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1. Introduction and background 

1.1 Neuropathology of Alzheimer’s diseaseI. 

Alzheimer’s disease (AD), the leading cause of dementia in late middle-aged and older adults, is a 

progressive neurodegenerative disorder characterized by a clinically heterogeneous phenotype and a 

multifactorial etiology. Its sporadic form, which constitutes the vast majority of cases, arises from a 

complex and still incompletely understood interplay of genetic and environmental factors [1–4]. A 

gradual deterioration of cognitive abilities, including executive control, defines the clinical phase of 

AD, leading to a decline in daily functioning and social engagement. This manifests in a range of 

clinical symptoms, including memory deficits, disorientation, compromised reasoning and judgment, 

communication impairments, mood disorders, and apathy [1–6]. Critically, this symptomatic stage is 

preceded by a silent, preclinical stage that can span several decades, characterized by the gradual 

deposition of protein aggregates throughout the cortex [2,5]. 

A definitive post-mortem diagnosis of AD relies on specific neuropathological criteria, though the 

broader histopathological landscape associated with the disease falls into two main categories [3–6]. 

The first is structural loss, defined by widespread neurodegeneration (entailing neuronal and synaptic 

loss). This process culminates in macroscopic cortical atrophy (a reduction in brain volume and 

weight), which is particularly prominent in the medial temporal lobe and strongly correlates with the 

degree of cognitive impairment [2,6]. Conversely, the second category, emerging abnormal alteration, 

comprises a spectrum of histopathological changes. Foremost among these are the extracellular dep-

osition of amyloid-β (Aβ) peptides into various plaque types and the intracellular accumulation of 

hyperphosphorylated, misfolded tau protein aggregates forming neurofibrillary tangles (NFTs) 

[3,4,6]. Other key alterations include cerebral amyloid angiopathy (CAA), the deposition of Aβ in 

blood vessel walls, and a robust neuroinflammatory glial response involving both astrogliosis and 

microglial activation, often in spatial proximity to parenchymal plaques [3,6–10]. 

The two defining components of the mixed proteinopathy in AD, tau and Aβ, each follow a char-

acteristic hierarchical pattern of spatiotemporal progression, though the topographic distribution and 

temporal dynamics of these disease hallmarks differ considerably [2,5]. The spread of tau pathology 

is remarkably predictable and sequential, as systematically described by the Braak staging system [1]. 

This system stages pathology based on the neuroanatomical location and density of NFTs. Tau pa-

thology typically originates from the transentorhinal regions, advances through anatomically con-

nected areas to limbic structures, and eventually involves the neocortex [1,2,5,6,11]. In contrast, the 

deposition of Aβ plaques follows a descending pattern of progression as outlined by the Thal phases, 

spreading from the neocortex through limbic and allocortical regions to eventually reach the brain-

stem and cerebellum [8,9]. However, unlike tau pathology, the Aβ burden correlates poorly with the 
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degree of cognitive impairment and displays significant structural heterogeneity [3–6,11]. While the 

Thal phases describe this anatomical sequence, they do not account for the considerable inter-individ-

ual variability observed in the quantity and morphology of the plaques themselves [5,11,12]. Com-

plementing these immunostaining-based topographical systems, the Consortium to Establish a Reg-

istry for Alzheimer's Disease (CERAD) protocol [13] introduced a standardized, semi-quantitative 

assessment of neuritic plaque density within the neocortex. This diagnostic score is based on thiofla-

vin S (ThioS) or silver staining and focuses on a specific plaque subtype characterized by adjacent, 

NFT-rich dystrophic neurites [5,11,13,14]. 

The three most influential neuropathological metrics, the Thal phases for Aβ staging, the Braak 

stages for tau pathology, and the CERAD score for neuritic plaque density, are all integrated in the 

modern diagnostic guidelines from the National Institute on Aging–Alzheimer's Association (NIA-

AA), often referred to as the "ABC" scoring system [15,16]. However, these influential staging sys-

tems primarily rely on semi-quantitative assessments and largely disregard the extensive morpholog-

ical diversity of Aβ pathology [1,5,8,11,15,16], and therefore create a need for more objective, quan-

titative methods capable of capturing the full spectrum of pathology, including the structural com-

plexity of the Aβ plaques. 

1.2 Amyloid plaques: From formation to morphological diversityI. 

The formation of parenchymal plaques, a pathological hallmark of AD, is driven by the extracellular 

accumulation and aggregation of Aβ peptides. These peptides, typically 36 to 43 amino acids in 

length, are generated through the sequential enzymatic cleavage of the amyloid precursor protein 

(APP), a transmembrane glycoprotein [11,14,17,18]. Among the various isoforms, the 42-amino-

acid-long Aβ42 peptide is central to plaque pathogenesis; while produced in smaller quantities than 

Aβ40, its greater hydrophobicity makes it more prone to aggregation and more neurotoxic, establish-

ing it as the dominant component of dense-cored plaques [6,19,20]. This process of Aβ cleavage and 

subsequent extracellular aggregation forms the cornerstone of the amyloid hypothesis, which posits 

that the accumulation of Aβ is the primary trigger for AD's downstream pathology [21]. The aggre-

gation cascade begins with the assembly of monomers into soluble, synapto- and neurotoxic oligo-

mers and progresses to the formation of insoluble, β-sheet-rich fibrils that constitute the core of the 

Aβ plaques [6,20,21].  

The presence of these Aβ aggregates instigates a robust neuroinflammatory response by activating 

glial cells, which, despite their initial neuroprotective role in attempting to clear deposits, contribute 

to a persistent, neurotoxic inflammatory microenvironment upon chronic activation [7,10]. This glial 

response is also linked to a key genetic risk factor for sporadic AD: the ε4 allele of apolipoprotein E, 
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a protein primarily produced by glial cells in the brain [22,23]. 

The morphological appearance of the Aβ plaques is remarkably heterogeneous, a characteristic that 

poses a significant challenge to traditional classification schemes, which are often based on subjective 

qualitative assessments or inconsistent in their application of quantitative criteria such as size, shape, 

density, and staining properties [4,24]. At its simplest, this diversity can be conceptualized as a spec-

trum spanning two broad categories: loosely structured diffuse deposits and dense, Congo red-positive 

compact plaques, with a wide range of transitional forms existing between these polarities [4,11]. 

Diffuse plaques (i.e., pre-amyloid deposits), the most prevalent type in the AD brain, encompass a 

broad morphological spectrum ranging from non-congophilic, moderately Aβ-immunoreactive forms 

to loosely structured fibrillar deposits showing slight positivity with amyloid probes. This category is 

defined by the lack of dense regions, alongside the general rarity of dystrophic neurites and significant 

glial reactivity; the dominant component of these forms is Aβ42. Morphologically, diffuse plaques 

can appear in diverse forms with variable dimensions, amorphous structure, and poorly defined mar-

gins (e.g., small, star-shaped deposits or large "cotton-wool" and "lake-like" structures); their preva-

lence in cognitively healthy individuals with a high Aβ load also suggests an earlier or less toxic stage 

of deposition [4,9,11]. 

In contrast, compact plaques are defined by a dense, fibrillar Aβ-structure detectable with silver 

staining and positive for immunostaining and amyloid-probes such as ThioS and Congo red. Typi-

cally, they are oval or spherical in shape, with diameters ranging from 20 to 60 µm. The most well-

characterized subtype is the classical "dense-cored" plaque (focal deposits), which exhibits a complex 

structural organization and predominantly contains Aβ42: a central condensed core surrounded by a 

transitional region with reduced Aβ content, and a diffuse, loosely organized peripheral corona 

("halo"). This intricate structure is frequently infiltrated by dystrophic tau-positive neurites and the 

processes of reactive glial cells, leading to the formation of neuritic plaques, a subtype strongly asso-

ciated with local neurotoxicity [3,4,9,11]. Other variations on the compact theme include less struc-

tured, "immature" fibrillar forms, as well as two subtypes predominantly composed of Aβ40: the 

smaller "burned-out" (or "core-only") plaques, lacking a peripheral region and considered remnants 

of late-stage development, and the "coarse-grain" plaques, containing multiple smaller cores 

[3,4,9,25–27]. 

One leading hypothesis proposes a developmental sequence in which amorphous, diffuse deposits 

containing oligomers and protofibrils progressively evolve through more fibril-rich "primitive" or 

"immature" forms into classical dense-cored and ultimately into "burned-out" plaques, a process po-

tentially driven by the inflammatory microglial response [12,28,29]. However, the temporal order of 

these events in the human brain is difficult to establish, and an alternative view suggests that different 
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plaque types may arise and evolve independently, dictated by local, region-specific factors and indi-

vidual patient characteristics [4,12].  

Complementing these biological models of plaque evolution, a consistent statistical pattern of 

plaque growth is observed. Aβ plaques exhibit a positively skewed size distribution, suggesting ran-

domly distributed values on a log scale [30]. This pattern is consistent with a stochastic equilibrium 

model in which the growth rate of a porous deposit is proportional to its volume, resulting in a log-

normal distribution. The interpretation of the cross-sectional observations as a reflection of true volu-

metric properties is supported by the near-spherical plaque geometry and by similar distributions ob-

served in 3D reconstructions [30–32]. 

The relationship between plaque morphology, developmental pathways, growth dynamics, and 

neurotoxicity remains poorly understood, and this uncertainty extends to the functional role of the 

deposits themselves. While soluble Aβ oligomers are considered the primary neurotoxic species, the 

ultimate pathogenic, neutral, or even protective role of the various plaque types is still unresolved, 

leaving a critical gap in our understanding of AD progression. Nevertheless, the significance of senile 

Aβ plaques as indicative markers of the disease process is well-established [4,11,29]. 

1.3 Small-molecule probes for the detection of the Aβ-pathologyI. 

Accurate identification, delineation, and quantification of Aβ plaques within brain tissue are essential 

to understand the progression of the disease and assess the efficacy of potential therapeutic strategies. 

Fluorescent amyloid probes like ThioS, thioflavin T, and Congo red are widely used to detect Aβ 

plaques in AD [33–39]. While their binding mechanism lacks epitope-level specificity, these small-

molecule dyes and their derivatives are the gold standard as a tool for investigating structural organi-

zation and amyloid polymorphism, as their general binding affinity allows them to recognize a 

broader spectrum of amyloid conformations than antibody-based methods [5,33,34,37]. Indeed, their 

strength lies in their remarkable versatility; beyond their foundational role in histology, their applica-

tions range from in vitro monitoring of aggregation kinetics, in vivo detection in animal models, to 

the molecular characterization of distinct Aβ binding sites [33,40,41].  

Furthermore, they offer numerous practical advantages, including lower manufacturing costs, 

chemical stability, less demanding experimental protocols, and intrinsic fluorescence that eliminates 

the need for secondary conjugates. Their simpler structure and high chemical tractability also accel-

erate development timelines and facilitate the synthesis of derivatives with tailored properties [33,40–

42]. In contrast, immunohistochemical approaches face several disadvantages: the large size of anti-

body molecules can impede diffusion into thicker, denser histological sections; they can exhibit struc-

tural instability and may also show non-specific binding (requiring extensive blocking, 
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permeabilization, or antigen retrieval steps); they frequently necessitate various pre-treatments and 

specialized methods to overcome these limitations [43]; and, crucially, they have limited accessibility 

to the densely packed, insoluble fibrils within compact plaque cores [44–47]. 

Regarding their potential for in vivo diagnostic imaging, antibody-based approaches are challenged 

by their generally limited blood-brain barrier (BBB) penetrability, as well as unfavorable pharmaco-

kinetic properties and uptake-clearance mechanisms, although promising efforts are underway to de-

velop them as radioligands [47–50]. In stark contrast, the diagnostic potential of small-molecule am-

yloid probes was realized with the development of Pittsburgh Compound B: a neutral, radio-labeled 

thioflavin T derivative that became the first successful agent for in vivo amyloid imaging via positron 

emission tomography, demonstrating the translation of a histological tool into a clinical diagnostic 

[42]. This breakthrough was followed by the development of a series of small-molecule tracers (e.g., 

florbetapir, florbetaben, and flutemetamol) that are now routinely used in clinical amyloid-imaging 

[5,40,51,52]. 

ThioS, a classic fluorescent probe for amyloid detection [35,37,53], is a mixture of several different 

compounds derived from the methylation of dehydrothiotoluidine, in contrast to the closely related 

and chemically pure thioflavin T [38]. While both dyes bind with high affinity to β-sheet-rich Aβ 

fibrils, their photophysical properties differ significantly, as ThioS binding does not produce the same 

characteristic spectral shift as thioflavin T, a property that can contribute to higher background (BG) 

[35,37,39]. Despite this, ThioS remains a cornerstone of conventional histology for labeling Aβ ag-

gregates, exhibiting an intense green-yellow fluorescence with a peak emission at 455 nm under 

epifluorescence microscopy [35,37]. 

A key characteristic shared by most of these fluorescent probes is that they label both parenchymal 

(plaques) and vascular amyloid pathology (CAA); moreover, vascular elements themselves often ex-

hibit significant intrinsic autofluorescence. In the following sections, we will refer to all microscopi-

cally detectable plaque types and pre-amyloid-like structures within the parenchyma as "parenchymal 

amyloid deposits". Prior efforts to distinguish these components have included approaches based on 

morphological criteria [54,55], time-consuming manual labeling procedures [56], as well as multiplex 

fluorescence labeling and co-localization [57], in vivo animal studies suggesting a potential for ex-

ploiting differential BBB permeability of amyloid probes [40], and the development of selective an-

tibody fragments recognizing distinct epitopes [58]. However, these diverse approaches are often im-

practical for robust, large-scale analysis, being limited by their reliance on labor-intensive procedures, 

susceptibility to observer bias, need for specialized expertise, complex multi-component protocols, or 

substantial further development. Therefore, the development of robust and automated methods for the 

objective analysis of these complex pathological features is critical. 
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However, the implementation of such automated analysis pipelines for histological micrographs is 

fraught with significant technical challenges. High-resolution fluorescent imaging itself can introduce 

technical artifacts like illumination nonuniformity and BG fluorescence, which compromise the reli-

ability and reproducibility of the analysis [59–67]. This is particularly evident in some conventional 

staining protocols; for example, varying ThioS procedures, typically involving high stain concentra-

tions, short incubation times, and differentiation with solvents like ethanol, may lead to non-specific 

binding, particularly in blood vessels, as well as the loss of ThioS from low-affinity sites, potentially 

under-detecting subtle amyloid accumulation [35,36,53]. Finally, the marked diversity of Aβ plaques 

across stages and regions makes robust segmentation especially cumbersome. These issues compli-

cate not only the segmentation of deposits but also the subsequent morphometric analysis required for 

quantitative neuropathology. 

1.4 Machine learning and neural networks in biomedical applicationsI. 

Artificial intelligence (AI) is a broad, interdisciplinary field of computer science that integrates engi-

neering and data analysis to design technological systems (intelligent machines) capable of perform-

ing tasks that typically require human intelligence (e.g., autonomous problem-solving, logical reason-

ing, planning, and both linguistic and visual perception) [68–70]. Historically, the field evolved from 

classical, symbolic systems that relied on explicit logic or knowledge bases (rule-based and expert 

systems), and statistical methods focused on probabilistic modeling, heuristic search, and optimiza-

tion (searching and evolutionary algorithms) to a data-driven approach: machine learning (ML). As 

the definitive modern subfield of AI, ML represents a paradigm shift towards automated pattern 

recognition directly from data, a process based on a model fitting procedure without explicit program-

ming, where parameters are optimized on a given dataset (experience) to improve predictive perfor-

mance on a specific task [68–72]. 

AI and ML models are transforming biomedical research and development; while their clinical role 

remains primarily supportive, they are already applied across a wide spectrum of modalities in key 

areas such as diagnostics, prognostics, decision-making, treatment optimization, and patient monitor-

ing [73–75]. However, their widespread adoption faces critical hurdles: the scarcity of high-quality, 

large-scale, and representative datasets and the corresponding expert annotations; the interpretability 

challenges of "black-box" models; and profound ethical concerns regarding data privacy and diag-

nostic responsibility [74]. ML algorithms are categorized into learning paradigms: 

• In supervised learning, a model learns a mapping function fθ:	ℝd→𝒴 from input features xi	∈	

ℝd to known output labels yi	∈	𝒴 using a labeled dataset 𝒟	=	{(xi,	yi)}i	=	1
N . The goal is to minimize 

a loss function ℒ)fθ(xi),	yi* to achieve accurate predictions on new, unseen data (generalization). 
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The two primary tasks are classification (predicting discrete categories) and regression (predicting 

continuous values). Supervised models range from classical linear models (e.g., linear and logistic 

regression) and probabilistic classifiers (e.g., naive Bayes, perceptron), through instance-based "lazy" 

learners (e.g., k-nearest neighbors), and interpretable, rule-based decision trees, to more complex ker-

nel-methods (e.g., support vector machines) and ensemble techniques (e.g., random forest, gradient 

boosting) [76–77]. Biomedical applications are dominated by the automated analysis of imaging data 

(e.g., histological slides, radiological scans) for detecting, segmenting, and classifying anatomical 

structures, tissues, cell types, and pathologies. This also extends to predictive modeling using struc-

turally diverse clinical, demographic, and epidemiological data (e.g., electronic healthcare records, 

prescriptions, lab reports, and medical notes) to forecast outcomes (e.g., disease risk, patient trajecto-

ries, biomarker levels, and pandemic spread), or to develop triage systems and manage hospital re-

sources. Furthermore, physiological signals (e.g., from sensors and clinical devices) are leveraged for 

real-time patient monitoring, alongside omics and pharmacological data for molecular simulations, 

drug discovery, and precision medicine [78–80]. 

• In contrast, unsupervised learning seeks to uncover hidden structures and correlations in unla-

beled datasets 𝒟	=	{xi}i	=	1
N  by fitting a model fθ	that optimizes an internal criterion. Key tasks include 

clustering (grouping data, e.g., k-means, density-based spatial clustering of application with noise, 

Gaussian mixture models), dimensionality reduction (finding informative representations, e.g., prin-

cipal component analysis (PCA) and factor analysis for linear structures, and autoencoders or mani-

fold learning like t-distributed stochastic neighbor embedding and uniform manifold approximation 

and projection for nonlinear ones), association rule mining (e.g., apriori algorithm, frequent pattern 

growth), and density estimation, enabling complex applications like anomaly detection, generative 

modeling, and preprocessing for supervised algorithms [81–83]. In medicine, these tasks translate to 

analyzing high-dimensional multi-omics profiles or sequences (genetic, proteomic, transcriptomic) to 

stratify patients, subtype diseases, identify biomarkers, and explore patient-specific drug responses 

for tailored treatments; and detecting subtle pathologies (e.g., tumors, lesions) through anomaly de-

tection in medical imaging [84]. 

• In reinforcement learning, an agent learns an optimal policy for a sequential decision-making 

process by interacting with an environment, maximizing long-term cumulative reward for its actions 

through trial-and-error, a process typically formalized as a Markov decision process. Methods are 

categorized as model-based (learning environment dynamics, e.g., Dyna-Q) or model-free, which can 

be value-based (learning the value of states or actions, e.g., Q-learning, State-Action-Reward-State-

Action), policy-based (directly optimizing the policy, e.g., REINFORCE), or hybrid actor-critic 
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architectures (e.g., proximal policy optimization) [85,86]. By optimizing sequential decision-making, 

this paradigm shapes adaptive treatment strategies. While safety constraints limit direct exploration, 

it excels at optimizing interventions using large, pre-existing datasets from critical care (e.g., sedation, 

ventilation) and developing dynamic treatment regimens for chronic conditions (e.g., drug dosing, 

combination therapies), with emerging applications in robotic-assisted surgery and clinical trial design 

[87]. 

• The scarcity of high-quality, annotated data has blurred classical paradigm boundaries, giving 

rise to a spectrum of data-efficient strategies. This includes semi-supervised learning (leveraging a 

mix of labeled and unlabeled data, e.g., pseudo-labeling); weakly supervised learning, central to this 

dissertation, (multi-instance learning or usage of inexact, incomplete, and inaccurate supervisory sig-

nals, e.g., image-level tags for a pixel-level segmentation); active learning (iterative human-in-the-

loop process); and self-supervised learning (generating its own supervision via pretext tasks), such as 

masked modeling (e.g., bidirectional encoder representations from transformers, masked autoencod-

ers) and contrastive learning (e.g., simple framework for contrastive learning of visual representations, 

contrastive language-image pre-training) [88–92]. A highly effective practice that leverages existing 

representations is transfer learning (pre-training on a large dataset and fine-tuning on a task-specific 

one, e.g., multi-task learning, domain adaptation); a principle abstracted further by meta-learning 

("learning to learn"), which trains models for rapid adaptation to new tasks from few examples 

(few/one/zero-shot learning) using metric-based (e.g., Siamese networks) or optimization-based (e.g., 

model-agnostic meta-learning) methods [88–92]. Biomedical applications include driving computer-

aided diagnosis via minimally-assisted annotation of biological structures; accelerating drug discov-

ery and molecular biology extracting omics-derived predictions (e.g., functions, affinities, associa-

tions) to automate drug-activity prediction and targeted experiments; and refining clinical data analy-

sis by harnessing raw text for biomedical mining (e.g., named entity recognition and indexing) and 

for supported labeling of electronic health records to enable patient clustering and diagnostic classifi-

cation [91,92]. 

Artificial neural networks (ANNs), a class of neuro-inspired mathematical models, have become a 

cornerstone of modern ML due to their remarkable flexibility and broad applicability across learning 

paradigms. Their contemporary application is dominated by deep learning (DL), which utilizes mul-

tiple hidden layers (> 1) or long differentiable causal chains (credit assignment path > 2) to learn 

hierarchical representations by progressively building abstract concepts from low-level patterns 

[68,70,93]. While the universal approximation theorem posits that a single, sufficiently wide hidden 

layer possesses arbitrary approximation capabilities, depth confers an exponential advantage in rep-

resentational efficiency, leading to far superior performance on complex tasks compared to shallow 
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models [94–97]. 

While its conceptual precursor was the binary McCulloch-Pitts model (1943) [98], the modern ar-

tificial neuron differs fundamentally through its use of differentiable activation functions, which is an 

essential prerequisite for gradient-based learning. Drawing a simplified analogy to biological nervous 

systems, each artificial neuron (or node) acts as a computational unit that receives inputs from other 

units and calculates its activation value based on them [98–101]. This operation can be interpreted as 

a simplified model of biological neuron function, wherein the inputs, xi, are abstractions of the signals 

integrated via synapses from other neurons; the trainable weights and bias, wi and b, are parameters 

that model synaptic strengths and an internal, tunable firing threshold, respectively; and the nonlinear 

activation function, ϕ, represents the continuous-time variations of the dynamic firing rate of a bio-

logical neuron with a single, instantaneous, static value. Without nonlinearity, a model has limited 

expressiveness, as pure sequences of linear operations collapse into a single linear transformation 

[102–104]. 

Mathematically, a neuron computes a composition of an affine transformation, in which a bias term 

is added to the dot product of the inputs and weights,	z	=	 ∑ wixii +	b, followed by an element-wise 

nonlinear activation,	y	=	ϕ(z), using an activation function such as Sigmoid:  ϕ(z) = 1
1 + e	"	#

 , 

Tanh: ϕ(z)	=	 tanh(z) or rectified linear unit (ReLU): ϕ(z)	=	max(0,	z). [105–108] The operation of 

an entire layer containing m such neurons can thus be described in a compact matrix form 

as	y	=	ϕ(Wx	+	b), where W	∈ ℝm	×	d is the weight matrix, b ∈	ℝm is the bias vector, x	∈	ℝd is the 

input vector, and y ∈ ℝm is the output vector of the layer [105,106]. In a simple feedforward archi-

tecture, neurons are organized into layers, with the transformation from layer l - 1 to layer l defined 

by the equation	h(l)	=	ϕ(W(l)h(l	-	1)	+	b(l)), where h(l) denotes the activation vector of the l-th layer. 

The entire function for a network with a total of L layers is the mathematical composition of these 

individual layers (f1, f2, …, fL), where each function fl represents the transformation for the l-th layer: 

f(x)=fL∘fL	-	1∘⋯∘f1(x) [105–109]. This concept of layered representations is also inspired by biology, 

presenting a functional (rather than anatomical) analogy to certain aspects of cortical organization 

[101,102–104]. However, the main goal of modern ANNs is not to model the brain with biological 

accuracy, but to create efficient function approximation machines for statistical generalization 

grounded in engineering and mathematical principles [102–104]. The training of these models is typ-

ically performed in an end-to-end fashion, where the mapping function is learned through an iterative 

process of minimizing a loss function (ℒ), which quantifies the discrepancy between model predic-

tions and true values [100,102]. This optimization is predominantly performed via gradient descent, 

which updates parameters in the direction opposite to the loss gradient, with the update magnitude 
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controlled by the learning rate (η), as per the rule Δwi	=	-	η
∂ℒ
∂wi

, using gradients calculated efficiently 

by the backpropagation algorithm, a recursive application of the chain rule implemented via dynamic 

programming that propagates an error term (δl) backward through the network: 

δl = [(Wl	+	1)
T
 δl +	1] ∘ ϕ'(zl) [93,100,105]. After training, the model is expected to generalize by 

making predictions on unseen examples; its development can be monitored on a validation set, while 

final performance is evaluated on a held-out test set (e.g., using train-test splitting or k-fold cross-

validation) [105–108]. 

These foundations have given rise to the specialized architectures that dominate the field today, 

such as dense, feedforward multi-layer perceptrons (MLP), convolutional neural networks (CNN), 

recurrent neural networks (RNN), graph neural networks (GNN), and transformers, which, originat-

ing in domains like computer vision (CV) and natural language processing (NLP), now represent the 

forefront of multimodal learning [105,109]. In biomedical context, these ANN architectures can be 

used to analyze diverse data types from a wide array of sources: MLPs identify non-linear relation-

ships in scalar data (individual numeric values) to diagnose conditions and predict physiological fea-

tures (e.g., biomarker concentrations, physiological parameters); CNNs dominate biomedical image 

analysis, enabling detection, pixel-precise segmentation, and quantification (e.g., pathologies, histo-

logical structures, and biomarkers), with generative models providing image synthesis (e.g., cross-

modality transformation, registration, and augmentation); RNNs use internal memory states to pro-

cess sequential data (temporal or ordinal dependencies) for prognostic tasks (e.g., disease progression, 

readmission risk) and physiological signal reconstruction (e.g., electrocardiogram, time-series bi-

omarkers); and GNNs leverage topological and contextual information to analyze graph data (e.g., 

biomarker identification, molecular or gene interaction analysis, clinical outcome prediction, tissue-

level relationships in imaging) [110,111]. 

1.5 Computer vision: OverviewI. 

CV is an interdisciplinary field that seeks to replicate and automate the capabilities of the human 

visual system by transforming raw, multi-dimensional sensor data (e.g., digital images, videos, point 

clouds) into high-level semantic understanding via sophisticated algorithmic models. Modern CV ap-

proaches are deeply integrated within the broader framework of ML, particularly DL, leveraging ad-

vanced algorithms to analyze vast quantities of visual information and enabling a wide array of appli-

cations, including object recognition, localization, segmentation, scene understanding, event detec-

tion, and generative modeling [112–115]. 

Before the CNN revolution, CV was governed by different, fragmented paradigms of manually 

designed, problem-specific algorithms; it typically relied on encoding prior knowledge and heuristics 
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into a rigid, two-phase pipeline that separated handcrafted feature extraction from statistical ap-

proaches [112,116,117]. The feature extraction phase involved several parallel directions: early ap-

proaches, inspired by signal processing, extracted primitive elements like edges (e.g., Canny, Sobel 

operators), corners (e.g., Harris detector), and textures (e.g., Gabor filter banks with representations 

similar to those observed in the visual system), while another direction used variational methods to 

frame higher-level tasks as energy minimization problems (e.g., active contours segmentation or 

"snakes") [112,117–124]. However, with the rise of ML, the focus shifted to developing robust, in-

variant feature descriptors for pattern recognition, epitomized by algorithms like the scale-invariant 

feature transform and histogram of oriented gradients, which were designed to create discriminative 

"fingerprints" of local image regions, providing invariance to scale, rotation, and illumination [125–

129]. In the second phase, these high-dimensional descriptors were aggregated into a fixed-size fea-

ture vector, often via the "bag of visual words" model, then input to classical statistical learning algo-

rithms like the support vector machine. The fundamental limitation of this era was its bottleneck: the 

expressive power of the handcrafted features, which necessitated a shift towards an end-to-end, data-

driven representation learning paradigm [125–132]. 

CNNs are a specialized class of ANNs designed to process grid-like data, such as images. In stark 

contrast to the naive application of dense MLPs to images, which suffers from a combinatorial explo-

sion of parameters and the loss of spatial topology, CNNs are built on more efficient computational 

principles, introducing potent, neurobiologically inspired inductive biases [68,133–136]. Their con-

ceptual origins trace back to Hubel and Wiesel's seminal research [137] on the hierarchy of the visual 

processing (simple and complex cells), a model first operationalized by Fukushima's Neocognitron 

[138] and later made successful by LeCun's LeNet-5 [139]. CNNs achieve remarkable parameter ef-

ficiency through two core principles: sparse connectivity and weight sharing. Mimicking biological 

receptive fields, sparse connectivity means each neuron connects only to a small, local region of the 

preceding layer. Weight sharing applies the same set of weights (filters or kernels), where each kernel 

K ∈ ℝh×w×C is applied across the entire input I ∈ ℝH×W×C (formalizing that a feature detector is use-

ful everywhere), which drastically reduces parameters and builds translational equivariance into the 

model [68,133–136]. The fundamental building block of a CNN consists of a discrete convolution 

(more precisely, cross-correlation: (I ∗ K)(i,  j) =∑ ∑ ∑ 𝐼(i + m,  j + n, c)KC (m,  n, c)nm ), non-lin-

ear activation (e.g., ReLU), and a local pooling operation like max pooling (yj	= maxi∈$jxi). The 

pooling layer aggregates equivariant feature maps to push the representation towards translational 

invariance. Stacking these blocks creates a deep, hierarchical representation that functionally models 

the visual cortex, where the network learns to compose simple, low-level features (e.g., edges, 
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textures) from initial layers into progressively more abstract, high-level concepts (e.g., objects) in 

deeper layers. A typical classifier architecture concludes with dense (fully connected, FC) layers that 

process the vectorized feature maps for the final prediction [68,133–136]. This end-to-end paradigm 

became dominant after the 2012 ImageNet Large Scale Visual Recognition Challenge victory of 

AlexNet [140], a breakthrough driven by the convergence of deep architectures, massive GPU paral-

lelization, the ReLU activation, and novel regularization techniques like dropout and augmentation. 

The success of AlexNet spurred a rapid evolution of increasingly deep and sophisticated backbone 

architectures, including the uniform structures of VGGNet [141] and ResNet [142] with its gradient-

addressing skip connections. These backbones then underpinned complex CV tasks like object detec-

tion, which branched into two-stage, high-accuracy methods (e.g., Faster R-CNN) and single-stage, 

real-time approaches (e.g., You Only Look Once); and semantic segmentation, where encoder-de-

coder models like the U-Net [143] became the standard in biomedical imaging [133–136]. 

The main limit of CNNs lies in their rigid, local receptive fields inherently incapable of modeling 

long-range, global dependencies without a prohibitively deep hierarchy. This issue was directly ad-

dressed by the transformer architecture, a paradigm shift originating from NLP that challenges the 

decade-long hegemony of CNNs in CV. While CV was mastering spatial hierarchies, NLP had con-

currently evolved to understand sequential context, moving from RNNs (e.g., long short-term 

memory, gated recurrent unit) towards the transformer [144–146]. Although the two fields had long, 

symbiotic relationship (e.g., 1D CNNs for text, RNNs for image captioning), this evolution culmi-

nated in the revolutionary (multi-head) self-attention mechanism, a radical departure from recurrent 

or convolutional structures, creating a dynamic, data-dependent global receptive field by allowing 

every element in an input sequence to attend to every other. Its mathematical foundation is the scaled 

dot-product attention: Attention(Q,	K,	V)	=	softmax( QK
T

%dk
)V, where Q, K, and V represent the query, 

key, and value matrices, respectively [144–146]. The vision transformer [147] successfully adapted 

this model to CV by treating an image as a sequence of fixed-size patches, which are then linearly 

embedded into tokens analogous to words. The success of vision transformer on large-scale datasets 

demonstrated that the strong inductive biases of CNNs (e.g., locality) are not indispensable, as a more 

general, sequence-based model can learn these properties directly from data. However, the extremely 

data-hungry "tabula rasa" nature of transformers and the continued efficiency of CNNs on smaller 

datasets spurred the development of hybrid solutions aiming to combine the best of both worlds 

[147,148]. These include using convolution for low-level feature extraction, reintroducing a hierarchy 

by shifted-window self-attention (e.g., swin transformer), and augmenting CNNs with lightweight 

attention-like modules (e.g., convolutional block attention module, squeeze-and-excitation, attention 
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U-Net) [149–152]. 

The primary application of DL models in the biomedical domain is the comprehensive analysis of 

a wide spectrum of imaging data, spanning the segmentation and classification of anatomical, tissue-

level, cellular, or pathological structures from a diverse array of sources and modalities. This includes 

large-scale radiological data (computed tomography, magnetic resonance imaging, X-ray, ultra-

sound), high-resolution microscopic and optical data (histopathological slides, endoscopy-colonos-

copy; and ophthalmology sources like optical coherence tomography and color fundus photography), 

and functional or interventional data (single photon emission computed tomography, invasive coro-

nary angiography). Beyond direct structural analysis, these models also enable advanced methodo-

logical applications such as human-in-the-loop interactive segmentation, image registration, synthe-

sis, and cross-modality transformations for data augmentation, and biomarker quantification 

[153,154]. 

While these advanced architectures have yielded exceptional performance, their practical utility is 

constrained by a key bottleneck: a profound dependency on vast, meticulously annotated data. This 

dependency causes critical challenges, like mitigating overfitting, ensuring robustness against unseen 

distributions, and addressing the pervasive issues of data scarcity (quantity) as well as imbalance and 

limited representativeness (quality) [155–160]. These hurdles are particularly acute in high-stakes, 

annotation-heavy domains like histology and medical imaging, where creating granular ground truth 

(GT) requires immense resources, time investment, and specialized domain expertise [153,154]. In 

response, the research focus has shifted towards a suite of complementary, data-efficient strategies 

[155–160]. 

Data augmentation expands the dataset by generating synthetic yet plausible exemplars, thereby 

increasing dataset size, representational richness, and fidelity to the real-world distribution. Conse-

quently, it has evolved from an auxiliary technique into a core component of modern DL frameworks, 

acting as a powerful regularizer to improve model robustness and generalization [155–158]. In CV, 

input-space augmentations are often classified as classical or advanced. Classical methods include a 

wide array of geometric transformations (e.g., rotation, translation, shearing, warping, and non-linear 

elastic deformations), photometric alternations (e.g., brightness changes, color jittering), and pixel-

level conversions (e.g., random noise addition, application of image filters) [156,157]. Advanced 

strategies involve complex manipulations, such as image-mixing and regional erasure [161]. A pio-

neering mixing technique, MixUp [162], linearly interpolates between images and their labels, a con-

cept that spawned derivatives like Manifold Mixup [163] and patch-based extensions such as CutMix 

[164]. Subsequent advancements include strategies for mixing one or more samples at a pixel- or 

patch-level to enhance generalization, alongside techniques that improve plausibility by either using 
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saliency and activation maps for guidance or refining the boundaries of combined regions for a seam-

less blend [161]. Another advanced strategy employs generative models, which learn the underlying 

data distribution to sample entirely new, synthetic training data. The evolution of these models from 

variational autoencoders and generative adversarial networks to state-of-the-art diffusion models (e.g., 

DALL-E 3, Midjourney) and generative pre-trained transformer series has enabled the synthesis of 

high-fidelity, photorealistic images, also offering a powerful tool for dataset expansion [165]. In the 

biomedical domain, these strategies are critical to address: strict legal and ethical constraints on data 

acquisition; the immense variability of the data itself, spanning both sample properties (e.g., high in-

tra- and low inter-class variance, scarce controls, normal anatomical variations, disease rarity) and 

diverse imaging modalities (e.g., technical differences, domain shift, and domain-specific data types 

like 3D volumes); and the significant bottleneck of costly, expert annotation [166–168]. 

Beyond data augmentation, a second pillar of data-efficient strategies involves leveraging alterna-

tive forms of supervision. By generating training signals from unlabeled data, self-supervised learning 

has become a cornerstone of representation learning, redefining the transfer learning paradigm; while 

supervised pre-training on datasets like ImageNet was the standard, modern foundation models are 

built upon the resulting robust representations, enabling new capabilities like zero-shot learning and 

culminating in powerful multimodal systems. Semi- and weakly supervised methods aim to leverage 

small amounts of labeled data or cheaper, inexact/incomplete/inaccurate labels, respectively [88–

92,159]. Weakly supervised object localization and semantic segmentation (WSOL and WSSS) with 

image-level labels bridges the gap between expensive pixel-level annotation and weak labels by fol-

lowing a two-stage process: first, a classifier generates coarse localization maps extracting implicit 

information (e.g., saliency maps; class activation maps, CAMs [169]; attention maps), which are then 

post-processed and/or used as pseudo-masks to train a dedicated segmenter [159]. The inherent 

coarseness of these initial maps, compounded by the architectural biases of CNNs, poses a significant 

challenge, often resulting in issues akin to imperfect or noisy supervision [160]. Boundary recovery 

mitigates this issue by acting as a refinement step that sharpens class transitions and aligns the coarse 

segmentation with underlying image contours [160]. Refinement strategies include using superpixels 

or conditional random fields [160,170–172]; architectural solutions like multiscale feature fusion 

[173]; training-based approaches like using boundary-aware loss functions [174,175,143], exploiting 

multiple annotation candidates [176], and applying spatially structured soft labeling techniques [177–

180]. 

Consequently, alternative supervision approaches are increasingly applied in biomedical imaging 

to localize and segment target structures from weak labels [171,173,181–193]. Separately, localiza-

tion maps from classification models serve as vital interpretability tools, enabling experts to visualize 



15 
 

and validate predictive evidence to address the 'black-box' problem [194–203]. Both data-efficient 

learning and model transparency are critical for advancing research in high-impact areas, such as the 

analysis of neuropathological features in AD [204–207]. 

1.6 Supplementary context for collaborative studiesII., III. 

1.6.1 Cellular morphology as an indicator of microglial activationII. 
Microglial cells are the resident macrophage-like cells of the central nervous system, acting as its 

primary immune sentinels [208,209]. The morphology of microglia is highly plastic and serves as a 

key indicator of their functional state; under physiological conditions, they typically display a resting, 

ramified morphology with fine, motile processes for monitoring the microenvironment. From this 

surveillant state, they could transform into simplified activated forms in response to injury or inflam-

matory signals, such as those induced by lipopolysaccharide (LPS), a shift associated with effector 

functions like phagocytosis and cytokine release [210–214]. Previous studies conducted both in vivo 

and in vitro had established that N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquin-

oline-2-carboxamide (SZR104), a synthetic, brain-penetrable analog of the endogenous metabolite 

kynurenic acid (KYNA), exhibits broad anti-inflammatory properties, including the inhibition of 

phagocytosis and the downregulation of inflammatory marker protein expression levels [215–217]. 

However, the precise cytomorphological changes underlying these well-documented anti-inflamma-

tory effects of SZR104 have not been quantitatively characterized, creating a significant research gap 

that warrants a comparative microscopic analysis of microglial morphology under different experi-

mental conditions related to their activation characteristics. Addressing this gap requires a computa-

tional image analysis specifically for immunofluorescence micrographs of SZR104-treated microglial 

cell cultures, in order to objectively quantify and statistically compare the set of well-established mor-

phological parameters previously described for characterizing microglial activation states [218,219]. 

1.6.2 Autophagy regulation in microglia under different activation statesIII. 
Autophagy is a critical cellular homeostatic process that prevents cell damage through the clearance 

of harmful cytoplasmic material by forming autophagosomes, which fuse with lysosomes to degrade 

these components via resident hydrolases [220,221]. As a central element of the innate immunity in 

the central nervous system, microglial activation is a hallmark of neuroinflammation and neurodegen-

erative diseases; beyond the initial protective role of these microglial responses, excessive pro-inflam-

matory activity is increasingly recognized as a pathogenic factor [208,222]. Autophagy and inflam-

mation exhibit a bidirectional molecular relationship, with their pathways intersecting at key regula-

tory molecules such as sequestosome 1 (p62/SQSTM1) [223–225]. The cellular levels of 

p62/SQSTM1 cargo protein generally correlates inversely with autophagic activity, as p62/SQSTM1 
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itself is degraded by the process, decreasing upon autophagy induction accumulating upon autophagy 

inhibition [226–228], it serves as a crucial marker for monitoring autophagic dynamics, and it also 

can be detected as discrete intracellular puncta [225,227]. Investigating the effects of various stimuli, 

such as the pro-inflammatory LPS [229,230] and anti-inflammatory drugs like rosuvastatin (RST) 

[231–235], on microglial cultures provides insight into differences of the autophagy regulation during 

homeostatic and critical conditions. The use of cellular autophagy inhibitors like the ionophore mac-

rolide antibiotic bafilomycin A1 (BAF), which blocks autophagosome-lysosome fusion through V-

ATPase inhibition, is a common strategy to study the dynamics of the autophagy pathway in vitro 

[236–238]. Beyond the measurement of the marker protein levels, accurate identification and count-

ing of the p62/SQSTM1-positive puncta per cell from immunofluorescent images is a crucial step in 

related investigations. 

2. Aims of the study 
A. The primary aim of this study was to develop and validate a novel, two-stage WSSS framework 

for the accurate and automated pixel-level segmentation of ThioS-positive amyloid plaques from hu-

man brain histology micrographs. The central hypothesis was that inexpensive, rapidly generated, 

image-level labels (presence/absence of pathology) are sufficient to train a DL pipeline capable of 

producing high-fidelity segmentations, thereby circumventing the major bottleneck of costly and la-

bor-intensive manual annotation in quantitative neuropathology. To this end, the following specific 

objectives were established: 

1. To implement a robust image preprocessing and intensity correction pipeline to mitigate common 

fluorescence microscopy artifacts ensuring data integrity for downstream tasks. 

2. To train a lightweight classifier (SqueezeNet), optimized with a thresholded average pooling 

(TAP) layer, to generate robust, high-resolution CAMs that serve as coarse spatial localization 

priors from the weak, patch-wise image labels. 

3. To develop a sophisticated, on-the-fly data generation process that leverages these CAM-derived 

priors for an advanced object-level augmentation strategy, including creating object and BG scene 

databanks; and integrating a contour perturbation technique with a soft-copy and soft-paste (Soft-

CP) blending method to generate a diverse and anatomically plausible training set. 

4. To train a canonical segmentation network (U-Net) exclusively on these synthetic pseudo-labeled 

exemplars for the final, pixel-level refinement into precise object masks. 

5. To rigorously validate the end-to-end performance of the complete WSSS framework against 

manually annotated, dense GT masks using a stringent, patient-wise cross-validation scheme to 

assess the generalization capabilities of the model to unseen individuals. 
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B. As a secondary, exploratory aim, the study sought to demonstrate the practical utility of the seg-

mentations by performing a comprehensive, object-level morphometric analysis to investigate differ-

ences in plaque morphology across cortical regions and dementia statuses. 

C. Furthermore, this dissertation includes methodological contributions to two collaborative, co-au-

thored studies, with the following objectives: 

1. The development of a morphometric profiling workflow to objectively quantify changes in the 

anti-inflammatory phenotype of cultured microglia. 

2. The creation of a puncta-counting pipeline to accurately assess autophagy modulation by quanti-

fying p62/SQSTM1-positive autophagosomes within individual microglial cells. 

3. Materials and methods 
3.1 Human brain tissue samples and ethical declarationI. 

The human brain tissue samples used in this study were obtained from the Netherlands Brain Bank 

(Nederlandse Hersenbank/Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Am-

sterdam, The Netherlands). All tissue samples were collected from donors for or from whom a written 

informed consent for brain autopsy for research purposes had been obtained, and permission was 

granted for the use of tissue samples and for the anonymous use of clinical information. The study 

was approved by the local ethics committee and conducted in accordance with the Declaration of 

Helsinki (Project ID: 598/2009). The paraffin-embedded tissue sections originated from the parietal 

and temporal cortices (or subfields of these regions) of elderly subjects diagnosed with AD and age-

matched, non-demented controls. All samples were supplemented with anonymized clinical and 

pathological information; some of these are included in Publication I./Supplementary Table S6. 

3.2 Image acquisition and preprocessingI. 
For the present study, 7–8 μm thick paraffin-embedded brain sections were utilized [239]. Following 

an initial screening of available brain regions and cases, our work was focused exclusively on the 

superior temporal and parietal gyri of seven individuals, as only these areas provided sufficient quan-

tity and quality of ThioS-positive parenchymal amyloid structures for the analysis. The final dataset 

comprised a total of fourteen sections (one from each region per case), representing the two distinct 

experimental groups of cases: non-demented (Braak 2) and advanced AD (Braak 5–6). 

The prepared brain sections were stained with the amyloid-fibril-binding fluorescent dye ThioS to 

visualize plaques and other deposits [35–37], following a histological protocol based on the Krutsay 

method [53]. Prior to staining, sections underwent deparaffinization using cyclohexane isomers of 

xylene (3 × 15 min), were washed in absolute ethanol (3 × 2 min), and subsequently rehydrated 

through a descending ethanol series (96%, 70%, and 50% for 1 min each) before a final rinse in 
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distilled water. The rehydrated sections were then completely immersed in a freshly filtered 1 g/10 

mL aqueous ThioS solution (Reanal, Budapest, Hungary) for 10 minutes at room temperature. Fol-

lowing a brief differentiation step in alcohol and a subsequent rinse in distilled water, the sections 

were coverslipped with an aqueous mounting medium (Vectashield, Vector Laboratories, Peterbor-

ough, UK). To minimize photobleaching and preserve signal integrity, all stained slides were stored 

in dark, refrigerated conditions (4°C) and imaged within two weeks.  

High-resolution digital micrographs were acquired using a Leica DMLB epifluorescence micro-

scope (Leica Microsystems CMS GmbH, Wetzlar, Germany) equipped with an apochromatic objec-

tive (40×/0.75 ∞/0.17), a Leica DFC7000 T CCD camera, and LAS X Leica Application Suite X 

computer software (version 3.9.28093.0) (Leica Microsystems CMS GmbH, Wetzlar, Germany). Im-

ages of the amyloid deposits were captured in the green channel with a fixed exposure time of 45 ms 

and saved as 1920 × 1440 pixels (75 dpi) TIFF files, each embedded with a scale bar, with care taken 

to minimize spatial overlap during the systematic acquisition process. 

A reliable quantitative analysis of the acquired histological micrographs necessitated a robust pre-

processing pipeline to correct for two primary sources of fluorescence imaging artifacts: uneven illu-

mination (i.e., vignetting or radial intensity gradient) and BG noise from complex sources (out-of-

focus fluorescence from adjacent tissue planes, electronic noise from the detector, stray light within 

the optical path, and endogenous tissue autofluorescence), both of which can significantly compro-

mise downstream segmentation and morphometric analysis [60–62]. While conventional prospective 

methods like flat-field correction (white referencing) are well-established, their reliance on precisely 

replicated reference images for normalization, often in conjunction with shutter-closed dark-frame 

subtraction to model sensor-specific dark current, makes them impractical for many biological appli-

cations (often infeasible due to factors such as inconsistencies in the histological workflow, device 

anomalies and sample-specific chemical environments) [60,61,63]. Consequently, retrospective 

methods, which estimate the bias directly from the acquired images, offer a more robust alternative. 

These range from simpler, single-image techniques like pseudo-flat-field correction (which rely on 

the assumption of a near-uniform signal distribution across the image [61]) to more sophisticated 

multi-image strategies that generate an illumination correction function (ICF) by averaging multiple 

images and subsequently smoothing the result (e.g., with a large-kernel median filter) to produce a 

robust approximation for normalization [60,61,63–65]. Similarly, standard intensity thresholding 

(e.g., Otsu thresholding) [66] or morphological operations-based (e.g., "rolling ball" algorithm with 

size-based structuring element) [67] BG correction methods often fail on micrographs with overlap-

ping foreground (FG) and BG intensity distributions and high object-size heterogeneity [59]. More 

advanced statistical approaches, like the Silver Mountain Operator (SMO) [59] provide a robust 
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solution by directly restoring an unbiased and representative subset of the BG pixel distribution from 

the image itself. It employs a robust statistical procedure to select a set of BG pixels; the core of the 

algorithm involves simple mathematical operations, computing a moving average (the single param-

eter is the size of the kernel) over the normalized intensity gradients, followed by the extraction of 

their magnitudes. 

Our work implements a two-stage correction pipeline that adapts and combines these robust tech-

niques from the literature (Figure 1A). First, to address uneven illumination, a multi-image ICF was 

generated by averaging 45 selected micrographs with predominantly clear tissue areas, which was 

then refined using Gaussian blur and median filtering to isolate the low-frequency gradients and pro-

duce a robust approximation of the illumination non-uniformity [60,64,65]. Each micrograph was 

subsequently corrected via pixel-wise division by this ICF and scaled by the global spatial average of 

the ICF. Second, for BG estimation, we employed the SMO [59] configured with a 7-pixel averaging 

window and a 5th percentile threshold, without prior smoothing. Calculation was constrained to image 

regions excluding saturated (≥ 255) or empty (≤ 5) pixels. The per-image median of the estimated BG 

distribution was then subtracted from the entire unmasked image area, and the entire set of corrected 

images was collectively rescaled to a global 0–255 grayscale range and saved as 8-bit TIFF files. 

Following the image-wide intensity adjustments, the corrected micrographs served as the founda-

tion for a two-tiered annotation and dataset curation strategy designed for our WSSS framework by 

the generation of two distinct types of labels for training and evaluation. 

The primary dataset for model training was generated via a systematic patch extraction process 

using ImageJ (v1.47). A total of 6329 square regions of interest (ROIs) of 800 × 800 pixels, a size 

chosen to reflect the heterogeneous plaque size and density, were manually cropped from the 1607 

original micrographs (1920 × 1440), aiming to minimize spatial redundancy, although complete non-

overlap was often impractical. Each extracted patch was then assigned a weak, image-level binary 

label: '1' for the presence of visible ThioS-positive parenchymal pathology, and '0' for its absence. To 

ensure anatomical diversity and balanced representation, positive and negative patches were system-

atically extracted from both investigated brain regions for each of the 7 subjects, resulting in a final 

training set of 2978 positive and 3350 negative patches. This rapid, coarse-grained annotation strategy 

was underpinned by a key design choice to ensure model robustness: by defining the negative class 

solely by the absence of parenchymal deposits, confounding structures such as vascular amyloid and 

staining artifacts were intentionally included in both classes. This forces the model to learn the specific 

features of parenchymal plaques as the sole discriminative signal, preventing it from learning spurious 

correlations. 

The central hypothesis of this work is that such weak, image-level labels are sufficient for training 
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a WSSS framework to extract precise, pixel-level object masks dramatically accelerating large-scale 

pathological data collection and subsequent quantitative analysis. For the final, independent evalua-

tion of the complete WSSS pipeline, a secondary, dense GT dataset was meticulously created. In 

contrast to the initial patch-level weak labels used for training, this involved a labor-intensive, semi-

automated ImageJ-based process to generate precise, pixel-level binary segmentation masks for the 

entire, uncropped micrograph dataset. These masks, created with extensive manual oversight (e.g., 

visual inspection, fine-grained adjustments), were reserved exclusively for the final validation stage 

and were not used during training. Their sole purpose is to serve as the benchmark for the final eval-

uation, where the full-image segmentation maps, reassembled from the patch-level predictions, are 

directly compared against these GT masks using a comprehensive set of standard segmentation met-

rics. 

The computational workflow for all preprocessing and correction stages was implemented in Py-

thon (v3.10), leveraging standard scientific libraries (NumPy and OpenCV) [240–242], alongside the 

specific SMO Python package (https://github.com/maurosilber/smo) [59]. All intensive computations 

were executed within the Google Colaboratory cloud environment (https://colab.re-

search.google.com) [243]. The manual annotation tasks, encompassing both the weak patch-level la-

beling and the dense pixel-wise segmentation, were conducted using ImageJ (v1.47) (https://im-

agej.net/ij/docs/guide/user-guide.pdf) [244]. 

3.3 Deep learning models and experimental setupI. 

3.3.1 Overview: Architectures and methodological designI. 

While DL has significantly advanced medical image segmentation, its reliance on costly, dense pixel-

level labels remains a major bottleneck. Weakly supervised pipelines, which leverage inexpensive 

image-level labels, offer a pragmatic alternative. The core of our study is a WSSS approach designed 

to progress from weak, image-level labels to precise, pixel-level segmentation masks. The overall 

logic of this approach involves two distinct DL models operating in sequence. First, a lightweight 

classification network is trained on image-level binary labels to identify the presence or absence of 

parenchymal amyloid pathology. This classifier is then used to generate CAMs, which provide a 

coarse spatial localization of the discriminative features. These CAMs serve as the source for gener-

ating noisy but informative pseudo-labels, which, following an advanced dynamic augmentation pro-

cess, are used to train a second, powerful segmentation network for refinement, a U-Net, tasked with 

producing the final, high-fidelity pixel-wise object masks. 

A foundational technique in this domain is the CAM method [169], which is designed to extract 

localization information from a model trained solely on classification tasks by identifying and 

https://github.com/maurosilber/smo
https://colab.research.google.com/
https://colab.research.google.com/
https://imagej.net/ij/docs/guide/user-guide.pdf
https://imagej.net/ij/docs/guide/user-guide.pdf
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visualizing the image subregions that are most discriminative for a particular class prediction. Its 

mechanism involves computing a class-specific weighted sum of the spatially informative feature 

maps from the final convolutional layer of a trained classifier to produce a coarse localization map, 

which can then be upsampled, often via bilinear interpolation, into a heatmap highlighting the most 

influential areas to the outcome. The value of the CAM Mc at a spatial location (x,	y) for a given class 

c is generated using the formula Mc(x,	y)	=	 ∑ wk
cfk(x,	y)k , where fk(x,	y) is the activation of the k-th 

feature map at that location (x,	y), and wk
c is the weight corresponding to class c for that feature map 

[169]. These class-specific weights are learned by the final FC-layer of a deep classifier, which pro-

duces the final class scores by applying a linear transformation and a nonlinear activation function 

(e.g., sigmoid or softmax) to a feature vector created by a preceding global pooling operation (e.g., 

global average pooling – GAP) that condenses each feature map into a single scalar value [169]. While 

standard CNN classifiers used FC-layers for this final step, the introduction of global pooling repre-

sented a significant conceptual advance [245], as it reduces overfitting, enhances generalization, and 

improves model interpretability by establishing a direct correspondence between feature maps and 

class categories, a quality especially valuable in medical imaging, where explainability is crucial 

[245,246]. Despite its ingenuity, the standard CAM approach is hindered by two major limitations for 

direct application in precise segmentation: its inherently coarse-grained localization due to the low 

mapping resolution of conventional CNNs, and the rigid architectural constraint imposed by the req-

uisite GAP layer, which often necessitates substantial and potentially performance-degrading model 

modifications [169,247]. 

To address the limitations of the standard CAM, the SqueezeNet architecture was selected for the 

classification and initial localization stage (Figure 1B). As a compact and modular CNN, SqueezeNet 

is known for achieving AlexNet-level accuracy with an approximately 50-fold reduction in parame-

ters [248]. This parameter efficiency is accomplished through its core building blocks, the "fire mod-

ules," which employ a "squeeze-and-expand" strategy using 1 × 1 and 3 × 3 filters to reduce the com-

plexity and size of the model. Unlike larger networks that require significant modification (the re-

moval of layers) to preserve spatial detail and increase their mapping resolution (e.g., AlexNet-GAP, 

VGGNet-GAP, GoogLeNet-GAP - increasing from 6 × 6 to 13 × 13 for a 227 × 227 input, or from 7 

× 7 to 14 × 14 for a 224 × 224 input), the design of this classifier intrinsically delays downsampling, 

naturally producing a higher-resolution final feature maps (13 × 13 for a 224 × 224 input), and it also 

includes a global pooling layer by default [248]. For our pipeline, the 800 × 800 input patches were 

resized to 572 × 572 and normalized to the interval [0, 1], achieving a mapping resolution of 34 × 34 

and aligning with the subsequent U-Net refinement. We adopted the "simple bypass" variant of the 
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architecture, which incorporates skip connections around "fire modules" (3–9) to enhance perfor-

mance without increasing model size, adding a final sigmoid activation for our binary classification 

task. To further improve localization quality based on the work of [247], the standard GAP layer was 

replaced with a TAP layer, averaging activations above a threshold to balance the broad coverage of 

GAP with the focused precision of global max pooling (GMP), and negative weight clamping was 

employed during CAM generation, a technique which provides a cleaner localization by suppressing 

BG noise while preserving the entire object extent, including its less discriminative parts. 

In addition to the architectural design, the training strategy for the SqueezeNet classifier incorpo-

rated an extensive on-the-fly data augmentation protocol to improve generalization. Beyond standard 

geometric transformations (rotation, shearing, zooming, horizontal and vertical flipping), this protocol 

was complemented by mixup regularization. A key finding of our preliminary experiments was the 

necessity of a class-context-dependent parameterization for the symmetric Beta-distribution used to 

sample the mixup coefficient, λ. For intra-class mixing, a Beta(α = 0.8, β = 0.8) distribution was 

used to generate strongly interpolated examples. For inter-class mixing, however, the standard ap-

proach [162] proved counterproductive due to the presence of weakly staining amyloid deposits. Mix-

ing positive signals with negative samples produced attenuated images that visually resembled natu-

rally weak positives yet were assigned disproportionately low soft labels, an effect akin to manifold 

intrusion. To avoid creating supervisory ambiguity, a Beta distribution with low concentration param-

eters (α = β = 0.2) was employed to keep the mixing minimal, thereby preventing the model from 

learning to penalize the defining features of these diffuse plaques. 

Following model fitting, CAMs were extracted from the classifier and prepared for the subsequent 

refinement process involving U-Net training. Initially, the 34 × 34-pixel maps were upsampled to 572 

× 572 to align with a standard U-Net architecture and then normalized on a per-sample basis to a 

range of [0, 1], a process simplified to scaling by the maximum activation value as the preceding 

negative weight clamping had already guaranteed a minimum of zero [169,247]. To create dedicated 

object and BG databanks for dynamic image synthesis, pixel-level pseudo-masks and their corre-

sponding image patches were generated based on the scaled heatmaps using a simple two-level thresh-

olding. First, a high-confidence FG mask prior was generated for each CAM by applying a strict 

threshold of > 0.5. The contours of the resulting binary regions, detected via cv2.findContours [242], 

were then used to extract the corresponding object priors, along with their local context, from the 

micrograph patches, populating a dedicated object-level image bank. In a parallel process designed to 

synthesize BG-only scenes, a more lenient threshold of > 0.2 was applied to the CAMs. These initial 

regions were then dilated using a 25-pixel circular structuring element to create expanded buffer 

zones, and the resulting expanded mask was then removed from the image. These irregular holes were 
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inpainted using the Shift-Map algorithm (OpenCV 4.2.0) [242], a method that reconstructs missing 

regions by optimizing a Markov random field energy function based on dominant patch offsets [249], 

notably without requiring additional DL models. These completed, object-free images were then ag-

gregated into a unified BG bank, supplementing the original set of negative samples. 

For the pixel-wise refinement stage of our WSSS framework (Figure 1C), we selected the canonical 

U-Net [143] as the backbone, widely regarded as a well-documented benchmark for biomedical seg-

mentation tasks [250–252], and we implemented its standard 'vanilla' architecture with a patch-based 

training manner from scratch. Its proven effectiveness in data-scarce scenarios and robust symmetric 

encoder–decoder design provides a solid foundation, allowing the focus to remain on our advanced 

data-centric approach and the challenges of weak label handling, rather than on complex architectural 

modifications. 

The contracting path of the network consists of repeating blocks of 3 × 3 convolutions with valid 

padding and 2 × 2 max pooling operations, which extract high-level semantic representations and 

progressively reduce the spatial resolution while increasing the number of feature channels. This 

downsampling process culminates in a bottleneck layer at the lowest resolution. Conversely, the ex-

pansive path systematically restores spatial resolution through blocks that first perform a 2 × 2 up-

convolution and then combine the resulting feature maps with those from the corresponding contract-

ing path level, which are first cropped for spatial alignment before being transferred using shortcut 

connections. Finally, a 1 × 1 convolutional layer is used to generate the pixel-level class probabilities 

from which the final segmentation is produced [143,250].  

To ensure the generalization capabilities of the segmenter network, we developed an extensive ob-

ject-level augmentation pipeline, recognizing that robust augmentation is paramount for achieving 

optimal performance in segmentation tasks [143,250]. The pixel-level supervisory signal for the U-

Net training was provided by synthetically generated pseudo-mask and image pairs, assembled on-

the-fly from previously curated object and BG databanks. 
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Figure 1. Schematic of the three-stage pipeline for weakly supervised amyloid plaque segmentation. (A) The 
first stage involves robust image preprocessing of micrographs stained with ThioS, where an ICF mitigates uneven 
illumination and the SMO estimates and corrects for BG noise. (B) In the second stage, a SqueezeNet classifier 
incorporating a TAP layer is trained on weakly labeled image patches (presence/absence of amyloid) to generate 
CAMs. These maps undergo post-processing (e.g., negative weight clamping, thresholding) to create databanks of 
FG object priors and inpainted, object-free BG images. (C) The third stage utilizes these databanks for on-the-fly 
synthesis of training exemplars, combining objects and BGs with advanced augmentation techniques like Soft-CP 
and contour synthesis. A U-Net segmentation model is then trained on these synthetic pseudo-labels, optimized 
with an asymmetric unified focal loss (ℒaUF), and final full-image masks are produced using an overlap-tile infer-
ence strategy and border mirroring. Our framework enables to semantically distinguish parenchymal amyloid pa-
thology from confounding elements using only weak supervision, thereby surpassing the limitations of methods 
that rely solely on ThioS-staining intensity. All scale bars shown consistently represent a length of 100 microme-
ters, and their size is adjusted to match the corresponding image panels. 
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These databanks, as described in the preceding sections, were created utilizing the CAMs of the 

positively labeled images from the SqueezeNet classifier and subsequently stored for the training 

phase. Our modular approach decouples image components and maximizes the environmental and 

contextual diversity available for object insertion, providing a foundation for large-scale dynamic syn-

thetic data creation via object-level augmentation [253–260]. Specifically, during the U-Net training 

phase, a random number of object instances (between 0 and 5) were inserted into these BG scenes to 

address data scarcity and class imbalance, while their corresponding pseudo-masks were handled sim-

ilarly, allowing for a combinatorial synthesis of data that augments the critical boundaries between 

objects and their environment. 

To further enhance diversity, particularly at object boundaries, a contour perturbation step was in-

tegrated into the pipeline prior to the cut-and-paste operation. A synthetic contour was generated for 

each pseudo-object mask and subsequently used both to update the mask itself and to crop the corre-

sponding grayscale image region from its local surroundings. While contour randomization has been 

explored in radiomics to assess feature robustness against delineation uncertainty [261,262], and syn-

thetic contour generation has been used in texture segmentation (e.g., hematoxylin/eosin lymphoma 

mosaics) [263], our approach is novel in repurposing these concepts specifically for object-level data 

augmentation in a weakly supervised setting. The applied perturbation adapts the restorable contour 

synthesis algorithm proposed in [264] by modifying its core mechanism to enhance both structural 

integrity and variability, though it was primarily developed to generate restorable GT approximations 

for evaluation tools also has a suggested potential for augmentation. To achieve this, instead of inject-

ing Gaussian noise in arbitrary directions as in the original method [264], we constrained keypoint-

displacement to be perpendicular to an approximation of the local contour tangent, a strategy that 

ensures perturbations occur along the normal vector, effectively preventing self-intersections and 

maintaining a coherent, plausible shape outline even when introducing a greater degree of variability 

(standard deviation parameter). The keypoints for the polygonal approximation were sampled at in-

tervals of 5–10 pixels along the original contour, and the magnitude of the applied noise was directly 

proportional to this sampling gap size. 

Finally, to ensure the natural-looking integration of the objects, the Soft-CP blending strategy was 

applied [258]. This technique smooths object mask edges through a sequence of erosion and dilation 

operations (5 iterations each) and weights the mask values based on their distance from the contour 

boundary, while using this soft mask to blend the input images for seamless visual transition. In our 

application, while the blending was applied to the input image, the transitional regions of the soft 

masks were ignored during loss computation, analogously to the trimap technique. These unlabeled 

zones encourage the U-Net to infer the surrounding, uncertain areas by using the hard, high-
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confidence pseudo-mask regions as "seeds" and propagating the labels from the core regions. 

Once the U-Net was trained on these synthetically generated exemplars, a standardized inference 

and post-processing pipeline was employed to generate the final segmentation for the entire micro-

graphs. First, to prevent edge artifacts, an overlapping tiling strategy with border mirroring was em-

ployed, dividing each micrograph into tiles that were resized for prediction before their resulting 

masks were reassembled into a single segmentation map. This raw map subsequently underwent a 

binary thresholding (at 0.5), hole-filling, and the removal of both sub-3500-pixel and image-bound-

ary-adjacent particles. 

3.3.2 Implementation details: Training and evaluation strategyI. 

The SqueezeNet-TAP classification model was trained from scratch using the cropped histopatholog-

ical patches and their corresponding image-level binary GT-labels (presence/absence of parenchymal 

amyloid) with on-the-fly augmentation. The training was performed using the root mean square prop-

agation (RMSprop) optimizer with a fixed learning rate of 5 × 10−6 and a batch size of 64, over 800 

epochs. The objective was to minimize the binary cross-entropy loss (ℒBC), a standard loss function 

for binary classification tasks that measures the divergence between the true labels (y) and the pre-

dicted probabilities (p): 

ℒBC = - 1
N
∑ [yᵢlog(pᵢ) + (1	- yᵢ)log(1	- pᵢ)]N

i	=	1   

The U-Net segmentation model was subsequently trained using exclusively the on-the-fly gener-

ated synthetic dataset sourced from the databanks of the objects and scenes produced based on 

SqueezeNet-CAMs. For this task, the optimization was performed using the adaptive moment esti-

mation (Adam) optimizer, configured with a learning rate of 0.001 and standard β1 = 0.9, β2 = 0.999, 

ε = 1 × 10−7 parameters. The model was trained for 30 epochs with a batch size of 16. To further 

address the significant pixel-wise class imbalance inherent in our dataset, a generalized loss function, 

the asymmetric unified focal loss (ℒaUF) was chosen [265] that provides a unified framework inte-

grating the benefits of modern region-, distribution-based, and compound losses requiring only three 

hyperparameters to control its behavior, which were set to their proposed values of λ = 0.5 (compo-

nent weighting), δ = 0.6 (balancing), and γ = 0.5 (focusing parameter). Its asymmetric formulation 

introduces a beneficial bias towards the FG class at the expense of the BG. In our implementation, the 

standard ℒaUF was adapted for the training data to account for the presence of ignored pixels (i.e., the 

trimap regions), ensuring that these areas did not contribute to the final loss. The formal definition of 

the ℒaUF involves its two components, the modified asymmetric focal loss (ℒmaF) and the modified 

asymmetric focal Tversky loss (ℒmaFT): 

ℒaUF = λℒmaF + (1 - λ)ℒmaFT  
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ℒmaF = - δ
N

yi:rlog(pt,r)	- 
1 - δ

N
∑ (1 - pt,c)

γlog(pt,r)c ≠ r   

ℒmaFT	=	 ∑ (1 -	mTI)c	≠	r 	+	 ∑ (1 -	mTI)c	=	r
1 -	γ  

Here, N denotes the total number of pixels, while y and p are the labels and predicted values. The 

term pt represents the probability of predicting the true values. Furthermore, i, c, and r are the respec-

tive indices for the pixel, class, and rare class. Finally, mTI is the modified Tversky index, which is 

given by: 

mTI = 
∑ p0ig0i
N
i = 1

∑ p0ig0i
N
i = 1  + δ∑ p0ig1i

N
i = 1  + (1 - δ)∑ p1ig0i

N
i = 1

  

In this index, p0i and p1i represent the predicted probabilities for BG and FG, while g0i and g1i are 

the respective indicators of the GT (taking a value of 1 for true, 0 otherwise) [265]. 

To rigorously assess the performance, a unified experimental setup was established for both the 

classification and segmentation models (SqueezeNet, U-Net), based on a patient-wise 7-fold cross-

validation scheme with each fold representing a distinct subject (i.e., a leave-one-subject-out ap-

proach), ensuring methodological consistency and data integrity. This patient-level splitting was de-

liberately chosen to prevent any form of data leakage between subjects, thereby providing a realistic 

estimate of how well the models generalize to new, unseen individuals, which is a critical requirement 

in clinical applications. A key aspect of our evaluation strategy was the strict preservation of these 

cross-validation folds across both modeling tasks, made essential by the sequential nature of our pipe-

line, where the classification model is tasked with generating localization priors (CAMs) for the sub-

sequent training of the segmentation model. By maintaining the same data splits, we ensured that for 

any given subject (fold) as a test set, the priors used to train the segmenter were generated exclusively 

by a classifier that had never been exposed to that subject's samples. In this setup, the dataset was 

partitioned into seven folds, where each fold contained all the image patches from a single, unique 

subject (including all image samples from the patient’s two brain regions). The models were then 

trained iteratively seven times (resulting in seven distinct trained models for each task); in each itera-

tion, six folds (subjects) were used for training, while the remaining one was held out for testing. The 

final performance metrics were calculated by averaging the results obtained across these seven inde-

pendent test folds. 

Within each cross-validation loop, a robust procedure was followed for model training and selec-

tion. For the SqueezeNet classifier, a development (or validation) set was created by randomly sam-

pling 10% of the data from the six active training folds to guard against overfitting. After training for 

800 epochs, with checkpoints saved periodically, the model state that achieved the lowest validation 

loss on this development set was selected for the final evaluation on the held-out test subject (and 
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CAM generation for the U-Net training). In contrast, for the U-Net segmenter, a different strategy was 

employed. While a similar 10% development set was used for training dynamics monitoring, it served 

exclusively for observing stability; due to the computational demands of the augmentation pipeline, 

training was limited to a fixed duration of 30 epochs. Consequently, model selection was not based 

on its performance; instead, the model checkpoint from a fixed, predetermined epoch (the 30th) was 

consistently used for the final evaluation. This development set also underwent the full image aug-

mentation process, ensuring it reflected the synthetic boundary variations present in the training im-

ages. 

The evaluation of the pipeline focused on its end-to-end segmentation performance, validating the 

final assembled and postprocessed predictions against our manually annotated full-field GT-masks 

under the rigorous protocol described. Beyond the direct evaluation of the classification performance 

of the SqueezeNet, the effectiveness of its localization priors was measured implicitly by their down-

stream impact on the final segmentation performance. This decision was informed by the significant 

computational cost of the rigorous evaluation and by several challenging characteristics of the patch-

based dataset that would complicate any fair comparison. The performance of both the classifier and 

segmenter was quantified using standard metrics derived from a confusion matrix; distinction lies in 

the evaluation level: image-level for the SqueezeNet classifier and pixel-level for the U-Net seg-

menter. To present these metrics in a unified and non-redundant manner, the following table (Table 

1) uses a combined notation where the c/s indicates that the formula applies to both classification (c) 

and segmentation (s) contexts, using the appropriate confusion matrix elements. 

The entire training and evaluation pipeline was implemented in Python using the TensorFlow 

framework, supported by standard libraries for data handling and augmentation [240–242,266]. All 

high-intensity computations were performed on an NVIDIA GeForce RTX 4090 GPU with 24 GB 

of dedicated memory. 

Table 1. Overview of Performance Evaluation Metrics. The table defines the standard metrics used to assess 
the performance of both the classification and segmentation models, with all formulas derived from the confusion 
matrix elements: true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The sub-
script c/s is used to denote applicability to both the image-level classification (c) and pixel-level segmentation (s) 
contexts, respectively. 

Accuracy / Pixel-level Ac-
curacy (PA):                 
TPc/s+TNc/s

TPc/s+TNc/s+FPc/s+FNc/s
 

This metric represents the overall fraction of correctly identified items (either image 
patches for classification or pixels for segmentation). While providing a general 
measure of reliability, it can be misleadingly high in scenarios with significant class 
imbalance, a common issue in pixel-level segmentation. 

Precision:                                    
TPc/s

TPc/s+FPc/s
 

This metric quantifies the proportion of true positive predictions among all instances 
identified as positive. For classification, it indicates the reliability of patches flagged 
as containing pathology. For segmentation, it reflects the fraction of pixels correctly 
identified as deposit within the prediction. 
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Recall (Sensitivity):                 
TPc/s

TPc/s+FNc/s
 

This metric measures the model's ability to identify all true positive instances. In the 
classification context, it shows the proportion of actual deposit-containing patches 
that were successfully detected. In segmentation, it measures the fraction of true de-
posit pixels that the model successfully captured. 

F1-Score / Dice Score Co-
efficient (DSC):                        

2*TPc/s
2*TPc/s+FPc/s+FNc/s

 

This metric is defined as the harmonic mean of precision and recall and provides a 
balanced assessment of performance. It is commonly referred to as the F1-score in 
classification tasks, where it is particularly informative for imbalanced datasets, and 
as the DSC in segmentation, where it serves as a standard measure of agreement 
widely used in biomedical imaging to quantify the spatial overlap between prediction 
and GT. 

Jaccard Index (IoU):        
TPs

TPs+FPs+FNs
 

This metric, also known as intersection over union, provides a stricter assessment of 
spatial overlap than DSC. It calculates the ratio of the intersection to the union of the 
predicted and GT positive regions. 

Specificity:                                       
TNs

TNs+FPs
 

This metric measures the model's ability to correctly identify true negative (BG) pix-
els. High specificity is crucial for avoiding over-segmentation, ensuring non-deposit 
regions are correctly ignored. 

Negative Predictive Value 
(NPV):                                
TNs

TNs+FNs
 

This metric indicates the proportion of correctly identified negative pixels among all 
instances predicted as negative, measuring the reliability of a negative prediction. 

False Positive Rate 
(FPR):                      
FPs

FPs+TNs
 

This metric quantifies the proportion of negative pixels that were incorrectly classified 
as positive. 

False Discovery Rate 
(FDR):                          
FPs

FPs+TPs
 

This metric indicates the proportion of incorrect positive predictions among all in-
stances predicted as positive. 

False Negative Rate 
(FNR):                     
FNs

FNs+TPs
 

This metric represents the fraction of actual positive pixels that the model failed to 
detect. 

False Omission Rate 
(FOR):                     
FNs

FNs+TNs
 

This metric measures the proportion of false negatives among all instances predicted 
as negative, quantifying the risk of a negative prediction being incorrect. 

3.4 Morphometric profiling of amyloid deposits: Particle analysisI. 
A detailed morphometric analysis was conducted on parenchymal amyloid deposits, comparing sam-

ples across both cortical regions (parietal and temporal) and dementia statuses (dementia and non-

dementia). The methodology involved delineating plaque subregions based on the corrected staining 

intensity, extracting a comprehensive set of object-level morphometric parameters, and performing a 

comparative statistical analysis. To quantitatively differentiate plaque components based on a non-

specific stain alone, we followed a method from prior work [55]. We delineated compact and diffuse 

subregions for each plaque using fixed intensity thresholds derived from the 80th and 50th percentiles 

of the global intensity distribution, which was calculated from all pixels within the previously seg-

mented deposit masks across the entire dataset. These binary masks, along with the original grayscale 

data, formed the basis for all feature extraction. 
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In total, 19 morphometric parameters were extracted using ImageJ and its FracLac plugin 

(https://imagej.net/ij/plugins/fraclac/FLHelp/Introduction.htm) [244,267,268]. While 7 of these ex-

tracted measures have been previously applied to the analysis of amyloid plaques [24,30–

32,44,55,269], this study introduces 12 additional descriptors from general biological (cellular or tis-

sue-level) analysis workflows to offer novel insights into the structural organization of the amyloid 

deposits. These parameters were grouped into four functional categories:  

• Size-related metrics: All size-related metrics were log-transformed (base 10) to manage the 

characteristic log-normal size distribution of amyloid plaques. This category included core met-

rics including deposit area, compact area (in µm²), calculated from pixel counts, and the pe-

rimeter (in µm), representing the boundary length, as well as convex hull metrics (features 

were derived from the convex hull, the minimal convex polygon enclosing the deposit) captur-

ing overall plaque dimensions. These latter included hull area (µm²), hull perimeter (µm), 

bounding circle diameter (µm), maximum span (µm), and mean radius (µm). 

• Structural complexity descriptors: Size-invariant features were measured to quantify intricate 

spatial patterns and irregularity of plaques. These included fractal dimension (quantifying com-

plexity via a box-counting algorithm) and lacunarity (measuring spatial heterogeneity or "gap-

piness") were computed using the FracLac plugin with a binary scanning method, averaged over 

12 randomized grid positions for robustness to assess complexity and heterogeneity), as well as 

further core- and hull-derived metrics like roughness (perimeter-to-hull-perimeter ratio, captur-

ing boundary jaggedness), circularity (area-perimeter relationship, similarity to a perfect cir-

cle), and solidity (deposit-to-hull-area ratio, indicating compactness). 

• Geometric and symmetry features: These convex hull-based parameters characterized the 

overall shape and elongation of deposits, including the span ratio (major-to-minor axis ratio), 

max/min radii ratio, and hull circularity. 

• Intensity-based characteristics: These parameters captured information related to staining in-

tensity and distribution, including the mean gray value, integrated density (product of the area 

and the mean gray value, also log-transformed), and the diffuseness index (the proportion of 

the non-compact area relative to the total deposit area. 

The extracted morphometric data were then subjected to a comparative statistical analysis across four 

experimental groups defined by cortical region and dementia status: (1) parietal/non-dementia, (2) 

parietal/dementia, (3) temporal/non-dementia, and (4) temporal/dementia. Prior to analysis, all pa-

rameters were standardized via z-score transformation (SciKit-Learn StandardScaler) [270], and a 

small constant was added to features with zero values (e.g., compact area) to permit the required log-

transformation [271,272]. The statistical workflow involved employing PCA to reduce the 

https://imagej.net/ij/plugins/fraclac/FLHelp/Introduction.htm
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dimensionality of the feature space and identify the dominant modes of morphometric variation. The 

principal components (PCs) explaining most of the data variance were then selected for group-wise 

comparisons using an analysis of variance (ANOVA) to detect significant differences in the average 

PC scores across the four experimental groups, followed by a Tukey post-hoc test for pairwise com-

parisons. All statistical procedures were performed using Python (with libraries such as scikit-learn, 

matplotlib, pandas, and scipy) and R (stats package) to ensure reproducibility [240,270,273–276]. The 

ImageJ software and its FracLac plugin can be accessed via their respective official documentation 

websites [244,267,268]. 

3.5 Supplementary methodological contributions to collaborative studiesII., III. 

3.5.1 Ethical declarationsII., III. 
All animal experiments were carried out in strict compliance with the European Council Directive 

(86/609/EEC) and EC regulations (O.J. of EC No. L 358/1, 18/12/1986) regarding the care and use 

of laboratory animals for experimental procedures and followed relevant Hungarian and local legis-

lation requirements. Our experimental protocols were approved by the Institutional Animal Welfare 

Committee of the University of Szeged (II./1131/2018). Pregnant Sprague–Dawley rats were main-

tained under standard housing conditions and fed ad libitum. 

3.5.2 Quantitative morphological analysis of microgliaII. 
In addition to the primary research presented in this thesis, I contributed as a co-author to a collabo-

rative study investigating the cytomorphological effects of the anti-inflammatory compound SZR104. 

My primary objective and contribution to this project was to design and execute a computational 

image analysis workflow for immunofluorescence micrographs to objectively quantify and statisti-

cally compare a set of morphological parameters. 

The analysis was performed on two-channel digital micrographs (.tif format) provided by the col-

laborating laboratory. These images captured secondary microglial cultures derived from newborn rat 

forebrains, where cell nuclei were labeled with 2-[4-(aminoiminomethyl)phenyl]-1H-indole-6-car-

boximidamide hydrochloride (DAPI; blue channel), and the cytoplasm of microglia was identified 

with an anti-CD11b/c primary antibody visualized by an Alexa Fluor 568-conjugated secondary an-

tibody (red channel). My workflow, designed to extract robust quantitative data from these images, 

was implemented primarily in ImageJ (v1.47) and its FracLac plugin [244,267,268], with all subse-

quent statistical analysis conducted in Python [240]. 

The process involved splitting the multi-channel images, converting each channel to 8-bit grayscale, 

and binarizing them using a consistent threshold. A key challenge, a frequently observed weaker cy-

toplasmic staining intensity in the perinuclear region, was overcome with a two-channel segmentation 
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strategy. First, the separate binary silhouettes for nuclei and cytoplasm were subjected to a series of 

automated cleaning operations (hole filling, watershed separation, size- and edge-exclusion) and man-

ual editing where required for heavily clustered cells. Then, the cleaned nuclear and cytoplasmic 

masks were merged to generate a final, solid cell silhouette for quantification, effectively filling any 

potential gap in the cytoplasmic signal. 

From these final silhouettes, a comprehensive set of morphometric parameters was quantified using 

the ImageJ and FracLac plugin [244,267,268]. The definitions for most of the quantified parameters 

(including area, perimeter, convex hull metrics, and fractal analysis) are described in detail in Chapter 

3.4 of this dissertation and are therefore not reiterated here. This analysis specifically included the 

transformation index, the reciprocal of circularity, as a conventional descriptor of microglia morphol-

ogy [218]. Conversely, metrics primarily used for the characterization of amyloid plaques in the main 

body of this thesis, such as compact area and diffuseness index, were not applied in this cellular con-

text, nor were the intensity-based measurements also performed in that study. It is noted, however, 

that for fractal dimension measurements, the solid binary silhouettes were first converted to single-

pixel outlines as required by the box-counting algorithm to quantify the complexity of the cellular 

boundary [219] (Publication II./Supplementary Figures S2–S4). 

Finally, I conducted the statistical analysis on the full dataset (Publication II./Supplementary Table 

S1), comprising 974 individual microglial cells across six experimental groups. This was performed 

in a Google Colaboratory notebook using Python (v3.7.13), leveraging the SciPy, Pandas (v1.4,.4), 

and NumPy (v1.23.0) libraries [240,241,243,273,274]. To test for differences between the groups, a 

non-parametric Kruskal–Wallis H-test was applied, followed by post-hoc Mann–Whitney U tests 

with Bonferroni correction for multiple comparisons. 

3.5.3 Quantitative analysis of autophagosomes in microgliaIII. 
In a second collaborative study, to which I contributed as a co-author, the project aimed to investigate 

the regulation of autophagy in microglia under different inflammatory conditions. My specific role in 

this project was to develop and apply an image analysis workflow to accurately identify and count 

p62/SQSTM1-positive puncta per cell from the provided immunofluorescent images. 

The analysis was performed on three-channel immunofluorescent digital micrographs (.tif format) 

provided by the collaborating laboratory. These images captured secondary microglia-enriched cul-

tures where microglia were identified with an anti-Iba1 antibody visualized by an Alexa Fluor 568-

conjugated secondary antibody (red channel), autophagosomes were labeled with an anti-

p62/SQSTM1 antibody visualized by an Alexa Fluor 488-conjugated secondary antibody (green 

channel), and nuclei were stained with DAPI (blue channel). My contribution was to develop and 
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execute a specific workflow in ImageJ [244] to quantify the number of p62/SQSTM1 puncta within 

the cytoplasm of individual Iba1-positive microglial cells across the different experimental conditions. 

The initial and most critical step after scaling was the accurate segmentation of individual microglial 

cells to create ROIs for the analysis. To achieve this, a multi-step, fully automated process was devel-

oped and performed under identical settings for each image to extract the contours of Iba1-positive 

cells and their corresponding nuclei. The process involved splitting the image channels, converting 

them to 8-bit grayscale, and then applying noise reduction, BG correction, and consistent threshold-

ing, followed by binary morphological operations and filtering to create clean masks. A key step for 

separating touching cells was using the Find Maxima on the unthresholded DAPI channel to generate 

segmenting lines, which were then applied to the binarized Iba1 and DAPI masks, ensuring that 

puncta counts could be reliably assigned to unique, intact cells. 

Once the cytoplasmic ROI for each of the 1350 identified microglial cells was defined, the analysis 

focused on the green (p62/SQSTM1) channel. To enhance the puncta signal against diffuse cytosolic 

staining (soluble component of the p62/SQSTM1 pool) and BG noise, a rolling ball BG subtraction 

algorithm was applied, with the radius parameter set based on the upper bound of the known autoph-

agosome size range (0.75 μm = 4.215 pixels). Subsequently, the images were binarized, and water-

shed and fill holes operations were used to separate individual puncta. A critical quality control step 

was the automated filtering of detected objects based on size. Following the literature and the estab-

lished scale for the images (1 μm = 5.62 pixels), the known diameter of autophagosomes (0.5–1.5 

μm) was converted into a pixel area range (6 to 56 pixels²), calculated using the formula A = r2π	=	
d2π
4

 (where A = area, r = radius, d = diameter) and assuming near-spherical objects. Only objects falling 

within this specific range were counted as valid puncta using ImageJ's Analyze Particles function. 

This final count was performed individually for each cell, ensuring that only signals located within 

the previously defined cytoplasmic ROIs were included (Publication III./Supplementary Table S2). 

The statistical significance of the differences between experimental groups was determined using the 

Kruskal-Wallis H-test followed by Dunn's multiple comparison test with Bonferroni adjustment for 

post-hoc analysis. 

4. Results 
4.1 Classification performance of the SqueezeNet modelI. 

The initial step of our WSSS pipeline involved training a SqueezeNet-based binary classifier that 

detects the presence of the ThioS-positive parenchymal amyloid in the micrograph crops. Its primary 

purpose within the pipeline was not to perform direct segmentation, but rather to generate robust lo-

calization cues (CAMs) from image-level labels of ThioS-stained histological image patches. 
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Accordingly, this section evaluates its performance strictly as a binary classifier, a critical prerequisite 

for generating reliable localization priors. The core architecture was completed with a simple bypass 

structure, and a TAP layer was added instead of a conventional GAP layer to enhance localization. 

 

Performance was assessed using a rigorous patient-wise 7-fold cross-validation to simulate gener-

alization to new individuals and prevent data leakage. Within each fold, the model achieving the low-

est loss on a 10% development set (validation data) over a maximum of 800 epochs (best performing 

checkpoint) was selected for testing (Figure 2). The classifier demonstrated excellent reliability in 

identifying patches containing parenchymal amyloid pathology, achieving a mean accuracy of 

0.9794, precision of 0.9853, recall of 0.9699, and an F1-score of 0.9774 across all test folds (Publica-

tion I./Supplementary Table S1). These high classification scores, supported by visual inspection (Fig-

ure 3), confirmed the capability of the model to generate accurate localization priors for the subse-

quent segmentation stage. 

Figure 2. Performance monitoring of 
the SqueezeNet classifier across the 
seven training iterations of a patient-
wise cross-validation. For each itera-
tion, one subject's data served as the 
held-out test fold and was excluded 
from the training process shown here. 
The plots display the (A) binary cross-
entropy loss and (B) accuracy curves 
for the training data (compiled from six 
subjects, darker shades) and the corre-
sponding development (or validation) 
data (a 10% split of the data from these 
six subjects, lighter shades). Each color 
represents a unique training iteration. 
To enhance the clarity of performance 
trends, moving average is applied to all 
curves with a window size of 25 
epochs. 
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Figure 3. Visualization of localization priors (CAMs) from the final SqueezeNet-TAP model trained on the 
complete dataset. The composite image shows representative exemplars of positive patches arranged into four 
pairs of columns, where each pair consists of original input patches on the left (A, C, E, G) and their corresponding 
heatmaps overlaid on the source images on the right (B, D, F, H). Production of the heatmaps involved negative 
weight-clamping, upsampling to 572 × 572 pixels, and normalization to a range [0, 1], with the 'jet' colormap 
representing activation intensity (blue = low, red = high). The maps visualize the image regions the model iden-
tified as containing discriminative features of parenchymal amyloid deposits, which were subsequently utilized to 
guide the training of the segmentation model. The scale bar represents 100 micrometers. 

4.2 Segmentation performance of the U-Net modelI. 
For the pixel-level segmentation of ThioS-positive amyloid deposits in full-field micrographs, a U-

Net model was trained in a weakly supervised manner. Its training relied exclusively on pseudo-labels 

derived from the CAMs of the previously trained SqueezeNet classifier. Crucially, while training was 

weakly supervised, guided by coarse localization priors, the final performance was validated against 

manually annotated GT masks that were completely held out from the training process. 
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Adhering to the same 7-fold cross-validation structure, the CAMs from each classifier fold were 

post-processed into pseudo-masks. Based on these pseudo-masks, the image patches were then sub-

jected to extensive on-the-fly object-level augmentation, where the identified FG objects were re-

moved and randomly reinserted to diversify boundaries and spatial contexts. The U-Net was trained 

for a fixed duration of 30 epochs per fold, a decision informed by the computational demands of the 

augmentation pipeline. A 10% development set was used solely for monitoring training trends, not 

for model selection; the model from the 30th epoch was consistently used for evaluation (Figure 4). 

The segmentation model achieved robust performance across the seven folds, yielding a mean Dice 

Similarity Coefficient (DSC) of 0.763, a Jaccard Index (intersection over union - IoU) of 0.639, a 

recall of 0.721, and a precision of 0.877. While pixel-level accuracy (PA) (0.990) and specificity 

(0.997) were high, their utility is limited by the severe class imbalance inherent in the pathology 

segmentation task. Key error rates included a false positive rate (FPR) of 0.003, a false discovery rate 

(FDR) of 0.123, and a false negative rate (FNR) of 0.279 (Publication I./Supplementary Table S2). 

These results demonstrate that our WSSS pipeline, leveraging CAM-derived pseudo-labels and ob-

ject-level augmentation, can effectively approximate dense segmentation, establishing a feasible and 

high-throughput approach for producing robust pixel-level annotations for pathology micrographs 

with negligible expert labeling effort (Figures 5 and 6). 

  

Figure 4. Performance monitoring 
of the U-Net segmenter during the 
seven training iterations of a pa-
tient-wise cross-validation. For 
each iteration, one subject's data 
served as the held-out test fold and 
was entirely excluded from the train-
ing process illustrated. The plots dis-
play the (A) asymmetric unified fo-
cal loss and (B) PA curves for the 
training data (compiled from the re-
maining six subjects, darker shades) 
and the corresponding development 
data (a 10% split of the data from 
these six subjects, lighter shades). 
Each color corresponds to a unique 
training iteration. 
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Figure 5. Qualitative assessment of the final U-Net segmentation results on fluorescent micrographs. The 
composite image shows representative exemplars in three sets of columns: original fluorescent micrograph images 
(A, D), the corresponding post-processed predictions (assembled from output patches) overlaid on the source im-
ages (B, E), and a comparison of the positive predictions (yellow) against the GT masks (red) (C, F). The orange 
color in the comparison panels indicates overlap (agreement, true positive pixels) between the prediction and the 
GT. The model demonstrates a strong ability to capture diverse plaque morphologies. Notably, it correctly identi-
fies highly fluorescent vascular regions as BG elements, showcasing its capacity to distinguish parenchymal am-
yloid pathology from confounding structures based on learned semantic differences, a task not achievable based 
on solely fluorescence ThioS staining intensity thresholding. Minor discrepancies (materially fewer red and yellow 
areas, i.e., false negatives and false positives), discernible only upon detailed examination, are primarily located 
near challenging regions like vessels, small fragmented or uncertain structures, and clearance zones; and include 
deposits that were erroneously omitted from the original GT. The scale bar represents 100 micrometers. 
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Figure 6. Visualization of segmented parenchymal amyloid deposits and their thresholded counterparts. (A) 
The composite image shows a gallery of representative amyloid deposits, automatically extracted by the final 
segmentation pipeline (with models trained on the complete dataset) from the intensity corrected full-field micro-
graphs. To enhance visual detail, the gray scale objects are rendered in a uniformly contrast-adjusted green channel 
on a black background, showcasing the vast morphological diversity targeted by the framework. (B) The composite 
image shows the corresponding binary images for each deposit, generated by applying a global intensity percentile 
threshold to their grayscale counterparts. These binarized representations of the total deposit area, along with the 
compact area representations and the grayscale data, formed the basis for the subsequent morphometric profiling. 
A single scale bar, representing 100 micrometers, applies to all objects. 

4.3 Morphometric analysis of the amyloid deposit characteristicsI. 
To investigate morphological differences in ThioS-stained deposits, a final segmentation model 

trained on the entire dataset was used to generate binary masks for detailed particle analysis (Figure 

6). A set of 19 morphometric parameters was extracted from each deposit (Publication I./Supplemen-

tary Data) using ImageJ and its FracLac plugin, derived from a diverse array of measurement ap-

proaches, including basic binary particle analysis, convex hull metrics, grayscale intensity calcula-

tions, box-counting measurements (Figure 7), and various composite ratios. 
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Figure 7. Illustration of the box-counting method for fractal dimension calculation. (A) Visualization of the 
binary box-counting algorithm applied to a representative thresholded deposit image. The panel demonstrates how 
the structure is covered by a series of grid calibers (box-sizes, ε) derived from the power series scaling, all shown 
for a single, representative grid position out of the 12 used in the calculations. (B) The resulting data are plotted. 
The left plot shows the average box counts (N) (across all 12 grid positions for each caliber) against the scale (ε) 
on linear axes. The right plot displays the same data points on a ln-ln scale, where the slope of the linear regression 
line fitted to the data (red dashed line) determines the final fractal dimension (D). The equation of the regression 
line, the coefficient of determination (R²), and the formula for D are also shown. 

PCA was applied to this feature set, successfully reducing its dimensionality by identifying three 

PCs that collectively accounted for over 85% of the total data variance (Figure 8A). An analysis of 

the component loadings (Publication I./Supplementary Table S3) revealed distinct morphological sig-

natures: 

• PC1 was strongly associated with overall size, showing high loadings for deposit area (0.315), 

integrated density (0.314), and hull area (0.304). 

• PC2 captured structural complexity and spatial heterogeneity, with dominant loadings from 

solidity (0.395), circularity (0.372), fractal dimension (0.313), and negative contributions from 

lacunarity (−0.370). 

• PC3 represented global geometry and elongation, primarily driven by span ratio (0.520), 

max/min radii ratio (0.469), and hull circularity (−0.511). 

Group-wise comparisons of the PC scores revealed significant differences across both brain regions 

and dementia statuses (ANOVA; PC1: F = 7.29, p < 0.001; PC2: F = 33.72, p < 0.001; PC3: F = 

35.82, p < 0.001). Post-hoc Tukey tests provided further insights (Figure 8B; Publication I./Supple-

mentary Tables S4 and S5): 

• For PC1, scores were significantly higher in both dementia groups (parietal and temporal) com-

pared to the parietal non-dementia group (p < 0.001), suggesting an increase in overall deposit 

size with dementia. 
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• For PC2, the parietal dementia group showed significantly increased complexity compared to 

all other groups (p < 0.05). Notably, the temporal dementia group had significantly lower com-

plexity scores than all others (p < 0.001), indicating a region-specific morphological divergence 

in the presence of dementia. 

• For PC3, scores were highest in the parietal dementia group compared to all others (p < 0.001). 

Within both brain regions, the dementia groups exhibited significantly higher scores than their 

non-dementia counterparts (p < 0.001), reinforcing the relevance of this component in capturing 

dementia-associated traits. 

 
Figure 8. PCA of deposit morphometry elucidates region- and dementia-specific tendencies. (A) The scree 
plot illustrates the proportion of variance explained by each PC derived from the 19 morphometric features (bars) 
and the cumulative variance captured by successive components (line). The first three PCs collectively capture 
over 85% of the total variance, with PC1 alone accounting for more than 50%. (B) A group-wise comparison of 
the scores for these three PCs, which correspond to size-related metrics (PC1), structural complexity (PC2), and 
geometric symmetry (PC3). Data are presented as bar plots of the mean ± SEM PC-score per plaque, stratified by 
brain region (parietal = solid, temporal = striped) and cognitive status (dementia = dark, non-dementia = light). 
Asterisks denote levels of statistical significance (* p < 0.05, ** p < 0.01, *** p < 0.001). The results indicate a 
consistent elevation of scores in the parietal dementia group across all three PCs, suggesting that these plaques are 
larger, more structurally complex, and geometrically irregular than their non-demented counterparts, though re-
gional differences foreshadow more intricate interplays. 
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In summary, the analysis of all three PCs indicates that deposit morphology is significantly influ-

enced by both brain region and dementia status. This exploratory quantitative analysis yielded find-

ings consistent with the established heterogeneity of amyloid pathology; it thereby demonstrates the 

sensitivity of our morphometric profiling methodology to capture biologically relevant variations, 

supporting the well-documented link between plaque architecture, anatomical location, and the pres-

ence of dementia. However, given the limited number of donor cases, these exploratory findings must 

be interpreted with considerable caution. While the observed trends are intriguing, their generaliza-

bility remains to be confirmed, and rigorous validation in larger, more representative cohorts is an 

essential next step. 

4.4 Supplementary findings from collaborative studiesII., III. 

4.4.1 Anti-inflammatory morphological phenotype induced by SZR104II. 
The quantitative analysis of 974 microglial silhouettes provided a multi-faceted morphological profile 

of the cell response to the different treatments and statistical evidence for the potent effect of the syn-

thetic compound SZR104 on cellular morphology (Publication II./Supplementary Table S1 and S2). 

The measurements revealed that while the pro-inflammatory challenge with LPS induced a shift to-

wards a smaller, more amoeboid phenotype, treatment with SZR104 promoted a distinct hypertrophic 

morphology. 

Fundamental metrics of size and shape clearly demonstrated this hypertrophic shift. For instance, a 

significant, nearly two-fold increase in cellular area was observed (710.79 ± 34.92 μm² vs. 356.08 ± 

18.10 μm² in the control condition). Complementing this, the dimensionless transformation index, 

which quantifies the deviation of a shape from a perfect circle, was also significantly elevated in 

SZR104-treated cells (2.54 ± 0.10 vs. 2.23 ± 0.11 in control), indicating a more elaborate and less 

compact cell form. This trend was further substantiated by the analysis of convex hull-based param-

eters, which characterize the overall spatial footprint of the cell. As a key metric from this category, 

the convex hull area showed one of the largest significant differences between the control and 

SZR104-treated conditions. Furthermore, derived dimensionless metrics also captured the increased 

intricacy of the cell boundary; the roughness, for example, was significantly higher in the SZR104-

treated condition (1.3347 ± 0.0173) than in any other experimental setting, reflecting a more detailed 

cell perimeter. Finally, analysis of morphological complexity using box-counting methods solidified 

these findings. Such as the fractal dimension, a key parameter quantifying the complexity of a pattern, 

showed a highly significant (p < 0.001) increase in SZR104-treated cells (1.0878 ± 0.0032) compared 

to the control condition (1.0697 ± 0.0034).  



42 
 

4.4.2 Modulation of p62/SQSTM1 puncta in microgliaIII. 
The quantitative analysis of p62/SQSTM1-immunoreactive puncta provided key insights into how 

the autophagic process is modulated by both pro- and anti-inflammatory stimuli in microglia. 

A key finding from the analysis was that treatment with the anti-inflammatory agent RST alone led 

to a significant decrease in the number of p62/SQSTM1-positive puncta per cell (p < 0.01 vs. control). 

This effect, however, was abolished when the final stage of autophagy, autophagosome-lysosome 

fusion, was inhibited by BAF pretreatment. In the BAF + RST-treated condition, the number of puncta 

increased significantly (p < 0.01) compared to that observed with RST treatment alone, indicating an 

accumulation of autophagosomes that could not be degraded. Notably, the combined treatment with 

LPS + RST also resulted in a significant increase (p < 0.01) in autophagosome puncta when compared 

to the decreased levels observed with RST treatment alone. For a comprehensive interpretation of the 

object-level findings, it is essential to consider the results from the Western blot analysis of total pro-

tein levels; however, it should be noted that I did not contribute to this part of the experimental work, 

which was performed entirely by the collaborating laboratory. The analysis of total soluble 

p62/SQSTM1 protein levels via Western blot revealed a different, yet related, regulatory pattern. 

While most treatments without BAF pretreatment only non-significantly increased cytoplasmic 

p62/SQSTM1 levels, the combined treatment of LPS + RST resulted in a significant increase (p < 

0.05) over the control; an elevation that was significantly reversed (p < 0.05) in the BAF-pretreated 

LPS + RST group. 

5. Discussion 
5.1 Weakly supervised segmentation frameworkI. 

Our findings demonstrate that a weakly supervised pipeline, combining a CAM-based localization 

model with a U-Net trained on synthetically augmented data, can effectively learn to delineate paren-

chymal amyloid deposits from histology images. Despite relying on coarse, image-level training la-

bels, the final segmentation model generalized well to manually annotated, pixel-level GT, achieving 

a robust average DSC of 0.763 across a rigorous, patient-wise cross-validation scheme. This result 

validates the core premise of our framework: that accurate segmentation of complex histological pa-

thology can be achieved even when supervision is indirect. The SqueezeNet-TAP classifier proved 

highly effective in its primary role, distinguishing patches with and without parenchymal amyloid 

with high fidelity (mean F1-score: 97.74%), establishing a reliable foundation for the subsequent 

stages. Furthermore, the impressive precision (0.877) and recall (0.721) values of the final U-Net 

model suggest a strong ability to accurately differentiate between deposit and non-deposit regions, a 

capability directly attributable to the advanced, object-level augmentation strategy. The mild under-
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segmentation is a multifaceted and expected outcome of the framework. A primary contributor is the 

demonstrated ability of the model to rigorously distinguish parenchymal pathology, as confirmed by 

its exceptionally high specificity (FPR = 0.003), which allows it to correctly exclude confounding 

vascular elements that are often imprecisely delineated in the semi-automated GT masks. This paren-

chyma-specific focus, while a key strength of the pipeline, lowers the recall score when measured 

against this imperfect reference. The residual under-segmentation is an anticipated consequence of 

the weakly supervised approach, which was never exposed to manually annotated data and employs 

strict CAM thresholds to prioritize precision. 

The design of our prior localization stage was informed by a review of existing CAM methodolo-

gies. The landscape of mapping approaches for WSOL is broadly divided into two main families: 

pooling-based and gradient-based techniques. Pooling-based methods build on the fundamental di-

chotomy between GAP, which captures the full extent of an object but can dilute key signals, and 

GMP, which identifies the most discriminative part but ignores the rest [169,277]. This has led to 

numerous other pooling strategies (e.g., log-sum-exp pooling, Top-K Max-Pooling, Top-GAP, deep-

generalized pooling, TAP) [278–281,247]. In parallel, generalized, gradient-based methods offer 

greater architectural flexibility (e.g., Grad-CAM, Grad-CAM++, Score-CAM, Poly-CAM, HR-

CAM) [246,282–285], but their computational overhead, along with persistent mapping resolution 

limitations or added complexity often make simple pooling-based approaches a more pragmatic 

choice in WSOL [247]. In the context of our study, our choices were pragmatically driven by the 

primary goal of training a robust binary classifier for parenchymal amyloid detection. We therefore 

favored the computational efficiency of a pooling-based CAM, specifically selecting the TAP layer 

for its ability to retain high activation specificity without discarding lower-activation regions, an ap-

proach architecturally supported by our model selection of SqueezeNet, given its inherent suitability 

due to a default global pooling layer and delayed downsampling. This overall consideration was cru-

cial, given the faint and morphologically heterogeneous presentation of ThioS-positive parenchymal 

pathology. Our results confirmed that this SqueezeNet + TAP framework learned discriminative rep-

resentations from a relatively small and heterogeneous dataset, demonstrating robust classification in 

a rigorous, subject-wise cross-validation scheme. However, as with all weakly supervised methods, a 

key limitation is the trade-off between classification accuracy and localization precision. Despite our 

optimizations, the final CAMs, while suitable as coarse initializations for the subsequent segmentation 

stage, were still limited in spatial resolution. It is also notable that a direct quantitative evaluation of 

these CAM-derived pseudo-labels was not performed, as this would require substantial additional 

complexity and offer limited interpretability due to numerous confounding factors (e.g., partial tile 

overlap, two-level thresholding, and resolution mismatch) inherent in our patch-based, weakly 
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supervised setup. Nevertheless, the framework provided an effective and efficient solution for gener-

ating interpretable activation maps to guide the subsequent segmentation refinement. 

In our framework, the coarse localization maps generated by this SqueezeNet-TAP classifier serve 

as the initial pseudo-labels for a subsequent final refinement stage. For this task, a canonical U-Net 

architecture was employed to learn the mapping from these noisy, low-resolution heatmaps to precise, 

pixel-level segmentation masks. The central challenge, however, lies in training this segmentation 

network effectively without dense, manually annotated GT. To bridge this supervisory gap, our pipe-

line relies on a sophisticated, on-the-fly synthetic data generation process built upon the principles of 

object-level augmentation. 

The evolution of advanced image-mixing data augmentation strategies, building upon foundational 

works (e.g., MixUp, CutMix) [162,164] has progressed towards more sophisticated, context-aware, 

and object-level strategies, particularly for complex tasks like WSSS and medical imaging. A key 

direction involves the strategic combination of FG objects and BG scenes to combinatorially expand 

sample diversity (ClassMix, Context Decoupling) [286,287] and the maintenance of local structural 

integrity for segmentation tasks (e.g., LCAMix, HSMix) [288,289]. A particularly powerful strategy 

is object-level augmentation, a paradigm largely defined by "Copy-Paste" methodologies. Founda-

tional methods like Cut-Paste-and-Learn [253] established the core pipeline: extracting and storing 

objects and BGs in databanks, applying transformations, and blending (e.g., Gaussian, Poisson 

smoothing) them to reduce boundary artifacts. This concept was later simplified by omitting complex 

context modeling (Simple Copy-Paste) [254], while other approaches have focused on object-aware 

transformations using BG-inpainting (ObjectAug) [255], varying BGs while preserving FG compo-

nents (KeepMask and KeepMix) [256], or demonstrating the effectiveness of inter-patient copy-past-

ing (TumorCP) [257]. A notable refinement is Soft-CP [258], which introduces a sophisticated, ero-

sion/dilation-based blending technique that preserves lesion structure without distorting critical med-

ical information. 

Inspired by this rich body of work, our own object-level augmentation pipeline was designed to 

combine the robustness and advantages of these copy-paste strategies with a novel contour perturba-

tion technique for boundary refinement. Specifically, we integrated a contour perturbation step, 

adapted from the Restorable Contour Synthesis framework, prior to the Soft-CP blending, to algorith-

mically generate anatomically plausible shape variations. By embedding a variable number of syn-

thetically altered objects into novel, inpainted BG scenes, our method directly addresses the severe 

pixel-wise class imbalance of the dataset. Furthermore, by treating the blended boundaries of these 

embedded objects as unlabeled trimap regions, the pipeline enables the model to infer the uncertain 

transitional zones. Our method drives the U-Net to learn robust representations and generalize to true 
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object contours instead of merely overfitting on the overly smooth artifacts characteristic of upscaled 

CAMs. This approach of using synthetic contours for augmentation adapts a concept employed in 

texture segmentation, where synthetic mosaics are commonly generated for model training. The goal 

of this process is to enable the network, once trained on these exemplars with synthetic FG-BG tran-

sitions, to accurately segment the fine-grained boundaries of amyloid deposits in their original, in-situ 

histological context during inference, a capability validated by our rigorous patient-wise cross-vali-

dation. 

Despite the promising performance of the proposed framework, validated by a stringent patient-

wise cross-validation, it is important to acknowledge its primary methodological limitations. The eval-

uation lacks direct performance comparisons, both against established baseline methods and against 

a vast array of conceivable alternative approaches (such as those utilizing different model architec-

tures and variants, correction and normalization strategies, loss functions, pooling strategies, augmen-

tation, localization, or refinement techniques, etc.). Furthermore, a comprehensive ablation study to 

isolate the contribution of each component to the pipeline, most notably, a direct quantitative valida-

tion of the CAM-derived priors against the GT, was not performed. The following sections will elab-

orate on the practical and conceptual rationale that informed these design choices. 

A key consideration in the methodology of this study was the trade-off between exhaustive meth-

odological comparison and the practical constraints imposed by a computationally demanding evalu-

ation protocol. The validation framework, which employed a patient-wise 7-fold cross-validation (ne-

cessitated training of 7 models) for two sequentially trained models (a classifier and a segmenter) with 

on-the-fly data augmentation, was inherently resource-intensive. As this setup already necessitated 

the training of 14 distinct models (7 folds × 2 stages), incorporating additional variants, baseline or 

extensive ablation studies would have multiplicatively increased the required computational cost and 

training time, which was deemed beyond the scope of this proof-of-concept study. 

Furthermore, constructing a fair and direct comparison against a conventional, fully supervised 

baseline is a non-trivial task, complicated by several dataset-specific factors that would compromise 

the transparency and validity of such an analysis. These challenges, stemming from the inherent na-

ture of our patch-based, weakly supervised setup, affect both the training and evaluation phases. A 

primary obstacle is the severe FG-BG imbalance, present at both the full-image and patch levels, 

which is known to destabilize the training of standard segmentation models without advanced aug-

mentation and/or specialized loss functions. Our preliminary experiments confirmed this, where the 

sparse occurrence of amyloid deposits often led to model collapse and null predictions, a failure mode 

that our object-level augmentation strategy was specifically designed to mitigate. Additional compli-

cations arise from the patch-based sampling strategy itself. A baseline trained on a re-sampled, 
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densely annotated version of the patch dataset would face a different data distribution than our weakly 

supervised model. Moreover, any patch-level evaluation, whether on the original or a re-sampled ver-

sion of the dataset, would be confounded by the redundancy from partially overlapping tiles. Training 

a baseline on the original patch dataset is particularly challenging, as the high proportion (~50%) of 

entirely plaque-free negative patches further exacerbates the pixel-wise imbalance. Finally, the quality 

of the semi-automated GT annotations poses its own challenge. The semi-automated GT masks are 

often less refined in distinguishing plaques from adjacent or embedded vascular elements. Conse-

quently, a baseline trained on this imperfect data could be penalized for correctly separating these 

structures, thus limiting the value of a direct comparison. (Though multi-expert labeling could add 

value in future work.) Given these profound methodological challenges, we concluded that a simple 

baseline would not provide a meaningful or fair benchmark for our framework. 

A further methodological limitation of this study is the omission of a direct quantitative validation 

of the CAM-derived priors, which could be considered a form of ablation experiment. While such an 

evaluation could offer valuable insights in weakly supervised setups, it was deemed infeasible due to 

several insurmountable technical and conceptual barriers inherent in our methodological design. A 

direct comparison at the patch level is also confounded by the partially overlapping nature of the tiles, 

which introduces a minor but non-negligible redundancy (that can also be considered a form of aug-

mentation), complicating the interpretation of per-patch metrics. Furthermore, objects are overrepre-

sented in positive patches causing FG-BG distributional bias compared to the full-image context. A 

meaningful evaluation of negative, plaque-free patches is itself problematic, as the relative min-max 

normalization of CAM intensities would still produce apparent "positive" regions even in the com-

plete absence of a target signal (due to the lack of a separate weight set for the BG class in the binary 

classifier). Alternatively, reconstructing full-image pseudo-labels from the patch-based CAMs for a 

more direct comparison is a non-trivial task. The original CAMs are low-resolution and reflect relative 

intensity distributions rather than precise object boundaries. Such a reconstruction would introduce 

complex challenges in aligning intensity scales across patches and ensuring their seamless integration. 

These issues would require substantial architectural adaptations or additional post-processing, partic-

ularly given that a single plaque may appear in multiple (overlapping or adjacent) patches with slightly 

different activations due to contextual variance (e.g., partial visibility or the presence of more promi-

nent visual cues within the patch). The issue of normalizing plaque-free patches, as mentioned earlier, 

would persist even in a full-image reconstruction scenario. Furthermore, we highlight that the pseu-

dolabel generation process involved a deliberately strict primary threshold to define confident positive 

regions, while a secondary threshold was used to exclude uncertain areas. As a result, these 

thresholded CAMs are not directly comparable to binary GT masks in a conventional sense. 
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Therefore, it is important to emphasize that the CAMs in our framework are not intended as final 

segmentation outputs, but rather as coarse, spatially informative priors to initialize the refinement 

model. The purpose of the subsequent U-Net stage is not merely to enhance resolution and sharpen 

object contours, but to learn the mapping from these noisy initializations to reconstruct the high-fidel-

ity full-image segmentation in a patch-based manner. Thus, there is no straightforward way to perform 

a comparison analogous to an ablation study with the final UNet-based segmentation without intro-

ducing substantial technical complexity and limited interpretability. 

Consequently, we opted to treat the pipeline as a unified system and evaluate its final, end-to-end 

performance rather than engaging in per-module benchmarking against baseline methods or through 

ablation studies. This approach, validated through stringent patient-wise cross-validation, yields met-

rics that most accurately reflect the practical utility of the framework. As a proof-of-concept, the pri-

mary objective was not to optimize for state-of-the-art segmentation performance in absolute terms, 

but to demonstrate the viability of a WSSS pipeline for segmenting ThioS-positive amyloid plaques 

in human tissue sections using relatively straightforward, reproducible methods. Our framework com-

bines well-established benchmark architectures (SqueezeNet and a vanilla U-Net) with an extensive 

object-level augmentation strategy. The novelty of our work lies in the effective integration of these 

components into a weakly supervised framework tailored to the specific challenges of ThioS-stained 

histopathology. The focus was therefore placed on general applicability across individuals, biological 

interpretability, and feasibility in low-annotation regimes, while the framework was intentionally kept 

modular and lightweight to facilitate further fine-tuning, extension, or adaptation to other contexts in 

future work. 

While a direct, component-wise benchmarking against baseline or alternative model variants was 

beyond the scope of this study for the reasons previously outlined, placing our results in the context 

of recent, related works can help assess the performance of our framework. Although the results from 

these studies are only partially comparable due to substantial methodological differences (e.g., in 

staining, annotation strategies, and data sources), they address the shared challenge of weakly super-

vised amyloid plaque segmentation and thus serve as valuable points of reference. The first, by Chen 

et al. (2023) [204], applied a weakly supervised approach to segment whole-brain 3D data from a 

single transgenic rat model using Congo Red staining, achieving a DSC of 0.78 and a recall of 0.84 

in the cortex. Despite some conceptual similarities, our study faced considerably more challenging 

conditions: we analyzed 2D histological sections from multiple human donors, contending with sig-

nificant anatomical variability, high BG noise, marked vasculature, staining artifacts, and the complex 

morphological heterogeneity of human plaques. In this more challenging context, our average DSC 

of 0.763 and recall of 0.721 can be considered highly competitive. A second recent work by Müller 
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et al. (2025) [206] analyzed unstained human tissue using thresholded immunohistochemical labeling 

to generate GT, and reported a segmentation precision of 0.57, a metric where our framework 

achieved a substantially higher score of 0.877. While their classification module reached an F1-score 

of 0.94, ours performed comparably at 0.977 at the patch level. 

However, given the profound differences in tissue preparation, staining, and annotation protocols, 

these numerical comparisons should not be overinterpreted as direct performance rankings. Rather, 

they underscore the diversity of current approaches in the field and highlight the practical relevance 

and robustness of our pipeline, particularly when applied to the technically complex domain of ThioS-

stained human brain sections. 

5.2 Heterogeneity of amyloid depositsI. 

The concluding phase of our work involved a comprehensive, object-level morphometric profiling of 

amyloid deposits, leveraging the high-fidelity, automatically segmented masks to provide a detailed 

perspective on their characteristics across spatial extent, internal structural arrangement, shape sym-

metry, and staining properties. Utilizing a rich set of 19 distinct parameters derived from each seg-

mented deposit, we investigated these features as a function of both brain region and cognitive status. 

This approach uncovered latent variations in the dataset, which were elucidated through dimension-

ality reduction technique and subsequent statistical analysis. PCA successfully decomposed the high-

dimensional morphometric dataset into a simplified, low-dimensional representation defined by three 

orthogonal components (PC1–3), each of which isolated a distinct, biologically meaningful aspect of 

plaque architecture. Subsequent group-wise statistical comparisons of these PCs revealed significant 

differences between the experimental groups, as detailed in the following sections. 

The first component (PC1), which accounted for the largest portion of the variability (>50%), was 

predominantly driven by physical dimensions of the amyloid aggregates. The group of metrics quan-

tifying magnitude in log-scale (e.g., area, perimeter, and convex hull metrics) exhibited uniform, 

strong contributions to this component, confirming its interpretation as a general "size-related" axis. 

Consistently, integrated density as the total fluorescence measure, also correlated strongly with PC1, 

reinforcing the relationship between overall fluorescent staining uptake and plaque size. Our results 

indicated that PC1 scores were markedly greater in the dementia groups, particularly in the parietal 

cortex, where the difference was statistically significant, aligning with established neuropathological 

evidence linking increased cortical amyloid accumulation to severe stages of the disease and cognitive 

impairment [4]. This finding implies that the sheer physical extent of these structures constitutes the 

foremost characteristic for their differentiation and is likely related to their pathogenic impact or their 

indicative role in the overall disease progression. 
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The second component (PC2) was primarily defined by metrics of morphological and architectural 

complexity and heterogeneity. This axis was determined by a combination of non-linear, scale-invar-

iant descriptors including fractal dimension and lacunarity, as well as measures of compactness, in-

cluding circularity and solidity. Fractal dimension, which loaded positively onto PC2, provides insight 

into structural complexity and self-similarity properties of biological structures and textures, and is 

widely applied in the analysis of both cellular and non-cellular components, including the Aβ aggre-

gates in AD [24,267,268,290–292]. Our findings regarding fractal dimension are partly consistent 

with prior reports of increased complexity in advanced dementia [24], a trend we also observed in the 

parietal region. However, the opposing trend in the temporal dementia group suggests the presence 

of region-specific pathological trajectories. It is also pertinent to consider that our methodological 

decision to strictly exclude vasculature during segmentation could have influenced this metric, as such 

elements can contribute to the perceived structural complexity. Lacunarity, conversely, exhibited a 

strong negative loading on PC2, indicating a tendency opposite to the complexity captured by fractal 

dimension, potentially reflecting either the presence of looser, more fragmented diffuse structures or 

the internal structural heterogeneity of the compact forms. Similarly, boundary variability, as meas-

ured by roughness, also loaded negatively on this axis. In stark contrast, circularity and solidity 

showed strong positive weightings, as higher values for these metrics are indicative of greater com-

pactness and a simpler, denser morphology. Indeed, circularity has previously been leveraged for the 

morphological classification of ThioS-positive plaques as a direct measure of their compactness 

[44,269]. The diffuseness index, which quantifies the proportion of faintly stained, diffuse subregions 

[55], also loaded negatively onto PC2, underscoring its role in capturing spatial dispersion and a lack 

of compactness. The observed increase of PC2 scores in the parietal dementia cases, coupled with 

their decrease in the temporal lobe, may therefore signify a region-specific morphological divergence. 

This suggests a shift towards more compact, well-organized, and geometrically structured plaques in 

the parietal cortex of dementia patients, while those in the temporal region potentially develop more 

irregular, fragmented characteristics. This complex interplay of these morphometric features suggests 

that PC2 reflects nuanced, region-specific changes in plaque maturation and organization. 

The third component (PC3) captured global geometric information, primarily related to plaque 

elongation and asymmetry. Driven by increases in anisotropy measures (including span ratio and 

max/min radius, which loaded positively) and decreases in shape symmetry properties (represented 

by hull circularity, which loaded negatively), the significant elevation of PC3 scores in both dementia 

groups collectively suggests a morphological shift towards more elongated and asymmetrical plaque 

forms in the diseased brain, regardless of region. While these geometric descriptors are less conven-

tionally assessed in traditional neuropathology of amyloid plaques, prior observations of region-
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specific patterns do exist [204]. Therefore, these features may offer additional insight into plaque 

growth dynamics, potentially reflecting underlying pathological processes such as vascular interac-

tions or factors promoting anisotropic deposition. 

In summary, our high-dimensional morphometric profiling successfully decoupled general demen-

tia-associated trends from more nuanced, region-specific alterations in plaque morphology. While 

increased plaque size and geometric anisotropy emerged as consistent trends associated with the de-

mentia status, the analysis of structural complexity revealed intricate, divergent pathological trajecto-

ries between cortical regions. This finding underscores that amyloid pathology is a spatially hetero-

geneous phenomenon, likely shaped by local microenvironmental factors. Crucially, this level of in-

sight was only achievable by incorporating a rich set of non-traditional descriptors (e.g., scale-invari-

ant, and convex hull-based measurements), demonstrating the potential of high-content morphomet-

rics to provide more sensitive readouts for understanding the multifaceted nature of AD. 

It is crucial to contextualize these findings within the limitations of the present study. While the 

number of individual deposits analyzed was substantial, the analysis was based on a small cohort of 

seven donor cases. Consequently, all statistical comparisons must be considered exploratory, and 

making broad claims about differences between the experimental groups should be approached with 

considerable prudence, as the limited scope of the dataset precludes definitive generalizations to the 

broader population. The primary objective of this morphometric analysis was therefore not to estab-

lish definitive biomarker-level relationships, but rather to demonstrate the technical viability and po-

tential of our automated segmentation and analysis pipeline. Viewed from this perspective, the con-

sistent patterns observed across the PCs should be regarded as promising, hypothesis-generating find-

ings rather than conclusive evidence. They support the utility of high-content morphometric profiling 

as a valuable addition to the neuropathological research toolkit and illustrate the feasibility and scala-

bility of our framework. However, the statistical robustness of these patterns remains fundamentally 

constrained. Future work incorporating larger and more diverse patient populations across multiple 

brain areas will be essential to validate, refine, and ultimately explore the true histopathological po-

tential of these initial findings. 

5.3 Future directionsI. 

The presented weakly supervised framework serves as a robust proof-of-concept, its strong generali-

zation in a rigorous, patient-wise cross-validation stems from its demonstrated ability to distinguish 

parenchymal pathology from confounding elements like vascular amyloid based on learned semantic 

features. This enables the object-level profiling of individual plaques, a task not feasible for automated 

analysis based on the ThioS stain alone. 
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Its future technical development should therefore focus on enhancing this methodological sophisti-

cation and deepening its biological insights. A crucial next step is to move beyond the current baseline 

architectures and procedures through fine-tuning and by exploring more advanced, data-intensive 

components, such as incorporating attention mechanisms for localization and segmentation, and en-

hancing the augmentation pipeline with generative models to create a large-scale dataset. 

The primary goal is to leverage this enhanced and validated framework on larger and more diverse 

patient cohorts, moving beyond the exploratory findings of this small-cohort study to establish defin-

itive, quantitative relationships and trends between the high-content morphometric features and the 

neuropathological status or brain region of the tissue, thus providing a powerful and objective meth-

odology for scalable plaque analysis. 

Furthermore, this pursuit of robust, automated analysis could be particularly relevant in the context 

of emerging in vivo diagnostic applications. The foundation for in vivo amyloid imaging and the chal-

lenges of translating ex vivo findings are exemplified by preclinical validation studies of brain-pene-

trating tracers. Although the charged ThioS molecules poorly penetrate the BBB, their histological 

binding patterns are identical to those of the widely used in vivo amyloid tracer, Pittsburgh Compound 

B (e.g., both label vascular and parenchymal amyloid, and weakly stain diffuse deposits) [40]. Cru-

cially, since such tracers are often also fluorescent, their in vivo distribution and behavior can be stud-

ied in animal models with high-resolution multiphoton microscopy, yielding a preclinical validation 

platform of novel in vivo imaging agents intended for lower-resolution clinical modalities [40], where 

the resulting microscopic data could present similar segmentation and analysis challenges in inter-

preting complex structural characteristics like ThioS-stained histological sections, highlighting the 

need for robust, data-efficient analysis pipelines. 

Significant challenges in brain imaging have spurred the investigation of the retina as a more ac-

cessible surrogate for cerebral Aβ deposits. One recent study outlines a potential in vivo imaging strat-

egy for the early detection, therapeutic response monitoring, and population screening of AD through 

retinal imaging. Its central innovation is an aerosolized delivery method that enables the in vivo ap-

plication of classical Aβ-binding dyes with limited BBB permeability, like ThioS [293]. It was 

demonstrated in a mouse model that inhaled ThioS stains retinal Aβ deposits, which are significantly 

associated with retinal ganglion cells, thereby circumventing the challenges of expensive brain imag-

ing and the development of BBB-penetrating probes, creating a pathway for a cost-effective, non-

invasive (cellular-level) retinal optical imaging method, anticipating the critical importance of auto-

mation in in vivo image analysis. A parallel strategy aims to eliminate the need for physical dyes 

altogether. This study introduces a ML-based method to identify AD-associated retinal amyloid de-

posits, addressing the low specificity of polarimetry, which, despite detecting fibrillar structures in the 
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retina that reflect brain pathology, also identifies false positives alongside ThioS-positive (true posi-

tive) amyloid deposits [294]. To this end, researchers trained classical ML models (linear discriminant 

analysis, support vector machine, random forests) on polarimetric feature vectors extracted from pre-

segmented deposits in post-mortem human retinal samples, proving that the polarimetric "fingerprint" 

is sufficient for the high-accuracy prediction of ThioS fluorescence, a critical step towards a future, 

non-invasive, dye-free optical diagnostic procedure for in vivo application. Such a procedure could be 

greatly enhanced by modern, end-to-end DL frameworks for real-time clinical analysis. 

Finally, given the modular design of our framework, its methodology is not inherently stain-specific 

and can be adapted to other contexts where manual annotations are scarce. Future work could extend 

this approach to different histopathological targets (e.g., Lewy body pathology), alternative staining 

protocols (e.g., Congo Red), transgenic animal models, and even to other imaging modalities, includ-

ing volumetric datasets and in vivo imaging approaches. 

5.2 Supplementary implications for collaborative studiesII., III. 

5.4.1 Confirming pharmacological effects through objective cytomorphometryII. 
Microglial cytomorphology is a widely analyzed biomarker in both in vivo and in vitro settings as a 

key function of cellular physiology. While in vivo morphology is more complex and largely influ-

enced by environmental factors, in vitro analysis of digital silhouettes is facilitated by the flattened 

cellular structure and simplified culturing conditions. Upon activation by diverse (patho)physiological 

stimuli, microglia transition from a ramified to an activated, often amoeboid [208] and/or hypertrophic 

[212] phenotype, while dystrophic microglia without hypertrophy are also observed in AD [213]. 

The quantitative data from this collaborative study substantiate the established anti-inflammatory 

properties of SZR104. Collectively, the observed changes, indicating cellular enlargement and in-

creased morphological complexity, are consistent with the development of a hypertrophic phenotype, 

which in this context is interpreted as an anti-inflammatory response. Our findings demonstrate that 

SZR104 not only suppresses biochemical markers but also effectively inhibits the pro-inflammatory 

morphological shift induced by LPS. This aligns with previous in vivo and in vitro studies establishing 

the ability of SZR104 to suppress inflammatory markers and phagocytosis [216,217]. The hyper-

trophic phenotype induced by SZR104 is remarkably similar to that caused by other well-known anti-

inflammatory drugs like RST and aspirin [232,233], suggesting a shared pathway potentially involv-

ing the actin cytoskeleton [214]. Based on these quantitative parallels, the hypertrophic enlargement 

of the cell somata and the formation of filopodia can be interpreted as a signature of SZR104-induced 

anti-inflammatory processes in microglia. 

Although SZR104 is a structural analog of the endogenous KYNA, it is not a complete functional 
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analog, differing critically in its ability to cross the BBB. Furthermore, the quantitative morphometric 

data strongly indicate that SZR104 has a more potent anti-inflammatory effect on microglia, position-

ing it as a potential target molecule for exploring the KYNA pathway in vivo. Ultimately, this work 

demonstrates that quantitative cytomorphometry analysis can provide valuable predictive information 

as a powerful tool for characterizing the biological activity of pharmacological compounds, offering 

an objective and reproducible alternative to subjective visual assessment. 

5.4.2 Unraveling complex cellular dynamics via quantitative puncta analysisIII. 
The quantitative analysis of p62/SQSTM1 puncta proved essential for interpreting the complex, mul-

tifaceted regulatory pattern of autophagy observed in the second collaborative study. Notably, beyond 

its role in autophagy, p62/SQSTM1 participates in complex signaling pathways, including pro-

teasomal degradation and the regulation of protein aggregate formation. [225,227,228]. Pharmaco-

logical autophagy inhibitors like BAF, which block the final autophagosome-lysosome fusion stage, 

are indispensable tools for quantifying autophagic activity under different conditions [236,237]; ad-

ditionally, the observed effects of BAF in our study were consistent with its established cytostatic 

properties described in the literature [238].  

The literature presents a complex and contradictory picture of autophagy regulation, as exemplified 

by the conflicting effects of both inflammatory stimuli like LPS, which can have either inhibitory or 

inductive effects in microglia depending on the experimental context [224,225,229,230], and anti-

inflammatory pharmacological agents like statins, where different compounds (e.g., RST vs. atorvas-

tatin) have been reported to yield opposing results in different cell lines [234,235]. Our findings may 

help to interpret these inconsistencies, as we observed that while RST alone significantly decreased 

the number of p62/SQSTM1-labeled puncta, this effect was abolished by BAF pretreatment, resulting 

in a significant accumulation compared to RST alone, demonstrating a genuine modulation of the 

autophagic process, while the total p62/SQSTM1 levels showed only a negligible, non-significant 

increase (regardless of BAF pretreatment) in the same treatment groups. This accumulation of au-

tophagosomes highlights the distinct dynamics between the soluble and aggregated pools of 

p62/SQSTM1 that may not be captured by bulk biochemical assays. Our study further revealed com-

plex regulatory effects. The combined LPS and RST treatment led to an accumulation of both total 

p62/SQSTM1 protein (an elevation reversed by BAF) and autophagic puncta. In contrast, when ap-

plied individually, these treatments tended to decrease the number of puncta (a significant reduction 

with RST), pointing towards divergent, context-dependent regulatory mechanisms where the interac-

tion of inflammatory and anti-inflammatory stimuli alters the autophagic outcome. The final number 

of puncta is likely governed by intricate regulatory networks and given that the effects of such 
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compounds are not always straightforward, this detailed, object-level analysis proved essential for 

mapping these complex dynamics and revealing the nuanced nature of autophagy regulation in mi-

croglia. 
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Abstract

Alzheimer’s disease (AD) involves the accumulation of amyloid-β (Aβ) plaques, whose
quantification plays a central role in understanding disease progression. Automated seg-
mentation of Aβ deposits in histopathological micrographs enables large-scale analyses
but is hindered by the high cost of detailed pixel-level annotations. Weakly supervised
learning offers a promising alternative by leveraging coarse or indirect labels to reduce
the annotation burden. We evaluated a weakly supervised approach to segment and
analyze thioflavin-S-positive parenchymal amyloid pathology in AD and age-matched
brains. Our pipeline integrates three key components, each designed to operate under
weak supervision. First, robust preprocessing (including retrospective multi-image illu-
mination correction and gradient-based background estimation) was applied to enhance
image fidelity and support training, as models rely more on image features. Second, class
activation maps (CAMs), generated by a compact deep classifier SqueezeNet, were used
to identify, and coarsely localize amyloid-rich parenchymal regions from patch-wise im-
age labels, serving as spatial priors for subsequent refinement without requiring dense
pixel-level annotations. Third, a patch-based convolutional neural network, U-Net, was
trained on synthetic data generated from micrographs based on CAM-derived pseudo-
labels via an extensive object-level augmentation strategy, enabling refined whole-image
semantic segmentation and generalization across diverse spatial configurations. To ensure
robustness and unbiased evaluation, we assessed the segmentation performance of the
entire framework using patient-wise group k-fold cross-validation, explicitly modeling
generalization across unseen individuals, critical in clinical scenarios. Despite relying on
weak labels, the integrated pipeline achieved strong segmentation performance with an
average Dice similarity coefficient (≈0.763) and Jaccard index (≈0.639), widely accepted
metrics for assessing segmentation quality in medical image analysis. The resulting segmen-
tations were also visually coherent, demonstrating that weakly supervised segmentation is
a viable alternative in histopathology, where acquiring dense annotations is prohibitively
labor-intensive and time-consuming. Subsequent morphometric analyses on automatically
segmented Aβ deposits revealed size-, structural complexity-, and global geometry-related
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The kynurenic acid analog SZR104 
induces cytomorphological 
changes associated 
with the anti‑inflammatory 
phenotype in cultured microglia
Melinda Szabo 1,7, Noémi Lajkó 1,7, Karolina Dulka 1, Gábor Barczánfalvi 1, Bálint Lőrinczi 2,3, 
István Szatmári 2,3, András Mihály 4, László Vécsei 5,6 & Karoly Gulya 1*

We previously showed the anti-inflammatory effects of kynurenic acid (KYNA) and its brain-
penetrable analog N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-
carboxamide (SZR104) both in vivo and in vitro. Here, we identified the cytomorphological effects 
of KYNA and SZR104 in secondary microglial cultures established from newborn rat forebrains. 
We quantitatively analyzed selected morphological aspects of microglia in control (unchallenged), 
lipopolysaccharide (LPS)-treated (challenged), KYNA- or SZR104-treated, and LPS + KYNA or 
LPS + SZR104-treated cultures. Multicolor immunofluorescence labeling followed by morphometric 
analysis (area, perimeter, transformation index, lacunarity, density, span ratio, maximum span 
across the convex hull, hull circularity, hull area, hull perimeter, max/min radii, mean radius, diameter 
of bounding circle, fractal dimension, roughness, circularity) on binary (digital) silhouettes of the 
microglia revealed their morphological plasticity under experimental conditions. SZR104 and, to a 
lesser degree, KYNA inhibited proinflammatory phenotypic changes. For example, SZR104 treatment 
resulted in hypertrophied microglia characterized by a swollen cell body, enlarged perimeter, 
increased transformation index/decreased circularity, increased convex hull values (area, perimeter, 
mean radius, maximum span, diameter of the bounding circle and hull circularity), altered box-
counting parameters (such as fractal dimension), and increased roughness/decreased density. Taken 
together, analysis of cytomorphological features could contribute to the characterization of the anti-
inflammatory activity of SZR104 on cultured microglia.

Abbreviations
ASP	� Aspirin
BBB	� Blood–brain barrier
CD11b/c	� A common epitope shared between CD11b and CD11c (integrin αM and αX chains)
CNS	� Central nervous system
DAPI	� 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride
DMEM	� Dulbecco’s Modified Eagle’s Medium
FBS	� Fetal bovine serum
KYNA	� Kynurenic acid
LPS	� Lipopolysaccharide
PBS	� Phosphate-buffered saline
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Abstract: Regulation of autophagy through the 62 kDa ubiquitin-binding protein/autophagosome
cargo protein sequestosome 1 (p62/SQSTM1), whose level is generally inversely proportional to au-
tophagy, is crucial in microglial functions. Since autophagy is involved in inflammatory mechanisms,
we investigated the actions of pro-inflammatory lipopolysaccharide (LPS) and anti-inflammatory
rosuvastatin (RST) in secondary microglial cultures with or without bafilomycin A1 (BAF) pretreat-
ment, an antibiotic that potently inhibits autophagosome fusion with lysosomes. The levels of the
microglia marker protein Iba1 and the autophagosome marker protein p62/SQSTM1 were quantified
by Western blots, while the number of p62/SQSTM1 immunoreactive puncta was quantitatively
analyzed using fluorescent immunocytochemistry. BAF pretreatment hampered microglial survival
and decreased Iba1 protein level under all culturing conditions. Cytoplasmic p62/SQSTM1 level was
increased in cultures treated with LPS+RST but reversed markedly when BAF+LPS+RST were applied
together. Furthermore, the number of p62/SQSTM1 immunoreactive autophagosome puncta was
significantly reduced when RST was used but increased significantly in BAF+RST-treated cultures,
indicating a modulation of autophagic flux through reduction in p62/SQSTM1 degradation. These
findings collectively indicate that the cytoplasmic level of p62/SQSTM1 protein and autophagocytotic
flux are differentially regulated, regardless of pro- or anti-inflammatory state, and provide context for
understanding the role of autophagy in microglial function in various inflammatory settings.

Keywords: autophagosome; autophagy; bafilomycin A1; inflammation; lipopolysaccharide;
microglia; p62/SQSTM1; rosuvastatin

1. Introduction

Microglia are macrophage-like resident immune cells in the brain that are activated in
response to various factors, including cytokines, chemokines, nitric oxide, reactive oxygen
intermediates, and various stimuli of neuropathological origin, including trauma, stroke,
and infection [1]. Under physiological conditions, microglial cells contribute to the mainte-
nance and resolution of brain homeostasis. In pathological states, they release high levels of
pro-inflammatory mediators and cytotoxic factors that activate nearby microglia, which can
propagate neuroinflammation and degeneration [2]. Microglia also exert neuroprotective
effects, depending on their various functional phenotypes in response to specific stimuli
through the production of anti-inflammatory factors [3]. For example, up-regulation of
autophagy stimulates microglia to produce anti-inflammatory factors, while inhibition of
autophagy results in the release of inflammatory cytokines [4].
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