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Chapter 1

Introduction

1.1 Definitions and Notations

We begin this dissertation by fixing terminology and notation that will be used.
Throughout this work, log = refers to the natural logarithm. Disjoint unions will be
denoted by | |. We will use the standard notation [n] := {1, ...,n}. Vectors in R? will
be understood as column vectors, and when we write the coordinate decomposition
v = (zW,... 2@) € RY, () denotes the i*" coordinate of z. As usual, {ei,..., e4}
stands for the standard orthonormal basis of R?. We denote the standard (d — 1)-

dimensional simplex represented in R¢ by

A%:=conv {eq,...,eq} = {A eR?: D >0V e [d], Z)\(i) =1}.
i€[d)

Given a collection of vectors V' = {vy, ..., v, }, we denote its convex hull by
conv V= {\jvo; + -+ A, 0 A€ AL

By convex polytope we always mean a non-empty, bounded intersection of finitely
many closed halfspaces (without any requirement on its interior). Let K¢ denote the
class of convex bodies in RY, i.e., compact convex sets with non-empty interior, and
let K¢ C K? be the class of convex bodies containing the origin in their interior. For
B € K¢, the Minkowski norm generated by B is defined as

|z||g :=inf{r >0: =z € rB}.

Note that this is a norm on R? in the classical sense only when B is symmetric about

1



2 Introduction

0, that is B = —B; otherwise, ||.|| 5 is homogeneous only for positive scalars — in this
case ||.|| is called an asymmetric norm. In this dissertation the term ‘norm’ will be
used in a general sense that encompasses both cases. Note that B is the unit ball of

-5
According to standard conventions, B stands for the unit ball of the /,-norm on
R?, where

Jelly = (o)™, vp= 1, s e Rl
i€[d]

and

|2]| 0o = max|a:(i)|.
1€[d]

* The closed positive halfspace orthogonal to u,

H(u):={z e R*: (x,u) > 0}.

* The spherical cap of height (1 — ¢) centered at u,

Ci(u) :={v e ST (v,u) >t}.

* The ball-cone of height ¢ centered at u,

Ki(u) := {v € BY: <%,u> > t} = Conv(Ci(u) U{0});

Cuycsit U u

Figure 1.1: Depiction of Cy(u) and K;(u).

Let 4 := Volg(BY) = n%2/T'(£ + 1) denote the volume of the Euclidean unit ball,
where
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I'(z) = / t*letdr, x>0
0

is Euler’s gamma function.
Let o(-) be the normalized surface area measure on S¢~1. We will need to estimate
the measure of spherical caps: to that end, we define

o = o(Cy(u))

for an arbitrary v € S?~! — note that o, is independent of .

Finally, when useful we denote the sum of a finite collection of vectors V' C R? by
(V)= v v

1.2 A Brief Overview of History and Results

In this dissertation we will focus on results relating to vector sum problems from
convex and discrete geometry, in particular the vector balancing problem and the
Steinitz problem. These two problems, while quite different in nature, are intricately
connected by the beautiful transference theorem of Chobanyan [26]. We begin by
introducing these two problems and their history, and conclude the section with a
brief summary of related work.

The vector balancing question asks the following: given symmetric convex bodies
K, L € K¢ with associated Minkowski norms || - ||, || - ||z and any collection of vectors
vy, ..., v, € K, select signs ¢y, ...,&, € {£1} so that H Zie[n] eiviHL is minimal. The
term vector balancing is readily motivated by the following interpretation: placing the
vectors into the two plates of a scale according to their associated signs, the problem
asks for achieving a nearly equal balance, that is, forcing the sum of the vectors in the
plates to be as close as possible.

In order to facilitate the coming work, we introduce the notion of vector balancing
constants of K, L € K¢. To this end, we define the n-vector balancing constant:

vb(K, L,n) = max min |leqv; + ...+ vl (1.1)

V1,0 Un €K g1,...,en€{£1}
The first surprising observation we can make is that even though vb(K, L, n)
depends on the bodies K,L € K? and the two parameters d,n € N, the optimal
bounds turn out to be independent of the number of vectors n in the case n > d
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[12, 54, 67], a fact that we will return to in Section 2.2. In light of this observation,
we can define the vector balancing constant of K and L,

vb(K, L) = supvb(K, L,n).

n>d

When K = L, we simply write

vb(K,n) = vb(K,K,n) and vb(K) = sg;; vb(K,n).

The vector balancing problem is over six decades old, and was first introduced
by Dvoretzky [28], who asked for bounds specifically in the ¢, setting for p > 1 and
d € N; that is, on vh(BY).

The first results for Dvoretzky’s question came in the late 1970’s, first for the case
of the Euclidean norm. The sharp bound

vb(BY,d) = vb(BY) = Vd (1.2)

was independently proven by Sevast'yanov [64], Barany (unpublished at the time,
for the proof, see [22]), Spencer [67] and also, perhaps, by V.V. Grinberg [23].
Sevast’'yanov and Barany used linear algebraic techniques, whereas Spencer applied
the probabilistic method. In both approaches, the proof reduces to showing that any
point of a parallelotope in R? can be approximated by a vertex with Euclidean error
at most v/d. This result is the direct predecessor of our Proposition 3.1 in Section 3.1.

The case of the /,,-norm proved to be much more challenging, but it was later
solved by Spencer in 1985 [68], who showed that

vb(BL,d) < CVd (1.3)

and
vb(BL) < 2CVd (1.4)

for a universal constant C' < 6. These estimates are asymptotically sharp, as one
can see using random constructions involving Hadamard matrices. One interesting
note about the maximum norm case is that although Spencer’s original proof was
highly non-constructive, more recent algorithmic approaches have been developed
showing that the coloring is actually obtainable in randomized polynomial time
[10, 47]. We also note that the weaker bound of O(y/nlogd) can be shown by
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applying the probabilistic method, but removing the \/logd factor is not possible
using that approach. The upper bound (1.3) was also shown, independently, by
Gluskin [33], who applied Minkowski’s theorem on lattice points and an argument of
Kashin [44]. These results rely on the parallelotope approximation in the maximum
norm, which is the predecessor of our Proposition 3.2 in Section 3.2. These vertex
approximation results are also closely related another class of vector sum problems
known as the Beck-Fiala “integer-making” theorems [15].

In 2022, Reis and Rothvoss [54] proved that there exists a universal constant C’
for which vb(B;f) < (C"v/d holds for all 2 < p < co. This bound can be combined
with the following lower bound of Banaszczyk [8] for general norms to fully resolves
Dvoretzky’s question.

Theorem 1.1 (Lower Bound for General Norms). Let K, L be two symmetric convex
bodies in R¢ and | K|, |L| their d-dimensional volumes. Then there exist vectors uy, ..., u, €
K such that for any choice of signs €1, ...,e4 € 1,

Va(IK/1L)"

1
Halud+--~—|—5dud\|L Z \/%e
The major open question remaining in this area is the Komlds conjecture (see
[9, 68]), which posits that
vb(B3, By, n) < C

holds for each n, d > 1 with a universal constant C'. Very recently, a new breakthrough
was made by Bansal and Jiang, who showed that vb(BY, B) = O((logd)'/*). This
improved on the O(+y/log d) bound of Banaszczyk from 1998, which was actually a
consequence of a more general theorem, stated below.

Theorem 1.2 ([9]). Let 4 denote the (standard) Gaussian measure on R with density
(2ﬂ+d/2 exp(—||z||3/2), and let K C R? be a convex body with ~4(K) > 1/2. Then given
vy, ..., U, € BY, there exist signs ¢y, ..., &, € {41} such that

||€1U1 + - +5nvnHK S OK,

where C > 0 is a universal constant.

Similar to the case of Spencer’s maximum norm result, the original proof of
Banaszczyk was highly non-constructive, but a recent algorithmic proof was given
obtaining the colorings in randomized polynomial time [11].
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Beyond the unit balls of the ¢, norms, this problem has been studied for many other
convex bodies, as well as in specific dimensions, in online settings, and through many
other variants. We introduce a few here. Giannopoulous provides a nice summary of
classical vector balancing results in [32]. Vector balancing of zonotopes, a particular
class of convex bodies, was studied in [42] as an extension of Spencer’s results in the
maximum norm setting. Vector balancing in the specific setting of the plane (d = 2)
has been studied by Swanepoel [74] and Lund and Magazinov [49]. There are also
related online versions of the vector balancing problem, where one is given vectors
one at a time, as well as other related combinatorial games; these have been studied
extensively by Spencer [66, 69]. One can also ask related anti-balancing questions, see
for example [3, 8]. In addition, vector balancing in the maximum norm is intricately
connected to discrepancy theory, as one can interpret vb(B<  n) as the discrepancy of
a set system with d sets on n elements. For more information on discrepancy theory
and related results, see Matousek [50].

An exciting new direction that has driven recent research on vector balancing
type problems is a close connection between vector balancing and various problems
in machine learning. Applications thus far include, but are not limited to, coresets
for kernel density estimation [21, 52, 53, 75], randomized control trials [41], and
quantization of neural networks [5].

In Chapters 2 and 3 we will introduce another generalization of the vector bal-
ancing problem, called the colorful vector balancing problem, and prove that the
asymptotically tight bounds in the Euclidean and maximum norm cases extend to this
more general setting. The precise results are formulated below.

Theorem ([2], Theorem 1.4). Given vector families V1, ..., V,, C Bd with

0e ZCOHV Vi,

i€n]
one can select vectors v; € V; for i € [n] such that ||[vy + - - + v,|]s < Vd.

Theorem 1.3 ([2], Theorem 1.5). Given vector families Vi, ..., V,, C B with

0e ZConv Vi,

i€[n]

one can select vectors v; € V; for i € [n] such that ||v;+- - - +v,||ec < CVd, where C' = 22
suffices.
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We now change focus and introduce the Steinitz problem, a seemingly unrelated
vector sum problem that is in fact closely connected to vector balancing. The Steinitz
problem arises in connection with a famous theorem that will be familiar to all
mathematicians: the Riemann rearrangement theorem [55]. This theorem, a classic
result in analysis, tells us that a conditionally convergent series can be rearranged
to converge to any real number. Formulated through a different lens, for any real
series, consider the set of all sums of its possible rearrangements. The Riemann
rearrangement theorem tells us that this set is either empty, i.e. the series is divergent;
a single point, i.e. the series is absolutely convergent; or the entire real line, i.e. the
series is conditionally convergent. A natural question is what happens if one studies
sequences of complex numbers, or even more generally, sequences of vectors in R<.
This problem was first addressed by Lévy in 1905 [46] (at just 19 years old, in his very
first article), who proved the following result.

Theorem 1.4 (Lévy-Steinitz Theorem). Given a series of vectors in R?, the set of all

sums of its rearrangements is empty, or it forms an affine subspace of R

Recall that an affine subspace of R? is of the form L + x, where L C R? is a linear
subspace and x € R?. The reader may notice that the theorem is also attributed to
Steinitz: the reason for this is that Lévy’s proof contained serious gaps in dimensions
d > 3, which was pointed out and fixed by Steinitz in a series of works published in
three parts [71, 72, 73], which is quite technical and covers much ground. The key
step in his proof is the following, which is the birth of what we will call the Steinitz
problem.

Theorem 1.5 ([71], p.171). Given any finite family of vectors V C R? of Euclidean
norm at most 1 summing to 0, one can order the elements of V as vy, ..., v, so that for

HZE%M

where C'is a constant that depends only on the dimension d.

everyk=1,...,n,

<, (1.5)
2

Steinitz’s proof shows that in fact C' < 2d. It is natural to ask for the smallest value
of C' for which (1.5) holds, in general norms as well. This quantity will be called the
Steinitz constant, and is defined as follows.

Definition 1.6 (Steinitz constant). Let B € K¢. The Steinitz constant of B, denoted
S(B), is the smallest number C for which any finite family of vectors V. C B with
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Y(V) =0 has an ordering V' = {vy, ..., v, } along which each partial sum has norm at
most C. That is, for every k € [n],

|2

1€[k]

<C.
B

Note that the term ‘constant’ above refers to the fact that S(B) depends only on
the choice of B, but not on the vector family IV C B. We make no reference to the
dimension d, as the value of the Steinitz constant is independent of d as long as B can
be embedded in R

One can also consider a generalized version of the Steinitz constant, where the
zero-sum condition (V') = 0 on the vector family is dropped:

Definition 1.7 (Relaxed Steinitz constant). For B € K{, let S*(B) denote the smallest
constant C for which any finite family of vectors V' C B has an ordering V' = {vy,...,v,}

so that "
H S v =E(V)

H <C (1.6)
. n B
i€[k]

holds for every k € [n].

The relationship with the original Steinitz constant is given by the simple chain of
inequalities
S(B) < 5%(B) < (14 p(B))S(B), (1.7)

where

p(B) = max || — vl

measures the asymmetry of B. Note that p(B) = 1 if B is symmetric. The lower bound
in (1.7) is trivial; to see the upper estimate, one has to observe that starting from any
family V' of n vectors in B, the triangle inequality implies that ||>(V')|z < n, hence
W)y e VY lies in

| — @H 5 < p(B). Accordingly, the zero-sum vector family {v — =2
(1+ p(B))B, and the estimate readily follows. We note that there are further variants
of Definition 1.7 (see e.g. [7]), although these are not directly related to the topics of
this dissertation.

Theorem 1.5, proved by Steinitz, justifies that S(BS) and, via (1.7), that S*(BY)
are well-defined. The proof can be extended to any symmetric norm. For asymmetric
norms, the justification of Definitions 1.6 and 1.7 is implied by the following general
bound, proved in 1978 by Sevastyanov [63] and by Grinberg and Sevastyanov [34]

for not necessarily symmetric bodies by a simpler proof.
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Theorem 1.8 (The Steinitz Lemma for general norms [34, 63]). For any convex body
B e K4,
S(B) <d. (1.8)

The bound is tight for non-symmetric convex bodies, as is shown by taking B
to be the regular simplex centered at the origin and choosing V' to be the set of its
vertices, whereas it is sharp by the order of magnitude for symmetric norms, which is
confirmed by the inequality S(B¢) > (d + 1)/2, see [34]. For symmetric B € K, the
estimate in (1.8) can be strengthened tod — 1 + é, see [65].

Via (1.7), Theorem 1.8 readily implies the bound

S*(B) < (1+p(B))d,

which also follows from the results in [34]. In particular, S*(B) < 2d holds for
symmetric B € K¢,

The following long-standing conjecture of Bergstrom [18], be it confirmed, would
yield a much stronger estimate on the Steinitz constant in the Euclidean case:

Conjecture 1.9. For all d > 1, S(B%) = O(V/d).

The same bound is expected to hold for the maximum norm. So far, Conjecture 1.9,
which is sometimes also called the Euclidean Steinitz problem, has refuted all at-
tempts. An explicit construction [27, 34] shows that S(BY) > /d + 3/2 must hold,
meaning that no stronger estimate is possible. The exact value of the planar Euclidean
Steinitz constant was determined by Banaszczyk [7], who proved that S(B32) = v/5/2,
matching this lower bound.

Our work in this dissertation focuses on relating the Steinitz constant to the
restricted setting of ‘nearly unit’ vectors: the subscript ‘’ will mean that only families

of vectors are considered whose members have norm in the interval [1 — ¢, 1].

Definition 1.10 (e-Steinitz constants). For B € Kd and 0 < ¢ < 1, let S*(B) denote the
smallest constant C for which any finite family V C R? consisting of vectors of ||.|| g-norm
in [1 — ¢, 1] may be ordered as V = {v,...,v,} so that

|5 tam], <c

i€(k]

holds for every k = 1, ...,n. Furthermore, let S.(B) denote analogous quantity for vector
families that satisfy the extra condition (V') = 0.
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Note that for any 0 < ¢ < 1, Sy(B) < S.(B) < S1(B) = S(B), S§(B) < S¥(B) <
S7(B) = S*(B), and S.(B) < S¥(B). Thus, (1.7) ensures that

SX(B) < 2S5(B) (1.9)
for symmetric norms, while
SX(B) < (1+ p(B))S(B)

holds for arbitrary B € K¢.

Furthermore, observe that setting £ = 0 restricts the problem to families of unit
vectors. In the Euclidean case, a construction given by Damsteeg and Halperin [27]
implies that

Q(Vd) < So(B3) < S5(BS) < SZ(B3). (1.10)

In this dissertation we prove two results establishing reverse estimates of (1.9).
The first result is specific to the Euclidean norm.

Theorem 1.11. Forany 0 < e < landall d > 2,

d ) (1.11)

d 1 * d
S(BY) < E(SE(BQ)+2OO o

In particular, an o(d) bound on S?(Bg) for some fixed 0 < ¢ < 1 would yield an
o(d) estimate on S(BY), hence improving the current strongest bound. Moreover,
(1.10) and (1.11) imply that Conjecture 1.9 is equivalent to the statement that
S*(B%) = O(+/d) for some constant ¢ € (0, 1].

The second result generalizes and simplifies the techniques of the proof of Theorem
1.11 and yields an even stronger estimate for general norms.

Theorem 1.12 ([4] Theorem 7). For all d > 2, for every convex body B € K%, and
0<e<l, .
S(B) < - (S:(B) +20(B) + 1). (1.12)

In the case that B is symmetric, the bound simplifies to 1(S(B) + 3).

We conclude this section with the Chobanyan transference theorem, a surprising
result that connects the vector balancing problem to the Steinitz problem. In order to
introduce this theorem, we first describe a variant of the vector balancing problem,



1.3 Overview of Thesis 11

called the signed sequence problem. In this problem one is given a symmetric convex
body B C R? and a (potentially infinite) sequence u;, us, ... € B. The goal is to find
signs ¢; € {£1} for i = 1,2, .., so that all signed partial sums },_,, €;u; for k € N
are bounded by a constant C' depending only on B. We define the signed sequence
constant of B, E(B), to be the smallest constant C' that holds for all sequences selected
from B. Barany and Grinberg proved that F(B) < 2d — 1 for all symmetric convex
B c R4 [23].

The Chobanyan transference theorem establishes a close connection between the
signed sequence constant and Steinitz constant of any given symmetric convex body.

Theorem 1.13 (Chobanyan Transference Theorem [26]). Assume B is a symmetric
convex body in R%. Then S(B) < E(B).

In particular, to verify Conjecture 1.9 it would suffice to show that E(B) = O(/d).
The Chobanyan transference theorem is just one example of deep and beautiful
connections between seemingly distinct vector sum problems in discrete and convex

geometry.

1.3 Overview of Thesis

To conclude this chapter, we summarize the organization of the thesis. In Chapter
2 we introduce the colorful vector balancing problem, a geometric generalization of
the original vector balancing problem. In Section 2.1 we discuss the history of the
problem and existing results. In Section 2.2 we describe a linear algebraic reduction
of the problem which will be key to our proofs. In particular, this aspect of the proofs
allows us to prove bounds independent of the number of vectors. In Section 2.3 we
extend techniques from [11] to prove that the colorful vector balancing problem can
always be bounded in terms of the original vector balancing problem. We also justify
the benefits of our more direct, geometric proof of these results.

In Chapter 3 we prove our main results for the colorful vector balancing problem
in the Euclidean and maximum norms. In particular, we extend the tight (respectively,
asymptotically tight) results for the Euclidean and maximum norms in the vector
balancing setting to the colorful setting (see Theorems 1.2 and 1.3). The chapter
is structured as follows: in Section 3.1 we prove our result for the Euclidean norm
using the probabilistic method. In Section 3.2 we prove our result for the maximum
norm, up to the proof of a technical lemma that we defer to Section 3.3 in order to
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simplify the exposition in Section 3.2. The proof in the maximum norm setting is more
involved and is based on analysis of a Gaussian random walk. It is a generalization of
the algorithm introduced by Lovett and Meka in [47].

In Chapter 4 we turn our attention to the Steinitz problem and Conjecture 1.9. Our
main result is a reduction of the Steinitz problem for arbitrary norms to the setting
where the vectors all have norm in [1 — ¢, 1] for any fixed constant 0 < ¢ < 1 (which
we call “almost-unit vectors”), up to additive O(1) error (see Theorems 1.11 and 1.12).
In Section 4.1 we outline the structure of the chapter. In Section 4.3 we present a
proof of a slightly weaker result in the specific case of the Euclidean norm, utilizing
techniques of independent interest (several technical lemmas are deferred to Section
4.4). Finally, in Section 4.5 we prove our main result, which holds for arbitrary norms.

In Chapter 5 we present a brief conclusion and discuss several potential future

extensions of our work.



Chapter 2

Colorful Vector Balancing: a Linear
Algebra Reduction

Chapters 2 and 3 of the dissertation are based on the following published paper of the
author:

[2] Gergely Ambrus and Rainie Bozzai. Colourful vector balancing. Mathematika,
70(4), August 2024.

2.1 The Colorful Vector Balancing Problem

Recall the vector balancing problem introduced in Section 1, where we are given a
norm || - || on R¢ with unit ball B C R? and vectors vy, ..., v, € B, and asked to select
signs ¢4, ..., e, € {1} so that norm of the signed sum, ||e;v; + - - - 4 €,v,]|, is minimal.
This chapter focuses on a natural “colorful” generalization of this problem: again fix a
norm || - || on R¢ with unit ball B C R¢, but now consider vector families V3, ..., V,, C B
satisfying the condition that 0 € conv V; + --- 4 conv V,,. The goal is to select one
vector from each family, v; € V;, so that the norm of the sum of the selected vectors,
|v1 + - - - + v,]|, is minimal.

We make two remarks about this problem statement. First, to motivate the name
“colorful” vector balancing, note that one can interpret the families as color classes,
in which case the problem asks for a colorful sum of vectors of minimal norm (see
Figure 2.1 for an example. Note that in this example, while 0 ¢ convVi, convVs, it is
true that 0 € convV; + convVs + convVi.).

Second, to see that this problem is indeed a generalization of the original vector

13
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(4] +'02+03

(4
l v 1 5:2 : VZ ; "‘:\ V3 :

Figure 2.1: An example of colorful vector balancing with n = 3, d = 2 in the Euclidean
norm.

balancing problem, note that the original problem is retrieved by setting V; = {+v;}
for i € [n].

The colorful vector balancing problem was first introduced by Bardny and Grinberg,
who proved the following result.

Theorem 2.1 (Bédrany, Grinberg [23]). Assume that B C K% is an origin-symmetric
convex body, and Vi, ..., V,, C B are vector families so that 0 € zie[n] ConvV;. Then
there exists a selection of vectors v; € V; for i € [n] such that

<d. (2.1)

Taking B = B{, n = d, and V; = {+e;} for i € [n] shows that Theorem 2.1 is sharp.
Yet, for specific norms, asymptotically stronger estimates may hold. In light of the
fact that vh(BY) = v/d and vb(B%) = O(+/d) (see (1.2) and (1.4)), it is plausible to
conjecture that for the Euclidean and the maximum norms, the sharp estimate is of
order O(\/E). For the case of the Euclidean norm, it is mentioned in [23] that V. V.
Grinberg proved the sharp bound of v/d, although this has never been published (or
verified) — and 25 years later, the statement was again referred to as a conjecture [14].
Barany and Grinberg [23] also note that “from the point of view of applications, it
would be interesting to know more about” the case of the /. -norm.

Recall Theorem 1.2 from Section 1, which for a convex body K C R¢ connects
vb(B¢, K) to the Gaussian measure of K [9]. This result, as mentioned previously,
was recently proven constructively using an algorithm called the Gram-Schmidt walk
[11]. In this paper, Bansal et al. additionally prove the a colorful generalization of
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Banaszczyk’s result, albeit in a slightly different colorful setting.

Theorem 2.2 (Bansal, Dadush, Garg, Lovett [11]). Let V4, ..., V,, C B¢ be vector families
with 0 € conv V; for each i € [n]. Then for any convex body K with v4(K) > 1/2, there
exist vectors v; € V; such that Y, v; € cK, where ¢ > 0 is an absolute constant.

Note that the condition 0 € >~ |, ConvV; is weaker than requiring 0 € ConvV; for
each i — by applying a shift of each family, the more general estimate can be derived
from the statement under this more restrictive condition, albeit with the loss of a
factor 2 compared to the above bound.

Applying Theorem 2.2 to the Euclidean norm, one retrieves a sum of norm at
most Cv/d for some constant C > 1, and for the maximum norm one obtains a
bound of O(v/dInd) (the latter can also be obtained by a straightforward application
of the probabilistic method). We note that their proof method, which is based on
the techniques of Lovasz, Spencer, and Vesztergombi [48], can be modified to show
that the bound in the colorful setting is at most twice the original vector balancing
constant, which implies O(+/d) bounds for both the Euclidean and maximum norm.
This asymptotically matches the estimates that we will prove, up to constants; for
details, see Section 2.3. In this chapter, we instead provide a direct, constructive
approach for proving asymptotically matching, yet tighter estimates for both the
Euclidean and maximum norms, which also shed more light on the geometry of
the problem and its algorithmic aspects. Our main results show bounds of v/d and
O(+/d) for the Euclidean and maximum norm cases, respectively, matching the tight
(respectively, tight in order of magnitude) results in the vector balancing setting (see
Theorems 1.2 and 1.3).

For an estimate in the dual direction in the Euclidean setting, the following result is
well known: if Vi, ...V, are sets of unit vectors with 0 € ConvV; for each 7, then one
may select v; € V; for i € [n] so that H D icin Vi
see [1]).

The proofs of Theorems 1.2 and 1.3 are deferred to Chapter 3; in the remainder of

> /n (for a further generalization,
2

this chapter we instead focus on several reductions of the colorful vector balancing
problem that motivate our proof technique. In Section 2.2 we will prove an essential
linear algebraic reduction of the colorful vector balancing problem that is the key to
giving bounds independent of the number of vector families n. The tools developed
in Section 2.2 form the basis for the proofs of Theorems 1.2 and 1.3 in Chapter 3.
We will also address the above-mentioned reduction of the colorful vector balancing
problem to the original vector balancing problem and highlight the advantages of our
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more geometric approach.

2.2 A Linear Algebraic Reduction

In this section we will use the method of linear dependencies to prove that the number
of vector families can be reduced from n to at most d, and moreover that the total
number of vectors can also be bounded from above. This approach dates back to the
classical work of Shapley and Folkman, and Starr from the 1960’s [70]. Several other
applications of the method of linear dependencies are well surveyed by Barany [22].

Recall the setting of the problem: we are given an origin-symmetric convex body

B in R? and vector families V;, ..., V,, C B such that 0 € }_ conv V;, and our goal is

1€[n]

to select vectors v; € V; for i € [n] such that H D icin) Vi

is minimal (here || - || 5 is the

Minkowski norm associated to B, see Section 1.1 for t}jlge definition).

We first note that by Carathéodory’s theorem we may assume that each family
V; is finite (in fact, |V;| < d + 1 for each ¢ € [n]). Indeed, as we assume that
0 € > icpy conv Vi, we know that for each i € [n] there exists z; € conv V; so that
ry + -+ + x, = 0. By Carathéodory’s theorem, for each i € [n| there exists (up
to relabeling) vy, ...,v411 € V; so that x; € conv{vy,...,v4s1}, thus redefining the
families this way still yields a collection of families satisfying the condition that
0 € > cpy convV;, and without loss of generality we can assume that each family is
finite. From now on we will make this assumption.

We identify a set of vectors U = {uy, ..., u,} C R? with the d x m matrix

U:(ul---um>.

Definition 2.3. Given vector families V1, ..., V,, C R¢with |V;| = m; and "

we define the associated vector family matrix

i€[n] m; =m,

V= <V1|V2| . !Vn> € RO,
which is a partitioned matrix. We also introduce the associated set of convex coefficients
Ay =A™ x ... x A™ C R™ (2.2)

which is a convex polytope arising as a direct product of simplices.

The relevance of Ay is shown by the fact that a vector v € R? is contained in
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ConvV; if and only if v = V;\ for some A € A™:i. Accordingly,
ConvVj + -+ ConvV, = {VA: A€ Ay}

In the above scenario, we will usually consider R™ along with its orthogonal
decomposition R”™ = R™ x ... x R™". A collection of vector families V' = {V;,...,V,}
will always be identified with its associated vector family matrix V' — using the same
notation for these two will cause no ambiguity and will be clarified by the context.
From now on, U,V and W will always stand for a collection of vector families or their
associated vector family matrices.

Throughout this section, Greek letters will be used to denote vectors in the coeffi-
cient space Ay C R™, while letters of the Latin alphabet will stand for vectors in R<.
To make the connection between these spaces explicit, coefficient vectors g € Ay will
also be indexed by members of V; as follows:

5 = (6(%?))156%, i€[n] € R™. (23)

Given a vector family matrix V' € R™*¢ and a set of indices J C [m], we naturally
define V|,, the restriction of V' to the columns indexed by elements of .J. This is
again a vector family matrix which naturally induces a collection of vector families,
the restrictions of the original ones to J. Naturally, Ay, C RVl is the set of convex
coefficients associated to V| ;. By virtue of the indexing (2.3), we may also define the
v € Ay,

restriction to a subcollection W C V. In particular, for 5 € Ay and V; € V, 8
consists of the coefficients of vectors in V.

Given a partition JUJ = [m] and vectors A\ € Ay, p € Ay,, we introduce the
natural concatenation of A and u by AV € Ay; thatis, (AVu)|; = Aand (AV )|, = p.

Definition 2.4. A number z € [0, 1] is fractional if = ¢ {0, 1}. Given a vector € Ay,
we say that family V; is locked by [ if none of the coordinates of

v, are fractional.
Otherwise family V; is free under (3. A vector € Ay is a selection vector if every family
is locked by (3, equivalently, (3 is a vertex of Ay.

Note that for a selection vector 3 € Ay, V;5|y, = v; for some v; € V; for each i € [n].
The main tool of the section is the following generalization of the Shapley-Folkman

lemma [57, 70], a cornerstone result in econometric theory. Alternative versions were

proved and used by Grinberg and Sevast’'yanov [35] and Barany and Grinberg [23].

Theorem 2.5. Given a collection of vector families V = {Vi,...,V,} in R with 0 €
>icin) ConvV;, there exists a vector a € Ay such that
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(i) Va=0;
(ii) All but k < d families V; are locked by «;
(iii) « has at most k + d fractional coordinates.

The proof is based on the Shapley-Folkman-style statement below which is related
to the geometry of basic feasible solutions of linear programs.

Lemma 2.6 ( [70], [35]). Let K be a polyhedron in R™ defined by a system

fi(x):aia izla"wpa
g](x)ﬁb], j:]-)"'aQ7

where f;, g; are linear functions. Let x be a vertex of K and A = {j : g;(zo) = b;}. Then
|A] > m —p.

Proof of Theorem 2.5. Given vector families V;,...,V, in R? with 0 € 3
and m =}, [Vi|, consider the set

| ConvV;

i€n

P={ eAy: VA=0}
= {/\ eR™: Z Z )\(Ui)vi =0, Z )‘(Ui) =1Vie [n]a (2.4)
1€[n] vi€eV; v €Vy .

Awv;) > 0Vi € [n], Vo, € v}

By our assumption that 0 € Zie[n} ConvV,, P is a (non-empty) convex polytope in R™.
Let o € P be any extreme point of P. Define

S:={i € [n]: Vis free under o}

and let £ = |S|. By Lemma 2.6, at most n + d non-negativity inequalities in (2.4)
are slack when substituting A = a. Each of the n — k families locked by « contribute
exactly one slack constraint, arising from the (unique) 1-coordinate. Let f denote the
number of fractional coordinates of «; then f + (n — k) is the total number of slack
constraints. Thus

f+n—k)<n+d

which implies that f < k + d. Since, by definition, f > 2k, this also shows that
k <d. O
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By virtue of allowing us to reduce consideration to at most d families, the following
corollary is the main tool for proving upper bounds for the colorful vector balancing
problem in arbitrary norms.

Corollary 2.7. Let | - || be a norm on R¢ with unit ball B. Suppose there exists a constant
C(d) such that given any collection of k < d families U = {U,...,U} in B satisfying
Uil + -+ |Ux| < k+d, and any A € Ay, there exists a selection vector j € Ay such
that

VA=Vl < C(d).

Then given any collection of families V1, ...,V, C Bwith 0 € Zie[n] ConvVj, there exists
a selection of vectors v; € V; for i € [n] such that

Proof. Suppose that the hypothesis of the statement holds. Let m := |Vi| + - - - + |V,,|.
Applying Theorem 2.5 to V = {Vj,...,V, }, we find a € Ay such that Va = 0, all
but k£ < d families V; are locked by «, and o has at most & + d fractional coordinates.
Let F' C |[m] be the set of indices of fractional coordinates, and set L = [m] \ F.
Then |F'| < k + d. By hypothesis, there exists a selection vector p € Ay, such that
IVIralp = Viep| < C(d), and so

Vicale+Vippll < Vicale +Viealell + [ = Viralp + V]ep| < [[Val+C(d) = C(d).

Taking the selection of vectors given by «|; V 1 completes the proof. O

2.3 A Reduction to Vector Balancing

In this section we describe an alternative approach for proving asymptotic estimates
for colorful vector balancing constants matching Theorems 1.2 and 1.3, based on the
proof techniques of Lovasz, Spencer and Vesztergombi [48] and Bansal, Dadush, Garg,
and Lovett [11] !. For the following proof we denote the colorful vector balancing
constant of two symmetric convex bodies K, L C R? as

colvb(K, L) :=sup max min  |jvy + -+ vl
n>d Vi VaCK v, €V, i€[n]
~— 0€) ConvV;

!We thank the anonymous referee for pointing out the argument sketched in this section
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Theorem 2.8. Given any symmetric convex bodies K, L C R,

colvb(K, L) < 2vb(K, L).

Proof. We are given families V1, ..., V,, C K and a vector A € Ay so that VA = 0. Note
that by Carathéodory’s theorem we may assume that |V;| < d + 1 for each i € [n]. Let

p = max||ul|.
Fix ¢ > 0 and take ¢ € Z so that n(d + 1)2=¢"Yp < .

Each coordinate A\(v) of A, for v € V;,i € [n], has a binary expansion, which we
truncate at the ¢ digit after the radix point to obtain the vector p with coordinates
u(v) so that |u(v) — A(v)| < 27%Y for each v € V;, i € [n]. Then

WA-Vals = | 3 00 -nte]| < 5 3 el < "EV <2 )

i€[n] vEV; i€[n] vEV;

Denote the j* digit of the binary expansion of y(v) by u(v)%). We define the set
Spi={v € Ujep) Vi : ,u(v)(’f) =1}

to be the set of vectors in our collection for which the ¢*" digit of the binary expansion
of the corresponding coefficient is 1. Since ) .\, A(v) = 1 for each i € [n], it follows
that [S, N V;| = 2¢; for some ¢; € Z, so we can write S NV; = {v},...,v}, } for each
i € [n]. We define the auxiliary collections of vectors

W, = {—”39‘_;%*1} CK
J€lai]

and then balance the collection W = U,¢, W, yielding signs x;(j) € {1} so that

vh —vh.
DD x| S vb(K, L),

i€[n) jlg] .

Color the elements of S, as follows: for each i € [n], for each k € [2¢;], we assign
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Bi(k) = x:(j) for k even and B;(k) = —x;(j) for k odd, so that

ST Y Bk} Z 3 ) i UQJ I < 2vb(K, L) (2.6)

i€[n] ke[2¢;] L €[n] j€lq:] L

We then update the vector p as follows: for v & Sy, p1(v) = p(v). For v € Sy, we know
that v = v} for some i € [n],k € [2¢;], and we update p;(v) := p(v) + 278;(k). By
construction, j; € Ay N2~ Y and |V || < 27 Yvb(K, L). Iterating the argument
for the successive digits leads to a selection vector 1, for which

ZTVb (K,L)

VAL, < IVA =Vl + [[Valle < <6+2vb(K, L).

As ¢ > ( was arbitrary, the theorem follows. O

Combining Theorem 2.8 with (1.2) and (1.4) implies our Theorems 1.2 and 1.3
up to constants. We intended to give a direct proof that is more suited to algorithmic
applications. Indeed, the computational complexity of finding a solution by the above
approach depends heavily on the number of vector families n, whereas our technique
illuminates the geometric aspects of the problem and the independence of the number
of vector families, including the reduction to O(d) total vectors that is necessary in the
maximum norm case. Moreover, it leads to the sharp bound of v/d for the Euclidean
case as opposed to the asymptotic bound above, and it improves on the constant for

the maximum norm given by combining [47] with Theorem 2.3.

2.4 Conclusion

In this chapter we introduced the colorful vector balancing problem as a geometric
generalization of the vector balancing problem and discussed its history and existing
results. We further used the method of linear dependencies to reduce the number of
vector families from n to d, which will be a key tool in our proofs of Theorems 1.2 and
1.3. Finally, we discussed an alternate method of providing bounds on the colorful
vector balancing problem by reducing it to the original vector balancing problem, and
highlight the benefits of our more direct geometric approach.



Chapter 3

Colorful Vector Balancing: the
Euclidean and Maximum Norms

In this chapter we present the proofs of Theorems 1.2 and 1.3. In Section 3.1 we
prove Theorem 1.2, and in Section 3.2 we prove Theorem 1.3. Finally, in Section 3.3
we give a detailed proof the our Skeleton Approximation Lemma, a technical result
that forms the backbone of the proof of Theorem 1.3.

3.1 The Euclidean Norm

To prove Theorem 1.2, we will prove the following vertex approximation property for
color classes. Combining Proposition 3.1 with Theorem 2.5 will yield Theorem 1.2.

Proposition 3.1 (Colorful vertex approximation in Euclidean norm). Given a collection
of k vector families U = {U,, ..., Uy} in B and any point A\ € Ay, there exists a selection
vector ji € Ay such that |[UX — Uplls < VE.

Our proof is inspired by Spencer’s argument for the vector balancing case [67]
(in particular, Proposition 3.1 generalizes the Lemma in [67], see also Theorem 4.1
of [22]), and it works in any finite dimensional Hilbert space.

Proof of Proposition 3.1. Define z := U\ € ConvU; + - - - + ConvUy, so that

r=x1+ -+ xR, T;= Z Aug)u; Vi € [k],

u; €U;

where )|y, € Ay, for each i € [k]. We define a vector-valued random variable w; € R?
for each i € [k], which takes the value u; with probability A\(u;) for each u; € U,

22
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independently of the other w;’s, j € [k] \ {i}. Then

ZE[k‘] ’LE[k] u, €U; zE[kJ]

Component-wise this yields
E[w + - +w —20] =0, ¢eld] (3.1)
For each ¢ € [d], (3.1) and the independence of the w;’s imply

E[(w® +- +w —20)?] =E[@® +.- + wg) 2]
— ]E[w(g) +---+ w,(f) — x(@]Z

= Var [wy&) 4+ 4 w,(f) x(z)} (3.2)
= Z Var [wzm] .
i€[k]
Since .
2
|wy + -+ +wp — 2|2 = Z ((wgf) 4. +w}(€f)) _ x(e)) ’
=1

by linearity of expectation and (3.2) we conclude

Ellhey -+ we— o] = 3 B[l + -+ u? — 2]
= Z ZVar [wy)}
teld] i€lk] 5.3
_ IE 4 IEJ z(g .
= ZE Jeoil3] z ZE
i€[k] d] i€[k]

Finally, we note that

|wl|| Z )‘ uz |uz||2 Z /\ uz 7

u; €U; u; €U;

hence continuing calculation (3.3),

E[llwy + -+ 4+ wp — z|?] ZZE l(g

d] i€[k]
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It follows that for some specific choice of u; € U;, i € [k], we have
ug + - 4w, — 2|3 < k.
The corresponding selection vector i € Ay satisfies the proposition. O

Theorem 1.2 now follows immediately from Corollary 2.7 and Proposition 3.1.

3.2 The Maximum Norm

To prove Theorem 1.3, we need to show that the vertex approximation property (the
analogue of Proposition 3.1) holds for the maximum norm. This result for the original
vector balancing problem is due to Spencer [68] and, independently, Gluskin [33]. As
in the original vector balancing problem, the challenge is to remove the v/In d factor.
Note that, unlike in the Euclidean case, we need to set an upper bound on the total
cardinality of the vector systems.

Proposition 3.2 (Colorful vertex approximation in Maximum norm). Given a collection
of k vector families U = {Uy,..., U} in BL satisfying m = |Uy| + -+ + |Ux| < 24,
and an arbitrary point A € Ay, there exists a selection vector i € Ay such that
|UXN = Upl|oo < CVd for a universal constant C' > 0.

Note that applying the probabilistic method directly with the union bound over
coordinates results in the weaker upper bound of O(v/dv/In d). Thus, in order to reach
the bound of O(v/d), one must apply an alternative argument, just as in the case of the
original vector balancing problem in the maximum norm. In [68], Spencer utilized a
partial coloring method in order to overcome this difficulty. This technique and the
algorithmic argument of Lovett and Meka [47] are the predecessors of our approach
described below.

We will prove Proposition 3.2 by iterating the following lemma, which is a close
relative of the Partial Coloring Lemma in [47]. We call it the skeleton approximation
lemma, as it approximates a point in the set of convex coefficients Ay, € R™ by a
point on the (m/2)-skeleton of Ayy.

Lemma 3.3 (Skeleton Approximation). Let W = {Wj, ..., Wy} be a collection of vector
families in B with |W;| > 2 for each i and m := |Wy| + - - + |W,| < 2d. Then for any
point A € Ay, there exists u € Ay such that
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@D IWA—=Wpllew <ny/mln %d where 1, & are constants specified as

n= g and £ = 18; (3.4

(i) D = 0 for at least m/2 indices i € [m).

The proof of Lemma 3.3 is postponed to Section 3.3. We now deduce Proposi-

tion 3.2 assuming Lemma 3.3.

Proof of Proposition 3.2. We may assume that |U;| > 2 for each i, since any convex
coefficient vector corresponding to a 1-element family is necessarily a selection vector.

By an inductive process, we are going to define points A(s) € Ay, sets of indices
F(s), L(s) C [m], and cardinalities m(s) for s = 0, 1,. .. so that for a suitably large 5,
A(S) is a selection vector with the desired properties. To initiate the recursive process,
take A(0) = A, let F(0) C [m] be the set of indices of fractional coordinates of \(0),
and L(0) = [m] \ F(0) be the set of indices of coordinates of A\(0) equal to 0 or 1.
Introducing m(0) = |F(0)|, we have m(0) < m < 2d.

Assuming that iterative step s has been taken, we define step number s + 1 as
follows. Apply Lemma 3.3 to the vector family matrix U(s) := U|ps of total cardinality
m(s) < m and the point A(s)|re) € Au(s) to find pu(s + 1) € Ay(s) with the prescribed
properties. Define A(s + 1) = A(s)|1s) V u(s + 1) to be natural concatenation of
these two vectors, obtained by replacing the fractional coordinates of A(s) by the
approximating vector y(s + 1). Let F'(s + 1) C [m] be the set of indices of fractional
coordinates of A(s + 1), L(s + 1) = [m]\ F(s+ 1), and set m(s + 1) = |F(s + 1)|.

By Property (i) of Lemma 3.3 and the definition of A(s + 1), for each s > 0

NUA(s) = UA(s + 1)]|co < ny/m(s)In %. (3.5)

Also, by property (ii) of Lemma 3.3 we have that

d
2s5—1 :

| 3

m(s) < - < (3.6)

[\]

Since m(s) € N, this also yields that after a finite number S of steps, m(S) = 0 will
hold. Set it = A\(S). We will show that x fulfills the criteria of Proposition 3.2.

That 1 € Ay is a selection vector is shown by m/(S) = 0. To show the approximation
property, note that the function f(z) = zIn(1/z) is increasing on the interval [0, 1/4].
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Combined with (3.5),(3.6), and (3.4), this yields that

S—
|UX = Uptl|so < Zuw —UNs +1)]|oo

s=0
5—1
< {'d
s=0
S5—1
< .
< d/zsl (3.7)
=0
<17\/_22 D2 /In(€) + In2- (s — 1)
<22\/_ O

As in the Euclidean case, Theorem 1.3 now follows from Corollary 2.7 and Propo-
sition 3.2. A simple modification of the proof yields the following version of Proposi-
tion 3.2, which provides a significant strengthening for m < 2d.

Proposition 3.4. Given a collection of vector families U = {Uy, ..., U} in B% such that
m = |Uy| + - -+ + |Ux| < 2d and any point A € Ay, there exists a selection vector y € Ay

such that
IUX = Upllloe < K+y/my/In 12

for a universal constant K > 0.

Proof. Take . € Ay as in the proof of Proposition 3.2. Then, substituting (3.6) in

(3.7,
S—1
&d m
A — 0o < 1
|UN = Ul _;n N e\ gt

n(%)—i—an-s
25—1

o 4/1
<npvm
s=0

25—1
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3.3 The Skeleton Approximation Lemma

Proving Lemma 3.3, the Skeleton Approximation Lemma, requires several standard
facts about the behavior of Gaussian random variables. By A (u,0?) we denote
the (1-dimensional) Gaussian distribution with mean p and variance o?. Given a
linear subspace A C R¢, N'(A) denotes the standard multi-dimensional Gaussian
distribution on A, i.e. for G ~ N(A), G = Gyay + - - - + Gua,,, where {ay, ..., an,}
is any orthonormal basis of A and G, ...,G,, ~ N(0,1) are independent Gaussian
random variables (for further details, see [20, 29]).

Lemma 3.5. Let A C R? be a linear subspace with G ~ N (A). Then given any u € R,
(G,u) ~ N(0,0?), with 0? = ||Pa(u)||* < ||u||3, where Pa(-) denotes the orthogonal
projection onto A.

Corollary 3.6. Let A C R? be a linear subspace with G ~ N(A) and define o; by
(G, e;) ~N(0,0%). Then > icld] o? = dimA.

A proof of Lemma 3.5 can be found in [29, Section II1.6 ] (see also [47]). These re-
sults are particularly useful when combined with the following standard tail estimate.

Lemma 3.7. Given a Gaussian random variable G ~ N (u, 0?), for all t > 0,
P[|G — p| > t] <exp (—t?/20%).

This result is a special case of the general version of Hoeffding’s inequality (for a
proof see e.g. [76]). We will also need a similar bound for martingales with Gaussian
steps. Recall that a sequence { X, };cny of real-valued random variables is a martingale
if B[ Xpi1| X1,. .., X0 = X,

Lemma 3.8 ([10]). Let 0 = Xy, Xy,..., X7 be a martingale in R with steps Y; =
X; — X, for i > 1. Suppose that for all i € [T}, Y;|Xq, ..., X;_1 is a Gaussian random

variable with mean zero and variance at most o. Then for any ¢ > 0,
P[|Xr| > UC\/T} < 2exp(—c?/2).

Finally, we will need the following result about sequences of Gaussian random
variables. This is a well-known result that can be found for example in [76]; we
provide the standard proof for the reader’s convenience.
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Lemma 3.9. Let X; ~ N(0,02) with o; < 1 for i = 1,2,... be a sequence of not
necessarily independent, jointly Gaussian random variables. Then for any T > 2,

Em<aTX|X¢| <6vVInT

and
Emax | X;|> <10InT.
i<T

Proof. We define the random variable Y := max;cy \/7

union bound, and the fact that o; < 1 for all i,

Then by Lemma 3.7, the

E[Y]Z/ PY > yldy
02 o)
=/ P[Yzy]dy+/ PlY > yldy
0 2
1|
<
_2—1—/2 P[I{l&x\/ﬁ_y]dy

§2+/OOZIP’[|Xi|2y\/1+lni]dy (3.8)
2 -

§2+/ Zexp y*(1+1n4)/207)dy
<2 +/2 (Zi‘y2/2> exp(—y”/2)dy

<24 T.0.06 < 3.

Finally, note that v/1 +1n¢ < /1 +InT for all i € [T], hence the calculation in (3.8)
yields

X5
E max 2 < E max - <me". .
z<ai“ VitlnT — z<8% V14Ini 7,62%\] V14Ini <3

Then for T > 2, Emax;<r |X;| < 3v/1+InT < 6vInT. The proof for max;<r | X;|?
follows from an analogous calculation. O

We complete the proof of Theorem 1.3 by proving the crux of the argument,
Lemma 3.3. This will be done by means of providing an algorithm that proves the
following slightly weaker statement.

Lemma 3.10. Let 0.01 > ¢ > 0 be arbitrary, and let W = {W, ..., Wy} be a collection of
vector families in B which satisfies that |W;| > 2 for each i, and m := D e Wil < 2d.



3.3 The Skeleton Approximation Lemma 29

Define

w(m) :=ny/mln 2 (3.9

where n = g and £ = 18 as in (3.4). Then for any v € Ay there exists ¥ € Ay such that
@ Wy = WAoo <w(m);
(ii) 49 < 6 for at least m/2 indices i € [m).

Lemma 3.3 follows immediately from Lemma 3.10 by standard compactness
arguments.

Proof of Lemma 3.10. For each j € [d], let W7 € R™ denote the jth row of the vector
family matrix 1. The condition W C BZ ensures that [|W/| . < 1 for each j € [d].

Accordingly,
W75 < m (3.10)
for each j.
' Ay
R
Figure 3.1: The polytope R
Consider the polytope

R = {a eR™: a€e Ay, ||W04 - W'YHOO < w(m)}7

which is the intersection of Ay, with d slabs of width w(m)/||W/|, j € [d] (see
Figure 3.1). Equivalently, R is defined by the following set of linear equations and
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inequalities:

R= {a eER™: Z a(we) =1V € [k], a¥ >0Vi € [m], [{a—y, WI)| < w(m) Vj €
weEW,y

(3.11)
We call the first and second set of constraints convexity constraints, as they ensure that
Wa € Conv(Wy) + - - - + Conv(Wy) for each a € R. The third set of constraints will
be referred to as maximum constraints, as they imply that given a € R,

IWa — WAl = max [(Wa — Wr);| = max (@ — 7, W7)| < w(m).
Jjeld] Jj€ld]
Let Z be the set of normal vectors of the inequality constraints in (3.11):
Z=Aey,....en, W', ..., W} (3.12)

By the previous remarks, || 7|, = 1.

The main tool of the argument is to introduce a suitable discrete time Gaussian
random walk on R™, similar to that in [10] and [47]. In order to help the reader nav-
igate through the forthcoming technical details, we first give an intuitive description
of the walk, whose position at time ¢t = 0, 1, ... will be denoted by I'; € R™.

The walk starts from 'y, = v and runs in aff R with sufficiently small Gaussian
steps as long as I'; is in the interior of R, far from its boundary. As I'; gets j-close to
crossing a facet of R, we confine the walk to an affine subspace parallel to that facet
for the subsequent steps, by intersecting the current range with a hyperplane parallel
to the facet. In particular, if any coordinate of I'; reaches a value less than o, we freeze
that coordinate for the remainder of the walk.

We show that running the walk long enough, until say time 7', with high probability
at least half of the coordinates of I'; become frozen, while I'; € R still holds. This
will mean that 4 = I'r satisfies the criteria of Lemma 3.10. For the proof it is essential
that the value of w(m) is carefully set (3.9), hence the slabs defining R are sufficiently
wide so that the walk is unlikely to escape from them.

Let us turn to the formal definition of the random walk. Let e > 0 and T' € N be
parameters to be defined later. Define the sets

o= {ie[m]: 0V <6}, Cmam={jeld: (T, —To, W)| > w(m) -6}
(3.13)
to be the convexity and maximum constraints, respectively, that are at most d-close
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to being violated by I';. We will say that coordinate i is frozen iff i € C;°". Recall
that by (2.3), coordinates may be indexed by the vectors, that is, for each i € [m],
ng) = I'y(w;) for some [ € [k] and w; € W,. In that case, coordinate w; is frozen iff
i€ .

Let A be the linear component of aff Ay, thatis, A = lin (Ay — Ay). For each
t <1, step t is confined to occur in the linear subspace

Spi={BeA: BD=0Vie ey, (B—ToWi)=0VjeCr}
by taking a Gaussian step A; ~ N(S;) and defining
Ft = Ft—l + SAt.

The walk terminates after 7" steps: 5 := I'y, where T' is to be determined later.

We will show that with certain restrictions on the parameters, ' satisfies properties
(i) and (ii) of Lemma 3.10 with probability at least 0.2.

Given € > 0, we define -
0.99
T = { . J . (3.14)

Choose ¢ > 0 small enough so that the following inequalities hold simultaneously:

2

6Td exp ( _ 0 ) < 0.01, (3.15)
2me?
22em*InT < 0.01, (3.16)
and
10e2InT < 1. (3.17)

This can indeed be guaranteed since the functions exp(—x)/x, 2In - and zIn 1 con-

verge to 0 as x \, 0.

We summarize a few useful properties of the random walk.

Lemma 3.11. Let Iy, ..., 'y be the steps of the Gaussian random walk defined above
and i € [m}, j € [d]. Then:

() GivenT';_q, E[A;] = 0.
(i) Cyomv, C* are nested increasing sets in t.

(iii) S, is a nested decreasing sequence of linear subspaces in R™ in t.
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(iv) Atany time 0 <t < T and foranyi € [k], > Iy(w;) = 1.

w; EW;

(v) If the walk leaves the polytope R at time t € [T], then I's & R for any s > t.

(vi) If the walk leaves the polytope R at time t € [T], then |(A;, z)| > & /e for some
z € /.

(vii) If coordinate i is frozen at step t, that is i € C" \ C{°1", then Fgf) = ng) >
5 —e|AY].

Proof. Properties (i)-(v) are straightforward consequences of the definition of T';.

To prove (vi), suppose that the walk leaves the polytope R at time ¢. Then an
inequality constraint in (3.11) with normal vector z € Z is violated at time ¢. Suppose
that z = W/ for some j € [d]. Since j ¢ C}"%*,

[(Cemr = To, W) < w(m) =4,

while on the other hand,
(Ty — Lo, W9 | > w(m).

Combining these inequalities shows that
el(Ae, W) = [(T¢ = Ty, W[ > 0.

The proof when z = ¢; for i € [m] is analogous.
To prove (vii), note that i ¢ C{”}” implies that ng_)l > ¢. Therefore,

PO =T =17 4 eAD > 54 eA? > 5 — A, 0

Equipped with these properties, we are ready to prove that I'7 satisfies the required
conditions of Lemma 3.10 with probability at least 0.01. To show (i), that is

WLy — WTp||e < w(m), (3.18)

it is sufficient to argue that (with high probability) I'; € R; that is, the walk does not
leave the polytope R at any step.

Define the event E; := {I'; € R| I['y,..., ;-1 € R} that the walk steps out of R
at time t. If F; occurs, then by Lemma 3.11(vi), |(A4, z)| > 0/¢ for some z € Z. By
Lemma 3.5 and (3.10), for any =z € Z, (A, z) is a Gaussian random variable with
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mean ( and variance o < m. Applying Lemma 3.7 to (A, ), we find
P[[(A¢, 2)] > 2] < 2exp (- (g)z/Qm). (3.19)

Using the union bound, equations (3.12), (3.19), and the fact that d < 2d, we derive

t=1 zeZ (320)

by condition (3.15). This proves that (3.18) holds with probability at least 0.99.

It remains to address (ii) of Lemma 3.10, that (with positive probability) r§i> < § for
at least m/2 indices i € [m]. We will reach this by means of proving that

E[|C5™]] > 0.51m. (3.21)

To this end we derive the following identity, using Lemma 3.11(i):

E[IT4l] = E[ITe-1 + eAf3]
E[|[Te1l3] + E[[|Ad3] + 26E[(Temr, Ar)]
E

[HFt—ng} + &K [dim(St)} ,

where in the last equation we use that, by Corollary 3.6,

E[AJ3] =E[ ) (Ave)?] = > E[(A,e;)?] = dimS,.

1€[m] i€[m)|

Iterating this calculation and using Lemma 3.11(iii),

E[||T¢|3] > € Z E[dim(S;)] > Te’E[dimSy] = Te*E[m — [CF™] — |C7**|],

te[T]
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and rearranging yields

E[|IT2l3]

E[|C%onv|] Z m — TgQ

— E[|Cpe]]. (3.22)

The above identity allows us to prove (3.21) by giving upper estimates on E || I'|3]
and E[|Cpee|].
We start with the second of these and show that

E[|Cper|] < 2z, (3.23)

To this end, we bound the probability that the walk gets close to escaping from a given
slab. Note that for fixed j € [d], {(I'y — I'o, W/) }1eiry for 0 < ¢ < T' is a martingale
satisfying the conditions of Lemma 3.8. As the step size is (A, W7), by Lemma 3.5
the variance of any step is bounded by £?||IW7||3 < &?m (cf. (3.10)).

For any j € C7'**, by (3.13),

(T — Do, WY > w(m) — 6 > 0.99 w(m),

as we have 0 < 0.01 and w(m) > 1 by (3.9).
Therefore, by Lemma 3.8, (3.9), and (3.14),

Plj € CF*] <P [|(T'y — o, W7)| > 0.99 w(m)]

—0.99% - n* In(¢d/m)
< 2exp ( 2T 2 )
m 2m

< 2exp(ln§—d) = f_d

Thus
E[|Cpe|] = P[j e Cpe] < 2
J€ld]

as desired.

To complete the proof of (3.21) we address the second term in (3.22) and show
that
E[||T7]3] < 1.01m. (3.24)

By (2.3), we represent 'y in terms of the vector families as

I'r = (FT(wl)) , W; € Wi, 1€ [k]
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Then

o3 =" 3" (D)’ (3.25)

le[k] w; EW;
As the above double sum has m terms in total, it suffices to show that the expectation
of any of these terms is at most 1.01, that is, E[T'7(w;)?] < 1.01 for any ¢ € [k] and
w; € W;. By Lemma 3.11(iv), ZwiGWi ['r(w;) = 1. Thus, for any fixed w; € W,

Pr(wi) =1— Y Tr(w). (3.26)

wGWi\{wi}

Note that in the above sum, I'r(w) > 0 unless coordinate w is frozen. In this
case, assuming that coordinate w is frozen at step ¢, by Lemma 3.11(vii) we have
Ir(w) > 6 — e|Ay(w)|. Accordingly,

>0 — — . .
Cp(w) > 6 g@)}(g}/\t(w)’ > 5?61%)]( |Ay(w)] (3.27)
Thus, by (3.26),
Pp(w;) <14¢ max | Ay(w)].
te(T)
weW;\{w;}

When I'z(w;) > 0, this leads to

2 2
(Pr(w;))” <14 2¢ ?61%3]( |Ay(w)] + & ?el%}]( |Ay(w)]
weW;\{w;} weW;\{w;}
+ &2 Z ?61%31( ‘At(w)| ?el?T}f |At(u)|
wZ#ueW;\{w;}

Note that by Lemma 3.5, for each vector w, A;(w) is a Gaussian random variable with
variance at most 1. Also, for a,b > 0 we will use that ab < a? + b%. Therefore, by
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taking expectations above, and applying Lemma 3.9,

E((Pr(wi)*| Tr(w;) > 0) (3.28)
=142 E[Q%}At w]+e? Y ]E[grel%?](‘/\t (w)|’]
weW;\{w;} weW;\{w;}
2
e w#ué%\{wi}E[gg%}f }At ’ ?1%2{ ’At )H
<14 12emVInT + 10e*mIn T + &2 Z E[max’At w)}2
w#ueW;\{w;} telt]
+ max ‘At ‘ ]
te(T]

<1+ 12emvVInT +10e*m In T + 22720102 In T
<1+ 12emVInT + 10e2m2In T

<1422em*InT

< 1.01

by (3.16) and that m,InT > 1, < 1.

When I'7(w;) < 0, then coordinate w; is frozen. Therefore, (3.27) and (3.17) imply
that

E((FT w; ) ‘FT w;) < O) <e ]EmaX|At wz)‘ <10e®InT < 1.

te[T]

Combining this with (3.28) shows that E <(FT(wi))2) < 1.01 for each i € [k] and
w; € W;, and by invoking (3.25), we reach (3.24).

To prove (3.21), we may now combine (3.14), (3.22), (3.23) and (3.24) in order
to derive that

1.0lm 2m

[‘ ccmv‘] >m — T2 ?

21002
= 0.9922 ¢

> 0.51m.
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Since |C§"| < m, this leads to
P[|Cg| = m/2] > 0.02

As the probability of the walk leaving R is less than 0.01 by (3.20), we conclude that the
algorithm finds the desired vector I'r with probability greater than 0.02 — 0.01 = 0.01,
as claimed. O

Finally, we illustrate how to transform the proof of Proposition 3.2 so as to provide
a polynomial time algorithm.

Proposition 3.12. There exists an algorithm of running time O(d" In* d) which, in the
setting of Proposition 3.2, yields the desired selection vector p € Ay.

Proof. Along the course of the proof of Proposition 3.2, we replace the iteration of
Lemma 3.3 by that of Lemma 3.10 so as to obtain a vector i € Ay such that, for each
i € [k,

Hw; € W+ 0 < p(w;) <0} =W, — 1. (3.29)

The existence of such a vector is guaranteed as long as 6 < 1/|WW;| for each i € [k]. At
the final step, we take 1 to be the closest vertex of Ay, to i, that is, define

0 if Aw;) <0

p(w;) =

In particular, taking y := p — ji, we have that by (3.7),
(i = A W) = (= X W) + (x, W) < 22v/d + [{x, W)

for each j € [d]. We show that taking a sufficiently small value of § ensures that
|(x, W7)| < O(\/d), accordingly, 1 is an appropriate selection vector.

Let ¢ € [k] be arbitrary, and let w € W; be so that i(w) > 6. Then j(w) =
1=, 2wew, (w;). Accordingly,
Yo Ixwl=2 Y la(w)] < 2(Wila.

w; eW; wH#w; EW;
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Therefore, as |[W7]|, < 1,

(WA <D0 D In(w) <Y (2IWi]6).

i€[k] ws€W; i€[k]

Since |W;| < m < 2d for each i € [k] and k£ < m < 2d, we conclude that for each
j € [d], |{x, W7)| < 8d%}. Thus, fixing

6 =0.01d7%2, (3.30)
we indeed obtain
IWh = WAlloe = max [{ = X, W) < 22Vd +8vd = O(Vad).
JjE

Next, we estimate the running time of the algorithm at iteration s of Lemma 3.10.
As before, let m(s) be the number of active vectors. For a fixed step ¢ € [T] of the
Gaussian random walk, the calculation of the sets C7*", C7"** takes time O(d + m(s)).
An orthonormal basis of the subspace S; may be determined in O(d?) time by applying
a Gram-Schmidt orthogonalization process, and then the Gaussian vector A;,; is
sampled in O(m(s)) time. Hence, the time complexity of performing a given step of
the Gaussian walk is dominated by the calculation of the orthonormal basis of S;.

By (3.30), (3.6), and the condition that m < 2d, the maximal ¢ which satisfies the
constraints (3.15), (3.16), and (3.17) simultaneously can be estimated by

1
== O (m(s)d*In*d).

Since, by (3.14), the number of steps of the random walk is T = O(1/¢?), the
above estimate shows that the running time of the algorithm within a given iteration
s is

O(m(s)d’In*d).
Let S be the total number of iterations until reaching the vector ;i € Ay satisfying

(3.29). Note that by (3.6), we have m(s) < m/2°. Therefore, the total running time
of the algorithm is

S
> 0(5ed* n*d) = O(md® n* d) = O(d"In? d). O
s=1
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3.4 Conclusion

In this chapter we extended the optimal results for the Euclidean and maximum norm
vector balancing problem to the more general colorful setting. We also discussed the
algorithmic complexity of the maximum norm solution, and provided a stronger result
for the maximum norm in the setting where the number of vectors is much smaller
than the dimension.



Chapter 4

A Reduction of the Steinitz Problem

This chapter of the dissertation is based on the following publication of the author.

[4] Gergely Ambrus and Rainie Heck. A note on the Steinitz constant. Accepted for
publication; Mathematika, 2026.

4.1 The Steinitz Problem for ‘Almost-Unit’ Vectors

In this chapter our goal is to prove Theorems 1.11 and 1.12. Recall that Theorem 1.12
bounds S(B) in terms of S*(B) for any B € K¢ and 0 < £ < 1 (see Definitions 1.6
and 1.10 for details), and that Theorem 1.11 proves a slightly weaker bound for the
Euclidean setting using the geometry of the Euclidean ball. The primary motivation
for this work is that these results offer a potential approach to resolving Conjecture
1.9. We remark that although Theorem 1.12 is strictly stronger, we present both proofs
because the specific techniques used for the geometry of the Euclidean ball are of
independent interest.

The chapter is organized as follows: we first delve into the history of the Steinitz
problem and briefly summarize existing results in Section 4.2. In Section 4.3 we prove
Theorem 1.11, up to a handful of technical lemmas, the proofs of which are deferred
to Section 4.4. Finally, in Section 4.5 we prove Theorem 1.12 by generalizing (and
thereby simplifying) the proof of 1.11.

40
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4.2 History of the Steinitz Problem

Despite being more than a century old, the story of the Steinitz lemma is still far from
complete. In the following, we provide an overview that lists the main, and often
forgotten, steps in its development. Recall from Chapter 1 that the Steinitz problem
arose from a higher dimensional analog of the Riemann rearrangement theorem,
proved by Lévy and Steinitz, restated here for clarity:

Theorem (Lévy-Steinitz theorem). Given a series of vectors in R<, the set of all sums of

its rearrangements is empty, or it forms an affine subspace of R%.

Unfortunately, the proof of Lévy contained serious gaps for dimensions d > 3,
as pointed out by Steinitz [71] in 1913. In turn, he gave the first complete proof
of Theorem 4.2, known today as the Lévy-Steinitz theorem. Steinitz’s work is quite
technical and wide-scoped: it was published in three parts [71, 72, 73], with total
length summing well over 100 pages. A key step of his proof is Theorem 1.5 (see [71,
p.171]), which he stated with C' = 2d.

Independently of Lévy and Steinitz, Gross [36] also found a shorter proof for
Theorem 4.2 that is reminiscent of Steinitz’s method. His approach is again based
on the rediscovered Steinitz lemma, yet it yields only the weaker constant S(B¢) <
2¢ — 1, which is an inevitable consequence of the induction dimension technique
he applies. He also provides a geometric reformulation of Theorem 1.5: given any
closed polygonal path in R? starting at the origin with side lengths not exceeding 1,
it is possible to rearrange the order of its sides so that the resulting polygonal path
does not leave the ball of radius C. This later led to the alternate title “polygonal
confinement theorem” for Theorem 1.5 (cf. Rosenthal [56]).

Gross was not the last one to rediscover the Steinitz lemma. In 1931, Bergstrom
published two papers on the topic. In the first [19], he gives an alternative proof for
Theorem 4.2. The crux of his proof is again Theorem 1.5, which he considers to be of
interest on its own, and proves by induction on the dimension, leading to the estimate
S(BY) < 4/(44 —1)/3. His second article [18] concentrates solely on the Steinitz
lemma. He proves that any family of vectors V' C B2 with ¥(V) = 0 can be arranged
to form a closed polygonal path that fits in a circle of radius v/5/2 (not necessarily
centered at the origin), leading to the upper bound S(B2) < (v/5 4 1)/2 in the plane.
Regarding the question in arbitrary dimensions, he formulates Conjecture 1.9.

In 1936, Hadwiger [38] became the first one to study the Steinitz lemma (which
he attributes to Gross and Bergstrom) for series in general inner product spaces: he
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manages to bound the norm of partial sums in terms of the number of vectors n. His
attention then turned to the extension of the Lévy-Steinitz theorem to abstract Hilbert
spaces [39] and finite-dimensional vector spaces [37].

Returning to the Euclidean case, Damsteeg and Halperin [27] provided a construc-
tion of Euclidean unit vectors establishing 1v/d + 3 < So(Bf) < S(BY), which implies
that the O(v/d) bound conjectured by Bergstrom would be optimal by the order of
magnitude (this is also shown by considering the vertex set of a centered regular
simplex).

In 1954, Behrend entered the scene [16] and by a refinement of Steinitz’s original
method strengthened the estimate to S(Bg) < d for every d > 3. He also showed that
S(B3) < V5 +2V3.

Much of the above information had been blocked by the iron curtain. Although
Theorem 1.5 is noted to be a ‘well-known lemma of Steinitz’ [34], Kadets [43] only
rediscovered Bergstrom’s estimate S(BJ) < /(44 — 1)/3 in 1953. Twenty years later,
in a series of pioneering works, Sevastyanov studied several variants of the question,
introduced the compact vector summation problem, and worked on the algorithmic
aspects of the topic, including its connections to scheduling problems. In 1973, he
rediscovered and re-proved the planar case of the Steinitz lemma with the bound
S(B3) < V3, see [62]. Turning to the higher dimensional case, he proved [63] that
S(B) < d for every B € K¢ (this extends a weaker form of Behrend’s 1954 bound
to arbitrary Minkowksi norms), thus achieving Theorem 1.8. His proof was further
simplified in his subsequent joint work with Grinberg [34], where the authors in fact
proved that S*(B) < d for arbitrary B € KZ. For further developments related to
algorithmic aspects, see [58, 60].

Meanwhile in Hungary, independently of the work in the USSR, Fiala [30] also
rediscovered (after Sevastyanov [61] and Belov and Stolin [17]) the connection
between the flow shop problem and the Steinitz lemma, and re-proved the latter in
the planar case. Inspired by his work, Bardny [12] proved the bound S(B) < 3d/2 for
symmetric B’s (note that this is weaker than the estimate in [34, 63]) and solved the
flow-shop problem for the maximum norm.

Still in the 1980s, Halperin [40] applied a variation of Lévy’s method to obtain
an elementary proof of Theorem 4.2, using the Grinberg-Sevastyanov variant of
the Steinitz lemma, called here as the ‘Polygon Rearrangement Theorem’. He also
studies the question in L, and ¢, spaces for 0 < p < oo. In an expository article,
Rosenthal [56] presented the Lévy-Steinitz theorem along the Gross-Steinitz approach.
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He cites the Steinitz lemma as the ‘Polygonal Confinement Theorem’ with the weak
bound S(BY) < O(2%), apparently unaware of its stronger forms.

Concentrating on the planar case, Banaszyczyk showed in [6] that S(B) < 3/2
for any symmetric B C R?, and this bound is achieved when B is a square centered
at the origin. In [7], he determined the exact value of the planar Euclidean Steinitz
constant: S(B2) = v/5/2.

A possible approach for attacking Conjecture 1.9 is via Chobanyan’s transference
theorem, which gives an explicit connection between the Steinitz constant and the
sign-sequence constant F£(B), where one is asked to assign signs to vectors of a
(potentially infinite) sequence of vectors selected from B so that all partial sums are
bounded by E(B). Chobanyan’s result [25, 26] shows that S(B) < E(B). For further
information about the sign-sequence constant, see the survey article of Barany [22].

Beyond the results mentioned above, there are many other related problems and
results, including coordinate-dependent Steinitz bounds for the maximum norm (see
e.g. [59]), various extensions of the Lévy-Steinitz theorem to infinite-dimensional
spaces (see e.g. [45]), or colorful versions of the Steinitz lemma (see [13, 51]).

4.3 Proof of Theorem 1.11

In this section, we prove Theorem 1.11, which is specific to the Euclidean norm. For
the remainder of the section we denote the Euclidean norm by | - |, as it is the only
norm that will be used in this section.

Proof of Theorem 1.11. Take 0 < ¢ < 1 as in the statement of Theorem 1.11, and fix
0 < t < 1, whose value we will specify later. Suppose that we are given a finite vector
family V' c B¢ with X(V) = 0; our goal is to order V in such a way that all partial
sums are bounded by the right-hand side of (1.11). The first step of the proof is to

V:<|_|va) || R

a€cA

partition V' as

where A is an index set of cardinality m, satisfying the following properties:
(i) For each a € A, there exists u, € S ! such that V,, C K;(ug).

(ii) Foreacha € A, ) )
- —1< (V)| < -
9 g
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(iii) For any u € S%!, and any subset T' C R,

1S(T N Ky(u)] < 1/e.

Note that we intentionally use an unordered index set A of cardinality m, rather
than A = [m/, to emphasize that the vectors are not yet ordered.

We define the families V,, via the following process: initialize R := V. As long as
there exists u € S ! and T C R such that

1
BTN )| = 2 -1, (4.1

we set u, := u and select any subfamily V,, C T N H,(u,), so that

1 1
--1< 1S(Va)| < =
Such a set is given e.g. by taking any minimal® (with respect to containment) subset
T C (T N K,(u)) that satisfies |X(7")| > £ — 1. The family over which we minimize is
nonempty by (4.1), and the triangle inequality guarantees that the upper bound holds
as well.

We then update R := V \ V,, and proceed until there is no choice of a vector
u € S 1 and T C R satisfying (4.1). Properties (i)-(iii) are immediate consequences
of this construction.

For every a € A, let w,, := ¢-%(V,), and define W := {w, }nca. Property (ii) yields
that for every a € A,

1—e<|w,| < 1.

Thus, by the definition of S*(BYg), there exists an ordering wy, ..., w,, of W such that
for any j € [m], »
S wi— e < st 4.2)

i€[y]

Further, as X(V) =0and V = (||, Vo) U R,

Y(W) =eXpeaX(Vy) = —eX(R), (4.3)

!Note that here we do not require taking a minimal set with respect to containment, but rather
note that such a set satisfies the necessary conditions. In the proof of Theorem 1.12, we will require
the set to be minimal containment-wise, which simplifies the proof.
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combining (4.2) and (4.3) yields the bound

St 5%2(3) < §*(BY). (4.4)

i€[j]

We now order our original collection of vectors V' as follows: fix the ordering of
W as in (4.2), and note that this ordering of {w, }.ca induces a matching ordering
Wi, ..., Vi, of the sets {V,},c4. Within each set V; for i € [m] we order the vectors
v € V; arbitrarily. Finally, we also order the remaining vectors in R arbitrarily. Along
this ordering, two types of partial sums occur:

(a) Ziem X(Vi))+2(U)for0<j<m-—1land U C V;;; (where U = () is allowed);
(b) Zie[m} Y(Vi) +X(T) for T C R.

We need to show that any partial sum of type (a) or (b) satisfies the bound in
(1.11). To this end, we will need the following two lemmas, the proofs of which we
defer to Section 4.4.

Lemma 4.1. Forany a € Aand any U C V,,, and forany 0 <t < 1,

Lemma 4.2. Forany T'C R, and forany 0 <t < 1,

1
(1) < —.
‘ ( )‘ E0¢
We now use Lemmas 4.1 and 4.2 to complete the proof of Theorem 1.11. It will
be useful to note that by dividing both sides of (4.4) by ¢ and applying the triangle

inequality, one has

> zw)

i€[j]

j ]'* d 1 1* d
< =|¥(R -S*(B — 4+ -S¥(B 4.5
< LIS(R)| + 152(BY) < — + ZS:(BY), (45

where we have used that j < m and Lemma 4.2.
We first consider partial sums of type (a). Forany 0 < j <m —1land U C V4,
combining Lemma 4.1 and (4.5) yields
1 /1 1
+ )E(U)‘ < (— + S*(BY) + ;) ,

0y

s +z) < |3 =)

i€(j] i€[j]
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where we have interpreted X(U) = 0 for the case U = (). Second, we consider any
partial sum of type (b). Fix any 7' C R, and recall that ., ¥(V;) = —X(R). Thus
applying Lemma 4.2 to R\ T C R,

| ) + 5| = [2(r) - 2(r)| = [s(r\T)| < L
i€[m]

We have now shown that every partial sum along the specified ordering has
Euclidean norm at most

O

L/ 11
g(ss(Bz)‘f';‘l‘—)- (4.6)

We finish the proof via the following estimate on the measure of spherical caps,
that we prove in the subsequent section:

Lemma 4.3. For every d > 2, and for

log d
t = .
5] (4.7)
the estimate .
oy > =t (4.8)
C
holds with ¢ = 140.
Thus, setting ¢ as in (4.7), we have by (4.8) that
1 1 d
-+ — <200
t + o = log d
for every d > 2, which combined with (4.6) establishes the desired bound. O

We note that by setting ¢ = \/w, Lemma 4.3 holds with ¢ = 11 if d is
sufficiently large. Consequently, the constant 200 in Theorem 1.11 can be improved
to 12. As this does not constitute an asymptotic improvement, we decided to simplify
the calculations by choosing the value of ¢ specified in (4.7).

4.4 Technical Lemmas

In this section, we prove Lemmas 4.1, 4.2, and 4.3.
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Proof of Lemma 4.1. Fix « € A and U C V. By property (i) of our construction, there
exists u, € S ! such that U C V,, C K;(ua).

Since K(u,) is convex, and U C V,, C K;(u,), we have that

<%,ua> > t. 4.9

AsU C V, and 0 < (v, u,) forallv € V,,

1
(B(U),ua) < (E(Va), ta) < |E(Va)| < -
by property (ii) of our construction. Thus, by (4.9),
2 1 2 1
|E(U)| < t_2<Z(U)7ua> < 527 [

Proof of Lemma 4.2. Fix an arbitrary subset 7' C R. The key step of the proof is the
observation that for any u € S*"! and v € By, v € K,(u) if and only if u € Cy(y3;). To
see this, note that

ve Ki(u) <= <i u>2t = uEC’t(ﬁ).

|v]?
Thus, for any v € BY, we have

1
v=— U Xk () (v) do(uw).
Ot Jgd—1

Therefore,
=(T)* = (X(T), =(T))

— <Z(T), Z Ult /Sd1 U XKy () (V) dU(U)>

- Ul <E(T), (TN Kt(u))> do(u)
tJgd-1
< Uit BT 0 Kw)] dow)
L =@ 1 do(u)
Oy gd—1 &
15(T)]

E0¢
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where we used Property (iii) in the penultimate line. Thus we conclude that |>(7")| <
%, as desired. O

Proof of Lemma 4.3. We will use the following bound of Gautschi [31]: for + > 0 and

0< A<,
P < I'(z+1)
—D(x+ )

Combining the above inequality for x = d/2 and A = 1/2 with the definition of x,

< (z4 1)

yields
(d=Drgy _ (d=1) 72 T(E+1)  Vd |
dkg d-md?-T(4+3) T 2Ver

A standard calculation shows that

d—1)Kkge_ ! —:
Ut:(d—n‘)ddl/t (1—:1:2)% dz.

(4.10)

Therefore, by (4.10),

d (! - d (! d (!
o > vd / (1 —wQ)% dz > Vd / (1— 2?2 dx = vd / f(z) dz, (4.11)
2421 Jy 221 Jy 221 Jy
where f(z) := (1 — 22)%/2,
For d < 9, inequality (4.8) can be verified by directly calculating the above integral;
in particular, for 2 < d <9, o, > 0.05 and ¢/c < 0.004.

Assume that d > 10. Then (4.7) implies that ¢ > \/dlfl. Consequently, since f(z) is

convex on the interval [\/%, 1} , we derive that f(x) is convex on [¢, 1].
A
1
0.75 1 x =t
ol SO
0.25 +
T W\ @ = (1-23)"
0 01 0.2 03 0.4 ofs=

Figure 4.1: Lower bound on surface area integral using convexity



4.4 Technical Lemmas 49

Consider the triangle 7" defined by the z-axis, the tangent line at f(¢), and the line
x = t, as shown in Figure 4.1. By convexity,

1 B 1 f(t)2 B (1 _ t2)d/2+1
/t f(z)dz > Area(T) = B <— f’(t)> = ¥ : (4.12)

Since for d > 4, t*> = IOdid < £, by (4.11) we obtain that

L € 0 D S O e )

o > . .
b= 4/ 21 Vdt T 521 Vdt

Thus, the proof of (4.8) boils down to verifying

(1 _ 252)d/2

1
> .
— 13 Vat

1
(1—t)42 > —Bx/EtQ,
C

which, after substituting (4.7), takes the form

/2
1_logal >§'logd.
2d ~2c \d

After taking logarithms, this is equivalent to

d logd 2 1
— log (1 _ 2% ) > —log (1—§> +loglogd — Elog d. (4.13)

By using the standard inequality

£

log(l —¢) > —
og(l—e)>—7—

that holds for every 0 < ¢ < 1, and the estimate 1 — *2¢ > 2 that is valid for d > 10,

we derive that (4.13) follows from

2
logd < g <logd — 2loglogd + 2log <1—§)> . (4.14)

Let dy := 4-10". For d > do, loglogd < logd holds and implies (4.14). Finally, for
d < dy, loglog d < 3 is valid, and since log (%) > 3, (4.14) holds trivially. O
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4.5 An Extension to General Norms

In this section we prove Theorem 1.12. By optimizing the proof of Theorem 1.11, one
can see that the strongest bound is given in the case of half-spaces. This generalization
not only greatly simplifies the proof and allows us to extend it to arbitrary norms,
but also yields a stronger O(1) bound on the additive error introduced. Although the
construction is similar to that in the proof of Theorem 1.11, we repeat it for the sake
of clarity. We restate the theorem for reference.

Theorem. For all d > 2, any convex body B € K¢, and 0 < ¢ < 1,
1 *
S(B) < g(sg (B) +2p(B) + 1).

Proof. Fix(0 < e < 1,d > 2,and B € K¢, and suppose that we are given a finite vector
family V' C B with (V') = 0; our goal is to order V' in such a way that all partial sums
are bounded by the right-hand side of (1.12). For simplicity, we will write ||| := ||.||5
throughout the proof, omitting the dependence on B. Recall also from Chapter 1 that
for u € S4°1, we denote the closed positive half-space orthogonal to u by H (u).

The first step is to partition V' as

V:(|_|Va>|_|R,

a€cA

where A is an index set of cardinality m, satisfying the following properties:
(i) For each a € A, there exists u, € S ! such that V,, C H (u,)

(ii) For each a € A, ) .
—— 1< |2Vl < -.
S AR

(iii) For any u € S%!, and any subset T' C R,

|3(T N Hy(w)]| < 1/e.

Note that we intentionally use an unordered index set A of cardinality m, rather
than A = [m], to emphasize that the vectors are not yet ordered.

We define the families V,, via the following process: initialize R := V. As long as
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there exist u € S% ! and T C R such that
1
HE(TmH+(u))H > - -1, (4.15)

then we set u,, := u and select a containment-wise minimal subfamily V,, C TN H (u,)
so that .
=Vl = - ~1 (4.16)

holds. By the minimality condition, the triangle inequality guarantees that ||>(V,)| <
1, therefore V, satisfies property (ii). We then update R := V' \ V,, and proceed until
there is no choice of a vector v € S ! and T C R satisfying (4.15).

It is an immediate consequence of the construction that properties (i)—(iii) are
satisfied for the partition of V obtained above.

Next, for every a € A, let w, := ¢ - X(V,), and define W := {w, }aca. Property (ii)
yields that for every o € A,

1 —e < lwa| < 1.

Thus, by the definition of S*(B), there exists an ordering w;, ..., w,, of W such that for
any j € [m], ,
H S wi - %E(W)H < 5¥(B). (4.17)

i€[j]

Further, as X(V) =0and V = (| |, Vo) U R,

=) (V) = —e5(R),
and combining this with (4.17) yields that for any j € [m],

Hsz—Fa— H<S*) (4.18)

26]

We now order our original collection of vectors V' as follows: fix the ordering of W
as above so that (4.17) holds, and note that this ordering of W = {w, }.c4 induces a
matching ordering Vi, ..., V,,, of the families {V,,},c4. Within each family V; for i € [m]
we order the vectors v € V; arbitrarily. Finally, we also order the remaining vectors in
R arbitrarily. Along this ordering, two types of partial sums occur:

@ i 2(Vi) +E(U) for0 < j <m—1land U C Vji1 (where U = () is allowed);

(®) > icpm (Vi) + X(T) with some T' C R.
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To prove (1.12), we need to show that any partial sum of type (a) or (b) has norm at
most %(S:(B) +2p(B) + 1). Recall that by property (iii) of our construction, for any
subset 77 C R and any u € S9!,

|S(T A Hy ()] < 1/e.
Fix any direction u € S9!, and partition 7" as
T, =T NH(u), T =T\T..

Note that these are subfamilies of R, moreover, 7" C H,(—u). Therefore, property
(iii) implies that
1 1
ST < < and [S(77)] < -,

thus by the triangle inequality

IS(T)|| < g (4.19)

We are ready to estimate the norm of partial sums along the ordering specified
above. This is simple for sums of type (b): applying (4.19) for the family 7" := R\ T,

| 32 2m+2@)| = | -2 +2@)| = | -2@E\D)|| < p3)||2R\D)| < p<B>§.

i€[m]

Finally, we handle the sums of type (a). Dividing both sides of (4.18) by ¢ and
applying the triangle inequality yields that for any 0 < j < m — 1,

| > =)
iclj]

<|- e+ | oo + o)
icls]
< L) SRy + Zs:(8)

2 1
< P(B)g + 555(3)7

J
m

where we have used j < m and (4.19) with 7" = R. Recall that V;; was chosen as
a minimal set (with respect to containment) that satisfies inequality (4.16), that is,
1 —1 < ||%(Vj41)|]. In particular, for any U C Vj,1, we know that [|[S(U)[| < L —1 < 1.
Combining these estimates, for fixed 0 < j <m —1and U C Vj;; we conclude that

+ =) < é<S:(B) +20(B)+1).

s+ < [ X =m)
i€lj] i€l]
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We have now shown that the B-norm of every partial sum along the specified
ordering is strictly less than

é (S*(B) +2p(B) +1). 0

Remark. The proof can not be transformed so as to provide an estimate on S*(B)
instead of S(B): since there is no upper bound on the size of the families V,, the
size of these re-groupings need not be uniform. Hence, the average of the families V;
and the whole family V' may differ drastically, which yields that the quantity in (1.6)
cannot be estimated in terms of the individual deviations corresponding to V;.



Chapter 5
Concluding Remarks and Future Work

In this dissertation we have addressed two fascinating problems regarding vector
sums in discrete and convex geometry: the vector balancing problem and the Steinitz
problem. In Chapters 2 and 3 we prove results about a geometric generalization of
the classical vector balancing problem, and in Chapter 4 we prove a reduction of the
Steinitz problem to a simpler geometric setting. The nature of these works is clearly
different: one generalizes and opens the problem in new directions, whereas the
other reduces the problem to a simpler setting and offers a new line of attack on a
long-standing conjecture.

In this brief chapter, we discuss future open questions and potential extensions of
these works, beginning with the colorful vector balancing problem. As mentioned in
Chapter 2, Banaszczyk’s famous vector balancing result [9] has already been extended
to a colorful setting by Bansal et al. [11], and the strategy that we outline in Section
2.8 shows that in fact up to a constant factor of 2, any bound in the classical vector
balancing setting transfers to the colorful setting as well. However, as we argue in
Chapter 2, there is value in proofs that show such bounds directly and geometrically,
as they shed more light on the problem. Hence a potential direction for future work
would be to derive direct proofs of colorful vector balancing bounds for other settings:
other ¢, norms, to generalize [54], or to any other class of symmetric convex bodies.
Further, colorful problems arise in many areas of convex and discrete geometry (as we
mentioned, recently the Steinitz problem has also been extended to a colorful setting),
and the techniques that we develop in Chapters 2 and 3, particularly understanding
the geometry of the direct product of simplices as a parameterization space for the
convex hulls, may prove useful in other settings as well.

We now turn to our work on the Steinitz problem. An early motivation for this
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reduction was the chain of thought that perhaps the Steinitz problem would be easier
to solve if one reduces consideration to only unit vectors. Indeed, one can imagine
and construct problematic and challenging examples with arbitrarily short vectors
that confound certain proof strategies. Our proof falls just short of showing that the
Steinitz problem can be reduced to unit vectors (we show that we can reduce to
vectors of length at least 1 — ¢ for any constant ¢), and it would be quite interesting to
prove that in fact unit vectors suffice. Conversely, it would also be interesting to prove
Conjecture 1.9 in the specific setting of unit vectors. Another interesting research
direction would be to extend or exploit the “pre-processing” strategy that we use in
order to break the vectors into smaller subsets that may be easier to sum, especially in
the particular case of spherical caps and the Euclidean norm.



Summary

The PhD thesis presents work on two related problems in discrete and convex geome-
try: the vector balancing problem and the Steinitz problem.

The majority of the mathematical content of the dissertation is based on the
following two publications of the author:

[2] Gergely Ambrus and Rainie Bozzai. Colourful vector balancing. Mathe- matika,
70(4), August 2024.

[4] Gergely Ambrus and Rainie Heck. A note on the Steinitz constant. Accepted
for publication; Mathematika, 2026.

In Chapter 1 we introduce all necessary notation and terminology in Section 1.1,
followed by a thorough introduction of the vector balancing and Steinitz problems in
Section 1.2.

In Chapter 2 we introduce the colorful vector balancing problem, a geometric
generalization of the original vector balancing problem. Both Chapters 2 and 3 are
based on the results of the paper [2]. To recap, in the vector balancing problem, we
are given a symmetric convex body K C R¢ and a collection of vectors vy, ...,v, € K
and asked to select signs ¢y, ...,, € {£1} so that ||e;v; + - -+ + €,v,||x is minimal.
The colorful vector balancing problem generalizes to the setting where we are given
vector families V;,...,V,, C K satisfying the condition that 0 € 3,
select one vector from each family to minimize ||v; + - - - + v, || k. In the classical vector

| conv V;, and we

balancing setting, two well-known results are the following: first, in the Euclidean
norm one can always select signs ¢; € {£1}, ¢ € [n], so that the signed sum has
Euclidean norm at most v/d. Second, in the maximum norm, one can always select
signs so that the signed sum has maximum norm at most O(v/d). Our primary goal in
Chapters 2 and 3 is to extend these results to the colorful setting.

In Section 2.1 we introduce the history of the colorful vector balancing problem,
including a closely related result of Bansal, Dadush, Garg, and Lovett in a slightly
modified colorful setting [11]. In Section 2.2 we prove the following key result (for
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the relevant definitions and notation, refer to Section 2.2).

Corollary ([2] Corollary 2.5). Let || - || be a norm on R? with unit ball B%. Suppose
that there exists a constant C(d) such that given any collection of k < d families
U ={U,...,Uy} in B*satisfying |U,| + - - - + |Uy| < k+d, and any X € Ay, there exists
a selection vector (1 € Ay such that ||V — V|| < C(d). Then given any collection of
families Vy, ..., V,, C B4with 0 € 5
for i € [n] such that

icin] ConvV;, there exists a selection of vectors v; € V;

P

i€[n]

< C(d).

In effect, this result allows us to transform the colorful vector balancing problem
into a separate problem about vertex approximation in high dimensional direct
products of simplices. Furthermore, this result is the key that allows us to prove
bounds on the colorful vector balancing problem depending only on the dimension d,
and not n, the number of vector families.

Finally, in Section 2.8 we return to the aforementioned result of Bansal, Dadush,
Garg, and Lovett and show how one can generalize their techniques to show asymp-
totically tight bounds in the colorful vector balancing setting based on the vector
balancing setting. However, we also justify why our direct geometric approach sheds
more light on the problem itself.

In Chapter 3 we continue our study of the colorful vector balancing problem by
turning to the specific cases of the Euclidean and maximum norms. In Section 3.1 we
prove the following result.

Theorem ([2], Theorem 1.4). Given vector families Vi, ..., V,, C BJ with

0e ZConv Vi,

i€[n]

one can select vectors v; € V; for i € [n] such that |[vy + - - + v,|]2 < Vd.

By virtue of our reduction in Chapter 2, it remains to show that we can solve the
vertex approximation-style problem introduced in Corollary 2.7. To this end, the key
result of Section 3.1 is the following:

Proposition ([2], Proposition 3.1). Given a collection of k vector families Uy, ..., U, € B3
and any point A\ € Ay, there exists a selection vector ;. € Ay such that ||[UN—Upl| < VE.

The proof follows the probabilistic method, and it is inspired by Spencer’s argument
in the classical vector balancing setting [67]. In Section 3.2 we turn to the more
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challenging case of the maximum norm. The main result of Section 3.2 is the
following:

Theorem ([2], Theorem 1.5). Given vector families Vi, ..., V,, C B with

0e ZCODV Vi,

1€[n]

one can select vectors v; € V; fori € [n] such that ||v; +- - - +v,||ec < CVd, where C' = 22

suffices.

Similarly to Section 3.1, the proof reduces to the following proposition.

Proposition ([2], Proposition 4.1). Given a collection of k vector families Uy, ..., Uy €
B2 satisfying |Uy| + - - - +|Uq| < 2d and any point A\ € Ay, there exists a selection vector
1 € Ay such that |UN — Uplloe < VE.

Our proof, based on the algorithmic proof of Spencer’s original result for the
vector balancing problem due to Lovett and Meka [47], uses a Gaussian random walk
inside of a high dimensional product of simplices to construct “partial colorings” (i.e.
assignments of convex coefficients to each family, with the goal of eventually selecting
one vector) with high probability. By iterating this algorithm, one can construct a full
coloring with bounded error. The key technical aspect of this proof, which we call
the skeleton approximation lemma, is deferred to Section 3.3 in order to make the
exposition of the proof cleaner.

In Chapter 4 we focus our attention on the Steinitz problem. The content of
Chapter 4 is based on the results published in [4]. Recall from Chapter 1 that in
the Steinitz problem, we are again given a symmetric convex body B € R? and a
collection of vectors V' C B such that ) _,,v = 0. The goal is to find an ordering
v1, ..., v, of V such that every partial sum along this ordering has norm bounded
by a constant C' depending only on the convex body B. That is, for every k € [n],
|l + -+ +vg|| < C. The smallest constant C' that holds for a given convex body B is
called the Steinitz constant S(B) of B, and it is a well-known result that S(B) < d for
any convex body B C R? [24, 71]. It is a long-standing open conjecture of Bergstrom
[18] that S(BY) = O(+/d), although not even an o(d) result is known. In Chapter 4 we
show that in order to prove this conjecture, one can additionally assume that all of the
vectors have length at least 1 — ¢ for any constant 0 < £ < 1, reducing to the setting of
“almost-unit vectors”. We prove two results, one specifically for the Euclidean norm
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and one holding for arbitrary norms. We state the precise results below, recalling that
S.(BY) denotes the Steinitz constant in the setting where all vectors v € V satisfy
l—e<|v|l2 < 1.

Theorem. Forany 0 < e < landalld > 2,

1
BH) < = B3 +2
S5(By) < 8(58( 2) + 200 10gd>

In particular, an o(d) estimate on the restricted problem would yield an o(d)
estimate for Bergstrém’s conjecture, and an O(v/d) result in the “almost-unit vectors”
setting would resolve the conjecture completely.

The stronger result for arbitrary norms is as follows, where we recall that p(B) :=

max,cp || — vl 5.

Theorem ([4] Theorem 6). For all d > 2, any convex body B € K%, and 0 < ¢ < 1,
1/
S(B) < - (SE (B) +2p(B) + 1).

In Section 4.2 we introduce the interesting and storied history of the Steinitz
problem in more detail. In Section 4.3 we prove Theorem 1.11 in broad strokes,
deferring the proof of a handful of technical lemmas to Section 4.4. The strategy of
the proof is a key pre-processing of the vectors to remove any short (i.e., of norm less
than 1 — ¢) vectors. We do this by summing together short vectors within spherical
caps until we get a vector that is sufficiently long; in doing so, we must be careful
that all partial sums of the new long vectors remain sufficiently short, and we must
deal with a handful of extra vectors that are left after pre-processing; these are the
details of the technical lemmas in Section 4.4. In Section 4.5 we generalize this proof
technique to arbitrary norms by completing the pre-processing with half spaces in lieu
of spherical caps.



Osszefoglalas

A disszertacioban két, egymashoz kapcsolddo diszkrét és konvex geometriai témaval
foglalkozunk: a vektorkiegyensulyozasi feladattal és a Steinitz problémaval. A vek-
torkiegyensulyozasi feladatban legyen K € RY egy szimmetrikus konvex test, és
v1, ..., U, vektorok K-ban; célunk az 4, ..., e, € {+1}" egylitthaték meghatdrozdsa ugy,
hogy |le1v1 + - - - + €,,v, || k minimalis legyen.

Az altalanositott, “szinezett” vektorkiegyensulyozasi feladatban Vi, ...,V, C K
olyan vektorrendszerek, melyekre 0 € 3_,,, conv(V;). Célunk kivalasztani minden
csaladbdl egy v; € V; vektort gy, hogy ||v; + - - - + v, ||k minimalis legyen. A klasszikus
vektorkiegyenstilyozasi probléma két specialis esetére jol ismert korlatok vonatkoznak:
az euklideszi normaban mindig valaszthatdk olyan el6jelek, hogy az el6jeles 6sszeg
euklideszi normdja legfeljebb v/d legyen. Tovabbd, a maximum normaban mindig
valaszthatdk olyan el6jelek, hogy az el6jeles 6sszeg maximum normaja legfeljebb
O(V/d) legyen. Mindkét eredményt kiterjesztjiik az 4ltaldnosabb szinezett verziéra,
éles, illetve aszimptotikusan éles becsléseket igazolva. A bizonyitas kulcslépése-
ként a szinezett vektorkiegyensulyozasi problémat visszavezetjiik magas dimenzids
szimplexek direkt szorzataiban a csucskozelités problémajara.

A Steinitz probléméban ismét adott egy B C R? szimmetrikus konvex test, és
egy olyan V' C B vektorrendszer, amelyre > _,, v = 0. Célunk V' egy olyan V' =
{v1,...,v,} sorbarendezésének meghatdrozasa, melyre a sorrend szerinti parcialis
osszegek normaja legfeljebb egy C' konstans, amely csak B-tdl fiigg: tehat minden
k € [n] esetén ||v; + - - - + vi||p < C. Adott B-re a C korlat elérhet6 legkisebb értékét
a B Steinitz-konstansdnak S(B) nevezziikk. Jo6l ismert eredmény, hogy S(B) < d
barmely B C R szimmetrikus konvex testre. Bergstrom régdta fenndll6 nyilt sejtése
szerint S(B¢) = O(v/d), azonban ebben az esetben még egy o(d) becslés sem ismert.
A disszertdcidéban a sejtést visszavezetjiik arra az esetre, amikor a V' vektorrendszer
Osszes elemének normdja az [1 — ¢, 1] intervallumban van, tehat a vektorcsaldd “kozel
egységvektorokbdl” all. Els6 eredményiink az euklideszi norma esetére vonatkozik,
majd ezt erdsitjiik és kiterjesztjiik tetszéleges, nem feltétleniil szimmetrikus normakra

is.

60



Publications

Journal publications

I declare that as of the submission of this thesis, I have the following two publications,
and that both of them are used in the dissertation.

[2] Gergely Ambrus and Rainie Bozzai. Colourful vector balancing. Mathe- matika,
70(4), August 2024.

[4] Gergely Ambrus and Rainie Heck. A note on the Steinitz constant. Accepted
for publication; Mathematika, 2026.

61



Acknowledgments

First of all, I would like to thank my supervisor, Gergely Ambrus. I met Gergely
because he taught me discrete and convex geometry in 2019 while I was studying
abroad in Budapest. It was his course that captured my interest in this topic, and I
am extremely grateful for all of the help and support that he has invested in me since
then, beginning with a visiting student position for the 2022-2023 academic year and
my PhD studies at SZTE from 2023-2025. I would also like to thank my family for
always supporting me in my academic journey, as well as the friends that I have made
along the way.

I was also fortunate to be supported by the United States National Science Foun-
dation Graduate Research Fellowship Program (NSF GRFP) from 2020-2023, which
made my visiting position at SZTE possible .

62



Bibliography

[1] Gergely Ambrus. A generalization of Bang’s lemma. Proceedings of the American
Mathematical Society, 151(03):1277-1284, 2023.

[2] Gergely Ambrus and Rainie Bozzai. Colourful vector balancing. Mathematika,
70(4), August 2024.

[3] Gergely Ambrus and Bernardo Gonzdlez Merino. Large signed subset sums.
Mathematika, 67(3):579-595, 2021.

[4] Gergely Ambrus and Rainie Heck. A note on the Steinitz constant. Accepted for
publication; Mathematika, 2026.

[5] Arturs Backurs, Jerry Chee, Sivakanth Gopi, Rainie Heck, Janardhan Kulkarni,
and Thomas Rothvoss. Discquant: A quantization method for neural networks
inspired by discrepancy theory. Proceedings of Machine Learning Research ML
Research Press (2025), pages 924-951, 2025.

[6] Wojciech Banaszczyk. The Steinitz Constant of the Plane. Journal fiir die reine
und angewandte Mathematik, 373:218-220, 1987.

[7] Wojciech Banaszczyk. A note on the Steinitz constant of the Euclidean plane.
CR Math. Rep. Acad. Sci. Canada, 12(4):97-102, 1990.

[8] Wojciech Banaszczyk. Balancing vectors and convex bodies. Studia Mathematica,
106(1):93-100, 1993.

[9] Wojciech Banaszczyk. Balancing vectors and Gaussian measures of n-
dimensional convex bodies. Random Structures & Algorithms, 12(4):351-360,
1998.

63



64 Bibliography

[10] Nikhil Bansal. Constructive algorithms for discrepancy minimization. In 2010
IEEE 51st Annual Symposium on Foundations of Computer Science, pages 3-10,
2010.

[11] Nikhil Bansal, Daniel Dadush, Shashwat Garg, and Shachar Lovett. The Gram—
Schmidt walk: A cure for the Banaszczyk blues. Theory of Computing, 15(21):
1-27, 2019.

[12] Imre Barany. A Vector-sum Theorem and its Application to Improving Flow Shop
Guarantees. Mathematics of Operations Research, 6(3):445-452, 1981.

[13] Imre Barany. A matrix version of the Steinitz lemma. Journal fiir die reine und
angewandte Mathematik (Crelles Journal), 2024(809):261-267, 2024.

[14] Imre Bardny and Benjamin Doerr. Balanced partitions of vector sequences. Linear
algebra and its applications, 414(2-3):464-469, 2006.

[15] Jozsef Beck and Tibor Fiala. “Integer-making” theorems. Discrete Applied
Mathematics, 3(1):1-8, 1981.

[16] FA Behrend. The Steinitz-Gross theorem on sums of vectors. Canadian Journal
of Mathematics, 6:108-124, 1954.

[17] LS. Belov and J.J. Stolin. An Algorithm for the Flow Shop Problem. Mathematical
Economics and Functional Analysis, 499, 1974.

[18] Viktor Bergstrom. Zwei Sitze liber ebene Vectorpolygone. In Abhandlungen
aus dem Mathematischen Seminar der Universitdt Hamburg, volume 8, pages
206-214. Springer, 1931.

[19] Viktor Bergstrom. Ein neuer Beweis eines Satzes von E. Steinitz. In Abhandlungen
aus dem Mathematischen Seminar der Universitdt Hamburg, volume 8, pages
148-152. Springer, 1931.

[20] Patrick Billingsley. Probability and Measure. Wiley, 3rd edition, 1995.

[21] Rainie Bozzai and Thomas Rothvoss. Stronger coreset bounds for kernel density
estimators via chaining. Submitted., 2023.

[22] Imre Bardny. On the power of linear dependencies. In Building bridges: Between
Mathematics and Computer Science, volume 19 of Bolyai Society Mathematical
Studies, pages 31-45. Bolyai Society and Springer, 2010.



Bibliography 65

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Imre Barany and Victor Grinberg. On some combinatorial questions in finite
dimensional spaces. Linear Algebra and its Applications, 41:1-9, 1981.

Imre Barany and Victor Grinberg. A Vector-Sum Theorem in Two-Dimensional
Space. Periodica Mathematica Hungarica, 16:135-138, 1985.

Sergei Akopovich Chobanyan. Structure of the set of sums of a conditionally
convergent series in a normed space. Mathematics of the USSR-Sbornik, 56(1):
49, 1987.

Sergej Chobanyan. Convergence A.S. of Rearranged Random Series in Banach
Space and Associated Inequalities. In Jgrgen Hoffmann-Jgrgensen, James Kuelbs,
and Michael B. Marcus, editors, Probability in Banach Spaces, 9, pages 3-29,
Boston, MA, 1994. Birkhauser Boston.

Ira Damsteeg and Israel Halperin. The Steinitz-Gross theorem on sums of vectors.
Trans. Roy. Soc. Canada Sect. III, 44:31-35, 1950.

Aryeh Dvoretzky. Problem. In Convexity, volume 7 of Proceedings of Symposia in
Pure Mathematics, page 496. Amer. Math. Soc., 1963.

William Feller. An Introduction to Probability Theory and Its Applications, vol-
ume 2. Wiley, 1971.

Tibor Fiala. Kozelit6 Algoritmus a Harom Gép Problémadra. Alkalmazott Matem-
atikai Lapok, 3:389-398, 1977.

Walter Gautschi. Some elementary inequalities relating to the gamma and
incomplete gamma function. Journal of Mathematics and Physics, 38:77-81,
1959.

Apostolos A Giannopoulos. On some vector balancing problems. Studia Mathe-
matica, 122:225-234, 1997.

Efim Davydovich Gluskin. Extremal properties of orthogonal parallelepipeds
and their applications to the geometry of Banach spaces. Mathematics of the
USSR-Sbornik, 64(1):85, 1989.

Victor Grinberg and Sergey Sevast’'yanov. Value of the Steinitz Constant. Func-
tional Analysis and its Applications, 14:125-126, 1980.



66 Bibliography

[35] Victor Grinberg and Sergey V. Sevast’'yanov. Value of the Steinitz constant.
Functional Analysis and Its Applications, 14(2):125-126, 1980.

[36] Wilhelm GroR. Bedingt konvergente Reihen. Monatshefte fiir Mathematik und
Physik, 28:221-237, 1917.

[37] H Hadwiger. Ein Satz {iber bedingt konvergente Vektorreihen. Mathematische
Zeitschrift, 47(1):663-668, 1942.

[38] Hugo Hadwiger. Ein Satz iiber geschlossene Vektorpolygone des Hilbertschen
Raumes. Mathematische Zeitschrift, 41(1):732-738, 1936.

[39] Hugo Hadwiger. Uber das Umordnungsproblem im Hilbertschen Raum. Mathe-
matische Zeitschrift, 46(1):70-79, 1940.

[40] Israel Halperin. Sums of a series, permitting rearrangements. CR Math. Rep.
Acad. Sci. Canada, 8(2):87-102, 1986.

[41] Christopher Harshaw, Fredrik Sévje, Daniel A Spielman, and Peng Zhang. Balanc-
ing covariates in randomized experiments with the gram-schmidt walk design.
Journal of the American Statistical Association, pages 1-13, 2024.

[42] Laurel Heck, Victor Reis, and Thomas Rothvoss. The vector balancing constant
for zonotopes. 2023 IEEE 64th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1292-1300, 2022.

[43] Mikhail Kadets. On a Property of Broken Lines in n-Dimensional Space. Uspekhi
Mat. Nauk., 8(1):139-143, 1953.

[44] Boris Sergeevich Kashin. On one isometric operator in L?(0,1). Comptes Rendus
de UAcademie Bulgare des Sciences, 38(12):1613-1615, 1985.

[45] Yitzhak Katznelson and O Carruth McGehee. Conditionally convergent series in
R*°. Michigan Mathematical Journal, 21(2):97-106, 1974.

[46] Paul Lévy. Sur les séries semi-convergentes. Nouvelles annales de Mathématiques:
journal des candidats aux Ecoles Polytechnique et Normale, 5:506-511, 1905.

[47] Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by
walking on the edges. SIAM Journal on Computing, 44(5):1573-1582, 2015.



Bibliography 67

[48] L. Lovasz, J. Spencer, and K. Vesztergombi. Discrepancy of set-systems and
matrices. European Journal of Combinatorics, 7(2):151-160, 1986.

[49] Ben Lund and Alexander Magazinov. The sign-sequence constant of the plane.
Acta Mathematica Hungarica, 151:117-123, 2017.

[50] Jiri Matousek. Geometric discrepancy: An illustrated guide, volume 18. Springer
Science & Business Media, 1999.

[51] Timm Oertel, Joseph Paat, and Robert Weismantel. A Colorful Steinitz Lemma
with Application to Block-Structured Integer Programs. Mathematical Program-
ming, 204(1):677-702, 2024.

[52] Jeff Phillips and Wai Tai. Near-optimal coresets of kernel density estimates.
Discrete and Computational Geometry, 63, 06 2020.

[53] Jeff M. Phillips. e-samples for Kernels. In Proceedings of the Twenty-Fourth Annual
Symposium on Discrete Algorithms, pages 1622-1632. SIAM, 2013.

[54] Victor Reis and Thomas Rothvoss. Vector balancing in Lebesgue spaces. Random
Structures & Algorithms, 08 2022.

[55] Bernhard Riemann. Uber die Darstellbarkeit einer Function durch eine
trigonometrische Reihe, volume 13. Abhandlungen der Koniglichen Gesellschaft
der Wissenschaften zu Gottingen, 1868.

[56] Peter Rosenthal. The Remarkable Theorem of Lévy and Steinitz. The American
Mathematical Monthly, 94(4):342-351, 1987.

[57] Rolf Schneider. Convex Bodies: The Brunn—Minkowski Theory. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2 edition, 2013.

[58] Sergey Sevastianov. Nonstrict vector summation in multi-operation scheduling.
Annals of Operations Research, 83(0):179-212, 1998.

[59] Sergey Sevast’janov and Wojciech Banaszczyk. To the Steinitz Lemma in Coordi-
nate Form. Discrete Mathematics, 169(1):145-152, 1997.

[60] S.V. Sevast’janov. On some geometric methods in scheduling theory: a survey.
Discrete Applied Mathematics, pages 59-82, 1994.



68

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Sergey V. Sevastyanov. Asymptotical Approach to Some Scheduling Problems.
In Third All-Union Conf. Problems of Theoretical Cybernetics, pages 67-69, Thes.
Dokl., Novosibirsk, 1974. (in Russian).

Sergey V. Sevastyanov. Asymptotical Approach to Some Scheduling Problems.
Upravlyaemye Sistemy, 14:40-51, 1975. (in Russian).

Sergey V. Sevast'yanov. On Approximate Solutions of Scheduling Problems.
Metody Discretnogo Analiza, 32:66-75, 1978.

Sergey V. Sevast’'yanov. On the approximate solution of the problem of calendar
planning. Upravlyaemye Systemy, 20:49-63, 1980. (in Russian).

Sergey V. Sevastyanov. On a Compact Vector Summation. Diskretnaya Matem-
atika, 3:66-72, 1991. (in Russian).

Joel Spencer. Balancing games. Journal of Combinatorial Theory, Series B, 23(1):
68-74, 1977.

Joel Spencer. Balancing unit vectors. Journal of Combinatorial Theory, 30:
349-350, 1981.

Joel Spencer. Six standard deviations suffice. Transactions of the American
Mathematical Society, 289(2):679-706, 1985.

Joel Spencer. Balancing vectors in the max norm. Combinatorica, 6:55-65, 1986.

Ross M Starr. Quasi-equilibria in markets with non-convex preferences. Appendix
2: The Shapley-Folkman theorem, pp. 35-37). Econometrica: Journal of the
Econometric Society, pages 25-38, 1969.

Ernst Steinitz. Bedingt Konvergente Reihen und Konvexe Systeme. Journal fiir
die reine und angewandte Mathematik, 143:128-176, 1913.

Ernst Steinitz. Bedingt Konvergente Reihen und Konvexe Systeme. Journal fiir
die reine und angewandte Mathematik, 144:1-40, 1914.

Ernst Steinitz. Bedingt Konvergente Reihen und Konvexe Systeme. Journal fiir
die reine und angewandte Mathematik, 146:1-52, 1916.

Konrad Swanepoel. Balancing unit vectors. Journal of Combinatorial Theory, 89:
105-112, 2000.



Bibliography 69

[75] Wai Ming Tai. Optimal Coreset for Gaussian Kernel Density Estimation. In

[76]

Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on
Computational Geometry (SoCG 2022), volume 224 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 63:1-63:15, Dagstuhl, Germany, 2022.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applica-
tions in Data Science. Cambridge Series in Statistical and Probabilistic Mathe-
matics. Cambridge University Press, 2018.



	Introduction
	Definitions and Notations
	A Brief Overview of History and Results
	Overview of Thesis

	Colorful Vector Balancing: a Linear Algebra Reduction
	The Colorful Vector Balancing Problem
	A Linear Algebraic Reduction
	A Reduction to Vector Balancing
	Conclusion

	Colorful Vector Balancing: the Euclidean and Maximum Norms
	The Euclidean Norm
	The Maximum Norm
	The Skeleton Approximation Lemma
	Conclusion

	A Reduction of the Steinitz Problem
	The Steinitz Problem for `Almost-Unit' Vectors
	History of the Steinitz Problem
	Proof of Theorem 1.11
	Technical Lemmas
	An Extension to General Norms

	Concluding Remarks and Future Work
	Summary
	Publications

