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Kivonat

A galaxis forgasgorbék, a kozmikus mikrohullamia hattérsugarzas, az la supernévak és
még szamos megfigyelés tamasztja alé azt, hogy az univerzum nemcsak a Standard Mo-
dellbdl ismert anyagfajtdkat tartalmazza. A Planck Kollaboracio 2020-ban bejelentett
eredményei alapjan a Standard Modellhez kothetd (tn. barionikus) anyag, mintegy
4,93%-a az univerzum teljes anyaganak. A fennmaradé részt a sotét anyag (26, 42%)
és a sOtét energia (68,67%) alkotja, amelyek mibenléte nem tisztazott. Ezzel parhu-
zamosan szintén elgondolkodtatd, hogy a fizika alapvetd kolesonhatasai koziil a téridé
geometriajat, illetve az azon torténd mozgast meghatarozéd gravitacié a kvantumtér-
elmélet, keretei kozott nem renormélhatd. Ezen problémék megoldasanak egy iranyat
képviseli az altalanos relativitaselméletet egy skalarmezé bevezetésével modositéo Horn-
deski elmélet, amely a skalarmezére és a metrikara legfeljebb masodrend dinamikai
egyenleteket eredményez. A Horndeski elméletre egy olyan az altalanos relativitasel-
mélethez képest magasabb rendd jarulékokat tartalmazo6 elméletként is tekinthetiink,
amely a még nem ismert, nagy energias kvantumgravitacios elmélet alacsony energi-
as effektiv térelméleti kozelitésébdl szarmazik. A modositott gravitacidelméletekre a
kozmologiai és asztrofizikai megfigyelések kényszereket jelentenek. A gravitaciés hul-
lamok fénysebességét nagy pontossiggal bizonyité GW170817 gravitacidés hullam és
GRB170817A gamma sugérzasi események miatt a Horndeski elmélet Kinetic Gravity
Braiding alosztalya fogadhato el életképes fizikai elméletnek.

A disszertacio elsd részében bemutatom a nemmeréleges 2+ 14 1 dimenzios térid6-
felbontast, amely a meréleges s + 1 + 1 formalizmus altaldnositasa amennyiben s = 2.
A nemmer6leges 2+ 1+ 1 térid6felbontas alkalmazéasa mellett biztosithaté az egyértel-
mi mértékrogzités a Horndeski elméleten beliili gdmbszimmetrikus, sztatikus téridék
perturbacidinak targyaldsakor, mivel a 3-dimenzios hiperfeliiletek merélegességét nem
sziikséges megkovetelni a perturbéacioé soran. A nemmeréleges 2+ 1+ 1 formalizmus ki-
dolgozasahoz szarmaztattam a beagyazast jellemz§ geometriai mennyiségeket, tovabba
a geometriai mennyiségek és a metrikus valtozok, valamint a metrikus valtozok koor-
dinata derivaltjai kozotti osszefiiggéseket. Ez lehetGvé teszi a Ricci-skalar felbontasat
mind a ¢ =konst. id6 koordinata altal meghatérozott 3-dimenzi6s hiperfeliilet sereghez
adaptalt (n® m®) bazisban, mind a y =konst. tér koordinéata altal meghatarozott 3-
dimenzios hiperfeliilet sereghez adaptalt (k%,[%) bazisban. Levezettem a nemmer&leges

2+1+1 formalizmus (n®, m®) bazisaban az altalanos relativitaselmélet kanonikus moz-



gasegyenleteit. Osszehasonlitottam a nemmersleges 2 + 1 + 1 formalizmus geometiai
mennyiségeit az 1 + 1 + 2 kovarians formalizmus kinematikai mennyiségeivel. Megél-
lapitottam, hogy az 1 + 1 + 2 kovarians formalizmus &, 2, 2% 6rvény komponenseinek
megfelel6 geometriai mennyiségek nem jelennek meg a nemmerdéleges 2 4+ 1 + 1 forma-
lizmusban.

A disszertacio mésodik részében bemutatom az LY = 0 Horndeski elméletbeli
Lagrange-siirtiségek kifejtéseit a téridé6 nemmeréleges 2 + 1 + 1 felbontasa soran az
(n® m®), illetve a (k% 1*) bazisokban hasznalt geometriai mennyiségekkel. Megallapi-
tom, hogy a Lagrange-siirtiségek felbontott alakja egyszeriibb a (k%) bazisban. Leve-
zettem a gombszimmetrikus, sztatikus hattérre vonatkozo mezGegyenleteket a (k%,1%)
bazisban felbontott effektiv térelméleti hatasbol. A mezGegyenleteket felirtam a Kine-
tic Gravity Braiding alosztalyba tartozd k-eszencia elméletekre. Ezen alosztaly esetén
megallapitottam, hogy csak az Einstein—Hilbert hatasbol szarmaztathaté a Schwarz-
schild megoldas. Egy, a metrikus fiiggvényekre vonatkozo feltevés mellett tobb 4] szta-
tikus, gombszimmetrikus téridé megoldast szarmaztattam analitikusan. Ezek aszimp-
totikusan nem stk téridék. A szérmaztatott megoldasok horizont nélkiili szingularitast,
egy vagy két horizonttal rendelkezé fekete lyukat tartalmaznak, avagy olyan tériddk,
amelyekben a kozponti szingularitas mellett a bels6, vagy az egyetlen horizonton kiviil
logaritmikus szingularitas jelenik meg.

A disszertacio harmadik részében bemutatom a miniméalisan csatolt Klein—Gordon,
valamint az altalanos skalarmezére vonatkozo folyadékleirasokat idészert, térszeri és
nullszerd skaldrmezd gradiens valasztédsa mellett felhasznalva a 4-dimenzioés metrikus
tenzor nemmer6leges 2 + 1 + 1 felbontott alakjat. Az Einstein—Hilbert hatdshoz mi-
nimélisan csatolt Klein—Gordon mez6, vagy az L (¢, X) Lagrange-stiriiséggel definialt
skalarmezd, amennyiben az idGszeri gradienssel rendelkezik, Ggy a skalarmezGre vonat-
koz6 energia-impulzus tenzor idealis folyadékot ir le. Térszert, vagy nullszerd skalar-
mez6 gradienssel rendelkezs Klein—-Gordon, vagy L (¢, X)-el adott altalanos skalarmezd

energia-impulzus tenzora I-es, vagy Il-es tipusi nem ideéalis folyadék.



Abstract

Galaxy rotation curves, the cosmic microwave background, type la supernovae, and
several other observations support that the universe contains more than just those
kind of matters known from the Standard Model. According to the results announced
by the Planck Collaboration in 2020, the Standard Model-related (so-called baryonic)
matter accounts for about 4.93% of the total matter in the universe. The remaining
part is made up of dark matter (26.42%) and dark energy (68.67%). The nature of
these matter types is unclear. Parallel with this, it is also thought-provoking that,
one of the fundamental interactions in physics determining the geometry of spacetime,
cannot be renormalized within the framework of quantum field theory. One direction
for solving these problems is represented by the Horndeski theory, which modifies the
general relativity by introducing a scalar field and it contains dynamical equations of
at most second order for the scalar field and the metric. The Horndeski theory can
also be viewed as a theory containing higher-order contributions to general relativity,
derived from the low-energy effective field theory approximation of as-yet-unknown,
high-energy quantum gravity theory. Modified gravity theories are constrained by
cosmological and astrophysical observations. Due to the GW170817 gravitational wave
and GRB170817A gamma ray burst events, which prove that the gravitational waves
propagate with the speed of light, only the Kinetic Gravity Braiding subclass of the
Horndeski theory can be accepted as a physical theory.

In the first part of the dissertation, I present the nonorthogonal 2 + 1 4 1 space-
time decomposition, which is a generalization of the orthogonal s + 1 4+ 1 formalism
provided s = 2. By using the nonorthogonal 2+ 1+ 1 spacetime decomposition, unam-
biguous gauge fixing can be ensured during the perturbation of spherically symmetric,
static spacetimes discussed in the Horndeski theory, since the orthogonality of the 3-
dimensional hypersurfaces does not need to be required. To develop the nonorthogonal
2+ 1+ 1 formalism, I derived the geometric quantities characterizing the embedding,
the relations between the geometric quantities and the metric variables as well as the
relations between the geometric quantities and the coordinate derivatives of metric va-
riables. This enables the decomposition of the Ricci scalar both in the (n% m®) basis
adapted to the family of 3-dimensional hypersurfaces defined by the t =const. timelike
coordinate, and in the (k% %) basis adapted to the family of 3-dimensional hypersur-

faces defined by the x =const. spacelike coordinate. I derived the canonical equations



of motion of general relativity in the (n% m®) basis of the nonorthogonal 2+ 1 + 1 for-
malism. I compared the geometric quantities of the nonorthogonal 2+ 141 formalism
with the kinematic quantities of the 1 4+ 1 + 2 covariant formalism. T found that there
are no geometric quantities in the nonorthogonal 2+ 1 + 1 formalism corresponding to
the vorticity components &, 2, Q0 of the 1 4+ 1 + 2 covariant formalism.

In the second part of the dissertation, I present the Horndeski Lagrangian with
LY = 0 in terms of variables occurring in the nonorthogonal 2 + 1 + 1 spacetime
decomposition using either (n®, m®) or (k%,1*) basis. The decomposed Lagrangian takes
a sipmler form when using the (k%,[1%) basis. I derive the field equations for spherically
symmetric, static background from a generic effective field theory action depending
on variables occurring in using (k%,(%) basis. I give the field equations for k-essence
theories of the subclass of Kinetic Gravity Braiding. For these theories, I established
that the Schwarzschild solution can only be derived from the Einstein—Hilbert action.
I found new static and spherically symmetric spacetime solutions analitically when
using a certain additional assumption for the metric functions. These solutions are
not asymptotically flat. The derived solutions contain i) a central singularity without
horizons, ii) black holes with one or two horizons, iii) beside the central singularity, a
logarithmic singularity occurring outside the single horizon or the internal horizon.

In the third part of the dissertation, I present the fluid description of a minimally
coupled Klein—Gordon and a generic scalar field with Lagrangian L (¢, X), where ¢ is
the scalar field, while X = 0,00%¢/2. 1 investigated all the cases, when the scalar field
gradient is i) timelike, ii) spacelike and iii) null, using the nonorthogonal 241+ 1 de-
composition of 4-dimensional metric. I concluded that the energy-momentum tensor of
the scalar field describes a perfect fluid, a type I imperfect fluid and a type II imperfect

fluid, when the scalar field gradient is timelike, spacelike and null, respectively.
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1. Bevezetés

A mai modern kozmologia és gravitacidelméletek kialakulasat szamos 6kori, reneszansz
filozofus, fizikus és csillagész alapozta meg. Leirtak az elsé torvényeket, példaul a boly-
gok egyméshoz képesti mozgasarol, foldi koriilmények kozott 16v6 kiterjedt testek, vagy
tomegpontok dinamikajarol, és a szabadesésrél. Mérfoldkévek voltak Kopernikusz elsé
Nap kozéppontt, illetve homogén és izotrop kozmologiai elve, amely ellentmondott az
arisztotelészi tanoknak; az atomistdk két képviselGje, Leucippus és Democritus altal
tett feltételezés, miszerint minden anyag oszthatatlan épit&elemekbdl, in. atomokbol
épiil fel, amelyekbdl végtelen mennyiség taldlhatd a végtelen univerzumban; Epicurus
Letter to Herodotus c. miive, amelyben els6ként esik sz6 a multiverzumok létezésének
lehetGségérdl; Kepler altal a Mars mozgasanak megfigyelései alapjan a bolygémozgaso-
kat targyalé harom torvény; Galilei kisérleti bizonyitéka az ekvivalencia elvére, amely
kimondja, hogy a szabadesés sebessége a testek tomegétdl fiiggetlen.

Newton jegyezte le az els6 gravitacids torvényt 1687-ben a Philosophiae Naturalis
Principia Mathematica-ban. A newtoni gravitacio alap elve, hogy a gravitacio témeggel
rendelkezd testek kozott 1étrejovE vonzo erd, amely a tomegekkel ,egyidében keletkezik”
és a kozottiik 1évs tavolsagtol fiiggetleniil ,azonnal hat”, azaz a gravitacids erd végtelen
sebességgel terjed. Gravitacioelmélete f6ldi léptékben, homogén, gyenge gravitacios tér
esetén kozel pontos eredményeket adott a testek mozgésara a Foldon és az égitestek
mozgasara a Naprendszer bels6 régidiban. Bevezette az inerciarendszer fogalmat, esz-
kozrendszert adott a kor csillagaszainak, amellyel az asztrofizikai objektumok tomegét
meg tudtik hatarozni azok megfigyelt mozgasa alapjan. Ennek kovetkezményeként az
Uranusz keringési anomaliait megfigyelve jelentette ki U. Le Verrier és J. C. Adams egy
ujonnan feltételezett naprendszerbeli bolygo jelenlétét, amely direkt észlelése utéan J.
Galle a Neptunusz nevet adta [1]. Ehhez hasonléan a Merkiar perihélium vandorlasat
is egy addig nem meg figyelt bolygoval, a Vulkdnnal probéalta magyardzni Le Verrier,
ebben az esetben hibéasan [2].

A gravitacio leirasaban a kovetkez6 paradigma valtast Einstein altalanos relativi-
taselmélete jelentette. Az altalanos relativitdselméletben a gravitaciot a geodetikus-
egyenlet és az Einstein-egyenlet geometriai modon irja le, azaz a gravitacié azonos a
térid6 gorbiiletével. Az Einstein-i gravitaciot a Gravitation cimi konyvben C. W. Mis-
ner, K. S. Thorne és J. A. Wheeler a kivetkez6képpen szemlélteti: ,,Space tells matter

how to move. Matter tells space how to curve” |3|, azaz ,A tér megmondja az anyag
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hogyan mozogjon. Az anyag megmondja a térnek hogyan gorbiiljon”. A Newton-i
gravitacios torvénnyel ellentétben, az altalanos relativitaselmélet alapjan a gravité-
ci6 (példaul gravitacios hullamként) fénysebességgel terjed; nem erd, hanem gorbiilet,
amelynek geometridjat a metrika 10 db fiiggetlen komponense hatarozza meg; tomeg-
gel nem rendelkez6 elemi részecskékre, hullimokra is ,hat”, azaz az elemi részecskék a
gorbiilt téridére vonatkozéd geodetikus-egyenlet altal meghatarozott palyan haladnak.
Az altalanos relativitaselmélet ezek mellett 4] jelenségeket is josolt. Gyenge gravitacio
esetén leirja a Naprendszer bolygoinak perihélium vandorlasat, a gyenge gravitaci-
6s lencsézést, a gravitacidos mikrolencsézést, a gravitacios fényelhajlast, a gravitacios
hullamokat, a gravitacios voroseltolodést, a radarvisszhangot. Ergs gravitacioban Sch-
warzschild vezette le az elsG fekete lyukat [4], de a féreg lyukak és az erds gravitacios
lencsézés is az altalanos relativitaselmélet megoldésaibol adodnak extrém gorbiilt tér-
idében.

Az altalanos relativitaselmélet szamos megfigyelési eredményt igazolt és Naprend-
szer léptékben (~ 5 - 10%m sugarban) a kor legmegbizhatobb elmélete volt, ennek
ellenére nem minden probléméat oldott meg. A galaxis klaszterekben a galaxisok, to-
vabba a galaxisok széls régidiban a barionikus anyag detektalt mozgasa sétét anyag
bevezetése nélkiil nem magyarazhatd. Az la tipust szupernévak luminozitas tdvolsaga
és voroseltolodasa kozott fennallo relaciobdl kapott Hubble-paraméter érték alapjan
az univerzum gyorsulva tagul, amely akkor lehetséges, ha az univerzum sotét energiat
is tartalmaz. Ugyancsak probléma volt, hogy a Standard Modellben szerepl§ anyag-
formakkal nem feloldhato a standard kozmoldgiai modell horizont, siksag és magneses
molopélus problémai, amelyek megoldasat az univerzum keletkezésének dinamikéjat
leird inflaciora vonatkozo elméletek tiizték ki célul.

1.1. Sotét anyag

F. Zwicky az 1930-as években tanulmanyozta a Coma klaszter galaxisainak mozgasat.
Folyoiratcikkeiben A. van Maanen altal mért latszolagos szogsebességeket, valamint E.
Hubble 4ltal meghatéarozott tavolsdgokat és mért latszolagos radialis sebességeket [5]
hasznalta fel. Eredményei szerint a Coma klaszter galaxisiainak szamolt valédi radi-
alis sebességei a vartnal nagyobbak, mint az kévetkezne a lathato anyag feltételezett
tomegébsl. Az NGC 4051 és M33 galaxisok esetén ez a kiilonbség koriilbeliil két nagy-

sagrend volt. F. Zwicky a vizsgdlt galaxisok tomegét a viridl tétel alkalmazasaval adta
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meg a megfigyelési adatokra alapozva. Ugy gondolta, hogy amennyiben a mérések
nem hibasak, akkor a galaxisokban és klaszterekben detektalt lathatd anyagon kiviil az
in. ,s6tét objektumok” is nagy mennyiségben jelen vannak [6], [7]. Az emlitett sotét
objektumokat szamos cikkében sétét anyagnak nevezte el.

F. Zwicky-vel parhuzamosan figyelte meg a Virgo klasztert S. Smith, majd megha-
tarozta a klaszter teljes tomegét és a galaxisok atlag tomegét. F. Hubble altal megadott
atlag galaxis tomegnél két nagysagrenddel nagyobbat szamolt. Erre magyarazata az
volt, hogy nagy tomegii és alacsony luminozitasi hideg kdd talalhato a klaszter gala-
xisai kozott [8].

F. Zwicky és S. Smith allitasaira sokan évekig csak hibaként tekintettek. F. Zwic-
ky eredményei valéban nem voltak pontosak, mivel azokat befolyasolta E. Hubble
és M. Humason altal megadott Hubble-paraméter mai értéke, azaz a Hy = 558 &
56kms~' Mpc~! Hubble-konstans [5]. Ez viszont majdnem egy nagysagrenddel nagyobb
volt, mint a Hy = 68,47 yskms™ ' Mpc~! érték, amit a Planck Kollaboracio 2020-ban
publikalt [9].

C. V. Rubin 1960-as években W. K. Ford-al az Andromeda-galaxis kiilonb6z6 régi-
it vizsgalta a centrumétol mért R = 0 — 24kpe (~ 0 — 120 ivperc) kozott DTM csoves
spektrograffal az [N I1] és Ha emisszios vonalak rogzitésével. Mérési eredményeiket
1970-ben az American Astronomical Society egy konferenciajan mutattak be. Az M31
lathato anyaganak (V') keringési sebességét kormozgas feltételezése mellett szarmaz-
tattak, tovabba szerkezeti modelleket alakitottak ki a spiradlgalaxisokra, tobbek kozott
a Tejutrendszerre is. A méréseiket felhasznélva, az altaluk alkalmazott modellek ered-
ményeit Osszefoglald 3. tablazat alapjan megallapitottik, hogy a galaxis kézéppont-
janak R = 0,4kp tartoméanyaban a lathato anyag sebessége a V' ~ 227km/s lokalis
maximumot éri el. A centrumot alkotd stirdd, koriilbeliill M ~ 6 - 10°M, tdmegt
(My = 1,9891 - 10%°kg), gyorsan kerings lathato anyag R = 2kp koriil ugrasszerien
megritkul, sebességébdl veszit. Az R = 4 — 14kp-ig a galaxis teljes tomege linedrisan
névekszik, majd lelassul és R = 24kp-en beliil eléri az M ~ 1,85- 101 M -et. Megjegy-
zik tovabba, hogy a galaxis kézpontjaban mért sebességek megegyeznek a HI 21-cm
radiomegfigyelésekkel, viszont az altaluk mért ~ 270km/s maximum sebesség ~ 9kp
tavolsagban magasabbnak adodott, mint a 21 cm-es mérés esetén. Eredményeik egy
kiragadott részét az 1. abra szemlélteti. A tomeg szamolasa soran a Kuzmin (1952) és
Brandt (1960) altal bemutatott tomeg-sebesség Gsszefliggést alkalmaztak [10].

C. V. Rubin és W. K. Ford munkija 6sztonozte a csillagaszokat és a fizikusokat,
hogy a galaxis forgésgorbéket tovabb tanulmanyozzak. Kozottiik kiemelkeds volt K.
C. Freemann [11], D. H. Rogstad, G. S. Shostak [12], M. S. Roberts, A. H. Rots [13],
R. N. Whitehurst [14], majd késébb T. S. van Albada és téarsai [15]|, Carignan és tarsai
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1. abra. Az M31 galaxis forgasgorbéje, ahol a 123 darab [N II] emisszios spektrum
alapjan meghatarozott keringési sebességek negyedrendd polinommal vannak illesztve
R < 12 ivperc esetén, mig R > 12 ivperc tavol a galaxis centrumtol 6tédrendi polinom
illesztést alkalmaztak |10].

[16], akik szamos galaxis esetén alatamasztottak, hogy a galaxis forgasgérbék mind-
egyikénél a barionikus anyag emisszios vonalaibol szarmaztatott keriileti sebességek
kozel konstansok a galaxisok centrumtol mért tavoli tartomanyaiban. 1978-ban C. V.
Rubin, W. K. Ford és N. Thonnard cikkiikben Gijabb 10 darab nagy intenzitésa spiral
galaxis forgasgorbéjét mutattak be, ahol a megfigyelést kiterjesztették a galaxisok cent-
rumtol mért még tavolabbi tartomanyaiba is. Ezen eredmények egy részét a 2. abra
szemlélteti. Kimondtak tovabba, hogy minden galaxis a centrumatol 50kpce tavolsagig
konstans forgasgorbével rendelkezik. Szintén el6szor beszéltek a galaxis kiils6 régiviban
gombszertien, tn. halokban elhelyezkedd ,hidnyz6” (nem lathato) tobblet anyagrol. Ez
utobbi, csupan elméleti feltételezés volt, hiszen vizsgalatuk csak a galaxis korongjara
terjedt ki [17].

Az egymast igazold mérési eredmények miatt elkezd6dott a hidnyzo6 tomeg, azaz a
sotét anyag keresése, tovabba annak a meghatarozasa, hogy mekkora részét teszi ki az
univerzum teljes anyaganak. Legbiztosabb sotét anyag jeldltnek gondolték a kompakt
objektumokat, példaul fehér, barna és voros torpéket, forrd Jupitereket és egyéb boly-

gokat, neutron csillagokat, kis tomegii, inaktiv fekete lyukakat, amelyek Gsszefoglald
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2. abra. Hét galaxis forgasgorbéje, ahol az illesztések soran a kiugré keringési sebességek

nem lettek figyelembe véve [17].

neve a Massive Astrophysical Compact Halo Objects, roviden MACHOs. A kompakt
objeltumok detektalédsat gravitacios mikrolencsézés megfigyelésével végzik, amelynek
elméleti alapjait Einstein fektette le, viszont gyakorlatba iiltetésére késébb keriilt sor
[18]. 1986-ban B. Pazcynski javasolta C. V. Rubin, W. K. Ford és N. Thonnard cikkére
hivatkozva, hogy célszerd lenne mikrolencsézési megfigyeléseket végezni a Tejutrendszer
és mas galaxisok feltételezett sotét anyag halojaban [19]. A MACHOs detektalasara
kialakitott mikrolencsézési megfigyelések soran nagy szamu csillag csoportosulasokat
monitoroztak a kivalaszott galxisok kozelében, figyelve a csillagok intenzitas valtoza-
sat. Ezen megfigyelések egyik jelentds célpontja a Nagy Magellan-felhs torpegalaxis
volt. Megalapult 1993-ban a MACHO Kollaboracié. Koriilbeliil 6 év alatt 14-17 darab
mikrolencsézés eseményt detektaltak a Mount Stromlo Obszervatorium 1, 27m atmérd-
ji tavesovével. A 40 - 10° darab csillag folyamatos megfigyelése soran megallapitottak,
hogy a Tejutrendszer hal6janak 8 — 50%-a lehet 0, 15— 0, 9M, tomegii kompakt objek-
tum [20]. A veliikk parhuzamosan miikodo EROS és EROS-2 (azaz Experience pour la
Recherche d’Objects Sombres) kollaboraciok majdnem ugyanennyi id6 alatt egyetlen
nem kizart mikrolencsézést észleltek a vart 39 helyett, igy sziikitve 8%-ra a kompakt
objektumok jelenlétét a Tejutrendszer halojaban [21],[22].

A 20. szazad kozepe fele sokakat elkezdett foglalkoztatni az egyre tobb felfede-
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zett elem eredete. Modelleket &llitottak fel a csillagokban lezajlo fazios folyamatokra,
megallapitva hogyan keletkezhettek a hidrogénnél és héliumnal nehezebb elemek az uni-
verzumban. 1939-ben H. Bethe levezette a proton-proton lanchoz és a szén-nitrogén-
oxigén ciklushoz kotott energiatermelést a csillagokban [23]. F. Hoyle bemutatta, hogy
massziv csillagokban a vasnél konyebb elembél all6 mag kialakuldsa lehetséges, tovab-
ba a vasnél nehezebb elemek szupernéva robbanasbol szarmazhatnak [24]. Azonban
sokkal tobb héliumot talaltak megfigyelésekkel, mint ami a csillagokban zajlo fazios
folyamatok soran létrejohet. Nem sokkal késébb R. A. Alpher, H. Bethe és G. Gamow
a fazio mellett egy 1j lehetséges magyarazatott talalt az elemek kialakulasara. Cikkiik
szerint mind a kénnyt(i, mind a nehéz elemek keletkezhettek az univerzum korai id6-
szakaszaban annak hiilése kovetkeztében neutron befogassal [25]. Szdmoléasaikat R. A.
Alpher javitotta J. W. Follin és R. C. Herman segitségével, pontositva a korai univer-
zumban kialakult hélium mennyiségét, amely alapjan arra jutottak, hogy a héliumnal
nehezebb elemek eredete nem erre az idGszakra tehetd 26|, igy keletkezésiik tovabbra
is a csillagok energiatermelésére volt visszavezetve. A kozmikus mikrohullamu hattér-
sugazas (Cosmic Microwave Background, azaz CMB) felfedezése 1j utat nyitott a korai
univerzum fejlddésének és a nukleoszintézis kutatasanak [27]. A CMB h&mérseklete
alapjan kimondtak, hogy a megtalalhaté nagy mennyiségii hélium 26-28%-a, tovabba
a bLi, °Be, 1B, "' B nagy része, mig a "Li koriilbeliil 20%-a nukleoszintézis kdvetkez-
tében johetett létre [28]. A nukleoszintézisbdl szarmazéd deutérium mennyiséget nagy
pontossaggal S. Burles, K. M. Nollett és M. S. Turner figyelték meg el6szor, majd
Qh% = 0,020 & 0,002 értékre, azaz 4,35%-ra becsiilték az univerzumban megtalal-
hato barionikus anyag sfirtiségét, ahol h = Hy/100 = 0,678kms 'Mpc~! a redukalt
Hubble-konstans [29]. A CMB hémeérséklet fluktudciojanak elméleti levezetése, vala-
mint az azzal kapcsolatos teljesitmény spektrum [ péaros és paratlan modusainak il-
lesztése, a barionikus akusztikus osszcillaciok (Baryon Acoustic Oscillation vagy BAO)
vizsgéalata tovabbi lehet&séget biztositott az univerzum fejlédésének és anyagi Gsszeté-
telének megallapitasara, és a Hubble-konstans pontositasara [30], [31]. Mivel a sotét
anyag nem vesz részt elektromégneses kolsonhatasban, ezért a CMB kozvetlen infor-
maciot nem szolgaltat mennyiségérél. Azonban a sotét anyag a galaxisok hal6jaban
a barionikus anyaghoz csoportosul, igy a struktira képz&désben jelentds szerepe volt.
Ennek kovetkeztében a teljesitményspektrum csicsainak mért elhelyezkedése, alakja,
kozvetett informéciot szolgaltat a sotét anyag strtiségrél, amelyet a 3. &abra szem-
léltet. Miiholdak épiiltek, kollaboraciok alapultak azért, hogy a CMB hémérséklet
fluktuacioit pontosabban, finomabb felbontassal tudjak rogziteni. Az erre szant leg-
sikeresebb mérémiszerek a 2010-ben kiildetését befejez6 WMAP, a Planck, a Baryon
Oscillation Spectroscopic Survey (BOSS), amely utobbi a BAO mérésére specializalo-
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3. &bra. A CMB hémeérséklet fluktuacidira vonatkozé teljesitmény spektrum illeszté-
sek kiilonboz6 €2, barionikus anyag és 4, sOtét anyag striiség esetén, felhasznélva a
WMAP adatait ugy, hogy 1 = Qp + Qap + Qa, ahol Qy a s6tét energia sirtisége [30],
[32].

dott [33]. A WMAP és a BAO mérések adatai alapjan a barionikus anyag mennyisége
Qph% = 0,02223 £ 0,00033, a sotét anyag mennyisége Q.h2 = 0,1153 40,0019, mig
a Hubble-konstans Hy = 69,32 £ 0,80kms 'Mpc' [34]. A Planck kollaboraci6 és
a BAO mérések alapjan a sotét anyag Q.h% = 0,120 & 0,001 és a barionikus anyag
Oh? = 0,0224 4+ 0,0001 mennyiségben talalhaté meg az univerzumban, tovibbi a
Hubble-konstans értéke Hy = 67,4 4 0, 5kms— ' Mpc=t [9].

A korai univerzumban lezajlé nukleoszintézis elmélet sikereire alapozva tették fel,
hogy a nagy mennyiségli sotét anyag an. primordialis fekete lyukak formé&jaban a
nukleoszintéziskor, vagy azt megel6z6 idGszakban johetett létre. A legkorabbi iddszak,
amikor primordidlis fekete lyuk keletkezhetett B. J. Carr és S. W. Hawking szerint a
Planck idére tehets ~ 107435, Ekkor a részecske-plazma inhomogenitasaibol szarmazo
lokalis stiriisodések altal keletkezett fekete lyuk témege 10™°g, sugara 10733cm, mig

hasonlo modon, de a nukleoszintézis idejében kialakult fekete lyuk tomege 107 M, lenne
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[35]. A primordialis fekete lyuk létrejotte utan témeget tud nyerni, amennyiben a
kornyezetében 1év6 részecskék akkrécio itjan beleesnek. Ezt az in. Zeldovich—Novikov

féle lasst akrécioval irtak le, amely szerint

¢
t b)
1+%(Tg0—1>

ahol M, a primordialis fekete lyuk keletkezés-kori tomege Mo-ben kifejezve, tg a pri-

M ~

mordialis fekete lyuk keletkezésének ideje, mig M a t id6beli primordialis fekete lyuk
tomege. Amennyiben az univerzum kezdeti id&szakaban My ~ ¢y, akkor a lassi akk-
récio miatt a primordialis fekete lyuk tomege azonos aranyban nd, mint ahogy az idé
telik. Ez azt eredményezi, hogy a jelenben olyan nagy lenne egy ilyen primordialis fe-
kete lyuknak a horizontja, hogy az akkrécié kovetkeztében vagy mar beleestiink, vagy
elkezdtiink beleesni. Fz nagy valészintiséggel nem tortént meg a megfigyelések és ta-
pasztalataink alapjan. Feltették, hogy a Zeldovich—Novikov akkrécié csak a hattér
energiastriiségének egy bizonyos mértékéig zajlik, az univerzum tn. sugéarzas altalt
dominalt idGszakaban. Az ilyen modon keletkezd primordialis fekete lyukak tomege a
sugarzas dominalt idGszak és az akkrécio lealta utan kiirdlbeliil 10'° — 1017 M -re néne,
amely magyarazata lehetne a megfigyelt szupermassziv fekete lyukaknak a galaxisok
kézéppontjaban. Az univerum ilyen korai idészakaban keletkezett nagy tomegi fekete
lyukak azonban a CMB szerkezetében jelentds fluktudcioként jelennének meg, ame-
lyet a CMB mérései nem mutatnak. Fzért, vagy nem keletkeztek primordiélis fekete
lyukak, vagy nem a Zeldovich-Novikov akkrécios folyamat irja le keletkezésiik uténi
fejlodésiiket, vagy keletkezésiikkor fennallt az My < ty feltétel. Ha M, < ty, ugy a
primordidalis fekete lyuk akkrécioja elhanyagolhaté mértékid, ezért mérete és tomege
nem valtozik, igy napjainkban tomegiik nem sokkal 107°g felett lehet. Hawking egy
kovetkezd folyoiratcikkében bemutatta a fekete lyukak (és fehér lyukak) termodinami-
kai leirasat. Levezette azok erds gravitacios terének koszonhets spontan részecske-par
keltésbol adodo 1,2- 102 M 1K homérsékleti sugarzasat [36]. A Hawking sugarzés so-
ran a Jlyukak” veszitenek tomegiikb6l, mikoézben horizontjuk csokken és hdmérsékletiik
né. A folyamat soran ~ 10726 M3s alatt parolognak el teljesen (itt M az adott fekete
lyuk grammban megadott tomege). Egy fekete lyuk parolgésabol szarmazo részecske
sugarzas detektdlasa szinte lehetetlen, mivel hémérséklete 1077 K, amely az univerzum
2, 73K hémérsékletéhez képest elenyészé. D. N. Page és Hawking 0 tomegkritériu-
mot hatarozott meg a primordialis fekete lyukakra, figyelembe véve azok parolgasat
is. Megéallapitottak, hogy azok a primordialis fekete lyukak, amelyek kezdeti tomege
kevesebb, mint 5 - 10'g volt mara tejesen elparologtak. Azonban az 5 - 10'*g-nal csak

egy kicsit nagyobb témegt primordialis fekete lyukak jelenleg 2,5 - 101K = 20MeV
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hémérsékletiick, ami alapjan ~ 2,5 - 1017ergs/s energiat sugaroznak. Ezen sugérzas
1%-a graviton, 45% neutrino, 45% elektron vagy pozitron, és 9% foton. Feltételezéseik
alapjan a primordialis fekete lyukaktol szirmazéd sugarzas foton formajaban eljuthat
a Foldre és detektalhato 120MeV-0s nagy energidji gamma sugarzasként barmely
iranybol [37|. Sotét anyag szerepet betolté primordialis fekete lyukak tomegét nagy
szazalékban koriilbeliil naptomegiinek, vagy a naptomeg néhanyszorosanak gondoltak,
amelyek jelentds szamban kettds rendszereket alkothatnak [38].

A LIGO és Virgo kollaboraciok altal végzett gravitacios hullam detektélas [39] utan
szamos folyodiratcikk foglalkozott a primordiélis fekete lyukak kimutataséval sztochasz-
tikus gravitacios hullam hattér formajaban. A 2016 utan megnévekvs gravitacios hul-
lam észlelések nem igazoltédk ezt, amelynek oka az is lehet, hogy a primordialis fekete
lyuk kett6sok Osszeolvadasabol szarmazoé sztochasztikus gravitacios hullam hattér ala-
csonyabb frekvenciaji, mint amin LIGO és Virgo detektorok mérnek [40]-[42].

A MeV energiaji gamma kitorési, mikrolencsézési, rontgen pulzar altali lencsézé-
si megfigyelésekbdl szarmazd eredmények arra mutatnak, hogy bolygd méreti, vagy
naptomegii, vagy a naptomeg tobb tizszerese méret primordialis fekete lyukak nem
adjak ki a jelenleg ismert teljes s6tét anyag mennyiséget. A tovabbi ismeretek szerint a
107 — 10%2g, azaz aszteroid toémegi primordialis fekete lyukak lehetnek jo sotét anyag
jeloltek, amelyekkel kapcsolatban is felmeriilt néhény probléma:

- Jelenleg a MeV gamma detektorral és mikrolencsézéssel észlelhets aszteroid tome-
gii primordialis fekete lyukak tomege 10%%g, vagy e folotti, emiatt sziikséges technikai
fejlesztéseket bevezetni a teljes aszteroid tomegil primordidlis fekete lyuk spektrum
megfigyelése érdekében [43];

- A primordialis fekete lyukak kialakulasat biztositd lokalis stirtisodések leirasdhoz
az un. ultra-lassi-gordiilés inflicios modell alkalmazasa az elterjedt. Ez a modell
azonban tovabbi finomhangolast igényel ahhoz, hogy a CMB teljesitmény spektrumot
a méréseknek megfelelGen adja vissza tovabba, hogy a megfigyelésekkel kompatibilis
szami és eloszlast primordialis fekete lyukak keletkezését irja le [44], [45];

- Galaxis és klaszter léptékben a primordidlis fekete lyukak eloszlasanak egyeznie kell
a megfigyelt sotét anyag eloszlassal a homogén és izotrép univerzumban. Amennyiben
a primordialis fekete lyukak tekinthetGk sotét anyagnak, akkor az univerzum fejldésé-
nek a sugarzas és anyag energiastiriiségek egyenlfségének idészaka utan elkezd6dott a
primordialis fekete lyukak klaszterez6dése. Az igy kialakult kettds vagy tébbes rendsze-
rek sziiletésének és fejlédésének elméleti tanulmanyozasa maig zajlik, figyelembe véve
a sotét anyag halokban torténd csoportosulasat [46].

A sotét anyag azonositasara keletkeztek részecskefizikai modellek is, amelyek a Stan-

dard Modell problémainak megoldasara épiiltek. Ezek példaul a Higgs/hierarchia prob-
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léma és az erds CP-probléma. A Higgs/hierarchia probléma szerint nem lehet tudni,
hogy az elektrogyenge szimmetria sértésbdl szarmazé Higgs bozon tomege miért kicsi,
azaz miért éppen my ~ 100GeV < Mp;. Az erés CP-probléméaban az erés kolcsonha-
tast leir6 kvantum-szindinamika (quantum chromodynamics, azaz QCD) esetén nem
figyelhets meg toltés (C) és paritas (P) szimmetria sértés, annak ellenére, hogy az el-
mélet megengedi. A Higgs/hierarchia probléma egy megoldasaként az in. WIMP-eket
(azaz Weakly Interacting Massive Particles), mig az er6s CP-probléméanal az tn. axio-
nokat vezették be, amelyek ugyancsak megfelels sétét anyag jeldltnek mutatkoztak.
Tekintve a mért CMB hémérséklet fluktuaciot a struktirafejlédést leir6 numerikus szi-
mulaciok alapjan a megfelel6 s6tét anyag részecske nem relativisztikus, avagy ,hideg”,
nem barionikus, és stabil az univerzum korat tekintve, tovabbé graviticidsan, esetleg
gyengén kolesonhatd. Ezeknek a feltételeknek megfeleltek a WIMP-ek, az axionok, az
un. steril neutrinok, de felmeriiltek az extra dimenzidkat, vagy a szuperszimmetriat
(SUSY) targyalo elméletek is a sotét anyag magyarazatara [47).

Kézenfekvs feltételezésnek tiint elsére, hogy a hosszu ideig stabil, gyenge és gravi-
tacids kolcsonhatasban résztvevs neutrinokra essen a valasztas, mint sotét anyag. A
neutrinok keletkezésének és a neutrindoszcillacido magyarazataval szdmos kutato foglal-
kozott megallapitva, hogy az univerzum kezdeti szakaszidban nagy mennyiség(i neutriné
keletkezett [48]. A neutrinok azonban kis tomegiik miatt forr6 sotét anyag jeloltek, en-
nek kovetkeztében vagy kizartdk Sket vagy alternativ elméletekkel magyaraztak sotét
anyag jellegiiket [32], [49]-[53]. Egy ilyen elméleti 6tlet abbol a ténybdl szarmazik, hogy
a Standard Modellben a fermionok és anti parjaik jobb és bal kezesek is lehetnek, azon-
ban nem detektaltak még jobb kezes neutrindt, vagy bal kezes antineutrinét. 1994-ben
S. Dodelson és L.. Widrow a jobb kezes neutrinokrol, azaz steril neutrinokrol tették fel,
hogy lehetnek hideg vagy forré sotét anyag részecskék. Steril neutrino keletkezhet ki-
ralis oszcillacio soran [47], [54], [55]. Jelenlétiikre szorodasi anomalidk megfigyelésével
kovetkeztetnek, amelyek detektalasat a Liquid Scintillator Neutrino Detector (LSND)
kisérlet [56] tlizte ki célul. Jelenleg a steril neutrinok ki lettek zarva, mint sotét anyag
részecskék a Chandra [57], a MiniBooNE [58] detektor és az IceCube [59] mérései alap-
jan, mivel nem talaltak anomaélidkat a mérésekben.

A WIMP egy myear ~ 10GeV — TeV tomegl részecske, amely kolcsonhat a W
és 7Z bozonokkal. Keletkezését a részecske sotét anyag feltételezett 1étrejottével azo-
nosnak gondoljak, azaz az tn. termikus kifagyas (thermal freeze out) folyamatahoz
kotik [60]. A termikus kifagyas szerint, az univerzum sugéarzas dominalt idészakaban
a kezdeti forro és stird sotét anyag termikus egyensilyban van a Standard Modell
részecske-plazméaval. Az univerzum taguldsa soran azonban h&mérséklet lecsokkent az

un. Ty kifagyasi h6mérsékletre. A Ty az a hémérséklet, amikor a tdgulas sebessége
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meghaladja a sotét anyag bomlési sebességét, azaz a sotét anyag részecskék annyira
eltavolodtak egymastol, hogy nem tudtnak annihilalodni. A termikus kifagyas utan a
sotét anyag részecskék mennyisége a T ,pillanatbeli” szdmukkal kozel azonos maradt
az univerzumban. A folyamatot a Boltzmann egyenlet numerikus megoldasaval mo-
dellezték [61]. A Higgs/hierarchia probléma egy masik megoldasaként lett bevezetve
a SUSY, amely szerint minden Standard Modell részecskének létezik egy szuperszim-
metrikus részecske parja, amelyek a spin kivételével ugyanolyan kvantumszamuak. Az
egyik ilyen szuperszimmetrikus részecske a neutraliné vagy a gravitino, amelyek szintén
megfelels WIMP és SuperWIMP (azaz nagyon gyengén kolesonhato WIMP) jeloltek
[62]. WIMP részecske lehet az univerzalis extra dimenziok (Universal Extra Dimen-
sions, UED) elmélete alapjan bevezetett in. Klauza-Klein sotét anyag is, amely T.
Klauza és O. Klein nevéhez kothets [63], [64]. Az UDE elméletben minden Standard
Modell részecskének van végtelen Klauza—Klein részecske parja, egy darab minden tn.
Klauza—Klein szinten. Azonban a Standard Modell részecskének és Klauza-Klein ré-
szecske parjanak a spinjiik azonos, ezért ez az elmélet a Higgs/hierarchia problémét
nem oldotta meg [47]. A WIMP-ek detektalasa érdekében tobb kollaboracio is meg-
alapult, példaul a Fermi-LAT [65], a XENON [66], a LUX [67], és a DarkSide [68].
Két Standard Modell részecske iitkoztetésekor keletkezd Standard Modell részecskék
mellett kerestek WIMP-eket az LHC részecske gyorsitoban is sikerteleniil [69].

Axion sOtét anyag bevezetésekor, az erds CP-probléma feloldasa érdekében egy
a pszeudoskalarmez6t tartalmazo kolesonhatasi taggal egészitik ki a QCD Lagrange-
stirtiséget, amelyben az f, axion bomlasi paraméter adja meg, hogy a CP szimmetria
mennyire van sértve. Az f, ardnyos az a pseudoskalarmezs m, tomegével gy, hogy

1 /Mgmyg <1012G€V>

Mg = ———— My fr = O6ueV f—

 famu +mg
ahol m,, a fel” (,up”) kvark témege, my a ,le” (,down”) kvark tomege, m, a pion tome-
ge és fr a pion bomlasi konstansa. A erds CP-probléma els6 elméleti megoldasa R. D.
Peccei és H. R. Quinn nevéhez kothetd [47], [70]-[72]. Az axionok kolesonhatnak glu-
onokkal, fermionokkal és fotonokkal, ezért az axion tomegének szamos fiiggetlen kény-
szert kell teljesitenie. Az axionok megfigyelése egy Standard Modell elemi részecskével
vald szordodas utjan laboratoriumi, vagy kozmoldgai mérésekkel torténik. A kezdeti
elképzelések szerint m, ~ MeV, majd m, > 10keV, amely ugyancsak ki lett zarva,
mivel gyorsabb miion bomlist eredményezne, mint amit megfigyelnek. Amennyiben
ma ~ leV nagysagui, ugy a voros oridsok gyorsabban hiilnének [18], az 1987A szuper-
néva megfigyelés szerint pedig m, < 1073V [73]. Kifejezetten sotét anyag axionok

keresése érdekében alapult meg az tn. Axion Dark Matter Experience (ADMX) és
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ADMX-HF (HF, mint High Frequency), amely az ay* — 7 Primakoff folyamaton
alapszik, kihasznalva a galaxis halékban a feltételezett axion-foton csatolodast. Sotét
anyag axionok keletkezésére utalo jeleket keresnek a Nap koronadjaban [74]. A KA-
GRA gravitacioshullam detektor szintén alkalmas axion sétét anyag keresésre a lézerek
polarizaciojaban torténd valtozasok detektdlasa utjan [75]. Az axionok kialakulhat-
tak termikus folyamatok utjan, mint a Standard Modell elemi részecskék az univezum
sugarzas dominalt idGszakaban, azonban ebben az esetben nem tudja kitenni a teljes
sotét anyag mennyiséget [76]. Az axionok keletkezhetnek nem termaélis uton is, ami-
kor az univerzum hé&mérséklete elérte T' ~ f, értéket. Ekkor kovetkezik be az tn.
Peccei-Quinn fazisatmenet, azaz az axion mezd helyrdl helyre mas értéket vehet fel a
minimalistol eltéren. A Peccei—Quinn fazisdtmenet kiiloboz6 joslatokat ad az axio-
nok mennyiségére az univerzumban attol fiiggen, hogy az az inflacié el6tt, vagy utan

kovetkezik be, amely esetek bizonyitasa és elemzése jelenleg is kutatott [47].

1.2. Sotét energia

Az altalanos relativitaselméletbdl levezethet6 az univerzum téguléasa, viszont az 1920-as
években az un. steady-state” vagy ,allando allapotd” univerzum-kép volt elfogadott,
amelynek biztositasa érdekében Einstein a A kozmologiai konstanssal egészitette ki
az Einstein-egyenletet. Hubble 1929-ben megfigyeléseivel bizonyitotta az univerzum
tagulasat [77|, ezért Einstein a A kozmologiai konstansrol késébb tgy nyilatkozott,
hogy ,the biggest blunder of my life”, azaz az ,glete legnagyobb baklovése” [3].

A sOtét energia fogalménak tényleges és tudatos kialakuldsa az univerzum kései
szakaszanak gyorsul6 tagulasahoz kéthetd, amely felismeréséhez az tn. ,standard vagy
standardizélhato gyertyanak” nevezett Ia tipust szupernovik megfigyelései vezettek.
Ezen felfedezésért S. Perlmutter, B. Schmidt és A. Reiss 2011-ben Nobel-dijat kapott
[78]-[81]. Az Ia tipust szupernova kiilonlegessége annak kialakulasanak folyamatahoz
kothets. Egy kettGs rendszert alkotd fehér torpe és vords orias kdzotti tomeg akkré-
ci6 sordan a fehér torpe tomege n6. Amennyiben a fehér torpe tomege atlépi az un.
1,44M, Chandrasekhar hatartomeget, akkor fekete lyukkd zuhan Ossze a gravitécio
hatéséra [82]. Az igy kialakult Ta tipusu szupernévak luminozitasa kozelitéleg meg-
egyezik. A luminozités valtozasa és értékei a kozeli, azaz kis voroseltolodasu (z < 0,1)

[a szupernovak megfigyelésébdl ismert adat. A detektalt maximum luminozitéssal (L)
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és fluxussal (f ) direkt modon kiszamolhaté az objektum d, luminozitas tavolsaga:

L
2 = — .
L dnf
Egy asztrofizikai objektum dj luminozités tavolsaga kapcsolatban van a vordseltolo-
dassal, amelybdl tovabbi kozmolégiai paraméterek szarmaztathatok.
A homogén és izotrop univerzumot a Friedmann—Lemaitre—Robertson—Walker
(FLRW) téridd irja le, amely a

2

— k12

d
ds* = —dt* 4 a* (t) L N TdeQ} :
ivelemnégyzettel rendelkezik, ahol —0co < t < 00, 0 < r < o0, dQ2? = db? + sin® Odp?
tgy, hogy 0 <0 <7, 0 < ¢ <27m. Ak ==1,0a gorbiileti index, amely kifejezi a térbeli
geometriat: 0 euklideszi, —1 hiperbolikus, +1 gémbi, valamint a (t) a skalafaktor. Az
FLRW téridé az

1
Rab =81G (Tab - §gabT)

Einstein-egyenlet alapjan megkoveteli, hogy az univerzum anyagara vonatkozd T,
energi-impulzus tenzor idealis folyadék legyen, amelynek elemei: Ty, = p az ener-
giastirtség; To, = 0; T, = a*pgu, ahol p az izotrép nyomés. A tovabbiakban az
a,b = 0,1,2,3 latin indexek a téridéindexek, mig a u,v = 1,2,3 goérég indexek a
térindexek, tovabba a kifejezések a fénysebesség ¢ = 1 egységben értendek. Ezek

ismeretében a kozmologia két dinamikai egyenlete szarmaztathato. Az egyik az

a e

P —T(P+3p) (1.1)

Raychaudhuri-egyenlet, amely az Einstein-egyenlet 00 komponense. A masik az

a>+k 871G
5 = P (1.2)

a

Friedmann-egyenlet, amely az Einstein-egyenlet 00 és purv komponenseinek kiilénbségé-
b6l vezethets le. A VT, = 0 &sszefiiggéshdl a

p’+3g(p+p):0 (1.3)

a folytonossagi-egyenlet, amely a Raychaudhuri- és Friedmann-egyenletbdl is kaphato.

A dinamikai egyenletek megoldasahoz sziikség van a p és p kozott fenéllo allapot-
egyenletre, kiilonben az egyenletrendszer nem zart. A kezdeti univerzum sugarzas-
dominalt volt, ezért p = p/3, valamint pp ~ a™* ~ t72és ar ~ tY/2. A foton le-

csatolodas utan (T ~ 3000K, z ~ 1100) az univerzum anyaga porral modellezhetd,



1.2 SOTET ENERGIA 21

107° +

Radiation- Matter-dominated era Dark energy-
dominated era: : dominated
| ;era

1071

10715 L

10720 | Matter

Radiation

Energy density [kgm ™3]

Dark energy
107%

Matter-radiation equality Present epoch

1074 1073 1072 107t 1
Scale factor a(t)

4. dbra. Az univerzum korai idészakdban a pg energiasiiriiség volt dominans (piros),
ezért ezt nevezik a sugarzas-dominalt (radiation-dominated) idgszaknak. A sugarzas-
dominalt id6szak az anyag-sugarzas egyenlGségig (matter-radiation equality) tartott.
Az anyag-sugéarzas egyenlGség utan a pys energiasirtség (kék) volt meghatarozo. Az
anyag-dominalt (matter-dominated) idészak vége koriilbeliil z ~ 0,55. Ezutan a w =
—1 £ 0,2 allapotegyenlettel rendelkezd sotét energia py energiastirisége (zold) valt
dominénssa. A sotét energia-dominalt (dark energy-dominated) id@szak napjainkig
tart [83].

3

ekkor p = 0, igy pyr ~ a3 ~ t72 és ap ~ t2/3. A kés6i univerzum struktarakép-

zGdési szakaszdban feltették, hogy az univerzumban a A kozmol6giai konstans, azaz
s6tét energia-dominancia van. Ekkor p = —p, amelybdl py ~ dll. illetve ay ~ et
Az univerzum egyes korszakaiban a pr, pa és pa energiasiirtiségek egyméashoz képesti
aranyat a 4. abra mutatja be.
Az (1.2) Friedmann-egyenlet atirhato a
H? k at 881G

W Hae 3

(pa + pr + PR)

modon. Amennyiben behelyettesitjiik az energiastiriiség id6fejlédésére vonatkozd 6ssze-



1.2 SOTET ENERGIA 22

fiiggéseket, és elvégezziik az x = a/ay valtozocserét, akkor az

j}2

= Q.+ U+ Q2+ Q!

egyenletet kapjuk tugy, hogy

K 8r(G G 81G

Q/{:_ ) = ) = ’ Qr = :
H2d2 A= 3 M= 3o LRy I

Az 1j valtozokban az ag a skalafaktor ,mai” értéke, az {2, magaba foglalja a barionikus
anyagot és a sOtét anyagot, az (g elhanyagolhato, ha az univerzum késéi idGszakat
vizsgaltuk, valamint 1 = Q, + Qx + Qpr + Qg.

A kozmologiaval kapcsolatos megfigyelések egyik célja az a (t) skalafaktor idbeli
fejlédésének lehetd legpontosabb meghatérozasa, ezért az a (t) Taylor-sorabol a kovet-

kez6 kozmologiai paramétereket definidltak:

aa aa
H (t) = q (t) = ? ) Q (t) = d,3 ;
‘aal d°a a* d%a a®
X(Mt) = — YW =55, Z0)= 55"

Itt H (t) a Hubble-paraméter, ¢ (t) a lassulasi paraméter, @ (t) ,jerk” azaz  hirtelen
rantas”, X (t) ,snap”’ azaz hirtelen mozdulat”, Y (t) ,crackle” azaz .ropogas’, Z (t)
,pop” azaz ,pattogas”’, valamint magasabb rendt id6 derivaltjai is lehetnek kozmologiai
paraméterek [84]-[87]. A ¢ (t) lassulasi paraméter mai értéke alapjan lehet eldonteni,
hogy a jelenben az univerzum tagulasa lassul (¢o > 0), vagy gyorsul (g < 0).
Tekintve, hogy a detektalt foton (ds* = 0) radialisan terjed (df = 0, dp = 0), j6v6

irdnyitottsagi és k = 0, akkor

Ve aft,)
)= =2
(14z)=—2

a(t)’
ahol v, a foton kibocsajtaskori frekvencidja, v, a foton megfigyelt frekvencidja, t. a
foton kibocsajtasanak idGpontja, t, a foton megfigyelésének idépontja, ag = a (t,). A
luminozitas tavolsagot a

dp ~ agr (2) (1 + 2) (1.4)

adja meg, ahol aor (2) a sz6gatmérs tavolsagbdl szarmaztathato [88]-[90]. FLRW térids
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esetén az (1.4) Gsszefiiggésben

( B to T
: d
sin f #) , har=+1
LN
to
r (Z) = f % s ha k=0
t(2) }
o
sinh f aw | o hak=—-1.
\ [L(2) ]

Amennyiben k = 0, Ggy a

dp, ~ I

1
1 -1
(1+2) / dx [xQ\/QA + Q2+ Qa3+ QRx*‘*]
0
(1+2)7"
a luminozitas tavolsag [91].
Az Ta tipust szupernéva megfigyelések sorédn a

1 (1 — )
dL HU |:Z+Z 5

kozelitést alkalmaztak, amely segitségével a lassulasi paraméter
1
qo ~ §XJ:QJ(1+3w[) .

A mérésekbdl a go ~ —0,55, valamint a Hy = 74,8 £ 3, 1kms ' Mpc™! értékeket kap-
tak [80], [81], ahol J = Ak, M, R és w; = py/ps. Az univerzumban megtalalhatd
anyagformék siirtiségét és a kozmologiai paramétereket tobb szaz nagy vordseltolodéasi
(z ~ 1) Ta tipust szupernéva megfigyelésbil szarmaztattak. Ezen szupernova megfigye-
léseket példaul a SuperNova Legacy Survay (SNLS) [92], Hubble Teleszkop [93] és az
ESSENCE (Equation of State: SupErNovae trace Cosmic Expansion) [94] felmérések
végeztek.

A kés6i univerzum gyorsulva tagulasidnak megéllapitasa utan koztudotta valt, hogy
a homogén, izotrép univerzum a barionikus anyagon és a hideg sotét anyagon kiviil sétét
energiat is tartalmaz. A gravitacidésan taszitd sotét energiat elGszér a A kozmologiai
konstanssal vezették be, amelyet a ACDM (A — pprp = —ppr, wpg = —1, CDM
— pepm = 0, Q= Qp + Qopyr) modellnek, vagy standard kozmologia modellnek
neveznek.

Az Ta tipusi szuperndva megfigyelések feldolgozasaval lehetGség adodott a kozmo-
logiai paraméterek CMB és BAO mérésektdl fiiggetlen meghatarozasara. A Planck
Kollaboracio és a BAO mérései alapjan a ACDM modellre kapott Hy = 67,4 +
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5. abra. Az abran a CMB (narancsséarga) és Ia tipusu szupernova (z6ld) megfigyelések-
bl szarmaztatott H, értékek Gsszehasonlitasa lathaté a |96] folyoiratcikk szerzdinek

eredményeivel (piros, kék).

0,5kms™ Mpc™' [9] azonban hibahatéron kiviil eltér a Hubble Teleszkop és a SHOES
kutatocsoport Ia tipusi szupernova (UV-IR) megfigyeléseibdl szarmaztatott Hy =
73,30+ 1,04kms™* Mpc! értéketsl [95]. Szamos kollaboraciot és kutatocsoportot fog-
lalkoztat napjainkig a Hy meghatarozasa, de jelenleg sem lehet tudni, hogy az Ia tipusi
szupernovak megfigyeléseibél vagy a CMB és BAO mérésekbdl szarmazéd eredmények
adjak meg a valodi Ho-t. Ezt nevezik Hubble-fesziiltségnek (,Hubble-tension”), amely
feloldésa érdekében tett kisérleteket az 5. abra szemlélteti [96].

A Hubble-fesziiltség végss eldontését remélték egy tovabbi, az eddigiektdl eltérd mé-

rési modszer biztositasaval, példaul a gravitacios hullamok mérésével, amelytél igéretes
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6. 4bra. Az abran a Planck (levendula), a SHOES (tiirkiz), tovabba a neutroncsillag
kettds Osszeolvadasabol szarmazdé GW170817 gravitacids hullam eseménybdl és elekt-
romégneses tars-eseményébdl (kék) szarmaztatott Hy értékek osszehasonlitasa lathato
a [104] folyoiratcikk alapjan. A GW170817 esemény és a tars-esemény hibajat a fiig-

gbleges kék és narancssarga szaggatott vonalak jel6lik.

eredményeket vartak a sotét anyag kérdésben is (primordialis fekete lyukak egybeolva-
déasanak detektalasa, sztochasztikus gravitacios hullam hattér). A gravitacios hullam a
Minkowski metrika els6rendii perturbécidja esetén a vakuum Einstein-egyenlet megol-
dasa. A gravitacios hullam egy hy plusz és hy kereszt polarizacobol all, amely a térid6
két pontja kozotti tavolsag periodikus valtozasa. A gravitacioés hullam fénysebesség-
gel terjed, viszont eltéréen az elektromagneses sugarzastol, a forrasa a tomegeloszlasra
vonatkoz6 kvadrupél-momentum véltozas. Az els6 kettds rendszert alkotd pulzar de-
tektalasa és egyuttal a gravitacios hullam létezésének elsd, de kozvetett észlelése R. A.
Hulse és J. H. Taylor nevéhez kéthetd az 1974-1975-es években [97]. A mérés soran
nagy pontossaggal igazoltak egy neutron csillagbol és egy pulzarbol allo kettds forgéasi
sebességének idébeli valtozasanak elméleti joslatat, amit a rendszer altat kisugarzott
gravitacios hullam okoz. Az elsd, kozvetlen fekete lyukak Osszeolvadasabol 1étrejott
gravitacios hullam rogzitése az altaldnos relativitaselmélet utdn egy évszazaddal ké-
s6bb, 2015-ben tortént [98]. A gravitacios hullam esemény detektalasat a LIGO majd

az aLIGO (advanced LIGO) kollaboracié végezte, amelyek mitiszerrendszerét és infra-
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struktarajat évtizedekig épitették. Az alLIGO detektorrendszer két lézer interferométer
Livingston és Hanford teriiletén. A gravitacios hullam esemény ~ 107'¥m periodikus
tavolsagvaltozast okozott a detektorok karjaiban. Ezt azota szamos tovabbi gravitaci-
6s hullam detektalas kovette, amelyek két fekete lyuk, egy fekete lyuk és egy neutron
csillag, vagy két neutron csillag Gsszeolvadasabol jottek létre [99]-[103]. Késsbb to-
vabbi gravitacios hullam detektorokat épitettek, ezek a Pisa melletti Virgo detektor és
Japanban a KAGRA detektor. Habar az aLLIGO, a Virgo és a KAGRA megfelel§ érzé-
kenységt a gravitacios hullam detektaldsohoz, viszont a Hubble-fesziiltséget nem tudta
feloldani, mivel az aLIGO és Virgo adatai alapjan Hy ~ 68, 7f%77é0km5_1Mpc_1 [104]-
[107], amelyet a 6. abra mutat be.

1.3. Médositott gravitaciéelméletek

A s6tét anyagként és sotét energiaként értelmezett megfigyelési eredmények magyara-
zatanak egy masik iranyat képvisel§ elméletek az altalanos relativitaselmélet (eseten-
ként a Newton-i gravitacio [108], [109]) modositasat javasoljdk. Ezek szerint nem tj
anyag- vagy energiaformak bizonyitékai a megfigyelések, hanem annak, hogy nem az
altalanos relativitaselmélet a megfelel§ elmélet, amely leirja az univerzum dinamikéajat
asztrofizikai és kozmologiai léptékben.

Egy altalanos relativitaselméleten tili elmélet megalkotasénak szamos modja van,
példaul: egy, ketts, s db dimenzos bévitéssel {Klauza—Klein gravitacio [110], [111],
Dvali-Gabadadze-Porrati (DGP) [112], tn. Dark Dimension (DD) forgatokonyvek
[113] és egyéb Bran elménetek [114]}; a metrikus tenzor szabadsagi fokai mellett az
elmélet kiegészitése skalarmezGvel {Galileon elméletek, Horndeski elméletek, Kine-
tic Gravity Braiding vagy KGB elméletek, Einstein-Dilaton—Gauss—-Bonnet gravitécio
[115]}, vektormezével {Einstein—ather gravitacio [116]}, tenzorral {Bimetric elméletek
[117], Multimetric elmélet [118]}, esetleg ezek kombinacidjaval vagy megtobbszorozé-
sével {Tensor-Vector-Scalar azaz TeVeS gravitacios elméletek [119], két skaldrmezot
tartalmazo k-eszencia elmélet |120]}; tomeges gravitonnal {Massive Gravity [121]};
az altalanos relativitdselmélethez képest magasabb rendi gorbiileti tagok behozasaval
{Hofava-Lifschitz gravitacos elmélet [122], [123], f(R) gravitacio}, nem-lokélis operato-
rok hozzaadasaval {Non-local gravitacios elméletek [124]}; stb. A modositasokat sziik-
ségszerid ugy bevezetni, hogy az adott j elmélet Naprendszer léptékben az Einstein-i

gravitaciot adja és megfeleljen a megfigyelésekbdl adodéd kényszereknek.
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Az altalanos relativitaselmélet publikicidja utdn par évvel egyrészt a tudoményos
kivancsisag altal vezérelve [125], masrészt az Einstein—Hilbert hatas nem-renormalizalha-
tosaganak megoldasa érdekében korrekcios tagok bevezetésével [126], [127] jelentek
meg az elsé olyan — Extended Theory of Gravity (ETG) névvel osszefogott — elméle-
tek, amelyek a Ricci-skalar mellett /helyett magasabb rend( gorbiileti tagokat (R Ry,
R®R 1.q, ROR, stb.) is tartalmaztak. Ezeknek az elméleteknek egy dga az f (R)
elmélet, amelyben az R Ricci-skalart egy téle fiiggs altalanos fiiggvénnyel helyettesitik.

A metrikus f (R) elméletek Lagrange-stiriisége az

Ly = [ (R)
alaki, ahol
as o R? R3
R=.4+=4+—=-2A+R+—+ —...
f(R) R* R Ba B3

és az oy, [; konstansok. Késébb ujabb alternativak jelentek meg: a Palatini f (R)
gravitacio [128], és a metric-affin f (R) gravitacio [129], [130].

Az ETG esetén, viszont instabilitasok is felmeriiltek [131]. Koziilik kiemelendd
figyelmet kapott (de nem az egyetlen) az Ostrogradsky-instabilitas, amelyre sokkal ko-
rabban, 1850-ben M. V. Ostrogradsky mar ramutatott [132|, [133]. Levezette, hogy a
valtozok elsérendnél magasabb rendi idéderivaltjait tartalmaz6 Lagrange-fiiggvénybol
(pl. L (z,x,%) vagy L (gzﬁ“, ¢, gzﬁa)) szarmaztatott Hamilton-fliggvény linearisan insta-
bil. Ezt a [134] hivatkozasban ismertették, amelyben a ¢ masodrendi idéderivaltat
tartalmazo Lagrange-fiiggvény elsé tagjanak (2 — 1) szorzasaval, a ¢ = 1 valtozocseré-
vel, mad egy teljes idGderivalt elhagyasaval, végiila ¢ = (¢ + ) /v2, Q = (¢ — ) /V/2
Gjabb valtozocserével ([134] folyoiratcikk (2), (3) egyenletek) az

b

) b .
L= —EQQ + §Q2 —U(9) (1.5)

csak elsérendd idéderivaltakat tartalmazo Lagrange-fiiggvényt alakitottak ki. Az (1.5)
egyenletben a negativ elGjeli kinetikus tagot hivjak ,ghost”, azaz ,szellem” instabili-
tasnak.

Az els6, skalarmezével modositott gravitacid elmélet P. Jordan dolgozta ki, amely-
ben a ¢ skaldrmez6 a 7R nem minimélis csatolasi tagon és egy kinetikus tagon ke-
resztiil jelenik meg a gravitacios hatasban, ahol v =konst [135], [136]. P. Jordan

skalar-tenzor elméletére alapozva C. Brans és R. H. Dicke az
w
Lpp = pR — Eg“baacpaw — V()

(v = 1) Lagrange-siirtiséget vezette be a [137] folydiratcikkben, ahol w dimenziémentes
csatolasi konstans és a ¢ skalarmez6 reciproka ardnyos az effektiv gravitacois allan-

doval. Amennyiben V (¢) = 0 és w — o0, gy a szarmaztatott mozgasegyenlet az



1.3 MODOSITOTT GRAVITACIOELMELETEK 28

Einsten-egyenlet. Brans és Dicke szerint ,in any sensible theory w must be of the
general order of magnitude of unity”, azaz az w csatolasi konstansnak egy nagységred-
nyinek kell lennie, ellenkez6 esetben elhanyagolhaté mértékben térne el az altalanos
relativitaselmélettsl. Az 1947-ben rogzitett Merkar perihélium vandorlas szoge alap-
jan 8%-os hibaval w 2 6 nagysagot adtik meg [137], [138]. Az w csatolasi konstans
értékét késGbb a bolygok perihélium vandorlasanak és a Shapiro-késés (radarvisszhang)
mérésével pontositottak, példaul: a Viking projekt alapjan w 2 1000 [139]; a VLBI
(Very Long Baseline Interferometry radiotavess rendszer) mérései szerint w 2 3600
[140], késébb w 2 40000 |141].

Egy skalar-tenzor elmélet megalkotasa kiindulhat szimmetriai megfontolasboél, amely-
nek egyik képviselGje a Galileon elméletcsalad. A Galileon elmélet megalkotaséat a sétét
energia problémat A kozmologiai konstans nélkiil megoldo, de ghost-instabilitast mu-
tatd6 DGP 5-dimenzios, ,self-accelerating” (azaz ,on-gyorsitd”) bran-modell inspiralta
mezG gradiensére vonatkozo d,m1 — 9,7 + b, eltolas szimmetriaval rendelkezik (azaz
T —> T+ b, x" +¢). Az

Loa = om+cX —cOrn 4+ X [(DT()Q — Vavbwvavbw]
c
—§5X [(On)° = 307V, VyrVoVir + 2V, Vi VOVer ViV ]
4-dimenziés Lagrange-stiriiség a m skalarmezd masodrendd derivatjait tartalmazza,
Ostrogradsky-instabilitasoktol mentes, tovabba cq,...,c; =konst., X = —%VQWV“W,
V. a 4-es kovaridns derivalas, mig 0 = ¢*V,V, a d’Lambert operator |143|. Ez
a Lagrange-siirtiség modosithato tjabb tagok bevezetésével, amelyek mellett a mezé-

egyenletek tovabbra is mind a metrikara, mind a skalarmezére mésodrendd dinamikai
egyenleteket adnak. Ekkor kapjuk a kovaridns Galileon elméletet [144], [145], ahol

1
Liga = am+ X —XUr+aX [EXR +(Or)? = Vo, Vyr VoVl
1
—;X | —XG®V,V,r + 3 (On)? — OnV,Vyr VeVl
2 axyc b
+§Vavb7rv VernVoV,m| .

Ennél még altalanosabb esetben vezették be az un. &ltalanositott Galileon (azaz ge-
neralized Galileon) elméletet, amely ugyancsak ghost-mentes, mig a Lagrange-siirtiség
V.Vpm-ben polinomialis [145]. Az altalanositott Galileon elmélet 4-dimenzidban meg-

egyezik a Horndeski elmélettel, amiben a hatas az

S — / d*z/—gL" (1.6)
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ahol az .
"=>"rI}, (1.7)
K=2

Horndeski Lagrange-siirtiség egy 0sszeghdl épiil fel [146]. Ennek tagjai az

Ly = Gy(6,X)0¢ , (1.9)
LY = Gy, X)R — 2Cax (¢, X) [(O6)° — V*V'6V,Vyd] |, (1.10)

LY = Gs5(¢, X)Gup V'V’
+3Gox(6,X) [(00)° — 300V, V107" 7"
+2V, VoV VOV'V. 0] (1.11)

A Gy (¢, X) és I =1,...,5 altalanos fiiggvények, a Grx a Gy fiiggvény X szerinti deri-
valtja. A Horndeski elmélet a legaltalanosabb egy skalarmezét tartalmazo modositott
gravitacidelmélet, amely Ostrogradsky-instabilitdst6l mentes, azaz ezen elméletben a
metrikara és a skalarmezore is legfeljebb mésodrendd dinamikai egyenletek vonatkoz-
nak. A skalar-tenzor elméletek egy nagy csoportja a Horndeski elmélet részét képezi,
példaul az f (R) gravitacio legegyszeriibb valtozatanal Gs = 0 = G5 és Gy = V (),
G4 = ¢; Brans-Dicke elméleteknél Gz = 0 = G5 és G = $X — Vi(p), Gy = ¢
stb. (Id. [134], [147]). Léteznek a Horndenski elméleteken tuli elméletek, ilyenek
az un. Degenerate Higher Order Scalar-Tensor (DHOST) gravitacios elméletek [148],
a Gleyzes-Langlois—Piazza—Vernizzi (GLPV) elméletek [149], [150] stb. A Horndeski
Lagrange-siirtiség Osszegében szerepls tagok bizonyos mechanizmusokat frnak le, ame-
lyek a tovabbiakban lesznek bemutatva.

A megfigyelések alapjan a ACDM modell alltal bevezetett sotét energia allapot-
egyenlete a WMAP, eCMB, BAO, H, és SNe adatok felhasznéalaséaval a kovetkezd-
nek adddott: ha wpg konstans, agy sik univerzum esetén az értéke —1,71 < wpp <
—1,084£0, 063; nem sik univerzumban a wpg > —1, 122f8:82§; ha az allapotegyenletet a
w(a) = wo+w, (1 —a) modon adjak meg, akkor sik univerzumban a wy = —1, 17’:8:5’,
mig w, = 0,35f8228 [34]. A 20. szazad masodik felétsl a A kozmologia konstanst,
az univerzum vakuum energiastriiségével, azaz null-ponti energidjaval azonositottak.
Azonban a kozmologiai megfigyelésekbdl adodo energiasiirtisége a A kozmologiai kons-
tansnak ~ 120 nagysagrenddel kisebb volt, mint amit a kvantumtérelmélet keretei
kozott szarmaztattak [151]. A feltiing kiillonbség miatt a Quintessence elméletben egy

,dinamikus kozmologiai konstanst” vezettek be, amelynek a s6tét energia helyettesitése



1.3 MODOSITOTT GRAVITACIOELMELETEK 30

v

a @) 6nkolesonhato skalarmezd (@, mint ,quintessence”, azaz kvinteszencia) dinamikaja
aV(Q) ~ Q“ potencial altal van meghatarozva (o > 0). Hatranya, hogy a kapott
kvinteszencia energiastiriiség és nyomas csak folyamatos finomhangolas tutjan illeszt-
kedik a CMB és BAO megfigyelési eredményekbdl kapott sotét energia fejlédéshez,
tovabba a wpgr > —1 allapotegyenletet eredményezi [154], [155]. A kvinteszencia beve-
zetése ellenére meglévd kozmologiai problémak megoldasa érdekében alakultak ki az an.
Unified Dark Energy (UDE) vagy Unified Dark Matter (UDM) modellek. Ezek szerint
a sOtét anyag és a sOtét energia ugyanazon ,folyadék” kiilonb6z6 allapotai. Ennek leira-
sahoz egzotikus allapotegyenleteket kerestek és vizsgaltak meg az univerzum kiilénb6z6
idGszakaira nézve [156]-[160]. Egy masik megkozelités soran a Lagrange-siirtiséget egy
skalarmezdére vonatkozo nem-linearis kinetikus taggal egészitették ki, igy kapva a k-
eszencia (k-essence) elméletet [161], [162]. A k-eszencia elméletben a Lagrange-stiriiség
az

1
Li—cssence = ER — Ly (997 X) + Ly (gab, \Ij) ,

amelyben
. 1 " 1
Ly=K(p)p(X) , X = VapVip, K(s@)NE
a 8mG /3 = 1 egységben, tovabba

pr =2Xpx — D, pe=K(p)p(X) .

A dinamikus k-mez§ a sugarzas-dominalt idészakra jellemz$ allapotegyenlettel (wy ~
1/3) rendelkezik. A porra vonatkozé allapotegyenletet azonban nem tudja teljesiteni,
mivel z = 1000 esetén befagy, ekkor w, ~ —1. Az anyag-dominalt idGszak végén, nem
teljesen igazodva a mérési eredményekhez (z ~ 3—5 estén kezd el wy névekedni), lassan
beinditja az univerzum gyorsulva tagulasit. A k-eszencia elméletnek is megjelentek
tovabbi alternativai, példaul k-eszencia UDM [163], ,fantom” (,phantom”) k-eszencia
[164], ,fantom” bran kozmologia [165], k-eszencia két skalarmezs bezevetésével [120)].
A k-eszencia elmélet tagjainak legnagyobb része a Horndeski elmélet alesetei. Ezen
elméletek a megfelels Li valasztaséval vezethetSk be, igy a Horndeski elméletben az
LI Lagrange-stiriség irja le a kései univerzum gyorsulva tagulasat.

A Horndeski elméletben az LY Lagrange-siriiség a kiilonbozé arnyékolasi tagokat
tartalmazza, amely biztositja az Einstein-i elmélet érvényességét Naprendszer 1épték-
ben. Vainshtein nevéhez kothetd az elsé arnyékoldsi mechanizmus felismerése, amikor
az un. Fierz—Pauli tomeges graviton elmélet van Dam—Veltman—Zakharov (vDVZ) disz-
kontinuitasat probalta megoldani [166]-[168]. A vDVZ diszkontinuitas szerint, barmi-

lyen kis graviton tomeg esetén a Fierz—Paul elmélet jelentGs eltérést mutat az altalanos
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relativitaselmélettl, példaul a fényelhajlas, vagy a perihélium vindorlas mértékében.
Vainshtein megallapitotta, hogy a vDVZ diszkontinuitas a gravitaciés forrastol bizonyos
(rv, azaz Vainshtein-sugér) tavolsagon beliil nem linearitast okoz a perturbacios egyen-
letekben. Ennek megoldasaként bevezetett egy ry alatt dominans és a nem linearitéast
kompenzald tomeg tagot, amely ry felett elhanyagolhato [134], [169], [170]. Késsbb
Vainshtein modszerét nem tomeges gravitacios elméletekre is alkalmaztak, kifejezetten
Galileon és Horndeski elméleteknél annak érdekében, hogy a gravitacios forrasok egy
bizonyos kornyezetében az altalanos relativitaselmélet hataresetét kapjak vissza [134],
[171]. Tomeges skalarmez esetén az arnyékolé mechanizmus kialakitasat az in. cham-
eleon elméletek targyaljak [172], [173]. Léteznek tovabbi arnyékolasi modszerek példaul
a k-Mouflage [174] és symmetron elméletek [175], [176].

Hasonloan a kvantumtérelmélet an. effektiv térelméleti kozelitéséhez (Effective
Field Theory, EFT), a modositott gravitacioelméletek tekinthetdk tgy is, mint az
Einstein—Hilbert hatas magasabb rend( korrekcioi. A gravitacido EFT kozelitését els-
szor az egy skalarmez6t tartalmazo infliciés modellekben alkalmaztik. A kozmolo-
gial perturbacidkat az in. Goldstone bozon id§ transzlacio sértése alapjan vezették
be [177]-[180], amely leiras a Standard Modell részecskefizikiban az SU (2) x U (1)
FLRW térid6ben a kozmolégai perturbacidészamitas soran az inflaciot generdléd skalér-
mez6 1d6fiiges, amely perturbaciokra valtozatlan marad a ¢ (¢, ) = 0 unitaris mérték
valasztasaval. Ebbdl a mértékvalasztasbol kovetkezik, hogy a ¢ =konst. meghatéroz
egy idoskalat, tovabba a 3 4+ 1 téridéfelbontas térszerd 3-dimenzios hiperfeliiletekre
meréleges idGszert n, normalisat. Az EFT alapjan az altalanos relativitdselmélet a
jelenleg még nem ismert, a gravitaciot kvantum skaldn leird, nagy energias térelmélet
alacsony energis kozelitésének tekinthetd [186]. Az emlitett nagy energias térelméle-
tek példaul a Loop Quantum Gravity (LQG) [187], DD [113], M-elmélet [188], és egyéb
elméletek [189]. Alacsony energias EFT-nek tekintheték példaul a gravitaciot klasszi-
kusan kezel6 modositott gravitacidelméletek, igy a Horndeski elmélet is, a valtozok jo
megvalasztasaval [190]-[197].

Mar a fentebb emlitett modositott gravitacidelméletek szama is sok, igy felmeriil
a kérdés ,Melyik a jo elmélet?”, | Sziikséges-e, hogy ennyi legyen?”, erre viszont nem
létezik egyértelmii valasz a jelenlegi ismeretek alapjan. A megfigyelésekbdl szarmazta-
tott kényszerekkel dénthetd el, hogy az 1) elméletek koziil, melyek megfelel6k a valosag
leirasara. Az ,egészséges” modositott gravitacidelméletekre ramutaté megfigyelési ered-
mény volt az elsd gravitacios hullam mérés, az els6 neutroncsillag-fekete lyuk kettéstol
szarmazo gravitacios hullam és gamma kitorés (gamma-ray burst, GRB) detektalasa,

valamint az Event Horison Teleszkoppal felvett elsg fekete lyuk fénykép [198]-[209]. Ez
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utobbi esetben még sziikséges megvarni a nagyobb felbontéast képalkotast a pontosabb
paraméter meghatarozasokhoz. Szintén modositott gravitacidelmélet ,szlirGvé” valhat
a jovében a gravitacios hullam lecsengési fazisanak mérése, azaz a gravitacios hul-
lam visszhangok (echo) megfigyelése, mivel a visszhang alakja elméletenként valtozik
[210]. A modositott gravitacidelméleteket jelentGsen korlatozta a gravitacios hullam
és Fermi detektorokkal érzékelt GW170817 és GRB170817A események kozott mért
idGkiilonbség, amelybdl nagy pontossdggal hataroztdk meg a gravitacios hullam ter-
jedési sebességét [211], [212]. Az ebbdl megadott EFT és tovabbi paraméter értékek
[213] alapjan a Horndeski csaldadban a G4 (¢, X) = G4 (¢) és G5 (¢, X) =konst. kor-
latokat adtak meg, amelynek példaul a KGB [214], a k-eszencia [215], az f(R) és a
Brans—Dicke elméletek megfelelnek. A GW170817 és GRB170817A események alap-
jan kizartak a tomeges gravitacios elméleteket, valamint a magasabb rendi gorbiileti
tagokat tartalmazo elméleteket sziikitették. A kényszerek folyamatos pontositasa elmé-
letcsoportokként jelenleg is zajlik a novekvs megfigyelési események alapjan [216]. A
gravitacios hullam terjedési sebességével kapcsolatos cp (k) paraméter szerint kizartnak
és korlatozottnak kimondott elméleteknek lehet 1étjogosulsaguk extrém erds gravitacios
koriilmények kozott. Ennek oka, hogy az aLIGO és Virgo detektorok 10 — 100H z ko-
zotti frekvencia tartomanyban mérnek, azonban az EFT &ltal josolt sétét energia skala
20 nagysagrenddel kisebb. Emiatt ezen elméletekre a jovében felépiils és 1071 — 1Hz
frekvencia tartomanyon belill mérg LISA (Laser Interferometer Space Antenna) altal
rogzitett, szupermassziv fekete lyukak Osszeolvadasaboél szdrmazéd gravitacios hullam
mérések jelentenek majd kényszereket |217]-|223].

Az Gjszert elméletekben kérdés, hogy megjelennnek e olyan objektumok (példa-
ul fekete lyukak), mint amik az altalanos relativitaselméletben, ha igen, akkor azok
stabilak e. Szintén érdekes kérdés, hogy a kozmologia jellegii megfigyelésekkel illeszt-
kednek e ezek a modellek sotét energia és/vagy sotét anyag nélkiil, azaz lehet e a sotét
anyagnak, illetve a sotét energianak tulajdonitott jelenségeket alternativ gravitacios
elméletként felfogni. Ezért érdemes a médositott gravitacielméletekkel generalt fekete
lyuk megoldasok megkeresése kiilonboz6 szimmetriaval rendelkezd téridékben (gémb-
szimmetrikus és sztatikus, tengelyszimmetrikus és forgo, esetleg toltéssel rendelkezd),
perturbicioszamitassal stabilitasvizsgalat elvégzése, a szarmaztatott graviticios hulla-
mok elemzése, a fényelhajlas vizsgéalata, kozmolégiai modelleknél a struktiraképzddés
tanulmanyozasa stb. [224]-[231].
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1.3.1. Fekete lyukak

A fekete lyukak létezését elséként J. Michell feltételezte 1784-ban, kettGs és harmas
rendszerek vizsgalatakor. Megallapitotta, hogy az univerzumban lehetnek olyan nem
vilagité objektumok, amelyek atmér6jiikhoz képest olyan strtek, hogy az informacio
fény formajaban nem tudna eljutni egy megfigyel6hoz, ezért ezen objektumok jelen-
létére csak a tarscsillag mozgésabol lehet kovetkeztetni. J. Michell publikacidjatol
fiiggetleniil, 10 évvel kés6bb P. S. Laplace ugyanezt irta le. Azonban a fekete lyukak
elméleti levezetésére tobb, mint 100 évet kellett varni [232].

A fekete lyukak matematikai alapjait az altalanos relativitaselmélet biztositotta,
aminek a felhasznalasédval K. Schwarzschild levezette a gombszimmetrikus, sztatikus
vakuum téridé fekete lyukat [4]. A fekete lyuk megnevezést késsbb, J. A. Wheeler
adta. A fekete lyuk a térid§ egy olyan régidéja ahonnan a fény sem tud kijutni, az-
az ,region of no escape” vagy ,a regon of spacetime in wich gravity is so strong that
light cannot escape” |233], [234]. A ,region of no escape” a fekete lyuk tn. esemény-
horizontja, amely mogott vagy van szingularitas, vagy nincs. Az eseményhorizonton
kiviil szamos kiilonb6z6 horizont definicio ismert, példaul 1atszo (apparent) horizont,
csapdazo (trapping) horizont, Killing-horizont, Rindler-horizont, kauzalis horizont .stb
[235]. Azonban sztatikus vagy stacionarius fekete lyukak esetén a latszo, a csapdazo és
a Killing horizont egybe esik az eseményhorizonttal. A téridé tartalmaz szingularitast,
amennyiben legalabb egy metrika komponens és legalabb egy gorbiileti skalar (példaul
a K = R®4R ;.. Kretschmann-skaldr) a végtelenbe tart a térids egy tartomanyéban.

A gémbi koordinataban megadott

2 1
ds? = — (1 — Grm) dt? + mdﬁ + r2d0? (1.12)

Schwarzschild téridében fizikai szingularitds van az r = 0-ban, mivel K ~ r=¢ — oo.
A Schwarzschild térid6 eseményhorizontja az ry = 2G'm Schwarzschild-sugérnal he-
lyezkedik el, ahol g, — o0, de a K skalar nem divergal. Ez a Schwarzschild ko-
ordinatakban egy koordinata szingularitds. A metrika vizsgalatakor érdemes a fény
terjedését kovets radialis null geodetikusokhoz rendelt (ds? = 0, df = 0, dp = 0) tn.
Eddington-Finkelstein koordinatakba valo attérés [236]. Ekkor az (1.12) ivelemnégyzet
az u =t —r* retardalt (kimeng) és a v = t+r* avanzsalt (bemend) id6 koordinatakban

a

ds® = — (1 _ 2Gm) du® — 2dudr + r2d©?

r
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vagy

2
ds® = — (1 . Gm) dv? + 2dvdr + r2dQ? (1.13)
T

alaku, ahol r* = [ (1 — me)fl dr a teknéc” koordinata. Az (1.13) alapjan az Eddington—
Finkelstein koordinatakba irt g,, metrika komponense csak r = 0 esetén tart a végte-

lenbe. Radialisan terjeds fényjelet tekintve az (1.13) ivelemnégyzet az

0= Kl - QGm) dv — QdT] dv (1.14)

r

egyenletre egyszertisodik, amelybdl

dv=0 — v = konst.

dv 1 Gm\ "

- (5 - T) -
Legyen t = v — r egy ujra definidlt Eddington-Finkelstein koordinata [91], ekkor az
(1.14) egyenletbdl

és

t+r = konst.,

_ 2
a = UE26m
(r —2Gm)
azaz
t = —r+konst. ,
t = r—|—4Gmln‘2£m - 1‘ + konst.

Ezek alapjan az r = r, esetén a foton palydja egy fliggSleges egyenes, azaz a fény a
horizonton ,ragad”. Ha r < r,; a foton az ry horizont alatt marad és a szingularitas
felé tart. A Schwarzschild térid6ben az r, eseményhorizontnak nevezett matematikai
hatér(feliilet) elvalasztja a téridének az I: ry < r < oo és II: 0 < r < ry részeit, ahol
a foton I— II haladasa megengedett, mig a IT — I nem megengedett. Ezt a 7. abra
szemlélteti (lasd bGvebben a [91], [233], [237], [238] hivatkozasokban).

A gombszimmetrikus, sztatikus Schwarzschild megoldas utan sok figyelem 6sszpon-
tosult az egzakt megoldasok vizsgalatara. A fekete lyukak létezését véglegesen akkor
fogadtak el, amikor J. R. Oppenheimer és H. Snyder egy nagytomegi csillag fejlédésé-
nek leirdsakor a gravitacios kollapszus végalapotaként a Schwarzschild megoldast kapta
3], [239].
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Radially
infalling
particle

Singularity — p=constant

7. abra. A Schwarzschild fekete lyuk szerkezete az jra definialt Eddington—Finkelstein
koordinatakban. A hullamos fiiggtleges vonal jeldli a szingularitast (singularity) r = 0-
ban. A fiigg6leges egyenes vonal r = 2u-nél a fekete lyuk horizontja. A pont-vonal egy

radidlisan a fekete lyukba esd részecske (radially infalling particle) palyaja [91].

Majdnem Schwarzschild-al egy id6ben H. Reissner és G. Nordstrom egymaéstol fiig-
getleniil mutattak be a gémbszimmetrikus, sztatikus és toltéssel rendelkezé téridg va-
kuum megoldésait. A toltés és a tomeg aranyatol fliggden a Reissner—Nordstrom téridé
tartalmazhat kettd, vagy egy horizonttal rendelkezs fekete lyukakat, tovabba horizont
nélkiili an. csupasz szingularitasokat [91], [240]-[242].

Az 1960-as években R. P. Kerr egy komlex null tetraddal felépitett ivelemnégyzet-
tel valo ,kisérletezés” soran kapta meg az els6 tengelyszimmetrikus, forgo fekete lyukat
[243]-[248]. A Kerr metrika az r = 0 esetében szingularis, ahol a szingularitas a szim-
metriatengely koriil, 6 = 7/2 sikban egy a sugara korong peremén talalhato gytird (a
feliilet tobbi pontja reguléaris). Az m? > a? esetén a metrika két koordinéata szingulari-
tast tartalmaz, igy a gytrts szingularitast, egy r_ sugart belsé és egy r, sugari kiilsé
eseményhorizont veszi koriil. Amennyiben m = a, akkor a gytirts szingularitast egy
eseményhorizont takarja, mig nem rendelkezik horizonttal, ha m? < a? [91], [249]. A
Kerr megoldast Newmann altalanositotta elektromos toltés bevezetésével [251].

A térid6 megoldéasokra tobb feltétel is vonatkozik, ezek koziil az egyik a kozmikus
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cenzor hipotézis, amely szerint csupasz szingularitasok nem léteznek az univerzumban,
azaz egy valos fekete lyuknak mindig van eseményhorizontja [252]. A hipotézisnek
létezik erds és gyenge véaltozata és tovabbi pontositasai a kizarandé szingularitasokkal
kapcsolatban [253].

Egy mésik feltétel a fekete lyukakat jellemz6 paraméterekre vonatkozik. Egy alta-
lanos relativitaselméleti fekete lyukat harom paraméter hataroz meg, az m fekete lyuk
tomeg, a q toltés és az a = hce/Gm forgasi paraméter, ahol h az egységnyi tomegre juto
impulzusmomentum egy térbeli végtelenben 16v6 megfigyels szemszogébdl [254]. Ezek
alapjan a Schwarzschild fekete lyukat m jellemzi, a Reissner—Nordstrom fekete lyukat
az m és ¢, a Kerr fekete lyukat az m és az a (a* < m?), mig a Kerr-Newmann fekete
lyukat mindhédrom paraméter.

Az altalanos relativitaselmélet helyébe 1ép6, vagy azt kiegészité modositott gravi-
tacioelméletek megjelenése 1j téridé megoldasokat is hozott. Felmeriilt a kérdés, hogy
ezen fekete lyukak mennyiben térhetnek el az altalanos relativitdselméletben megjele-
nGktdl, valamint a modositott gravitacié elméleti nagy témegi csillagok végallapotai
milyen megoldasok lehetnek. Hawking megmutatta, hogy a Brans—Dicke elméletben
(agy, hogy V (¢) = 0) egy csillag vegallapotaként elallo fekete lyuknak stacionariusnak
(azaz tengelyszimmetrikusnak vagy sztatikusnak) kell lennie, amely akkor lehetséges,
ha a skalarmez6 gradiense zérus, azaz ¢ =konst. Ebbdl az kovetkezik, hogy az igy el6-
allo stacionarius Brans—Dicke megoldés azonos az altalanos relativitaselméletbelivel,
tehat ugyanigy csak az m, ¢, a paraméterek hatdrozzak meg. Ez az tn. ,Nincs-haj
tétel”, azaz ,No-hair theorem” |255]. A Nincs-haj tétel bizonyitva lett gémbszimmet-
rikus, sztatikus és aszimptotikusan sik, vagy aszimptotikusan de Sitter téridGkre tobb
skalarmez6t tartalmazo elméletekben [256]. Numerikus szimuldciokkal igazoltak a té-
tel helyességét sztatikus, d-dimenzios téridé megoldasai esetén, olyan elméletekben,
ahol a skalarmezé tgy csatolodik az Einstein—Hilbert hatashoz, hogy teljesiti a szuper-
szimmetrikus harelmélet pozitiv energia tételét (Positive Energy Theorem, azaz PET)
[257|. Sotiriou és Faraoni kimondta a Nincs-haj tételt stacionarius, izolalt, aszimpto-
tikusan sik fekete lyukakra az w = w(¢) csatolasi fiiggvénnyel és V (¢) potenciallal
rendelkezd altalanositott Brans—Dicke elméletekben [258]. Kovaridans 1 + 1 + 2 for-
malizmus alkalmazasa mellett egy altalanos potencidllal rendelkez6, nem minimalisan
csatolt Klein-Gordon skaldrmezé esetén is igaznak bizonyult a tétel [259]. Sztati-
kus és asszimptotikusan sik megoldasok elemzése soran, Horndeski, Horndeski-n tili,
Einstein—Scalar-Gauss—Bonnet és Chern—-Simons elméletekben, megfigyelésekkel kom-
patibilis esetekben is azt talaltak, hogy a kapott fekete lyukaknak vagy nincs haja,
vagy ,elhanyagolhato haja” van. Az utébbi esetben, ha a skalarmezd kozmologiailag

relevans (s ~ O (1)), akkor a skalar haj elhanyagolhatoan kicsi lesz a fekete lyuk
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kornyezetében [260)].

Galileon elméletekben gombszimmetrikus, sztatikus téridéknél a tételt szintén igaz-
nak talaltak, viszont L. Hui és A. Nicolis ugy nyilatkozott, hogy ,black holes famously
have no hair — except when they do” [261]. A Nincs-haj tétel aloli kivételekre E. J.
Weinberg mutatott ra. Ugy gondolta, hogy a tétel altalanos anyagra és csak asztrofizi-
kai méretti, szabalyos szimmetriaval rendelkezd, stabil fekete lyukakra lett kimondva, el-
lenben nem vonatkozik példaul szubatomi méreti vagy egyéb komplex anyag-gravitacio
csatolassal rendelkez elméletekbeli fekete lyukakra. Allitasat bizonyitotta magnesesen
toltott fekete lyukra spontéan szimmetriasérté Yang-Mills-Higgs elméletekben [262].
Hasonlé eredményt kaptak nem-Abeli fekete lyukakra is az Einstein—Yang-Mills el-
méletekben [263]. Asszimptotikusan sik térid6ben minimaélisan csatolt, 6nkolcsonhato
skalarmezd esetén exponencidlisan elting skalar hajjal rendelkezé sztatikus, izotrop fe-
kete lyukat talaltak, ahol a V' (¢) kdlesonhato skalarpotencial negativ értékeket is felvesz
(sértve a dominans energiafeltételt) [264]. Konformisan csatolt 6nkélesonhato tomeges
skalarmezdével rendelkezé elméletben skalar hajas, sztatikus fekete lyukat is szarmaz-
tattak [265]. Szintén vannak olyan gémbszimmetrikus, sztatikus, hajas fekete lyukak
a Galileon elméletekben, amikor J" Noether aram komponens zérus (mivel V,J* = 0),
viszont 0,¢ # 0. Ez olyan esetekben &llt el§, amikor a Galileon Lagrange-stirtiséghez
linearisan csatolodik a

G = R Rypeg — AR Ry + R

Gauss-Bonnet invarians, példaul G5 ~ In|X|+ G5 (X) [266]. Gombszimmetrikus, szta-
tikus térid6 esetén szarmaztattak egy elsédleges és masodlagos skalar hajjal rendelkezd,
aszimptotikusan sik fekete lyuka. Ekkor egy ¢ (¢,7) skalarmez6bdl felépitett Galileon
elmélet a BG0,p0,¢ Einstein-tenzorral kialakitott tagot tartalmazza (3 =konst.) tgy,
hogy 0G4/0X # 0 és J" = 0, mig 0,¢ # 0 [267]. Els6dleges skalar haja van egy fekete
lyuknak, ha az m, q, a paraméterektsl eltérd in. skalar toltés is jellemzi. Masodlagos
skalar haja van egy fekete lyuknak, ha a metrika olyan eltérést tartalmaz az altalanos
relativitaselméleti vakuum megoldéshoz képest, amely az m, q, a paraméterektdl fiigg
[260]. A KGB elméletben (azaz G4 (¢, X) = G4 (¢) és G5 (¢, X) = 0) szarmaztattak
gombszimmetrikus, sztatikus hajas fekete lyuk megoldasokat, amennyiben G3(X) # 0
agy, hogy J" = 0, mig 0,¢ # 0 [268].

Az emlitetteket Osszefoglalva tehat elmondhato, hogy téridGszingularitas esetén a
gorbiileti tagok koziil legalabb egy a végtelenbe tart, csupasz szingularitas a valésagban

nem létezik, tovabbéa ,a fekete lyukaknak nincs haja, kivéve mikor van”.
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1.3.2. Energia-impulzus tenzor alakjai és energiafeltételek

Az adott gravitacidelméleti hatas vakuum megoldéasai tartalmazhatnak példaul fekete
lyukakat, horizont nélkiili szingularitasokat. Az univerzum anyaganak vizsgalatahoz,
viszont sziikséges az anyagi hatast is bevezetni. Anyag figyelembevételével a

_ 2mM
Gab_HTab7

az Einstein-egyenlet, ahol
2 6Ly

_f#\/—_g Sgab

az anyag energia-impulzus tenzora, ahol x? = 87G, ¢ = 1, g a metrika determinansa.

M
Tab -

Az energia-impulzus tenzorra a
veri =0 (1.15)

megmaradési tétel igaz altalaban.

Az energia-impulzus tenzorok osztalyokba sorolhatok és osztalytol fiiggéen ener-
giafeltételeknek felelnek meg, amelyekkel szdmos konyv és folyodiratcikk foglalkozik
[91], |233], |238], |269]-|275]. Az osztalyozés szerint, az I-es tipusba sorolandé energia-

impulzus tenzorok a

p 0 0 0
0 0 0
T, = Y4
0 O P2 0
0 0 0 ps

mo6don épiilnek fel egy Ey, Eq, Ea, Es ortonormalt bézisban, ahol Ey id&szert, tovabbé
p és p, a folyadékkal egyiitt mozgd megfigyels altal detektélt energiastiriség és nyomaés.
Ebbe a tipusba tartozik az idedlis folyadék energia-impulzus tenzora, amely nyomaésa

izotrop (p1 = p2 = ps = p), ekkor

Tab = (p +p) UgUp + PYab (116)
ahol u, az ideélis folyadék idGszert 4-es vektora (u,u® = —1). Megjegyzends, hogy

nem ideélis folyadék esetén az energia-impulzus tenzor a
T = pugup + 2q(aub) + (phab + 7Tab) (1.17)

alakba irhato. Itt p = p + p,; az izotrop nyomas, amely a p nem viszkéz és p,,; viszkoz

tagok Osszege, hqpy = UgUp + Gap 8Z Ug-ra merbleges 3-dimenzios tér metrikaja, q, az

a __

energiadram striség, m,, az anizotrép nyomas tenzor (72 = 0, T(ab) = % (Tap + Toa) =
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Tap). Tovabba teljesiilnek a hp) = hap, hapu’ = 0, mapu’ = 0 és quu® = 0 Ssszefiiggések
[233], [276].
A Il-es tipusba tartozo6 energia-impulzus tenzorok

b+k b 0 O
b b—k 0 O
0 0 p2 O
0 0 0 ps

Tab -

alakaak, ahol £ =konst., b = =1 megfelel§ normélassal, tovabba az Fg és Fq nullszerd
sajatvektorok.
A IlII-as tipusba sorolanddk a

b 0 1 0
-b 1
T, — 0 —b
1 —-b 0
0 0 0 p

alakt energia-impulzus tenzorok, ahol az Ey, Fy, F5 nullszeri sajatvektorok.

A TV-es tipusba tartoznak a

0O 6 0 0
b —k

Tab_ 0 !
0 0 py O
0 0 0 p

alaki energia-impulzus tenzorok (k* < 4b%), amelyeknek nincs egyetlen idészert vagy
nullszerd sajatvektora sem, ezért nem fizikaiak.

Az univerzumban ismert anyagfajtak eneria-impulzus tenzorai nem rendelkeznek
negativ energiastiriiséggel, nem jellemeznek olyan tomeges vagy tomegnélkiili anyag-
format, amelyek fénysebességnél gyorsabban mozognak. A megfigyelések alapjan a
nem megvalosuld anyagformak kisztirése érdekében egy energia-impulzus tenzornak a

kovetkez§ feltételeknek kell eleget tennie:

o Gyenge energiafeltétel: Tv*v® > 0, azaz barmely megfigyels altal mért energia-
stirtiség nem negativ. A v® egy 4-es idGszeri egységvektor (vagy fényszert, ekkor
null energiafeltételrdl beszéliink) egy megfigyel§ vilagvonalanak az érintéje egy
tetsz6leges P, P € M pontban. A feltétel a kivetkezd esetekben teljesiil: I-es
tipus — p > 0, p+p, > 0; II-es tipus — pp > 0, p3 > 0, £ > 0, b = +1; I1l-as és

IV-es tipusokra nem teljesiil.
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o Domindns energiafeltétel: Tyv*v® > 0 és T,v® nem térszert, tovabba v® idé-
szerl, azaz barmely ortonormalt bazisban az energiastiriiség dominans a tobbi
komponenshez képest: Ty > |Tup|. Az energiastiriiség dominancidja az ismert
anyagformékra természetesen mindig teljesiil. A feltétel a kovetkezd moddon all
fenn: I-es tipus — p > 0, —p < p, < p; I-es tipus — 0 < py < k, 0 < p3 <k,
k>0, b= +1; Ill-as és IV-es tipusokra nem teljesiil.

o Erds energiafeltétel: Rypv®v® > 0, tovabba amennyiben v nullszerii vektor, akkor

a

2

a null konvergencia feltétel teljesiil, mig idGszertd v® esetén a

1
(Tab -7 gab> v’ >0,

Topv®0® > v, (ET — iA)
2 K2

id6szerd konvergencia feltétel, ahol 7' = T2 és A a kozmoldgiai konstans. E sze-
rint, ha egy id6szerd kongruencia (vektormezs integralvonalainak kotege) érvény-
mentes, Ugy 6 expanzidja a geodetikusok mentén folyamatosan csdkken (0 < 0),
amely a gravitacié vonzoé jellegének felel meg. A feltétel teljesiil, ha: I. tipus —
pHpu >0, p+Eupy — 5w > 05 1L tipus — p2 >0, p3 > 0, po +p3 — 50 > 0,
E>0,b=+1.

Van olyan eset, amikor az energiafeltételek nem teljesiilnek bizonyos anyagformak
energia-impulzus tenzoraira, mégis tekinthetdk fizikainak, vagy egy jo modellnek, amely
egy adott fizikai problémat megold. Ebben az esetben az emlitett osztalyozasi tipusok
és energiafeltételek modosulnak, kiegésziilnek. Példaul az erds energiafeltételt vizsgal-

va, vegylink egy egyszeri minimélisan csatolt Klein—Gordon skalarmezével kialakitott
1
S = n2/d4x\/—g [R — §Va¢va¢ —V(p)| +5M [¢g*, V] (1.18)

hatéast. Az er6s energiafeltétel akkor teljesiil, ha V' (¢) > 0 id8szert és térszert skalar-
mezG gradiens mellett. Ha a skalarmezd gradiense fényszert, akkor V (¢) = 0. Azonban
az inflacios elméletekben az inflacié beinditasahoz sziikséges, hogy V (¢) < 0, azaz az
erés energiafeltétel sériil, 1d. [177], [272]-[276].

A hatas egy tetszéleges, egy skalarmez6t tartalmazéd skalar-tenzor elméletben for-

malisan az

S[]=5%[g" 0] + 87 [g", ¢] + 5" [¢", 7] (1.19)

alakban irhato, ahol S™ [g“b, \IJ} reprezentalja az anyagi hatast, amely U tetszGleges

anyagi mez6tsl és a g metrikatol fiigg. Az S [g“b, (ﬂ hatas olyan tagokat tartalmaz,
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amelyben a skalarmezS nem minimalisan csatolédik a metrikdhoz. Az S? [gab,gzﬁ] a
skalarmezére vonatkozo hatas. Az S¢ [g“b, gb] és 59 [g“b, gb] tag elsérendd variaci6ibol
kapjuk meg az Einstein-egyenletet és a ¢ skalarmezdére vonatkozd mezdegyenletet. A

skalarmezének az energia-impulzus tenzora a

s 2 05¢

T —
v V=g og

modon adhaté meg, ahol T jz fiigg a skalarmezd metrikdhoz vald csatolodasatol. Legyen

S = K? / d*r/—g {f () R — %vaw% -V ((Z))} + SM [g®, 1], (1.20)

ahol
59 [, ] = w2 / d'oy/ =g € (6) R)
és

S (g, ¢] = —rK / d*z/—g [%Vagbvaqb—l— V(gb)] :

Az (1.20) hatas esetén a skaldrmezd nem minimalisan csatolodik a metrikdhoz, mig mi-
nimalisan csatolodik az anyaghoz. Az (1.18) alapjan a skalarmezs csatolasa minimaélis,
mind a gravitacios, mind az anyagi szektorhoz, ha & (¢) = 1.

A V (¢) = 0 Brans-Dicke hatés esetén, azaz

1
S = g/d‘*g;\/—_g {qﬁR — %Vaqﬁvad)] + SM [g®, ] , (1.21)
ahol
59 g, 6] = = / d'oy/=g [6R)
’ 8
és

1 w
S 19" 0] = —— / d'ey/=g | = VsV 0|

8T [0}
megmutattak a [277], [278] folyoiratcikkekben, hogy Weyl vagy konformis transzformé-
ci6 utan az S¢ [g“b,qﬁ] + 59 [g“b,qb] + SM [g“b, \I/] hatést az SEH [é“b} + 5¢ [é“b,qﬂ +
SM [E]“b,quﬁ, \if} alakba atirhat6. Azaz a transzformécié utani hatas egy atparaméte-
rezett SEH [é“b} Einstein—Hilbert hatasbol, egy a gravitacios szektorral miniméalisan
csatolodo skalarmezs S¢ [gab, gz;] hatésbol, és a skalarmez&vel nem minimalisan csato-
16d6 SM [é“b, (E, \f/] anyagi hatasbol 4ll. Az els6 rendszert, ahol S¢ [g“b, qb} tartalmazza
a skalarmez6 nem minimalis csatolast hozzajarulasat Jordan-rendszernek (azaz Jordan-

frame) nevezik, amelybdl konformis transzformacioval lehet az Einstein-rendszerbe (az-

az Einstein-frame) jutni [277]-[281]. Amennyiben a skalar-tenzor elmélet a metrikahoz
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minimalisan csatolodo skalarmezét tartalmaz, Ggy az Einstein- és Jordan-rendszer egy-
beesik. Konformis transzforméacié soran legyen (M, g,) egy térids, ahol M egy n di-
menzios sokasag, a gq, rajta értelmezett metrikaval. Ha az € (z) egy sima és pozitiv
fiiggvény, amely a = = (z,t) tériddkoordinataktol fiigg, akkor a g,, metrika konformis

transzforméacioja egy g,, metrikiba a
Gab = Jab = () Gab (1.22)
modon torténik. A konformis transzformacié az ivelemnégyzet egy
ds* = Q* (x) ds*

lokalis atskalazasa, azaz nem koordinata transzforméacio. A [277] hivatkozasban a kon-

formis transzformacio soran az (1.21) hatést az

Q=1/Go

+ exp <—8
v 2w+ 3dg
d¢ = 167G ¢

és w > —3/2. A megmaradési tétel nem invarians a konformis transzformaciora csak

konformis faktorral az
S = / d'z {\/—g

alakba irtak at, ahol

R 1_ v .-
G2V

) () |

abban az esetben, ha 7" = 0 [233|, [277|, ekkor az Einstein-rendszerben is igaz, hogy
VT, =0és T = 0. A Jordan-rendszerben az anyag energia-impulzus tenzorara igaz
az (1.15) egyenlet (egzotikus anyagokat kivéve), azonban ez a TY, esetén nem min-
dig teljesiil. Az Einstein-rendszerben rendszerbe torténd attérés utan altalanossdgban

elmondhato, hogy a kontrahalt Bianchi azonossag teljesiil [277], [282], [283], azaz
VoGop = VTG + VT =0

Konformis rendszerekbdl tébb is létezik, és minden konformis rendszerben a fizikai
egyenletek kiilonbozek [283]-[285].

A skalar-tenzor gravitacidelméletekben a skalarmezdére vonatkozo energia-impulzus
tenzor elemzésével, a skalarmezé folyadék reprezentaciojaval szamos folyoiratcikk fog-
lalkozott az inflacios kozmolégiaban , UDE, EDM elméletekben, és a k-eszencia el-
méletben is [177], [286]-[291]. A [292] hivatkozasban egy anizotrép folyadék energia-

impulzus tenzoranak két idealis folyadékbol torténd konstrukciojat mutattik be. Az
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Einstein-Hilbert hatés egy Klein-Gordon tipust skalarmezével és egy (L = —% »*R)
kolcsonhatéasi taggal torténd kiegészitése esetén levezették hogy, ha & — 0, tgy a skalar-
mez§ egy ideélis folyadékkal reprezentalhato, mig € # 0 esetén nem idealis folyadékként
irhato le [293], [294]. A skalarmezd nem idealis folyadék leirasat altalanos Brans—Dicke
és f (R) elméletekben is bevezették [278], [295], [296]. Radialis iranyitottsagu ¢, ener-
giadram stirtiséggel rendelkez anizotrop folyadékot vizsgaltak a [297] hivatkozasban,
és Osszefiiggésbe hoztak toltéssel, térfogati- vagy nyirasi viszkozitassal rendelkezd fo-
lyadékkal, valamint fényszert folyadékkal. Kanonikus, minimélisan csatolt skalarmezét
null pornak feleltettek meg a [298] folydiratcikkben.

A [299] folyoiratcikkben az (1.18) minimalisan csatolt Klein-Gordon mezé folyadék-
leirasat vizsgaltdk. Id&szert skalarmezé gradiens esetén a Klein—Gordon skaldrmezd

energia-impulzus tenzora egy idealis folyadék, amelynek az energiasiirtisége a
1 a
pPF - _§va¢v Qb +V <¢)

és izotrOp nyomasa a
1
PPF = —§Va¢va¢ -Vi(¢) -

Igazoltak a [293] hivatkozas eredményeit, amely szerint az L; = pr'F

és LQ = —pPF

Lagrange-stirtiségek ekvivalensen leirjak az idedlis folyadékot, ha V' (¢) = 0 vagy V,6V*¢ =
0 [238], [300]-[302]. Térszert skalarmezé gradiens valasztasaval, viszont a

1
p=3VabV 6=V (9) (1.23)
energiastriséget és a ) -
p= VbV~ 2V (9) (124

nyoméast kaptak. Az (1.23) és (1.24) Osszefiiggéseket, gy szarmaztattak, hogy a [299]
cikk (4) és (5) egyenleteit alkalmaztak térszerd skalarmez6 gradiensre. Ekkor az Ly # p
és az Ly = £p Lagrange-stiriiségeket kaptdk, valamint amikor levezették a mezGegyen-
leteket az el6allo skalarmezd energia-impulzus tenzor nem az (1.23) energiasiirtiséget
és az (1.24) nyomast tartalmazta. Ez onnan eredt, hogy a [299] cikk (4) és (5) Gssze-
fiiggéseit a hqp = ugup + gap felbontasbol vezették le, ahol u,u® = —1. Azonban, ha u,
idGszert, akkor térszert vagy nullszert skalarmezd gradiens valasztasakor az u, ~ V, ¢
osszefiiggés nem alkalmazhato. A [299] hivatkozasba felmeriilt problémat a [303] fo-
lyoiratcikkben orvosoltak. A [303|-ben bemutattak a p nyoméasra és p energiastiriiségre
vonatkozo helyes Gsszefiiggéseket, amelyekbdl szarmaztattak térszerd és nullszerd gra-

diensti minimalisan csatolt skalarmezd energia-impulzus tenzorat.
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1.4. Téridéfelbontasok

A térid6 felbontasanak modszerével a gravitaciot leir6 mennyiségek dinamikai infor-
méaciot hordozé részei szeparalhatok, igy ezen paraméterek fejlédése kozvetleniil ele-
mezhetd. A modszer soran a valtozok szama noévekszik, amely szimmetria valasztassal
és mértékrogzitéssel csokkenthets. A térids felbontasnak targyalasi modjai, tovabba
alkalmazasai tobbfélék. A felbontési modszerek két széles korben hasznalt technikai
csoportja a kovarians, illetve az ADM formalizmus [304], azonban kidolgoztak tovabbi
formalizmusokat is lasd a [305]-|316] hivatkozasokban.

1.4.1. Kovarians formalizmus

A térid6 1 + 3 fiizési” (,threading”) modszerét, vagyis mas néven az 1 + 3 kovarians
formalizmust 1998-ban G. F. R. Ellis és J. Ehlers foglalta 6ssze és ismertette alkalma-
zasat az FLRW univerzumra [317]-[320]. Az 1+ 3 kovarians formalizmusban az FLRW
univerzum dinamikajat a kinematikai mennyiségekre és az un. gravito-elektro-mdgneses
mennyiségekre vonatkozo elsérendii differencial egyenlet rendszer irja le. A formaliz-
musban az u* = dx®/dr az univerzumot kitolts anyagra jellemz6 idgszerd (u®u, = —1)

4-es vektor, amellyel projektor-tenzorokat hataroztak meg. Az egyik az
Uy = —uuy ,
amely az u® vektorral parhuzamosan vetité projektor-tenzor. A masik a
hab = gab + ualp ,

amely az u® vektorra meréleges 3-dimenzios pillanatnyi nyugalmi tér (azaz ,rest space”)
metrikus tenzora. A g, a 4-dimenzioés metrikus tenzor, 7 pedig az anyag vilagvonala
mentén értelmezett id§ paraméter. A projektor-tenzorokra az alabbi Osszefiiggések

igazak:

Ulug = U, Ul=1, Uygub=u,,

a

hohi = h¥, hP=3, huu'=0.

a

A 3-dimenzi6s pillanatnyi nyugalmi térhez definialt Levi-Civita szimbo6lum az

d d
Eabe = W Ndabe = —NabedU
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amelyre igaz, hogy

1
€abc = Elabd = 5y [gabc + Ebca T Ecab — Ebac — Ecba gacb] )

3!

Eapct® = 0.

AZ Napea & 4-dimenziés Levi-Civita tenzor, ahol Naed = Mabed) €8 Mor2s = +/|det gap|. A
vildgvonal menti kovarians id6 derivalt egy tetszéleges T, tenzor esetén a

Too = uV.T% . (1.25)

Egy tetszéleges T, tenzor 4-es kovaridns derivaltjAnak a minden indexében, a lokalis

3-dimenzids térre vett projekcidja pedig a

DTy = hghihlhg VT,

Orvénymentes esettél eltekintve ez a projekcié nem azonos a 7%, tenzor 3-dimenzios

kovarians derivaltjaval. Egy tetsz6leges v* vektor u® vektorra merdleges projekciojat a
v = pgo

modon jelolték, mig egy tetszéleges T tenzor szimmetrikus, nyommentes 3-dimenzios

térre vett projekcioja a
1
ab aypb ab cd
Tlab) — [hg h) — 3h hcd] T
Ezen utobbi jeldlésekkel egy tetszdleges v® vektor és T tenzor (1.25) szerinti idéderi-
valtjanak 3-dimenzios térre vett projekcidja pedig:
o = kgt
n{ab . ai b) 1 ab red
Tt = [hg hy = 3h hcd]T :
Kinematikai mennyiségeket az u® vektor 4-es kovatridns derivaltjanak felbontasabol
definialtak:
Vauy = ¢giVeug = (hS — uqu®) (hg — ubud) V. ug
= hghglvcud - hgubudvcud - uauchffvcud + u uCuputV gy
= —uuh{V ug + hERIV cug
1 1 1 1
= —u.hiAg+ §h2h§fvcud + §h§h§chd + §h§hgvcud - §hghgvcud
1 1
= —ugAp + hChPV ug + B DIV g + Shah®Vetta = Shah*V g
1 1
= —u A+ (hgfhg” - ghabh"’d> Vettg + hlEh' cug + Shah® Vg

1
= —u,Ap +Dyupy = —u Ay + 0gp + Wap + §9hab . (1.26)
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Itt felhasznaltik, hogy vV ug = 0. Az
Ay = up = uVouy (1.27)
az u® gyorsulas vektora. Ez geodetikus palyan elttinik. A
0 = Dyu® = h™V uy (1.28)

az u® vektormezd integralgérbéibdl allo goérbesereg expanzidja. Az expanzid repre-
zentalja az u® sebességgel mozgd anyagfolyam térfogati tadguldsanak mértékét. FRLW

téridén a Hubble-paraméter: H = 0/3. A gorbesereg nyiras tenzora a
o 1 .
Oab = D(aub) = |:h((;hi) - §habh”} VZ‘UJ' y (129)

amely az anyagfolyam aramlasi irAnyra merdleges torzulasét irja le, mikézben térfogata

valtozatlan marad. A nyiras tenzorra az alabbi sszefiiggések vonatkoznak:

b a
Oab = O(ap) , Oaptt’ =0, o,=0.

A gorbesereg 6rvény tenzora az
1 o oo
Wap = D[aub] = 5 (h;hi — h;)hfz) Viuj y (130)

amely az anyagfolyam forgasat jellemzi annak aramlési irAnya mentén egy nem forgd
lokalis inerciarendszerhez képest. Tovabba w., = way), waptt? = 0. Az 6rvény tenzorbol
bevezethets az

1
W = ie“bcwbc (1.31)

orvény vektor, amelyre teljesiil, hogy
W' =0, w'u,=0.

Az w® 3 darab fiiggetlen komponenssel rendelkezik, ahogy w,y, is. A kinematikai mennyi-

ségekbdl szarmaztatott skalarok, az

1
wQ — _wabwab 7
2
azaz az Orvény meértéke, és a
1
0_2 — 5O_abo_ab 7

azaz a nyiras meértéke. Az expanzid, nyiras és orvény hatésat egy egységni térfogatu

folyadék gobmbon a 8. dbra mutatja be.
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O O O

P

>

a) b) c)

8. 4bra. Az a) abra oszlopban lathato egy gomb térfogategységnyi folyadék expanzioja,
a b) abra oszlopban a nyiras, mig a ¢) abra oszlopban az 6rvény hatasa lathato [317].

A b) és ¢) esetekben a folyadék térfogata valtozatlan.

A gravito-elektro-mégneses mennyiségek a Cyp.q Weyl-tenzor 1 + 3 felbontasabol
szarmaznak a kovetkezGképpen. A 4-dimenziés Riemann-tenzor felbonthato az alabbi
mobdon:

1 1
Rabcd - Oabcd — 5 (Racgbd + Rbdgac — Radgbc — Rbcgad) + ER (gacgdb — gadgcb) .

Ennek spurja az R%,; = Ruq Ricci-tenzor és a spturmentes része a Cypeq Weyl-tenzor,
tovabba R, = R = R a Ricci-skaldr, mig C9,, = 0 = C%, [320], [321]. A Riemann-

tenzor teljesiti a kévetkezd azonossagokat:
R[ab] [ed] — Raped = Redab ) Ra[bcd] =0,

amelyeket a Weyl-tenzor tgyszintén teljesit. Az

1 1
Ry — §gabR + Agay = K* Ty == Rop = Agap + K* <Tab - §gabT> ) (1.32)

Einstein-egyenlet hatarozza meg a Riemann-tenzor spurjat, azaz a Ricci-tenzort, a
téridé minden pontjaban, az adott pontban 1évé anyag alapjan. A Riemann-tenzor
sparmentes részének az 1 + 3 kovaridns felbontasa hasonlé az elektrodinamikaban az
ugyancsak antiszimmetrikus és spurmentes 4-dimenziés Fj;, elektromégneses tértenzor

felbontasdhoz. Az Fy, tenzor az E, = Fyub elektromos és H, = %gachbc magneses
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3-dimenzids vektorokbdl all, ahol E,u* = 0 = H,u®. A Weyl-tenzor ehhez hasonloan

az u® vektorra mergleges, 3-dimenzios pillanatnyi nyugalmi tereken definialt
Eqy = Cajblujul ) Ea = E(ab) ) Eg =0 ) Eabub =0
elektromos Weyl gorbiileti részre és a

1 :
Hab - Egajloﬁ)kuk ) Hab - H(ab) ) Hg =0 ) Habub =0
magneses Weyl gorbiileti részre bonthato.

Az u® 4-es sebességgel mozgd anyag energia-impulzus tenzorat az (1.17) Gsszefiiggés

hatarozza meg, amelybdl leolvashatd, hogy

p = Topuub |
1
= Sda hab )
p gtab
Qo = _Tbcubhca )
Tab — ?a‘hﬁ»Tcd .

Felhasznalva az (1.32) Einstein-egyenletet és a Ty, felbontasat, a
2v[avb}uc = Rabcdud

Ricci-azonossag, a

V[e Rab]cd =0

Bianchi-azonossag és az (1.15) egyenlet 1 + 3 kovarians felbotasabol végiil szamos el-
sérendii dinamikai- és kényszeregyenlet vezethets le. A Ricci-azonossag felbontasabol
3 mozgéasegyenlet, a Raychaudhuri-egyenlet, az 6rvény és a nyiras fejlédésegyenletei,
valamint 3 kényszeregyenlet szarmaztathat6. A Bianchi-azonossag felbontasa tovabbi
2 kényszeregyenlet mellett 2 fejlédésegyenletet eredményez. Az utébbiak az elektro-
mos és magneses Weyl gorbiileti részekre vonatkozo fejlédésegyenletek. Az energia- és
impulzusmegmaradasra vonatkozo (1.15) egyenlet 1 4 3 kovarians felbontéasa szintén 2
mozgasegyenletet eredményez. Az 6rvény fejlédésegyenletének tovabbi kontrakciojabol
pedig az altalanositott Friedmann-egyenlet adodik.

Az 1+ 3 kovarians formalizmus tovabbi felbontéasat, az 1 4+ 1 + 2 kovarians forma-
lizmust dolgozta ki C. A. Clarkson és R. K. Barret a [322] folyoiratcikkiikben. Az 1j
formalizmus egyik célja az inhomogén téridék vizsgalata volt asztrofizikai léptékben
az 1 + 3 kovarians formalizmushoz hasonlé matematikai méodszerrel. Feltették, hogy a
hattér rendelkezik egy szimmetridval, ami térszerd irdnyt jelol ki, példaul lokalis forgas-

szimmetria vagy gémbszimmetria esetén. Bevezettek az u® 4-es vektorra merdGleges n®
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4-es radidlis iranyitottsagi térszerd vektort (u,n® = 0, n,n® = 1), amellyel definialtak
egy az n®-ra és u®ra merdleges 2-dimenzios feliiletre vetitd

NP =hb —nan® = g0 + ugu’ — non’
projektort teljesitve az

Ns = 27 Nabna = O, Nabua =0

kifejezéseket. A 2-dimenzios Levi-Civita 2-tenzor az

c d c
Eab = Eaben’ = U Ngapen | (1.33)
amely teljesiti az alabbiakat:
b
EqpN = 0 5 Eabe = NaEbe — NpEac + NeEab 5
cd card d are Re ab
™ = NINy — NINg, efecs=Nap, Eae™ =2. (1.34)

Barmely ;" tenzor esetén az 1 + 3 formalizmus soran ismertetett, a 4-dimenzios
kovarians derivaltnak az u-ra minden indexben meréleges projekcidja tovabb bonthato
az n®-val parhuzamos és meréleges részekre:

~

Vay = D’
Setby? = NINENJINENIDup;l, (1.35)

A ¢, derivalt az n® tekintetében minden indexben meréleges projekcioja a D, derivalt-
nak. Az 1+ 1+ 2 formalizmusban tovabbi kinematikai mennyiségek is megjelennek,

amelyek az n® vektor D, derivaltjanak a 2-dimenzids feliiletre vetitésekor jelennek meg:

Doy = hihiVing = hihlgl ¥V ng = hibd (B — uu™) (B — uju®) Vny,
= hflhi (h;"h? — hg”ujuk — uiumhf + uiumujuk) Vo
= hih RV e = BB Ding = (NI 4+ n'ng) (N + niny) Diny
= N!N/Din; + % INIDin; — %N;nginj
+NgninaDinj + N;njanmj + ninanjanmj
= N(ZaNg)ij + N NyDinj + Nyn'n,Din;
+N ' nyDin; + n'ngn’nyDin;

; ) 1 ii 1 i
= (N(aNb) — §NabN]) ij + §NabN]ij

+N} N'Z]Dinj + ijninaij + Nénjaninj + ninanjanmj

[a

1
= Cab + §Nab¢ + ggab + NeAp - (136)
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Itt felhasznalték, hogy

0 = D, (nbnb) = n®D,ny + nyDan® = n®D,ny + nthhl;Vinj
= n*D,n, + nbhflhé’.vi (gjmnm) = n’Dyny + njhflgjmv,;nm
= n"D,ny + ny (hjm — ujum) hé’-hivinm = n’D,ny, + nbh?hjmhflvinm
= n'D,ny + nkgbkh?hjmhzvinm = n’D,ny + nkhbkh?hjmhzvinm
= n’D,ny + nkhkjhjmhzvinm = n’Dyny + nbh?hzvinm

= n"D,ny, + n’Dyny, = 2nPDyny, | (1.37)
és
1 ab A7 NTJ 1 a 1 b nra i \TJ
&m::?msmmuwzﬂmmfmeMmu@
1 o o o
Az (1.36) Osszefiiggésben a
¢ = d,n" = N’ N*Dyn® = N*Dyn® = N*Dyn,, , (1.39)
amely a 2-dimenzios feliilet expaziojanak mértéke. A
1
@Fﬁ@mF:N@%—ﬁNwwfuw (1.40)

a nyiras, amely a 2-dimenzios feliilet torzulasabol szarmazik. Az
a4y = hy=n"Dyn, = nbhéhljvink = nbhzhgvi (g0nm)
= gmMthihEvin,, = (B — u™uy) n®hihEVin,,
= nhEhyhVing, = n"hiDyny, = n® (NF 4+ nen®) Dyny,

= n’N*Dyny, = ng (1.41)
a gyorsulas. Az n® 6rvényének mértéke a

1
&= 5e"dam (1.42)

amely a 2-dimenzio6s feliilet elfordulasat reprezentalja. Az n® vektor 4-es kovarians
derivaltjanak u®-val parhuzamos projekcioja az

- a b b c c b
n® = wVyn, =u'Vy(negs) = gou’Viyn,

= (N° — uuy +n‘ng) u?Vyn,
= Ngubvbnc — uCuu’Vyn,
= N,u’Vyn® + ugnubVyus

= a,+ Aug , (1.43)



1.4 TERIDOFELBONTASOK 51

ahol

A = n%A, = n®u’Vyu, ,

g = nNg= Nun® = NyuV.n' . (1.44)
Az (1.43) szarmaztatasakor felhasznaltak, hogy u,u’Vyn® = —n*u®Vyu, és n.Vyn® = 0.

Barmely 4-dimenzios Y* vektor az 1+3 kovarians felbontassal az u®-val parhuzamos
vetités utjan egy ¢ skaldrra, mig az u®-ra meréleges projekcioboél egy 3-dimenzios ¢®
vektorra bonthato fel. A 3-dimenzids ¥ vektor egy tovabbi 1+ 2 kovarians felbontéassal
az nva parhuzamos projekciobol szarmazé ¥ skalarra, valamint az n®ra és az u®-ra

merGleges projekciobdl egy 2-dimenzids W vekorra szeparalhatd tgy, hogy
P =W 4V U =qpn®, W=, N™ . (1.45)

Egy 3-dimenzids, szimmetrikus, spirmentes 1, tenzor tovabbi 1 4+ 2 felbontasa a

1
Vab = V) = ¥ (nanb 3 ab) + Wany + Yo (1.46)
alaki, ahol

v o= nanbwab = _Nabwab 5
\Ija - Ngnc¢bc 5

1
‘Ijab = w{ab} = |:N(CaNl§l) - §NabNCd:| 77Dcd . (147)

A 2-dimenzios W skalar, a W, vektor és a W, tenzor D, derivaltjanak az 142 projekcidja

a kovetkezd:

D,V = DV = (N!+nen’) Dy¥ = NDyU + non’D,¥
= 0,V + na\il ,
DV, = hihiDyV, = (N¢+nen?) (Ng + nyn®) Dyl
= NINEDU, 4 ngn°NiDyV, + ngn? NEDg¥ . + ngnynn®DyV,
= 0,V — VU NDyn, + ng Nin“Dy¥.. — ngny ¥ .nDyn®
= 0,0, — ny U NENIDyn, + ng NEW, — ngny ¥ ntDyn’
= 0,V + naNbC\ifc —ngmpV.a® — nb\IJiNiCN;lanc
1

= 6,0, + na\if,; — nanpVea® — ny (€10 + Gia) Ui — énb\I/agzﬁ ,
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92

Da\Ijbc

hehgh DaVep, = (NI + nen®) (Nf + npn®) (NI + nen™) Dg¥en
NENENTDG,,, + NENEn ™ DgVe,, + ngn® NN DU,
—I—nandNbencand\Ifem + NgnbneNf‘Dd\Pem + Ngnbnencand\Ifem
—i—nandnbneNCde\I/em + ngnynentnniDyv,,,

60 Wpe — 2nanpVeyia’ — NINEn Yo Dan™ — Niny W, N Dgn®
—i—Ngnbncneand\Ilem + ngnynentn™nDyV,,, + naNfN:lndDd\IJm
0aWse — 2nanVeia" — nW NGNS Dane — no Wy N N& Dan

—ny WLNGNS Dane — np VNG NoyDane + ngNy N'nDgWep,

00 Ve — 2nanpVeyia" — neWieia — npVikein — neViGa — npVilia
—%nC\IJszNedane — %anf@NmNedane + g NENn Dy,

0aWhe = 2nanWoyia’ — 1o Wand — 20 Uiy (§¢ia + Gia) + 1V -

Az el6z6 szamolasnél felhasznaltak, hogy

és

noVy = neNyn'D;¥; =n,V; ,
. i .
NaWpe = NNy NIN'DVy; = n,Vy

v.n® = 0,
V,.,n" = 0,
0 = niDy(V.n®) = ¥ nDyn® + nn*DyV.
0 = n9Dy(Veen®) = Uoen®Dygn® + nn?DyV,, |
0 = nn'Dy(V,n®) = n"W,n?Dgn® 4+ n*nn?DyV,,,

= nnn'D,V,. ,

. 1. 1
W NENIDgn, = anqﬂNnganchinb\lenganc

1. 1.
= 5n,,xIﬂJ\f;]\fjl)dnc — 5n,,\Iﬂz\fgjvidmnc

1 1.
+§nb\1ﬂNnganc + énb\I/ZNnganc

I 4

=S¥ (NfNJ — NeNJ) Dane + ny W' NG, N Dan
1 . )

= o (NfNJ — NeNJ) Dane + np ¥ [N(, N,

1 1.
—§Naich Dyn, + 5n,,\lﬂJ\faizvcdz)dnc
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. . 1
= mplei U + np Ui, + énb\I/aNCdanc

1
= Ny (Egia + Cia) v + §\Ifa¢ )

valamint az (1.34), (1.35) és (1.38) Osszefiiggéseket.

Az (1.45)-(1.47) egyenletekben definialt mennyiségekhez hasonld valtozok kialaki-
tasaval az 1+ 3 kovarians formalizmusban ismertetett kinematikai mennyiségek felbon-
tasal az

A" = 4 =uVau® = giA® = (hf — upu) A
= (N +n"ny) A® = A" + An“ |
w* = N+ nnyw’ = Qn® +Q°

1
Ogp = by (nanb - 5 ab) + 22(,17%) + Eab > (148)
tovabba a gravito-elektro-mégneses mennyiségek a

1
Eqg = & (nanb - 5 ab) + 2g(anb) + gab ’

1
Hab = H (nanb — 5 ab) -+ 27—[(anb) -+ Hab y (149)
amelyeket a
Oy = 9°gio.q = (NS — uu, +nng) (Ng — uwuy, + ndnb) Ocd

c c d d
= (N4 nng) (NY + n'ny) e
= NgN,flaCd + Ngndnbacd + ncnaNgocd + nngnnyo.g

d d d d d
= NGNpoea + NigNyoea + Nonnyoeqg + nngNyoeg + nanpnn’oe

1
c d cd d, c
= N(aNb)Ucd — §N‘11’N Ocd + Mg Ny N 0cq
1
d d d
+pNnoeg + ngnpnn®oeq — §Nabncn Ocd

1
= Yap + Na2p + Mp2g + <nanb — §Nab) ) (1.50)

példa alapjan szarmaztattak felhasznélva, hogy a o4, az Ey, és a Hy, szimmetrikus

tenzorok. Az n® vektor 4-es kovarians derivaltjanak felbontasa

V,n, = g;ggvcnd = (hS — uqu) (hg — ubud) V. ng

= h;hgvcnd — hZubudVCnd — uauchgvcnd + uguupu’Vong
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= —ugupnguVu + Dyny + ubndhzvcud — Uq (Ngi + nbnd) uVeng
= —uupnguV.ut + D,yny + ubndhgvcud

—uaNl;iuCVCnd — ugnyn®utVonyg
= —U,p — UgUpA + Dyny + ubndhzvcud
1
= —UgOp — uaubA -+ Danb + ubhgnd (—UcAd + Ocqg + Weqg + gehcd)
= —U,p — UgUpA + Doy + ubnngacd + ubnngwcd
c, d d 1
FUpn NN Teq + Upngnnwey + 9naub
= —Ugyp — UgupA + Dyny + (Z + 59) NgUp + Uy + ubnngwcd
1
= —u,p — UgUp A+ Dony + | 2+ §9 NgUp + 2agUp
—uynl Nad]wcd + ubn(ng)wcd
1
= —Ugp — UgUpA + (ap + §Nab¢ + §€ab + Ny
1
+ (E + §9> NaUp + LglUp — UpEae© (1.51)
felhasznalva, hogy
b 1 b_ij z b] i
w = 2(n8 +n’e )wz‘j,
0 b 1 bij 1 b_ij z bj i 1 ij
= MW :§nb5 wijzénb (ns +n'e )wij:§5 Wij
0e — Nab 1Nasz ) lN(b” Zb]+nj bz)w
- b 2 b 7«7 2 b ij
1 a 7
— éNb ( b] + le )wij
1
€l = €Ny Wl = §N,;’ ( ighi 4 pie I”) Wij
— §N; [—n' (N!NJ — NIN?) + 0/ (N!N} — NIN!)] wy;
1 . . . . . .
= o (NENENG — NENINE) <+ (NENONG — NENIND)]
1 . . . . . .
= 3 [—n' (N = 2N7) + 0/ (N? — 2N})] w;
1 . . . .
= 5 (VNI = nING) Dy = nl Nwy, (1.52)

tovabba az (1.26), (1.31), (1.33), (1.34), (1.36), (1.43), (1.48) és (1.50) Gsszefiiggéseket.
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Az u® vektor 4-es kovaridns derivaltjanak felbontasa pedig

Vouy = —uaAp + Daup = —uy (Anp + Ap) + %ehab + Oab + Wab
= —u, (Any + Ap) + %0 (Nap + 1anp) + Zap + 1B + 124
+ (nanb — %Nab) Y+ e+ naepifY — npeai (1.53)
agy, hogy
Wap = giggwij = hfzhiwij = pli hg]wij = % (hflh{) — héhi) Wi

= % (N; + nani) (Ng + nbnj) Wij — % (Ng + nbni) (Ng + nanj) Wij

1, . . o o 1, . .y o
=3 (N;le + Nynyn? + nan’Ng) Wij — 3 (Nb’Ng + n,n’ N, + nanNg) Wij

1 . 1 o 1 L 1 . .
= 5 éNgwij-I—énanNgwij—FEnansz]wij—5N§Niwij

1 o 1 o
—inanJNgwij — §nbnzNajwij
1

= 5 (N;ij — NgNg) Wij + %na (nZNg — ang) Wij — %nb (nlNCJL — an;) Wi

= 58@6”&)@']’ + nan[’ ij]wij — nbn[’ Naj]wlj

= eabQ + naebiQZ - nbf':aiQZ 5

ahol a (1.34), (1.48), (1.50) és (1.52) Osszefiiggéseket alkalmaztak, valamint az w,, =
wiap) tulajdonsagot [323].

A formalizmus matematikai kidolgozésa utan gémbszimmetrikus, sztatikus hattér
valasztasa mellett és vikuumban (T, = 0, G4, = 0) szarmaztattak az 1 + 3 kovarians
formalizmus dinamikai- és kényszeregyenleteinek tovabbi 142 felbontésat. Eredményiil
11 darab ,propagacios” (n® menti fejlédés) egyenletet, 11 darab ,evoliaciés” (u® menti
fejlodés) egyenletet, 5 darab kevert fejlédésegyenletet és 3 darab kényszeregyenletet
kaptak. A propagacios egyenletek a mennyiségek elsérendi ,,"” és ,,0” derivaltjait tar-
talmazzak, az evolicios egyenletekben a valtozoknak az elsérendt ,,;” és ,,0” derivaltjai
szerepelnek, a kevert fejlédésegyenletekben a valtozok elsérendi ,,”, ,” és ,,0” deri-
valtjai is megjelennek, mig a kényszeregyenletekben a valtozoknak csak az els6rendi
,07 derivaltjai vannak a tovabbi derivalt nélkiili tagokon kiviil. Megallapitottak, hogy

A

Schwarzschild megoldas esetén az {A, &, ¢} valtozok és 7 derivaltjaik nem eltiinsk.
A Schwarzschild fekete lyuk kérnyezetében gravitacios hullamokat vizsgaltak szdrmaz-
tatva a Regge-Wheeler és Zerilli egyenleteket az 1 + 1 + 2 kovarians formalizmusban.

A 4-dimenzios térid6 1+ 1+ 2 kovarians felbontési modszerének szamos alkalmaza-

sa van. A formalizmus bevezetése utan C. A. Clarkson altalanos forgasi szimmetriaval
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rendelkezd térid6k esetén ugyancsak megadta a hattérre vonatkoz6 dinamikai egyenle-
teket, valamint levezette az els6rendi perturbacios egyenleteket [323]. Az altalanosabb
szimmetria vilasztas miatt, ekkor a hattér téridére 11 darab propagacios egyenlet, 5
darab evolicios egyenlet, 5 darab kevert fejlédésegyenlet és 3 darab kényszeregyenlet
vonatkozik. A formalizmust alkalmaztak a Kerr-téridé esetén az ergorégion kiviili rész
geometriai vizsgalatara [324|. Nyirasmentes, lokalisan forgasszimmetrikus (azaz Lo-
cally Rotationally Symmetric, LRS-IT) idealis folyadékként leirhaté rendszerek dinami-
kajat és geometriai osztalyozasat ismertették az 1+ 1+2 kovarians leiras alkalmazéasaval
a |325] munkaban. Kantowski-Sachs hattér esetén 6rvénymentes, idealis folyadék per-
turbacios egyenleteit mutattak be a kovarians formalizmusban a [326] hivatkozasban.
Altalanositva a kovarians felbontéast, 5-dimenzios, lokalis forgasszimmetriaval rendel-
kez§ téridénél kidolgoztak az 1+ 1 + 3 kovarians téridéfelbontast, majd alkalmaztak a
Bran elméletekben a fejlédés egyenletek és kényszeregyenletek meghatarozasahoz [327].

A disszertacioban az ADM formalizmus nemmeréleges 2 + 1 + 1 altalanositasat
mutatom be, azonban az 1 4+ 1 4 2 kovarians formalizmusban megismert kinematikai
mennyiségek és a disszertacioban hasznalt geometria mennyiségek kozott van atjaras,

amelyet a 2.3. alfejezetben mutatok be.
1.4.2. ADM formalizmus

A gravitacio kanonikus mozgésegyenleteit 1962-ben publikalta R. Arnowitt, S. Deser és
C. W. Misner, amelyhez kidolgoztak és alkalmaztak a térid6 un. metrikus vdltozok sze-
rinti 3+ 1 dimenzios felbontésat, azaz az ADM formalizmust [328], [329]. Munkajukban
bemutattak az altalanos relativitaselmélet hamiltoni targyaléséat, amely soran szarmaz-
tattak a gravitaciora vonatkozo kanonikus egyenleteket. Az altaldnos relativitaselmé-
leti Lagrange-siirtiséget j paraméterek bevezetésével atalakitottak Liouville-formaba
ugy, hogy 4 darab Lagrange-multiplikatort vezettek be a 4 darab kényszeregyenletnek
megfelelGen, amelyek a 3-dimenzios N, shift vektor és az N lapse fiiggvény.

A formalizmus kidolgozasakor az Einstein-Hilbert hatésban szereplé Lagrange-

stirtiség an. Palatini-alakjabol indultak ki, ekkor

5= / dr'g™ oy (1) (1.54)
ahol g% = \/=§3%, 3% 4-dimenziés metrika inverze, § a 4-dimenziés metrika determi-
nansa, mig a 4-dimenzioés Ricci-tenzor az

R (f) =0T, — o, + T, Tk -T2, T

a
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amely az tn. 'Y, affinitastol vagy affin konnexio egyiitthatotol fiigg [328], [329]. A

a.c
tovabbiakban a 4-dimenzi6s mennyiségeket hullaimvonal jeloli. A hatés inverz metrika
szerinti varidciojabol a

. 1. -
Gab = Rab - §gabR =0
Eintein-egyenletet, és az affinitas szerinti els6 rendd variaciobol a

Ve = 0. + T, + g"T, — g"T. = 0 (1.55)

bsszefiiggest kaptak, ahol V a 4-dimenzios affin konnexi6. Torziomentes téridén az

(1.55) hattérre vonatkozo egyenletbdl kovetkezik, hogy

a. b {a b} - ( agbk + abgak - akgab) 5

azaz az affinitas a Christoffel-szimbolum, amely a metrikaval kompatibilis Levi-Civita

konnexio egyiitthatoja [329], ekkor
@agbc =0.

A 3 + 1 formalizmusban a 4-dimenziés metrikat felbontottak az

N = (_900) —-1/2
lapse fiiggvényre, az
Na = guO
shift vektorra és a
Gab = ?]uu

3-dimenziés metrikara, tovabba ezek alapjan kaphato, hogy

1
~ 2 a ~00
Joo = —(N _NaN)a g =—ma
~ N a ~a
g,uO = m s N = bNb .

Ekkor a 4-dimenziés metrika inverze a

b NaNb
_ e ,

~ab

=9

valamint a 4-dimenzi6és metrika determininsa a

V= NVE.
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Bevezették a
T =\/—g <F;.Oj - gijr}f_mgkm> g g’

kanonikus impulzust. A kanonikus impulzussal helyettesithetd a

K, =—V,n, = —ngff@cnd — Ko = —0gnp + 0L, = NTO,
a beagyazasra jellemzé kiils6 gorbiilet ugy, hogy
7Tab — —\/E(Kab _gabK) )
A Ku az n, = —N§? id6szeri normalis 4-dimenzios kovarians derivaltjanak a telje-

sen térszerd része, valamint K = K,g% = K2 Megjegyzendd, hogy bar az a,b,c...
téridéindexek, viszont csak a hullamvonallal jelolt mennyiségek 4-dimenzidsak, ezért a
i, v, ... térindexek kiilon hasznalata nem sziikségszertd. Az (1.54) Palatini Lagrange-

siirtiség Liouville-formajat kialakitottak a 3 + 1 formalizmusban, amely az
1
L =—guom® — NR®— N,R* — 20, (w“bNb — EWN“ + \/§D“N> , (1.56)
ahol m = gupm® = 7w és 3-dimenzidban a , D” esetén igaz, hogy Dagp. = 0. Az

1/1

R = -9 [R+—(—7T2—7r“b7rab)} ,
g \ 2

R* = —2Dyn®

a kényszerek, tovabba R a 3-dimenziés Ricci-skalar, amely a 3-dimenzids g,, metrikatol
fiigg. Az (1.56) felbontott alak alapjan az Einstein-i gravitacio Hamilton-stiriisége

vikuumban a

H=NR’+ N,R" .

Levezették az (1.56) Lagrange-stirtiséget tartalmazo hatas 7% és g szerinti varidci-
6jabol a kanonikus koordinatakra és kanonikus impulzusokra vonatkozé mozgasegyen-

leteket, amelyek a

2N 1
0, ab — T = ab — SYa 2DaN s
¢ Gab NG (Wb 59 bW) + 2D lV)

1 Ng® [/ .. 1
8t77“b = —N\/g <Rab — égabR) + % (7TZ]7TZ‘J' — 571'2)

2N b L b) b b '
—— (71—~ ) + /g (D*D°N — ¢*°D;D'N
V9 ( 2 Vo )
+D; (N'7®) — 27D, N |



1.4 TERIDOFELBONTASOK 59

9. abra. Egy M téridé foliazasa lathato X, térszert hiperfeliilet sereggel, ahol n idGszerd

normalis merdleges a (3;),.p hiperfeliiletekre [329].

teR

tovabba a kényszerekre az
R'=0=R"

eredményt kaptak vissza az N és N, szerinti variaciokbol. Ezutan a Poisson-zardjelek
bevezetésével megadtdk a kanonikus egyenleteket. Megéllapitottak, hogy az N, és
N Lagrange-multiplikdtorok a koordinatak felj6dését hatarozzik meg az idGszertd n®
normadlisra meréleges ¢ =konst. hiperfeliiletekr6l hiperfeliiletekre, viszont nem téltenek
be dinamikai szerepet. Az ADM téridéfelbontast mutatja be a 9. adbra. A gravitacio
kanonikus formalizmusanak targyalasa mellett ismertették a gravitacié kvantalasanak
lehetGségét és korlatait. A Palatini formalizmusban [330], a 3 + 1 dimenzios ADM
téridéfelbontassal levezették a Gauss-Codazzi relaciokat és az illesztési feltételeket is
a [331], [332] folyoiratcikkekben. Megallapitottak, hogy a kapott hatartag az altalanos
relativitaselméleti Gibbons-Hawking—York hatartaggal azonos vakuum téridék esetén,
de eltérhet anyagi hatas jelenlétében.

Az ADM formalizmust a Palatini formalizmuson kiviil a nem metrikus modositott
gravitacidelméletekben is felhasznaltak, ezek a Teleparallel Gravity (TG) és a Sym-
metric Teleparallel Gravity (STG) [333]. A TG és STG elméletekben a gravitacio

geometria, viszont nem azonositjak csak a téridé gorbiiletével. A bevezetett fgb affin

konnexi6 egyiitthato a {¢,} Christoffel-szimbolum mellett a 7¢, = fo[ab} torziot és a
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Raﬂuv

A)

B) ©

N T

} Qopw

A 4

10. abra. Az A) rajz szemlélti az altalanos relativitaselmélet altal megfogalmazott
gravitaciét. Amennyiben egy vektort eltolunk végig egy zart gorbe mentén, akkor a
vektor elfordulasianak mértékét fogja megadni az RS, A B) rajz mutatja be TG
valtozatat az altalanos relativitaselméletnek. Ebben az esetben két vektor egymas
mentén torténd eltolasa soran keletkezd nem zarodast adja meg a 7. A C) rajz az

altalanos relativitds STG analégiajat dbrazolja, amiben egy vektor transzformaciojakor

keletkez§ valtozas a vektor hosszaban a Q9. nemmetricitasoz kotsdik [333].

Qcab = @cgab nemmetricitast tartalmazza ugy, hogy

e 1 e 7.C 1 e A.c
F.ab = {Zb} + ETab + T(a.b) + §Q.ab - Q(a.b) : (157)
Az (1.57) Osszefiiggésben a 2. és 3. tag a

PE I _Tc T.c
.ab 2 .ab+ (a.b)

kontorzié (contorsion), a 4. és 5. tag az
Ec - 1 e N.c
.ab — §Q.ab - Q(a.b)
diszforméacio (disformation). A {/f:/b} Christoffel-szimbolum a D 4-dimenzios Levi-Civita
konnexi6 egyiitthatoja, mivel Daise = 0. A 4-dimenziés Riemann-tenzort az
R ta = 0l G + 00T g+ T3, T — T5,T,

kifejezés adja. A fenti fogalmak bevezetése alapjan, tehat egy modositott gravitacidel-

mélet metrikus amennyiben Qcab <f, §> = 0, torzibmentes amennyiben T.Zb (f, §> =0,
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tovabba a térids sik, ha R¢,, <f‘> =0[333]. A Q°,, a TS, és az R, jelentését egy
vektor transzformécioja sordn a 10. Abra mutatja be. A nem metrikus TG elméletek
kozé sorolhaté a TEGR (Teleparallel Equivalent of General Relativity) elmélet, amelyre
a fenti jellemzést alkalmazva igaz, hogy Q°,, (f, §> =0,7¢, (f, §]> #40, R, (f) =0,
mig az STG elmélet STEGR (Symmetric Teleparallel Equivalent of General Relati-
vity) alosztalyara a Q°, <f‘,§> £ 0, T, (f,g) = 0, R, (f) = 0 Osszefiiggések
vonatkoznak [333|, [332]. A TEGR és STEGR elméletek egyik célja az Einstein-i
gravitacidelmélet eredményeinek szarmaztatasa, példaul a naprendszerbeli tesztek, al-
talanos relativitaselméleti fekete lyukak reprodukalasa. A TG és STG elméletekben
szintén felhasznaltak az ADM téridéfelbontast [334].

Az ADM formalizmust alkalmaztak tovabba a metrikus modositott gravitacioelmé-
letekben. A 3+1 téridéfelbontasban téargyaltik a kozmologiai perturbacioszamitas EFT
kozelitését unitaris mérték valasztasaval [335]. Horndeski elmélet bovitése soran a me-
zGegyenleteket ADM valtozokba irtak, majd megadtak a megfelel6 Hamilton-stiriiséget
a [336] folyoiratcikkben. Az ADM formalizmus hasznalataval a Ricci-skalarral csatolt
Scalar-Gauss—-Bonnet (sGB) gravitacioselméletben sztatikus, vagy forgo téridé megol-
déasokat vezettek le [338]. Bemutattak az altalanos relativitaselméleti idealis folyadék
hidrodinamikai egyenleteit az ADM formalizmusban, amelyet egy kifejlesztett kod se-
gitségével vezettek le, tovabba a kod lehetévé teszi, hogy barmilyen relativisztikus ide-
alis folyadék szimulaciojat elkészitsék [337]. A Mathematica-ban irt an. GRAVITAS
kod az altalanos relativitaselméleti mozgéasegyenletek megoldaséra és t6ltéssel nem ren-
delkezd, nemforgo fekete lyukak graf diagrammjainak abrazolasara alakitottak ki [339].
A GRAVITAS fejlesztése soran beépitették a graf diagrammok 3 + 1 dimenziés ADM
felbontason beliili reprodukalasat is [340].

Az ADM formalizmus esetén szintén felmeriilt a téridé tovabbi felbontisa, amely-
nek {6 oka az id6fejlgdés vizsgalata mellett egy térbeli szimmetria menti térbeli terjedés
tanulmanyozéasa. Azonban ennek is tobbféle megkozelitése 1étezik, példaul a Killing-
vektormez6t alkalmazo [(2 4+ 1) + 1] dimenzios téridsfelbontas [341], az altalanos rela-
tivitdselméleti fekete lyukak spinor analiziséhez kifejlesztett 1 + 1+ 1 4+ 1 dimenzi6s
Newman-Penrose formalizmus [342]-[344], valamint az tin. merdleges s+1+41 dimenzios
ADM-szert téridéfelbontas [345], [346].

A mergleges s+ 141 formalizmus a disszertacio 2. fejezetében és a [347]-[351] hivat-
kozasokban bemutatott formalizmus el6zménye. A meréleges s+ 1+ 1 formalizmusban
az (s + 2)-dimenzios B téridé folidazhato (s + 1)-dimenzios térszerd S; (t =konst.) hi-
perfeliilet sereggel, amelynek normalisa n® idgszert, tovibba az (s + 1)-dimenziés M,

(x =konst., ahol x térszert koordinata) hiperfeliilet sereggel, amelynek normaélisa m®
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11. abra. Az (s+2) dimenzios B térid§ foliazasa (s + 1) dimenzios térszeri S; és
idGszerid My hiperfeliilet seregekkel. Az abran a 0/0t és a 0/0x fejlédés vektorok
felbontasa is lathato [345].

térszerd [345]. Az s + 1+ 1 dimenzios formalizmusban a folidzas merdleges, ekkor
az n® és m® normalisok ugyancsak merélegesek egymésra, valamint az N’ = 0, amely
a térszeri folidzasbol adodo (s + 1)-dimenzios shift vektor egyik komponense (1d. 2.
fejezetben). Ebbdl kovetkezik, hogy mind az S; mind az M, hiperfeliilet seregekhez
adaptalhato az fa = {n,m, F;} ortonormélt bazis és fB = {n,m, Fi} dualis bazisa,

amelyben az (s + 2)-dimenzios metrika

Gab = —MNgNp + MMy + hfab

o)
f

A hgy az S; és M, hiperfeliilet seregek metszete altal meghatarozott s-dimenzios 3, hi-

alaki, tovabba

Nn®* 4+ N* |

Mm*+ M* .

perfeliileten értelmezett indukalt metrika. Az N és M® vektorok az (s + 1)-dimenzios
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megfelel§ shift vektorok s-dimenziés komponensei, amelyek a ¥, érintéi, amig N és M
lapse-fiiggvények. A kovetkezd relaciok teljesiilnek: n,N* =0, m,M* =0, m,N* = 0,
ngM®* =0, hgpn® = 0, hgym® = 0. A folidzast a 11. dbra mutatja be. A formalizmussal
a gqp helyettesithets a hy,, N, M N, M metrikus valtozokkal. Az n, és m, 1-formak
(s + 2)-dimenzios derivaltjaival bevezették a bedgyazast jellemzd mennyiségeket, ame-
lyek a metrikus valtozokkal &llnak kapcsolatban és a folidzas geometriai leirasat teszik
lehetévé. A formalizmust alkalmaztak a gravitacié hamiltoni dinamikijanak leirasara
ahol, mint a 3+ 1 dimenziés ADM téridéfelbontasban, a bedgyazéasi mennyiségek kano-
nikus valtozok szerepét toltik be [346|. Kozmologiai vizsgalatokat végeztek a formaliz-
mus alkalmazasaval Bran elméletekben [352]. Hasznaltak gombszimmetrikus, sztatikus
hattér mellett egy EFT hatasbol szarmaztatott mezGegyenletek bemutatéséara, vala-
mint gombszimmetrikus, sztatikus téridék perturbacioszamitasa soran [197]. Azonban
a folidzas merdlegességének megvalasztasa miatt nem tudtak megfelel mértékrogzitést
tenni a perturbécio paros szektoraban [197], [348].
A [197] hivatkozéasban a

ds® = (=N?+N?+ N,N*)dt* + 2 (MN + N, M*) dtdx
+ (M? + M, M*) dxdy + 2N,dtdz" + 2M,dxdz"
+hapda®da® (1.58)
merdleges 2+ 141 dimenzios téridéfelbontéssal kialakitott ivelemnégyzetet veszik [345].
A tovabbiakban a hattér gombszimmetrikus és sztatikus, s = 2, valamint a hullaimvonal

jeloli a 4-dimenzios mennyiségeket. Az (1.58) ivelemnégyzet az elsérendii perturbacio

utan a

ds® = ds*+ 6, (dsz) + 0o (dsz) ,

ds? = —N2dt* + M?*dr? + hyydz®dz® |
6 (ds®) = —2NENdt* +2MoMdr* + 2MN dtdr
+26 N, dtdz® + 26 M, drdz® + 81 hgpdz®da®
8 (ds?) = —((6N)* = N? = §N,ON") dt*

+ ((6M)? + M6 M) dr?
+2 [NSM + SN, 6 M dtdr + Sxhapda®da® .
Perturbécié soran a mennyiségek az
N =N+ 0N

moédon valtoznak. A feliilvonas jelzi a valtozok hattéren vett értékét, mig ¢ az attol

valo eltérés. Kezdetben a folidzas merdlegességét csak a hattére szabtak ki (N =
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0). A perturbacios valtozoktol fiiggd mennyiségek variacioja kiilonbozhet rendenként,
amelyet a 0; és 9o jelol. A perturbativ vektorok és szimmetrikus tenzorok az alabbi

modon bonthatok fel gombszimmetrikus, sztatikus hattéren:

6N, = D,P+ E°D,Q ,
oM, = D,V + E"D,W ,
1
Shay = haA+ DyDyB + 3 (E¢D.Dy + ESD.D,)C . (1.59)

A rotacidmentes rész a paros, mig a divergenciamentes rész a paratlan szektor. Az
Ey = \/Esab egy tenzor slrtiség, amelyben az ¢, a Levi-Civita 2-tenzor, h pedig a
2-dimenzids indukalt metrika determinansa. Ezek alapan a merdleges 2 + 1 4 1 di-
menzios téridéfelbontas és az (1.59) alkalmazéasaval, a gombszimmetrikus, sztatikus
héattéren a perturbéciok paros szektorat a ON, M, N, P, V, A, B véltozok, mig a
paratlan szektorat a Q, W, C valtozok irjak le. A [197] hivatkozasban a Horndeski
és a GLPV skalar-tenzor elméletekben alkalmaztédk a meréleges 2 + 1 + 1 dimenzios
téridéfelbontast a perturbécios egyenletek levezetéséhez. Ekkor a ¢ skalarmezd pertur-
bacioja, mint paros valtozo ugyancsak megjelenik. A paros és paratlan valtozok szama

mértékrogzitéssel csokkenthets. A mértéktranszforméacio soran az

)

Y

@ — 34 £ (1.60)
infinitezimalis koordinata transzformaciot vezették be, ahol a
£ = (¢',¢", D¢ + E™Dyn) (1.61)

generator 2-dimenzios részét az (1.59)-nek megfelelGen bontotték fel. Itt és a késGb-
biekben a ,,~ 7 jeloi a transzformécié utani mennyiségeket. A [197] hivatkozéasban a
4-dimenziés metrika generator menti Lie-derivaltjaval megadtak a metrika perturbéci-

6jat egy 1j koordinata rendszerben ugy, hogy

gégab = 5§ab - 5/§;
5§ab = 5§ab + @aéb + @bga . (162)

A péaros perturbacios valtozok a mértéktranszforméacié utan

SN = 6N — No,&' — 9,N¢™ |
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A7 N2 t v T
N = N_ﬁarg +Mog"
SM = 6M +&0,M + Mo,&"
P = P-N%'+0¢,
‘7 = V+M2£T+ar£_2£7
T

A = A+2§’",

"
B = B+2¢,
0o = 06 —E00 . (1.63)

A paratlan perturbacios valtozok esetén a

@ = Q+at777
W = W+8r77—2777,
C = C+2 (1.64)

eredményt kaptak. A [197| hivatkozasban a modositott gravitacivelméletek EFT koze-
litésének alkalmazasa miatt az unitér mérték valasztésa mellett dontottek, azaz d¢ = 0,

amelybdl kévetkezik, hogy
_ 99
00

Ennek a megfontolasnak szintén oka volt, hogy az idGszert foliazast a ¢ =konst. hiper-

67”

feliiletek altal hataroztak meg. Ezt a véalasztast radialis unitér mértéknek is nevezik,
tovabba mivel ¢ hatarozza meg a radiélis fejlédést, igy fiiggetlen valtozoként nem jele-
nik meg a hatasban. Kovetkezének a konformis mértéket valasztottak, ekkor a hattér
indukalt metrika és a perturbacié utani metrika kozott konformis transzformaciot szab-

tak meg, azaz
hab = 62<Bab . (165)

A konformis mértékben a 2-dimenzios indukéalt metrika perturbacioja

Shay = hap — hap = € hay — hay
= ha (142¢+2¢%) — ha
= (2¢+2¢?) hap = 01hap + O2has
01hay = 2Chqy
O2hay = 2Chay (1.66)
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az inverzé pedig a

Shet — pab _ pab _ —2Cfab _ jab
= h®(1—-2¢+2¢%) — h*
= (=2¢+2¢) ™ = 6;h™ + 6,0,

51 = —2Ch",

5h®® = 2¢%h0 . (1.67)

A konformis mértékben B = 0 és C = 0, azaz

B C

52—57 77:—57

valamint az A perturbaciés valtozo helyét a ¢ konformis faktor veszi at. Az utolsod
szabadsagi fokot végiil a merdleges 2 + 1 + 1 dimenziés formalizmus miatt a f6lidzo

hiperfeliilet seregek merGlegességének megtartasara kellett hasznalniuk, azaz N =o.

Ekkor a M Vi
2
gt = /dTW <N+ 73th> + F(t797gp>

integralt kaptak, ahol az integracios konstans egy tetszéleges F (t, 0, ) fiiggvény, amely
miatt a mértékrogzités nem tehets egyértelmiivé. Az egyértelmii mértékrogzitéshez
sziikségiik lett volna még egy szabadsagi fokra, amellyel a P=0.

A |197] folyoiratcikkben bemutatott nem egyértelmi mértékrogzités oka a foliazas
merdGlegességének megkdvetelése a perturbacio utan is. Ennek feloldasa érdekében dol-
goztam ki a nemmeréleges 2 + 1 + 1 dimenzios téridéfelbontast, amely segitségével

elértem az egyértelmd mértékrogzitést, ezt a 2. fejezetben részletezem.

1.4.3. A disszertacié sajat eredményeit bemutatéd fejezetek révid 6sszefog-

lalasa

A nemmeréleges 2 4+ 1 4 1 felbontas alkalmazasdnak alap otlete az EFT elméletekbeli
gombszimmetrikus, sztatikus megoldésok és a perturbéciok vizsgalata volt, kifejezet-
ten a paros szektorra O0sszpontositva, mivel a paratlan szektor perturbéciés egyenletei
megegyeznek merdleges és nemmerdéleges dupla folidzasban.

A 2. fejezetben a [347]-[351] hivatkozasokban kidolgozott matematikai formalizmust,
a formalizmussal elért egyértelmi mértékrogzitést és az altalanos relativitdselmélet
hamiltoni targyaldsat mutatom be.

A 3. fejezetben a nemmer6leges dupla folidzas formalizmusanak alkalmazaséaval

egy EFT hatas esetén, gombszimmetrikus és sztatikus téridé megoldésokat ismertetek
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radidlis unitér és konformis mértékben. A megoldasok a nem miniméalisan csatolt k-
eszencia elmélet esetére specializaltak, ahol a G4 fiiggvény kiilonbo6z§ valasztasaval tobb
eset is adodott. Ezeket az eredményeket a [353] hivatkovas foglalja Gssze.

A 4. fejezetben a [354] hivatkozasban ismertetett minimalisan csatolt skalarmezd
folyadék leirasat targyalom, ahol a skalarmez6 energia-impulzus tenzorat a 4-dimenzios
metrika 2 + 1 + 1 felbontott alakjanak segitségével adom meg nullszerd, idGszerd és
térszeri skalarmezd gradiens esetén.

A dolgozat tovabbi részében az alkalmazott jel6lések: a latin- illetve gorog indexek
absztrakt indexek 4-, illetve 3-dimenzidéban, a vastag kis- és nagybetis latin indexek
pedig (példaul i, illetve A) 2, illetve 4-dimenzios bazisvektorok nevében jelennek meg,

és a —, +, +, + szignatturat hasznalom.
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2. A nemmerdéleges 2+ 1+ 1 felbontas

A kés6bbiekben alkalmazasra keriil6 nemmeréleges 2 + 1 + 1 téridsfelbontast foglalom
Ossze ebben a fejezetben, amely a [347]-[351] hivatkozasokban talalhato. A nemmerdle-
ges 2+ 14 1 formalizmus a [345] &ltal bemutatott merdleges s+ 1+ 1 kettds foliazasbol
indul ki ugy, hogy s =2 és N # 0.

A kétszeresen folidzhato 4-dimenzios térid6 B felbonthaté 3-dimenzios idGszertd N,
(x =konst.) és 3-dimenzios térszeri S, (¢t =konst.) hiperfeliilet seregekkel. Az idgszert
és térszert 3-dimenzios hiperfeliiletek metszete egy 2-dimenzios Xy, feliilet, amelyen a
2-dimenzi6s indukalt metrika a go. Az ea = {0/0t,0/0x, Ei} és az €B = {dt,dy, E3}
a B-n értelmezett ortonormalt bazis, illetve ennek dudlis bazisa. Az fa = {n,m, F}} és
az fB = {n,m, [} az S;-n értelmezett ortonormalt bazis, illetve ennek dualis bazisa,
ahol n, = —ng, Mg = Mg, nen® = —1, mym® = 1, men® = 0. A ga = {k,[,G;} és

a g8 = {l;;, [, Gj} az M,-n értelmezett ortonormalt bézis, illetve ennek dudlis bazisa,

ahol ko, = —ka, Ly = Lo, kok® = =1, 1,1° = 1, [,k* = 0. Tovabba
0
Ei:Fi:Gi:—.. 2.1
o (2.)
A 4-dimenzios metrika felbontott alakjai az S; és 9, hiperfeliileteken értelmezett ba-
zisokban:
Gab = —MNaTp + MaMMp + Gab
= —k’ak‘b + lalb + Jab - (22)

Az n, az S, hiperfeliiletek, amig az [, az 91, hiperfeliiletek normalisai, tovibba a g,
indukalt metrika g; vegyes indexd alakja X, -re torténd projekcios tenzor. Az myg, ke,
ng és l, a Xy, feliiletre merdlegesek.

A t és x koordinata vonalak tangens vektorainak felbontésa az (n®,m®) béazisban az

<%) = Nn®+ N+ Nm®, (2.3)
23" _ Mm® + M* + Mn* (2.4)
ox N '

alaki, ahol N a lapse fiiggvény, N® és N pedig a 3-dimenzios shift vektor 2 + 1 fel-
bontasabol szarmazé komponensek. Az M egy lapse figgvény, tovabba M® és M
egy 3-dimenzios shift vektor 2 4 1 felbontasabol szarmazo komponensek. A kévetkezd
relaciok igazak:

meN® = 0, n,N*=0, k,N*=0, [,N*=0,

nM* = 0, mM*=0, kM*'=0, [,M*=0.
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Az N térszerti, a 0/0t idGszerti és jovoiranyitott, ezért
N? —N? > g4 N°N® >0,

valamint N pozitiv. Az eB, fB és ¢ bazisok kozotti kapcesolat szirmaztatdsa soran
az <eB7eA> =08 = <fB,fA> és <fB,fA> =08 = <gB,gA> dualitési relaciokat hasz-
naltam. A (dt,0/0x) = 0 eredménybdl adodott, hogy a 3-dimenziés shift vektor M
komponense zérus. Az <fB, fA> = 0B = <gB,gA> dualitasi relaciok szamolasa soran
kaptam meg a 9/0t és 0/0x fejlédésfektorok felbontasat a (k%,1%) bazisban, amelyek a

2\* N ., a
AN M (—sk® + cl”) + M® (2.6)

Az (n*,m®) és (k% (%) bazisok kozotti transzforméacio a

(i) = e () () o
)=C o) o

Lorentz-forgatas, ahol s = sinh ) és ¢ = cosh). A (2.7) és (2.8) Osszefiiggések alapjan

azaz a

N = N tanh¢ . (2.9)

A nemmerdleges 2+ 141 dimenzios téridéfelbontast a 12. dbra mutatja be az (n®, m®)
és (k% 1) bazisokban.
Az n, és |, normalisok kovaridns derivaltjanak a felbontott alakja a sajat béazisaik-

ban a
Vany = §iVe (ina) = G535 Vena
= (g5 —nng +mmy) (g +m®my) Veng
= (gSg — ginna + gimm, + gimmy — nnemmy, + mmem®mg) Veng
= ggg,‘f@cnd + ggmdmb?cnd + g,ﬁlmcmaﬁcnd — ncnag,‘fﬁcnd
—nngm®myVong + mememmyVeng
= ggg,‘fﬁcnd + my (ggmd@cna +my (ggmcﬁcno + mgmy (mdmcﬁcnd)
—MNg (ggncﬁcno — N My (ncmdﬁcno
= Ku+ 2Tn(a’Cb) + 77710L7/nb’C — Ng (ab - mb£*> ) (210)
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(b)

12. 4bra. Az a) és b) abrak mutatjak be a 4-dimenzios B térid6 nemmerdleges foliazasat
a térszerd S; és az idGszerd 9, 3-dimenziés hiperfeliiletekkel. Az a) abran a 0/0t és
0/0x fejlésdésvektorok felbontéasa az S;-hez adaptalt (n®, m®) bazisban, mig a b) dbran
a fejlédésvektorok felbontasa az 9, -hez adaptalt (k®, (") bazisban lathato [347]-[351].
valamint hasonlé szamolés dtjan a

Valy = Lap + 2k@Ley + kakp L + 1, (b + kK*) (2.11)

A (2.10) és (2.11) felbontéasok szamolésa soran felhasznaltam a

ggna = O:ggma> ggka:():ggla7
na@bna = 0= maﬁbma y la@bla =0= k)aﬁbka

9eVan® = —nVaghe ,  GoeVam® = —mVogpe ,
gbcﬁakc = _kcﬁagbc 5 gbcﬁalc == _lc@agbc y
n“@bma = —ma@bna s k‘a@bla = —laﬁbka (212)

Osszefiiggéseket, valamint a D,g,. = 0. A ,D” a 4-dimenzids ,V” projekcidja a Dty
feliiletre, igy egy tetszGleges 4-dimenzios T, b b, tenzor 4-es kovaridns derivaltjanak
projekcioja a
Tay...ar — _C._.a ar de~ rct...or
DaTbll...bq = 9a9e; Yo, ggf---gbq Vchf...dq : (2.13)
A (2.10) és (2.11) felbontasokban a

Ky =Dyny, Lo = Dl (2.14)
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2-dimenzios tenzorok az (n®, m®) és (k,1*) bazisban kifejtett kiils¢ gorbiiletek. A

_ c, dye c, dye
ICa = g,m Vcnd:gaTn Vdnca

Lo = —gik™Vela = —gok"Vl. = Ko+ Dyt (2.15)

a normalis fundamentéalis formak az (n® m®) és (k% 1) bazisokban. A
K = mm‘Vny,

L = kEV.ly (2.16)

a normalis fundamentélis skalarok az (n® m®) és (k% [*) bazisokban. Tovabbi normalis

fundamentélis skalarok a
K = 14V, ky
L = nn’Veny , (2.17)

amelyek az n® és [ normalisok a® = n’V,n? és 3% = [°V,[* nem gravitaciés gyorsul-

sainak az m® és k* vektorokkal parhuzamos projekcidibol szarmaznak. Az
ap = gin°Veng (2.18)

az o gyorsuldsnak a ¥, feliiletre projektalt része, mig a 5 gyorsulasnak a X, pro-
jekcidja a
by = glI°V.ly . (2.19)

A 77 jelolést azok a beagyazasi valtozok kapték, amelyek az n® és [* normélisokra
merdSleges m® és k* bazisvektorok 4-es kovarians derivaltjainak vetitése definial.
Felhasznéalva a (2.12) osszefiiggéseket, a k* és m® bazisvektorok kovarians derivalt-

jainak felbontéasa a megfelel§ bazisokban:

Vaky = K&+ 1K + Lo + LK — ko (0 — [,L) (2.20)
Vamy = L+ naLi + npKq + namp L + my (0] + k) (2.21)

ahol a kiils6 gorbiiletek a
:zkb = Dakb s LZb = Damb . (222)
A normaélis fundamentéalis formakhoz hasonlé mennyiségek a

K: = giViky
L = —¢nVemy (2.23)
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a megfelel§ bazisokban. Az

ai = gik®Vak; ,
by = gym Vam (2.24)

az qp = k“@ak‘b és [ = m“@amb gyorsulasok >, projekcioi.

Az S, és M, hiperfeliiletek létezésének feltétele az n® és [* normalisok Grvénymen-
tessége [233], amelyet a [m, F}|* Lie-zarojel n® irdnyu tagjanak és a [k, G;|* Lie-zarojel
[* irdnyu tagjanak eltiinése biztosit. Azaz az {m, F;} és {l, Gi} vektorok az S; és I,
hiperfeliiletek érintGtereit hatarozzak meg. Ezzel szemben az [n, Fj]* és [I,G;]" Lie
zarojelek esetén az m® és k% iranyu tagok nem zérusak. Igy az m® és k® Grényes vek-
tormezGk. Az fa és ga bazisokra vonatkozo Lie-zérojel komponenseket az 1. és a 2.

tablazat foglalja Gssze.

| [, m)’ 2% 5) S B 9 1
n® L [0y (InN) — 3 M39; (In N)] 0; (InN) 0
m® || % [~OM + 0N + NIg;M — MIO;N] 205 (%) J; (In M)
F || i (0 M+ O Nt + N3gM* — MIGN') | L [Nt — Nognri] | &L

1. tablazat. Az fa bazisra vonatkozo Lie-zarojel komponensek [348].

H [k " L S <
B {00(%) + % [0 (MN) = Niggn (MN)] 1 05 (In %) | =505 (°FF)
—N0; () + 7 [0 In (F) = MIoyIn ()]}
1 = [0 (M) + NIO; (e M)] 0 d;1n (¢ M)
Gyl aiw [FOM + O N — MIgN' + Nigy M| | & (5NY) | 505N + 5;0;M°

2. tablazat. A ga bazisra vonatkozo Lie-zarojel komponensek [348].

A [345] hivatkozéasban, a merdlegesség megvalasztasa miatt (azaz N = 0) n®, 1%, m?,
k® vektorok hiperfeliilet normalisok, ezért az n® = k%, m® = [* ll fenn. A (2.23) mdodon
definialt formak nem tekinthet6k igazi normélis fundamentalis formaknak, amely a
k* és m® vektormezSk Orvényességébdl kovetkezik. A Frobenius-tétel alkalmazésaval

belathato, hogy az n%, [*, m® és k® vektorok 2-dimenziés érvényei eltiinnek [233], [355],
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azaz
wc(:bl) = g[cagl(;i}@cnd =0 )
1 ¢ d&
w(gb) = g[agg}vcld =0 )
Kk ¢ de
wC(Lb) = g[aglc)i}vckd =0 )
Wiy = g Vema =0 . (2.25)
Emiatt a K, Lay, K és L, szimmetrikus, ,igazi” kiils¢ gorbiiletek. Legyen a 4-
dimenz6s metrika most a
Gab = —Na + Gab = laly + Gab (2.26)
és a
Gab = Mamy + hap = —kaky, + hay (2.27)
alaka agy, hogy
gab = MmgMp + Gab ,
Jab = —kqky + Gab
Bab = —MNgMp + Gab ,
Aab = lalb + Gab - (228)
Ekkor a Frobenius-tétel miatt a 3-dimenziés orvények a
Q% = G0V =0, 2.29)
& = GaiVda=0, (2.30)
a normaélisokra, mig
% = he ke = lagil© (?de - @dkc) £0, (2.31)
(Dizn) = _[Cai_lg}@cmd = —n[agg]nc (@Cmd — @dmc> #0 (2.32)

a normalisokra merdleges bazisvektorokra. A (2.31) és (2.32) normalisok szerinti kont-

rakcioibél a

~ (k) 7b
2%(11) l

2@((1?)nb =

relaciok adodnak. A (2.29)

K. és L, ,jgazi” normalis

gl (@ckd - @dkc) = K — gkl (2.33)

—gne (2.34)

(@cmd — @dmc) =L, — ggmcﬁdnc

és (2.30) eredménybdl kovetkeznek a (2.15) definiciok, azaz

fundamentalis forméak. Ezzel szemben a (2.33) és (2.34)
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szerint

K: = L,—20%0
L: = K, +20%nb (2.35)

Azaz KC és L7 nem rendelkezik a (2.15) szerinti szimmetria tulajdonsagokkal, igy nem
ygazi” normélis fundamentalis formak.

A metrikus valtozok, valamint a (n® m®) és (k%,[1*) bazisbhan megadott geometriai
mennyiségek kozotti kapcsolatok megdllapitasahoz sziikséges bevezetni a Lie-derivalas
Yt Projekciojat. Egy tetszleges f fiiggvény, egy W vektor, egy w, 1-forma és egy
Ty tenzor 4-dimenzios Lie-derivaltjat V'* mentén az

f:Vf =V (f) = Vaaaf = Vaﬁaf s

LW = VW] = V'V, W — WV, Ve
vaa = Vb@bwa + w,ﬁavb ,
LT = VOV IE — TV Ve + TV, Ve (2.36)

Osszefiiggések adjak meg. Ezek alapjan egy tetszdleges 2-dimenzios T;'' ;" tenzor 4-

dimenzidés Lie-deriviltjdnak a 2-dimenzios feliiletre vetitése az
Sy T = gh gt gt gy S TS (2.37)

definicioval fejezhets ki. A (2.37) felhasznalasaval a 2-dimenziés g, indukalt metrika
(0/0t)" és (0/0x)* folyamok menti 2-dimenzios Lie-derivaltabol kovetkezik, hogy

11 5
Ka = %7 9, a DaN o )
b N [2 tJab — LJ( b)} ¢ ab
Lo = S|l + 5K,
ab — M 2 xgab ) ab
. ¢ |1
ab = N {Qatgab Nb)] :
b = i {2axgab D, Mb):| : (2.38)

A t6bbi geometriai mennyiség metrikus valtozoktol valo fliggését a

g <an @foc> =3g([fa,f8], fc) =g (fc, @fAfB.) (2.39)

azonossaggal szarmaztattam feltéve, hogy g (fa, fs) =allando. Az [fa, fB] az fa és
B tetszoleges bazisvektorok Lie-zardjelei, valamint a szamolas soran a jeloléseket az
g (fA,@foc> = G faV afl és Vi, = &V, modon fejtettem ki. A (2.39) definicio
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hasznélatakor figyelembe kell venni, hogy az (n® m®) bazisban fa = {n,m, F}}, mig
(k%,1%) bazisban fa — ga = {k,l,Gi}. A normalis fundamentélis skalarok és a gyor-

sulasok X, projekcidinak szdrmaztatasa sordn az fg = fc, ezért a g (fc, @fA fB) =0
(hasonloan a fa — ga vélasztaskor). Az n*Vany, = § (fA,@nn> &, az meVamy, =

g (fA, @mm) & a KV ky = § (gA, @kk> gt és az 19V, b, = § (gA, @ﬂ) g szamolasa

soran az

A a
Lro= — {8x (InN) — MDa(lnN)] :
1 a a
K = 577 0M = 0N — NDM+MDN]

= -9, (N) + N“D, <N> N [0y In (MN) = N*D,In (MN)]

i n () oo (3]

MlN [0, (¢eM) — N°D, (cM)] , (2.40)

és az

a, = D,(InN) ,

b = —D,(InM) ,
N
a, = D, <ln—) :
¢
b, = —D,ln(cM) (2.41)

eredményeket kaptam. A normaélis fundamentélis formakra és azokhoz hasonlé mennyi-

ségekre a
1 M N
K., = m(8tMa—8XNa—NbDbMa+MbDbNa) — 5y D (M) :
N scM
_ b
L, = —( — OyN, — N’DyM, + M"D,N,) + 2c2MDa(—N>,
M N
* — D e
L= K (M) |
. N scM
Ki = L,— c2MD“( ¥ ) (2.42)

bsszefiiggesek adodtak az n*Vemy, = § <fA, @nm) &, az moVany = § (fA, @mn> I,
a koWl = § (gA, @kl) g 65 az 19V ks = § <gA, @lk) g kifejtésebal.
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A 3. fejezetben a bedgyazasi valtozokbol kialakitott tovabbi skalarokat fogom fel-
hasznalni, mint valtozok, amelyek a
»x = K®K, , A=L"L, ,
R = KL, €=LL,,

K = K, L=L", (2.43)
illetve a
%* = K*abK;b , )\* = L*abL:b ’
R = KK, &=L,
K* = K}, L'=L". (2.44)

A beédgyazasi mennyiségek és az azokbol képezett skalarok nem fiiggetlenek egyméastol,
transzforméaciok utjan egymasba alakithatok, igy a ,,*” csillaggal jelolt mennyiségek is
kifejezhettk az anélkiili mennyiségekkel. Felhasznalva a (2.42) Osszefiiggést, tovabba a
(2.8) és a (2.12) alapjan a

1

Ky, = E(Kab+5Lab),
1

Ly, = E(Lab_sKab)y

kapcsolatot a kiilsé gorbiiletek kozott. A (2.43) és (2.44) skalarok esetén az atjaras a

o= é(wr 26K, L™ + 7))
1
=g (A= 26K, L™ + 5°) |

S N 5\2 N\?
& = R+42°KD,In— (-) DyIn—) |
i ¢ beM i ¢ ( " cM)

5 N 5\ 2 N\’
= 2-L°DyIn — (—) D,ln— | ,
¢ t c£ ncM+ c ( ncM)

K* = —(K+sl) ,

L* = =(L-sK), (2.45)

al—a |~

ahol (D.F)?* = (D,F) (D*F) barmely F fiiggvény esetén. Hasonlé modon a (2.40)
skalarokra a

| ¢ u N
K= E(/C—5£)+M((9X—MD@(N),

oo % (5K + L) + 5 (0~ N"D,) (%/) (2.46)
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vonatkozik. A (2.46) szarmaztatésa soran felhasznaltam az

. 1 /0\* s1 0\ 1., s1
" —N<a)—zﬁ(a)—ﬁN+zMM’

I =

(5) +
I\" ¢

e — ) ——=N° 2.47
(%) -~ (.47
osszefiiggéseket, amelyek a (2.3)-(2.6) definiciok inverzeibdl kévetkeznek. Szintén al-

kalmaztam, hogy
[*—sn® =

a a __ 0 ¢ a
A (2.42) esetén pedig a

R=1t—23LD, (%) + ¢t [Da (%)} 2 (2.49)

Osszefiiggést kaptam.
Amennyiben a 2 + 1 4 1 felbontas esetén a folidzast merdleges (azaz s = 0 = N
6s ¢ = 1) a (2.45), (2.46) és (2.49) egyenletekbeli ,,*” csillagos mennyiségek a nekik

megfelel§ csillagtalannal lesznek azonosak, valamint K = €.

2.1. Egyértelmi mértékrogzités

A nemmerdéleges 2+ 1+ 1 dimenzios téridéfelbontas kidolgozasa utéan ujravizsgaltam a
[197| hivatkozasban ismertetett mértékrogzitést. Az infinitezimalis koordinata transz-
formacio legyen az (1.60) szerint megadva és tekintsiik a £ generator (1.61) felbontasat,
valamint legyen a hattér gombszimmetrikus, sztatikus, mint a [197] folyoiratcikkben.

A metrika €% mentén vett Lie-derivaltja a

Lefab = ap — 3Ga (2.50)
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ahol a Lie-derivalas az

Legur = EO0efab + Gen0u” + JacOhE”
= GVl = Gl %8 + Gac V" — Gl 5:€'
FEV Gap + ET G + €T Gia
= EVedar + §oVal + Gac Vi

= gcb@aéc + gac@bgc
= @agb + 6bga y (251)
igy - S
0Gab = 0gab — Va&p — V&a - (2.52)

A (2.52) osszefiiggés kibontott alakja a
00> = Ofab — Dult — Dy + 21,5,
= 0gap — Oa (gbié) — b (gaiél) + 24,10, (2.53)
amely els6rendi perturbacio esetén
5 = 8 — O (0i€") = 0o (") + 20T (2:54)

Megjegyzendd, hogy ebben az alfejezetben a 4-dimenzios T'¢, hattér Christoffel-szimbolum
esetén a hullaimvonal jelolést nem alkalmazva, mig a 4-dimenziés hattérmetrikdnal a
hullamvonal alkalmazésa mellett az a, b, c... téridéindexeket és az «, (3, p... a térinde-
xeket hasznéltam az Osszegzések felbontésa sordn. A 4-dimenziés metrika és inverze a

hattéren a

Gu = diag (—]\72 (r), M? (r),r*, r?sin? 49) , (2.55)
éz;b = diag (~N7?(r), M2 (r),r 2, rsin?6) , (2.56)

amelyekbdl a 4-dimenzios hattér Christoffel-szimbolumok a kdvetkezdk:
_ 1
T = §§tt (5Zabgtt + 52@1%&)

1
= =" (0.6,0, G + 6,0,00Gut)

2
. e
Fit = Fir = §gtt rdtt = N (257)
- 1 —
ng = égTT (628bg7“7“ + 5£aagrr - argab)

1
= 5?]” (517;52071@1”7” - 555287“9& - 52526rg96 - 5205?farggogo) )
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e
Fw

al2

T v
= 59 rOrr =
1 0 NO,.N
= —59 Or G = ek
= —%gwar%e:—#,
1 rsin® 6

—rr —

= 9 rJop = _W )

Y

=)

1 —
= §§00 (5231;990 + 64 0aGoo — D9 Jab)

1
= §§90 (5552@@99 + 52558@99 - 52053089?7@@) g
— 1 1
= T = %0, Gy = —
Or 29 goo -
1
= —Eg%&,ggg = —sinfcosf ,

1 _ _
= 59%0 (5?;8699090 + 5?906(193030)

1
= 50 (020,0:Gp0 + 020,005 + 020 OrGp + 000 DoGz)

_ B 3 1
= Ig, = 59%087“9%0 =

— 1
= F:ie = §gg0(p66g¢<p — COte .

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

Az (1.59), (1.61), (2.54)-(2.65) részeredmények felhasznalasaval szarmaztattam a met-

rikus tenzor komponensek perturbaciéit a mértéktranszformécié utan. A lapse fiiggveé-

nyekre a

és a

0gu = 0gu— 0, (3a') = 0 (3u€') + 25,108’
= 0gu — 20, (gttft) + 2g,, L, ,
NO,N
M2

—2NGN = —2NG§N + 2N20,&" + 2012 ¢

—

SN = 6N — No&t —9,N¢" |

G = 00y — 20, (') + 25, 10,€0
= 0Grr — 260, Grr — 201 0,E" + 2g,, 17, E"
MM = 2M&M — AME 9, M — 2M0,&" + 2M2&WM§’"
0M = 6M — ¢ 9,.M — Mo,&

(2.66)

(2.67)
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eredményeket kaptam. A 3-dimenzi6s shift vektor komponens esetén a

5§rt =

MON =

W:

5 — 0 (G0€") = 00 (3€") + 255138
5§rt - é'targtt - gttargt - g’/‘ratgr + Qgttff«tgt ) B
NIGN + 2NEON + N20,6¢ — I20,e" — 2]\7258%\7 |

N? _
SN + 0.6 — MO (2.68)

Osszefiiggés adodott. A 2-dimenzids perturbélt N, shift vektor a mértéktranszformacio

utan a

T = O — 01 (G ) = 0u (5u') + 2,1

= 0Gta — Or (Gial’) — Gu0at’
= 0§ta — O (Daf + EZDW) — guDa€",

—

6N, = 0N, — D, (0,£) — E® Dy (0in) + N2Dy£"

amelynek paratlan részére a

—_

mig paros komponensére a

eredményt kaptam.

macidé utan a

OGra =

oM, =

DaP = DaP_Da (at€)+N2Da5t )
P = P—0¢+ N%, (2.69)

EVDQ = ELDyQ — E4Dy (9m)
Q = Q-0 (2.70)

A 2-dimenziés M, shift-vektor perturbacioja a mértéktranszfor-

0Gra — 0o + T o& — 0 (3:,67) +T1&

0Gra — O (Db + E%Dyn) — Oa (§rr€") + T8 + T0 &
8Gra — Or (Dal + E%Dyn) — 0o (§007) + 2051167
0M, — Do (0,€) — EY,Dy (0,m) — M? D"

+2 (§005zfﬁ950 + §¢¢5£ff¢§@)
My — Dy (0,€) — E', Dy (1) —
2 (D% + BDin) |

M?D,&"
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amelynek a paros része a

— 2

D,V = D,V — D, (0,6) — M*>D,&" + ;Dag
N _ 2
Vo= V-og- ¢+ ¢, (2.71)

és a paratlan része a

o —

= _ _ 2 _
E.banW = E.banW - E.ban (87“77> + _E.bann
r

— 2
W= W—am+777 (2.72)

modon transzformélodik. A 2-dimenzios inverz metrika perturbacioja esetén a
09 = O9u = o (7€) = 05 (Gia€’) + 20T’
— 30w — O (5i5€") = 05 (GaE") + 20 Tg” + 20 TVisE"
= 0ap — Oabp + TV €, — 0pb + T, + 20, T0 46"
= 0gab — Dabp — Dyl + 2Gr00051 508" + 251656517, 6"
= 09gay — Do (D& + E',Din) — Dy (Dol + E', Din)

)
o 00 T rsin” 0
—2M*=¢ (5a5ﬂﬁ+6§5§ VE )

T

= 5gab - QDan€ - (EZszDa + EZaDsz> n— r gab
a mértéktranszformacio, ahol felhasznalva az (1.59) felbontast a
— 26T
gabA = gabA - f Gab
. 9LT
A-a-% (2.73)
r
D,DyB = D,DyB —2D,Dy¢ ,
B = B-2¢, (2.74)
és
(E¢D.Dy+ ESD.D,)C = (E$D.D,+ E$D.D,)C

—2(EYD;D, + E'.D;:Dy)
C = C—2 (2.75)
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eredményeket kaptam. A [197] cikkel valo Osszehasonlitds érdekében a skaldrmezd

P

3 = 8¢ — E%0utp (r) = 66 — 0,6 . (2.76)
Osszefoglalva a paros perturbéacios valtozokra a

SN = 0N — No&' —0,N¢"

— N2 _
N = ON + ﬁ&nft — Mo,
SM = 6M — €0, M — Mo,&"
P = P-0¢+ N,
~ _ 2
V = V_aré_M2£r+_£7
r
~ 2T
A= A- § ,
,
B = B -2,
0p = 66— €06 (2.77)
mértéktranszformacio vonatkozik, mig a paratlan perturbacios valtozokra a
Q = Q—am,
— 2
W = W—0m+ —"
C = C-29. (2.78)

A mérték rogzitése soran hasonloan a [197] hivatkozashoz a radiélis unitér és kon-

formis mértéket valasztottam, ekkor a 5(b = 0, mig B= 0, C= 0, amelybdl
C-pg E=3. 1=3. (2.79)
Mivel a nemmeréleges 2 + 1 + 1 formalizmusban nem kell megkévetelni a féliazas me-
r6legességét a perturbacio utan is, igy a kovetkezé feltételt valasztottam
P+ 0
N2

amellyel egyértelmiivé valt a mértékrogzités [197] hivatkozashoz képest [348|.

P=0 ¢ = (2.80)

2.2. Az altalanos relativitaselmélet hamiltoni formalizmusa

A nemmeréleges 2 + 1 + 1 formalizmus beagyazasi valtozobival az

= /d4x\/—_gé (2.81)
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Einstein—Hilbert hatasban szerepl$ 4-dimenzids metrika determinénsa a

V—3§=NMqg . (2.82)

A 4-dimenzi6s Ricci-skalar felbontésara a kétszer kontrahalt Gauss-azonossag vonat-

kozik, ekkor az (n®, m®) bazisban az
R = g"¢" Riju + (L*)" = K* — Ly L + Ky K (2.83)

és a (k% 1*) bazisban az

R= g% Riji + L* = (K*)* — Loy L™ + K3, K™, (2.84)

ahol
gikgjléijkl = R+2 (njnl — mjml) le + Qminjnkmléijkl J (2.85)
9% Ry = R+2 (K& = 11") Ry + 20K KM Rjug (2.86)

az (n*,m?) és a (k% (%) bazisokban. A (2.85) Gsszefiiggésben a 4-dimenzios Riemann-

tenzor (n®, m®) bazisbeli projekcioi a

minntm gy = mntm! (VY= ViVi) m = mintm! (VeVing = ViV,

= m'n*m'V, (K + mulCi + m Ky + mm; K — nya; + nym; L)
—m'n*m!'V, (Kyi + myplkl; + mi Ky + mym I — nga; + ngm; L)

= MV + nfFm! VK + nfVIK + L5nFm!Ven,
—nFm!V, (Kg) — Kn*m!N,my, — m'm'V,a; + m'V,L*

= 2K'nPVem; + KEmiV g, — Ln*n'Vumy + KmFm!Ving
+a,0m 'V ym; + m!'V,.L* + nP VK

= 2L+ KK — L°L" — KK + a,b™

+V, (K +meL*) | (2.87)
nn'Ry = —K"Ky —2KK, + K*+2KK
+V, [0 —moL" —n® (K +K)] , (2.88)
mim'Ry = —L*L% + 25K + (L*) — 2L*L*

VL [6% + oK — m (L — L) (2.89)
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mig a (2.86) esetén a (k?,[*) bazisbeli projekciok az

K" K™ Ropim = L9Lq + 2L°K — K*K* — LL 4 a*b,

+V, (K°K* +1°L) | (2.90)
K" Ry = —K*CKY, — 200K + (K*)? + 2K*K*
FV, @ —1°L — k* (K* + K] , (2.91)
P Ry, = —L®Lgy +2L°L, + L* — 2LL
+V, [6% 4+ Kk — 1% (L - L)] . (2.92)

A (2.87)-(2.92) osszefiiggésben felhasznaltam, hogy

Y = g“b@anb =K+ K,
ama _ gab@amb — ¥ —[* :
k= Gk, = K*+K*
Vo = §*Vuy=L—-L. (2.93)

A 4-dimenziés Ricci-skalar nemmerdleges 2 + 1 + 1 dimenzios felbontasa az (n®, m®)

bézisban az

R = R+ KuK®— L L*" +2K°K, + (L*)* — K? — 2KK — 2L*L*
—2a,b" — 2V, [a® — 0" — n® (K + K) + m® (L* — L£*)] , (2.94)

mig a (k% (%) bazisban

R = R+ KK — LyL®+2L°L, + L* — (K*)? — 2LL — 2K*K*
—2a7b% — 2V, [0 — b 4 1* (L — £) — k* (K* + K*)] . (2.95)

A hamiltoni formalizmus targyalasa soran az (n®, m®) bazisbeli felbontott Einstein—

Hilbert hatasbol inultam ki, amelynek Lagrange-stirtisége az

L = NMg{Kau [K® - g® (K +2K)] + 2K°K,
+R— L}, L* + (L*)> —2L£*L* + 2D, (In N) D* (In M)
—9V, [D* (In NM) — n® (K + K) + m® (L* — E*)]} (2.96)

ahol, felhasznaltam a (2.41), a (2.82) és az (2.94) Osszefiiggéseket. A Lagrange-siirtiség
Liouville-formaba irdsakor a (2.96) els6 sordban 1évé bedgyazasi valtozok (2 — 1) szor-
zatat vettem, mig a tobbi tagot megtartottam. A Ky, K K bedgyazasi valtozok
2-vel szorzott részébe visszahelyettesitettem a (2.38), (2.40) és (2.42) Osszefiiggéseket.
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Kialakitottam a hamiltoni és impulzus kényszereket, amelyeket az N, N%, N metrikus

valtozok szoroznak, ekkor az

LET = Mg [K® — ¢ (K + K)] gap + 2¢/9KaM* — 2/gK M
~NH, — NHy — NHy + B85 (2.97)

Lagrange-siiriiséget kaptam. A BPH = B, + B, + B, hatartag, amelyben

B, = 20[\gM (K +K)] ,
B, = 20,[/g(NL*— N,K*—NK)] ,
Bp = —2/gD, [MD*N + NM°L* + N* (MK® — M°K,)
+N (MK® — M°K))] . (2.98)

A (2.97) szarmaztatasahoz az alabbi Osszefiiggéseket hasznaltam fel:

L= 5 O S (),
(O —Lm)Vg = gML",
Lm (fv9) = Da(fv/gM?)
59” = —g"¢"0g. ,

1
NN T
1
) (\/ggab) — \/§5ng (§gabgcd o gacgbd) )
A (2.97)-ben szerepld hamiltoni kényszer a

Hi = g{—M (R+3L*L;, — L**) + 2¢O, L,
+M [Kgp K + 2K,K* — K* — 2KK]
—2(M°D.L* + 2L}, D*M") +2D“D, M} , (2.99)

a 2-dimenziés impulzuskényszer a

He = —2/g{Dy[K!M — Mg} (K +K)] + KD,.M
+K ML + 0, Ky — MPDyKy — Ky DM}, (2.100)

valamint a kivalasztott térbeli irdnyhoz tartozé impulzuskényszer a

Hy = —2g{M[L'K— LK + MD,K" + 2K*D,M
—O K +M"D,K} . (2.101)
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A (2.98) hatartagban a t, x és D derivéaltas tagok kialakitasahoz az

n’V, = S P NI (Nb — MM") Db} ,

N ot~ May M
- 1170
m’V, = i {a—x — MbDb] ,
0 1 a0 « a
E\/E = 5\/59 agabz\/E[NK—H\/'L + D,N°] |
2]\4 = MNIC—}-GA/—I—N“D(ZM—MQDGN’,
ot ox
OGg = 99" (MLy, + DuMy)
ON = M°D,N — NML* (2.102)

Osszefiiggésseket alkalmaztam.
A [328] és [346] hivatkozasokhoz hasonloan, a kanonikus sebességek szerepét betolts

Ky, K% K beagyazasi valtozok helyett a

ab aEEH ab ab
™ = W:\ﬁM[K — g (K+K)] ,
aEEH
. = — = 2/9K, ,
p e 2VY
EH
p = aaEM = -2/gK (2.103)

kanonikus impulzusokat vezettem be, amelyek behelyettesitésével a Lagrange-stiriiség:
LcEH = w“”gab +paMa —|—pM —~ NH,| — NHy — NHyp

+9B, + B, + Bp . (2.104)

A (2.104) Lagrange-siirtiségben a hamiltoni és impulzus kényszerek, amennyiben a

kanonikus koordindtakkal és impulzusokkal fejezziik ki, a kovetkezdk:

Hi = G[~M (R+3LLY, — L) + 2" (9, — £u) L, + 2D DyM]

- ( a 7T2)+ M oy 2 (2.105)
—— (a7 = )+ =P+ =P~ = :
VaM """ 2 ) Tayg NN

He = —2Dyrt +pDeM — (9 — £:) Pa (2.106)

Hy = 2057 —2p*DyM — MDyp® — (0 — £m)p , (2.107)
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ahol a
1 m P
Kzzb — (ﬂ_ab . _gab) . gab ’
M./g 2 4,/9
1
Ka = 5 =Pa;
2V
1 2m
= _ =L 2.108
= (- 5) (2.108
Osszefiiggéseket hasznaltam. A hatartagok a kanonikus impulzusokkal pedig az
M
%t = 8 (7T+—p) s
2
p
- oo S (58]
B, [ VINL' = Nop + N (5 = %
M
Bp, = —-D, [2\/§(MD‘1N + NM°L*) + 2Nbrd — <7r + Tp) N¢
a n7b a a m p
MNP, + N [Mp M (— _ —)H (2.109)
M 2
alakuak.

A (2.38), (2.40) és (2.42) Osszefiiggések invertalasaval a kanonikus koordinatékra
vonatkoz6 dinamikai egyenletek, azaz a hamiltoni mozgasegyenletek egyik része egy-

szertien szarmaztathato, ezek a

N Mp N
9 f— — 2 —_— — —_—
Jab M5 [ Tab <7T + 5 ) gab:| + ENGap + — (3 £Mm) Gab

: MN
M* = Z=p+ (0, — &um) N* + MD*N — ND*M |

VI
M = f]fv( —QM”> + SNM 4 (0 — La) N . (2.110)

A hamiltoni mozgasegyenletek levezetéséhez sziikséges bevezetni a g4 = { gy, M¢, M}
bs my = {ﬂ“b,pa,p} kanonikus véltozokra vonatkozd Poisson-zarojelet. Két tetszo-

leges f(x,y) = f (9" (0Gy) . m8(y) és h(x,y) = h(x,u:9" (. v), 78 (X, ¥))
fliggvény Poisson-zéarojele az

w [ _0F06y)  Sh(Xyy)  0f(xy) Oh(X.Yy)
Y lon hiy }_/ g / ( C(X"y") ome (X" y") - Ome (X" y") 89 (X", y")

modon adhato meg. Az y = {y',y?} a X4-n értelmezett koordinaték, valamint az

integralast az adott valtozo teljes tartomanyara kell elvégezni. A kanonikus parokra a

{9 v,y) . 9" (X, y)} = 0,
{maly),me(X,y)} = 0,
{9 0w), 7 (W)} = 056(x—X)d(y—v)
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osszefiiggések teljesiilnek. A [346] folyoiratcikkhez hasonléan bevezettem a simitott

Hamilton-stirtiséget, amely a

HPTIN] = Ha [N +Ha [N,
Hi[N] = /dx/dnyy%L(xy),

Ho [N = /dx/dyN“(x,y)’Ha(x,y) ,

Hy N] = /dx/dyN(x,y)HN(x,y) :

A simitott Hamilton-stirtiséggel a kanonikus egyenletek a

' = {g* (xy) 1PN} = gii(x[];)]’
TA = {7?,4 x,y), HFE [N }———5HEgiy)]

moédon szarmaztathatok. A Poisson-zarojelek szamolasa sordn megkaptam, hogy a

kanonikus koordinatak idéfejlédésére vonatkozo

. H"![N]
Jed = cd
omed (X, y)
N [1 1 X
= ﬁ {M (2Ted — gea™) — égcdp} +2D(cNay + 2N Ly
. SHEH [N M
M = —— L2 = N—p°+ (0, — &m) N = ND°M + MDN ",
ope (X, ) N O = fav)
: SHEH[N] N (1 )
Moo= Mp—7) + &xM + (8 — Sxm) N 2.111
oGy 2/g\2 " MO B .

egyenletek azonosak a (2.110) egyenletekkel.

A kanonikus impulzusokra vonatkozo Poisson-zardjelek esetén, az impulzus tenzorra

a
e __OHPMIN]
0ged (X+Y)
— NSCd + chd + SN’JTCd o NM\/EE* (L*cd o gch*)
N
+/99° (O — L) (NL) + 77 O = Lm) !

+v/9 [MD*D°N — ¢*(D,M) (D*N) — g"*M D,D"N|
Nred
“ e

cd

+ [”ﬁ (O — L) + Mp(CDd)} N (2.112)

Oy — L) + N, p<CDd>] M
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dinamikai egyenlet adodott, ahol
2 s [
Scd - _ <7_[_g7_rdb o —7TCd> + ’/TCd
VIM
cd ab 7[_2 M c, d
g |\ Tam™ — 5 |+ 5—F=PD

1, 7Tp:|

1
oM
4 cd l o4 - _ 7
mig
VCd — _\/EM (G0d+2L*dbLZC—L*L*6d> +\/§DCDdM
M
+?\/§g“l (BL*abL:b o L*2) . \/EngDaDaM
+\/§ (gacgbd o gcdgab) (ax . 2M) LZb ’

(2.113)

(2.114)

valamint G, a 2-dimenzios Einstein-tenzor. A kanonikus mozgasegyenlet az impulzus

vektor esetén a

b = — SHET [N]
‘ OMe (x,y)
. o 2N
= NV, —2y/g[Li.D'N + Do (NL)] = 57D
N . 2 a
+W7TacD M + £Npc + (pgac - Mﬂ'ac> D N )

ahol
Vo = _2\/5 (DaLZC - DCL*) :

Az impulzus skalarra pedig a

SHEH [N]

~OM (x,y)
— NV + NS+ &xp+ 29 (NL*L* — D,D*N)

2
+N (MW“bLZb — Dap“) — 20D N,
mozgasegyenletet kaptam, ahol

V=yg(R+L"L; - L"),

mig

(2.115)

(2.116)

(2.117)
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2.3. A nemmerdleges 2 + 1 + 1 téridofelbontas és az 1 + 1 + 2

kovarians formalizmus

A [322] folyoiratcikkben bevezetett 14142 kovarians formalizmus kinematikai mennyi-
ségei kapcsolatba hozhatok a nemmeréleges 2 + 1 + 1 formalizmusban bevezetett be-
agyazast jellemzG geometriai mennyiségekkel.

Az (1.51) és (1.53) eredmények a térszertd n® vektor és a ra merdleges idGszerd u®
vektor 4-es kovarians derivaltjainak 1+ 1+ 2 kovarians felbontasai. A két formalizmus
Osszehasonlitasahoz az (1.51) és (1.53) Osszefiiggésekben szerepld kinematikai mennyi-
ségek atirasaval foglalkoztam. A 2-dimenzids idGszer feliilet expazidjanak mértékét az
(1.39) definicié adja meg, amely a

pUHHD = §.n® = NUN*Dyn® = N®Dyn,,
= N!Dyn® = N2hShyVin?
= NJ (N +nn®) (N} + nyn') Vi (2.118)

Amennyiben a Ny, = Gap, Mg — Mg s V — \V4 megfeleltetéseket vessziik, akkor a

$CH = ghay (g7 +mm®) Vim = g gigeVm?

= gqulZ) aj (L:J + nzﬁj + nlei + ninjﬁ* + m; (b; + n]lC))
S P (2.119)

az expanzio a nemmerdleges 2+ 1+ 1 formalizmusban, felhasznalva a (2.21) felbontast.

Az (1.40) 2-dimenzios nyiras részletezett alakja a

1
G = Sgany = [N(Caleg = 5NN Cd] Deng

c 1 c ) 1,0
= [N(aNﬁi) — g NaN d] hihaVjn;

= [N(‘;Nf) — %Nachd] (N? + nen?) (Nj + ngn') V;n
= % (NN + Ny NI — Ny N“Y| (N7 +nen?) NoVjn; - (2.120)

amely a nemmeréleges 2 + 1 4+ 1 formalizmusban a

2+1+1
¢y =

1 A o
5 (9698 + 9590 — 9avg™] (gl + mem?) g4V m;
1 -
= 3 [95at + g592 — gang™] 9195V ym;
+

(9508 + 9592 — 9uvg™] megim?V jm;
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1 d c d cd *
= 5 9895 + 959 — 9wng™] Ly
+% (9595 + 9594 — 9apg”?] meb};
= 2 (Lt iy — gl
= Ly ol (2.121)

felhasznalva a (2.17) és (2.22) definiciokat. Az (1.41) n* vektorral parhuzamos 2-

dimenzios gyorsulds komponens az

R
= n’ (N +nmn’) (N +n.n’) Vin, (2.122)
amely az
a@H1Hn m® (gi +mym®) (g2 +mam?) Vim;

= mPmym'gIVim; = gdm'Vim; = b’ (2.123)

modon fejezhetd ki, felhasznélva a (2.24) Osszefiiggést. Az (1.42)-ben bevezetett 2-
dimenzo6s 6rvény kifejtve a
1

1 .
e = Ly, = Loniviny,

1 L
— igabN;Nghfhfvcnd
1 S
— 5gabJ\f;Ng (Nf 4 nin®) (N{ + njn?) Veng (2.124)

amely a nemmeréleges 2 + 1 4 1 formalizmusban a

1 o -
5(2+1+1) _ §€abg;gi (Qf + mimC) (g;z + mjmd) V. my

1 ab 1 J( c c v
= 3¢ b9l gl (gf +mim )gfvcmd

1 . _ _
= §€ab929i (95 9iV emy + mig;lmcvcmd>

1 o
— §5abgflgg (Ly; +msb})

1
= 55“”L2b =0. (2.125)

Ez utobbi eredmény varhato volt, mivel az m® vektor 2-dimenzids 6rvénye zérus a (2.25)

alapjan. Ezt ellendrizve az (1.51) felbontésban a

km

| S
e~ (NiNE, — NI ND) WiV g

(NiNI, = NLNT) (Nf +nn®) (NP +nn®) Vany , - (2.126)

N — Do
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mig a nemmerdéleges 2 + 1 + 1 formalizmusban

1 ~
= 5 (9090 = Gg2) (g7 +mim?) (g5 + mym®) Vamy
1 L . - -
= 5 (9% — 9u) (g?gﬁvamb - mim“gfvamb)
T
= 5 (949 = i) (L5 +mib]) = 0. (2.127)

Az (1.44) mennyiségek atirasara az

a(1+1+2) — NacubenC 5

a

A — o bVt — ACTHD — iy nbVne = —nfnbVym, = —L£* (2.128)

(2+141)

c. by *
N =gn'Vym.=—-L ,

osszefiiggések adodtak, ahol az u, — n, megfeleltetést tettem. Az wé}fl”), w1+1+2)

orvények kivételével az u® vektor 4-es kovarians derivaltjanak 14 1+2 kovarians felbon-

tasabol szarmazo (1.27)-(1.29) és (1.48) kinematikai mennyiségek kifejtve a kovetkezsk:

Aa(1+1+2) — Nl;zAb — Néluiviub — N;uiVi’LLb 7
9(1+1+2) _ Daua _ habvaub — (Nab + nanb) Vaub ,
1. 1. ... 1 ij
gD Diatiyy = éhzhiviuj + §hflhzviuj — ghath]Vin

= 1 (N; + nani) (Ng + nbnj) Viuj + 1 (Ng + nanj) (Ng + nbni) Viu;

2 2
—% (Nap + namy) (N7 +n'n?) Viu; |
T = (N(CaNb) - %NabNCd) Oed
SO+ Nepdg
I+ = papbo, = —N%, . (2.129)

Ezeknek a nemmeré6leges 2 + 1 + 1 formalizmusbeli megfelel6i az

AR gapiy b — o (2.130)
0(2+1+1) _ <gab + mamb) @anb =K+K , (2131)
1. . o L
gD 3 (95 + mam®) (g, + mpym?’) Vin,
1 o -
1 (gt man) (g ) T
1

— = (gap + mamp) (g7 + m'm?) V;n;
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(2+141)
Eab

1 . . . . . . L~
—(gLgiVin; + gimym’Vin; + gimem'V;n; + mamzmbmjvinj>

[\
=

+= ( igg@lnj + gimbmi@mj + gzmamj@mj + mamjmbmiﬁmo

— DN

— = (gabgij@mj + gabmimj@mj + mambgij@mj + mambmimj@m»

w

(Kab + 2m Ky + mamblC) + % (Kba + 4+2m oy + mamblC)

N | —

1
—3 (9 K + gaplC + memp K + mympK)
Kab + 2m(ale) + mamblC

1
—3 (9K + gapIC + mamp K + memyK) (2.132)

(9598 + 9592 — 9abg™) Oca

N =N =

(gggg + gggg - gabng) [ch + 27n(c]Ccl) + 77/’/c7ndlC

3

1 1 1
Kab - ggab (K + K) - §gabK + ggab (K + IC)

1
Kab - égabK 5 (2133)

gflmd [ch +2mKqy + memgK

1
— = (9ea X + geall + memg K + mcmd/C)]

1
—3 (9eaX + geaK + memgK + mcmd/C)]

Ka (2.134)

mm? [Kab +2m Ky + mempK

1
~3 (gap K + gapC + memyp K + mambiC)]
1
K-g(E+K), (2.135)

A 3-dimenzios (1.30) 6rvény az

w((li+1+2) = Djuy = % (h;hg — hyhd) Vu;
1 A , A .
= 5 [(NE -+ ') (N] 4 )
— (Ng +mn’) (N7 +nan’)]| Viu, (2.136)

amelynek a tovabbi 1 + 2 dimenzios felbontasaval az (1.48) kinematikai mennyiségeket

vezették be. A (2.136) kifejtést, ha atirjuk a nemmerdleges 2 + 1 + 1 formalizmusba,
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akkor
wc(jfl“) % [(g% + mgm') (gg +mym?) — (g, + mem’) (g + mem?)] Vin,
= % (9290 — Gb52] Ving = GlagyVin; = 0., (2.137)
Az wﬁﬂﬂ) = 0 eredmény azért adodott, mert a dupla folidazashoz meg kellett kovetelni,

hogy a hiperfeliilet norméalisok 3- és 2-dimenzids 6rvényei eltiinjenek tekintve a (2.25),
(2.26)-(2.29), (2.32), (2.34) és (2.35) Osszefiiggéseket. Emiatt az 1 + 1 + 2 kovaridns
formalizmus 2, Q2 kinematikai mennyiségei nem jelennek meg a nemmeréleges 2+141
formalizmusban. A £%HFD = 0 az m® 2-dimenzios Grvényével aranyos, amelynek
ugyancsak zérusnak kell lennie a nemmerdéleges 24-1+1 dimenzios téridéfelbontasban az
(2.25) 6sszefiigges szerint. A nemmerdleges 2+ 1+ 1 formalizmusban az m® bazisvektor

n® normalissal parhuzamosan projektélt 3-dimenzios 6rvénye azonban az

(w((lzn)nb>(2+l+1) = ﬁfaﬁg]nbﬁcmd = % <ﬁgﬁgnb@cmd - ﬁgﬁgnb@cmo
= % [(9; — ngn) nd@cmd - (gff - nand) ncﬁcmd]
= % (ggnd?cmd - gffnc@cmd>
= % <_92md@cnd - gjncﬁcmd>
_ % (L2 — K. (2.138)

Ebbdl kaptam, hogy £ nem rendelkezik a (2.15) normaélis fundamentalis formékra jel-
lemz§ szimmetria tulajdonsagokkal. A (2.128) és (2.134) alapjan az m® 3-dimenzios
orvényének n® normalissal parhuzamos komponense az 1 + 1 4+ 2 kovaridns formaliz-

musban a koévetkezd kinematikai mennyiségekkel azonos:
. 2+14+1) 1 . (1+142) 1
(@) = 5 (L= Ka) = (@) = 5 (@ +Z,) .

Az 1+ 1+ 2 dimenzios kovarians formalizmusban, tekintve az (1.51) Osszefiiggést,

az n® térszerd vektor 4-dimenzios kovarians derivaltjanak a felbontasa
1
(V) 2 = —ugon, — ugun A+ G+ 5 N + €
1
+ngap + (E + 59) NaUp + Lty — UpEaeE

amely a nemmerdéleges 2+1+1 dimenzios téridéfelbontasban bevezetett mennyiségekkel
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1 1
(Vanb)(2+1+l) = n Ly +ngl" + Ly — —ga L™ + =g L™ + mab) + npC,,

2 2
1 1
+ (’C 3 (K +K)+ 3 (K + /C)) Many + (E2ap — MpEaQ°) T
= Ly +nLy + Ko + nanp £+ mg (b + 1K)
+ (550,17 - nbgacQC)(1+1+2) (2139)

alaki. A (2.21) és (2.139) felbontasok szerint a (Vqnp)®™ ™ = V,my, ha € és Q°
mennyiségek zérusak az 1+ 1 + 2 kovarians formalizmusban.
Az 1+ 1+ 2 dimenziés kovaridns formalizmusban, tekintve a (1.53) Gsszefliggést,

az u® idgszert vektor 4-dimenzios kovarians derivaltjanak felbontasa

1
(Vaub)(H_H_Q) = —uq (Any + Ap) + 59 (Nap + namp) + Xap + naXp + np2q
1 4 .
+ (nanb ~3 ab) Y+ e 4+ ngep 2 — npegi

amely a nemmerdéleges 2+1+1 dimenzios téridéfelbontasban bevezetett mennyiségekkel

1 1
(Vaub)(2+1+1) = ngmpL" — ngap + g (K + ’C) (gab =+ mamb) + Ko — §gabK

1 1
+2m(alcb) -+ (mamb — §gab) (/C — § (K + /C))

+ (‘a:abQ + nagbiQi - nbgaiﬂi)1+l+2

= Kgp+ QM(GIC(;) + magmplC — 1y, (ab — mbﬁ*)

14142

+ (eabQ + ngep Y — nbgaiQi) (2.140)

alaki. A (2.10) és (2.140) eredményeket dsszehasonlitva a (Vqup) > ™ = V,ny, ha
az () és Q° mennyiségek zérusak az 1 + 1 + 2 kovarians formalizmusban.

A [322] folyoiratcikkben bemutatot 1+ 1+ 2 formalizmust alkalmaztak a Schwarz-
schild térid6re vonatkoz6 dinamikai egyenletek levezetésére. C. Clarkson &altalanos
forgasi szimmetriaval rendelkez6 téridék esetén ugyancsak megadta a hattérre vonat-
kozo dinamikai egyenleteket [323]. Az altalanos relativitaselmélet 2.2. alfejezetben
bemutatott hamiltoni targyalasa szintén altalanos forgas szimmetriaval rendelkezé tér-
idékre vonatkozik, mivel a nemmerdéleges 2 + 1 + 1 formalizmusban a x kivalasztott
térbeli koordinatat nem specializaltam. Eppen ezért az 1 + 1 4 2 kovarians forma-
lizmus és a nemmerdéleges 2 + 1 4+ 1 formalizmus Gsszehasonlitasara lehet&séget ad a
[323]-ben bemutatott a evolucios, propagacios és kényszeregyenletek atirdsa a nemme-
réleges 2+ 1+ 1 formalizmusban megadott mennyiségekben. A [323] folyoiratcikk (71)
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propagacids egyenlete a

™M

2. 3
— 59 = —§¢z — 260 — 5, 2% — £450°60
+2%,a" — 264 A 4+ B¢ — Q (2.141)
amely a kinematikai mennyiségeknek csak a kivalasztott térszer( irany menti derivalt-
jait, valamint a térszerti n® és az id&szerd u® vektorokra teljesen merdleges kovaridns
derivaltjait tartalmazza. Ez az egyenlet megfeleltethetd a (2.101) impulzus kényszer-

nek.

Mivel a 2.2. alfejezetben anyagi hatés bevezetése nélkiil szdrmaztattam a dinami-

kai és kényszeregyenleteket, ezért a q((zl+1+2) energiadram strtség 1 + 2 felbontasabol

szarmaz6 @ skalar vehet§ zérusnak. A nemmeréleges 24 1+ 1 felbontésban a &, €2, ¢

mennyiségek nem jelennek meg, igy ezeket a
H(1+1+2) _ 259 + gab(saQb + 25abAaQb
jeloléssel csoportositottam a (2.141) egyenletben. Ezek alajan a
S 2, 3 a a ab (1+1+2)
¥ — 59 = —§¢2 — 0,2 + 2X 0" + X — 11 (2.142)
atirasaval foglalkozom a tovabbiakban. Legyen a (2.142) egyenlet bal oldala
(1+1+42) 3 25 i 2 i

= n'hiV,Y — gnihgvaﬁ

. 2
= n'(N!+nn") VX — gnz (N +nn") V.0, (2.143)
mig jobb oldala
3
J(1+1+2) — _§¢E o 5a2a + 2Eaaa + Zabgab . (H)1+1+2

3 , :

= —20Y — NIN{DiEJ + 250" + Sap¢® — (I
3 , ,

= —508 = NoNhihyV 3 + 25,0 + B¢ — ()
3

= 505 - NIN® (Nf +nin®) (N + ngn’) V.24
+25,a% 4 B¢ — (I (2.144)
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A (2.143) bal oldal a nemmeréleges 2 + 1 + 1 formalizmusban a
9\ (2F1+1)
BeH+) (%)
3
. ~ 2 . ~
= m (giz + mima) va2(1+1+2) . gmz (g;l + mima> Va0(1+1+2)
— ey n(H1+2) _ 2ma@ g(1+142)
a 3 a
ae 1 2 a
= m Va (K—g(K‘i"C)) —gm VQ(K—i—lC)
= —m°V,K
1
= 37 [0, K — M"DyK] | (2.145)

felhasznalva a (2.102), (2.131) és (2.135) Osszefiiggéseket. A (2.144) jobb oldal a

nemmeréleges 2 + 1 + 1 formalizmusban a

J2+1+1)

_5 (¢E)(1+1+2) . gzg;u (gzc + mimc) (ggl + mdmj) VCEd(1+1+2)
+2 (2,07 ) 4 (3¢70) T ()41

3 .
_5 (¢E)(1+1+2) _ g]qgévczd(1+1+2) +9 (Zaaa)(1+1+2)
(BT e

1 .
—gL* (IC — 5K+ IC)) — G5uV KT+ 2K b

1 1
+ (Kab - §9abK> (LZ,, - §gabL*) — [0+
LK+ S LK — gt (K7) + 2/, b
—L'K+ S LK = gig;Ve (K7) + 2K,
1 1
+ (Kab _ igabK> (L*ab o 5gabL*) _ H(1+1+2)

1 2
LK+ LK — D,K® — —K*D,M
"3 M

1 1 1
+(K®L:, — —KL* — —KL* + -KL* | — [14+1+2)
2 2 2
2
DK = KUDM + K™Ly, - LK T (2.146)

felhasznalva a (2.41), (2.119), (2.121), (2.123), (2.133) és (2.134) Osszefiiggéseket. A
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(2.145) és (2.146) eredményekbdl a (2.101) impulzuskényszer kialakitasa soran a
JEHHD _ gD — DK — %K@DGM + KLy,
T % [0 K — MPD,K] + (1) 1+
_ _% (M [L'K — K®L%,)] + MD,K* + 2K°D,M
0K + M"DyK } + 110+
amelybdl

Ha + 2\/§MH(1+1+2) _ 2\/§M (J(2+1+1) . B(2+1“))
= —2g{M[L*K —~ K®L},] + MD,K" + 2K*D,M
—O K+ M'DyK} (2.147)

A (2.147) alapjan a (2.141) egyenlet akkor azonos a kivalasztott térszerd irany menti
H, impulzus kényszerrel, ha IIOH142) = 0, ami teljesiil Q@ = 0 = Q° esetén. Mas
megfeleltetések is tehet6k, amelyeket nem részletezek, mert nem tartozik a dolgozat
céljai kozé.
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2.4. Osszefoglalas

A 2. fejezetben bemutattam a nemmerdleges 2 + 1 4+ 1 dimenziés téridéfelbontast.
Ennek alapja a meréleges s + 1 + 1 dimenzi6s formalizmus, amely az ADM forma-
lizmusban elGszor bevezetett metrikus valtozok szerinti téridGfelbontéast altalanositja
[345], [346]. A mercleges s + 1 + 1 formalizmust az s = 2 valasztassal alkalmaztak
gombszimmetrikus, sztatikus térid§ perturbacios egyenleteinek levezetéséhez [197]. A
[197| folyoiratcikkben a gémbszimmetria miatt a vektorokat és a szimmetrikus ten-
zorokat egy Helmholtz-szertii felbontassal rotdciomentes (paros) és divergenciamentes
(paratlan) részekre szeparaltak. A perturbacios egyenletek ekkor szétcsatolodnak paros
és paratlan szektorokra, ahol a paros szektor perturbéciés egyenletei 8 darab valtozot
tartalmaznak, mig a paratlan szektor perturbaciés egyenletei 3 darabot. A pertur-
bacios valtozok szaméanak csokkentése érdekében mértékrogzitést hajtottak végre. A
mértékrogzités soran 3 darab szabadsagi fokot elhasznaltak a radialis unitér mérték és
a konformis mérték rogzitése érdekében. Az utolso szabadsagi fokot a f6lidzo hiperfelii-
letek merslegességének megkovetelésére hasznalték el, azonban ezzel a mértékrogzités
nem lett egyértelmi. Amennyiben a [197] folyoiratcikkben a folidazas merdlegességét
nem kell kiszabniuk a perturbécié utan, akkor egyértelmii mértékrogzitést tudtak volna
elérni.

A nemmerd6leges 2+ 1+ 1 formalizmusban a 4-dimenzi6s B térid6t 3-dimenzids tér-
szert hiperfeliiletekkel (S;) és 3-dimenzios id6szertd hiprefeliiletekkel (901,) bontottam
fel, amelyek nem merélegesek egymésra és metszetiik a 2-dimenzios ¥, feliilet. Az
St hiperfeliileteket a ¢t = konst., mig az 9, hiperfeliileteket a x =konst. koordina-
tak hatarozzak meg. Az S; hiperfeliileteken bevezettem az (n® m®) modon elnevezett
ortonolmalt bazist, majd az 91, hiperfelilleteken a (k% 1%) ortonormalt bazist. Az
(n*, m®) bazisban n® az idGszer( hiperfeliilet normalis, m® az arra merdleges térszeri
bazisvektor. A (k% (%) bazisban [* a térszert hiperfeliilet normalis, és a k* az arra
mer6leges idGszerd bazisvektor. Dualitasi relaciokbol kideriilt, hogy az n®, m® és k%,
1* vektorok kozotti transzformaci6 egy Lorenz-forgatas, amelynek szoge aranyos az N
metrikus komponenssel. Az N egy 3-dimenzios shift vektor 241 felbontasabol szarmazo
fiiggvény. A meréleges s+ 1+ 1 formalizmusban a f6lidzas merglegességének megkove-
telésekor az N = 0 feltételt kellett valasztaniuk [345]. Az n®, m®, k%, 1* vektorok ko-
varians derivaltjainak felbontésaibdl szarmaztattam a >, feliilet bedgyazasat jellemz6
kiils6 gorbiileteket, normalis fundamentéalis formakat és azokhoz hasonlé mennyisége-
ket, tovabba a normélis fundamentélis skalarokat és a gyorsulasokat. Megéllapitottam

a hiperfeliilet-bazisok Lie-zardjeleinek szamolasabol, hogy az n® és [* normaélisok 2-
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és 3-dimenzids Orvényei is eltiinnek. Az m® és k® bazisvektoroknak 2-dimenzids 0Or-
vénye nincs, azonban van nem eltiing 3-dimenziés o6rvény komponensiik, emiatt nem
hiperfeliilet merdlegesek. Az m® és k® vektorok normalisokkal parhuzamos érvényei
miatt az L és K formak nem rendelkeznek a normaélis fundamentalis formakra jellem-
70 szimmetriaval. A bedgyazési valtozok és a metrikus valtozok kozotti kapcesolatokat
levezettem, és kialakitottam a 3. fejezetben hasznalt bedgyazasi valtozokbol képezett
skalarokat.

A 2.1. alfejezetben a nemmerdleges 2+ 14 1 dimenziés téridéfelbontasban levezet-
tem egy egyértelmi mértékrogzitést. A [197] folyoiratcikkhez hasonléan radialis unitér
és konformis mértéket valasztottam, azonban az utolsé szabadsagi fok rogzitésekor a
merdlegesség megtartasa helyett a P = 0 feltételt vilasztottam.

A 2.2. alfejezetben a nemmerdleges 2+ 1+1 formalizmus (n®, m®) bazisdban targyal-
tam az altalanos relativitdselmélet hamiltoni formalizmusat. Szarmaztattam a kétszer
kontrahélt Gauss-azonossagbol a 4-dimenzids R Ricci-skalar felbontasat, majd megad-
tam az Einstein-Hilbert hatas nemmerdleges 2 + 1 + 1 felbontott alakjat. Atirtam a
Lagrange-siirtiséget Liouville-forméaba, amelyben azonositottam a hamiltoni és impul-
zus kényszereket. A K, K K beéagyazasi valtozok helyett bevezettem a my,, p®, p
kanonikus impulzusokat. A Poisson-zéréjel és a simitott Hamilton-stirtiség segitségével
levezettem a kanonikus mozgasegyenleteket.

A 2.3. alfejezetben Gsszehasonlitottam az 1 + 1 + 2 kovarians formalizmus kinema-
tikai mennyiségeit a nemmeréleges 2 + 1 + 1 téridéfelbontasban definidlt bedgyazasi
valtozokkal. A mennyiségek kapcsolatainak szarmaztatasa utan a [323| hivatkozasban
bemutatott egyik propagacios egyenletet azonositottam a 2.2. alfejezetben levezetett

impulzus kényszerrel.



GOMBSZIMMETRIKUS, SZTATIKUS MEGOLDASOK NEM MINIMALISAN CSATOLT
k-ESZENCIA ELMELETBEN 101

3. Gombszimmetrikus, sztatikus megoldasok nem mi-

nimalisan csatolt k-eszencia elméletben

Az 1.3. fejezetben bevezetett modositott gravitacidelméletek koziil, a tovabbiakban a
Horndeski-elméleten beliili gdmbszimmetrikus és sztatikus megoldasokat fogom meg-
vizsgalni EFT kozelitésben. Ehhez a nemmeréleges 2 + 1 + 1 formalizmust fogom
alkalmazni. A felbontést az (n® m®) és (k% (%) bazisban is be fogom mutatni, azonban
a térid6 megoldasok levezetéséhez a (k% 1) bazist fogom hasznalni. A két bazisban
habar az egyenletek eltéréek, viszont azonos informacioval rendelkeznek. A kovetkezd

alfejezet szamolasai az [353] folyoiratcikken alapulnak.

3.1. A Horndeski hatas nemmeréleges 2+ 141 felbontasa a (k%)

bazisban

A V,¢ skalarmezé gradiens a tovabbiakban a x koordinatatol fiigg. Ekkor a térszert
foliazast a x =konst. helyett ¢ =konst. hatarozza meg, igy az 9, hiperfeliiletre

mer6leges normalvektor az

Voo
l, = : 3.1
VX (3.1)
ahol X = §°V,0V,¢ a kinetikus tag. A skalarmezs mésodik kovarians derivaltjanak

felbontéasa a (k% 1%) bazisban a

V.V = Va (zbﬁ):m (\/Y)+\/ow

b = e o .
= Ve (chbv ¢)+x/fvazb

b . = - N .
= VNV + VXV, = vialhal (ﬁz) F VXY,
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\AIAVD' Iy Ve ~ -
= lyl, + X2V, | + VXV,
ox \/X< VX ) b

VeoV. X - _
- Z—lel“ VXLV, + VXY,

VoV X
= ?—Xzazb + VX [Lap + Lhoky + 2K 1(ohs

+2k(a£b) - QZ(QDb) In (CM)} . (3.2)

A (1.6)-(1.10) Horndeski Lagrange-stirtiségeket tekintve, az

ahol ..
@gb:%—i—ﬁ(lz—ﬁ) (3.4)

felhasznalva a (3.2) egyenlet % inverz metrikdval képezett spirjat. A [149] hivatkozas
alapjan Gj fiiggvény a

G3(p, X) = F3(¢, X) + 2X Fyx (¢, X) (3.5)
alakjat hasznaltam. A (3.3) Lagrange-stirtiség az
L = (B +2XFyx) Y, (1°VX)
= P VXV + BV, (VX)) +2X Fyxl'V, VX
= XLy (L= L) + BV, (IVX) + 10V (VaFy — VaoF)
2X32Fyx (L — L) — X Fay + Va (za\/YFg) ,

amelybdl az
LY = 2X32 Py (L — L) — F3pX | (3.6)

ahol felhasznaltam a (2.93), (3.1) és (3.4) Osszefiiggéseket és elhagytam a teljes 4-es
kovarians derivaltat tartalmazo6 hatartagot.

Az (1.10) LY Lagrange-siiriiségben a 4-dimenziés R Ricci-skalar talalhato. A Ricei-
skalar (k% 1) bazisbeli felbontott alakja a (2.95), amelybe behelyettesitve a (2.41)
Osszefiiggéseket kapjuk, hogy

R = R+ KK, — L®Ly, 4 2L°L, — K* (K* 4 2K*)
N
+L (L —2L)+2D" (111 —) Dyln (¢M)
¢

—2V,[D*(In NM) — (K* 4+ K*)k* + (L — £)1°] . (3.7)
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Az (1.10) LY TLagrange-siiriiség nemmeréleges 2 + 1 + 1 felbontdsahoz az
- L,V . X
VX = ———— 42X [D,In(¢M) + kK] 3.8
v, [DaTn (eM) + ok (3:8)
= 2 1 WPy b T 1 WPy
(Qo)” = 4X2V OV XV oV, X + X (L—L)VV,X
+X(L-L), (3.9)
VoV VOV = XLoL® —2XL,L0 + X L% —2X (K*)?
~ ~ 2
(Veovex)
+2XD%n (¢M) DyIn (¢eM) + ~—r0n—— (3.10)

4X72

Osszefiiggéseket hasznaltam fel, ekkor

L} = Gu(¢,X)[R+ K"K}, — LLgy + 2L°L, — K* (K* + 2K)]

+Ga(4, X) [L (L —2L) + 2D" (m ?) D, In (cM)]

Ca(h, X) [-2% [D® (In NM) — (K* + K*) k* + (L — L) za]}

—2Gyx (¢, X)

IR b 1 0
_mv PV XV ¢va+ﬁ(L—5)v qbVaX}

+2Gax (¢, X) [XLap L™ — 2X L, L0 + X L* — 2X (K*)* = X (L — £)?]

+2G4x (¢, X)

(w@cxf

+2X D" In (M) Dyln (M) + ~— =

= Gu(¢, X) [R+ K™K}, — L Loy + 2L°Lo — (K*)* — 2K*K* + L*

—2LL +2D" (m g) D, 1In (cM)} +2XGux (¢, X) [LapL® — 2L,L°

+L2 = 2(K*)? = L2+ 2LL — L% + 2D In (¢M) D, In (¢cM)]
—2V, {G4(¢, X) [D* In NM) — (K* + K*) k* + (L — £) 1]}

—2G4x(9, X) [(L - L)

VeV . X

7% |t 2V XGup(d, X) (L — L)

+2XGax(¢, X) [2D* (In NM) Dy In (cM) + 2K K +2(K*)?]

+2Gax (6, X) (L — L) (

VeV . X
el K
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Egyszerisitések alkalmazasaval
L = Gy (R+ K"K} — K*?) + 2V X Guy(¢, X) [(L — L))
~G, [L“bLab —2L°L, — L* +2LL 4+ 2K*K* — 2D" (m g) D, In (cM)}
+2XGux [Lap L™ —2L°L, — L? + 2LL 4 2K*K"]
12X Cax {—zpa In @) D, In (cM)}
—2V {G4[D*(InNM) — (K* + K*) k* + (L — L) 1]} . (3.11)

A beéagyazasi valtozokbol képezett (2.43) és (2.44) skalarok behelyettesitése utan a
(3.11) kifejezés az

LY = Gy(R+»" — K?) +2VXGyy (L — L)
— (G4 —2XGux) [N — 26+ 2K*K* — L? + 2LL]

+2(Gy — 2X G x) [(D“ In %) D,In (cM)} (3.12)

alakra egyszertisodik, ahol a (3.11) utolsé soraban 1év6 hatartagot elhagytam.
A nemmerdleges 2 + 1+ 1 formalizmusban a Horndeski Lagrange-stiriség (G5 = 0)
fiigg az N, N, M metrikus valtozoktol, a

K* 6, K* 5" L, L, \ (3.13)

beagyazasi valtozokbol képezett skalaroktol, tovabba nem explicit modon a G (¢, X),
F5(9,X), G4(¢,X) tetszoleges fliggvényeken és az X kinetikus tagon keresztiil a ¢
skalarmez6tdl is.

Az X kinetikus tag fiiggése megadhato a [345] hivatkozasban bemutatott (B3) inverz
metrika koordinata bazisbeli alakjaval. Radialis unitér mértékben a ¢ = ¢ (x), ezért
csak a ¢ = (N2 — N?) /N2M? = (¢M)~? inverz metrika komponens ad nem nulla

eredményt, amely szerint az

X = % (0,0) = (%) . (3.14)

A 2-dimenzidés g, indukalt metrikaval definialt 2-dimenzios Ricci-skalar, mint val-
tozo, szintén megjelenik a Horndeski Lagrange-siirtiségben. Konformis mértékben az
R az (1.22), (1.65)-(1.67) Gsszefiiggésekben bevezetett ¢ konformis faktortol fiigg [233].

Két 2-dimenzids inverz metrika kozott a konformis transzformacio a

ab _ efQC—ab ’

g g
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ekkor a 2-dimenzios Ricci skalar transzformécidja az
R=e>{R—2§"D,D, (Ine°)} . (3.15)

A (3.15) alapjan az R a (-t tartalmazza, mint fiiggetlen valtozot.
Ezek alapjan a Horndeski Lagrange-siirtiség a nemmeréleges 2 4 1 + 1 felbontas
(k*,1*) bazisaban az
N, N, M, K" ¢, K*, 5" L, L\, ¢ (3.16)

valtozoktol fiigg radialis unitér és konformis mértékben.

3.2. A Horndeski hatas nemmeréleges 2 + 1 + 1 felbontasa az

(n® m®) bazisban

Az (1.10) Lagrange siirtiség (n®, m®) bazisbeli nemmerdleges 2 + 1 + 1 felbontéasahoz
felhasznaltam a (3.1), (3.2), (3.4), (3.7)-(3.10) Gsszefiiggések (n*, m?) bazisbeli alakjait,

amelyek a kovetkezdk:

e
= (5N, 4+ cmy,) , 3.17
/X ( ) (3.17)
VoVid = sV X (Kap + 2muKp) + mampK — naay + ngmy L) (3.18)

+evV X (L, + noLy + nplo + ngnp L5 4+ mg by + manyK)

. . 1 o
VX Vo5 + VXM Vac + % (snq + cmy) (sny, + cmy) VOV . X

VX (smp + cmy) [s¢ (Ko — L£2) + 8D, (In N) — ¢2D,, (In M)]

VX1 (515 + cmp) (sn° + em®) Vs

VX, (sny, + cmy) (sn° + cm®) Ve

VX (cng + s5ma) (1 + cmp) (K — sL7) (3.19)
¢ = %ﬁ%%){' +VX[s(K+K)+c(L— L)

+¢2 (en® + sm?) V{g : (3.20)



3.2 A HORNDESKI HATAS NEMMEROLEGES 2 + 1 + 1 FELBONTASA AZ (n“, m®)

BAZISBAN

106

V. X =

<]z
<]z

VIS =

—1 - -
{5 (ﬁ) VeV X + 2X¢ (—sL* + ¢K) | 1
+ [2Xs¢? (sn + em©) (v A — V.In N ]n

| )
+ e (\/X) VOV X + 2Xs (K — sL7) ] -
)

+ -2X52c(5nc+ cm®) (V InN —V.InN ]ma
+2X [s¢ (Ko — L) + 8D, (InN) — *D, (In M)] | (3.21)

s2X (K +K)* +2scX (L* — L) (K + K) (3.22)

+E3X (LF — L) + 26X (K +K) (n“@as +mV c)

12X (LF — L) (na@as n ma@ac) VooV, X>

e (8
+% (K + K) VooV X + \/Ly (L* — L) VoV X
+ (VX)) (n"Vas + m*Vae) VEOV.X

+X (n“@as + m“‘@ac)2 , (3.23)

SPX K K + 25X L, K 4+ XL L — 52 Xa,a°

+EXbIb — CXLIL — (1—87) XK K 4 25X b
25X Lia% 4+ X [sc (K® — £*%) +5°D* (In N) — ¢ D* (In M)]?
~25¢XK* (D, In N — D, In N) — (1 + ¢%) XK? + ( s%) X (£%)?

125 XKL — 2522 X Kn® (% A — V,In N) <VC¢V X)

4X2
s |(sn” + em?) (VaInV = ¥, In Nﬂ

~2sc (1+ ) XKm* (Vo N = VIn N)

~2sc (1— &%) XL (VoI = V,In )

1262 X L' (VI N = Vo In V)

~ - 2
X (Voo = Vo V) (3.24)

Az (1.10) Lagrange-stirtiség felbontasahoz a 4-dimenzios Ricci skalar (2.94) (n®, m®)

béazisbeli alakjat hasznaltam fel. Az (1.10) Lagrange-siirtiség kovetkezs részeit a kezel-

hetGség kedvéeért kiilon szamoltam a felbontas elvégzése soran, ezek a

E = —2Gi(¢,X) {% [a® — 6" — n® (K + K) +m® (L* — c*)]} . (3.25)

U = (00)— [?N@} [W@bqs] . (3.26)
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A (3.25) (n*, m®) bazisbeli felbontésa a

E

= 2V, {Gu(e, X) [a® — b — n (K + K) + m® (L* — £*)]}
+25V X Gy (K + K) + 20V X Guy (L — L)

5 c
192G { £
" {ﬁ VX
+2X¢ (¢K? = sKL + ¢cKK —sKL*) +2Xs (L* — L) (K — L")
+2Xsc (a® — b*) (Ko — L) 4+ 2X 5% (a® — b*) D, (In N)

+2Xs5¢? (K + K) (sn® + em®) (@C InN — V.In N)

(K + K)VoV. X + (L* — L*)VpV X

+2X 5% (L* — L) (sn® + em®) (60 A — V. In N)
—2X¢* (a® — b*) D, (In M)} . (3.27)

A (3.26) felbontasa az (n®, m®) bazisban az

U:

2 X (K +K)* +2scX (L* — L) (K + K) + X (L* — L£*)*
+2sX (K + K) (na?as + m“@&) +2cX (L* — L) (n“@as + m“@ac>

1 _ _ _ _
b (navas + mavac) VOV X + —— (K + K) V6V X

VX VX
¢ ~ ~

+——=(L* = L) VOV X — ° XKy K — 25¢ X L} K — > X L}, L*

\/Y ( ) (b b b b
+5°Xa,a" — Xbib™ + X LIL + (1 —67) XKL — 25cXbi K

~ ~ 2
2 X LEa% + 25¢XK (DyIn N — Dyln N) + X (navas + mavac>
—X [s¢ (K — £) 4 2D (In N) — 2D (In M)]* — 2eX L*m"V y¢
+ (14 ) XK~ (1-5%) X (L) — 25¢ XKL + 26X Kn"V
+25¢ X Km* (@a InN —V,In N) + 25¢ X L'n® (@a InN —V,In N)
+25¢ X Km® (@a A — V,In N) — 23X Lot (% A — V,1n N)
~ ~ 2

122X [(57#’ + om) (va AN — V,In Nﬂ

~ - 2
122X (va AN — V,In N) . (3.28)

A (3.27) és (3.28) részek szamolasa soran a teljes 4-es kovaridns derivaltakat elhagytam,

tovabba a

(2.41), (2.43), (2.44) Osszefiiggéseket és az
1 = (¢ —52)2 =t —26%? 4+ 5%,
_ 3v (%) _.2(% O
Vs = &V, (c> s¢ <Va1nj\/' ValnN> ,
Ve = gczﬁa <E> = 52¢ <@a InN — @a lnN>
c
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kifejezéseket hasznaltam. A (3.27) és (3.28) részekkel az (1.10) Horndeski Lagrange-

stirtiseg nemmeréleges 2 + 1 + 1 felbontésara az
L (n®,m®) = Gy[R+ KupK®™ — L, L™ — K* + (L*)?]
VX G [5 (K +K)+c(L* — L) + ¢ (en® + sm®) @aé]
(G4 — 2X Cax) {2K/c YL 2 (IC“ + CZD“S;) (/ca + czpa‘g)

+2¢? [(CK +sL%) (sn® + cm?) @Cfg — (eL"+sK) (en® + 5m“)] Va

a >

N
—-D° (m —) D, In (cM)} +2XGyx [ K K® + AL, L™
¢

—s2K? — ¢ (L*)* + 2sc L}, K™ — 25¢ L* K| (3.29)

eredményt kaptam az (n®, m®) bazisban.

Az (n*, m®) bazisban felirt Lagrange-siirtiség a (3.29) egyenlet szerinti alakja alap-
jan az M, K, KC, L*, L£* valtozoktol, az s és ¢ fiiggvényeken keresztiil az N, N metri-
kus valtozoktol, az R Ricci-skalaron keresztiil a ( konformis faktortol fiigg, tovabba a
Koy, LYy, Ko bedgyazasi valtozokbol képezett s, \*, R skalaroktol. A (2.42) Osszefiig-

gésekbdl az
M N
f=Kat Do ()
c=kut 00 (37
tehat az L formabol képezett L5 L** skalar nem fiiggetlen valtozo a (3.29) felbontott

Lagrange-sirtiségben, ezért bevezetése nem sziikséges.
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3.3. Az EFT hatas els6 rendi variacidja, a mezSegyenletek

Az (1.8), (3.6) és (3.12) Horndeski Lagrange-stirtiségek nemmerdleges 2 + 1 + 1 fel-
bontott alakjai a (3.16)-ban felsorolt valtozoktol fiiggnek. Emiatt a mezGegyenletek
szarmaztatasa soran a (3.16) valtozoktol funkcionélisan fiiggé EFT hatasbol indultam
ki. A tovabbiakban a nemmerdleges 2 + 1 + 1 formalizmus (k% [*) béazisdban vezet-
tem le az EFT hatas variadcidjat, azonban a 3.3.3. alfejezet utan bemutatom a kapott

mezGegyenleteket az (n®, m®) béazisban is.

3.3.1. Az EFT hatéas valtozé6i a gébmbszimmetrikus és sztatikus hattéren

Az ivelemnégyzet alakja a ¢, r, 6, ¢ Schwarzschild koordinatdkban a
ds* = =N?dt* + M?dr* + r* (d9? + sin® 0dy?) | (3.30)

ahol —c0o <t <00, 0 <r<o0, 0<0<més0 < ¢ <27 A felillvonas jeloli a

valtozok hattértéridén vett értékét. A hattéren

N=5=0, t=1, (3.31)

3
Il
3
Il

valamint

Mma = l,=(0,M,0,0) . (3.32)

A kialakitott (3.13) skalarok egy része a hattéren eltiinik a definiciojukbdl kévetkezGen,
igy

Kr=t=K'=3x"=0. (3.33)
Nem eltting skalarok az
_ o, N
L = — 1 _
MN '’
_ 1 2
L = _—_abar_a = =
onr? e = Wy
- 2
tovabbé az . .
[_Jab - _—argab = _I_Jgab . (335)

2M 2
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A 2-dimenzi6s indukalt metrika gombszimmetria és sztatikussag esetén
Gab = rdiag (1,sin%0) . (3.36)

Az egység gdmbon vett konformis faktor ¢ = Inr. A 2-dimenzios Ricci-skalar az

R = §"Ru = 3" Res + 7 Ryy + QQWRW
= g%RGG + gLPSOR%D
1 1 9 2
- ﬁ‘l‘m&n 9273 s (337)

amely az alabbiakbol kévetkezik:

Ry = Rjyg=0ulty— 0l + 5Ty — Tilh,

Rop = 0.y — 99T + T5u T — T5T,

1—cos’0

B 7 sin?g

R,, = %F?W - FieF?w = —0p (sinf cos #) + cot O sin 6 cos §
= —cos’ +sin? 6 + cos®§ = sin? § (3.38)

= —89f£9 — fzefﬁp = —0ycotf — cot?H =

Y

és

1

Fiw = —59998@/@9 = —sinfcosf ,

_ _ 1
Uf, = Tho = 507 0iGep = cotl . (3.39)

3.3.2. Az EFT hatas els6rendii variaci6ja

.....

—— 0
59 = /d“:c\/—g%éGA : (3.40)

ahol G4 egy tetszéleges fiiggvény, 65/0G 4 a hatds G4 szerinti funkciondlis derivaltja

a hattéren kiértékelve. A (3.40)-bdl és az extrémalis hatas elvébdl kovetkezik az

——55  0(v/=gL) . 0(/=3L)
\/__géGA T 0G, % 9 (9,G4)

(3.41)
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Euler-Lagrange egyenlet. Amennyiben /—¢g nem fiigg egyetlen valtozé derivaltjaitol

sem, akkor
1 0 (v—gL 1 —— 0L ~ oL
5 0v=ak) 1 (\/_—g _> v, (3.42)
V=g 090.Ga) /=5 9 (0.Ga) 0 (0.Ga)
Ezt felhasznalva a (3.41) egyenlet az alabbiva valik:
08 oL = oL ~0lny/—g
S Y e ‘oA (3.43)
0G4 0G4 0 (0,G a) 0G 4
A (3.40) hatés els6rendi variacioja
§S = /d‘*;c\/—g <5L + Ldln \/—g) (3.44)
alaku lesz, ahol egy teljes divergencia elhagyasaval
oL - oL
0L = -V, 0G A
(aGA Ved (3aGA)) ! (345)
és _
0 (Inv/—g
Slny/—g = OUnv=9) 50 (3.46)
OG 4
Mivel a hattér mennyiségek csak az r radialis koordinatatol fiiggnek, a (3.45) egyenlet
egyszertisithetd a
oL = oL
SL=|-——-V,——— |G 3.47
(aGA 5] (&GA)> 4 (3.47)
alakra.
3.3.3. Az EFT mezbegyenletek
Konformis mértéket valasztottam, ekkor
Gab = 62Cgab ) (348)

azaz a 2-dimenzios indukalt metrika perturbacioja a

6gab = Gab — gab = (62< - 1) Jab
= (1 + 2C - 1) gab
= QCgab .
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Konformis mértékben a 4-dimenziés metrika determindnsédnak az elsérend( variacioja

a
dln/—=g=20(+0InN+dInM , (3.49)

mig a 2-dimenziés Ricci-skalarnak a
SR =R — R = —2R6C —25°°D,DyoC , (3.50)

ahol felhasznaltam a (3.15) Osszefiiggést [233].
Az (1.8), (3.6), (3.12), (3.49) és (3.50) egyenletek alapjan, valamint a nemmerdéle-
ges 2+ 1 + 1 felbontott Horndeski Lagrange-siirtiség (3.16) valtozok szerinti fiiggését

tekintve, az EFT hatas funkcionalis fiiggése:
SEFT [N7N7Ma’C*7E7K*7%*a£7L7)\7<7¢] . (351)

A [197] hivatkozas (3.1) egyenletével oszehasonlitva a (3.51) EFT hatast, az 9 =
MM, skalar fiiggése hianyzik. A (3.51) hatasban ez a véaltozo6 nincs kiilon bevezetve,
mivel az (1.8), (3.6), (3.12) Horndeski Lagrange-siirtiségekben az ¢ skalar tartalmazza
az M-et. A [197] folyoirateikk (3.1) egyenletében nem szerepel az N, mivel a meréleges
2-+1+1 formalizmusban az N = 0 feltételt sziikséges volt megvélasztaniuk. A merdleges
2+ 1+ 1 dimenzios téridéfelbontasban az (n®, m®) és (k% 1*) bazisok egybeesnek, ezért
nem hasznalnak ,,*” jelolést a mennyiségek megnevezésében.

Az t és s skalarok a (2.43) és (2.44) definiciok alapjan masodrendiek. A (3.14)
kinetikus tag miatt az (1.8), (3.6) és (3.12) Horndeski Lagrange-stirtiségekben ¢’ = 0,9,
M- illetve N-fiiggs tagok fognak megjelenni a variacioszamitaskor. A (3.12) Lagrange-
slrtiségnek csak a —2 (D“ In %) D, In (¢M) tagja tartalmazza explicite a valtozok de-
rivaltjait, azonban ez a tag mésodrendd. Ezeket figyelembe véve az EFT Lagrange-

stirtiség fliggése az
LT (NN, MK K*, L, LA R, ¢, ¢) (3.52)

alakra egyszertisidik, ahol a (3.50) 6sszefiiggésbol szarmazo ¢ fiiggés késébb lesz figye-
lembe véve.
Az EFT Lagrange-stiriiség variacioja a
SLEPFT = LFTON + LFTTON + Ly T oM
+LETSK + LEETSK* + LEFTSC
+LPTTSL + LYo+ LEFT6R + L™ 6¢) (3.53)
Itt a Ga = {N,N,M,K*, K*, L, L, \, R} valtoz6 esetén

0G4

Lgfh = (3.54)
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valamint

9 (LEFT 1 O (LEFT
LI = (a ) _ =0, ( —q ( >> , (3.55)
o V=g
figyelembe véve a (3.47), (3.52) egyenleteket.
A (2.43), (3.34) és (3.35) egyenletekbdl a

2
0N = =—0L 3.56
Mr 7 (3.56)
igy
s = 2
T

= / d*z/gMNFSL (3.57)

ahol 5
F=LET s T (3.58)

A (2.11) és (3.34) egyenletekbdl a 6 L-re kovetkezik, hogy
L—L = V,*,
SL+L—L—6L = VI,
6L = V,0°—L+L+6C,

L = |V,l° N 2 | +or (3.59)
B ¢ MN  Mr ' '
Barmely G4 skalar esetén és felhasznalva a (2.5)-(2.6) egyenleteket kapjuk, hogy
- ] 1 L
1°V,G 4 = {Nat 0 - (WM + N ) Da] G, (3.60)
amelybdl
1V o F (1) Lo F (3.61)
oF (1) = —0,F . .
cM

A ¢ Taylor-sorabol kapjuk, hogy
2
c:coshwzl—k?—f—O(@//l) ,
azaz ¢ csak masodrendd jarulékot ad. A (3.59) és (3.61) Osszefiiggéseket, tovabba

felhasznéalva az

L 1, M
M+sM M M)’
Vi = r’sinf (3.62)
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kifejezéseket, a (3.57) egyenletbdl kapjuk, hogy
/ d*x\/—§FoL = / d'x [\@MN% (FI1*) — 0, (\/51\7;5)]

— (O F
+ / d*z/GgMN (M2 §M +]—"5£> : (3.63)

A (3.32) osszefiiggeések és a

h

V=3 <1—(51n\/—§> ,
S o L (2 N
Val® = M<T+N)

miatt a (3.63) tag atirhato egy teljes 4-es kovarians derivalt, tovabba a dM, 6L,

0 In y/—g variaciokat tartalmazo tagok Osszegéve:
/d4x\/—§}"5L = /d‘*:p\/—g@a <.7-"l_“(51n \/—§]>
+ [ aavann <W 5M + ]—"M)

M2
= / d'z0, (VGNF)dln\/~g . (3.64)

A (2.40)-ben felsorolt sszefiiggések alapjan a

0L =

_OON 90N N (5N 6_M) (3.65)

N NN TN \N T

/ diz\/—gLEETS K™ = / d*z\/—gV o (LEETKY) — / d*z\/—gLEETSICr , (3.66)

ahol felhasznéltam, hogy
Vok® = K* + K" . (3.67)

A (2.40) alapjan
S SEIT 4 5)c. SEIT = / dtx/—gLEETS K™ + / d*z\/—gLEFT K
= / d'z\/—gV, (LEETE?)
oM
d*x/—g0, | (LEFT — LEITY ——
[z -z 3]

- OM
- / a5 O (LR~ LRET) (3.68)
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A (3.68) egyenlet utolsé soraban a
0, (LEFT — LEFTY =
a sztatikus hattér miatt, a maradék hatartagok pedig elhagyhatok.
A kiegészité szamolasok alapjan az EFT hatas els6 rendi variacidja
06, S"T = 8¢, S0 + / d'e\/—g { LN
_ _ 1 /2 N ON
LEFT NLEFT Y - 87“ LEFT i
+{ NI+ = (T £ R
_ _ N’ 2F | oM
[EFT o gy EFT | 2 perr _ 27| 002
* { L L vt Mr| M
2 1 /2 N
2 |LEFT - ZLEFT . _ [ 24— 19, o .
+{ 2lr ]\/[7"+N+ FloCy , (3.69)
ahol a hatartag
06,50 = / d*z+/=3V, [ﬂ’aaln V-7
oM
Ly R (Lt = L) K=
ON ON
—(F4+ L) (k== +1"—= )] . 3.70
Itt felhasznaltam az _ .
/ do / do\/GD, (G DydC) =0 (3.71)
0 0

Osszefiiggést, ahol az integralban szerepl6 2-dimenzios kovarians derivaltbol készithetd

egy egységgémb hataran torténd integréal, amely értéke nulla.

A mezGegyenletek a (3.69) alapjan az

LT =0,

_ _ 1
L+ NIV + =D, L™ = 0,

_ _ N’ 2F

LEFT MLEFT T[/E'FT_ =/
+ ML MN * Mr

_ 2 1

LPFT — ﬁLgFT - F = 0,

ahol

N 2
D, =(—=+-+0,] .
(7o)
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A ¢ skalarmezd szerinti varidciobol a kovetkez6t kapjuk:
Slp, ¢ = / d*z\/—goLEFT ()
_ / d'z\/—§ (LfFT - EFT) 56
_ / drsing [2NMLE + (PNMLET) ] 60
/ o /—GLEFT 5 — / &2V, \/_ LEFT 56 ) . (3.77)

amely szerint

(PMNLEFT) = P MNLEFT . (3.78)

A nemmer6leges 2 + 1 + 1 formalizmus (k% (%) bazisban a Horndeski-elméletbeli
gombszimmetrikus, sztatikus téridékre vonatkozé mezdegyenletek a (3.72)-(3.75) és a
(3.78). Ezek a mezGegyenletek azonosak a [197] hivatkozas merdleges 2 + 1 + 1 for-
malizmusban kapott (3.29)-(3.31) mezGegyenletekkel, mivel mindkét formalizmusban a

hattér foliazasa merdleges. Emiatt a (3.72) mezGegyenlet trivialisan teljesiil.
3.3.4. Az EFT mezslegyenletek az (n*, m®) bazisban

A nemmerdleges 2 + 1 + 1 formalizmus (n® m®) bazisdban az EFT hatas az
SEFT(m) NN, M, K, &, K, ¢, L%, L*, \*, R, ] (3.79)

funkcionalis fiiggéssel rendelkezik. Itt R a 2-dimenziés Ricci-skalar, IC, K, L*, L* be-
agyazési skalarok és R, s, \* bedgyazasi valtozokbol képezett skaldrok, amelyeket a
(2.43) és (2.44) egyenletek foglaljak Ossze. A (k% (%) béazisbol (n® m®) béazisba tor-
ténd transzformécié nem azonos a csillagos és csillagtalan mennyiségek cseréjével. Az
(n%, m®) bazisban megjelennek példaul a K, L% és LD, ( ) skalarok a (2.45) és (2.49)
Osszefiiggések alapjan. Az £ és R skalarok nem normaélis fundamentéalis formakbol all-
nak, ezért az €, KR, € és K" kozotti atjaras is 4j tagokat hoz be az egyenletekbe.

A 3.3.1.-3.3.3. alfejezetekben szerepls 1épések elvégzése utdn a nemmerdleges 2+1+

1 formalizmus (n%, m®) bazisaban a gdmbszimmetrikus és sztatikus téridére vonatkozo
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mezGegyenletek:
o7 EFT(nm)
BET(am) O, (r Ly ) 9 LJIE(FT(nm) B
LN + TQNM - T’NM - 0 ) (380)
_ _ 1
LEFTGm) | N EFTm) ﬁDTLf*FT(nm) = 0, (3.81)
i § N’ 2F(nm)
LEFT(nm) MLEFT(”m) TLEFT("m) — - = 0 3.82
~ 2LEFT(nm) 1
JEFT(m) _ “LR _ _ ﬁDrf(nm) = 0, (3.83)
r
ahol 9
Flom) — [EFTum) | 0 LEFTm) (3.84)

A (3.73)-(3.75) és (3.81)-(3.83) egyenletek kozotti ekvivalencia azonnal, jel6lés szintjén
lathatok. Egy adott EFT Lagrange-stirtiség esetén annak parcialis derivaltjai azonban
eltérhetnek a (£, 1%) és (n® m®) béazisokban, de ugyanazt a fizikai informaciot hordoz-

zék. A (3.80) egyenlet esetén belathato, hogy a (3.72)-hez hasonlo trivialis eredményt
ad.
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3.4. Fekete lyukak és csupasz szingularitiasok

A (3.73)-(3.75) és (3.78) mezbegyenletekbdl specidlis gdmbszimmetrikus és sztatikus
megoldasokat vezettem le a nemmerdleges 2 + 1 + 1 formalizmus (k%,[*) bazisaban. A

téridé megoldasok a k-eszencia elméletcsaladra vonatkoznak.

3.4.1. A Schwarzschild hatareset

Ebben az alfejezetben a (3.73)-(3.75) és (3.78) egy egyszerii alkalmazasat mutatom be.
Amennyiben az EFT hatas az Einstein—Hilbert hatas, akkor a (3.73)-(3.75) és (3.78)
mezbegyenletekbdl a Schwarzschild megoldas kévetkezik.

Felhasznalva a (3.7) Ricci-skalar felbontésat a (k%,(%) béazisban, akkor az EFT

Lagrange-siirtiség az
LEFT = [FH — R - XN+ L(L—-2L) , (3.85)

alakra egyszertisodik, amennyiben a masodrendi tagokat elhagyjuk. A (3.85) Lagrange-

stiriség a gombszimmetrikus, sztatikus hattéren kiértékelve az

_ 2 2 AN’
LEH N _ B )
72 * M?2y2 * M2Nr

(3.86)

A (3.85) Lagrange-siirtiség G4 = {N, M, R, \, L, L} valtozok szerinti funkcionalis deri-

valtjai (ezek jelen esetben megegyeznek a parcialis derivaltakkal):

Ly =0,

Ly’ = 0,

LEH = 1,

Ly = -1,

Lyt = 2L:Mir’

LEH = —sz—%, (3.87)
valamint : 5 5

F=—o - == (3.88)
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Felhasznélva a (3.34)-(3.37) és (3.58) Osszefiiggéseket a (3.73)-(3.75) mezdegyenletek:

_ M
M?—142r— = 0 3.89
+ 2 : (3.89)

_ N’
M?—1—-2r— = 0 3.90
TN Y ( )

T — N/ M’ 1 N/
—(rNY =92 ([Z2+_) = 0. 91
N(r ) TM(T+N) (3.91)
A (3.89) és (3.90) egyenletbdl az

No M™! (3.92)

osszefiiggés kovetkezik, amely az r koordinata atdefinidlaséval [233] megvalaszthato

agy, hogy
N=DM". (3.93)

A (3.91) egyenlet bal oldala atalakitas utéan az alabbiva valik:

_ _ 2 (2]
P SN [(1 N _[7“ (V)|
ﬁ<TN)+Tﬁ<?+ﬁ)_W’ (3.94)

amelybdl
= &
N-=Cy(1——) . (3.95)
T
A t koordinata atdefinidldsaval pedig Cy = 1 valaszthato, amelybdl gyenge tér kozeli-
tés esetén C) = 2m [233]. Erdemes megjegyezni, hogy N? < 0-4t megengedve kaphat6
meg (3.95)-bdl a Schwarzschild téridé eseményhorizont alatti része Schwarzschild ko-
ordinatdkban. Tulajdonképpen N? < 0-4t megengedve nem sziikséges kiilon targyalni

a téridd horizont feletti, illetve horizont alatti részének felbontasat.

3.4.2. A mezbegyenletek nem minimalisan csatolt k-eszencia elméletben

A (3.73)-(3.75) és (3.78) mezbegyenletek kivetkezs alkalmazésa sordn az L¥FT Lagrange-
stirtiség legyen a Horndeski-elmélet k-eszencia alosztalydnak Lagrange-stiriisége. Ekkor
az (1.8), (3.6) és (3.12) Horndeski Lagrange-siirtiségek szabad fiiggvényei a G (¢, X)
és a Gy(¢, X) = G4(¢), mig G3 = G5 = 0.

Az LFFT Lagrange-stirtiség a k-essence elméletben, a nemmerdleges 2 + 1 + 1 fel-

bontas (k% 1*) bazisdban az

LPIT = Gy (¢, X) + G (¢) (R— A+ L* = 2LL) + 2V X Gy (6) (L — L) (3.96)
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alaki. A (3.96) Lagrange-stiriiség a gombszimmetrikus és sztatikus hattéren:

_ 1 1 2N’ 2¢’ 2 N’
LPFT = Gy +2G —G — ] . 3.97
M VR VT I VS w\r TN (3.97)
A (3.73)-(3.75) és a (3.78) mezbegyenletek a kovetkezd alakot 6ltik:
2r M’ r2 [(2 M _ M?
M?* -1 = — ||l-— =40 | (Gu¢d) — —Go| ,
T G4_<7" i )(W) 2 2}
(3.98)
- 2r N’ r2 /2 N
M —1-" = — (= Gupd — —G °G
N a _<7‘ N> 169’ 2+ ¢ 2X:| ;
(3.99)
7“(7".7\7'), r?M' (1 N’ [ (1 N M
/[ ) = —|— 22\ (G
N M (T+N> Gy ( TN M>( 107)
Ve
7G2 Oy (Gagd' )} (3.100)
r2 / 2 \/ / \T/
N, P2 N LM (2 N
—¢'G — —MNGyy, = —= |M*-1 —
< ¢ 2X> 5 26 i [ +r 2 <7’ + N)
2rN' N"
- ﬂﬁ} G - (3.101)

A [258] hivatkozasban Sotiriou és Faraoni ramutatnak arra, hogy az Einstein-
rendszerben aszimptotikusan sik megoldasokat csak akkor kaphatunk, ha: i) a ska-
larmezd konstans; i) a V (¢) = 0. Az i) és ii) teljesiilése esetén a Gy = 0, igy a hatés
az Einstein—Hilbert hatas lesz.

Az i) és ii) pontok figyelembe vételével a (3.98)-(3.100) mezGegyenletek jobb oldala
zérus, mig bal oldala azonos lesz a (3.89)-(3.91) egyenletekkel, amelybdl kovetkezik,
hogy N oc M~'. Az (3.101) egyenlet bal oldala ugyancsak zérus, mig jobb oldalara
kapjuk, hogy

N _ 2r N’ N” M’ 1 N rM’
R N 1V — — |-+ = Gip=0. (3.102

A (3.90) és a (3.91) egyenletekbdl kapjuk, hogy

r’N" M’ 1+N’ _rN
N "m\r"N)T N

(3.103)

A (3.103) osszefiiggeéssel a (3.102) egyenlet az alabbi alaku lesz:

N [rN' rM'] -
“lGa=o0. 104
M{N+M}G (3:104)
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Az N = M~! bsszefiiggést alkalmazva a Schwarzschild megoldas adodik.
Masfelol a (3.98)-(3.100) mezGegyenletek megegyeznek az Einstein—Hilbert hatasbol
el6allo (3.89)-(3.91) egyenletekkel, amennyiben

e = (B-rea) @) (3.105)
gGg = (% + %) Gagpd' + ¢”CGax (3.106)
MTQG’Q = (% + %’ — %’ + 37«) (G4¢¢/) . (3.107)
A (3.107) és (3.105) egyenletek kiilonbségét véve az
(% - %) Giod =0 . (3.108)

Mivel az (N'/N —r~') tag nem zérus, ezért a Giy¢' = G = 0 — G4 =konst.
eredmény adodik. Ezt a (3.107) egyenletbe helyettesitve kapjuk, hogy Ga = 0, azaz
LEFT = [EH Fgz az eredmény azt mutatja, hogy ebben az alosztalyban a Schwarzschild

megoldés csak az altalanos relativitaselméleti hataresetbdl all eld.

3.4.3. Egzakt megoldasok nem minimalisan csatolt k-eszencia elméletben

A k-eszencia megoldasok szarmaztatasa soran legyen az

N=M"1. (3.109)
Az 1.3.1. fejezetben bemutatott modon az ivelemnégyzet az Eddington-Finkelstein
koordindtakban:
ds* = —NZ?du® — 2dudr + r* (d92 + sin® 9d302)
= —N?dv* + 2drdv + r* (df> + sin® 0dp?) (3.110)
ahol .
= | dr—— 3.111
r er R ( )

az u = t — r* retardalt (kimend) és a v = t + r* avanzsalt (bemend) koordinatak.
Bemen$ Eddington-Finkelstein koordinatakban kifejezve a kimené radiélis fényjelre

igaz, hogy

dr  N2(r)

— = , 3.112
dv 2 ( )
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azaz az N (r) = 0 eseményhorizontot hataroz meg.
A (3.109) valasztassal a (3.98)-(3.101) mezGegyenletek a

ey = 2L e ) (e - La
1—N°—r(N*) = z. (T oo N0, (Gagd') 5Gal
(3.113)
72 2\ r? _—2 124 1~ 2N? ( 2)/ <P
1—-N —T(N) = 6—4 N<¢ G2X_§G2+ T+ 9 Gpd'|
(3.114)
L1 a2y r? 1 1 o v2) o A2 vy
5[7‘ (N)i| = 0—4 §G2_ ;N +<N) +N 87~ (G4¢>¢) )
(3.115)
2 (v2)]
(rPN2¢'G )/_ﬁ@ — |1-~- NQ’—M G
oy 5 G = 7«( ) 5 16 (3.116)

alakiak lesznek.

A (3.115) egyenlet bal oldala és a (3.116) egyenlet jobb oldala tartalmazza a
Schwarzschild hataresetnél bemutatott (3.94) Osszefiiggést. Amennyiben a (3.113)
egyenletet kivonjuk a (3.114) egyenletbdl kapjuk, hogy

(Gupd') = ¢ Cax . (3.117)

A (3.113) és (3.115) egyenletek Gsszegéhol és atalakitasok utan kapjuk, hogy

_ o 2Ny
=N = (V)] Gt (%GZL) — NG, (3.118)
amelybdl
~ N2 /7'4G4 /
Gy = — [(T?) 5 (3.119)
A (3.119) egyenletbdl pedig
_ r do o _
N2:—2r2/ _—/ dpG 3.120
51616 (0)) pGa (9 (p)) (3.120)

kovetkezik. A (3.120) egyenlet segitségével az N metrikus fiiggvény megkaphato. En-
nek ismeretében a (3.117) és (3.116) egyenletekbdl a Gox és Gay fliggvények vezethetSk
le, mig a G fiiggvényt a (3.114) egyenlet hatarozza meg.
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3.4.4. Gombszimmetrikus, sztatikus fekete lyukak, csupasz szingularitasok
és homogén megoldasok G, (¢) kiilonb6z8 megvalasztasaival

A kovetkezSkben specidlis Gy (¢) fiiggvények esetén vezettem le a k-eszencia elmé-
let gdmbszimmetrikus és sztatikus megoldasait, amelyhez a (3.114), (3.117), (3.116),
(3.120) egyenleteket hasznaltam.

3.4.4.1. (G, =konstans

Legyen Gy = (167TG>_1, azaz a skalarmezGt minimalisan csatoljuk a metrikdhoz. A

(3.120) alapjan az N2 metrikus fiiggvény:

v - w4

= —27"2/ do [07% +074CY]

2C'
= 1 + —1 — 27’202 R
3r
ahol C és Cy integraciés konstansok. Bevezetve az m = % és a A = 2C) jeloléseket
kapjuk, hogy
2m

N =1-"——Ar*. (3.121)
r

A (3.121) esetén a téridd Schwarzschild—de Sitter, ha A > 0, Schwarzschild—anti de
Sitter, ha A < 0, és Schwarzschild, ha A = 0.
Ekkor (3.117) egyenlet az aldbbira vezet:

¢/GQX =0.

Amennyiben ¢/ = 0, akkor X = 0, ezért Gox = 0. A (3.116) egyenletbsl a Gay = 0,
tehit a G =konst. Végiil a (3.114) egyenlet azt eredményezi, hogy

Gy = —6A/ (167G) .

Azaz a Gy fiiggvény aranyos a A kozmologiai konstanssal.

3442 Gy=¢=r
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A [258] alapjan, ha G4 inverze regularis, akkor G4 azonosithato a skalarmezével.
Ha a skalarmezd monoton fiiggvénye az r radialis koordinadtanak és derivaltja sehol sem
zérus, akkor ¢ = r valaszthaté . Amennyiben Gy = ¢ = r, akkor a (3.120) szerint

- ol [ o)
[ a2 ee)

1 1
_ 2
= —2r {—4702 — 4T4C1 +02}
1 ¢ 9
= —4+——=2rCs . 3.122
TR (3122)
Ha a () és () integracios konstansok helyett bevezetjiikk a () = % és a A = 20,
jeloléseket, akkor
.1 0
2 2
A metrika gorbiileti szingularitassal rendelkezik. Mivel
1 _sin®4
lim Rjy =5, Jim Ry, = —— (3.124)

A=0 A=0

a kapott megoldas az r — oo-ben A = 0-ra sem valik sikké, tehat aszimptotikusan
nem sik. A Schwarzschild térid6 esetének kivételével a szarmaztatott megoldasok nem
aszimptotikusan sikok a tovabbiakban.

A (3.117) egyenletbél a Gox = 0, és a (3.116) egyenletbsl a Gay = —12A — 1/1r%
amelybdl

Gy (¢) = —12A¢ + % : (3.125)

Horizontok

Az N? metrikus fiiggvény zérus az

1+ 1+ 16QA
iy = 4X ¢ (3.126)
egyenletet teljesitd r > 0 radialis koordinata helyeken, ha 16QA > —1. A (3.126) alap-

jan ekkor négy eset kiilonboztethetd meg, egy csupasz szingularitas, egy két horizonttal

rendelkezd és két egy horizonttal rendelkezé fekete lyuk, amelyek a kdvetkezGk:
(1) Haa A > 0 és Q < 0, akkor a (3.126) szerinti két pozitiv gy6k van, azaz két
horizontja van a fekete lyuknak. A két horizont kézott N? pozitiv, kiilonben negativ.
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A bels6 horizontot az r, hatarozza meg, mig a kiilsé horizontot az ;. A bels6 horizont
alatt a metrika homogén, nem sztatikus, Kantowski-Sachs térid6 szerd. A két hori-
zont kozott a téridé gémbszimmetrikus, sztatikus, Schwarzschild téridé szertd. A kiilsé
horizonton kiviil homogén, nem sztatikus, aszimptotikusan anti de Sitter a téridg.

(2) Haa A < 0és @ > 0, akkor nincs horizont. A csupasz szingularitassal rendel-
kez§ térid6 gémbszimmetrikus, sztatikus, aszimptotikusan de Sitter.

(3) Haa A < 0és @ < 0, akkor a térids egy horizonttal rendelkezs fekete lyukat

tartalmaz, ahol a horizont helyzete az

1\/1 — VI+16QA

T A

(3.127)

A horizonton kiviil N? pozitiv, a téridé gémbszimmetrikus, sztatikus, aszimptotikusan
de Sitter. A horizont alatt N? negativ, a téridé homogén, nem sztatikus.
(4) A A > 06 Q > 0 esetén is egy eseményhorizont fekete lyuk taladlhaté a

téridében, amelynek horizontja az

B 1\/1+\/1+1—6QA

A A

(3.128)

koordinata értéknél talalhato. Az 7, altal meghatarozott horizonton kiviil N? negativ,
azaz a téridé homogén, nem sztatikus és aszimptotikusan anti de Sitter. A horizont

alatt N2 pozitiv, a téridé pedig gdmbszimmetrikus és sztatikus.

3.443 Gi=¢=r°

Ebben az esetben a (3.120) Osszefiiggés alapjan

_ T 1 o
N? = —27“2{/ d00a+4 {/ dppa}}

r -3
= —27“2/ da[ ? +0_a_401]
a+1

1 20, ,
= —2rC A2
(a+1) * (a4 3)rotl e (3.129)

ahol C] és (s integracids konstansok. Bevezetve a C' = % és A = 205 jeldléseket

kapjuk, hogy

_ 1 C
N? = —Ar* . 3.130
1+« + rlta " ( )
Amennyiben @ = 0 és C' = —2m, illetve a = 1 és C' = @ akkor az el6z§ két alfeje-

zet megoldasai adodnak. Legyen az o > 0, ekkor a metrika az origobban szingularis.
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Tovabba, ha r — oo és A = 0, akkor

12
- e O . o _ asin“f
%12%10 R9@9 = 1—{——0_/ , %lg(l%} RGQO%O = — 1+ a . (3131)

Ez azt jelenti, hogy a téridé nem aszimtotikusan sik. A (3.117) egyenletbdl

a—1

Gox = (3.132)
ar®
és (3.114) alapjan
. 2a*? a(a—-1)C Nk a
Gr= Tt 03 —2(3+2a+a”) Ar® . (3.133)
A (3.116) egyenletbdl pedig azt kapjuk, hogy
_ 2 ala—1)C
Gap = — — —6 1A . 3.134
2¢ (14 «a)r? rot+3 (a+1) ( )
A (3.14) és (3.109) Osszefiiggéseket felhasznalva:
72 112 o (13072 3 2
X =N = aTS A ) . 1
o=« (1+a—|—07‘ r ) (3.135)

A (3.133) egyenlet atalakithato a skalarmezs és a kinetikus tag bevezetésével a
~ a—1X

Go=— 5+ ag“s — (6+5a + a?) Ag (3.136)

alakra. A (3.136) alak adja meg a G fiiggvény X és ¢ fiiggését a hattértéridén.

Horizontok

A horizontok a )

(1+a)
egyenlet megoldasaival adhatok meg. Ebbd6l hat aleset szarmaztathato, amelyek a
kovetkezdk:

(1) Ha A =0és C < 0, akkor a (3.137) alapjan

= /AT a0 (3.138)

A térid6 ebben az esetben egy horizonttal rendelkezs fekete lyukat tartalmaz.

—Ap3te rt 4 C =0 (3.137)

(2) Hasonléan egy horizont van amennyiben A > 0 és C' = 0, ekkor

- m | (3.139)
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A horizonton kiviil a térid6 aszimptotikusan anti de Sitter, a horizont alatt gémbszim-
metrikus, sztatikus Schwarzschild szerf.
Amennyiben A # 0 és C # 0, akkor a (3.137) egyenletnek valos pozitiv gyokeinek

szamat a Descartes-féle elGjelszaballyal adhatjuk meg. Legyen
f(x)=ao+ax+ ...+ aa” (3.140)

egy tetszbleges n-ed foku polinom, amelynek az ag, a;...a, egyiitthatoi valosak és a,, #
0. Az f (z) polinomnak legfeljebb n darab valés zérushelye van, valamint legalabb egy
valos zérushelye van, ha n paratlan. A z valos szam az f (x) polinom zérushelye, ha
f(z)=0. Az f (z) polinom az

fx)=(z—x)g(x) (3.141)
alakba irhato, ha n > 1. A (3.141) Gsszefiiggésben a
g(x) =bo+ bz + ...+ by 2", (3.142)

ahol by, by...b,, valos egyiitthatok és b,_1 # 0. A (3.140)-(3.142) tanulméanyozasa soran
R. Descartes el6jelszabéalyokat fogalmazott meg az f (x) polinom zérushely-szamanak
megallapitasara. Az f (z) polinom pozitiv zérushelyeinek szama annyi, vagy egy pozitiv
paros szammal kevesebb, mint ahanyszor az egyiitthatokon sorban lépkedve elGjelval-
tozast tapasztalunk [358].

(3) Ha A < 0és C > 0, akkor a (3.137) egyiitthatoiban nincs elGjel valtas, ezért
nincs gyok, azaz nincs horizont. A téridé egy csupasz szingularitast tartalmaz, valamint
gombszimmetrikus, sztatikus és aszimptotikusan de Sitter jellegi.

(4) Ha A > 0 és C < 0 esetén az elGjel kétszer valtozik ezért a (3.137) polinom-
nak vagy nincs, vagy két gyoke van. Amennyiben nincs gyok, akkor a térid§ csupasz
szingularitdst tartalmaz. A térid6 ekkor homogén, nem sztatikus és aszimtotikusan
anti de Sitter. Két horizont esetén a belsG horizont alatt homogén és nem sztatikus a
térids, a két horizont kozott gombszimmetrikus és sztatikus, mig a kiilsé horizonton
kiviil homogén, nem sztatikus és aszimtotikusan anti de Sitter.

(5) Ha A < 0 és C < 0, akkor a (3.137) polinom egyiitthatoinak elGjele egyszer
valtozik. Ebben az esetben a kdzponti szingularitast egy horizont fedi el. A horizont
alatt a térid6 homogén és nem sztatikus, mig azon kiviil gdmbszimmetrikus, sztatikus
és aszimptotikusan de Sitter.

(6) Ha A > 0 és C > 0, akkor ismét egyszer torténik elgjelvéltas, ezért egy horizont
van. A horizont alatt gémbszimmetrikus és sztatikus, mig azon kiviil homogén, nem

sztatikus és aszimptotikusan anti de Sitter a téridg.
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3.4.4.4 Gy=¢=A(1+ Br)

A Gy = ¢ = A(1 + Br) vélasztas esetén (3.120)-bol

N = —QTQ{/T%UUW”B”)H
_ _QTQ{/TdUm(aJFBTUQJrCl)},
(i+ Bo)

ahol C egy integracios konstans. Itt az egyes tagok az

[ e - -/ s

1
= =5 (2r—° = 3Br*+6B°r~ ' + 11B°%)

+B*In|rt+B| (3.143)
T 1 T u2
dr—- = — | du——
/ 003(1—4—30) / u(u—l—B)
1, _
= —5(7’ 2_2Br 1—332)
—B*In|r '+ B| 4+ C; (3.144)
" 1 " u
do—r———~ = — [ d
/ 002(1—1—30) / u(u+B)
= —r '+ Bhn|r "+ B, (3.145)

ahol Cy egy integracios konstans. A (3.143)-(3.145) Osszefiiggések felhasznalasaval,

valamint bevezetve az m = % és A = 20} jeloléseket kapjuk, hogy

_ 2
N? = 143Bm— "2 — B(1+6Bm)r — Ar?
T

Br
—B*(1+6Bm)r’l 3.146
(1+68m)rn 1+ Br ( )
A A =0 ésr — oo esetén a nem eltling fiiggetlen Riemann-tenzor komponensek:
lim R;¥ = —3Bm , lim R;/ = 3Bmsin’0 . (3.147)
A=0 A=0

Tehat a B paraméter miatt a téridé aszimptotikusan nem sik.
A (3.117) alapjan Gox = 0. A (3.114) egyenletbdl kapjuk, hogy

GQ 3m32
T2 OB 3(142Br)A
24 NTES SIS
B2 (11 + 72mB + 12 (1 + 6mB) Br]
2(1+ Br)

Br

—3B%(1 B)(1+2Br)1
3B (1+6mB)(1+ T)n1+B7"

(3.148)
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13. abra. Az N? metrikus fiiggvény abrazolasa lathato az r/m skilazott radialis koor-
dinata, tovabba a Am? paraméter fiiggvényében, amenyiben Bm = 1. Az N? fiiggvény
metszete a kék sikkal mutatja, hogy mely Am? értékek esetén fedi horizont a kdzponti

szingularitast [353].

Ez a feltett ¢ = A (1 + B) skalarmezdvel a

Gy = —67;‘:1253 6 (20 — A)A + AB? (é—m) (1+6mB)
—6B? (1 +6mB) (29 — A)1 ‘¢ A‘ (3.149)

alakot eredményezi. Egyszer(i behelyettesitéssel belathato, hogy a (3.116) egyenlet

teljesiil.



3.4 FEKETE LYUKAK ES CSUPASZ SZINGULARITASOK 130

r/m

14. abra. Az N? metrikus fiiggvény abrazolasa lathaté az r/m skaldzott radilis ko-
ordinata és a Am? paraméter fiiggvényében, amenyiben Bm = —1. Az N? fiiggvény
metszete a kék sikkal mutatja, hogy minden Am? érték esetén fedi horizont a kdzponti
szingularitast. Amikor az N? — oo, akkor a téridé tartalmaz egy tovabbi szingularitést
[353].

Horizontok

A (3.146) egyenlet alapjan a térid6 az r = 0-ban kozponti szingularitast tartalmaz.
Az N? fiiggvény Osszetett alakja miatt a kovetkezd esetekben vizsgaltam meg a téridét.

(1) Legyen a (3.146)-ban a Bm = 1. A térid6 N? metrikus fiiggvényét a 13.
4bra mutatja. A 13. 4bran az r/m = 0-ban az N? fiiggvény a negativ végtelenbe
tart, amely a kozponti szingularitast jeloli ki a téridében. A kézponti szingularitasnak
eseményhorizontja van, ha az N? fiiggvény metszi a kék sikot, ekkor N? = 0. A kék
sik alatt az N? negativ, ekkor a téridé homogén és nem sztatikus. Pozitiv N? esetén,
azaz a kék sik folott, a térids gombszimmetrikus és sztatikus. Ezek alapjan a Am? <
0 tartomanyban a téridé egy horizonttal rendelkezé fekete lyukat tartalmaz, ahol a
horizonton kiviil a térid6 gdombszimmetrikus és sztatikus. A horizont alatt a térid6
homogén, nem sztatikus és szingularitdsa van r = 0-ban. A Am? > 0 tartomanyban
a téridé homogén, nem sztatikus (Kantowski-Sachs tipusi) és csupasz szingularitassal
rendelkezik az origoban, mivel az N? minden esetben negativ.

(2) Legyen a Bm = —1. Az N? fiiggvényt a 14. Abra mutatja. A 14. abra



3.4 FEKETE LYUKAK ES CSUPASZ SZINGULARITASOK 131

80
60
40

\ \
(o)
(=)

NN

/
W/[//m i
WW////////////[//M/// I

r/m

15. abra. Az N? metrikus fiiggvény abrazolasa lathato az r/m skalazott radilis koor-
dinata és a Bm paraméter fiiggvényében, amenyiben Am? = —1. Az N? fiiggvény és a
kék sik metszete hatdrozza meg az eseményhorizontot. Negativ B értékek esetén kiils6

szingularitast tartalmaz a téridé a Br = —1 hiperbola mentén [353].

alapjan a téridében a Am? minden értékére talalhato egy fekete lyuk, mivel az N2
fiiggvény metszi a kék sikot. A Am? < 0 tartoméanyban a fekete lyuknak egy horizontja
van, amelyen kiviil a gémbszimmetrikus, sztatikus téridében talalhaté egy tovabbi
horizont nélkiili szingularitas, mivel az N? tart a pozitiv végtelenbe. A horizont alatt
a téridé homogén, nem sztatikus és szingularitasa van az 7/m = 0-ban. A Am? >
0 értékeknél a fekete lyuk két horizonttal rendelkezik. A kiilsé horizonton kiviil a
téridé homogén, nem sztatikus, mivel az N? fiiggvény negativ. A két horizont kozott a
térids gombszimmetrikus, sztatikus és az N? — oo esetén egy tovabbi szingularitissal
rendelkezik. A bels6 horizont alatt a térid6 ismét homogén, nem sztatikus és tartalmaz
egy kozponti szingularitast.

(3) Legyen Am? = —1. Az N? metrika fiiggvényt a 15. abra mutatja. Az r/m =0
origbban van kdzponti szingularitas és minden Bm esetén azt egy horizont fedi el. A
Bm > 0 értékeknél a horizonton kiviil a téridé gémbszimmetrikus, sztatikus, mig a
horizont alatt homogén és nem sztatikus. A Bm < 0 tartoményban a horizonton kiviil

a térid6 gombszimmetrikus, sztatikus, és tartalmaz egy logaritmikus szingularitast. A
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16. abra. Az N? metrikus fiiggvény abrazolasa lathato az r/m skalazott radilis koor-

dinata fiiggvényében. Itt a Bm = —1 és a Am? = —1 [353].

horizont alatt a térid6 homogén, nem sztatikus.
A 16. dbra mutatja be a 15. 4bra Bm = —1 értéknél vett metszetét. A Ricci-skalar
és a Kretschmann skalar is divergal a logaritmikus szingularitas helyén, tehat ez is egy

valodi, gorbiileti szingularitas.
3.4.5. Megoldasok az Einstein-rendszerben

A 3.4.4. fejezetben bemutatott k-eszencia térid6 megoldasokat a Hordenski-elméletre
jellemzGen, a Jordan-rendszerben vezettem le. Legyen a Jordan- és Einstein-rendszer

kozotti transzformacio a

gab = QQ.gab :
A /=GR tag konformis transzformécioja ekkor /—gR — 24/ —5}? [233]. Az Einsten-
rendszerben a skaldrmezé és a metrika csatoldsa minimélis. A Jordan-rendszerben
megadott k-eszencia hatéds egy részébdl az Einstein-rendszerben egy Einstein—Hilbert

hatast kell kialakitani, ezért a konformis faktorra teljesiilnie kell, hogy Q% = Gy (¢) > 0.

A (3.30) ivelemnégyzet az Einstein-rendszerben a

d5> = —N?df? + M2di + 7 (d6? + sin® 0dep?) | (3.150)
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02 =G, = ¢ || Egyenlet N%-re N2 M?
(167G)™" (3.121) L N2 N2
o a >0 (3.130) N2 o) 2N -
N, 4(1+Br NT—
A(1+ Br) (3.146) AL+ Br)N? | e, N

3. tablazat. A metrika az Einstein-rendszerben amennyiben a radilis koordinatak
kozott a transzformécio 7 = rGi/Q.

ahol az 0j radiélis koordinata

r= Gi/ ’r
A transzformécié utén a metrikus fiiggvények:

- 72
N2 =G,N?*, M?= M — . (3.151)
[1 —|— g (hl G4)/}

Ezekbdl az G

. ,
SR B (3.152)
1+ % (InGy) 2 dr

Osszefiiggés adodik. A 3.4.4. fejezetben vizsgalt specidlis megoldasokban a metrikus
fiiggvények Einstein-rendszerbeli megfelelGjét a 3. tablazat foglalja Gssze.
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3.5. Osszefoglalas

Az Ly, Lj és Ly Lagrange-stirtiségeket atirtam a nemmeréleges 2+ 141 felbontas (k*,1%)
és (n%,m®) bazisaiban megjelend mennyiségekkel radialis unitér és konformis mérték-
ben. Megallapitottam, hogy a Lagrange-stiriiségek a (k%) bazisban egyszertibbek.
Az EFT hatas funkcionalis fiiggését a nemmerdleges 2 + 1 + 1 alakba irt Lo, L3 és
L, Lagrange-siirtiségekben megjelend valtozok alapjan valasztottam meg. Ennek az
EFT hatasnak az els6rendii varidciojabol szarmaztattam a gombszimmetrikus, sztati-
kus hattérre vonatkozd mezdegyenleteket gy, hogy a hattéren a folidzast merslegesnek
valasztottam (N = 0) a [197] folydiratcikkhez hasonléan. A mezGegyenleteket alkal-
maztam az Einstein—Hilbert hatas esetén, amelyb6l a Schwarzschild megoldast kap-
tam. A mezGegyenleteket megadtam k-eszencia elméletre vonatkoztatva a G (¢, X),
Gy (0, X) = Gy (), G3(,X) =0, G5 (6, X) =0 és N = M~ vilasztasokkal. Leve-
zettem a Gy, Gox, Gay és N? fiiggvények szdrmaztatdsahoz sziikséges sszefiiggéseket.
A mez6egyenletekben ekkor egyetlen szabad fiiggvény maradt a Gy (¢). A Gy specialis
megvalasztasaval szarmaztattam a téridé megoldasokat a k-eszencia elméletben. A ka-
pott térid6 megoldasok tartalmaznak csupasz szingularitast, egy horizonttal vagy két
horizonttal rendelkezs fekete lyukakat. A G4 (¢) = A (1 + B) esetben taldltam olyan
téridé megoldast, amely tartalmaz az egyetlen horizonton kiviili gorbiileti szingulari-
tast. Kaptam tovabba olyan megoldast is, amikor a fekete lyuk két horizontja kozott
szintén egy tovabbi szingularitast tartalmaz a téridé.

Ha elfogadjuk a kozmikus cenzor hipotézist, akkor a kapott csupasz szingulari-
tasokat tartalmazo téridék nem tekinthetSk fizikai megoldasoknak [252], [253]. A
Gy(p) = A(16mG) ™" és A = 0 valasztaskor kapott fekete lyuk kivételével az dsszes

téridé megoldas aszimptotikusan nem sik, igy azok skalar hajjal rendelkeznek.
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4. Minimalisan csatolt skalarmez6, mint nem idealis
folyadék

A [293], [294] hivatkozasokban ismertették az idGszerii gradienssel rendelkezd Klein—
Gordon skaldrmezé idealis folyadék leirasat, felhasznalva az 1+ 3 dimenzios felbontéast.
Ezt az eredményt a [299] folyoiratcikkben ujra megvizsgaltdk, valamint kibgvitették
azt a térszerd és nullszerd skalarmezé gradiens eseteire. A Klein-Gordon skalarmezs
Lagrange-siirtisége:

Lia = —3¥a69"0—V (9) (4.1

. .- 1~ - .
Tw = VoV — <§VC¢V0¢ +V ((;5)) Jab - (4.2)
Az 1+ 3 dimenzi6s felbontéssal az energia-impulzus tenzor

Tab = PugUyp +phab ) (43)

alaki, ahol hap, = ugup + Jap. A [299] hivatkozasban a kovetkezd Osszefiiggéseket allapi-

tottak meg az energia-impulzus tenzor energiasiirtiségére és nyomésara vonatkozoan:

p = (%@Cqﬁﬁcqﬁ -V (gb)) sign <@C¢@c¢> , (4.4)
p = % { [—1 + %sign (@Cqb@cqb)} (@dgb@dqé)
_ [4 + sign (?Cdﬁcqsﬂ v (¢)} . (4.5)

A (4.2)-(4.5) egyenletek alapjan vizsgaltak a skalarmez6 energia-impulzus tenzorat fel-
téve, hogy a skalarmezé gradiense idGszert, térszerid vagy null.
Amennyiben a skalarmez gradiense idGszert, akkor az u® idészerd vektor megva-

laszthat6 a kovetkezé modon:

S /R S
\ —VeoV.

Vo Vio _ VeVio
VooV VeV VOV

teljesitve, hogy

u Ut =
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Ekkor . .
Tab = (_§@C¢?c¢ + V (¢)> UgUp — (§6C¢@c¢ + V (¢)) hab . (46)

Tekintve a (4.3) és (4.6) egyenleteket, vagy a (4.4) és (4.5) Osszefiiggéseket, a kapott

idealis folyadék energiastiriisége, illetve izotrop nyomaésa:
P = STV (9) (4.7)
P = V-V () (1)
A (4.1) és a (4.7), (4.8) egyenletekbdl az
Liga =p"F = p" —2V (¢) , (4.9)

osszefiiggések adodnak a Lagrange-stirtiségre. A [293] alapjan, ha a skalarmez6 tomeg
nélkiili, szabad mez6, amelynek energiastrtsége tisztan kinetikus, azaz V (¢) = 0,
akkor p = pP¥. Ebben az esetben az Ll = p''f és az L%, = p"" Lagrange-
stirtiségek ekvivalensek. Amennyiben a skaldrmez6 energiasiiriisége tisztan potencialis
eredeti, azaz V,6V% = 0, akkor p©'F = —pPE. Ez utobbi esetben az L., = pP't és az
L% = —pP'F Lagrange-stirtiségek irjak le ekvivalensen a Klein-Gordon skaldrmezét.

Amikor a skalarmezd gradiense térszertd, akkor

Uy = % , ugut=1. (4.10)
\/ VeoVeo
A (4.4) és (4.5) Osszefiiggasekbdl a
1o, -
p= VOV -V (9) (4.11)

energiastriséget és a

p = %{[—H%} (Vi6Va0) —[4+1]V(¢)}

= VT~ 2V (9) (112

izotrop nyomast kaptak. A (4.11) és (4.12) osszefiiggéseket tekintve a skalarmezd

energia-impulzus tenzora

TEL = G@«N&b -V (¢)) UgUp — <éﬁc¢@cgb + gv (qb)) Rab - (4.13)
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A (4.13) energia-impulzus tenzor azonban nem egyezik meg azzal, amikor a (4.2) és

(4.10) Osszefiiggésekbdl szarmaztattak:

157 = (wy/T900) (/59696 ) = (37690 V() (ho = o)
= (e0%0) want (570T04 V(@) ) (575050 4V (0))
= (;?chqb +V (qb)) Ul — (%@CW@ +V (¢)> hap - (4.14)

A (4.11) és (4.12) esetén, tovabba az Lig # p és Lxa = £p.

A [303] cikk ezt javitva, bemutatta a Klein—-Gordon skalarmezd energia-impulzus
tenzorat iddszertd, térszert és null skalarmezé gradiens esetén. A [303] hivatkozasban
is azt kaptak, hogy az idGszert skaldrmez6 gradiens valasztasaval a Klein-Gordon ska-
larmez6 energia-impulzus tenzora idealis folyadékot ir le. Térszert és null skalarmez6
gradiens vizsgéalata soran megallapitottak, hogy nincs olyan megfigyels, amelyre igaz,

hogy u® ~ V% gy, hogy u,u® = —1. Ebbél kévetkezik, hogy az 1+3 felbontés szerinti

1~
:_ahab
p 3 b

osszefiiggés csak idGszert skalarmezs gradiens esetén all fenn [299], [303]. A [303]

hivatkozasban az izotrép nyomésra a
1~ =
p= V0V~ V (9 (115
és az energiastiirtiségre a
p o= |VieVas| -
~ PRy l ga ¢
— sign (v ¢vc¢) + 5| VIoVao +V () (4.16)

Osszefiiggéseket kaptak. Ezeket felhasznélva, egy tachionikus megfigyel§ esetén, azaz

u® ~ V% gy, hogy u,u® =1 a (4.15) és (4.16) alapjan az izotrop nyomas

pPr = _%6C¢®c¢ -V <¢) ) (417)

illetve az energiasiirtiség
3., -
pr = §Vd¢Vd¢ +V (), (4.18)

amelybd6l Lia = pr.
Amennyiben az u® ~ V% agy, hogy u,u® = 0, akkor pr = —V (¢) és pr + pr = 0,
tekintve az (1.16), (4.2) Gsszefiiggéseket. Null skalarmezd gradiensnél, tehat a minimé-

lisan csatolt skalarmezé lehet null folyadét, ha pr + pr = 0.
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A minimélisan csatolt skalarmezd energia-impulzus tenzoranak vizsgalata szem-
pontjabol elényos lehet az 143 helyett a 24+1-+1 dimenzios téridfelbontés alkalmazasa.
Ennek érdekében a tovabbiakban egy minimalisan csatolt Klein-Gordon skalarmezo,
majd egy &ltalanos skalarmezé folyadékleirdsat fogom megvizsgalni a 2. fejezetben

bevezetett nemmerdleges 2 + 1 + 1 formalizmus segitségével.

4.1. Minimalisan csatolt Klein—Gordon skaldrmezd

A Klein—-Gordon skalarmezére vonatkozd energia-impulzus tenzor vizsgalatahoz egy

olyan hatasbol indultam ki, amely tartalmazza az
SEH [§%] = / d'z\/—gR (4.19)
Einstein—Hilbert hatast, az
s3] = [d'ay/Gl-x -V (6)
= / d'z\/~§ [—%WWM ~V(9) (4.20)
Klein-Gordon hatést és egy
SM g™, U] = / d*z/—gLM (4.21)

anyagi hatast. Az X = V,0V%/2 a kinetikus tag, V (¢) egy tetszSleges, a skalar-
mezGtol fliggd potencidl, és a 161G = 1 = ¢ egységet valasztottam. Ekkor a teljes

hatéas
SKG — SEH [gab] —|—S¢ [gab’¢} + SM [gab’@}
-1 .
= /d%v—g {R — §§“bva¢qu§ —V4+ILM (gab, \If)l ) (4.22)
A (4.22) hatés els6rendi variacioja
KG 4 N\ |5 lec e
. N 1 L
+ / d'zy/—g {@‘“’Rab + "0 Ray = 505" Vad Vit

—V OV .00 — 0V (9) 5¢} - % / d*z/—gTN 6%
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= /d4$\/_ { —Jan R + 1gabV OV + 1gabV (¢)} 3G
+ / d'z\/—3 [@abéab - 559“’)%@@ — 9V (¢) 6¢]
/ d*z\/—§ [ b5 Ry — VOV, 5¢} -z / d*z/—gT ) 65

a a ]‘ ~
- /d‘*x\/ { a¢vb¢+ﬂw¢v &+ ﬂ QT;\g] 55
+/d4x\/—§ [ﬁ¢—a¢v} (5gz§—|—/d4a:\/—§ [@a (va _ 5&@)} ,
(4.23)
ahol felhasznéltam a
0 _g = 9 gab5gab
gab(s-éab = @a <6b5gab - §6d6a5§Cd> = 6(1‘/@ )
- 2 6 (v/—gLM
™ - 2 ( A ) (4.24)
V=9 04"
Osszefiiggéseket. A hatértag elhagyasaval a mezGegyenletek:
~ 1 /s = 1. 2., . L u
G = 5 VoV — §gabV OVed — GV (@) éTab ; (4.25)
6 = 9,V (9) . (4.26)

ahol 0, = 0/0¢.

4.1.1. IdSszert skalarmezé gradiens

Amikor a skalarmezé gradiense id&szeri, akkor az a térid6 minden pontjaban kijelol

egy idGszeri egységvektort:
Vad
\/ _@cqbﬁcgb

A [293], [294], [299] és [303] hivatkozasokhoz hasonloan a skalarmezd energia-impulzus

Ng = nen” = —1. (4.27)

tenzora idedlis folyadék, azaz

TEE = pPPnang + pPF Gy - (4.28)
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A 4-dimenzids metrika
Gab = —NaTp + MMy, + Gap (4.29)

felbontasat felhasznélva az energia-impulzus tenzor a
TH" = p" nany + p™" (mamy + gab) (4.30)

alakot 6lti az (n®, m®) bazisban. A (4.25) alapjan:
5 . ; le =
TEY = VYV = Jub (V + 5 VeV gb) . (4.31)

A (4.31) energia-impulzus tenzor azonos a (4.7) energiastirtsséggel és a (4.8) nyomassal
rendelkezé (4.30) idedlis folyadék energia-impulzus tenzoréval. Ez belathato, ha a
(4.27) és a (4.29) osszefliggéseket behelyettesitjiik a (4.31)-be:

2
. S 1. -
T(flfG = ngNp (\/ —chbchf)) — (=nanp + mamy + gap) (V + §vc¢v0¢)

1~ = 1. -
= NN (—§V6¢VC¢ + V) + (mamp + Gav) (—§V0¢Vc¢ - V)
= p"ngny + 7 (mamy + gap) - (4.32)

A (4.31) energia-impulzus tenzor diagondlis, igy az 1.3.2. fejezetben bevezetett oszta-
lyozas alapjan I-es tipusi. Jelen esetben az energiafeltételek I-es tipus esetén a kovek-
tezok: 1) gyenge: —V, ¢V > —2V; ii) dominans: V > 0 ; iii) erés: —V oV > V.
Az bsszes energiafeltétel teljesiil, amennyiben 0 < V < —V. ¢V,

4.1.2. Térszerid skalairmez6 gradiens

Ha a skalarmezé gradiense térszeri, akkor az a térid6 minden pontjadban meghatéaroz

egy térszerd egységvektort:
Vad
\/ Ve Voo

Ebben az esetben az energia-impulzus tenzor a

me = mem® =1. (4.33)

~c{bPF = PNgMNp + DPrimgmy + DPtGab (434)
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alakot 0lti. A p, a radidlis nyoméas, mig p; a tangencidlis nyoméas. Behelyettesitve a
(4.29) és (4.33) Osszefiiggéseket a (4.31)-be, akkor a

2
- - - 1~ -~
TEC = memy (\/chbVngS) — (=ngny + Mmamy + gap) (v+§v6¢v0¢)

le = 1o =
= ngmy (§VC¢VC¢ + V) + mamy (échbchﬁ — V)

1. .
+ab (—§VC¢VC¢ - V) : (4.35)
A (4.35) alapjan az energiasiirtiség
1~ -
p= §VC¢VC¢ +V, (4.36)
a radilis nyomas
1. .
pr = §VC¢VC¢ -V, (4.37)
és a tangencialis nyomés
1. .

Az energia-impulzus tenzor I-es tipusi. Az energiafeltételek: i) gyenge: V.pVep >
—2V; ii) domindns: V' > 0 ; iii) er@s: V < 0. Az Osszes energiafeltétel teljesiilésekor a
V' =0, amelybdl

p=Dr=—p= %%W“d) >0. (4.39)

A (4.39) egy olyan nem idedlis folyadék, amelynek energiastiriisége azonos a radialis

nyomasaval, tovabbé a tangencilis nyoméasanak —1-szeresével.

A) Idealis folyadék a tachionikus megfigyel6 szemsz6gébdl:

A [303] hivatkozést tekintve, a (4.34) energia-impulzus tenzor tekinthets tugy,
mint az m® 4-es sebességi tachionikus (m,m® = 1) megfigyel6 szerint érzékelt
idealis folyadék ¢ skalarmezé energia-impulzus tenzora. Az idealis folyadék ekkor
a

T% = (p* + pb) mamy + " Gup (4.40)

alakba frhato. A p? a (4.17) dsszefiiggés szerinti izotrop nyomés, mig p? a (4.18)
alaki energiastrtség [303]. A (4.29) felbontast behelyettesitve a (4.40) energia-

impulzus tenzorba:

Th = —p neny + (207 + p") mamy, + p* gas -
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Ezt Osszehasonlitva a (4.34) Osszefiiggéssel kapjuk, hogy
pr=p=—p, pl=p—=2p=p+2p.
Mivel nem létezik olyan valos megfigyels, amelynek 4-es sebessége térszeri, ezért
ez az eset nem tekinthets fizikainak.
B) Idealis folyadékban terjedé radialis sugarzas:

A (4.34) energia-impulzus tenzorba behelyettesitve a (4.38) Gsszefiiggést kapjuk,
hogy

TIPF = —pinany, + prmamy + pugas - (4.41)
A (4.41) energia-impulzus tenzor megalkothato a

TanF = —PrNalp + Pt (mamb + gab) )

ideélis folyadék és két

Talzl = (pT - pt) tatb ;

T = (pr—p)7am (4.42)
sugarzas (null por) energia-impulzus tenzorainak 6sszegébdl. A két sugarzas ira-
nya egymassal parhuzamos, de ellentétesek. Gombszimmetria vonatkozasaban
erre példa egy bejévé és egy kimené radialis iranyn sugarzas. A TH' és T2
esetén a null vektorok a

ty = Lﬁma . T = % (4.43)
ugy, hogy
ta" =0, 7,7°=0, t,7%=-1, guapt’=0, gur’=0. (4.44)
Ezek alapjan a
L= Ty T+ T

= —PrNgNy + D¢ (mamb + gab) + (pr - pt) 75zztb + (pr - pt) TaTy

1
= —PprNgNp + Pt (mamb + gab) + 5 (pr - pt) (na + ma) (nb + mb)
1
+§ (Pr — 1) (Na — Ma) (N — M)
= —DrNgNp + Dt (mamb + gab) + (pr - pt) (nanb + mamb)

= —DiNaMp + PrMaMy + Pifab - (4.45)
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Az Bsszes energiafeltétel teljesiilésekor a T, L idealis folyadék negativ energiasii-
riiséggel (,ghost folyadék”) és negativ nyomassal rendelkezik, amelyek nagysaga

—p, mig a TH' és TH? null porok energiastirtisége 2p.

A (4.42) null por sugarzasi terek egy olyan anizotrop folyadékot irnak le, amely-
nek nincs tangencialis nyomésa [292]. Gombszimmetria esetén egy bej6vs és
talalhato meg. A [360] hivatkozasban vizsgéltak egy Kantowsky—Sachs tipusi ho-
mogén, zart univerzumot, amiben két olyan radialis sugarzas van jelen, amelyek
a kezdeti szingularitasban keletkeznek, majd kioltddnak egy végsd szingularités-
ban. Negativ energiasiriséggel rendelkezd sugarzas (,,ghost sugarzas”) vezethet

féreglyukakhoz [361], csupasz szingularitasokhoz és nyitott univerzumokhoz [362].

4.1.3. Nullszerd skalarmez6 gradiens

Amennyiben a skalarmez§ gradiense nullvektor, célszert kiindulni a metrika (4.43)

nullvektorok szerinti felbontasabol. Ekkor a 4-dimenzids metrika a
Gab = —2tTy) + Gab (4.46)

alaki. A skaldrmezé gradiense a téridé minden pontjaban meghataroz egy nullvektort:

_ Vap
-5

ta

tt* =0, (4.47)

amelybdl .
évagbV% =0. (4.48)

A (4.48) Osszefiiggést a hatasba nem lehet behelyettesiteni, azt csak a hatas variacioja
utan szabad figyelembe venni. A (4.46) és (4.47) Osszefiiggéseket behelyettesitve a

(4.31) energia-impulzus tenzorba a
THE = 2taty — GV (9) (4.49)

kifejezés adodik. A (4.49) energia-impulzus tenzort atirva az (n® m®) bazisa a

756 = (Vata) (Vat) = (<2t + gu) (V + 5907
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1. -
= 2.ty — (—taTb — Ty + gab) (V + §VC¢VC¢)

= (na +mg) (np + mp) + B (ng +mq) (ny — myp)

1

—1—5 (ny + my) (ng —mg) — gabl (V - %V@@Cqﬁ)

1~ -
= NNy + 2Mm(aMp) + MMy + (N — MMy — Gap) <V + §VC¢VC¢)
1. -
= ngny (1 +V+ §V6¢VC¢) + 2mgnp)
1~ - 1~ -
+mamb (1 -V - ichSvCQS) — Gab (V + §vc¢vc¢)
= nanp (L4+ V) +2m@nyy + memy (1 = V) — gV, (4.50)

eredményt kaptam. Ehhez a (4.43) és (4.47) Osszefiiggéseket hasznaltam fel. A (4.50)

matrix alakja:

1+V 1 0
TEG = 1 1-V 0 : (4.51)
0 0 —gabV

A (4.51) energia-impulzus tenzor II-es tipusii. A vonatkozo gyenge energiafeltétel esetén
egyszerre kell teljesiilnie, hogy V (¢) < 0 és V (¢) > 0. Ez csak akkor lehetséges, ha
V (¢) = 0. Ugyanez vonatkozik a dominans és erGs energiafeltételekre. Amennyiben
minden energiafeltétel teljesiil, a skalairmezd energia-impulzus tenzora egy null por. A
[297| hivatkozasban megmutattak, hogy a null por ugyantgy viselkedik, mint egy nem
idealis folyadék, amelynek energiastiriisége, radidlis nyomasa és tangencialis nyomasa

azonos.

4.2. Minimalisan csatolt altalanos skalarmezd

A tovabbiakban a ¢ skalarmez6tdl fliggs altalanos Lagrange-stirtiség esetén vizsgalom

a skalarmez6 folyadékleirasat. A minimélisan csatolt altaldnos skalarmezd hatasa:

5 [5".6) = [ e/ TL(0) (1.52
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Felhasznalva a (4 24) ésszefiiggéseket, az Lo = OL (X, ) /0G és G = {X, ¢} jelolése-

.....

5S¢ = /d%d <\/——g) L(X,¢) +/d4x\/—_§5L (X, 0)

1

= =5 [ @V L (X0 o + [ e/ oL (X0

+ [ oy Ly (X.0)5X + Ly (X,6) 50

= [Vl (4.0 + L (X.0) Vai¥is] i3

/d4m\/_[ Lx (X,¢) VV,3¢ + Ly (X, ¢) 5¢]
= / d'z\/~g [——gabL+ ILXVaqbecb} 55"
+ / d*z\/—§ {—éLXEng - 5%@&% + L¢} )
+% / diz/—Gve [anwaqs] .

Az inverz metrika és skaldrmezG szerinti variaciobol a mezGegyenletek a

~ 1 -~ 1
G = 5 |Gl = ExVasVio| + 5T

illetve
Lx0¢ = Ly —VGV,Lx .

A (4.54) alapjan a skalarmezd energia-impulzus tenzora:

Th = gL — LxVapVso .

a

4.2.1. IdSszert skalarmezd gradiens

(4.53)

(4.54)

(4.55)

(4.56)

Id6szert skalarmez6 gradiens a (4.27) alapjan egy iddszert n® egységvektort hataroz

meg. A 4-dimenzios metrika felbontasahoz a (4.29) szerinti (n®, m®) bazisbeli alakot

hasznaltam. Ezeket behelyettesitve a (4.56) energia-impulzus tenzorba a

Th = (—nany +mamy + gu) L — Lxngm (—?cqﬁ%p)
= (2XLx — L) nanpy + L (mamip + gap)

(4.57)
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eredményt kaptam. A (4.57) egy I-es tipusu idealis folyadék, amelynek a
p=2XLx —L (4.58)

az energiastriisége és

p=1L (4.59)

az izotrép nyomaésa.

4.2.2. Térszert skalarmezd gradiens

Térszeri skalarmezs gradiens a (4.33) alapjan egy térszertd m® egységvektort jelol ki.
A (4.29) és (4.33) behelyettesitésével a (4.56) energia-impulzus tenzor a

TaLb = (=N + MaMp + gap) L — Lxmgmy (@c(ﬁﬁc(b)
= —Lnany + (L — 2X Lx) mamy + Lgas (4.60)

alaki lesz. A (4.60) egy I-es tipust nem idealis folyadék. A (4.60)-bol kiolvashato,

hogy a nem idealis folyadék energiastiriisége a

p=—L, (4.61)
a radialis nyoméasa a
pr=L—2XLx , (4.62)
mig a tangencialis nyomasa a
pr=L=—p. (4.63)

A minimalisan csatolt skalarmezd tangencialis nyomésa és energiasiirtsége kozott ugyan-
olyan kapcsolat fedezhet fel, mint Klein-Gordon mezére a 4.1.2. alfejezet (4.38) Gssze-

fiiggésében.

4.2.3. Nullszerd skalarmezé gradiens

Nullszert skalarmez§ gradiens mellett a 4.1.3. alfejezetben hasznalt valés null vekto-

rokkal lehet megadni a (4.56) energia-impulzus tenzort. Ekkor a (4.56) a

T = =2Lx () tats + g (9) (4.64)
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alakot olti. Az X = t,t* = 0, amelybsl L (¢, X) = L(¢). Ez utdbbi osszefiiggesek,
azonban csak a mezGegyenletek szarmaztatdsa utdn alkalmazhatdk, tehat a hatasba
nem behelyettesithetsk.

Felhasznalva a (4.43) és (4.46) Osszefiiggéseket a (4.64) energia-impulzus tenzor

(n*, m®) bazisbeli alakja:
Ta%) = _2LX ((b) tatb + (_taTb - tha + gab) L (¢)

= L (8) (ma -t ) (o ma) — 5 (o ) (= ) L (6)

_% (1 +mp) (ng — ma) L(9) + g L (¢)

= —Lx (&) (ngny + ngmp + npmg + mgmy)
1

. (ngnp — ngmy + npmg — maemy,) L (¢)

1
—3 (nona — nema + namp — mamy) L (9) + gapL (@)

= —[Lx (®) + L(¢)] nany — 2Lx (¢) namy
—[Lx (¢) — L(¢)] mami + gL (§) - (4.65)

A (4.65) matrix alakja a

L(¢)
1+ Tx(0) 1 0

TE = —Lx (¢) 1 1— 29 0 . (4.66)

0 0 —gaiii

A (4.65) energia-impulzus tenzor Il-es tipusi. Minden energiafeltétel teljesiil, ha

L (¢) =0, amely alapjan a skaldrmez& null por. A skalarmezs energia-impulzus tenzo-

rara vonatkozo diffeomorfizmus invariancia miatt tudjuk, hogy
veTh =0 . (4.67)
Tovabbé egyszeriien beldthato, hogy
VeLy (¢) o t®, VL (¢) = V2Ly (¢) 1° . (4.68)
A (4.68) osszefiiggéseket behelyettesitve a (4.67)-be azt kapjuk, hogy

0 = V[=2Lx (@) taty + JapL (¢)]
= —2VLx (@) taty — 2Lx (¢) Vaty — 2Lx (¢) ta Vo, + G VL (9)
= —2Lx (¢) Viaty — 2Lx (¢) 1oV, + V2L (6) 1 . (4.69)

A (4.69) atrendezésével a

ay, — L¢—«¢) R v AT
19V oty = ( VTP Vol ) t (4.70)
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geodetikus egyenletet kaptam. A (4.55) mezGegyenlet atalakitdsaval a

Vat® = _Lo(9) (4.71)

V2Lx (¢)

osszefiiggés adodik. Ezt a (4.70) egyenletben felhasznalva kapjuk, hogy

19ty = 0 . (4.72)

A (4.72) egyenlet szerint a minimalisan csatolt skalarmezs gradiens palyajat, az affin
paraméterezett geodetikus egyenlet irja le, ahogy azt a [298] hivatkozasban is megmu-
tattak.
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5. Osszefoglalas

Koztudott, hogy az univerzum ismeretlen anyagi Osszetevéket is tartalmaz, a soétét
anyagot és a sotét energiat. Magyarazatuk egyik iranyaként sziilettek meg az 4ltalanos
relativitaselméletet modosito gravitacios elméletek. Ezeknek egyik legegyszertibb osz-
talya, az egy skalarmez&t tartalmazd, Ostrogradsky-instabilitastol mentes Horndeski
elmélet. A gravitiaciés hullam és a gamma kitorési mérésekkel kompatibilis Horndeski
elmélet alosztalya a Kinetic Gravity Braiding. Ezen elméletek kozé sorolhaté a sotét
anyagot és a sotét energiat leirni képes k-eszencia elmélet. A megfigyelésekbdl adodo
kényszerek ellenére a k-eszencia csalad szamos elméletet foglal magéba. Ezek egyenként
ugyancsak szamos dinamikai megoldast tartalmaznak egyszertisitésekt6l és szimmetria
valasztasoktol fiiggden.

A moédositott gravitacidelméletekben az egzakt megoldasok szarmaztatasa komoly
matematikai kihivasokat jelent. Tekintsiik csupan az altalanos relativitdselmélet
Einstein-egyenletét. Az Osszegzési konvenciébol adodd megtévesztden egyszert alakja
ellenére, az Einstein-egyenlet egy 10 fiiggetlen valtozét tartalmazo, nemlineéris, csatolt
parcialis differencidlegyenletrendszer. A bonyolult 4-dimenzo6s dinamikai egyenletek és
a benniik szerepls tenzorialis, vektorialis valtozok kezelhet&sége érdekében dolgoztak ki
kiilonboz6 téridéfelbontasi modszereket. Ezek egyik dgat képviselik, a térid6t metrikus
valtozok szerint felbontd matematikai formalizmusok, amelyek koziil az els§ volt az R.
Arnowitt, S. Deser és C. W. Misner altal bevezetett 3 + 1 dimenzi6s téridéfelbontas.

Az id6fejlédés vizsgalata mellett egy kijelolt térbeli irdny menti terjedés tanulma-
nyozésa érdekében vezették be a merdleges s+1+1 dimenzios téridéfelbontast [345]. Az
s+ 1+ 1 felbontasban targyaltak a graviticié hamiltoni formalizmusat [346], valamint
s = 2 esetben a felbontast gombszimmetrikus, sztatikus térid6 megoldasok szarmazta-
tasara hasznaltdk a GLPV és a Horndeski elméletekben [197]. A [197] folyoiratcikk-
ben bemutatott megoldasok stabilitasvizsgalata sorén a perturbéacio paros szektoraban,
mértékvalasztas utan egy tetszéleges fiiggvény maradt a perturbacios egyenletekben.
Ennek oka az volt, hogy egy szabadségi fokot el kellett hasznalniuk a f6lidzas meréle-
gességének megtartasa érdekében a perturbacioszamitas soran.

A disszertacio 2. fejezetében az ADM valtozok alapjan bevezetett nemmerdleges
2+ 141 téridéfelbontas formalizmusat mutattam be. Ennek szamolasi alapja szorosan
kotédik a merdleges s + 1+ 1 folidzas sorén a [345], [346] hivatkozasokban ismertetett

matematikai modszerekhez. Ismertettem a ¢ = konst. és x = konst. valasztassal de-
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finialt 3-dimenzios S; és M, hiperfeliilet seregekhez adaptalt fa = {n,m, Fi}, illetve
ga = {k,l, Gi} ortonolmalt bazisokat és dualisaikat. A 3-dimenzi6s hiperfeliilet sere-
gek metszete a 2-dimenzios Y, feliiletet hatarozza meg. Targyaltam az n®, m?, k% és
[* vektorok kovaridns derivaltjainak felbontésat, majd definidltam a >;, beadgyazasat
jellemz§ kiils gorbiileteket, normalis fundamentalis formakat, normaélis fundamentalis
skalarokat és gyorsulasokat. Megmutattam, hogy az m® és k® 6rvényes vektormezdk,
mivel az [n, F}]* Lie-zar6jel m® irdnyu és az [I,G;]* Lie zarojel k* irdnyu projekeioi
nem nullak. Az m® és k® vektorok 3-dimenzids Orvényeinek az n® és az [* szerinti
kontrakcioi az L) és a K formakkal allnak kapcsolatban. A (2.39) Gsszefiiggés, és az
evolicios vektorfolyamok menti Lie-derivaltak alapjan megadtam a beagyazési valto-
70k és a metrikus valtozok kozotti Osszefiiggéseket. Definidltam a 3. fejezetben felirt
EFT hatasban szerepl$ beagyazasi valtozokbol képezett skalarokat mind az (n®, m®) és
(k*,1*) bazisokban.

A nemmer6leges 2+ 1+ 1 formalizmus kidolgozasa utan a 2.1. alfejezetben megad-
tam egy egyértelmi mértékrogzitést. A mértékrogzités sordn harom szabadsagi fokot
hasznaltam a radiélis unitér mérték és a konformis mérték rogzitéseihez, hasonldéan a
[197| hivatkozashoz. Mivel nem sziikséges a folidzas merGlegességének megtartisa a
perturbacioszamitas soran, a P =0 feltétel megvalasztasaval egyértelmid mértékrogzi-
tést értem el.

A 2.2, alfejezetben a nemmerdleges 2+ 14 1 formalizmusban felirtam az Einstein—
Hilbert hatast az (n® m®) és (k% 1*) bazisok hasznélatdban megjelend mennyiségekkel
kifejezve. A formalizmus (n®, m®) bazisiban szamoltam tovabb megadva az altalanos
relativitaselméleti Lagrange-stirtiség Liouville-form4jat, amelyben szerepelnek a hamil-
toni és impulzus kényszerek. A K, K% K bedgyazasi valtozokkal meghataroztam a
Tap, P, p kanonikus impulzusokat, amelyekkel atirtam a Lagrange-stirtiséget, majd
szarmaztattam a kanonikus mozgéasegyenleteket.

A 2.3. alfejezetben, az 1+ 1+ 2 kovarians formalizmus és a nemmerdéleges 2+ 1+ 1
téridéfelbontés Osszehasonlitasat mutattam be. Ehhez meghatéroztam az 1 + 1 + 2
kovarians formalizmus kinematikai mennyiségeit a nemmeréleges 2 + 1 4+ 1 formaliz-
mus beagyazasi valtozoival. A kovaridans formalizmus w,, 3-dimenzids 6rvényének az
Q és az Q* komponenseihez, illetve a £ 2-dimenzids 6rvényhez hasonlé mennyiségek
nem jelennek meg a nemmerdleges 2 + 1 + 1 formalizmusban. Ennek oka, hogy a
dupla folidzashoz sziikséges a 3-dimenzios hiperfeliiletek megléte. Ekkor, azonban az
(n®, m®) bazisban egyediil az m® bazisvektor n® normaélissal parhuzamosan projektalt
3-dimenziés Orvénye lehet nem zérus, amely az 1 + 1 + 2 kovarians formalizmusban
az o, és a X, kinematikai mennyiségekkel all kapcsolatban. A [323] hivatkozas (71)

propagécios egyenletét atirtam a nemmer6leges 2 + 1 + 1 formalizmus beagyazési val-
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tozoival, majd Gsszehasonlitottam a 2.2. alfejezet (2.101) impulzus kényszerével. A két
egyenlet akkor azonos, ha az 1 + 1 + 2 kovaridns formalizmusban 2 = 0 = Q¢ ahogy
ez az el6z6ek alapjan varhato.

A 3. fejezetben a nemmerdleges 24141 formalizmust alkalmaztam gémbszimmetri-
kus, sztatikus fekete lyukak, csupasz szingularitassal rendelkezd, illetve homogén téridG
megoldasok levezetéséhez a k-eszencia elméletekben, specialis G (¢) fiiggvényvalasztés
mellett. Megadtam G5 (¢, X) = 0 esetén a Horndeski elmélet Lagrange-stirtiségének az
(n®,m®), illetve a (k% 1*) bazisokban hasznalt mennyiségekben kifejtett alakjait. Fel-
tettem, hogy az EFT hatas a nemmergleges 2+ 141 felbontott alakba irt Lo, Ls, illetve
L4 Lagrange-siriiségekben megjelens bedgyazasi valtozoktol és beldliik képezett skala-
roktol fiigg funkcionélisan. Ennek az EFT hatasnak a variaciojabol szarmaztattam a
gombszimmetrikus, sztatikus hattérre vonatkozé mez&egyenleteket mindkét bazisban
a radialis unitér, illetve a konformis mérték valasztassal. A mezGegyenletek teszte-
lése érdekében az Einstein—Hilbert hatas kivalasztasaval szarmaztattam a Schwarz-
schild megoldast az EFT mezGegyenletekb6l. Megmutattam, hogy a Horndeski elmélet
Go (9, X), Gy (¢, X) = Gy (9), G5 (¢, X) =0, G5 (¢, X) = 0 alosztalyanak csak az alta-
lanos relativitaselméleti hataresete adja a Schwarzschild megoldast. A (k%,[1%) bazisban
az EFT mezGegyenleteket specializdltam a nem minimélisan csatolt k-eszencia elmé-
letekre, tovabba a metrikus fiiggvényekre kirottam egy tovabbi feltételt (]\7 =M ’1).
Térid6 megoldasokat a Gy (¢) egyetlen szabad fiiggvény kiilonb6z6 megadasaival szar-
maztattam A kapott téridék tartalmaznak egy kozponti szingularitast az » = 0-ban.
Az N? = 0 egyenlet hatarozza meg az eseményhorizontok helyzetét. Az integracios
konstansok kiilonb6z6 megvélasztasaival megadtam az egyes téridék esetén a horizon-
tok szamat. A G, (¢) =konst. vélasztaskor egy darab horizonttal rendelkezs fekete
lyuk megoldast talaltam. A horizonton kiviil a térid§ géombszimmetrikus, sztatikus,
és a A integracios konstanstol fiiggéen aszimptotikusan (anti) de Sitter, vagy aszimp-
totikusan sik. A G4(¢) = r® (a > 0) esetben a megjelend két integracios konstans
jelenlététdl és elGjelétdl fiiggben csupasz szingularitast, valamint egy, vagy két hori-
zonttal rendelkezd fekete lyukat tartalmazo téridoket talaltam. A Gy (¢) = A (1 + B)
valasztas soran adodé N? fiiggvényt abrazoltam a Bm = 1,a Bm = —1, ésa Am? = —1
paraméter valasztasoknak megfelelGen. A megoldasok ekkor csupasz szingularitasokat,
illetve egy eseményhorizonttal rendelkezd hajas fekete lyukakat tartalmaztak. Talaltam
olyan fekete lyuk megoldasokat is, amelyekben egy tovabbi szingularitas jelent meg a
horizonton kiviil, vagy a két horizont kozott.

A 4. fejezetben minimaélisan csatolt skalarmezdre vonatkozé energia-impulzus tenzo-
rokat vizsgaltam, amelyhez felhasznaltam a nemmeréleges 2+1+-1 felbontast. El§szor a

minimélisan csatolt Klein—Gordon skalarmez&t valasztottam és hataroztam meg a ska-
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larmezd energia-impulzus tenzorat iddszert, térszerd, illetve null skaldrmez gradiens
esetén. Ezutan az L (X, ¢) Lagrange-siirliség esetén vezettem le a miniméalisan csatolt
altalanos skalarmezd energia-impulzus tenzorat. Kiilonb6zé energia-impulzus tenzo-
rokat targyaltam idGszert, térszerti és nullszerd skalarmezd gradiens valasztasokkor.
Mind a Klein-Gordon, mind az altalanos skalarmez6 esetén idGszert skalarmezé gradi-
ens mellett a skalarmezd energia-impulzus tenzora idedlis folyadék. A Klein—Gordon,
és az altalanos skalarmez6 energia-impulzus tenzora I-es tipusii nem ideéalis folyadék, ha
a skalarmezé gradiense térszert. Nullszertd skaldrmez6 gradiens esetén mind a Klein—
Gordon skalarmezd, mind az altalanos skalarmezd energia-impulzus tenzora Il-es tipust
nem ideélis folyadékot ir le.

A 2. fejezetben levezetett nemmerdéleges 2+1+1 térid6felbontassal lehetségessé valt
a [197] hivatkozasban bemutatott perturbacioszamitas paros szektoraban az egyértelmd
mértékrogzités. Emiatt egy igértes tovabbi kutatast jelenthet a perturbécios egyenletek
levezetése a paros szektorban a 3. fejezetben targyalt altalanos EFT hatas esetén. A
kapott paros és paratlan szektorbeli perturbacios egyenletek ezutan 6sszehasonlithatok
a [357] hivatkozasban bemutatott eredményekkel. Erdemes lenne tovabba megvizsgélni
a perturbécios egyenletek stabilitasat, kizarni a ,,ghost” és ,Laplace” instabilitasokat,
tovabba kivalasztani a legel6nyosebb mértékrogzitést.

A 3. fejezetben kapott gdmbszimmetrikus, sztatikus térid6 megoldasok elemzé-
se tartalmaz tovabbi kihivisokat. Sziikséges lehet annak a megallapitasa, hogy mely
megfigyelési paraméterek alapjan észlelhet6 a skalar haj jelenléte. Erdemes lenne meg-
allapitani, melyek a fizikai, nem kauzalitast sérté k-eszencia megoldasok. Azaz mely
megoldasok szarmazhatnak valoéban egy magasabb energias, még nem létez6 kvantum-
gravitacio EFT kozelitésébdl [225].
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6. Summary

It is widely recognised that the universe contains unknown components, dark matter
and dark energy. As one path toward their explanation, numerous gravitational the-
ories modifying general relativity have been proposed. The Horndeski theory is one
of the simplest class of these models introducing a single scalar field and remaining
free of Ostrogradsky instability. The Kinetic Gravity Braiding subclass of Horndes-
ki theory is compatible with gravitational wave and gamma-ray burst measurements.
These theories include the k-essence theory which can describe dark matter and dark
energy. Although it constrained by observations, the k-essence family also include nu-
merous subtheories. Each of these also offers many dynamical solutions depending on
simplifications and symmetry choices.

Derivation of exact solutions in modified gravity theories poses mathematical chal-
lenges. Let us simply consider the Einstein equation of general relativity. Despite its
deceptively simple form due to the summation convention, the Einstein equation is a
nonlinear, coupled partial differential equation system composed of 10 equations. Spa-
cetime decomposition methods were developed to make the 4-dimensional dynamical
equations more manageable. One branch of these is represented by a mathematical for-
malism that decomposes the spacetime in terms of metric variables. The first among
them is the 3 + 1 dimensional spacetime decomposition introduced by R. Arnowitt,
S. Deser and C. W. Misner. In addition to the temporal evolution, the propagation
along a chosen spatial direction was studied through the development of the s+ 1+ 1
dimensional spacetime decomposition [345]. The Hamiltonian formulation of gravity
was discussed within the s + 1 4+ 1 decomposition [346], while this formalism also was
applied to derive spherically symmetric, static spacetime solutions in GLPV and Horn-
deski theories [197] with s = 2. During the stability analysis of the solutions according
to Ref. [197], an arbitrary function remained in the perturbation equations for the
even-parity perturbations. This resulted from the need to use one degree of freedom
to maintain the orthogonality of the foliation during the perturbation.

In section 2 of the dissertation, I presented the formalism of the nonorthogonal
2 + 1+ 1 spacetime decomposition based on ADM variables. The mathematical met-
hod of this formalism is closely related to those described in Refs. [345], [346] for the
orthogonal s + 1 + 1 foliation. I introduced the orthonormal bases fa = {n,m, F}}
and ga = {k,l,G;} and their duals, adapted to the families of 3-dimensional S; and
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M, hypersurfaces defined by the choices ¢ =const. and x = const, respectively. The
intersection of the 3-dimensional hypersurfaces determines the 2-dimensional 3, sur-
face. I discussed the decomposition of the covariant derivatives of the vectors n®, m?,
k® and [®, then defined the extrinsic curvatures, normal fundamental forms, normal
fundamental scalars, and accelerations characterizing the embedding of ¥, . I showed
that both m® and k* have vorticity, since the m® projection of the Lie-bracket [n, Fj]*
and the k* projection of the Lie-bracket [I,G;]" are non zero. The contraction of the
3-dimensional vorticities of the vectors m® and k* with respect to n® and [* are related
to the forms £ and K7, respectively. I derived the relations between the embedding
variables and the metric variables using the relation (2.39) and their Lie derivatives
along the evolution vector fields. In addition, I gave the expression of a generic EFT
action in terms of scalars composed from the embedding variables using either (n®, m®)
or (k% %) basis.

After the formulation of the nonorthogonal 2 + 1 + 1 decomposition, I provided
an unambiguous gauge fixing in subsection 2.1. I used three degrees of freedom to
impose the radial unitary and conformal gauge, similarly to [197]. Since preserving
the orthogonality of the foliation during the subsequent perturbation is not required,
I achieved an unambiguous gauge by choosing an additional condition P=0.

In subsection 2.2, T expressed the Einstein-Hilbert action in terms of quantities
occurring in using either (n® m®) or (k%,1%) basis. I used the (n% m®) basis when giving
the Liouville form of the Lagrangian and comprising the Hamiltonian and momentum
constraints. I expressed the Lagrangian in terms of canonical momenta m,, p°%, p,
composed from the embedding variables K,,, K% K, then I derived the canonical
equations of motion.

In subsection 2.3, I compared the 1 4+ 1 4+ 2 covariant formalism with the nonort-
hogonal 2 + 1 + 1 spacetime decomposition. I expressed the kinematical quantities of
the 1414 2 covariant formalism in terms of embedding variables of the nonorthogonal
2+ 1+ 1 formalism. There are no quantities in the nonorthogonal 2 + 1 + 1 formalism
corresponding to €2 and 2* components of the 3-dimensional vorticity w,;, nor to the
2-dimensional vorticity £. This arises from the existence of 3-dimensional hypersufaces
being essential for the double foliation. Considering the (n® m®) basis, only the n®
projection of the 3-dimensional vorticity of m® can be non-zero. This projection is
related to the kinematical quantities o, and >, in the 14+ 1 + 2 covariant formalism. I
expressed the propagation equation (71) of Ref. [323] in terms of embedding variables
of the nonorthogonal 2 + 1 + 1 formalism, then I compared it with the momentum
constraint (2.101). These two equations coincide in the obvious subcase 2 = 0 = Q.

In section 3, T applied the nonorthogonal 2 + 1 + 1 formalism to derive the spheri-
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cally symmetric, static black hole solutions, spacetimes with naked singularities, and
homogeneous solutions in k-essence theories when choosing different G (¢)) function.
I expressed the Lagranians of Horndeski theory with G5 (¢, X) = 0 in terms of vari-
ables occurring when using either (n® m®) or (k% 1*) basis. I assumed that the EFT
action functionally depends on the embedding variables and scalars constructed from
them, which appear in the decomposed nonorthogonal 2 + 1 + 1 form of the Ly, Lj
and L, Lagrangians. I determined the field equations for a spherically symmetric, sta-
tic background by varying the EFT action when using these two bases. I considered
both the radial unitary and the conformal gauges. In order to test the field equations,
I derived the Schwarzschild solution using the EFT field equations and selecting the
Einstein-Hilbert subcase of the action. For the subclass of Horndeski theories with
Go (9, X), G4 (0, X) = G4 (9), G3(¢,X) =0, G5 (¢, X) = 0, I showed that only the
general relativity limit allows the Schwarzschild solution. In the (k% 1%) basis, I de-
rived the EFT field equations for the nonminimally coupled k-essence theories with
N = M~'. T obtained spacetime solutions by specifying different forms of the single
free function G4 (¢). In all cases, the solutions contained a central singularity at r = 0.
The equation N? = 0 determined the location of the event horizons. I identified the
number of horizons in each solution related to the integrational contants. I found a
black hole with a single horizon in the case G4 (¢) =const. Outside of the horizon
the spacetime is spherically symmetric, static and asymptotically (anti) de Sitter or
asymtotically flat, depending on the integrational constant A. I obtained spacetimes
with either a naked singularity or a black hole with one or two horizons in case of
G4 (¢) = r* (a > 0). I plotted the resulting N? function with Bm = 1, Bm = —1, and
Am? = —1 in case of G4(¢) = A (1 + B). The solutions include naked singularities
as well as hairy black holes with an event horizon. I also found black hole solutions
with an additional singularity occurring either outside the horizon or between the two
horizons.

In section 4, T analyzed the energy-momentum tensor of a minimally coupled scalar
field using the nonorthogonal 24141 decomposition. First, I considered the minimally
coupled Klein—-Gordon scalar field and determined its energy-momentum tensors, when
the scalar field gradient is timelike, spacelike, and lightlike. Next, I derived the energy-
momentum tensor of a minimally coupled general scalar field defined by the Lagrangian
density L (X, ¢). I discussed different energy-momentum tensors with timelike, spa-
celike, and null scalar field gradients. The energy-momentum tensor took the form of a
perfect fluid, when the scalar gradient is timelike. In addition, the energy-momentum
tensor describes a type I imperfect fluid and a type IT imperfect fluid when the scalar

field gradient is spacelike and lightlike, respectively.
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The nonorthogonal 24141 spacetime decomposition presented in section 2 enables
unambiguous gauge fixing for the even parity sector of the perturbation detailed in Ref.
[197]. Consequently, the investigation of perturbational equations in the even parity
sector suggests a promising direction in the discussion of the EFT action introduced
in section 3. The resulting even and odd perturbational equations could be compared
with the solutions presented in Ref. [357]. Tt could also be of interest to analyze the
stability of perturbational equations, ruling out ghost and Laplacian instabilities, and
selecting the most advantageous gauge fixing.

The investigation of spherically symmetric, static spacetime solutions obtained in
section 3. contains additional challenges. It could be necessary to identify which
observational parameters might reveal the presence of scalar hair. Determinig which
k-essence solutions are physical and do not violate causality would be also worthwhile.
Specifically, the solution that could genuinely originate from a high-energy, as-yet-

unknown quantum gravity EFT approximation [225].
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7. Koszonetnyilvanitas

Koszonom Dr. Keresztes Zoltan témavezetémnek atfogd és értékes szakmai ta-
mogatasat, amely a kutatés teljes folyamatat végigkisérte. Halas vagyok mindazért
a tudaseért, irAnymutatisért és épits kritikdért, amelyet a munka minden szakaszaban
megosztott velem, és amely alapvet&en formalta a disszertacio szakmai mindségét. Ko-
szonom szakértelmét a cikkek és a prezentaciok elkészitésében is. K6szoném mindazt
a segitséget, amelyet a disszertacio létrejottének teljes folyamataban nytjtott.

Kosz6nom tovabba Dr. Gergely Arpad Laszlonak az Otleteit, aktiv segitségét a
k6z6s munka soran, valamint halas vagyok batorité és tamogatd hozzaallasaért.

Ko6szonom csaladomnak, bardtaimnak és az SZTNH-nal dolgozéd kollégdimnak a
disszertacié megirasa kozbeni allando biztatasukat, amely sokat segitett, hogy kitarto
és elkotelezett maradjak.

Koszonettel tartozom az Uj Nemzeti Kivalosagi Programnak UNKP-19-3, UNKP-
20-3, UNKP-21-3, UNKP-22-3 6sztondijakért, a CANTATA CA-15117 COST, a GW-
verse CA-16104 COST és a QG-MM CA18108 COST kollaboracioknak, valamint a
123996 szamu NKFT kutatasi palyazatnak, hogy hozzajarultak a nemzetkozi konferen-

cidkon vald részvételhez.
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