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1 Introduction

This dissertation addresses two interrelated problems regarding vector
sums from discrete and convex geometry: the vector balancing problem
and the Steinitz problem. We study a generalization of the vector bal-
ancing problem and a reduction of the Steinitz problem using tools from
probability, linear algebra, and geometry. The work in this dissertation is

based on the following two publications:

* Gergely Ambrus and Rainie Bozzai. Colourful vector balancing.
Mathematika, 70(4), August 2024.

* Gergely Ambrus and Rainie Heck. A note on the Steinitz constant.
Accepted for publication; Mathematika, 2026.

2 Colorful Vector Balancing

In Chapters 2 and 3 we consider a generalization of the vector balancing
problem, which can be stated as follows: given symmetric convex bod-
ies K,L € K¢ with associated Minkowski norms || - ||x, | - ||z and any
collection of vectors vy, ...,v, € K, select signs ¢1,...,&, € {+1} so that
H > icfn] €iVi ; is minimal. The term vector balancing is readily motivated
by the following interpretation: placing the vectors into the two plates of

a scale according to their associated signs, the problem asks for achieving
a nearly equal balance, that is, forcing the sum of the vectors in the plates
to be as close as possible.

In order to facilitate the coming work, we introduce the notion of
vector balancing constants of K, L € KZ. To this end, we define the n-
vector balancing constant:

vb(K,L,n) = max min , lletvr + ... + envnl|L. @D)

V1, Un €K g1, ,gn €{E1
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One fascinating aspect of the problem is that even though vb(K, L, n)
depends on the bodies K, L € K¢ and the two parameters d,n € N, the
optimal bounds turn out to be independent of the number of vectors n in
the case n > d [5, 16, 21]. In light of this observation, we can define the
vector balancing constant of K and L,

vb(K, L) = supvb(K, L,n).
n>d

The vector balancing problem is over six decades old. It was first
introduced by Dvoretzky [11], who asked for bounds specifically in the Z,
setting for p > 1 and d € N. The problem has been studied extensively for
many different convex bodies; here we highlight two results of particular
importance to our work. The Euclidean case was settled independently
by Sevast’'yanov [19], Bardny (unpublished at the time, for the proof,
see [8]), Spencer [21] and also, perhaps, by V.V. Grinberg [9], who all
showed that vh(B¢, BY) = Vd.

The case of the /,,-norm proved to be much more challenging, but it
was later solved by Spencer in 1985 [22], who showed that vb(B% , B4)) =
O(V/d). This estimate is sharp in terms of order of magnitude, as one can
see using random constructions involving Hadamard matrices.

Our work focuses on a natural “colorful” generalization of the vector
balancing problem: given an origin-symmetric convex body B € K¢ and
vector families V1, ..., V,, C B satisfying the condition that 0 € conv V; +
-++ + conv Vj,, select one vector from each family, v; € V;, so that ||v; +
-+ + 4 vy || p is minimal.

We make two remarks about this problem statement. First, to mo-
tivate the name “colorful” vector balancing, note that one can interpret
the families as color classes, in which case the problem asks for a colorful
sum of vectors of minimal norm. Second, to see that this problem is in-
deed a generalization of the original vector balancing problem, note that
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the original problem is retrieved by setting V; = {4wv;} for i € [n].
The colorful vector balancing problem was first introduced by Barany
and Grinberg, who proved the following result.

Theorem 2.1 (Barany, Grinberg [9]). Assume that B C ICZ is an origin-
symmetric convex body, and Vi,...,V, C B are vector families so that
0 € Zie[n] ConvV;. Then there exists a selection of vectors v; € V; for
i € [n] such that

<d. (2)

Taking B = B¢, n = d, and V; = {+e;} for i € [n] shows that
Theorem 2.1 is sharp. Yet, for specific norms, asymptotically stronger
estimates may hold. In light of the fact that vb(BY, B§) = V/d and
vbh(B4,, B) = O(+/d), it is plausible to conjecture that for the Euclidean
and the maximum norms, the sharp estimate is of order O(+/d). For the
case of the Euclidean norm, it is mentioned in [9] that V. V. Grinberg
proved the sharp bound of v/d, although this has never been published
(or verified) — and 25 years later, the statement was again referred to as
a conjecture [6]. Barany and Grinberg [9] also note that “from the point
of view of applications, it would be interesting to know more about” the
case of the /,,-norm.

The colorful vector balancing problem also appears in the following
result.

Theorem 2.2 (Bansal, Dadush, Garg, Lovett [4]). Let V4,...,V,, C BQd be
vector families with 0 € conv V; for each i € [n]. Then for any convex body
K with vq(K) > 1/2, there exist vectors v; € V; such that Y v; € cK,
where ¢ > 0 is an absolute constant.

Note that the condition 0 € Zie[n}
0 € ConvV; for each i — by applying a shift of each family, the more

ConvVj is weaker than requiring
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general estimate can be derived from the statement under this more re-
strictive condition, albeit with the loss of a factor 2 compared to the above
bound.

Applying Theorem 2.2 to the Euclidean norm, one retrieves a sum of
norm at most C'v/d for some constant C' > 1, and for the maximum norm
one obtains a bound of O(v/dInd) (the latter can also be obtained by a
straightforward application of the probabilistic method). We note that
their proof method, which is based on the techniques of Lovasz, Spencer,
and Vesztergombi [15], can be modified to show that the bound in the
colorful setting is at most twice the original vector balancing constant,
which implies O(+/d) bounds for both the Euclidean and maximum norm.
This asymptotically matches the estimates that we prove, up to constants;
we provide the details in Section 2.3.

In Chapter 3, we prove our two main results:

Theorem 2.3 ([1], Theorem 1.4). Given vector families V4, ...,V, C B
with
0e€ Z Conv V;,

i€[n]

one can select vectors v; € V; for i € [n] such that |[vy + - - + v,|]2 < Vd.

Theorem 2.4 ([1], Theorem 1.5). Given vector families V1, ..., V,, C Bgo
with
0e Z Conv V;,
i€[n]
one can select vectors v; € V; for i € [n] such that |[vy + - -+ vp||oe < CV4,
where C' = 22 suffices.

The proof of both results relies on a reduction of the colorful vector
balancing problem to a vertex approximation problem for direct products
of simplices. The proof of this reduction, which utilizes linear algebra



and the theory of basic feasible solutions from linear programming [23],
is the subject of Section 2.1. The precise result is stated below:

Corollary 2.5 ([1], Corollary 2.5). Let || - || be a norm on R4 with unit ball
B. Suppose there exists a constant C(d) such that given any collection of
k < d families U = {Uy,...,U} in B satisfying |Ui| + --- + |Ux| < k + d,
and any \ € Ay, there exists a selection vector i € Ay such that

VA =Vu| < C(d).

Then given any collection of families Vi, ...,V,, C Bwith (0 € Zie[n} ConvV,,
there exists a selection of vectors v; € V; for i € [n] such that

Corollary 2.5 reduces the proofs of Theorems 2.3 and 2.4 to vertex
approximation problems in the Euclidean and maximum norms, respec-
tively. For the proof of Theorem 3 (see Section 3.1), we generalize the
probabilistic approach used by Spencer [21] to prove the analogous re-
sult for the vector balancing problem. In particular, given vector families
Vi, ..., Vi € BY and a point z € conv V; + - - - +conv V}, we use the convex
coefficients defining x to define a probability distribution over the vectors
in each family and select a vector v; € V; randomly for each i € [k]. By
analyzing the expected Euclidean distance between x and vy + - -+ + vy,
we conclude that in expectation |lv; + --- + v, — z||2 is bounded by d,
hence there must exist a corresponding choice of vectors satisfying this
bound.

As in the vector balancing case, the proof in the maximum norm set-
ting is much more challenging. Our proof generalizes Lovett and Meka’s
[14] algorithmic proof that vb(B%, BL) = O(v/d). The algorithm defines
a Gaussian random walk inside a direct product of simplices, represent-
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ing the space of convex coefficients for the families. In this way, vertices
of the direct product of simplices exactly correspond to selections of one
vector from each family. The walk is further restricted by additional linear
constraints that prevent the approximation error from growing too large
and that depend on the vector families V7, ..., Vj. A careful analysis of the
random walk shows that with high probability, if one initializes at any
point lying in the direct product of simplices (in particular, corresponding
to a point in the sum of the convex hulls of the families V71, ..., V}), then
the walk terminates on a lower dimensional face of the simplex product,
specifically reducing the number of coordinates lying in (0, 1) by at least a
constant factor. Geometrically, this means that we narrow down to fewer
vectors with non-zero coordinates in each of the families. This algorithm
can then be iterated until only one vector remains in each family, and the
error incurred can be bounded by the triangle inequality over iterations
of the algorithm. By choosing parameters appropriately, this algorithm
proves the bound in Theorem 2.4.

The algorithm is described and used to prove Theorem 2.4 via itera-
tion in Section 3.2; the in-depth analysis of the algorithm is contained in
Section 3.3.

3 The Steinitz Problem for ‘Almost-Unit’ Vectors

In Chapter 4 we turn our attention to the Steinitz problem, which arises
in connection with a famous theorem that will be familiar to all mathe-
maticians: the Riemann rearrangement theorem [17]. This theorem, a
classic result in analysis, tells us that a conditionally convergent series
can be rearranged to converge to any real number. Formulated through
a different lens, for any real series, consider the set of all sums of its pos-
sible rearrangements. The Riemann rearrangement theorem tells us that
this set is either empty, i.e. the series is divergent; a single point, i.e.
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the series is absolutely convergent; or the entire real line, i.e. the series is
conditionally convergent. A natural question is what happens if one stud-
ies sequences of complex numbers, or even more generally, sequences of
vectors in R?. This problem was first addressed by Lévy in 1905 [13].

Theorem 3.1 (Lévy-Steinitz Theorem). Given a series of vectors in R, the
set of all sums of its rearrangements is empty, or it forms an affine subspace
of R%.

Recall that an affine subspace of R? is of the form L + x, where L C
R? is a linear subspace and x € R?. The reader may notice that the
theorem is also attributed to Steinitz: the reason for this is that Lévy’s
proof contained serious gaps in dimensions d > 3, which was pointed
out and fixed by Steinitz in a series of works published in three parts
[24, 25, 26], which is quite technical and covers much ground. The key
step in his proof is the following, which is the birth of what we will call
the Steinitz problem.

Theorem 3.2 ([24], p.171). Given any finite family of vectors V C R? of
Euclidean norm at most 1 summing to 0, one can order the elements of V as
v1, ..., Up SO that for every k =1,....n,

<C, (3)

where C' is a constant that depends only on the dimension d.

Steinitz’s proof shows that in fact C' < 2d. It is natural to ask for the
smallest value of C' for which (3) holds, in general norms as well. This
quantity will be called the Steinitz constant, and it is defined as follows.

Definition 3.3 (Steinitz constant). Let B € ng. The Steinitz constant of
B, denoted S(B), is the smallest number C' for which any finite family of
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vectors V. C B with (V) = 0 has an ordering V- = {v1,...,v,} along
which each partial sum has norm at most C. That is, for every k € [n],

Note that the term ‘constant’ above refers to the fact that S(B) de-
pends only on the choice of B, but not on the vector family V' C B.
We make no reference to the dimension d, as the value of the Steinitz
constant is independent of d as long as B can be embedded in R<.

One can also consider a generalized version of the Steinitz constant,
where the zero-sum condition ¥(V') = 0 on the vector family is dropped:

Definition 3.4 (Relaxed Steinitz constant). For B € KY, let S*(B) denote
the smallest constant C' for which any finite family of vectors V' C B has an
ordering V.= {v1,...,v,} so that

| Zvif%E(V)HB <cC @

holds for every k € [n)].

The relationship with the original Steinitz constant is given by the
simple chain of inequalities

S(B) < 5%(B) < (14 p(B))S(B), )
where
p(B) = gleagll — vl

measures the asymmetry of B. Note that p(B) = 1 if B is symmetric. The
lower bound in (5) is trivial; to see the upper estimate, one has to observe
that starting from any family V' of n vectors in B, the triangle inequality
implies that ||X(V)||p < n, hence || — @HB < p(B). Accordingly, the
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zero-sum vector family {v — ¥ :v € V} liesin (1 + p(B))B, and the
estimate readily follows.

Theorem 3.2, proved by Steinitz, justifies that S(B¢) and, via (5), that
S*(BY) are well-defined. The proof can be extended to any symmetric
norm. For asymmetric norms, the justification of Definitions 3.3 and 3.4
is implied by the following general bound, proved in 1978 by Sevastyanov
[18] and by Grinberg and Sevastyanov [12] for not necessarily symmetric
bodies by a simpler proof.

Theorem 3.5 (The Steinitz Lemma for general norms [12, 18]). For any
convex body B € K¢,
S(B) < d. 6)

The bound is tight for non-symmetric convex bodies, as is shown by
taking B to be the regular simplex centered at the origin and choos-
ing V to be the set of its vertices, whereas it is sharp by the order of
magnitude for symmetric norms, which is confirmed by the inequality
S(B¢) > (d+1)/2, see [12]. For symmetric B € K¢, the estimate in (6)
can be strengthened tod — 1 + %, see [20].

Via (5), Theorem 3.5 readily implies the bound

S*(B) < (1 +p(B))d,

which also follows from the results in [12]. In particular, S*(B) < 2d
holds for symmetric B € KZ. The story of the Steinitz constant is rich
and interesting, and it is treated in more detail in Section 4.2.

The following long-standing conjecture of Bergstrom [7], be it con-
firmed, would yield a much stronger estimate on the Steinitz constant in
the Euclidean case:

Conjecture 3.6. For all d > 1, S(BY) = O(+/d).

The same bound is expected to hold for the maximum norm. So far,
Conjecture 3.6, which is sometimes also called the Euclidean Steinitz

10



problem, has refuted all attempts. An explicit construction [10, 12]
shows that S(B§) > v/d + 3/2 must hold, meaning that no stronger esti-
mate is possible. The exact value of the planar Euclidean Steinitz constant
was determined by Banaszczyk [3], who proved that S (322) =5 /2,
matching this lower bound.

Our work in this dissertation focuses on reducing the Steinitz constant
to the restricted setting of ‘nearly unit’ vectors: the subscript ‘=’ will mean
that only families of vectors are considered whose members have norm in
the interval [1 — ¢, 1]. To this end we introduce the following definition.

Definition 3.7 (e-Steinitz constants). For B € K¢ and 0 < ¢ < 1, let
S*(B) denote the smallest constant C for which any finite family V C RY
consisting of vectors of ||.||g-norm in [1 — €,1] may be ordered as V =
{v1,...,v,} so that

holds for every k = 1,...,n. Furthermore, let S.(B) denote analogous
quantity for vector families that satisfy the extra condition (V') = 0.

Note that for any 0 < ¢ < 1, So(B) < S:(B) < Si1(B) = S(B), S§(B) <
S¥(B) < S7(B) = S*(B), and S.(B) < SZ(B). Thus, (5) ensures that

S¥(B) <25(B) (7)
for symmetric norms, while
5:(B) < (1+p(B))S(B)

holds for arbitrary B € K¢.

Furthermore, observe that setting ¢ = 0 restricts the problem to fami-
lies of unit vectors. In the Euclidean case, a construction given by Damsteeg
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and Halperin [10] implies that
Q(Vd) < So(BY) < S§(B3) < SZ(BY). ®)

In this dissertation we prove two results establishing reverse estimates
of (7). The first result is specific to the Euclidean norm.

Theorem 3.8. Forany 0 <e < landalld > 2,

2. ©)

1 *
S(BY) < g(5;:(33) 200

In particular, an o(d) bound on S*(Bg) for some fixed 0 < £ < 1 would
yield an o(d) estimate on S(Bg), hence improving the current strongest
bound. Moreover, (8) and (9) imply that Conjecture 3.6 is equivalent to
the statement that S*(B$) = O(+/d) for some constant ¢ € (0, 1].

The second result generalizes and simplifies the techniques of the
proof of Theorem 3.8 and yields an even stronger estimate for general
norms.

Theorem 3.9 ([2] Theorem 7). For all d > 2, for every convex body B €
ICff, and 0 <e <1,

S(B) < é(S:(B) +20(B) +1). (10)

In the case that B is symmetric, the bound simplifies to 1(SZ(B) + 3).
We prove Theorem 3.8 in Sections 4.2 and 4.3. The strategy of the
proof is to pre-process the vectors to remove any short (i.e., of norm less
than 1 — ¢) vectors. We do this by summing together short vectors within
spherical caps until we get a vector that is sufficiently long; in doing so,
we must be careful that all partial sums of the new long vectors remain
sufficiently short, and we must deal with a handful of extra vectors that
are left after pre-processing; these are the details of the technical lemmas
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in Section 4.3. The key challenge of the proof is balancing the contribu-
tions of the new partial sums introduced during pre-processing, whose
norms shrink with the height of the spherical cap, and the partial sums of
the remaining vectors after pre-processing, whose norms grow with the
height of the spherical cap. Choosing the optimal spherical cap height to
balance these two contributions is the crux of the proof.

In Section 4.4, we show that through a simple modification of the
proof strategy for Theorem 3.8, we can obtain a simpler proof that works
for general norms and gives a stronger bound, yielding Theorem 3.9. The
key modification comes from selecting the pre-processed sums slightly
more carefully, which makes half-spaces the optimal choice rather than
spherical caps, and frees us of the dependence on sphere concentration
results. Although Theorem 3.9 is strictly stronger than Theorem 3.8, we
still include the proof of Theorem 3.8, as the Euclidean-specific tech-
niques are of independent interest.
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