100) mez®egyenletek megegyeznek az Einstein�Hilbert hatásból

el®álló (3.89)-(3.91) egyenletekkel, amennyiben

M̄2

2
Ḡ2 =

(
2

r
− M̄ ′

M̄
+ ∂r

)(
Ḡ4ϕϕ

′) , (3.105)

M̄2

2
Ḡ2 =

(
2

r
+
N̄ ′

N̄

)
Ḡ4ϕϕ

′ + ϕ′2Ḡ2X , (3.106)

M̄2

2
Ḡ2 =

(
1

r
+
N̄ ′

N̄
− M̄ ′

M̄
+ ∂r

)(
Ḡ4ϕϕ

′) . (3.107)

A (3.107) és (3.105) egyenletek különbségét véve az(
N̄ ′

N̄
− 1

r

)
Ḡ4ϕϕ

′ = 0 . (3.108)

Mivel az
(
N̄ ′/N̄ − r−1

)
tag nem zérus, ezért a Ḡ4ϕϕ

′ = Ḡ′
4 = 0 → Ḡ4 =konst.

eredmény adódik. Ezt a (3.107) egyenletbe helyettesítve kapjuk, hogy Ḡ2 = 0, azaz

LEFT = LEH . Ez az eredmény azt mutatja, hogy ebben az alosztályban a Schwarzschild

megoldás csak az általános relativitáselméleti határesetb®l áll el®.

3.4.3. Egzakt megoldások nem minimálisan csatolt k-eszencia elméletben

A k-eszencia megoldások származtatása során legyen az

N̄ = M̄−1 . (3.109)

Az 1.3.1. fejezetben bemutatott módon az ívelemnégyzet az Eddington�Finkelstein

koordinátákban:

ds2 = −N̄2du2 − 2dudr + r2
(
dθ2 + sin2 θdφ2

)
= −N̄2dv2 + 2drdv + r2

(
dθ2 + sin2 θdφ2

)
, (3.110)

ahol

r∗ =

∫
dr

1

N̄2 (r)
, (3.111)

az u = t − r∗ retardált (kimen®) és a v = t + r∗ avanzsált (bemen®) koordináták.

Bemen® Eddington�Finkelstein koordinátákban kifejezve a kimen® radiális fényjelre

igaz, hogy
dr

dv
=
N̄2 (r)

2
, (3.112)
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azaz az N̄ (r) = 0 eseményhorizontot határoz meg.

A (3.109) választással a (3.98)-(3.101) mez®egyenletek a

1− N̄2 − r
(
N̄2
)′

=
r2

Ḡ4

[(
2N̄2

r
+

(
N̄2
)′

2
+ N̄2∂r

)(
Ḡ4ϕϕ

′)− 1

2
Ḡ2

]
,

(3.113)

1− N̄2 − r
(
N̄2
)′

=
r2

Ḡ4

[
N̄2ϕ′2Ḡ2X − 1

2
Ḡ2 +

(
2N̄2

r
+

(
N̄2
)′

2

)
Ḡ4ϕϕ

′

]
,

(3.114)
1

2

[
r2
(
N̄2
)′]′

=
r2

Ḡ4

[
1

2
Ḡ2 −

(
1

r
N̄2 +

(
N̄2
)′
+ N̄2∂r

)(
Ḡ4ϕϕ

′)] ,

(3.115)

(
r2N̄2ϕ′G2X

)′ − r2

2
Ḡ2ϕ =

1− N̄2 − r
(
N̄2
)′ −

[
r2
(
N̄2
)′]′

2

 Ḡ4ϕ (3.116)

alakúak lesznek.

A (3.115) egyenlet bal oldala és a (3.116) egyenlet jobb oldala tartalmazza a

Schwarzschild határesetnél bemutatott (3.94) összefüggést. Amennyiben a (3.113)

egyenletet kivonjuk a (3.114) egyenletb®l kapjuk, hogy(
Ḡ4ϕϕ

′)′ = ϕ′2Ḡ2X . (3.117)

A (3.113) és (3.115) egyenletek összegéb®l és átalakítások után kapjuk, hogy

[
1− N̄2 − r

(
N̄2
)′]

Ḡ4 +

(
r2
(
N̄2
)′

2
Ḡ4

)′

= rN̄2Ḡ′
4 (3.118)

amelyb®l

Ḡ4 = −

[(
N̄2

r2

)′
r4Ḡ4

2

]′
. (3.119)

A (3.119) egyenletb®l pedig

N̄2 = −2r2
∫ r dσ

σ4Ḡ4 (ϕ (σ))

∫ σ

dρḠ4 (ϕ (ρ)) (3.120)

következik. A (3.120) egyenlet segítségével az N̄ metrikus függvény megkapható. En-

nek ismeretében a (3.117) és (3.116) egyenletekb®l a Ḡ2X és Ḡ2ϕ függvények vezethet®k

le, míg a Ḡ2 függvényt a (3.114) egyenlet határozza meg.



3.4 Fekete lyukak és csupasz szingularitások 123

3.4.4. Gömbszimmetrikus, sztatikus fekete lyukak, csupasz szingularitások

és homogén megoldások Ḡ4 (ϕ) különböz® megválasztásaival

A következ®kben speciális Ḡ4 (ϕ) függvények esetén vezettem le a k-eszencia elmé-

let gömbszimmetrikus és sztatikus megoldásait, amelyhez a (3.114), (3.117), (3.116),

(3.120) egyenleteket használtam.

3.4.4.1. Ḡ4 =konstans

Legyen Ḡ4 = (16πG)−1, azaz a skalármez®t minimálisan csatoljuk a metrikához. A

(3.120) alapján az N̄2 metrikus függvény:

N̄2 = −2r2
{∫ r

dσ
1

σ4

[∫ σ

dρ

]}
= −2r2

∫ r

dσ
[
σ−3 + σ−4C1

]
= 1 +

2C1

3r
− 2r2C2 ,

ahol C1 és C2 integrációs konstansok. Bevezetve az m = C1

3
és a Λ = 2C2 jelöléseket

kapjuk, hogy

N̄2 = 1− 2m

r
− Λr2 . (3.121)

A (3.121) esetén a térid® Schwarzschild�de Sitter, ha Λ > 0, Schwarzschild�anti de

Sitter, ha Λ < 0, és Schwarzschild, ha Λ = 0.

Ekkor (3.117) egyenlet az alábbira vezet:

ϕ′Ḡ2X = 0 .

Amennyiben ϕ′ = 0, akkor X = 0, ezért Ḡ2X = 0. A (3.116) egyenletb®l a Ḡ2ϕ = 0,

tehát a Ḡ2 =konst. Végül a (3.114) egyenlet azt eredményezi, hogy

Ḡ2 = −6Λ/ (16πG) .

Azaz a Ḡ2 függvény arányos a Λ kozmológiai konstanssal.

3.4.4.2 Ḡ4 = ϕ = r
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A [258] alapján, ha Ḡ4 inverze reguláris, akkor Ḡ4 azonosítható a skalármez®vel.

Ha a skalármez® monoton függvénye az r radiális koordinátának és deriváltja sehol sem

zérus, akkor ϕ = r választható . Amennyiben Ḡ4 = ϕ = r, akkor a (3.120) szerint

N̄2 = −2r2
{∫ r

dσ
1

σ4ϕ (ρ)

[∫ σ

ϕ (ρ) dρ

]}
= −2r2

∫ r

dσ

[
σ−3

2
+ σ−5C1

]
= −2r2

[
− 1

4r2
− 1

4r4
C1 + C2

]
=

1

2
+
C1

2r2
− 2r2C2 . (3.122)

Ha a C1 és C2 integrációs konstansok helyett bevezetjük a Q = C1

2
és a Λ = 2C2

jelöléseket, akkor

N̄2 =
1

2
+
Q

r2
− Λr2 . (3.123)

A metrika görbületi szingularitással rendelkezik. Mivel

lim
r→∞
Λ=0

R...φ
θφθ =

1

2
, lim

r→∞
Λ=0

R...θ
θφφ = −sin2 θ

2
(3.124)

a kapott megoldás az r → ∞-ben Λ = 0-ra sem válik síkká, tehát aszimptotikusan

nem sík. A Schwarzschild térid® esetének kivételével a származtatott megoldások nem

aszimptotikusan síkok a továbbiakban.

A (3.117) egyenletb®l a Ḡ2X = 0, és a (3.116) egyenletb®l a Ḡ2ϕ = −12Λ − 1/r2,

amelyb®l

Ḡ2 (ϕ) = −12Λϕ+
1

ϕ
. (3.125)

Horizontok

Az N̄2 metrikus függvény zérus az

r21,2 =
1±

√
1 + 16QΛ

4Λ
(3.126)

egyenletet teljesít® r > 0 radiális koordináta helyeken, ha 16QΛ ≥ −1. A (3.126) alap-

ján ekkor négy eset különböztethet® meg, egy csupasz szingularitás, egy két horizonttal

rendelkez® és két egy horizonttal rendelkez® fekete lyuk, amelyek a következ®k:

(1) Ha a Λ > 0 és Q < 0, akkor a (3.126) szerinti két pozitív gyök van, azaz két

horizontja van a fekete lyuknak. A két horizont között N̄2 pozitív, különben negatív.
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A bels® horizontot az r2 határozza meg, míg a küls® horizontot az r1. A bels® horizont

alatt a metrika homogén, nem sztatikus, Kantowski-Sachs térid® szer¶. A két hori-

zont között a térid® gömbszimmetrikus, sztatikus, Schwarzschild térid® szer¶. A küls®

horizonton kívül homogén, nem sztatikus, aszimptotikusan anti de Sitter a térid®.

(2) Ha a Λ < 0 és Q > 0, akkor nincs horizont. A csupasz szingularitással rendel-

kez® térid® gömbszimmetrikus, sztatikus, aszimptotikusan de Sitter.

(3) Ha a Λ < 0 és Q < 0, akkor a térid® egy horizonttal rendelkez® fekete lyukat

tartalmaz, ahol a horizont helyzete az

r1 =
1

2

√
1−

√
1 + 16QΛ

Λ
. (3.127)

A horizonton kívül N̄2 pozitív, a térid® gömbszimmetrikus, sztatikus, aszimptotikusan

de Sitter. A horizont alatt N̄2 negatív, a térid® homogén, nem sztatikus.

(4) A Λ > 0 és Q > 0 esetén is egy eseményhorizonú fekete lyuk található a

térid®ben, amelynek horizontja az

r2 =
1

2

√
1 +

√
1 + 16QΛ

Λ
(3.128)

koordináta értéknél található. Az r2 által meghatározott horizonton kívül N̄2 negatív,

azaz a térid® homogén, nem sztatikus és aszimptotikusan anti de Sitter. A horizont

alatt N̄2 pozitív, a térid® pedig gömbszimmetrikus és sztatikus.

3.4.4.3 Ḡ4 = ϕ = rα

Ebben az esetben a (3.120) összefüggés alapján

N̄2 = −2r2
{∫ r

dσ
1

σα+4

[∫ σ

dρρα
]}

= −2r2
∫ r

dσ

[
σ−3

α + 1
+ σ−α−4C1

]
=

1

(α + 1)
+

2C1

(α + 3) rα+1
− 2r2C2 , (3.129)

ahol C1 és C2 integrációs konstansok. Bevezetve a C = 2C1

(α+3)
és Λ = 2C2 jelöléseket

kapjuk, hogy

N̄2 =
1

1 + α
+

C

r1+α
− Λr2 . (3.130)

Amennyiben α = 0 és C = −2m, illetve α = 1 és C = Q akkor az el®z® két alfeje-

zet megoldásai adódnak. Legyen az α ≥ 0, ekkor a metrika az origóban szinguláris.
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Továbbá, ha r → ∞ és Λ = 0, akkor

lim
r→∞
Λ=0

R...φ
θφθ =

α

1 + α
, lim

r→∞
Λ=0

R...θ
θφφ = −α sin2 θ

1 + α
. (3.131)

Ez azt jelenti, hogy a térid® nem aszimtotikusan sík. A (3.117) egyenletb®l

Ḡ2X =
α− 1

αrα
(3.132)

és (3.114) alapján

Ḡ2 =
2α2rα−2

1 + α
+
α (α− 1)C

r3
− 2

(
3 + 2α + α2

)
Λrα . (3.133)

A (3.116) egyenletb®l pedig azt kapjuk, hogy

Ḡ2ϕ = − 2

(1 + α) r2
− α (α− 1)C

rα+3
− 6 (α + 1)Λ . (3.134)

A (3.14) és (3.109) összefüggéseket felhasználva:

X = N̄2ϕ′2 = α2

(
r2α−2

1 + α
+ Crα−3 − Λr2α

)
. (3.135)

A (3.133) egyenlet átalakítható a skalármez® és a kinetikus tag bevezetésével a

Ḡ2 =
α− 1

α

X

ϕ
+ αϕ

α−2
α −

(
6 + 5α + α2

)
Λϕ (3.136)

alakra. A (3.136) alak adja meg a Ḡ2 függvény X és ϕ függését a háttértérid®n.

Horizontok

A horizontok a

−Λr3+α +
1

(1 + α)
r1+α + C = 0 (3.137)

egyenlet megoldásaival adhatók meg. Ebb®l hat aleset származtatható, amelyek a

következ®k:

(1) Ha Λ = 0 és C < 0, akkor a (3.137) alapján

r = 1+α
√

− (1 + α)C . (3.138)

A térid® ebben az esetben egy horizonttal rendelkez® fekete lyukat tartalmaz.

(2) Hasonlóan egy horizont van amennyiben Λ > 0 és C = 0, ekkor

r =

√
1

(1 + α) Λ
. (3.139)



3.4 Fekete lyukak és csupasz szingularitások 127

A horizonton kívül a térid® aszimptotikusan anti de Sitter, a horizont alatt gömbszim-

metrikus, sztatikus Schwarzschild szer¶.

Amennyiben Λ ̸= 0 és C ̸= 0, akkor a (3.137) egyenletnek valós pozitív gyökeinek

számát a Descartes-féle el®jelszabállyal adhatjuk meg. Legyen

f (x) = a0 + a1x+ ...+ anx
n (3.140)

egy tetsz®leges n-ed fokú polinom, amelynek az a0, a1...an együtthatói valósak és an ̸=
0. Az f (x) polinomnak legfeljebb n darab valós zérushelye van, valamint legalább egy

valós zérushelye van, ha n páratlan. A z valós szám az f (x) polinom zérushelye, ha

f (z) = 0. Az f (x) polinom az

f (x) = (z − x) g (x) (3.141)

alakba írható, ha n ≥ 1. A (3.141) összefüggésben a

g (x) = b0 + b1x+ ...+ bn−1x
n−1 , (3.142)

ahol b0, b1...bn valós együtthatók és bn−1 ̸= 0. A (3.140)-(3.142) tanulmányozása során

R. Descartes el®jelszabályokat fogalmazott meg az f (x) polinom zérushely-számának

megállapítására. Az f (x) polinom pozitív zérushelyeinek száma annyi, vagy egy pozitív

páros számmal kevesebb, mint ahányszor az együtthatókon sorban lépkedve el®jelvál-

tozást tapasztalunk [358].

(3) Ha Λ < 0 és C > 0, akkor a (3.137) együtthatóiban nincs el®jel váltás, ezért

nincs gyök, azaz nincs horizont. A térid® egy csupasz szingularitást tartalmaz, valamint

gömbszimmetrikus, sztatikus és aszimptotikusan de Sitter jelleg¶.

(4) Ha Λ > 0 és C < 0 esetén az el®jel kétszer változik ezért a (3.137) polinom-

nak vagy nincs, vagy két gyöke van. Amennyiben nincs gyök, akkor a térid® csupasz

szingularitást tartalmaz. A térid® ekkor homogén, nem sztatikus és aszimtotikusan

anti de Sitter. Két horizont esetén a bels® horizont alatt homogén és nem sztatikus a

térid®, a két horizont között gömbszimmetrikus és sztatikus, míg a küls® horizonton

kívül homogén, nem sztatikus és aszimtotikusan anti de Sitter.

(5) Ha Λ < 0 és C < 0, akkor a (3.137) polinom együtthatóinak el®jele egyszer

változik. Ebben az esetben a központi szingularitást egy horizont fedi el. A horizont

alatt a térid® homogén és nem sztatikus, míg azon kívül gömbszimmetrikus, sztatikus

és aszimptotikusan de Sitter.

(6) Ha Λ > 0 és C > 0, akkor ismét egyszer történik el®jelváltás, ezért egy horizont

van. A horizont alatt gömbszimmetrikus és sztatikus, míg azon kívül homogén, nem

sztatikus és aszimptotikusan anti de Sitter a térid®.
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3.4.4.4 Ḡ4 = ϕ = A (1 + Br)

A Ḡ4 = ϕ = A (1 + Br) választás esetén (3.120)-ból

N̄2 = −2r2
{∫ r dσ

σ4 (1 + Bσ)

[∫ σ

dρ (1 + Bρ)

]}
= −2r2

{∫ r

dσ
1

σ4 (1 + Bσ)

(
σ +

Bσ2

2
+ C1

)}
,

ahol C1 egy integrációs konstans. Itt az egyes tagok az∫ r dσ

σ4 (1 + Bσ)
= −

∫ r

du
u3

(u+B)

= −1

6

(
2r−3 − 3Br−2 + 6B2r−1 + 11B3

)
+B3 ln

∣∣r−1 +B
∣∣ , (3.143)∫ r

dσ
1

σ3 (1 + Bσ)
= −

∫ r

du
u2

(u+B)

= −1

2

(
r−2 − 2Br−1 − 3B2

)
−B2 ln

∣∣r−1 +B
∣∣+ C2 , (3.144)∫ r

dσ
1

σ2 (1 + Bσ)
= −

∫ r

du
u

(u+B)

= −r−1 +B ln
∣∣r−1 +B

∣∣ , (3.145)

ahol C2 egy integrációs konstans. A (3.143)-(3.145) összefüggések felhasználásával,

valamint bevezetve az m = C1

3
és Λ = 2C2 jelöléseket kapjuk, hogy

N̄2 = 1 + 3Bm− 2m

r
− B (1 + 6Bm) r − Λr2

−B2 (1 + 6Bm) r2 ln

∣∣∣∣ Br

1 + Br

∣∣∣∣ . (3.146)

A Λ = 0 és r → ∞ esetén a nem elt¶n® független Riemann-tenzor komponensek:

lim
r→∞
Λ=0

R...φ
θφθ = −3Bm , lim

r→∞
Λ=0

R...θ
θφφ = 3Bm sin2 θ . (3.147)

Tehát a B paraméter miatt a térid® aszimptotikusan nem sík.

A (3.117) alapján Ḡ2X = 0. A (3.114) egyenletb®l kapjuk, hogy

Ḡ2

2A
= − 3mB2

r (1 + Br)
− 3 (1 + 2Br) Λ

−B
2 [11 + 72mB + 12 (1 + 6mB)Br]

2 (1 + Br)

−3B2 (1 + 6mB) (1 + 2Br) ln

∣∣∣∣ Br

1 + Br

∣∣∣∣ . (3.148)
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13. ábra. Az N̄2 metrikus függvény ábrázolása látható az r/m skálázott radiális koor-

dináta, továbbá a Λm2 paraméter függvényében, amenyiben Bm = 1. Az N̄2 függvény

metszete a kék síkkal mutatja, hogy mely Λm2 értékek esetén fedi horizont a központi

szingularitást [353].

Ez a feltett ϕ = A (1 + B) skalármez®vel a

Ḡ2 = −6mA2B3

ϕ− A
− 6 (2ϕ− A) Λ + AB2

(
A

ϕ
− 12

)
(1 + 6mB)

−6B2 (1 + 6mB) (2ϕ− A) ln

∣∣∣∣ϕ− A

ϕ

∣∣∣∣ (3.149)

alakot eredményezi. Egyszer¶ behelyettesítéssel belátható, hogy a (3.116) egyenlet

teljesül.
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14. ábra. Az N̄2 metrikus függvény ábrázolása látható az r/m skálázott radiális ko-

ordináta és a Λm2 paraméter függvényében, amenyiben Bm = −1. Az N̄2 függvény

metszete a kék síkkal mutatja, hogy minden Λm2 érték esetén fedi horizont a központi

szingularitást. Amikor az N̄2 → ∞, akkor a térid® tartalmaz egy további szingularitást

[353].

Horizontok

A (3.146) egyenlet alapján a térid® az r = 0-ban központi szingularitást tartalmaz.

Az N̄2 függvény összetett alakja miatt a következ® esetekben vizsgáltam meg a térid®t.

(1) Legyen a (3.146)-ban a Bm = 1. A térid® N̄2 metrikus függvényét a 13.

ábra mutatja. A 13. ábrán az r/m = 0-ban az N̄2 függvény a negatív végtelenbe

tart, amely a központi szingularitást jelöli ki a térid®ben. A központi szingularitásnak

eseményhorizontja van, ha az N̄2 függvény metszi a kék síkot, ekkor N̄2 = 0. A kék

sík alatt az N̄2 negatív, ekkor a térid® homogén és nem sztatikus. Pozitív N̄2 esetén,

azaz a kék sík fölött, a térid® gömbszimmetrikus és sztatikus. Ezek alapján a Λm2 <

0 tartományban a térid® egy horizonttal rendelkez® fekete lyukat tartalmaz, ahol a

horizonton kívül a térid® gömbszimmetrikus és sztatikus. A horizont alatt a térid®

homogén, nem sztatikus és szingularitása van r = 0-ban. A Λm2 > 0 tartományban

a térid® homogén, nem sztatikus (Kantowski-Sachs típusú) és csupasz szingularitással

rendelkezik az origóban, mivel az N̄2 minden esetben negatív.

(2) Legyen a Bm = −1. Az N̄2 függvényt a 14. ábra mutatja. A 14. ábra
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15. ábra. Az N̄2 metrikus függvény ábrázolása látható az r/m skálázott radiális koor-

dináta és a Bm paraméter függvényében, amenyiben Λm2 = −1. Az N̄2 függvény és a

kék sík metszete határozza meg az eseményhorizontot. Negatív B értékek esetén küls®

szingularitást tartalmaz a térid® a Br = −1 hiperbola mentén [353].

alapján a térid®ben a Λm2 minden értékére található egy fekete lyuk, mivel az N̄2

függvény metszi a kék síkot. A Λm2 < 0 tartományban a fekete lyuknak egy horizontja

van, amelyen kívül a gömbszimmetrikus, sztatikus térid®ben található egy további

horizont nélküli szingularitás, mivel az N̄2 tart a pozitív végtelenbe. A horizont alatt

a térid® homogén, nem sztatikus és szingularitása van az r/m = 0-ban. A Λm2 >

0 értékeknél a fekete lyuk két horizonttal rendelkezik. A küls® horizonton kívül a

térid® homogén, nem sztatikus, mivel az N̄2 függvény negatív. A két horizont között a

térid® gömbszimmetrikus, sztatikus és az N̄2 → ∞ esetén egy további szingularitással

rendelkezik. A bels® horizont alatt a térid® ismét homogén, nem sztatikus és tartalmaz

egy központi szingularitást.

(3) Legyen Λm2 = −1. Az N̄2 metrika függvényt a 15. ábra mutatja. Az r/m = 0

origóban van központi szingularitás és minden Bm esetén azt egy horizont fedi el. A

Bm > 0 értékeknél a horizonton kívül a térid® gömbszimmetrikus, sztatikus, míg a

horizont alatt homogén és nem sztatikus. A Bm < 0 tartományban a horizonton kívül

a térid® gömbszimmetrikus, sztatikus, és tartalmaz egy logaritmikus szingularitást. A
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16. ábra. Az N̄2 metrikus függvény ábrázolása látható az r/m skálázott radiális koor-

dináta függvényében. Itt a Bm = −1 és a Λm2 = −1 [353].

horizont alatt a térid® homogén, nem sztatikus.

A 16. ábra mutatja be a 15. ábra Bm = −1 értéknél vett metszetét. A Ricci-skalár

és a Kretschmann skalár is divergál a logaritmikus szingularitás helyén, tehát ez is egy

valódi, görbületi szingularitás.

3.4.5. Megoldások az Einstein-rendszerben

A 3.4.4. fejezetben bemutatott k-eszencia térid® megoldásokat a Hordenski-elméletre

jellemz®en, a Jordan-rendszerben vezettem le. Legyen a Jordan- és Einstein-rendszer

közötti transzformáció a ˜̆gab = Ω2g̃ab .

A
√
−g̃R̃ tag konformis transzformációja ekkor

√
−g̃R̃ → Ω−2

√
−˜̆g ˜̆R [233]. Az Einsten-

rendszerben a skalármez® és a metrika csatolása minimális. A Jordan-rendszerben

megadott k-eszencia hatás egy részéb®l az Einstein-rendszerben egy Einstein�Hilbert

hatást kell kialakítani, ezért a konformis faktorra teljesülnie kell, hogy Ω2 = Ḡ4 (ϕ) > 0.

A (3.30) ívelemnégyzet az Einstein-rendszerben a

ds̆2 = −N̆2dt2 + M̆2dr̆2 + r̆2
(
dθ2 + sin2 θdφ2

)
, (3.150)
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Ω2 = Ḡ4 = ϕ Egyenlet N̄2-re N̆2 M̆2

(16πG)−1 (3.121) 1
16πG

N̄2 N̄−2

rα , α > 0 (3.130) rαN̄2 4
(2+α)2

N̄−2

A (1 + Br) (3.146) A (1 + Br) N̄2 4(1+Br)2

(2+3Br)2
N̄−2

3. táblázat. A metrika az Einstein-rendszerben amennyiben a radiális koordináták

között a transzformáció r̆ = rG
1/2
4 .

ahol az új radiális koordináta

r̆ = Ḡ
1/2
4 r .

A transzformáció után a metrikus függvények:

N̆2 = Ḡ4N̄
2 , M̆2 =

M̄2[
1 + r

2

(
ln Ḡ4

)′]2 . (3.151)

Ezekb®l az
1

1 + r
2

(
ln Ḡ4

)′ = 1− r̆

2

d ln Ḡ4

dr̆
(3.152)

összefüggés adódik. A 3.4.4. fejezetben vizsgált speciális megoldásokban a metrikus

függvények Einstein-rendszerbeli megfelel®jét a 3. táblázat foglalja össze.
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3.5. Összefoglalás

Az L2, L3 és L4 Lagrange-s¶r¶ségeket átírtam a nemmer®leges 2+1+1 felbontás (ka,la)

és (na,ma) bázisaiban megjelen® mennyiségekkel radiális unitér és konformis mérték-

ben. Megállapítottam, hogy a Lagrange-s¶r¶ségek a (ka,la) bázisban egyszer¶bbek.

Az EFT hatás funkcionális függését a nemmer®leges 2 + 1 + 1 alakba írt L2, L3 és

L4 Lagrange-s¶r¶ségekben megjelen® változók alapján választottam meg. Ennek az

EFT hatásnak az els®rend¶ variációjából származtattam a gömbszimmetrikus, sztati-

kus háttérre vonatkozó mez®egyenleteket úgy, hogy a háttéren a fóliázást mer®legesnek

választottam (N̄ = 0) a [197] folyóiratcikkhez hasonlóan. A mez®egyenleteket alkal-

maztam az Einstein�Hilbert hatás esetén, amelyb®l a Schwarzschild megoldást kap-

tam. A mez®egyenleteket megadtam k-eszencia elméletre vonatkoztatva a G2 (ϕ,X),

G4 (ϕ,X) = G4 (ϕ), G3 (ϕ,X) = 0, G5 (ϕ,X) = 0 és N̄ = M̄−1 választásokkal. Leve-

zettem a Ḡ2, Ḡ2X , Ḡ2ϕ és N̄2 függvények származtatásához szükséges összefüggéseket.

A mez®egyenletekben ekkor egyetlen szabad függvény maradt a Ḡ4 (ϕ). A Ḡ4 speciális

megválasztásával származtattam a térid® megoldásokat a k-eszencia elméletben. A ka-

pott térid® megoldások tartalmaznak csupasz szingularitást, egy horizonttal vagy két

horizonttal rendelkez® fekete lyukakat. A Ḡ4 (ϕ) = A (1 + B) esetben találtam olyan

térid® megoldást, amely tartalmaz az egyetlen horizonton kívüli görbületi szingulari-

tást. Kaptam továbbá olyan megoldást is, amikor a fekete lyuk két horizontja között

szintén egy további szingularitást tartalmaz a térid®.

Ha elfogadjuk a kozmikus cenzor hipotézist, akkor a kapott csupasz szingulari-

tásokat tartalmazó térid®k nem tekinthet®k �zikai megoldásoknak [252], [253]. A

Ḡ4 (ϕ) = A (16πG)−1 és Λ = 0 választáskor kapott fekete lyuk kivételével az összes

térid® megoldás aszimptotikusan nem sík, így azok skalár hajjal rendelkeznek.
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4. Minimálisan csatolt skalármez®, mint nem ideális

folyadék

A [293], [294] hivatkozásokban ismertették az id®szer¶ gradienssel rendelkez® Klein�

Gordon skalármez® ideális folyadék leírását, felhasználva az 1+3 dimenziós felbontást.

Ezt az eredményt a [299] folyóiratcikkben újra megvizsgálták, valamint kib®vítették

azt a térszer¶ és nullszer¶ skalármez® gradiens eseteire. A Klein�Gordon skalármez®

Lagrange-s¶r¶sége:

LKG = −1

2
∇̃aϕ∇̃aϕ− V (ϕ) , (4.1)

amelynek g̃ab szerinti variációjából kapható:

T̃ab = ∇̃aϕ∇̃bϕ−
(
1

2
∇̃cϕ∇̃cϕ+ V (ϕ)

)
g̃ab . (4.2)

Az 1 + 3 dimenziós felbontással az energia-impulzus tenzor

T̃ab = ρuaub + phab , (4.3)

alakú, ahol hab = uaub+ g̃ab. A [299] hivatkozásban a következ® összefüggéseket állapí-

tották meg az energia-impulzus tenzor energias¶r¶ségére és nyomására vonatkozóan:

ρ =

(
1

2
∇̃cϕ∇̃cϕ− V (ϕ)

)
sign

(
∇̃cϕ∇̃cϕ

)
, (4.4)

p =
1

3

{[
−1 +

1

2
sign

(
∇̃cϕ∇̃cϕ

)](
∇̃dϕ∇̃dϕ

)
−
[
4 + sign

(
∇̃cϕ∇̃cϕ

)]
V (ϕ)

}
. (4.5)

A (4.2)-(4.5) egyenletek alapján vizsgálták a skalármez® energia-impulzus tenzorát fel-

téve, hogy a skalármez® gradiense id®szer¶, térszer¶ vagy null.

Amennyiben a skalármez® gradiense id®szer¶, akkor az ua id®szer¶ vektor megvá-

lasztható a következ® módon:

ua =
∇̃aϕ√

−∇̃cϕ∇̃cϕ
⇒ ∇̃aϕ = ua

√
−∇̃cϕ∇̃cϕ

teljesítve, hogy

uau
a =

∇̃aϕ√
−∇̃cϕ∇̃cϕ

∇̃aϕ√
−∇̃cϕ∇̃cϕ

=
∇̃aϕ∇̃aϕ

−∇̃cϕ∇̃cϕ
= −1 .
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Ekkor

T̃ab =

(
−1

2
∇̃cϕ∇̃cϕ+ V (ϕ)

)
uaub −

(
1

2
∇̃cϕ∇̃cϕ+ V (ϕ)

)
hab . (4.6)

Tekintve a (4.3) és (4.6) egyenleteket, vagy a (4.4) és (4.5) összefüggéseket, a kapott

ideális folyadék energias¶r¶sége, illetve izotróp nyomása:

ρPF = −1

2
∇̃aϕ∇̃aϕ+ V (ϕ) , (4.7)

pPF = −1

2
∇̃aϕ∇̃aϕ− V (ϕ) . (4.8)

A (4.1) és a (4.7), (4.8) egyenletekb®l az

LKG = pPF = ρPF − 2V (ϕ) , (4.9)

összefüggések adódnak a Lagrange-s¶r¶ségre. A [293] alapján, ha a skalármez® tömeg

nélküli, szabad mez®, amelynek energias¶r¶sége tisztán kinetikus, azaz V (ϕ) = 0,

akkor pPF = ρPF . Ebben az esetben az L1
KG = pPF és az L2

KG = ρPF Lagrange-

s¶r¶ségek ekvivalensek. Amennyiben a skalármez® energias¶r¶sége tisztán potenciális

eredet¶, azaz ∇̃aϕ∇̃aϕ = 0, akkor pPF = −ρPF . Ez utóbbi esetben az L1
KG = pPF és az

L2
KG = −ρPF Lagrange-s¶r¶ségek írják le ekvivalensen a Klein�Gordon skalármez®t.

Amikor a skalármez® gradiense térszer¶, akkor

ua =
∇̃aϕ√
∇̃cϕ∇̃cϕ

, uau
a = 1 . (4.10)

A (4.4) és (4.5) összefüggésekb®l a

ρ =
1

2
∇̃cϕ∇̃cϕ− V (ϕ) , (4.11)

energias¶r¶séget és a

p =
1

3

{[
−1 +

1

2

](
∇̃dϕ∇̃dϕ

)
− [4 + 1]V (ϕ)

}
= −1

6
∇̃dϕ∇̃dϕ− 5

3
V (ϕ) (4.12)

izotróp nyomást kapták. A (4.11) és (4.12) összefüggéseket tekintve a skalármez®

energia-impulzus tenzora

T̃ F1
ab =

(
1

2
∇̃cϕ∇̃cϕ− V (ϕ)

)
uaub −

(
1

6
∇̃cϕ∇̃cϕ+

5

3
V (ϕ)

)
hab . (4.13)
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A (4.13) energia-impulzus tenzor azonban nem egyezik meg azzal, amikor a (4.2) és

(4.10) összefüggésekb®l származtatták:

T̃ F2
ab =

(
ua

√
∇̃cϕ∇̃cϕ

)(
ub

√
∇̃dϕ∇̃dϕ

)
−
(
1

2
∇̃cϕ∇̃cϕ+ V (ϕ)

)
(hab − uaub)

=
(
∇̃cϕ∇̃cϕ

)
uaub +

(
1

2
∇̃cϕ∇̃cϕ+ V (ϕ)

)
uaub −

(
1

2
∇̃cϕ∇̃cϕ+ V (ϕ)

)
hab

=

(
3

2
∇̃cϕ∇̃cϕ+ V (ϕ)

)
uaub −

(
1

2
∇̃cϕ∇̃cϕ+ V (ϕ)

)
hab . (4.14)

A (4.11) és (4.12) esetén, továbbá az LKG ̸= p és LKG = ±ρ.
A [303] cikk ezt javítva, bemutatta a Klein�Gordon skalármez® energia-impulzus

tenzorát id®szer¶, térszer¶ és null skalármez® gradiens esetén. A [303] hivatkozásban

is azt kapták, hogy az id®szer¶ skalármez® gradiens választásával a Klein�Gordon ska-

lármez® energia-impulzus tenzora ideális folyadékot ír le. Térszer¶ és null skalármez®

gradiens vizsgálata során megállapították, hogy nincs olyan meg�gyel®, amelyre igaz,

hogy ua ∼ ∇̃aϕ úgy, hogy uaua = −1. Ebb®l következik, hogy az 1+3 felbontás szerinti

p =
1

3
T̃abh

ab

összefüggés csak id®szer¶ skalármez® gradiens esetén áll fenn [299], [303]. A [303]

hivatkozásban az izotróp nyomásra a

p = −1

2
∇̃cϕ∇̃cϕ− V (ϕ) (4.15)

és az energias¶r¶ségre a

ρ =
∣∣∣∇̃dϕ∇̃dϕ

∣∣∣− p

=

[
sign

(
∇̃cϕ∇̃cϕ

)
+

1

2

]
∇̃dϕ∇̃dϕ+ V (ϕ) (4.16)

összefüggéseket kapták. Ezeket felhasználva, egy tachionikus meg�gyel® esetén, azaz

ua ∼ ∇̃aϕ úgy, hogy uaua = 1 a (4.15) és (4.16) alapján az izotróp nyomás

pT = −1

2
∇̃cϕ∇̃cϕ− V (ϕ) , (4.17)

illetve az energias¶r¶ség

ρT =
3

2
∇̃dϕ∇̃dϕ+ V (ϕ) , (4.18)

amelyb®l LKG = pT .

Amennyiben az ua ∼ ∇̃aϕ úgy, hogy uaua = 0, akkor pT = −V (ϕ) és pT + ρT = 0,

tekintve az (1.16), (4.2) összefüggéseket. Null skalármez® gradiensnél, tehát a minimá-

lisan csatolt skalármez® lehet null folyadét, ha pT + ρT = 0.
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A minimálisan csatolt skalármez® energia-impulzus tenzorának vizsgálata szem-

pontjából el®nyös lehet az 1+3 helyett a 2+1+1 dimenziós térid®felbontás alkalmazása.

Ennek érdekében a továbbiakban egy minimálisan csatolt Klein�Gordon skalármez®,

majd egy általános skalármez® folyadékleírását fogom megvizsgálni a 2. fejezetben

bevezetett nemmer®leges 2 + 1 + 1 formalizmus segítségével.

4.1. Minimálisan csatolt Klein�Gordon skalármez®

A Klein�Gordon skalármez®re vonatkozó energia-impulzus tenzor vizsgálatához egy

olyan hatásból indultam ki, amely tartalmazza az

SEH
[
g̃ab
]
=

∫
d4x
√
−g̃R̃ (4.19)

Einstein�Hilbert hatást, az

Sϕ
[
g̃ab, ϕ

]
=

∫
d4x
√

−g̃ [−X − V (ϕ)]

=

∫
d4x
√

−g̃
[
−1

2
∇̃aϕ∇̃aϕ− V (ϕ)

]
(4.20)

Klein�Gordon hatást és egy

SM
[
g̃ab,Ψ

]
=

∫
d4x
√
−g̃LM (4.21)

anyagi hatást. Az X = ∇̃aϕ∇̃aϕ/2 a kinetikus tag, V (ϕ) egy tetsz®leges, a skalár-

mez®t®l függ® potenciál, és a 16πG = 1 = c egységet választottam. Ekkor a teljes

hatás

SKG = SEH
[
g̃ab
]
+ Sϕ

[
g̃ab, ϕ

]
+ SM

[
g̃ab,Ψ

]
=

∫
d4x
√
−g̃
[
R̃− 1

2
g̃ab∇̃aϕ∇̃bϕ− V + LM

(
g̃ab,Ψ

)]
. (4.22)

A (4.22) hatás els®rend¶ variációja

δSKG =

∫
d4x

(
δ
√

−g̃
)[

R̃− 1

2
∇̃cϕ∇̃cϕ− V (ϕ)

]
+

∫
d4x
√

−g̃
[
δg̃abR̃ab + g̃abδR̃ab −

1

2
δg̃ab∇̃aϕ∇̃bϕ

−∇̃aϕ∇̃aδϕ− ∂ϕV (ϕ) δϕ
]
− 1

2

∫
d4x
√

−g̃T̃M
ab δg̃

ab
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=

∫
d4x
√

−g̃
[
−1

2
g̃abR̃ +

1

4
g̃ab∇̃cϕ∇̃cϕ+

1

2
g̃abV (ϕ)

]
δg̃ab

+

∫
d4x
√

−g̃
[
δg̃abR̃ab −

1

2
δg̃ab∇̃aϕ∇̃bϕ− ∂ϕV (ϕ) δϕ

]
+

∫
d4x
√

−g̃
[
g̃abδR̃ab − ∇̃aϕ∇̃aδϕ

]
− 1

2

∫
d4x
√
−g̃T̃M

ab δg̃
ab

=

∫
d4x
√

−g̃
[
G̃ab −

1

2
∇̃aϕ∇̃bϕ+

g̃ab
4
∇̃cϕ∇̃cϕ+

g̃ab
2
V − 1

2
T̃M
ab

]
δg̃ab

+

∫
d4x
√

−g̃
[
□̃ϕ− ∂ϕV

]
δϕ+

∫
d4x
√

−g̃
[
∇̃a
(
Va − δϕ∇̃aϕ

)]
,

(4.23)

ahol felhasználtam a

δ
√
−g̃ = −

√
−g̃
2

g̃abδg̃
ab ,

g̃abδR̃ab = ∇̃a
(
∇̃bδg̃ab − g̃cd∇̃aδg̃cd

)
= ∇̃aVa ,

T̃M
ab = − 2√

−g̃
δ
(√

−g̃LM
)

δg̃ab
(4.24)

összefüggéseket. A határtag elhagyásával a mez®egyenletek:

G̃ab =
1

2

(
∇̃aϕ∇̃bϕ− 1

2
g̃ab∇̃cϕ∇̃cϕ− g̃abV (ϕ)

)
+

1

2
TM
ab , (4.25)

□̃ϕ = ∂ϕV (ϕ) , (4.26)

ahol ∂ϕ = ∂/∂ϕ.

4.1.1. Id®szer¶ skalármez® gradiens

Amikor a skalármez® gradiense id®szer¶, akkor az a térid® minden pontjában kijelöl

egy id®szer¶ egységvektort:

na =
∇̃aϕ√

−∇̃cϕ∇̃cϕ
, nan

a = −1 . (4.27)

A [293], [294], [299] és [303] hivatkozásokhoz hasonlóan a skalármez® energia-impulzus

tenzora ideális folyadék, azaz

T̃ PF
ab = ρPFnanb + pPF g̃ab . (4.28)
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A 4-dimenziós metrika

g̃ab = −nanb +mamb + gab (4.29)

felbontását felhasználva az energia-impulzus tenzor a

T̃ PF
ab = ρPFnanb + pPF (mamb + gab) (4.30)

alakot ölti az (na,ma) bázisban. A (4.25) alapján:

T̃KG
ab = ∇̃aϕ∇̃bϕ− g̃ab

(
V +

1

2
∇̃cϕ∇̃cϕ

)
. (4.31)

A (4.31) energia-impulzus tenzor azonos a (4.7) energias¶r¶sséggel és a (4.8) nyomással

rendelkez® (4.30) ideális folyadék energia-impulzus tenzorával. Ez belátható, ha a

(4.27) és a (4.29) összefüggéseket behelyettesítjük a (4.31)-be:

T̃KG
ab = nanb

(√
−∇̃cϕ∇̃cϕ

)2

− (−nanb +mamb + gab)

(
V +

1

2
∇̃cϕ∇̃cϕ

)
= nanb

(
−1

2
∇̃cϕ∇̃cϕ+ V

)
+ (mamb + gab)

(
−1

2
∇̃cϕ∇̃cϕ− V

)
= ρPFnanb + pPF (mamb + gab) . (4.32)

A (4.31) energia-impulzus tenzor diagonális, így az 1.3.2. fejezetben bevezetett osztá-

lyozás alapján I-es típusú. Jelen esetben az energiafeltételek I-es típus esetén a kövek-

tez®k: i) gyenge: −∇̃cϕ∇̃cϕ ≥ −2V ; ii) domináns: V ≥ 0 ; iii) er®s: −∇̃cϕ∇̃cϕ ≥ V .

Az összes energiafeltétel teljesül, amennyiben 0 ≤ V ≤ −∇̃cϕ∇̃cϕ.

4.1.2. Térszer¶ skalármez® gradiens

Ha a skalármez® gradiense térszer¶, akkor az a térid® minden pontjában meghatároz

egy térszer¶ egységvektort:

ma =
∇̃aϕ√
∇̃cϕ∇̃cϕ

, mam
a = 1 . (4.33)

Ebben az esetben az energia-impulzus tenzor a

T̃ IPF
ab = ρnanb + prmamb + ptgab (4.34)
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alakot ölti. A pr a radiális nyomás, míg pt a tangenciális nyomás. Behelyettesítve a

(4.29) és (4.33) összefüggéseket a (4.31)-be, akkor a

T̃KG
ab = mamb

(√
∇̃cϕ∇̃cϕ

)2

− (−nanb +mamb + gab)

(
V +

1

2
∇̃cϕ∇̃cϕ

)
= nanb

(
1

2
∇̃cϕ∇̃cϕ+ V

)
+mamb

(
1

2
∇̃cϕ∇̃cϕ− V

)
+gab

(
−1

2
∇̃cϕ∇̃cϕ− V

)
. (4.35)

A (4.35) alapján az energias¶r¶ség

ρ =
1

2
∇̃cϕ∇̃cϕ+ V , (4.36)

a radiális nyomás

pr =
1

2
∇̃cϕ∇̃cϕ− V , (4.37)

és a tangenciális nyomás

pt = −ρ = −1

2
∇̃cϕ∇̃cϕ− V . (4.38)

Az energia-impulzus tenzor I-es típusú. Az energiafeltételek: i) gyenge: ∇̃cϕ∇̃cϕ ≥
−2V ; ii) domináns: V ≥ 0 ; iii) er®s: V ≤ 0. Az összes energiafeltétel teljesülésekor a

V = 0, amelyb®l

ρ = pr = −pt =
1

2
∇̃aϕ∇̃aϕ ≥ 0 . (4.39)

A (4.39) egy olyan nem ideális folyadék, amelynek energias¶r¶sége azonos a radiális

nyomásával, továbbá a tangenciális nyomásának −1-szeresével.

A) Ideális folyadék a tachionikus meg�gyel® szemszögéb®l:

A [303] hivatkozást tekintve, a (4.34) energia-impulzus tenzor tekinthet® úgy,

mint az ma 4-es sebesség¶ tachionikus (mam
a = 1) meg�gyel® szerint érzékelt

ideális folyadék ϕ skalármez® energia-impulzus tenzora. Az ideális folyadék ekkor

a

T̃ T
ab =

(
pT + ρT

)
mamb + pT g̃ab (4.40)

alakba írható. A pT a (4.17) összefüggés szerinti izotróp nyomás, míg ρT a (4.18)

alakú energias¶r¶ség [303]. A (4.29) felbontást behelyettesítve a (4.40) energia-

impulzus tenzorba:

T̃ T
ab = −pTnanb +

(
2pT + ρT

)
mamb + pTgab .
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Ezt összehasonlítva a (4.34) összefüggéssel kapjuk, hogy

pT = pt = −ρ , ρT = pr − 2pt = pr + 2ρ .

Mivel nem létezik olyan valós meg�gyel®, amelynek 4-es sebessége térszer¶, ezért

ez az eset nem tekinthet® �zikainak.

B) Ideális folyadékban terjed® radiális sugárzás:

A (4.34) energia-impulzus tenzorba behelyettesítve a (4.38) összefüggést kapjuk,

hogy

T̃ IPF
ab = −ptnanb + prmamb + ptgab . (4.41)

A (4.41) energia-impulzus tenzor megalkotható a

T̃ PF
ab = −prnanb + pt (mamb + gab) ,

ideális folyadék és két

T̃R1
ab = (pr − pt) tatb ,

T̃R2
ab = (pr − pt) τaτb (4.42)

sugárzás (null por) energia-impulzus tenzorainak összegéb®l. A két sugárzás irá-

nya egymással párhuzamos, de ellentétesek. Gömbszimmetria vonatkozásában

erre példa egy bej®v® és egy kimen® radiális irányú sugárzás. A T̃R1
ab és T̃R2

ab

esetén a null vektorok a

ta =
na +ma√

2
, τa =

na −ma√
2

(4.43)

úgy, hogy

tat
a = 0 , τaτ

a = 0 , taτ
a = −1 , gabt

b = 0 , gabτ
b = 0 . (4.44)

Ezek alapján a

T̃ IPF
ab = T̃ PF

ab + T̃R1
ab + T̃R2

ab ,

= −prnanb + pt (mamb + gab) + (pr − pt) tatb + (pr − pt) τaτb

= −prnanb + pt (mamb + gab) +
1

2
(pr − pt) (na +ma) (nb +mb)

+
1

2
(pr − pt) (na −ma) (nb −mb)

= −prnanb + pt (mamb + gab) + (pr − pt) (nanb +mamb)

= −ptnanb + prmamb + ptgab . (4.45)
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Az összes energiafeltétel teljesülésekor a T̃ PF
ab ideális folyadék negatív energias¶-

r¶séggel (�ghost folyadék�) és negatív nyomással rendelkezik, amelyek nagysága

−ρ, míg a T̃R1
ab és T̃R2

ab null porok energias¶r¶sége 2ρ.

A (4.42) null por sugárzási terek egy olyan anizotróp folyadékot írnak le, amely-

nek nincs tangenciális nyomása [292]. Gömbszimmetria esetén egy bej®v® és

egy kimen® radiális sugárzás szuperpozíciójának elemzése a [359] hivatkozásban

található meg. A [360] hivatkozásban vizsgáltak egy Kantowsky�Sachs típusú ho-

mogén, zárt univerzumot, amiben két olyan radiális sugárzás van jelen, amelyek

a kezdeti szingularitásban keletkeznek, majd kioltódnak egy végs® szingularitás-

ban. Negatív energias¶r¶séggel rendelkez® sugárzás (�ghost sugárzás�) vezethet

féreglyukakhoz [361], csupasz szingularitásokhoz és nyitott univerzumokhoz [362].

4.1.3. Nullszer¶ skalármez® gradiens

Amennyiben a skalármez® gradiense nullvektor, célszer¶ kiindulni a metrika (4.43)

nullvektorok szerinti felbontásából. Ekkor a 4-dimenziós metrika a

g̃ab = −2t(aτb) + gab (4.46)

alakú. A skalármez® gradiense a térid® minden pontjában meghatároz egy nullvektort:

ta =
∇aϕ√

2
, tat

a = 0 , (4.47)

amelyb®l
1

2
∇aϕ∇aϕ = 0 . (4.48)

A (4.48) összefüggést a hatásba nem lehet behelyettesíteni, azt csak a hatás variációja

után szabad �gyelembe venni. A (4.46) és (4.47) összefüggéseket behelyettesítve a

(4.31) energia-impulzus tenzorba a

T̃KG
ab = 2tatb − g̃abV (ϕ) (4.49)

kifejezés adódik. A (4.49) energia-impulzus tenzort átírva az (na,ma) bázisa a

T̃KG
ab =

(√
2ta

)(√
2tb

)
−
(
−2t(aτb) + gab

)(
V +

1

2
∇̃cϕ∇̃cϕ

)
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= 2tatb − (−taτb − tbτa + gab)

(
V +

1

2
∇̃cϕ∇̃cϕ

)
= (na +ma) (nb +mb) +

[
1

2
(na +ma) (nb −mb)

+
1

2
(nb +mb) (na −ma)− gab

](
V +

1

2
∇̃cϕ∇̃cϕ

)
= nanb + 2m(anb) +mamb + (nanb −mamb − gab)

(
V +

1

2
∇̃cϕ∇̃cϕ

)
= nanb

(
1 + V +

1

2
∇̃cϕ∇̃cϕ

)
+ 2m(anb)

+mamb

(
1− V − 1

2
∇̃cϕ∇̃cϕ

)
− gab

(
V +

1

2
∇̃cϕ∇̃cϕ

)
= nanb (1 + V ) + 2m(anb) +mamb (1− V )− gabV , (4.50)

eredményt kaptam. Ehhez a (4.43) és (4.47) összefüggéseket használtam fel. A (4.50)

mátrix alakja:

T̃KG
ab =

 1 + V 1 0

1 1− V 0

0 0 −gabV

 . (4.51)

A (4.51) energia-impulzus tenzor II-es típusú. A vonatkozó gyenge energiafeltétel esetén

egyszerre kell teljesülnie, hogy V (ϕ) ≤ 0 és V (ϕ) ≥ 0. Ez csak akkor lehetséges, ha

V (ϕ) = 0. Ugyanez vonatkozik a domináns és er®s energiafeltételekre. Amennyiben

minden energiafeltétel teljesül, a skalármez® energia-impulzus tenzora egy null por. A

[297] hivatkozásban megmutatták, hogy a null por ugyanúgy viselkedik, mint egy nem

ideális folyadék, amelynek energias¶r¶sége, radiális nyomása és tangenciális nyomása

azonos.

4.2. Minimálisan csatolt általános skalármez®

A továbbiakban a ϕ skalármez®t®l függ® általános Lagrange-s¶r¶ség esetén vizsgálom

a skalármez® folyadékleírását. A minimálisan csatolt általános skalármez® hatása:

Sϕ
[
g̃ab, ϕ

]
=

∫
d4x
√

−g̃L (X,ϕ) . (4.52)
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Felhasználva a (4.24) összefüggéseket, az LG = ∂L (X,ϕ) /∂G és G = {X,ϕ} jelölése-

ket, a (4.52) hatás variációja:

δSϕ =

∫
d4xδ

(√
−g̃
)
L (X,ϕ) +

∫
d4x
√
−g̃δL (X,ϕ)

= −1

2

∫
d4x
√

−g̃ [g̃abL (X,ϕ)] δg̃ab +

∫
d4x
√
−g̃δL (X,ϕ)

+

∫
d4x
√
−g̃ [LX (X,ϕ) δX + Lϕ (X,ϕ) δϕ]

=

∫
d4x
√

−g̃
[
−1

2
g̃abL (X,ϕ) +

1

2
LX (X,ϕ) ∇̃aϕ∇̃bϕ

]
δg̃ab

+

∫
d4x
√
−g̃
[
1

2
LX (X,ϕ) ∇̃aϕ∇̃aδϕ+ Lϕ (X,ϕ) δϕ

]
=

∫
d4x
√

−g̃
[
−1

2
g̃abL+

1

2
LX∇̃aϕ∇̃bϕ

]
δg̃ab

+

∫
d4x
√
−g̃
[
−1

2
LX□̃ϕ− 1

2
∇̃aLX∇̃aϕ+ Lϕ

]
δϕ

+
1

2

∫
d4x
√

−g̃∇̃a
[
LXδϕ∇̃aϕ

]
. (4.53)

Az inverz metrika és skalármez® szerinti variációból a mez®egyenletek a

G̃ab =
1

2

[
g̃abL− LX∇̃aϕ∇̃bϕ

]
+

1

2
T̃M
ab , (4.54)

illetve

LX□̃ϕ = Lϕ − ∇̃aϕ∇̃aLX . (4.55)

A (4.54) alapján a skalármez® energia-impulzus tenzora:

T̃L
ab = g̃abL− LX∇̃aϕ∇̃bϕ . (4.56)

4.2.1. Id®szer¶ skalármez® gradiens

Id®szer¶ skalármez® gradiens a (4.27) alapján egy id®szer¶ na egységvektort határoz

meg. A 4-dimenziós metrika felbontásához a (4.29) szerinti (na,ma) bázisbeli alakot

használtam. Ezeket behelyettesítve a (4.56) energia-impulzus tenzorba a

T̃L
ab = (−nanb +mamb + gab)L− LXnanb

(
−∇̃cϕ∇̃cϕ

)
= (2XLX − L)nanb + L (mamb + gab) (4.57)
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eredményt kaptam. A (4.57) egy I-es típusú ideális folyadék, amelynek a

ρ = 2XLX − L (4.58)

az energias¶r¶sége és

p = L (4.59)

az izotróp nyomása.

4.2.2. Térszer¶ skalármez® gradiens

Térszer¶ skalármez® gradiens a (4.33) alapján egy térszer¶ ma egységvektort jelöl ki.

A (4.29) és (4.33) behelyettesítésével a (4.56) energia-impulzus tenzor a

T̃L
ab = (−nanb +mamb + gab)L− LXmamb

(
∇̃cϕ∇̃cϕ

)
= −Lnanb + (L− 2XLX)mamb + Lgab (4.60)

alakú lesz. A (4.60) egy I-es típusú nem ideális folyadék. A (4.60)-ból kiolvasható,

hogy a nem ideális folyadék energias¶r¶sége a

ρ = −L , (4.61)

a radiális nyomása a

pr = L− 2XLX , (4.62)

míg a tangenciális nyomása a

pt = L = −ρ . (4.63)

A minimálisan csatolt skalármez® tangenciális nyomása és energias¶r¶sége között ugyan-

olyan kapcsolat fedezhet® fel, mint Klein�Gordon mez®re a 4.1.2. alfejezet (4.38) össze-

függésében.

4.2.3. Nullszer¶ skalármez® gradiens

Nullszer¶ skalármez® gradiens mellett a 4.1.3. alfejezetben használt valós null vekto-

rokkal lehet megadni a (4.56) energia-impulzus tenzort. Ekkor a (4.56) a

T̃L
ab = −2LX (ϕ) tatb + g̃abL (ϕ) (4.64)
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alakot ölti. Az X = tat
a = 0, amelyb®l L (ϕ,X) = L (ϕ). Ez utóbbi összefüggések,

azonban csak a mez®egyenletek származtatása után alkalmazhatók, tehát a hatásba

nem behelyettesíthet®k.

Felhasználva a (4.43) és (4.46) összefüggéseket a (4.64) energia-impulzus tenzor

(na,ma) bázisbeli alakja:

T̃L
ab = −2LX (ϕ) tatb + (−taτb − tbτa + gab)L (ϕ)

= −LX (ϕ) (na +ma) (nb +mb)−
1

2
(na +ma) (nb −mb)L (ϕ)

−1

2
(nb +mb) (na −ma)L (ϕ) + gabL (ϕ)

= −LX (ϕ) (nanb + namb + nbma +mamb)

−1

2
(nanb − namb + nbma −mamb)L (ϕ)

−1

2
(nbna − nbma + namb −mamb)L (ϕ) + gabL (ϕ)

= − [LX (ϕ) + L (ϕ)]nanb − 2LX (ϕ)n(amb)

− [LX (ϕ)− L (ϕ)]mamb + gabL (ϕ) . (4.65)

A (4.65) mátrix alakja a

T̃L
ab = −LX (ϕ)

 1 + L(ϕ)
LX(ϕ)

1 0

1 1− L(ϕ)
LX(ϕ)

0

0 0 −gab L(ϕ)
LX(ϕ)

 . (4.66)

A (4.65) energia-impulzus tenzor II-es típusú. Minden energiafeltétel teljesül, ha

L (ϕ) = 0, amely alapján a skalármez® null por. A skalármez® energia-impulzus tenzo-

rára vonatkozó di�eomor�zmus invariancia miatt tudjuk, hogy

∇̃aT̃L
ab = 0 . (4.67)

Továbbá egyszer¶en belátható, hogy

∇̃aLX (ϕ) ∝ ta , ∇̃aL (ϕ) =
√
2Lϕ (ϕ) t

a . (4.68)

A (4.68) összefüggéseket behelyettesítve a (4.67)-be azt kapjuk, hogy

0 = ∇̃a [−2LX (ϕ) tatb + g̃abL (ϕ)]

= −2∇̃aLX (ϕ) tatb − 2LX (ϕ) ∇̃atatb − 2LX (ϕ) ta∇̃atb + g̃ab∇̃aL (ϕ)

= −2LX (ϕ) ∇̃atatb − 2LX (ϕ) ta∇̃atb +
√
2Lϕ (ϕ) tb . (4.69)

A (4.69) átrendezésével a

ta∇̃atb =

(
Lϕ (ϕ)√
2LX (ϕ)

− ∇̃at
a

)
tb (4.70)
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geodetikus egyenletet kaptam. A (4.55) mez®egyenlet átalakításával a

∇̃at
a =

Lϕ (ϕ)√
2LX (ϕ)

(4.71)

összefüggés adódik. Ezt a (4.70) egyenletben felhasználva kapjuk, hogy

ta∇̃atb = 0 . (4.72)

A (4.72) egyenlet szerint a minimálisan csatolt skalármez® gradiens pályáját, az a�n

paraméterezett geodetikus egyenlet írja le, ahogy azt a [298] hivatkozásban is megmu-

tatták.
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5. Összefoglalás

Köztudott, hogy az univerzum ismeretlen anyagi összetev®ket is tartalmaz, a sötét

anyagot és a sötét energiát. Magyarázatuk egyik irányaként születtek meg az általános

relativitáselméletet módosító gravitációs elméletek. Ezeknek egyik legegyszer¶bb osz-

tálya, az egy skalármez®t tartalmazó, Ostrogradsky-instabilitástól mentes Horndeski

elmélet. A gravitációs hullám és a gamma kitörési mérésekkel kompatibilis Horndeski

elmélet alosztálya a Kinetic Gravity Braiding. Ezen elméletek közé sorolható a sötét

anyagot és a sötét energiát leírni képes k-eszencia elmélet. A meg�gyelésekb®l adódó

kényszerek ellenére a k-eszencia család számos elméletet foglal magába. Ezek egyenként

ugyancsak számos dinamikai megoldást tartalmaznak egyszer¶sítésekt®l és szimmetria

választásoktól függ®en.

A módosított gravitációelméletekben az egzakt megoldások származtatása komoly

matematikai kihívásokat jelent. Tekintsük csupán az általános relativitáselmélet

Einstein-egyenletét. Az összegzési konvencióból adódó megtéveszt®en egyszer¶ alakja

ellenére, az Einstein-egyenlet egy 10 független változót tartalmazó, nemlineáris, csatolt

parciális di�erenciálegyenletrendszer. A bonyolult 4-dimenzós dinamikai egyenletek és

a bennük szerepl® tenzoriális, vektoriális változók kezelhet®sége érdekében dolgoztak ki

különböz® térid®felbontási módszereket. Ezek egyik ágát képviselik, a térid®t metrikus

változók szerint felbontó matematikai formalizmusok, amelyek közül az els® volt az R.

Arnowitt, S. Deser és C. W. Misner által bevezetett 3 + 1 dimenziós térid®felbontás.

Az id®fejl®dés vizsgálata mellett egy kijelölt térbeli irány menti terjedés tanulmá-

nyozása érdekében vezették be a mer®leges s+1+1 dimenziós térid®felbontást [345]. Az

s+1+ 1 felbontásban tárgyalták a gravitáció hamiltoni formalizmusát [346], valamint

s = 2 esetben a felbontást gömbszimmetrikus, sztatikus térid® megoldások származta-

tására használták a GLPV és a Horndeski elméletekben [197]. A [197] folyóiratcikk-

ben bemutatott megoldások stabilitásvizsgálata során a perturbáció páros szektorában,

mértékválasztás után egy tetsz®leges függvény maradt a perturbációs egyenletekben.

Ennek oka az volt, hogy egy szabadsági fokot el kellett használniuk a fóliázás mer®le-

gességének megtartása érdekében a perturbációszámítás során.

A disszertáció 2. fejezetében az ADM változók alapján bevezetett nemmer®leges

2+1+1 térid®felbontás formalizmusát mutattam be. Ennek számolási alapja szorosan

köt®dik a mer®leges s+ 1 + 1 fóliázás során a [345], [346] hivatkozásokban ismertetett

matematikai módszerekhez. Ismertettem a t = konst. és χ = konst. választással de-
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�niált 3-dimenziós St és Mχ hiperfelület seregekhez adaptált fA = {n,m, Fi}, illetve
gA = {k, l, Gi} ortonolmált bázisokat és duálisaikat. A 3-dimenziós hiperfelület sere-

gek metszete a 2-dimenziós Σtχ felületet határozza meg. Tárgyaltam az na, ma, ka és

la vektorok kovariáns deriváltjainak felbontását, majd de�niáltam a Σtχ beágyazását

jellemz® küls® görbületeket, normális fundamentális formákat, normális fundamentális

skalárokat és gyorsulásokat. Megmutattam, hogy az ma és ka örvényes vektormez®k,

mivel az [n, Fj]
a Lie-zárójel ma irányú és az [l, Gj]

a Lie zárójel ka irányú projekciói

nem nullák. Az ma és ka vektorok 3-dimenziós örvényeinek az na és az la szerinti

kontrakciói az L∗
a és a K∗

a formákkal állnak kapcsolatban. A (2.39) összefüggés, és az

evolúciós vektorfolyamok menti Lie-deriváltak alapján megadtam a beágyazási válto-

zók és a metrikus változók közötti összefüggéseket. De�niáltam a 3. fejezetben felírt

EFT hatásban szerepl® beágyazási változókból képezett skalárokat mind az (na,ma) és

(ka, la) bázisokban.

A nemmer®leges 2+1+1 formalizmus kidolgozása után a 2.1. alfejezetben megad-

tam egy egyértelm¶ mértékrögzítést. A mértékrögzítés során három szabadsági fokot

használtam a radiális unitér mérték és a konformis mérték rögzítéseihez, hasonlóan a

[197] hivatkozáshoz. Mivel nem szükséges a fóliázás mer®legességének megtartása a

perturbációszámítás során, a P̂ = 0 feltétel megválasztásával egyértelm¶ mértékrögzí-

tést értem el.

A 2.2. alfejezetben a nemmer®leges 2+ 1+ 1 formalizmusban felírtam az Einstein�

Hilbert hatást az (na,ma) és (ka, la) bázisok használatában megjelen® mennyiségekkel

kifejezve. A formalizmus (na,ma) bázisában számoltam tovább megadva az általános

relativitáselméleti Lagrange-s¶r¶ség Liouville-formáját, amelyben szerepelnek a hamil-

toni és impulzus kényszerek. A Kab, Ka, K beágyazási változókkal meghatároztam a

πab, pa, p kanonikus impulzusokat, amelyekkel átírtam a Lagrange-s¶r¶séget, majd

származtattam a kanonikus mozgásegyenleteket.

A 2.3. alfejezetben, az 1+1+2 kovariáns formalizmus és a nemmer®leges 2+1+1

térid®felbontás összehasonlítását mutattam be. Ehhez meghatároztam az 1 + 1 + 2

kovariáns formalizmus kinematikai mennyiségeit a nemmer®leges 2 + 1 + 1 formaliz-

mus beágyazási változóival. A kovariáns formalizmus ωab 3-dimenziós örvényének az

Ω és az Ωa komponenseihez, illetve a ξ 2-dimenziós örvényhez hasonló mennyiségek

nem jelennek meg a nemmer®leges 2 + 1 + 1 formalizmusban. Ennek oka, hogy a

dupla fóliázáshoz szükséges a 3-dimenziós hiperfelületek megléte. Ekkor, azonban az

(na,ma) bázisban egyedül az ma bázisvektor na normálissal párhuzamosan projektált

3-dimenziós örvénye lehet nem zérus, amely az 1 + 1 + 2 kovariáns formalizmusban

az αa és a Σa kinematikai mennyiségekkel áll kapcsolatban. A [323] hivatkozás (71)

propagációs egyenletét átírtam a nemmer®leges 2 + 1 + 1 formalizmus beágyazási vál-
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tozóival, majd összehasonlítottam a 2.2. alfejezet (2.101) impulzus kényszerével. A két

egyenlet akkor azonos, ha az 1 + 1 + 2 kovariáns formalizmusban Ω = 0 = Ωa, ahogy

ez az el®z®ek alapján várható.

A 3. fejezetben a nemmer®leges 2+1+1 formalizmust alkalmaztam gömbszimmetri-

kus, sztatikus fekete lyukak, csupasz szingularitással rendelkez®, illetve homogén térid®

megoldások levezetéséhez a k-eszencia elméletekben, speciális Ḡ4 (ϕ) függvényválasztás

mellett. Megadtam G5 (ϕ,X) = 0 esetén a Horndeski elmélet Lagrange-s¶r¶ségének az

(na,ma), illetve a (ka, la) bázisokban használt mennyiségekben kifejtett alakjait. Fel-

tettem, hogy az EFT hatás a nemmer®leges 2+1+1 felbontott alakba írt L2, L3, illetve

L4 Lagrange-s¶r¶ségekben megjelen® beágyazási változóktól és bel®lük képezett skalá-

roktól függ funkcionálisan. Ennek az EFT hatásnak a variációjából származtattam a

gömbszimmetrikus, sztatikus háttérre vonatkozó mez®egyenleteket mindkét bázisban

a radiális unitér, illetve a konformis mérték választással. A mez®egyenletek teszte-

lése érdekében az Einstein�Hilbert hatás kiválasztásával származtattam a Schwarz-

schild megoldást az EFT mez®egyenletekb®l. Megmutattam, hogy a Horndeski elmélet

G2 (ϕ,X), G4 (ϕ,X) = G4 (ϕ), G3 (ϕ,X) = 0, G5 (ϕ,X) = 0 alosztályának csak az álta-

lános relativitáselméleti határesete adja a Schwarzschild megoldást. A (ka, la) bázisban

az EFT mez®egyenleteket specializáltam a nem minimálisan csatolt k-eszencia elmé-

letekre, továbbá a metrikus függvényekre kiróttam egy további feltételt
(
N̄ = M̄−1

)
.

Térid® megoldásokat a Ḡ4 (ϕ) egyetlen szabad függvény különböz® megadásaival szár-

maztattam A kapott térid®k tartalmaznak egy központi szingularitást az r = 0-ban.

Az N̄2 = 0 egyenlet határozza meg az eseményhorizontok helyzetét. Az integrációs

konstansok különböz® megválasztásaival megadtam az egyes térid®k esetén a horizon-

tok számát. A Ḡ4 (ϕ) =konst. választáskor egy darab horizonttal rendelkez® fekete

lyuk megoldást találtam. A horizonton kívül a térid® gömbszimmetrikus, sztatikus,

és a Λ integrációs konstanstól függ®en aszimptotikusan (anti) de Sitter, vagy aszimp-

totikusan sík. A Ḡ4 (ϕ) = rα (α > 0) esetben a megjelen® két integrációs konstans

jelenlétét®l és el®jelét®l függ®en csupasz szingularitást, valamint egy, vagy két hori-

zonttal rendelkez® fekete lyukat tartalmazó térid®ket találtam. A Ḡ4 (ϕ) = A (1 + B)

választás során adódó N̄2 függvényt ábrázoltam a Bm = 1, a Bm = −1, és a Λm2 = −1

paraméter választásoknak megfelel®en. A megoldások ekkor csupasz szingularitásokat,

illetve egy eseményhorizonttal rendelkez® hajas fekete lyukakat tartalmaztak. Találtam

olyan fekete lyuk megoldásokat is, amelyekben egy további szingularitás jelent meg a

horizonton kívül, vagy a két horizont között.

A 4. fejezetben minimálisan csatolt skalármez®re vonatkozó energia-impulzus tenzo-

rokat vizsgáltam, amelyhez felhasználtam a nemmer®leges 2+1+1 felbontást. El®ször a

minimálisan csatolt Klein�Gordon skalármez®t választottam és határoztam meg a ska-
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lármez® energia-impulzus tenzorát id®szer¶, térszer¶, illetve null skalármez® gradiens

esetén. Ezután az L (X,ϕ) Lagrange-s¶r¶ség esetén vezettem le a minimálisan csatolt

általános skalármez® energia-impulzus tenzorát. Különböz® energia-impulzus tenzo-

rokat tárgyaltam id®szer¶, térszer¶ és nullszer¶ skalármez® gradiens választásokkor.

Mind a Klein�Gordon, mind az általános skalármez® esetén id®szer¶ skalármez® gradi-

ens mellett a skalármez® energia-impulzus tenzora ideális folyadék. A Klein�Gordon,

és az általános skalármez® energia-impulzus tenzora I-es típusú nem ideális folyadék, ha

a skalármez® gradiense térszer¶. Nullszer¶ skalármez® gradiens esetén mind a Klein�

Gordon skalármez®, mind az általános skalármez® energia-impulzus tenzora II-es típusú

nem ideális folyadékot ír le.

A 2. fejezetben levezetett nemmer®leges 2+1+1 térid®felbontással lehetségessé vált

a [197] hivatkozásban bemutatott perturbációszámítás páros szektorában az egyértelm¶

mértékrögzítés. Emiatt egy ígértes további kutatást jelenthet a perturbációs egyenletek

levezetése a páros szektorban a 3. fejezetben tárgyalt általános EFT hatás esetén. A

kapott páros és páratlan szektorbeli perturbációs egyenletek ezután összehasonlíthatók

a [357] hivatkozásban bemutatott eredményekkel. Érdemes lenne továbbá megvizsgálni

a perturbációs egyenletek stabilitását, kizárni a �ghost� és �Laplace� instabilitásokat,

továbbá kiválasztani a legel®nyösebb mértékrögzítést.

A 3. fejezetben kapott gömbszimmetrikus, sztatikus térid® megoldások elemzé-

se tartalmaz további kihívásokat. Szükséges lehet annak a megállapítása, hogy mely

meg�gyelési paraméterek alapján észlelhet® a skalár haj jelenléte. Érdemes lenne meg-

állapítani, melyek a �zikai, nem kauzalitást sért® k-eszencia megoldások. Azaz mely

megoldások származhatnak valóban egy magasabb energiás, még nem létez® kvantum-

gravitáció EFT közelítéséb®l [225].
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6. Summary

It is widely recognised that the universe contains unknown components, dark matter

and dark energy. As one path toward their explanation, numerous gravitational the-

ories modifying general relativity have been proposed. The Horndeski theory is one

of the simplest class of these models introducing a single scalar �eld and remaining

free of Ostrogradsky instability. The Kinetic Gravity Braiding subclass of Horndes-

ki theory is compatible with gravitational wave and gamma-ray burst measurements.

These theories include the k-essence theory which can describe dark matter and dark

energy. Although it constrained by observations, the k-essence family also include nu-

merous subtheories. Each of these also o�ers many dynamical solutions depending on

simpli�cations and symmetry choices.

Derivation of exact solutions in modi�ed gravity theories poses mathematical chal-

lenges. Let us simply consider the Einstein equation of general relativity. Despite its

deceptively simple form due to the summation convention, the Einstein equation is a

nonlinear, coupled partial di�erential equation system composed of 10 equations. Spa-

cetime decomposition methods were developed to make the 4-dimensional dynamical

equations more manageable. One branch of these is represented by a mathematical for-

malism that decomposes the spacetime in terms of metric variables. The �rst among

them is the 3 + 1 dimensional spacetime decomposition introduced by R. Arnowitt,

S. Deser and C. W. Misner. In addition to the temporal evolution, the propagation

along a chosen spatial direction was studied through the development of the s+ 1 + 1

dimensional spacetime decomposition [345]. The Hamiltonian formulation of gravity

was discussed within the s+ 1 + 1 decomposition [346], while this formalism also was

applied to derive spherically symmetric, static spacetime solutions in GLPV and Horn-

deski theories [197] with s = 2. During the stability analysis of the solutions according

to Ref. [197], an arbitrary function remained in the perturbation equations for the

even-parity perturbations. This resulted from the need to use one degree of freedom

to maintain the orthogonality of the foliation during the perturbation.

In section 2 of the dissertation, I presented the formalism of the nonorthogonal

2 + 1 + 1 spacetime decomposition based on ADM variables. The mathematical met-

hod of this formalism is closely related to those described in Refs. [345], [346] for the

orthogonal s + 1 + 1 foliation. I introduced the orthonormal bases fA = {n,m, Fi}
and gA = {k, l, Gi} and their duals, adapted to the families of 3-dimensional St and
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Mχ hypersurfaces de�ned by the choices t =const. and χ = const, respectively. The

intersection of the 3-dimensional hypersurfaces determines the 2-dimensional Σtχ sur-

face. I discussed the decomposition of the covariant derivatives of the vectors na, ma,

ka and la, then de�ned the extrinsic curvatures, normal fundamental forms, normal

fundamental scalars, and accelerations characterizing the embedding of Σtχ. I showed

that both ma and ka have vorticity, since the ma projection of the Lie-bracket [n, Fj]
a

and the ka projection of the Lie-bracket [l, Gj]
a are non zero. The contraction of the

3-dimensional vorticities of the vectors ma and ka with respect to na and la are related

to the forms L∗
a and K∗

a, respectively. I derived the relations between the embedding

variables and the metric variables using the relation (2.39) and their Lie derivatives

along the evolution vector �elds. In addition, I gave the expression of a generic EFT

action in terms of scalars composed from the embedding variables using either (na,ma)

or (ka, la) basis.

After the formulation of the nonorthogonal 2 + 1 + 1 decomposition, I provided

an unambiguous gauge �xing in subsection 2.1. I used three degrees of freedom to

impose the radial unitary and conformal gauge, similarly to [197]. Since preserving

the orthogonality of the foliation during the subsequent perturbation is not required,

I achieved an unambiguous gauge by choosing an additional condition P̂ = 0.

In subsection 2.2, I expressed the Einstein�Hilbert action in terms of quantities

occurring in using either (na,ma) or (ka, la) basis. I used the (na,ma) basis when giving

the Liouville form of the Lagrangian and comprising the Hamiltonian and momentum

constraints. I expressed the Lagrangian in terms of canonical momenta πab, pa, p,

composed from the embedding variables Kab, Ka, K, then I derived the canonical

equations of motion.

In subsection 2.3, I compared the 1 + 1 + 2 covariant formalism with the nonort-

hogonal 2 + 1 + 1 spacetime decomposition. I expressed the kinematical quantities of

the 1+1+2 covariant formalism in terms of embedding variables of the nonorthogonal

2+ 1+ 1 formalism. There are no quantities in the nonorthogonal 2+ 1+ 1 formalism

corresponding to Ω and Ωa components of the 3-dimensional vorticity ωab, nor to the

2-dimensional vorticity ξ. This arises from the existence of 3-dimensional hypersufaces

being essential for the double foliation. Considering the (na,ma) basis, only the na

projection of the 3-dimensional vorticity of ma can be non-zero. This projection is

related to the kinematical quantities αa and Σa in the 1+ 1+ 2 covariant formalism. I

expressed the propagation equation (71) of Ref. [323] in terms of embedding variables

of the nonorthogonal 2 + 1 + 1 formalism, then I compared it with the momentum

constraint (2.101). These two equations coincide in the obvious subcase Ω = 0 = Ωa.

In section 3, I applied the nonorthogonal 2 + 1 + 1 formalism to derive the spheri-
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cally symmetric, static black hole solutions, spacetimes with naked singularities, and

homogeneous solutions in k-essence theories when choosing di�erent Ḡ4 (ϕ) function.

I expressed the Lagranians of Horndeski theory with G5 (ϕ,X) = 0 in terms of vari-

ables occurring when using either (na,ma) or (ka, la) basis. I assumed that the EFT

action functionally depends on the embedding variables and scalars constructed from

them, which appear in the decomposed nonorthogonal 2 + 1 + 1 form of the L2, L3

and L4 Lagrangians. I determined the �eld equations for a spherically symmetric, sta-

tic background by varying the EFT action when using these two bases. I considered

both the radial unitary and the conformal gauges. In order to test the �eld equations,

I derived the Schwarzschild solution using the EFT �eld equations and selecting the

Einstein�Hilbert subcase of the action. For the subclass of Horndeski theories with

G2 (ϕ,X), G4 (ϕ,X) = G4 (ϕ), G3 (ϕ,X) = 0, G5 (ϕ,X) = 0, I showed that only the

general relativity limit allows the Schwarzschild solution. In the (ka, la) basis, I de-

rived the EFT �eld equations for the nonminimally coupled k-essence theories with

N̄ = M̄−1. I obtained spacetime solutions by specifying di�erent forms of the single

free function Ḡ4 (ϕ). In all cases, the solutions contained a central singularity at r = 0.

The equation N̄2 = 0 determined the location of the event horizons. I identi�ed the

number of horizons in each solution related to the integrational contants. I found a

black hole with a single horizon in the case Ḡ4 (ϕ) =const. Outside of the horizon

the spacetime is spherically symmetric, static and asymptotically (anti) de Sitter or

asymtotically �at, depending on the integrational constant Λ. I obtained spacetimes

with either a naked singularity or a black hole with one or two horizons in case of

Ḡ4 (ϕ) = rα (α > 0). I plotted the resulting N̄2 function with Bm = 1, Bm = −1, and

Λm2 = −1 in case of Ḡ4 (ϕ) = A (1 + B). The solutions include naked singularities

as well as hairy black holes with an event horizon. I also found black hole solutions

with an additional singularity occurring either outside the horizon or between the two

horizons.

In section 4, I analyzed the energy-momentum tensor of a minimally coupled scalar

�eld using the nonorthogonal 2+1+1 decomposition. First, I considered the minimally

coupled Klein�Gordon scalar �eld and determined its energy-momentum tensors, when

the scalar �eld gradient is timelike, spacelike, and lightlike. Next, I derived the energy-

momentum tensor of a minimally coupled general scalar �eld de�ned by the Lagrangian

density L (X,ϕ). I discussed di�erent energy-momentum tensors with timelike, spa-

celike, and null scalar �eld gradients. The energy-momentum tensor took the form of a

perfect �uid, when the scalar gradient is timelike. In addition, the energy-momentum

tensor describes a type I imperfect �uid and a type II imperfect �uid when the scalar

�eld gradient is spacelike and lightlike, respectively.
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The nonorthogonal 2+1+1 spacetime decomposition presented in section 2 enables

unambiguous gauge �xing for the even parity sector of the perturbation detailed in Ref.

[197]. Consequently, the investigation of perturbational equations in the even parity

sector suggests a promising direction in the discussion of the EFT action introduced

in section 3. The resulting even and odd perturbational equations could be compared

with the solutions presented in Ref. [357]. It could also be of interest to analyze the

stability of perturbational equations, ruling out ghost and Laplacian instabilities, and

selecting the most advantageous gauge �xing.

The investigation of spherically symmetric, static spacetime solutions obtained in

section 3. contains additional challenges. It could be necessary to identify which

observational parameters might reveal the presence of scalar hair. Determinig which

k-essence solutions are physical and do not violate causality would be also worthwhile.

Speci�cally, the solution that could genuinely originate from a high-energy, as-yet-

unknown quantum gravity EFT approximation [225].
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