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Chapter 1

Introduction

In recent years, high-throughput technologies such as Next-Generation Sequencing
(NGS) and mass spectrometry have allowed the generation of enormous amounts of
omics data quickly and at reduced costs. This changed how we address the study of
biological systems. In the past, the approach was almost fully reductionist, with tar-
geted experiments and hypothesis-based methods to investigate specific mechanisms.
Now, thanks to the availability of this amount of data and computational resources,
we moved to data-driven approaches, which allow us to explore complex systems more
in detail. Instead of focusing on one mechanism at a time, we can analyze the data to
learn insights on the system, especially in domains like system biology.
In this context, Machine Learning (ML) has become particularly useful when the un-
derlying mechanisms of a system are partially unknown or too complex for classical
approaches. However, in many applications, datasets can still be small in terms of
the number of samples, and high in number of features, which makes it harder for
ML models to generalize well. This creates a classic example of the so-called ”curse
of dimensionality”, a well known challenge that can limit the efficacy of ML in the
biological field. Another challenge is to integrate the different layers of omics data.
Each one, transcriptomics, proteomics, or epigenomics, represents a different aspect of
the biological system and combining them is not always straightforward, as it requires
approaches that handle heterogeneity while keeping the biological relevance of each
individual data type. For this reason, multi-omics integration is crucial to exploit the
information contained in this data, but it still remains an open challenge.
This thesis fits into this context and explores the use of ML, in particular Deep Learn-
ing (DL) methods, which can work well with this kind of data, and that address the
challenge of integration of multi-omics layers. The common theme of the work is the
methodological development of ML approaches at genome-scale.

This thesis is structured as follows: after this introduction, Chapter 2 presents an
overview of the background of this work, introducing the European project E-MUSE

9



10 Introduction

and the main scientific topics covered in the thesis, with the aim of providing a common
starting point for readers coming from different scientific backgrounds.

In Chapter 3, we presented the first research contribution of this thesis on metage-
nomics data analysis using a deep learning approach. It explores how data augmenta-
tion and 2D embedding improve the performance of classification models in a scenario
of data scarcity, using SuperTML, a method inspired by computer vision techniques.

In Chapter 4, we focused on supervised multiple kernel learning (MKL) methods.
Although MKL is often underused in the context of multi-omics data integration, we
proposed and evaluated different approaches based on classical MKL algorithms and
deep learning, showing that kernel-based models can be a valid and competitive alter-
native for supervised learning tasks in multi-omics settings. In addition, we presented
a novel feature importance method for biomarker discovery.

In Chapter 5, we presented a hybrid framework that combines data-driven and
mechanistic approaches to predict metabolic fluxes, an important problem in systems
biology. The proposed MINN approach reduces the amount of data needed to train a
neural network by incorporating prior knowledge from genome-scale metabolic mod-
eling, allows the integration of multi-omics data, and improves the interpretability of
the results.

1.1 Contributions
The figures, tables and results included in this thesis was published in scientific pa-
pers (listed at the end of the thesis) and the author is responsible for the following
contributions:

Journal/Conference Rank chapter 3 chapter 4 chapter 5
Foodsim2024 [171] NA x
BMC BioData Mining [21] Q1 x
IEEE Access [172] Q1 x
CSBJ [170] Q1 x

Table 1.1: The connection between the thesis chapters and publications.

Chapter 3.: In this chapter, we showed that SuperTML is an effective approach to deal
with small tabular and high-dimensional data, such as metagenomics. Also, we tested
several image augmentation techniques, including a custom one implemented by us, in
order to regularize the learning process and improve the predictions. We performed
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an experimental evaluation showing that SuperTML, used together with image aug-
mentation, can compete with state-of-the-art methods for disease classification. The
related literature survey, experimental design, implementation, visualization, software
development, and analysis of the results were carried out by the author.

Chapter 4.: In this chapter, we presented different novel supervised multiple kernel
learning methods for multi-omics data integration. Specifically, we extended known
MKL methods for unsupervised learning to a supervised framework, and we intro-
duced a novel approach based on deep learning called DeepMKL. We tested our meth-
ods against different state-of-the-art approaches on four different multi-omics datasets,
and we showed that MKL-based approaches are a valid solution to multi-omics data
analysis while they are still underused in bioinformatics research. In addition, we in-
troduced a biomarker discovery method based on the DeepMKL architecture. The
author is responsible for the literature survey, implementation, visualization, software
development, and analysis of the results that regards the deep learning domain.

Chapter 5.: In this chapter, we presented MINN, a hybrid (data-driven/mechanistic)
framework that integrates multi-omics data into genome-scale metabolic models to
predict metabolic fluxes. We showed that MINN outperforms both pure mechanistic
models (pFBA) and purely data-driven approaches (random forests) on a small multi-
omics dataset from E. coli single-gene KO grown in minimal glucose medium. The
author is responsible for the literature survey, implementation, visualization, software
development and analysis of the results that regards the machine learning domain, while
the hybrid optimization strategies, the genome-scale metabolic models preparation and
the mechanistic modeling part were carried out by the co-authors.
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Chapter 2

Background

This chapter provides an overview of the background relevant to this thesis. It begins
with a brief description of E-MUSE, the European project within which this thesis
is framed, and then summarizes the key concepts explored in the following chapters,
namely: omics data, mechanistic models, machine learning, and their applications at
genome scale. Given the multidisciplinary nature of the E-MUSE project, which is also
reflected in this thesis, the aim of this chapter is to offer a common ground for readers
who may come from different scientific backgrounds. The following sections are not
intended to be a comprehensive literature review; instead, each chapter will include
its own dedicated review of the related work. This chapter serves to give the reader a
general understanding of the motivation and main contributions of the thesis.

2.1 E-MUSE project

E-MUSE

This thesis is framed into the European project E-MUSE: Complex microbial Ecosys-
tems MUltiScale modElling: mechanistic and data-driven approaches integration (https:
//www.itn-emuse.com). E-MUSE is a Marie Sk lodowska-Curie Action Innovative
Training Network with the goal of developing new methodologies for modeling com-
plex biological systems. The project seeks to improve our understanding of microbial
ecosystems, with a specific focus on fermented food products such as cheese. E-MUSE
combines different approaches such as genome-scale metabolic models, dynamic mod-
eling, and machine learning to analyze multi-omics with the aim of identifying links
between features in the data and macro scale properties related to cheese ripening and
consumer preferences. The research building block of E-MUSE is organized in three
work packages (WPs), each focusing on a different aspect of microbial ecosystem mod-
eling.

13
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14 Background

WP1-Systems modeling focuses on mechanistic modeling by integrating omics data
with genome-scale models to study microbial ecosystems and cellular functions. It in-
cludes the physiological characterization of microorganisms to refine dynamic models
and understand metabolic contributions. Furthermore, WP1 explores model-based
control strategies to regulate cellular behavior through environmental modulation.
WP2-Data-based modeling focuses on combining multi-omics integration with statis-
tical, network-based, and machine learning/deep learning approaches to uncover key
biological features. Identifying biomarkers improves our understanding of microbial
functions and product properties like taste and texture.
WP3-Predictive modeling, combines agent-based and partial differential equation mod-
els to study microbial ecosystems. The main focus is cheese production, where exper-
imental data are used to predict microbial behavior, flavor development, and quality
under different conditions. The work also extends to consumer-oriented process mod-
els, integrating biochemical, microbiological, and sensory properties to improve both
traditional and plant-based cheese manufacturing.

This thesis is part of WP2 and, specifically, it represents one of the outcomes of the
Early Stage Researcher 8 (ESR8) project: ”Machine learning at genome scale”. The
motivations and objectives of this project will be detailed in the next paraghraph.

ESR8: Machine learning at genome scale

The ESR8 project aims to develop machine learning models to analyze multi-omics
data and support mechanistic modeling. Specifically, in the context of WP2 of the E-
MUSE project, the main focus is on applications in the fermented food domain, which
is characterized by datasets that are both small in sample size and high-dimensional.
High dimensionality refers to the high number of features for each sample, such as
gene expression levels, metabolite concentrations, and microbial abundances. This is
a perfect example of the “curse of dimensionality”. The number of samples required to
train effectively predictive models grows exponentially with the increase of the dimen-
sionality and this causes overfitting and poor predictive performance. In addition, the
integration of different omics layers is a crucial step as it provides a more complete view
over the different aspects of a biological mechanism. This represents another challenge
due to differences in data types, scales, and noise levels, which makes it more difficult
to extract meaningful relationships across different datasets. For all these reasons, ap-
plying ML, especially DL, to fermented food data is particularly challenging because
these methods require large datasets to generalize well.
The ESR8 project has two main objectives to address these issues. The first one is
to develop methods capable of analyzing small, high-dimensional datasets while main-
taining robust predictive performance. The second objective is to integrate mechanistic
knowledge into machine learning models to improve their predictive capabilities and
interpretability. By using genome-scale models and biological knowledge to constrain
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the learning process, the search space for machine learning algorithms is reduced. This
not only decreases computational complexity but also mitigates the curse of dimen-
sionality by limiting the number of non-biologically relevant patterns the model needs
to consider.

As anticipated before, this work is one of the outcomes of the ESR8 project, and
its motivations and objectives are framed within the context of this project. The next
chapters will introduce and describe in detail all the methods developed during the PhD
program, while in the next sections of this chapter the focus will be on the introduction
of the concepts related to machine learning, omics data and genome-scale metabolic
models, key topics crucial for understanding the context of this thesis, the developed
methods, and their applications. The lack of available data within the consortium,
forced us to focus mainly on publicly available biomedical datasets or, in general,
datasets not strictly related to the food domain. However, the approaches developed
remain highly relevant for the E-MUSE and can be readily transferred to food studies.

2.2 Machine learning

In this section, we want to introduce ML in a way that is accessible to any type of reader.
According to Arthur Samuel [145], ML is a research field that allows the computers to
learn without being explicitly programmed. In fact, in machine learning, the system
can automatically learn rules from data without the necessity of explicitly defining each
rule, which represents a crucial difference with traditional computer programming. For
example, in a scenario where the task is to filter emails based on their size, traditional
programming is sufficient because it is straightforward to define explicit conditions on
a measurable quantity such as the size of an email. On the other hand, if the goal
is to filter emails based on, for example, the probability of being spam or useful, it
becomes much more difficult to define clear rules. In such case, machine learning is a
more suitable approach, as it can learn patterns from historical data of previous spam
and useful emails without relying on any definition.

We used this example because it is useful to introduce supervised learning, a ma-
chine learning class where models are trained using labeled datasets, in a way that is
both intuitive and formally correct.

Given a dataset:

D = {(x1, y1), (x2, y2), . . . , (xn, yn)} (2.1)

xi ∈ X are the features of the input and yi ∈ Y are the labels, supervised learning
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aims to find a function

f : X → Y such that f(xi) ≈ yi (2.2)

In the filtering emails example, xi are the features of the emails in the dataset,
while yi are the labels ”spam” or ”useful”. The first ones are vectors where each
element corresponds to the frequency of a word in the text of the email. This way of
converting email into numerical features is called Bag-of-Words model, and it is one of
the simplest ways to encode text data. The second ones are one-hot encoded vectors
of two elements, one for each possible label: ”spam” or ”useful”. In this case, this
is defined as a ”classification” problem because the goal is to assign a label to each
email. In contrast, in a ”regression” problem, you need to predict a continuous value,
for example, the estimated reading time of an email.
Finally, X and Y are the sets of all possible configurations for xi and yi.

The function f is a family of models with some parameters θ. In supervised learning,
we want to approximate the relationship between input features and labels using an
optimal set of parameters θ∗. To achieve that, the optimization has to be done in a
way that the predictions f(xi; θ) are as close as possible to the true labels. This can
be achieved by minimizing a loss function L which measures the difference between
predicted values and true ones. We can find the optimal parameters by solving:

θ∗ = arg min
θ

n∑
i=1

L(yi, f(xi; θ)) (2.3)

Once trained, the model can be used to predict the label ŷ of a new input x:

ŷ = f(x; θ∗) (2.4)

We specifically focused on supervised learning for two main reasons: it is easier
to use as an illustrative example to introduce ML, and it is the category of all the
methods discussed in the next chapters of this thesis. But there are other important
categories of machine learning. First one is unsupervised learning, in this case the
dataset does not contain the labels, which remain unknown. Here, one goal could be
grouping similar emails without knowing which ones are spam or useful; a task called
clustering. Another category is reinforcement learning, this type of approach is often
used in fields as robotics or game playing where an agent learns how to act in an
environment based on the maximization of a reward function.

In the introduction of supervised learning, we introduced the function f , which
represents the actual ML model. This function can take different forms depending on
the algorithm used. For example, f can be a simple rule-based model like k-Nearest
Neighbors (kNN) [169], a probabilistic model such as Naive Bayes [185], or a linear
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model like Logistic Regression [14].
In this thesis, we focus on neural networks. And more specifically on deep learning,

a term that refers to neural networks composed of many layers and a large number
of parameters. Although deep learning is ML, it is often considered as a separate
subfield due to its capacity to solve effectively very complex problems, such as image
processing, natural language processing and more. The type of neural network that
could be used for the email classification example is the Multi-Layer Perceptron (MLP),
which consists of layers of neurons connected by weights and followed by non-linear
activation functions. To give an illustrative example of a MLP, we show the simple
case with one hidden layer and ReLU activation function σ:

ŷ = softmax
(
σ(XW h + bh)W out + bout

)
(2.5)

where:

• X ∈ RN×din is the input data and din the number of input features

• W h ∈ Rdin×dh are the weights of the hidden layer and dh the number of neurons
of the hidden layer

• bh ∈ R1×dh are the biases of the hidden layer

• W out ∈ Rdh×dout are the weights of the output layer and dout the number neurons
of the output layer

• bout ∈ R1×dout are the biases of the output layer

The output ŷ ∈ RN×dout is the result of the softmax function. An appropriate loss
function for classification task, such as email filtering, is the cross-entropy loss. Given
the true labels y ∈ RN×dout , the loss is computed as the mean cross entropy loss over
the data:

LCE = − 1
N

N∑
i=1

dout∑
j=1

yij log(ŷij) (2.6)

This loss function is expressed in terms of the neural network weights, which rep-
resent the parameters of the model, as in the example before. Also in this case, the
parameters are optimized in order to minimize the loss functions. This is done during
training through back-propagation and gradient descent.

The one described is a simple version of the more complex architectures used in
this work and it serves as a useful starting point for the next chapters. Several other
architectures exist for more advanced tasks such as Convolutional Neural Networks
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(CNN) [206] for image processing, also used in this thesis (Chapter 3), Transformers
[177] for natural language processing, and finally, Recurrent Neural Network (RNN)
[198] for time series analysis.

In the following sections, we will discuss omics data and genome-scale metabolic
models, focusing also on neural networks applied in this context and their characteris-
tics.

2.3 Omics data
In this section, we want to introduce omics data. We want to show the main categories:
genomics(DNA), transcriptomics(RNA), proteomics(proteins), and epigenomics (regu-
latory modifications to DNA) and the role of ML/DL in their analysis. Recent advances
in high-throughput technologies, created a perfect context for collecting huge amounts
of datasets and developing new data-driven approaches. The field of study that focuses
on multiple omics layers is called multi-omics. This integrative approach provides a
more comprehensive view of biological systems and has become essential in fields such
as systems biology, personalized medicine, and disease research [139]. Here, we focus
on the types of omics used in this work.

Genomics Genomics is the study of the DNA content of an organism, also known as
the genome. Data in genomics provides much information on genes, such as structure,
function, their variation within the genome, and how they vary between individuals or
species. It is worth mentioning that the related field is metagenomics, which involves
the study of the collective genomes of different organisms found in a specific sample.
Next-generation sequencing is the most common technology to measure genomics data
because it allows to sequence the entire genome or targeted regions relatively fast.
The output of this process is normally a large set of DNA reads that are further
aligned to a reference genome in order to detect differences. These differences are
so-called ”variants” that include changes such as Single Nucleotide Polymorphisms
(SNPs), insertions, deletions, or larger structural changes. Commonly, variants are
stored in standard formats, including the Variant Call Format (VCF), and widely used
to study mutations or compare genomes between samples. In some studies, such as at
the population level or in metagenomics, the data may include abundance profiles of
estimations about how frequently a gene or sequence appears in a sample. This will be
the case with the data used for our work in Chapter 3.
These data are used in a wide range of applications, starting from the identification
of disease-causing mutations, comparing individual or population genomes, and the
investigation of evolutionary patterns. In clinical settings, genomics data also play a
significant role in precision medicine, where treatments can be tailored according to a
patient’s genotype.
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Transcriptomics Transcriptomics is the study the RNA molecules, also known as
the transcriptome. It shows which genes are being expressed and to what degree.
mRNA (messenger RNA) are molecules produced during the transcription of the genes.
They carry the recipe to produce proteins which are needed to perform a specific
function. mRNA expression is the most common type of transcriptomics data, and
it is represented as a matrix of gene expression values, where rows represent genes,
columns represent samples, and the values are counts or normalized measures. Another
important type of gene expression data comes from miRNA (microRNA). miRNAs are
small, non-coding RNA molecules that themselves do not code for proteins but control
gene expression by binding to target mRNAs, either inhibiting their translation or
facilitating their degradation. miRNA expression data are useful to study how gene
expression is controlled beyond the mRNA level. Both are used for our analysis in
Chapter 4.

In general, transcriptomics data provide rich information on gene activities and
their regulation. For this reason, they are widely used to study biological processes
such as response to environmental changes and the mechanisms underlying several
diseases.

Proteomics Proteomics is the study of all proteins expressed in a cell, tissue, or
organism, also known as the proteome. Proteomics focuses on the final functional
products of genes: proteins. And it is very important for determining what is going on
inside the cell. Proteins are involved in most biological processes, and their expression
levels can be linked with the state of the cell, of the environment, or with the presence
of a disease. Proteomics data are collected using Mass spectrometry, which is a high-
throughput technology to measure thousands of proteins in a sample. Similarly to
transcriptomics, proteomics data are represented using a matrix, where rows represent
genes, columns represent samples, and the values are expression levels. Proteomics,
together with gene expression, are used for the work in Chapter 5.

Proteomics adds an extra layer to complement genomics and transcriptomics and
helps to connect the activity of genes to actual cell behavior.

Epigenomics Epigenomics is the study of all the chemical modifications to the DNA
that can affect gene expression without modifying the DNA sequence. The most im-
portant epigenomics data is DNA methylation, where a methyl group is added to the
cytosine bases. This modification can regulate gene expression, and it is linked with
cell differentiation and development of diseases. DNA methylation data are collected
using bisulfite sequencing. Its output is a matrix of methylation levels at different
locations of the genome for different samples. This type of data is used, in the context
of a multi-omics analysis, for our work in Chapter 4.
Epigenomics represents a further layer that complements genomics, transcriptomics,
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and proteomics, helping to explain how gene activity is controlled in different contexts.

Machine learning and deep learning are widely used both in the single-omics and
multi-omics analyses. Their ability to handle high-dimensional and heterogeneous data
makes them particularly suitable for prediction tasks, feature selection, and multi-omics
integration [8, 98]. In recent years, many methods have been proposed to integrate
genomics, transcriptomics, proteomics, and epigenomics data to improve prediction
performance and gain deeper biological insights [2]. These approaches are especially
useful in the context of precision medicine and biomarker discovery, where combining
multiple omics levels can reveal complex regulatory mechanisms that are not visible
from a single layer.

A peculiar aspect of omics datasets is their high dimensionality (large number of
features) and a small sample size (few number of observations). The high dimensional-
ity depends on the high-throughput technologies which can measures tens of thousand
of expression levels of genes or proteins. In addition, combining multiple omics further
increases the number of features, complicating the problem. On the other hand, the
low sample size depends on the nature of biological experiments, which often require
measurements from different individuals, conditions, or time points. In most cases, it
is not feasible to perform huge numbers of experiments, making the number of samples
much smaller than the number of features. It is worth mentioning that there are excep-
tions where data availability is not a major issue, such as the Human Cell Atlas project
(https://www.humancellatlas.org), which provides millions of transcriptomic pro-
files across diverse human tissues.
Analyzing high dimensional and low sample size data presents a well known challenge
called ”curse of dimensionality” [48], where the increase of dimension in the data re-
quires an exponential increase in the number of samples needed to train the predictive
models. This usually causes overfitting and poor predictive performance.

The chapter 3 of this thesis presents a deep learning-based approach focused on
image data augmentation to address the problem of small sample size. The idea is
to generate modified additional training samples from the original genomics data in
order to improve generalization and reduce overfitting. This is done after converting
the tabular data into 2D representations suitable for CNNs, which allow the use of
image augmentation techniques [195].

Finally, another important aspect of multi-omics data analysis is the biomarker
discovery. Integrating multiple layers of biological information can help to identify
more robust and meaningful biomarkers, for example, for a specific condition or disease.
In chapter 5, together with different supervised learning methods for multi-omics data,
we present an interpretability approach to find new biomarkers.
In the next section, we will introduce genome-scale metabolic models and fluxomics,

https://www.humancellatlas.org
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focusing on how neural networks can be applied in this field.

2.4 Genome-scale metabolic models and constraint-based
modeling

This section introduces genome-scale metabolic models and constraint-based modeling
approaches. The goal is to describe what these methods are, their strengths and
limitations, and how they can be useful in the field of systems biology. In addition,
we will also provide a connection with data-driven approaches and hybrid modeling,
which represent the core topics in the Chapter 5 of this thesis.

Genome-scale metabolic models are mathematical representations of all known
metabolic reactions in an organism. These models are built using information from
the genome, which tells us which enzymes the organism can produce and which bio-
chemical reactions they can catalyse. A GEM is usually represented as a large network,
where nodes are metabolites and edges are reactions connecting them. Each reaction
is linked to one or more genes through known gene-protein-reaction associations [62].
Figure 2.1 represents a graphical representation of the E.coli core GEM, a manually
reduced GEM focused on central carbon metabolism of Escherichia coli.

GEMs are useful because they provide a global view of metabolism, allowing simula-
tions of growth under different conditions, and help identify essential genes or reactions;
however, using them alone is often prohibitive, as estimating reaction rates (fluxes) re-
quires detailed kinetic parameters and enzyme concentrations, which means costly and
time-consuming experiments. A flux v is typically described as:

v = kcat · e · f(s, p) (2.7)

where:

• kcat is the catalytic constant, or turnover number, which represents the number
of substrate molecules converted to product per enzyme molecule per unit time
when the enzyme is fully saturated with substrate (molecule that is consumed by
a reaction), i.e. the enzyme efficiency;

• e is the enzyme concentration;

• f(s, p) is a (often nonlinear) function of the concentrations of substrates s and
products(molecule that is produced by a reaction) p, and the corresponding affin-
ity parameters.

For these reasons, GEMs are often used together with constraint-based modeling
(CBM). This approach does not require precise kinetic information but instead relies on



22 Background

Figure 2.1: Graphical representation of the E. coli core genome-scale metabolic model
generated using Escher [83]. Metabolites are shown as nodes and biochemical reactions
as edges, illustrating the structure of central carbon metabolism.

general assumptions and constraints to study the system. The most common method
in this framework is called Flux Balance Analysis (FBA). FBA assumes that the cell
is in a steady state, meaning that the concentration of metabolites remains constant
over time. It uses a stoichiometric matrix, usually noted as S, which represents how
each metabolite is consumed or produced by each reaction. The system is then solved
as a linear programming problem: we look for a set of reaction fluxes that satisfy the
constraints and optimize an objective function, often the biomass production [124]. To
formalize this, we have:

Maximize: cT V

Subject to: SV = 0
Vmin ≤ V ≤ Vmax

where:
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• V ∈ Rn is the vector of reaction fluxes, i.e., V = (v1, v2, . . . , vn)T

• S ∈ Rm×n is the stoichiometric matrix, with entries sij representing the stoichio-
metric coefficient of metabolite mi in reaction vj

• c ∈ Rn is the objective coefficient vector, used to define which flux (or combination
of fluxes) is to be maximized (e.g., biomass or metabolite production)

• Vmin, Vmax ∈ Rn are the vectors of lower and upper bounds on each reaction flux.
These bounds capture known physiological or thermodynamic constraints (e.g.,
irreversible reactions have vj ≥ 0, reversible ones may have vj < 0)

The constraint SV = 0 ensures mass balance at steady state: for each metabo-
lite, the total production equals total consumption. The inequality Vmin ≤ V ≤ Vmax

defines feasible ranges for each reaction flux based on experimental data or biological
knowledge.
Many software toolboxes are available to perform the linear programming optimization
required for FBA, such as the COBRA Toolbox (MATLAB) [66], COBRApy (Python)
[44],and CBMpy (Python) [122]. All of them support a wide range of constraint-based
modeling tasks.
FBA is a powerful approach because it allows predictions of metabolic fluxes without
requiring detailed kinetic parameters; however, its predictive accuracy is limited by
the steady-state assumption, which cannot capture dynamic changes, and by the de-
pendence on known uptake fluxes, as imprecise values for these can strongly affect the
quality of the predictions [125]. In particular, one critical limitation is the lack of a
straightforward way to convert medium composition, defined by extracellular metabo-
lite concentrations, into quantitative bounds on uptake fluxes, which are essential for
computing growth or other phenotypes.
In recent years, machine learning has become a valid alternative for this task, especially
with the increasing availability of high-throughput omics data [6, 56, 190]. One of the
main advantages of machine learning is that it can work with any kind of data, not just
fluxes, and it doesn’t rely on any mechanistic assumptions. However, this flexibility
comes with some important drawbacks. First, machine learning models behave mostly
as black-boxes, making it hard to extract any mechanistic understanding from their
results. Second, they typically require large amounts of data to be trained properly,
which is often not available in biology-related fields, as discussed in the previous sec-
tions. Because of these complementary strengths and limitations, it seems natural to
try and combine mechanistic modeling with machine learning. This idea has gained a
lot of attention recently, and several works have explored how to integrate these two
approaches, as reviewed in [143] and [202]. According to [143], most of the existing
approaches fall into two categories: using ML to provide inputs for FBA [39, 81, 115],
or using the output of FBA as input for ML models [37, 106]. While this combination
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can be effective, it is not a true integration, as the two models are applied one after the
other rather than being merged into a single framework. To the best of our knowledge,
only two works have proposed hybrid models that truly integrate ML and FBA:and
[65]. The first introduces Artificial Metabolic Neural Networks (AMNs), a type of
neural network that incorporates mechanistic constraints from FBA directly into the
training process. This is done by including a mechanistic layer inside the network, and
a custom loss function that reflects the structure of the underlying metabolic model and
the biological costraints, in a way similar to other Knowledge-Informed Neural Net-
works, such as Physics-Informed Neural Networks [38]. The second work, FlowGAT
[65], uses a Graph Attention Network (GAT) to predict gene essentiality by combining
both the structure of the GEM and the solution provided by FBA. Unlike the previous
approaches, these models represent a more complete integration between data-driven
learning and mechanistic modeling.
Chapter 5 of this thesis fits into this context by presenting a hybrid modeling approach
that follows the blueprint of AMNs proposed in [46], and extends it to the integration
of multi-omics data. In this way, we combine the strengths of machine learning, flexi-
bility in handling different input data and strong predictive performance, with those of
mechanistic models, such as lower data requirements and interpretability of the results.



Chapter 3

Improving microbiome-based disease
prediction with SuperTML and data
augmentation

The use of neural networks in the analysis of microbiome-based datasets is limited by
the small number of samples and the high dimensionality of the data. These limita-
tions can lead to overfitting and poor generalization, making classical deep learning
approaches less suitable for this context. In this chapter, we present our work ”Im-
proving microbiome-based disease prediction with SuperTML and data augmentation”
published in ”IEEE access” [172], where we explore the use of SuperTML, a novel
deep learning method originally developed for small tabular datasets, applied for the
first time to microbiome-based disease prediction. SuperTML converts microbiome
abundance tabular datasets into 2D images and processes them with convolutional
neural networks, transforming the task into an image classification problem. To fur-
ther improve the performance and reduce overfitting, we also apply data augmentation
techniques, using several image transformations commonly used in image processing to
artificially increase the variability and robustness of the training set.
After the Introduction 3.1, the chapter is structured as follows. The Related Works
section 3.2 reviews the use of SuperTML in the literature and explores image aug-
mentation techniques commonly used in image processing as a regularization strategy.
The Materials and Methods section 3.3 describes the SuperTML architecture, the vi-
sual transformation process, and the image augmentation techniques tested in this
work. The Results and Discussion 3.4 reports the performance comparison between
SuperTML, DeepMicro, and standard neural networks across six disease datasets, and
discusses the role of data augmentation in improving performance. Finally, in the Con-
cluding Remarks and conclusion section 3.5, we summarize the main findings of the
chapter, discuss current limitations related to data size, model interpretability, and
computational requirements, and suggest possible directions for future work.
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3.1 Introduction

With the term ”human microbiome” we refer to all the microorganisms in our bodies,
such as bacteria, viruses, fungi, etc. These microbes live in the gut, skin, mouth, and
respiratory system. The gut microbiome, particularly, plays a central role in digestion,
metabolism, immunity, and protection against harmful bacteria. The composition of
each person’s gut microbiome is unique and affected by a balance of causes such as ge-
netics, diet, and lifestyle. A shift in this balance can cause obesity, diabetes, colorectal
cancer, inflammatory bowel disease, and mental disorders. This specific relationship to
diseases is a relatively new and developing field that may provide prophylactic or ther-
apeutic tools to improve human health [31] [1]. In recent years, applying deep learning
computational methods in biomedical research has led to revolutionary advances in
the diagnosis and prediction of diseases [197]. High-dimensional tabular data, such as
those derived from microbiome studies, represent a significant challenge due to data
scarcity [18], making it difficult for traditional feed-forward neural networks (FNNs)
models to generalize effectively. Typically, tabular data are analyzed using classical
machine learning models, which are shown to be state-of-the-art for prediction tasks.
The authors in [59] investigate the weaknesses of FNNs on this kind of data compared
to tree-based models, finding that FNNs are not robust to uninformative features,
which are common in domains characterized by high-dimensional data. In 2019, [163]
presented SuperTML, a method inspired by Super Characters method [164], which
showed encouraging performance, especially with small datasets. This framework is
based on two steps: the first one is embedding the one-dimensional vectors into 2d
images. The second one involves the use of a Convolutional Neural Network (CNN)
to perform the downstream task, i.e., classification. The original work presents two
main limitations: the lack of hypotheses on how the inner mechanism of SuperTML
works and the use of trivial datasets, such as Iris [137], Wine [160], and Adult [12], to
evaluate the performance of this approach.
In this chapter, we present our work which aims to test this framework in a chal-
lenging scenario: microbiome-disease prediction, where the datasets are small and
high-dimensional. Compared to the simple benchmark datasets used in the original
SuperTML paper, microbiome datasets are more complex mainly because of their high
number of features. This makes the embedding step of SuperTML particularly chal-
lenging, since it’s hard to fit and organize a large number of features into a limited pixel
space. For this reason, we consider microbiome-disease prediction a proper challenging
setup to test how robust and scalable SuperTML really is.
We aim to compare the performance of SuperTML with classical machine learning
methods that reached the state-of-the-art in this domain. For this reason, we compare
our results to DeepMicro [121]: a framework to predict the presence or absence of a
particular disease based on data of strain level and species level abundance profiles.
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DeepMicro is a two-stage approach: first, it applies an autoencoder to reduce the di-
mensionality of the original input data. Then, a machine learning model performs the
classification using the learned latent space representation.
Furthermore, since SuperTML reformulates the problem as an image processing task,
we apply image augmentation techniques to synthetically enlarge the datasets and
regularize the model. This capability is an intrinsic advantage of SuperTML in the
context of data scarcity, as augmentation is widely recognized as one of the most effec-
tive regularization techniques in image processing [195]. We test several augmentation
transformations to investigate which ones are effective for the peculiar images created
by the embedding step of SuperTML.
Lastly, in the discussion section of this chapter, we examine our results, highlighting
the strengths and identifying the various limitations of the SuperTML framework.
To summarize, the main contributions of this work are:

• A comparative analysis between SuperTML and classic FNNs over six microbiome-
disease datasets. SuperTML consistently outperformed FNNs across five out of
six datasets, confirming its superiority.

• A comparative analysis between SuperTML and DeepMicro over six microbiome-
disease datasets. SuperTML, when enhanced with augmentation, achieved the
highest AUC scores in five out of six datasets, demonstrating its competitive
performance.

• Experiments with various image augmentation techniques showed their effective-
ness in improving model performance. However, no single transformation consis-
tently outperformed the others across all datasets, leaving open questions about
the inner workings of SuperTML.

• Qualitative analysis on the various limitations of this framework especially the
dependence between the image dimension and the dimensionality of the dataset
which makes it computationally challenging to use SuperTML with very high-
dimensional datasets.

This evaluation shows the effectiveness of SuperTML in complex scenarios and
provides insights into areas where further research and development are necessary to
optimize its application.

3.2 Related Works
Before going into the SuperTML method and our analysis, this section reviews its use
in the literature and summarizes the main concepts of image augmentation techniques,
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providing the necessary background and context for our work.

3.2.1 SuperTML
Deep Learning (DL) has become the standard approach in several fields, such as Com-
puter Vision (CV) [182], Natural Language Processing (NLP) [95], and Speech Recog-
nition (SR) [110]. DL’s achievements in such domains rest in its ability to learn com-
plex hierarchical representations of the data, especially in the case of data with an
underlying structure such as grid-like data, sequences, graphs, etc. DL architectures,
namely Convolutional Neural Networks (CNNs), transformer-based models, and Recur-
rent Neural Networks (RNNs), are built to exploit such properties [22], which explains
their great success in the domains mentioned above. Applying DL to tabular data,
especially high-dimensional ones, is still challenging. The authors in [18] concluded
that ML methods are still state-of-the-art for small and medium-sized datasets (less
than 1M samples); the only cases in which DL outperforms classical ML approaches
are vast datasets. Another contribution of [18] is the introduction of a taxonomy that
organizes DL methods for tabular data into three groups: data transformation meth-
ods, specialized architectures, and regularization models.
This section reviews previous works on SuperTML [163], a data transformation method
that embeds one-dimensional vectors into images by printing each element in the image
canvas and then applying a CNN to the generated image. SuperTML borrows the idea
from the Super Characters method [164], a technique used to convert a sentiment anal-
ysis task to an image classification one. The same idea has also been applied to image
captioning with SuperCaptioning [165]. The authors of SuperTML explicitly highlight
the excellent performance on small datasets and the limited amount of overfitting due
to the usage of transfer learning with pre-trained CNN.
After the publication of [163], other works used SuperTML to benchmark real-world
datasets. The authors in [149] compared the performance of SuperTML with other ML
methods on medical data, concluding that SuperTML competes with ML tree-based
models, but they remain the best choice for those kinds of data. In contrast, the au-
thors in [91] tested SuperTML for dengue prediction using weather data; they showed
that SuperTML, in combination with Resnet18, significantly outperforms classical ML
methods on a small dataset. The authors in [112] compared SuperTML with a 1D-
CNN on an industrial dataset. Their conclusion highlighted the superiority of both
CNN approaches w.r.t classical ML ones. However, due to the high computational
time of SuperTML, they suggest the 1D-CNN for that kind of data. The authors also
concluded that SuperTML works better with the lower-dimensional dataset because of
the simplicity of the images created.
Recently, [74] proposed a new method, called Dynamic Weighted Tabular Method
(DWTM), inspired by the Variable Font-SuperTML (VFTML) [163]: a version of Su-
perTML where the font size of the printed digits depends on the feature importance
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of the variable. DWTM, instead, assigns an area of the image to each digit based on
its weight. The weights represent the associativity between each feature and the class
(e.g., Pearson correlation and chi-square test). The results show that DWTM outper-
forms other ML methods on six benchmark datasets.
Similar to SuperTML, several recent studies have explored using CNNs for tabular
data analysis. One approach involves converting low-dimensional and mixed-type tab-
ular data into 2D images, as seen in the LM-IGTD framework [61]. Another method,
Tab2Visual [108], transforms tabular datasets into visual representations, where each
feature is encoded as a bar of varying width. This transformation enables CNNs and
Vision Transformers (ViTs) to process tabular data as images. Tab2Visual also incor-
porates image augmentation and transfer learning to improve classification accuracy.
A different strategy, Fuzzy CNNs (FCNNs) [86], introduces fuzzy logic to convert tab-
ular features into images by mapping features to fuzzy membership values, which are
then represented as rectangular shapes, allowing CNNs to capture feature importance
while maintaining interpretability. A significant limitation noted in the existing litera-
ture is that studies focus on datasets with relatively few features. This work, instead,
focuses on SuperTML applied to microbiome data, a domain characterized by small
and high-dimensional datasets. Furthermore, considering SuperTML a fully fledged
image processing method, we test several augmentation techniques suitable for it. For
this reason, we dedicate the following section to reviewing augmentation techniques for
image data.

3.2.2 Data Augmentation
Due to the high complexity of DL models, overfitting is one of the central issues in this
field. One method that can help reduce it is data augmentation. Data augmentation
is any perturbation applied to the data aimed at enlarging the size of the training set.
By doing this, data augmentation helps to increase the variability of the dataset and
improve the generalization of the models trained on it.
In the image domain, data augmentation refers to those techniques that alter the image
by flipping, mixing, erasing, etc. More precisely, using the taxonomy introduced by
[195], these methods can be divided into basic and advanced approaches. The basic
approaches are further grouped into Image Manipulation, Image Erasing, and Image
Mix techniques.
Image Manipulation includes transformations such as rotation, flipping, and cropping.
Image Erasing contains those methods that delete one or more sub-regions by replacing
the pixel values with a constant or random value [28, 42, 155, 207]. Image Mix regards
those techniques that mix two or more images or sub-regions of the images into one
[64, 67, 73, 180, 199].
The advanced approaches are divided into Auto Augment, Feature Augmentation, and
Deep Generative Models-based techniques. Auto Augment refers to those methods that
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automatically search the optimal augmentation approach to improve performance [34,
69, 100]. Feature augmentation refers to those techniques that apply the transformation
on the learned feature space conversely to the input space [41, 87, 94]. The Deep-
Generative Models-based techniques exploit GAN [57] to keep the gap between the
augmented image and the original one from being too large, ensuring that the two
images belong to the same data distribution.
In our analysis, we employ techniques mainly from the Image Manipulation and Image
Erasing groups, which we believe are particularly well-suited for handling the images
generated through SuperTML.

Table 3.1: Summary of disease datasets.

Disease Dataset # Samples # Controls # Patients # Features
Inflammatory Bowel Disease IBD 110 85 25 443
Type 2 Diabetes EW-T2D 96 43 53 381
Type 2 Diabetes C-T2D 344 174 170 572
Obesity Obesity 253 89 164 465
Liver Cirrhosis Cirrhosis 232 114 118 542
Colorectal Cancer Colorectal 121 73 48 503
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3.3 Materials and Methods

3.3.1 Datasets
To evaluate the performance of SuperTML and the tested augmentation techniques, we
considered six publicly available datasets analyzed in the DeepMicro work, featuring
human gut metagenomic species-level relative abundance profiles linked with different
diseases: inflammatory bowel disease (IBD) [135], type 2 diabetes in European women
cohort (EW-T2D) [79], type 2 diabetes in Chinese (C-T2D) [134], cohortobesity (Obe-
sity) [90], liver cirrhosis (Cirrhosis) [136], and colorectal cancer (Colorectal) [203].
We selected these datasets for two reasons: first, these are relatively small datasets (less
than 500 observations), such as many datasets in the microbiome research domain, and
second, their dimension (between ∼ 400 and ∼ 600 features) is difficult to represent in
the SuperTML embedding. For these reasons, these datasets represent a challenge for
SuperTML that has yet to be explored.
We did not select the six strain-level relative abundance profiles, also present in the
DeepMicro article, because the number of features is prohibitively big, ∼ 105 , to fit in
the SuperTML image embedding without choosing a font size excessively small or an
image dimension too big for computational feasibility.
We also selected another dataset, the HIGGS dataset [3]. Unlike microbiome-disease
datasets, which are characterized by high-dimensional data and small sample sizes, the
HIGGS dataset consists of approximately 700k observations with only 30 features. This
difference allows us to examine whether the improvements observed with SuperTML
and its augmented versions hold when applied to a dataset with a completely different
structure.

Figure 3.1: SuperTML images with baseline augmentation types: the first image shows
the original SuperTML without any augmentation, the second image demonstrates the
effect of RandFlip, where the image is randomly flipped along a selected spatial axis, and
the third image applies RandRotate, introducing a random rotation within a specified
angle range.
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Figure 3.2: SuperTML images with different Image Erasing augmentation types: the
first image applies RandomErasing, where a randomly sized rectangular region is re-
moved and replaced with a constant value; the second image represents RandCoarse-
Dropout, which removes multiple randomly sized rectangular regions and replaces them
with a fill value; the third image shows RandCoarseShuffle, where the selected regions
are shuffled; and the fourth image applies CellDropout, specifically removing the exact
areas where features are printed, simulating features dropping.

3.3.2 Methods

As introduced in the previous sections, SuperTML is an approach to tabular data
analysis that leverages two-dimensional embeddings. This idea has been successful in
the NLP domain, specifically by transforming a sentiment analysis task into an image
classification task [164].
In this framework, each data point is translated into an image format, representing
each feature as a floating point number printed onto a black background. This image
is then processed using a Convolutional Neural Network (CNN) to perform the down-
stream prediction task. The original work pre-trained the CNNs on more extensive
datasets, such as ImageNet [40]. Here, we train the CNNs from scratch since we have
not noticed any improvement related to pre-trained models.
Another important detail is the choice of the image dimension, which strictly depends
on the font’s dimension, the digits’ precision, and the number of data features. For
computational demand reasons, we chose not to have bigger images than 450x450 in
the DeepMicro dataset, and we adjusted the font size and the precision of the digits
accordingly. In the case of HIGGS data, which is characterized by only 30 features,
the image dimension is 224x224.
By converting the problem into image processing, this work further explores image aug-
mentation techniques to assess their effectiveness for the unique images generated by
SuperTML. Our primary interest is to check which kind of augmentation is best suited
to this framework; for this reason, we tried several augmentation techniques for each
dataset. First, classical augmentation transformations, such as Random Rotation and
Random Flipping, have been used as a baseline. Figure 3.1 shows them in comparison
with an original non-augmented SuperTML image.
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Then, we tried several Image Erasing transformations, such as Random Erasing, Ran-
dom Coarse Dropout, and Random Coarse Shuffle, and we implemented a custom
transformation named Random Cell Dropout. In the context of SuperTML images,
the idea behind Image Erasing techniques is masking the features to force the model to
learn with a randomly selected feature subset. The issue with these techniques is that
they do not erase exactly the area of the image belonging to the represented feature
but an area that potentially can partially overlap with a feature; to address this, we
implemented the Cell Dropout method. Cell Dropout is specifically implemented for
the SuperTML generated images: it randomly selects a subset of features and masks
them completely. Figure 3.2 shows the differences between all the Image Erasing meth-
ods.
To complete the analysis, we also tried other techniques belonging to the Image Manip-
ulation family, such as Random Zoom, which acts similarly to erasing transformation,
forcing the model to focus on a subset of features, but it also modifies them by zoom-
ing on them. Random Elastic, which distorts the features as shown in Figure 3.3, and
Random Gaussian Noise, which adds noise randomly sampled from a Gaussian distri-
bution. The idea behind the Image Manipulation transformations is to force the model
to learn using distorted/manipulated digits in order to improve its ability to distinguish
them, which intuitively is crucial in the context of SuperTML. Fig 3.4 shows the de-
tails of the digits in the Random Gaussian Noise and Random Elastic transformations.
For clarity, we also included more explicative figures and detailed descriptions of these
transformations in the following section.
All the augmentation transformations were implemented using the MONAI library [25].

Figure 3.3: SuperTML images with different Image Manipulation augmentation types:
the first image applies RandZoom, which randomly scales the image by a factor within a
specified range; the second image represents RandGaussianNoise, where random Gaus-
sian noise is added to the image; and the third image applies Rand2DElastic, introduc-
ing smooth, localized deformations to mimic realistic elastic distortions in the image.
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Figure 3.4: Zoomed-in views of the SuperTML images, focusing on the original (non-
augmented), RandGaussianNoise, and Rand2DElastic versions to better highlight the
detailed effects of these transformations.

3.3.3 SuperTML and Augmented Images: toy examples

This section presents a detailed description of each image augmentation technique used
in our analysis. We created a toy example of a vector of 25 randomly generated values
to have an easily readable image. We grouped the image augmentations as we did in
the Methods section; in this way, they can represent a more explicative version of the
previous figures.
Figure 3.5 shows the SuperTML embedding without any transformation applied.

Figure 3.5: Image created by SuperTML, it represents the 2D embedding of a data-
point. In this case randomly generated vector of 25 values.
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Figure 3.6 shows the Random Flip and Random Rotation transformations. Random
Flip randomly flips an input image along specified spatial axes with a given probability.
In this case, the image is first flipped along the horizontal axis and then the vertical
one. Random rotation, instead, randomly rotates images by a specified angle range
along given spatial axes.

Figure 3.6: On the left: the Random Flip augmented image. On the right: the Random
Rotation augmented image.

Figure 3.7 shows 4 different transformations belonging to the Image Erasing fam-
ily. The Random Erasing transformation randomly selects a rectangular region with
random dimensions and replaces it with a constant value, noise, or random pixels. The
Random Coarse Dropout randomly selects multiple rectangular regions of random sizes
and replaces them with a specified fill value. The Random Coarse Shuffle, instead, ran-
domly selects multiple rectangular regions of random sizes and shuffles their contents
within the image. The CellDropout transformation randomly selects the regions be-
longing to feature values and replaces them with zero values that correspond to black
pixels; in this way, it randomly drops a specified number of features.

Figure 3.8 shows all three transformations belonging to the Image manipulation
group. Random Zoom will randomly scale an image by a certain factor within given
minimum and maximum, zooming it either in or out, while preserving the aspect ratio.
Random Gaussian Noise adds random Gaussian noise to an image, with given mean and
standard deviation. Random Elastic applies random elastic deformation by displacing
image pixels locally, similarly to real life elastic distortions.
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Figure 3.7: On the top left: Random Erasing augmented image. On the top right: the
Random Coarse Dropout augmented image. On the bottom left: the Random Coarse
Shuffle augmented image. On the bottom right: the CellDropout augmented image.

Figure 3.8: On the left the Random zoom augmented image. In the center: the Random
Gaussian Noise augmented image. On the right: the Random Elastic augmented image.
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3.3.4 Performance evaluation

Experimental Setup

In order to have a fair comparison with the DeepMicro results, we used the same
evaluation pipeline. It consists of nested cross-validation: the outer loop splits the
dataset into train and test, respectively 80% and 20%, using 0, 1, 2, 3, 4 as random seed
to assure reproducibility. Then, there is an inner k-fold cross-validation (k=5) for each
split to optimize the hyperparameters over the train and a final evaluation on the test
set with the best model found.
We calculate the metrics for each split and report the mean and the standard deviation.
Figure 3.9 shows the described evaluation pipeline. We calculated the accuracy (ACC)
and the area under the curve (AUC) but, following DeepMicro work, we used only the
AUC to compare the performance among the models.
The HIGGS dataset contains around 700k samples and for this reason it does not need
a cross-validation pipeline. We just split the dataset into train, validation, and test
sets (∼ 200k, ∼ 50k, ∼ 450k). To quantify the performance of the models, we used
the approximate median significance (AMS) metric:

AMS =
√

2
(

(s + b + br) log
(

1 + s

b + br

)
− s

)

where s, b are the unnormalised true positive and false positive rates, respectively. br

is 10, the constant regularisation term and log is the natural logarithm.
More precisely:

s =
n∑

i=1
wi1{yi = s}1{ŷi = s}

and

b =
n∑

i=1
wi1{yi = b}1{ŷi = s}

where (y1, . . . , yn) ∈ {b, s}n is the vector of true labels, (ŷ1, . . . , ŷn) ∈ {b, s}n the vector
of predicted labels, (w1, . . . , wn) ∈ Rn

+ is the vector of weights and 1{A} the indicator
function which is 1 if the argument is true and 0 if it is false.
As detailed in [3], the weights are an artifact of the way the ATLAS full-detector
simulation works and for this reason they are not given as an input to the classifier,
they are used only to calculate the AMS metric to evaluate and test the models.
As extensively presented in [4], in High-Energy Physics (HEP), detecting rare events
like Higgs boson decays involves defining a “search region,” i.e., a region of the 30-
dimensional space of input variables. If the events observed in this region significantly
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exceed the expected number of background events, the background-only hypothesis can
be rejected, providing statistical evidence for the signal. If the signal process is present,
then the observed statistical significance with which one rejects the background-only
hypothesis can be approximated by the already defined AMS [33]. AMS quantifies a
classifier’s ability to separate signals from the background by maximizing true positive
detections while minimizing false positives. Unlike simple accuracy, which is not helpful
in highly imbalanced datasets (signal events are extremely rare w.r.t. background ones),
AMS focuses on statistical significance, ensuring that a classifier optimally detects rare
signals, keeping false positive detections low.

Hyperparameters

As introduced in the previous section, the inner loop of the evaluation pipeline is a
k-fold cross-validation (k=5) to find the best hyperparameters. Here, we briefly present
the structure of the CNN architecture used for the second step of SuperTML and all
the hyperparameters related to it, the learning process, and the augmentation stage.
For both the analyses on DeepMicro and HIGGS datasets, as anticipated in the Method
section, we trained a CNN architecture built as follows from scratch: n blocks of
convolutional layers, Leaky ReLU [191], Batch Normalization [191], and Max Pooling
[200]. After the n blocks, a flattening operation is followed by a dropout [158] and a
final linear layer for the final classification step.
The hyperparameters search space consists of the learning rate, number of convolutional
layers, number of kernels, L2 regularization value, and dropout intensity. Furthermore,
we fixed several hyperparameters: each parameter in the augmentation functions is
fixed, each random augmentation’s probability is 0.5, and the optimizer used is Adam.

3.4 Results and Discussion
In this section, we present all the results obtained from our analysis. As shown in Fig-
ure 3.10, SuperTML without augmentation outperforms a standard FNN in five out
of six datasets, while with augmentation, it consistently achieves better performance
across all six datasets. These results confirm the effectiveness of SuperTML compared
to FNNs in an unexplored challenging scenario: microbiome-based high dimensional
and small datasets. The fact that SuperTML performs better than simple FNNs can
be explained by CNN’s ability to learn in high dimensions. This means that it is easier
to learn from an image using the inductive biases of the CNN compared to learning in
high-dimensions with a feedforward neural network, which will face the curse of dimen-
sionality. Additionally, the SuperTML framework can benefit from the use of image
augmentation to further improve its performance. Regarding the comparison between
the DeepMicro framework and SuperTML, the results show competitive performance
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Figure 3.9: Evaluation pipeline used for DeepMicro datasets. A) The first step is a split
of the dataset in a train and test set. B) The second step is a k-fold cross-validation
(k=5) loop for optimizing the hyperparameters: here, the training set is split into five
folds, and the model is trained on four folds and validated on the remaining one. This
process is repeated five times, each time using a different fold for validation. The final
performance is then averaged across all iterations to select the best hyperparameters.
C) The final step consists of training the model on the whole train set using the best
hyperparameters and then testing the performance on the test set. These steps are
repeated 5 times and the final test performances are averaged across the different test
splits.
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Figure 3.10: Results on the 6 DeepMicro datasets: each bar represents the average
models AUC performance over 5 different test splits

for SuperTML used together with augmentation, obtaining higher AUC scores for five
datasets out of six. This result shows that SuperTML with augmentation can be
considered a valid alternative to classical machine learning models in the context of
microbiome used as a predictor of disease. Another important observation from Fig-
ure 3.10, concerns the performance across different disease datasets. While SuperTML
with augmentation shows competitive performance, some datasets: Obesity, CT2D,
EW-T2D, and Colorectal; consistently show lower AUC scores across all models. Our
hypothesis is that this lower performance is due to two key factors. First, these diseases
likely have a weaker correlation with gut microbiome composition, making classifica-
tion naturally more challenging. Second, the type of data used plays a crucial role. In
DeepMicro’s analysis [121], both strain-level marker profile and species-level relative
abundance profile datasets show the same pattern of lower performance for these dis-
eases. However, strain-level marker profile datasets achieve higher average performance
across all diseases, suggesting that species-level relative abundance profiles may not be
informative enough for this kind of task.
Another relevant result is shown in Figure 3.10: the augmentation improves the AUC
score consistently for all six microbiome-disease datasets, w.r.t. SuperTML used with-
out augmentation. The same result appears in Figure 3.11 , where the data augmen-
tation improves the AMS metric for the HIGGS dataset. These results suggest that
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Figure 3.11: Results on HIGGS dataset: each bar represents the models AMS metric
over the test split

SuperTML benefits from augmentation as a regularization technique, just as any other
image processing framework based on CNN. Since the HIGGS dataset differs signif-
icantly from microbiome-disease datasets in both scale and dimensionality, these re-
sults support the effectiveness of augmentation in improving model performance across
different types of data. This suggests that augmentation not only helps prevent over-
fitting in small, high-dimensional datasets but also enhances generalization in larger,
low-dimensional ones.
The results about the most suitable transformations for this task reveal an interesting
complexity. The only ones that achieve the best results for multiple datasets are the
Random Coarse Shuffle on three datasets and Random Elastic on two. Others, such
as Random Gauss and Cell Dropout, reach the highest AUC only on one dataset.
Cell Dropout, the transformation explicitly implemented for this framework, did not
perform as expected. This suggests that there are better strategies than forcing the
model to focus on a subset of features in a context such as SuperTML. However, it is
still an open question about which transformation best suits this task. This could also
be relevant to understanding the inner mechanism of SuperTML, meaning understand-
ing which features it learns for the prediction. This could be relevant in the context of
biomarker discovery.
Another important limitation to discuss is the link between the input data dimen-
sion and the 2d embedding dimension. Specifically, if the data dimensions are too
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extensive, the resulting images become too large for effective computation, potentially
restricting the applicability of SuperTML in broader scenarios, such as the strain-
level profile datasets or multi-omics research which are characterized by dimensions
the order ∼ 105. One straightforward solution to this issue is the implementation of
dimensionality reduction techniques similar to the DeepMicro framework. By reduc-
ing the dimensionality before applying SuperTML, it may be possible to maintain the
integrity of the data while ensuring the computational feasibility of the model. Fi-
nally, another aspect to consider is interpretability, which is particularly challenging in
SuperTML due to how the embedding works. In this step, the metagenomic features
are turned into numbers that will be printed as pixels on a black canvas. This makes
it very hard to trace back which features actually contribute to the prediction. This
might be mitigated by using pixel-level attribution methods such as Integrated Gradi-
ents [166]. These algorithms could allow us to highlight the most important pixels for
a given prediction and, if properly mapped back to the original features, they could
help us understand which ones are most relevant for the disease. This could be a first
step to interpret the model predictions which could be very useful to find potential
biomarkers, and eventually open the way to apply these methods in the context of
precision medicine.

3.4.1 Results details
This section contains the tables with the extended and detailed results for each dataset.

HIGGS
Method AMS ACC
SuperTML 2.761 0.833
SuperTML + RandRotate 2.837 0.836
SuperTML + RandFlip 2.818 0.832
SuperTML + RandZoom 2.740 0.833
SuperTML + RandElastic 2.853 0.833
SuperTML + RandGauss 2.750 0.834
SuperTML + RandErasing 2.833 0.834
SuperTML + CellDropout 2.837 0.833
SuperTML + CoarseDrop 2.779 0.831
SuperTML + CoarseShuffle 2.837 0.836

Table 3.2: AMS and ACC scores of SuperTML-based methods for HIGGS dataset.
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Table 3.2 reports the results for SuperTML-based models on the HIGGS dataset,
with all metrics calculated on the test split. The AMS values are presented in the main
manuscript as a bar plot (Figure 7), while accuracy (ACC) is reported here for com-
pleteness. As explained in the Performance Evaluation section of the main manuscript,
accuracy is not an appropriate metric for rare signal events such as Higgs boson decays.
As expected, ACC does not highlight any differences among the models, confirming its
limited usefulness in this context.
Tables 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8 report the results for all methods on the microbiome-
disease datasets. The metrics were calculated following the evaluation pipeline de-
scribed in the main manuscript (Figure 5). The AUC scores for each dataset are also
presented as bar plots in Figure 6.
Following the approach adopted by the authors of DeepMicro: deep representation
learning for disease prediction based on microbiome data, we optimized all models us-
ing AUC as the target metric. For this reason, our analysis and conclusions are based
primarily on the AUC results. Here, for completeness, we also report the accuracy
scores, which show slightly different patterns compared to the AUC results. For ex-
ample, only four out of six datasets show an improvement in accuracy when using
SuperTML with augmentation compared to the basic SuperTML. Similarly, for Deep-
Micro, which achieved the highest accuracy in four out of six datasets.

IBD
Method ACC AUC
DeepMicro 0.809 ± 0.017 0.873 ± 0.030
MLP 0.754 ± 0.046 0.778 ± 0.049
SuperTML 0.800 ± 0.036 0.816 ± 0.116
SuperTML + RandRotate 0.745 ± 0.068 0.682 ± 0.205
SuperTML + RandFlip 0.791 ± 0.022 0.865 ± 0.075
SuperTML + RandZoom 0.781 ± 0.044 0.823 ± 0.100
SuperTML + RandElastic 0.818 ± 0.121 0.905 ± 0.088
SuperTML + RandGauss 0.791 ± 0.036 0.845 ± 0.113
SuperTML + RandErasing 0.799 ± 0.054 0.837 ± 0.126
SuperTML + CellDropout 0.818 ± 0.057 0.887 ± 0.047
SuperTML + CoarseDrop 0.818 ± 0.040 0.821 ± 0.135
SuperTML + CoarseShuffle 0.781 ± 0.060 0.934 ± 0.015

Table 3.3: ACC and AUC scores for IBD dataset. The reported numbers are the average
and the standard deviation metrics over the 5 test splits.
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C-T2D
Method ACC AUC
DeepMicro 0.644 ± 0.025 0.725 ± 0.025
MLP 0.611 ± 0.052 0.691 ± 0.0451
SuperTML 0.574 ± 0.037 0.690 ± 0.054
SuperTML + RandRotate 0.605 ± 0.054 0.731 ± 0.050
SuperTML + RandFlip 0.617 ± 0.047 0.704 ± 0.040
SuperTML + RandZoom 0.599 ± 0.063 0.709 ± 0.023
SuperTML + RandElastic 0.597 ± 0.057 0.742 ± 0.054
SuperTML + RandGauss 0.620 ± 0.045 0.732 ± 0.059
SuperTML + RandErasing 0.631 ± 0.075 0.719 ± 0.074
SuperTML + CellDropout 0.606 ± 0.044 0.710 ± 0.032
SuperTML + CoarseDrop 0.605 ± 0.044 0.711 ± 0.032
SuperTML + CoarseShuffle 0.605 ± 0.044 0.710 ± 0.032

Table 3.4: ACC and AUC scores for C-T2D dataset. The reported numbers are the
average and the standard deviation metrics over the 5 test splits.

EW-T2D
Method ACC AUC
DeepMicro 0.740 ± 0.037 0.829 ± 0.039
MLP 0.580 ± 0.092 0.604 ± 0.185
SuperTML 0.720 ± 0.087 0.776 ± 0.151
SuperTML + RandRotate 0.590 ± 0.058 0.778 ± 0.127
SuperTML + RandFlip 0.600 ± 0.070 0.697 ± 0.118
SuperTML + RandZoom 0.650 ± 0.070 0.733 ± 0.129
SuperTML + RandElastic 0.600 ± 0.070 0.772 ± 0.132
SuperTML + RandGauss 0.610 ± 0.086 0.732 ± 0.059
SuperTML + RandErasing 0.631 ± 0.075 0.785 ± 0.124
SuperTML + CellDropout 0.620 ± 0.120 0.781 ± 0.109
SuperTML + CoarseDrop 0.659 ± 0.149 0.747 ± 0.142
SuperTML + CoarseShuffle 0.650 ± 0.070 0.735 ± 0.099

Table 3.5: ACC and AUC scores for EW-T2D dataset. The reported numbers are the
average and the standard deviation metrics over the 5 test splits.
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Obesity
Method ACC AUC
DeepMicro 0.674 ± 0.034 0.655 ± 0.013
MLP 0.592 ± 0.069 0.576 ± 0.072
SuperTML 0.607 ± 0.044 0.608 ± 0.074
SuperTML + RandRotate 0.576 ± 0.056 0.624 ± 0.078
SuperTML + RandFlip 0.588 ± 0.109 0.619 ± 0.059
SuperTML + RandZoom 0.549 ± 0.096 0.625 ± 0.079
SuperTML + RandElastic 0.576 ± 0.059 0.607 ± 0.053
SuperTML + RandGauss 0.529 ± 0.118 0.629 ± 0.065
SuperTML + RandErasing 0.573 ± 0.092 0.592 ± 0.037
SuperTML + CellDropout 0.631 ± 0.057 0.579 ± 0.034
SuperTML + CoarseDrop 0.635 ± 0.053 0.612 ± 0.054
SuperTML + CoarseShuffle 0.619 ± 0.051 0.667 ± 0.079

Table 3.6: ACC and AUC scores for Obesity dataset. The reported numbers are the
average and the standard deviation metrics over the 5 test splits.

Colorectal
Method ACC AUC
DeepMicro 0.809 ± 0.046 0.704 ± 0.020
MLP 0.608 ± 0.053 0.718 ± 0.084
SuperTML 0.679 ± 0.094 0.744 ± 0.154
SuperTML + RandRotate 0.648 ± 0.039 0.712 ± 0.114
SuperTML + RandFlip 0.617 ± 0.047 0.704 ± 0.040
SuperTML + RandZoom 0.600 ± 0.075 0.684 ± 0.124
SuperTML + RandElastic 0.624 ± 0.032 0.683 ± 0.057
SuperTML + RandGauss 0.656 ± 0.064 0.760 ± 0.093
SuperTML + RandErasing 0.640 ± 0.056 0.706 ± 0.136
SuperTML + CellDropout 0.664 ± 0.047 0.712 ± 0.122
SuperTML + CoarseDrop 0.656 ± 0.096 0.744 ± 0.143
SuperTML + CoarseShuffle 0.632 ± 0.058 0.710 ± 0.133

Table 3.7: ACC and AUC scores for Colorectal dataset. The reported numbers are the
average and the standard deviation metrics over the 5 test splits.
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Cirrhosis
Method ACC AUC
DeepMicro 0.830 ± 0.029 0.888 ± 0.011
MLP 0.702 ± 0.046 0.803 ± 0.039
SuperTML 0.812 ± 0.047 0.910 ± 0.020
SuperTML + RandRotate 0.782 ± 0.075 0.896 ± 0.019
SuperTML + RandFlip 0.846 ± 0.028 0.909 ± 0.012
SuperTML + RandZoom 0.808 ± 0.052 0.907 ± 0.014
SuperTML + RandElastic 0.821 ± 0.082 0.905 ± 0.028
SuperTML + RandGauss 0.812 ± 0.119 0.903 ± 0.046
SuperTML + RandErasing 0.834 ± 0.015 0.907 ± 0.013
SuperTML + CellDropout 0.821 ± 0.037 0.910 ± 0.016
SuperTML + CoarseDrop 0.829 ± 0.044 0.912 ± 0.014
SuperTML + CoarseShuffle 0.838 ± 0.039 0.914 ± 0.012

Table 3.8: ACC and AUC scores for Cirrhosis dataset. The reported numbers are the
average and the standard deviation metrics over the 5 test splits.

3.5 Concluding Remarks
In this chapter, we introduced and discussed the application of SuperTML to microbiome-
based disease prediction, a task that is often limited by the small size and high di-
mensionality of biomedical datasets. Our analysis shows that SuperTML consistently
outperformed standard feedforward neural networks in five out of six datasets, con-
firming its effectiveness in capturing complex patterns in microbiome profiles. When
compared with DeepMicro, SuperTML with image augmentation achieved the highest
AUC scores in five out of six datasets, showing competitive performance against state-
of-the-art approaches. The results also confirmed that image augmentation acts as an
effective regularization strategy for SuperTML, though no single transformation proved
consistently superior across all datasets. This leaves open questions about which aug-
mentations work best and how SuperTML internally handles them.
Finally, as directions for future work, one possibility is to explore ways to extend Su-
perTML to very high-dimensional data, such as strain-level or multi-omics profiles,
by introducing a dimensionality reduction step before embedding. Another important
direction is to work on interpretability, for example by adapting computer vision meth-
ods to trace back the most relevant pixels to the original microbiome features. This
could make the predictions more understandable for researchers and practitioners in
healthcare, and represent a step forward toward applications in precision medicine.
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The datasets and the source code are available on GitHub at https://github.
com/gabrieletaz/microbiome_supertml

The author of this PhD thesis is responsible for the following contributions presented
in this chapter:

II/1. Contributed to conceptualization and design of the work: transforming the
microbiome-disease classification tasks into image classification using SuperTML
and comparison with Deepmicro.

II/2. Literature survey on SuperTML and image augmentation.

II/3. Conceptualization and implementation of all the experiments reported in the
chapter.

II/4. Conceptualization and implementation of the novel CellDropout transformation
from scratch.

https://github.com/gabrieletaz/microbiome_supertml
https://github.com/gabrieletaz/microbiome_supertml
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Chapter 4

Supervised Multiple Kernel Learning
approaches for multi-omics data
integration

Advances in high-throughput technologies have originated an increasing availability of
omics datasets. The integration of multiple heterogeneous data sources is currently
an issue for biology and bioinformatics. Multiple kernel learning (MKL) has shown
to be a flexible and valid approach to consider the diverse nature of multi-omics in-
puts, despite being an underused tool in genomic data mining. In this context, we
present our work ”Supervised multiple kernel learning approaches for multi-omics data
integration” published in ”BMC BioData Mining” [21] where we introduce novel MKL
approaches based on different kernel fusion strategies. To learn from the meta-kernel
of input kernels, we adapted unsupervised integration algorithms for supervised tasks
with support vector machines. We also present deep learning architectures for kernel
fusion and classification. The results show that MKL-based models can outperform
more complex, state-of-the-art, supervised multi-omics integrative approaches. After
the Introduction 5.1, this chapter is structured as follows. The Related Work section
4.2, provides a literature survey on the multiple kernel learning approaches, introduc-
ing the theoretical framework and explaining why MKL framework is a flexible tool for
integrating heterogeneous data sources. In addition, it provides a background of the
relevant deep learning approaches used for multi-omics integration. The Material and
methods section 4.3, presents the different kernel-based models evaluated in this work,
including both standard and DeepMKL architectures, along with the dataset and the
preprocessing steps used for benchmarking. The Performance evaluation section 4.3.3,
describes the evaluation pipeline and evaluation metrics. Results section 4.4 presents
the performance and the biomarkers found using the proposed methods. Finally, in the
Discussion and concluding remarks section 4.5 we give a brief discussion of the Chapter
main findings and how they fit in the context of multi-omics integration literature. We
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also discuss potential future work directions and list the detailed contributions of the
author to this chapter.

4.1 Introduction
Data integration has recently attracted substantial attention in the research literature,
both for the statistical challenges and promising potential applications in fields such as
biology and medicine. Multi-omics data have become increasingly available following
the significant growth of high-throughput technologies. The availability of such rich
while complex data has expanded the number of available algorithms and method-
ologies to properly conduct analyses, with the possible need to create novel research
profiles [52]. In this context, Kernel methods have proven to be a very promising
technique for integrating and analyzing high-throughput technologies-generated data.
Kernel methods benefit from the possibility of providing a nonlinear version of any
linear algorithm that relies solely on dot products. For instance, unsupervised meth-
ods such as Kernel Principal Component Analysis [147], Kernel Canonical Correlation
Analysis [11], Kernel Discriminant Analysis [142] and Kernel Clustering [51] are all
examples of nonlinear algorithms enabled by the so-called kernel trick.
Kernel-based methods also include supervised classification algorithms. Support vector
machine is the most popular one, along with Kernel partial least squared regression
[141] or Kernel discriminant analysis [142].
Several methodologies are also available to integrate multiple high throughput data
sources through the so-called Multiple kernel learning (MKL) approach. These meth-
ods combine modern optimization techniques’ power with kernel methods’ framework,
providing a new multi-source genomic data learning tool.
In this work, we review classical MKL algorithms, while also exploring alternative
MKL approaches. Specifically, we propose a novel approach that consists of adapting
unsupervised algorithms for multiple kernel integration to a supervised context, i.e.,
fitting an SVM classification model on a fused kernel obtained through an unsupervised
algorithm for the convex linear combination of input kernels. This approach mimics
what more recent deep learning-based methods realize using Autoencoders [188]. First,
the lower dimensional latent representation is learned in an unsupervised way by an
Autoencoder, and then this embedding is used to perform a downstream task such as
classification [192].
More recently, Deep learning has emerged as a valid alternative to dealing with data
integration challenges. A key strength of deep learning lies in its ability to learn homo-
geneous representations from heterogeneous data sources (images, text, tabular data),
making it a perfect candidate for multi-omics integration problems.
Different deep learning methods have already been applied in this domain with promis-
ing results. Architectures such as Autoencoders [188], [197], Graph Neural Networks
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[80] [183] or Multi-head Attention [55] have been successfully adapted to different multi-
omics integration tasks reaching the state-of-the-art. Deep learning has also been used
as an alternative approach to multiple kernel fusion [157] to integrate different kernels
from a single data source. This type of architecture can be easily adapted to integrate
heterogeneous data sources, such as multi-omics datasets. With this intention, we in-
troduce a novel deep learning framework tailored for Multiple kernel learning (MKL),
namely DeepMKL, specifically within multi-omics integration. This method exploits
both the advantages of kernel learning and deep learning by transforming the input
omics using different kernel functions and guiding their integration in a supervised
way, optimizing the neural network weights to minimize the classification error. To
sum up, while Multiple kernel learning remains an under-utilized tool for genomic data
mining [186], in this work, we propose MKL methods to integrate multi-omics data
based both on unsupervised convex linear optimization and deep learning. We aim
to show the advantages of this setting by comparing it with state-of-the-art methods.
Our results align with recent findings in [23], where the authors compare traditional
machine learning (ML) models with Graph Neural Networks (GNNs) in single omics
analysis, concluding that the benefits of GNNs are overstated. We similarly demon-
strate that classical ML approaches, such as MKL methods, show competitive results
against GNNs in the context of multi-omics analysis.

4.2 Related Works
Many machine learning methods are available to unravel biological system mechanisms
and find new biomarkers. The big challenges associated with multi-omics data mining
and integration are the intrinsic high dimensionality, heterogeneity and nonlinearity of
the sample space. For this reason, refined methods are needed to give practitioners
new direction and solutions for analyzing such complex datasets. Numerous integration
strategies are available in the literature, including early, mixed, hierarchical, interme-
diate and late integration. In this work, we focus on the mixed integration type, which
has demonstrated to ensure great adaptability for omics data fusion as reviewed in
[132].
Early stage integration, the easiest and fastest procedure available, nonetheless poses
intrinsic drawbacks. More specifically, since early integration is based on the concate-
nation of the original data, it naturally increases the input dimensionality while giving
more importance to omics with a bigger number of features. Moreover, while being
extremely easy and fast to realize, this practice tends to mislead learning algorithms
as it does not consider the specific data distribution of each input dataset.
On the contrary, mixed integration allows ML algorithms to conduct the learning phase
on more refined and less dimensional datasets. As these methods produce new versions
of the input datasets which are more homogeneous than original versions, it facilitates
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ML algorithms to operate on a unified single input for learning.
Furthermore, another very popular strategy is late integration, which consists of ap-
plying each machine learning model separately on each input dataset and then of
combining their respective predictions in a later stage. However, as claimed in [132],
this approach may not be relevant for biological applications. Indeed, an integration
based solely on the combination of different model predictions cannot be compared to
a procedure that directly considers complementary information among different omics,
as it can be seen as a multiple single-omics analyses.
In the present work, we will investigate mixed integration techniques for multi-omics
data integration in comparison to the state-of-the-art method i.e. MOGONET in [183],
a late integration methodology based on GNNs.

4.2.1 Mixed integration
It is generally accepted that a classification model trained with information obtained
from different sources leads to a more comprehensive overview of the problem [72],
[30].
In the field of omics sciences, when different data obtained on the same individuals
are available, the integrated analysis can provide richer information about the biolog-
ical system compared to the results achieved using a single layer of information. New
achievements have been reached in a wide area of research, for instance allowing the
identification of molecular signatures of human breast tumours [117] or for microbial
communities profiling [60].
Each omic dataset contains a different aspect of the mechanisms regulating a biological
phenotype. In addition, the technologies used to collect them differ. Consequently, the
nature and structure of those data are usually very diverse, generating a remarkably
heterogeneous framework. Mixed integration or transformation-based strategies under-
take the flaws of concatenation-based approaches applying ML algorithm to a simpler
representation of each input dataset. The original omics are transformed separately
to obtain a clearer, richer and lower in dimensions version. Standard transformation
methods that can be used are kernel-based, graph-based, and deep learning methods.
In this work we will focus our attention on kernel-based integration and on deep
learning-based methods applied on kernel learning.

4.2.2 Multiple kernel learning
Kernel methods have been shown to offer an elegant and natural mathematical solution
to address data integration from heterogeneous sources, as using kernels enables the
representation of the datasets in terms of pairwise similarities between sample points
[205], [184]. Given a dataset of n observations x1, . . . , xn with xi ∈ IRp, a function k
defined as k: IRp × IRp−→ IR is a valid kernel if it is symmetric and positive semi-
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definite i.e. k(xi, xj) = k(xj, xi) and cT Kc ⩾ 0, ∀c ∈ IRn, where K is the n×n kernel
matrix containing all the data pairwise similarities K = k(xi, xj).
Every kernel function is associated with an implicit function ϕ: IRp −→ H which maps
the input points into a generic feature space H, with possibly an infinite dimensionality,
with the expression k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩. This relation allows the implicitly
computation of the dot products in the feature space by applying the kernel function
to the input objects, without explicitly computing the mapping function ϕ [148].

It is generally accepted that the sample space of many research problems, such as
omics data, is often nonlinear [140]. This nonlinearity is linked also to the incom-
plete understanding, for instance, of gene interactions and biological pathways, which
suggests that genes are not connected in a simple linear way. In this context, kernel
methods offer a natural and not computationally expensive approach to kernelized i.e.
obtain nonlinear version of any algorithm purely based on dot-product calculations.
Indeed, by replacing the linear dot product in the input space by the kernel pairwise
values, it is possible to implicitly obtain the value of the dot product as it was computed
directly in the feature space. This is the so-called kernel trick, which allows algorithms
designed initially for linear data to be extended to nonlinear frameworks by implicitly
mapping the input points into high-dimensional feature spaces induced by the kernel.

In the context of multi omics integration, given different datasets based on the same
n observations, kernel methods provide another advantage, namely they allow to rep-
resent every original dataset with a n×n kernel matrix K. So, even if the original data
types are heterogeneous (counts, factors, continuous data, networks, images), after the
kernel transformation, all the M input datasets will have the form of a n × n matrix
with real numbers as entries, with M equal to the number of available omic datasets.
Moreover, the meta-kernel obtained from the combination of the M input kernels is
a global similarity matrix containing the sample’s similarities based on the original
datasets’ variables. MKL assures great adaptability as many kernel functions are avail-
able, such as linear, Gaussian, polynomial, or sigmoid. In this way it is possible to
choose and to apply a specific kernel function on a certain omic input, as each function
may be more suitable for a specific omic.
The most common approach in Multiple kernel learning is to compute a convex linear
combination of kernel Gram matrices. Analytically, given M different datasets, MKL
consists of the linear combination of the M kernel matrices, as in

K∗ =
M∑

m=1
βmKm, (4.1)

with βm ̸= 0 and ∑M
m=1 βm = 1.

It directly follows that the simplest solution is to fix all the weights to be equal,
i.e. to 1

M
. Of course, this setting does not allow us to benefit from the adaptability of

the multiple kernel framework. All kernels will contribute equally to the classifier, not
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taking into account possible redundant or less informative sources of information. The
experiment section will denote this setting as MKL-naive.

Contrarily, the βm weights can be optimized more appropriately. Usually, in super-
vised learning, they are tuned, minimizing the prediction error. The literature offers
many algorithms for supervised MKL optimization. For instance, in the work in [88],
the weights are optimized with semidefinite programming techniques. The fused kernel
is then used to train an SVM classifier, giving better performances than single omic
analysis.
Another approach can be found in [138] where the convex linear combination is ob-
tained through a weighted 2-norm regularization constrained formulation to promote
a sparse kernel combination and using a subgradient descent for weights optimization.
The so-called SimpleMKL method is available in the R package RMKL developed by
[186].
The RMKL package proposes several other algorithms such as SEMKL, Simple and
Efficient MKL by [193] where the weights computation is based on the equivalence
between group-lasso and MKL. Both SimpleMKL and SEMKL belong to the class of
algorithms known as wrapper methods for Multiple kernel learning, thus updating ker-
nel weights after each iteration.
A more sophisticated version of these wrapper methods specialized in the reduction
of the number of SVM computations is SpicyMKL in [168], which is a proximal mini-
mization method that converges super-linearly. This algorithm is also implemented in
the RMKL package under the name of DALMKL.
A different way to find the kernel coefficients in the convex linear combination of ker-
nels can be found in [194] with GA-fKPLS, where the authors propose to compute the
kernel parameters and weights using genetic algorithms.
A different approach to MKL is presented in [53] and [54], where the authors question
the practice of assigning the same weight to a kernel over the whole input space. In
this work, they propose a localized Multiple kernel learning LMKL based on the local
selection of the appropriate kernel function, allowing to reduce the number of support
vectors.
To be noted that these wrappers methods have been recently tested in [186], where it
has been shown that all these algorithms seem to have similar performance in the case
of an analysis with few kernels.
Multiple kernel learning can also be used in the unsupervised learning framework. In
this context, selecting appropriate criteria for weight optimization is less straightfor-
ward, as it cannot be based on a target variable of interest. In other words, as it is
natural to optimize the weights through the minimization of the prediction error for
supervised learning, the same does not apply in an unsupervised context. Hence, the al-
gorithms available to effectively determine a strategy to guide the fusion process of the
input kernels in an unsupervised framework are less numerous than in the supervised
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literature In [109], the authors proposed STATIS-UMKL, a methodology to provide an
approach to reach a consensus kernel based on the resemblance of the different kernels.
Specifically, the meta kernel is defined by maximizing the average similarity between
kernels, measured using their cosines according to the Frobenius dot product. The
similarity matrix between two kernels C = (Cmm′)m,m′=1,...,M gives insight into how the
different kernels relate to each other, revealing whether they complement or provide
distinct information. This matrix can then be used to derive the meta kernel K∗, which
maximizes the overall similarity with all other kernels in the set.

We have previously introduced how kernels enable us to map data into a higher-
dimensional feature space without explicitly computing that space. In this new space,
data that are not linearly separable in the original input space may become linearly sep-
arable, making it easier to apply linear classification techniques. While kernel methods
offer this advantage of making previously nonlinearly separable data linearly separa-
ble, this benefit comes with a trade-off. The original features are no longer explicitly
accessible after the kernel transformation, as the data is represented through similar-
ities in a new feature space. Consequently, this makes interpreting the model more
challenging, as it becomes difficult to directly trace back the role of individual features
in the transformed space to the original input variables without referring to a label. In
this context in [109], the authors proposed a method based on kernel PCA and random
permutation to evaluate the importance of the original variables. Specifically the idea
consists in recomputing the Km kernels after the permutation of all the values of the
samples for a given measure j, obtaining a new kernel K̃m,j. The Crone-Corsby dis-
tances of kernel matrices are then computed to assess which variables lead to the most
significant differences between the original kernel and the new kernels K̃m,j. Also,
in [19], the authors proposed KPCA-IG, an approach which provides a data-driven
feature importance, where the influence of each original variable can be computed in
the space of the kernel principal components as in the standard PCA. This method
offers a computationally fast feature ranking methodology to identify the most relevant
original variables, solely based on partial derivative of the kernel function.

4.2.3 Deep Learning approaches
Deep learning techniques are increasingly being employed in the context of multi-
omics data analysis. One of the advantage of deep learning is its capacity to learn
homogeneous representations from different input sources. In particular, multi-modal
architectures allow the use of heterogeneous datasets, such as images, tabular data,
time series, or graphs, to learn the underlying complex relationships among different
aspects of a biological phenotype.
As reviewed in [159], this kind of architecture is gaining popularity in the biomedical
field, where data are becoming increasingly multi-modal. Recently, in this context, dif-
ferent works introduced approaches based on multi-modal deep learning to deal with
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different types of omics data, these multi-modal architectures are suited for both Mixed
and Late integration strategies. As introduced, we will concentrate on Mixed integra-
tion approaches compared to the Late integration methods that can be regarded as the
state-of-the-art for the datasets of interest in our analysis [183] [55] [63].
One of the most commonly used deep learning methods for Mixed integration strategies
is Autoencoder. Autoencoder is an unsupervised deep learning method used to learn
a latent representation of the data by minimizing the reconstruction error between the
input and the reconstructed output. In the context of Mixed integration, they can be
easily used to learn independent homogeneous latent representations to integrate them
in a final shared layer [192]. Autoencoders can also be used to learn latent represen-
tations that depend on different omics inputs, as in [188]. In this case, the approach
uses Autoencoders in two different steps, first as a pre-processing for the two different
inputs and then as an integration step, part of the learning process. Other possible
approaches for Mixed integration involve the use of feedforward neural networks. In
particular, in [101], the authors built an architecture based on different encoding sub-
networks to learn homogeneous representations from the different types of omics data,
then a fusion step to create a concatenated representation of multi-omics, and finally,
a classification sub-network is used to perform the cancer subtype classification. Al-
ternatively, in [151], a similar architecture equipped with a triplet loss is used for drug
response prediction. Despite this, several state-of-the-art methods belong to the Late
integration family, such as MOGONET by [183], MOADLN by [55] and Dynamics in
[63]. MOGONET transforms the input data into matrices of similarity among obser-
vations to build a graph structure and apply a Graph Convolutional Neural Network
to each omic to obtain an initial prediction. After this first step, a View Correlation
Discovery Network (VCDN) finally combines all the independent predictions to deter-
mine the correct label.
MOADLN, instead, uses the Self-attention mechanism to build a similarity network
and exploit the correlation between intra-omic observations. In this case, each input
instance is an element of a set i.e. a specific observation within a single omics type, and
the Self Attention mechanism learns the weights for each of these elements, meaning
that it determines the significance of each instance in relation with others within the
same omics type. Also, for MOADLN, the first step is the initial independent prediction
for each omics type, followed by a final combination through a Multi-Omics Correlation
Discovery Network (MOCDN) to explore the cross-omics relations. Dynamics assesses
feature-level and modality-level informativeness dynamically across different samples.
It incorporates a sparse gating mechanism to capture variations in features informa-
tion within each omics while using actual class probability to asses the classification
confidence at the modality level [63].
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4.3 Materials and methods
As considered in the previous section, [183] and [55] claim to be the state-of-the-art in
terms of predictive performance.
In this section, we present all the experiments to test different MKL methods, archi-
tectures and combinations in order to compare possible solutions for multi-omics data
integration.

4.3.1 Datasets
The datasets considered in this work are the publicly available ROSMAP for Alzheimer’s
Disease classification, BRCA for breast invasive carcinoma PAM50 subtype classifica-
tion, LGG for grade classification in low-grade glioma and KIPAN for kidney cancer
type classification. In order to be sure to conduct a fair comparison with MOGONET,
we used the same datasets. [183] performed an initial feature selection obtained through
the sequential calculation of an ANOVA F-value on the original data to evaluate
whether a feature was significantly different across different classes. Moreover, the
authors kept the number of features such that the first principal component after fea-
ture pre-selection explains at least 50% of the variance.
In the case of ROSMAP and BRCA, as also [55] proceeded, we conducted the analysis
on the preprocessed datasets available in [183] GitHub repository. Instead, for LGG
and KIPAN, we downloaded the datasets and performed the same pre-processing steps
as in [183] since the author did not provide the preprocessed ones. For each of the
5 datasets three types of omics are considered for classification purposes: mRNA ex-
pression (mRNA), DNA methylation (meth), and miRNA expression data (miRNA).
Table 4.1 contains all the details for the five datasets.

Dataset Classes Number of features
mRNA, meth, miRNA

Features for training
mRNA, meth, miRNA

ROSMAP NC: 169, AD: 182 55,889; 23,788; 309 200; 200; 200

BRCA
Normal-like: 115,

Basal-like: 131, HER2-enriched: 46,
Luminal A: 436, Luminal B: 147

20,531; 20,106; 503 1000; 1000; 503

KIPAN KICH: 65; KIRC: 345 ; KIRP: 297 60,484; 25,972 ; 1882 2000; 2000; 445

LGG Grade 2: 257 ; Grade 3: 266 60,484; 25,972 ; 1882 2000; 2000; 548

Table 4.1: The ROSMAP dataset contains two classes: Alzheimer’s disease (AD) pa-
tients and normal control (NC). The breast invasive carcinoma dataset (BRCA) con-
tains PAM50 subtype classes: normal-like, basal-like, human epidermal growth factor
receptor 2 (HER2)-enriched, Luminal A, and Luminal B. The KIPAN dataset con-
tains different kidney cancer type: chromophobe renal cell carcinoma (KICH), clear
renal cell carcinoma (KIRC), and papillary renal cell carcinoma (KIRP). Finally, the
LGG dataset is for grade classification in low-grade glioma (LGG).
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Figure 4.1: A kernel function is applied on each dataset separately. In MKL, a convex
linear combination provides a fused Meta-kernel that summarizes the information of
input omics. Then an SVM classifier is used for classification.

4.3.2 Methods

Both in [183] and [55], the authors compared the performance of their methods,
MOGONET and MOADNL, respectively, with other typical classification algorithms
such as K-nearest neighbours (KNN), Support vector machine (SVM), LASSO regres-
sion and block s(PLSDA) as in DIABLO [153].
Taking SVM as an example, the analysis is applied to the concatenation of the 3 multi-
omics datasets, where its performance shows a significantly lower accuracy in both
studies. However, as SVM can be viewed as a kernel-based classification algorithm,
applying it to an early stage integration, i.e., to a combined dataset obtained by simple
concatenation of the input datasets, as we have seen, it can be seen as an oversimpli-
fication. Moreover, a proper parameters tuning must be carried out along with the
choice of a suitable kernel function. Thus, our analysis compares MOGONET’s per-
formance with more suitable and fair usage of Multiple kernel learning with support
vector machines.
Moreover, new approaches of Multiple kernel learning in combination with deep learn-
ing classification models are presented in order to exploit at the same time the adapt-
ability of kernel methods avoiding the optimization of the weights in the convex linear
combination and the classification power of deep architectures.
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Multiple kernel learning - SVM

As presented in Section 4.2, there are many optimization algorithms to compute the
coefficients of the convex linear combination of input kernel gram matrices in the lit-
erature.
For completeness, in this work, we will present the results obtained using MKL-naive,
SimpleMKL and SEMKL in the case of binary classification problem and STATIS-
UMKL.
On the contrary, STATIS-UMKL in [109] is an algorithm to obtain a consensus meta-
kernel in an unsupervised framework. To the best of our knowledge, STATIS-UMKL
has never been used with support vector machines for classification purposes. How-
ever, the peculiarity of this procedure, which aims to take the different specificities of
each dataset into account by fusing them into a single meta-kernel, may also enhance
classification performance. In Figure 4.1, it is possible to see the network structure for
all the SVM algorithms that are used for the experiments. This architecture belongs to
the Mixed integration type as the integration of the input omics is preceded by a data
transformation, and the SVM algorithm is applied to the convex linear combination of
the datasets performed at the feature space.
For completeness, we also trained a support vector machine on the direct concatenation
of original datasets (SVM-concat) using the same tuning procedure for the hyperpa-
rameters used for the other algorithms.

Deep Multiple kernel learning

As introduced previously, employing neural network architectures is another way to
combine the input kernel matrices by avoiding the task of convex linear optimization.
More specifically, in [157], a deep learning architecture that includes a dense embedding
of kernels and a multi-modal neural network is used for fusing multiple kernels.
In our case, we adapted this approach to a multi-omics analysis, meaning that the
kernel matrices represent different data sources, i.e different omics, and not different
representations of a single data source, as in a classic multiple kernel fusion problem. As
shown in Figures 4.2 and 4.3, the structures of the proposed architectures are similar.
They consist of a first dense embedding, realized by employing a Kernel PCA for each
omic input. After this first step, a multi-modal neural network is used to learn in
parallel three representations, one for each dense embedding, and then integrate them
to perform the downstream task. In the case of Figure 4.2, we call this architecture
Deep Multiple kernel learning, i.e. Deep MKL, to highlight that it is a Multiple
kernel learning method that employs deep learning to combine the different kernels
information. From a neural network perspective, the architecture is composed of three
fully connected layers for each input, followed by an integration step that can be
performed through a concatenation, sum, or weighted sum with learnable parameters
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Figure 4.2: Deep MKL (concat) takes in input the Kernel PCA dense embeddings
of different omics datasets. It extracts the features using different feedforward sub-
networks and then fuses the learnt representations by concatenating them for the final
classification.

of the three representations. Finally, another two fully connected layers are employed
for the final classification step.
In the context of multi-modal architectures, cross-connections between modalities can
improve the model’s performance, allowing the flow of information between modalities
at different learning process levels before the fusion step [16],[208]. In our context,
this flow should inform each omic layer with each other, potentially improving the
performances. We call the version of Deep MKL employing cross-connections Cross-
modal Deep MKL in Figure 4.3. The architecture’s structure is similar to the Deep
MKL one, except that each cross-connection is, in practice, an additional layer followed
by a concatenation step, which means that the Cross-modal Deep MKL architecture,
w.r.t. Deep MKL’s one, has an additional layer before the integration and classification
steps. For both methods, each fully connected layer is followed by a Leaky Relu
activation function, a Dropout, and batch normalization. Additional details on the
architectures and their specific hyperparameters are discussed in Section 4.3.3.

Interpretability

Using a dense embedding such as Kernel PCA as a step of a neural network makes the
Deep MKL models even more challenging to interpret than classical deep learning ones.
In this framework, the principal components can be considered the input features of the
neural network. Using an interpretability method such as SHAP in [104] or Integrated
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Figure 4.3: Cross-modal Deep MKL (concat) takes in input the Kernel PCA dense em-
beddings of different omics datasets. It extracts the features using different feedforward
sub-networks that are linked by cross-connections, then fuses the learnt representations
by concatenating them for the final classification.

Gradients [166] to rank the features would be insufficient because, as highlighted in
Section 4.2.2, after a kernel transformation, the link between the original features, the
genes, and the principal components is lost.
In this case, we propose a novel mitigation strategy for biomarkers discovery based on
a two-step approach. First, we compute the rank of the input features, namely the ker-
nel principal components, using Integrated Gradients [166] implemented in the library
[116]. Then, we employ the recently published method proposed in [19] to recover the
most relevant input variables for the selected principal components. As already intro-
duced in section 4.2.2, KPCA-IG in [19] allows to obtain a data-driven feature ranking
based on the selected kPCs, and it is available in the R package kpcaIG [20]. To the
best of our knowledge KPCA-IG has never been used in combination with a supervised
approach such as our proposed DeepMKL, used to select the most important kernel
principal components in terms of prediction accuracy. Combining an unsupervised
feature selection approach with a supervised learning method like DeepMKL offers a
promising strategy for discovering novel biological and medical biomarkers. This hy-
brid pipeline may provide deeper insights than traditional methods focused solely on
prediction performance, such as those that sequentially remove features to rank their
importance based on the impact on prediction accuracy, as in [183] and [55]. We will
demonstrate the application of this approach for biomarker identification in Section
4.4, highlighting its relevance from a biomedical point of view.
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4.3.3 Performance evaluation
Experimental setup

To evaluate the classification performance of the MKL-SVM algorithms and Deep
MKL, we implemented the same evaluation pipeline already used by MOGONET in
[183] and by MOADLN in [55]. It consists of evaluating the model’s performance on
5 random train/test partitions of the dataset. To maintain the balance of class distri-
butions among the partitions, a stratified version of the split is adopted, keeping the
ratio of 30/70 % for the train/test splits.
For final evaluation, we present the mean and standard deviation of different perfor-
mance metrics among the 5 randomly generated training/test splits, with a seed set of
[0, 1, 2, 3, 4] for reproducibility purposes.
The seeds used in MOGONET and Dynamics are not publicly available, meaning that
the results are not completely reproducible. For this reason, we recomputed all the
metrics using their publicly available code and the same seeds of our experiments in
order to have a fair comparison. On the contrary, we have not recomputed the metrics
for MOADLN as the code is not publicly available.

Methods Integration Optimized Parameters Description

block PLSDA Mixed ncomp DIABLO

block sPLSDA Mixed ncomp, keepX DIABLO

SVM concat Early C, σ Direct concatenation

SVM naive Mixed C, σ Sum of the kernel

SimpleMKL-SVM Mixed C, σ Weighted sum of kernels

SEMKL-SVM Mixed C, σ Weighted sum of kernels

STATIS-UMKL + SVM Mixed C, σ Weighted sum of kernels

Deep MKL Mixed
σ, epochs,

principal components,
dropout value

Deep Learning kernel fusion

Cross-Modal Deep MKL Mixed
σ, epochs,

principal components,
dropout value

Deep Learning kernel fusion

NN VCDN Late NA Feedforward neural network

Dynamics Late NA Dynamical Multimodal Fusion

MOGONET Late Optimized k Graph convolutional network

Table 4.2: Summary and description for all the tested methods with all the tuned
hyperparameters

Hyperparameters tuning

In the context of MKL-SVM, a Grid Search 5-folds cross-validation has been computed
on the training sets employing a Gaussian radial basis kernel.
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Cross-validation has been used to tune the following parameters:

• C parameter: the cost of constraints violation, the so-called C-constant of the
regularization term in the Lagrange formulation of the support vector machine
algorithm.

• The sigma parameter: the inverse kernel width for the radial basis kernel function.

For the experiments, the C parameter has been set in the range [1, 25], while the sigma
in the range of [0.005, 0.00005] for both datasets.

In the context of our deep learning methods, we employed a Random Search 5-folds
cross-validation for the hyperparameters tuning. Also, in this case, all the experiments
were carried out using a Gaussian radial basis kernel for the Kernel PCA step. For
all the DeepMKL models, we fixed the number of layers and the number of neurons
as in MOGONET, i.e. [200, 200, 100] for ROSMAP and [400, 400, 200] for BRCA,
LGG, and KIPAN. For all the Cross-modal Deep MKL architectures, as described in
the 4.3.2, we implemented cross-connections between modalities, which, in practice,
are additional layers. For this reason, we fixed the number of layers and neurons for
each dataset as [200, 200, 100, 100] for ROSMAP and [400, 400, 200, 200] for BRCA,
LGG, and KIPAN.
In order to have a training process as stable as possible, i.e., a smooth training loss
curve, we added a dropout and a batch normalization after each feedforward layer.
Additionally, we fixed small values for the learning rate, such as 5×10−5 for ROSMAP
and KIPAN, 10−4 for BRCA, and 10−5 for LGG. Regarding the dropout, the intensity
is 0.5 for ROSMAP and 0.3 for all the other datasets. Adam classifier [85] and a batch
size of 32 are adopted for all the datasets. Regarding the choice of sigma value for
the Kernel PCA and the number of principal components to keep, we defined different
search spaces for each dataset since the choice of these hyperparameters depends on the
topological structure of the data, which varies from dataset to dataset, similar to the k

parameters used in MOGONET. In the case of ROSMAP, the sigma value for the Kernel
PCA is chosen in the set of {0.0005, 0.0007, 0.001}. Meanwhile, for BRCA, the set is
{0.00005, 0.0005, 0.005}. For LGG and KIPAN, the set is [0.0005,0.005]. Regarding
the number of principal components in ROSMAP, we fixed it to 120. While in BRCA,
we defined a search space in the [2, 20] range to choose the optimal combination with
the sigma parameter. We adapted the same strategy for LGG and KIPAN using a
range of [50, 200].
Since the variability among the different folds made the results unreliable for an early
stopping strategy, we chose the number of epochs by defining a range from 100 to 200
with an interval of 10, letting the hyperparameter tuning optimization select the best
value in combination with all the other parameters.
For reproducing MOGONET’s results, we used the optimized parameter k, as suggested
by the authors, namely equal to 2 for ROSMAP and 10 for all the other datasets. This



64
Supervised Multiple Kernel Learning

approaches for multi-omics data integration

parameter controls the average number of edges per node of the Adjacency matrix used
for training the graph convolutional neural networks.
Finally, for the DIABLO framework we used the 5-fold cross validation procedure
to optimize the number of components (ncomp) for both block PLSDA and block
sPLSDA, and the number of retained variables (keepX) for the sparse version. For the
design matrix, the value of 0.1 has been used to prioritize the discriminative ability of
the model, as suggested by the authors.

Metrics

We employed the same metrics used to evaluate state-of-the-art methods in order to
have a fair comparison For binary classification, we used accuracy (ACC), F1 score
(F1) and area under the curve (AUC).

ACC = TP + TN
TP + TN + FP + FN (4.2)

with TP = True Positive, TN = True Negative, FP = False Positive and FN = False
Negative.

F1 = 2 · Precision · Recall
Precision + Recall (4.3)

where Precision = TP
TP+FP and Recall = TP

TP+FN .
The F1 score represents the harmonic mean between Precision and Recall and measures
how balanced the two metrics are for a classifier. The Precision score measure how
accurate the positive predictions are. While, the Recall metric measures how many
True Positives are predicted out of the total number of positive samples.
The AUC score, or area under the ROC curve, measures the classifier’s performance
and its independence from the threshold.

In multi-class classification task, we used the accuracy (ACC), the macro-averaged
F1 score (F1-macro) and the F1 score weighted by its support i.e. the number of
instances in that class (F1-weighted).
In multi-class classification, the F1 score is calculated for each class in a one-vs-all
manner. In the case of F1-macro, the F1 scores are then averaged, considering each
class equally, regardless of the imbalance of the class distribution in the data.

F1-macro = 1
C

C∑
i=1

F1i (4.4)

C is the number of classes and F1i is the F1 score for the class i.
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The F1-weighted, instead, takes into account the imbalance of the class distribution
in the data, and it is calculated by a weighted average where the weights are the
percentage of the instances in one class.

F1-weighted = 1
C

C∑
i=1

(
supporti

total support

)
· F1i (4.5)

where supporti is the number of instances of class i and total support is the total num-
ber of instances in the data.

4.4 Results and Discussion

We compared the classification performance of different MKL algorithms with different
state-of-the-art methods such as MOGONET and Dynamics, as MOADLN’s code is
not publicly available. As anticipated, the MOGONET and Dynamics code seeds are
unavailable; therefore, we could not replicate the results exactly. Thus, we proceeded
with the computation of the metrics for these methods based on the publicly available
code and using the same environment and seed selection of our experiments.

Regarding Deep MKL models, here we reported the results for only one integration
mode, namely weighted sum. However, the detailed comparison between different inte-
gration modes is provided in the Additional Results section 4.4.1.
For BRCA in Table 4.8, all the MKL algorithms achieved the highest performances
for all the metrics. Regarding KIPAN, as shown in Table 4.10, the MKL algorithms

BRCA

Algorithm ACC F1 weighted F1 macro

block PLSDA 0.670 ± 0.016 0.726 ± 0.009 0.702 ± 0.011

block sPLSDA 0.668 ± 0.021 0.725 ± 0.012 0.708 ± 0.009

SVM concat 0.793 ± 0.018 0.800 ± 0.016 0.776 ± 0.017

SVM naive 0.838 ± 0.008 0.849 ± 0.008 0.828 ± 0.011

STATIS-UMKL + SVM 0.846 ± 0.011 0.858 ± 0.010 0.837 ± 0.018

Deep MKL (weighted sum) 0.827 ± 0.014 0.803 ± 0.015 0.831 ± 0.013

Cross-Modal Deep MKL (weighted sum) 0.829 ± 0.017 0.802 ± 0.022 0.834 ± 0.015

NN VCDN 0.700 ± 0.018 0.692 ± 0.019 0.609 ± 0.014

Dynamics 0.826 ± 0.010 0.829 ± 0.010 0.793 ± 0.020

MOGONET 0.736 ± 0.038 0.726 ± 0.041 0.650 ± 0.053

Table 4.3: Metrics average and standard deviation over 5 random test splits for the
performance evaluation on BRCA dataset.
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ROSMAP

Algorithm ACC AUC F1

block PLSDA 0.666 ± 0.025 0.689 ± 0.034 0.658 ± 0.031

block sPLSDA 0.671 ± 0.027 0.705 ± 0.033 0.665 ± 0.017

SVM concat 0.765 ± 0.019 0.863 ± 0.044 0.763 ± 0.015

SVM naive 0.790 ± 0.006 0.881 ± 0.010 0.778 ± 0.018

SimpleMKL-SVM 0.758 ± 0.019 0.860 ± 0.021 0.748 ± 0.012

SEMKL-SVM 0.775 ± 0.039 0.869 ± 0.035 0.763 ± 0.037

STATIS-UMKL + SVM 0.784 ± 0.038 0.878 ± 0.019 0.772 ± 0.039

Deep MKL (weighted sum) 0.715 ± 0.028 0.800 ± 0.021 0.721 ± 0.027

Cross-Modal Deep MKL (weighted sum) 0.730 ± 0.025 0.802 ± 0.020 0.746 ± 0.039

NN VCDN 0.794 ± 0.030 0.874 ± 0.024 0.807 ± 0.036

Dynamics 0.764 ± 0.026 0.870 ± 0.011 0.771 ± 0.031

MOGONET 0.787 ± 0.027 0.878 ± 0.021 0.791 ± 0.045

Table 4.4: Metrics average and standard deviation over 5 random test splits for the
performance evaluation on ROSMAP dataset.

obtained the best results comparable with Dynamics. Also for LGG, the MKL ap-
proaches show the best accuracy, where the optimized SVM-concat achieved the best
results. On the other hand, for ROSMAP in Table 4.7, a similar trend can be seen for
SVM-based approaches that show comparable accuracy with MOGONET, NN VCDN
and Dynamics, while Deep MKL algorithms perform worse than all the other methods.
Thus, it can be seen that, kernel-based methods are consistently comparable and even
outperformed state-of-the-art methods on all four datasets for all the computed per-
formance metrics, Tables 4.8-4.7-4.9-4.10.

These results again show the kernel framework’s advantages in genomics data min-
ing, where even the results obtained with an SVM trained on the direct concatenation
of the input datasets, SVM-concat, exhibits a relatively good performance, especially
on ROSMAP and LGG, the smallest datasets. In [183], the performances obtained
with SVM-concat are lower, suggesting that even a simple procedure such as early in-
tegration followed by proper parameter tuning and an appropriate kernel choice of the
SVM may already give a good model alternative for certain datasets. Methods such as
SEMKL and STATIS-UMKL, which aim to optimize the input kernel matrices’ con-
vex linear combination, showed high performances in most of the different metrics. It
should be noted that the MKL with equal weights in SVM-naive showed the best per-
formance in the ROSMAP dataset, indicating that the datasets are probably similarly
informative in this context. For this dataset, the second best was STATIS-UMKL +
SVM, where the mean over 5 runs of the 3 weights of the convex linear combination of
kernel matrices of 0.361, 0.308, 0.331 suggests that the 3 omics are equally important.
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LGG

Algorithm ACC AUC F1

block PLSDA 0.651 ± 0.024 0.713 ± 0.034 0.677 ± 0.029

block sPLSDA 0.637 ± 0.030 0.771 ± 0.039 0.692 ± 0.027

SVM concat 0.723 ± 0.030 0.781 ± 0.024 0.741 ± 0.032

SVM naive 0.709 ± 0.011 0.774 ± 0.024 0.724 ± 0.022

SimpleMKL-SVM 0.684 ± 0.011 0.759 ± 0.024 0.710 ± 0.020

SEMKL-SVM 0.691 ± 0.011 0.762 ± 0.028 0.719 ± 0.017

STATIS-UMKL + SVM 0.709 ± 0.009 0.774 ± 0.023 0.728 ± 0.015

Deep MKL (weighted sum) 0.687 ± 0.011 0.765 ± 0.025 0.684 ± 0.031

Cross-Modal Deep MKL (weighted sum) 0.700 ± 0.020 0.768 ± 0.026 0.695 ± 0.032

NN VCDN 0.703 ± 0.036 0.754 ± 0.030 0.715 ± 0.028

Dynamics 0.707 ± 0.029 0.769 ± 0.027 0.714 ± 0.023

MOGONET 0.669 ± 0.026 0.711 ± 0.026 0.69 ± 0.032

Table 4.5: Metrics average and standard deviation over 5 random test splits for the
performance evaluation on LGG dataset.

KIPAN

Algorithm ACC F1 weighted F1 macro

block PLSDA 0.882 ± 0.013 0.884 ± 0.013 0.871 ± 0.016

block sPLSDA 0.896 ± 0.012 0.898 ± 0.011 0.891 ± 0.017

SVM concat 0.953 ± 0.010 0.954 ± 0.009 0.949 ± 0.020

SVM naive 0.958 ± 0.010 0.959 ± 0.009 0.953 ± 0.018

STATIS-UMKL + SVM 0.959 ± 0.010 0.960 ± 0.010 0.955 ± 0.017

Deep MKL (weighted sum) 0.958 ± 0.011 0.954 ± 0.018 0.958 ± 0.011

Cross-Modal Deep MKL (weighted sum) 0.958 ± 0.009 0.952 ± 0.014 0.958 ± 0.009

NN VCDN 0.957 ± 0.006 0.957 ± 0.006 0.952 ± 0.015

Dynamics 0.960 ± 0.011 0.960 ± 0.010 0.951 ± 0.022

MOGONET 0.940 ± 0.023 0.932 ± 0.032 0.941 ± 0.023

Table 4.6: Metrics average and standard deviation over 5 random test splits for the
performance evaluation on KIPAN dataset.

As expected, the two wrapper methods optimized for supervised multiple kernel learn-
ingn namely, SimpleMKL and SEMKL seem to have similar performance as already
shown in [186]. On the other DIABLO linear approaches showed lower performances,
proving the need of nonlinear based approaches in the context of complex omics
datasets. The Deep MKL approach to integrating multiple kernels shows results com-
parable with the STATIS-UMKL + SVM method for the BRCA, LGG, and KIPAN
datasets. In the case of the ROSMAP dataset, it performs worse than all the methods
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based on SVM. The difference in performance can be largely attributed to the dataset
sizes. This phenomenon is consistent with established understanding that deep learn-
ing models tend to underperform in scenarios involving smaller datasets [18].
Cross-connections, which were expected to improve the predictions as they ensure more
layers of integration between different omics, show no consistent improvement w.r.t.
the simpler Deep MKL architecture.

4.4.1 Additional Results
Integration modes

In this section we present the results of the comparison between the different integration
modes of the deep learning architectures.

ROSMAP

Algorithm ACC AUC F1

Deep MKL (concat) 0.747 ± 0.018 0.810 ± 0.021 0.762 ± 0.014
Deep MKL (sum) 0.745 ± 0.020 0.805 ± 0.020 0.762 ± 0.014
Deep MKL (weighted sum) 0.715 ± 0.028 0.800 ± 0.021 0.721 ± 0.027

Cross-Modal Deep MKL (concat) 0.732 ± 0.020 0.808 ± 0.018 0.751 ± 0.025
Cross-Modal Deep MKL (sum) 0.726 ± 0.021 0.809 ± 0.018 0.739 ± 0.043
Cross-Modal Deep MKL (weighted sum) 0.730 ± 0.025 0.802 ± 0.020 0.746 ± 0.039

Table 4.7: Metrics average and standard deviation over 5 random test splits for the
performance evaluation on ROSMAP dataset.
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BRCA

Algorithm ACC F1 weighted F1 macro

Deep MKL (concat) 0.835 ± 0.016 0.801 ± 0.021 0.840 ± 0.020
Deep MKL (sum) 0.836 ± 0.029 0.812 ± 0.036 0.842 ± 0.029
Deep MKL (weighted sum) 0.827 ± 0.014 0.803 ± 0.015 0.831 ± 0.013

Cross-Modal Deep MKL (concat) 0.828 ± 0.015 0.802 ± 0.018 0.832 ± 0.021
Cross-Modal Deep MKL (sum) 0.822 ± 0.027 0.786 ± 0.037 0.824 ± 0.030
Cross-Modal Deep MKL (weighted sum) 0.829 ± 0.017 0.802 ± 0.022 0.834 ± 0.015

Table 4.8: Metrics average and standard deviation over 5 random test splits for the
performance evaluation on BRCA dataset.

LGG

Algorithm ACC AUC F1

Deep MKL (concat) 0.680 ± 0.028 0.763 ± 0.025 0.688 ± 0.019
Deep MKL (sum) 0.680 ± 0.018 0.770 ± 0.015 0.683 ± 0.024
Deep MKL (weighted sum) 0.687 ± 0.011 0.765 ± 0.025 0.684 ± 0.031

Cross-Modal Deep MKL (concat) 0.693 ± 0.012 0.758 ± 0.024 0.678 ± 0.023
Cross-Modal Deep MKL (sum) 0.695 ± 0.022 0.763 ± 0.023 0.678 ± 0.028
Cross-Modal Deep MKL (weighted sum) 0.700 ± 0.020 0.768 ± 0.026 0.695 ± 0.032

Table 4.9: Metrics average and standard deviation over 5 random test splits for the
performance evaluation on LGG dataset.
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KIPAN

Algorithm ACC F1 weighted F1 macro

Deep MKL (concat) 0.951 ± 0.010 0.945 ± 0.018 0.951 ± 0.0101
Deep MKL (sum) 0.956 ± 0.008 0.950 ± 0.019 0.956 ± 0.008
Deep MKL (weighted sum) 0.958 ± 0.011 0.954 ± 0.018 0.958 ± 0.011

Cross-Modal Deep MKL (concat) 0.957 ± 0.010 0.948 ± 0.021 0.957 ± 0.010
Cross-Modal Deep MKL (sum) 0.956 ± 0.009 0.950 ± 0.019 0.956 ± 0.009
Cross-Modal Deep MKL (weighted sum) 0.958 ± 0.009 0.952 ± 0.014 0.958 ± 0.009

Table 4.10: Metrics average and standard deviation over 5 random test splits for the
performance evaluation on KIPAN dataset.

DeepMKL configurations

This section presents the results of a comparative analysis between different DeepMKL
configurations. Specifically, we want to explore the effect of the neural network ar-
chitecture’s depth and width on the classification performance. We conducted these
experiments using DeepMKL (weighted sum) on the BRCA and ROSMAP datasets.
We started with the same configuration choices, i.e. [200,200,100] for ROSMAP and
[400,400,200] for BRCA, used in MOGONET, which are also the ones reported in the
Results and Discussion section of the Chapter. Then, we explored different configura-
tions for depth and width.
As shown in Tables 4.11, 4.12, we tested three configurations for DeepMKL with two,
three, and four layers. For each of these DeepMKL architectures, we tested three
configurations with different numbers of layers, doubling and halving the number of
neurons w.r.t our baseline. The results show that for the BRCA, DeepMKL is robust
w.r.t differences in depth and width. For ROSMAP, the effect of varying the number of
neurons is more clear. The three configurations with fewer neurons have worse perfor-
mances in the case of DeepMKL with two, three, and four layers. While the ones with
the larges number of neurons obtain the best performances. Similarly to the BRCA
case, the DeepMKL for ROSMAP architecture seems robust w.r.t. the variation in the
number of layers.

4.4.2 Biomarker discovery

We previously introduced the approach for biomarkers discovery employing a hybrid
2-step approach for the Deep MKL algorithm. First, the most relevant features, i.e.,
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BRCA

DeepMKL Configuration ACC F1 weighted F1 macro

[200, 100] 0.835 ± 0.020 0.841 ± 0.021 0.813 ± 0.024
[400, 200] 0.837 ± 0.016 0.843 ± 0.016 0.813 ± 0.022
[800, 400] 0.826 ± 0.028 0.831 ± 0.028 0.804 ± 0.030

[200, 200, 100] 0.833 ± 0.018 0.838 ± 0.019 0.808 ± 0.026
[400, 400, 200] (baseline) 0.827 ± 0.014 0.831 ± 0.013 0.803 ± 0.015
[800, 800, 400] 0.832 ± 0.027 0.838 ± 0.028 0.811 ± 0.028

[200, 200, 200, 100] 0.834 ± 0.016 0.838 ± 0.016 0.810 ± 0.021
[400, 400, 400, 200] 0.842 ± 0.019 0.849 ± 0.018 0.823 ± 0.014
[800, 800, 800, 400] 0.831 ± 0.025 0.837 ± 0.024 0.808 ± 0.024

Table 4.11: Comparative study for different width and depth of the architecture - BRCA
dataset.

kernel principal components, are selected using Integrated Gradients [166] and sub-
sequently KPCA-IG as in [19] is applied, obtaining a data-driven feature importance
based on the kernel PCA representation of the data. The optimal tuned σ parameters
adopted in the Deep MKL model are also used to run the KPCA-IG method. The
most important biomarkers can be found in Tables 4.13 and 4.14.

For BRCA dataset the most important components are [1, 2, 3], [2, 1, 3] and [2, 1, 4]
for mRNA, meth and miRNA respectively. As the mRNA influence on the final predic-
tion appeared to be more prominent, we included the first 15 most relevant genes, while
we showed the first 10 for the DNA methylation and miRNA datasets. Same procedure
is applied to the ROSMAP dataset where the most relevant components are [1, 2, 21],
[1, 2, 3] and [1, 4, 9] for the three datasets respectively. For the mRNA expression genes
and those inferred from high-ranking DNA methylation features, we conducted gene
set functional enrichment analysis using the ToppGene Suite [27] to assess the biolog-
ical significance of genes identified by Deep MKL, highlighting biological annotations
such as Gene Ontology (GO) terms that are significantly enriched in a specific set of
genes. To correct for multiple comparisons and control the false discovery rate (FDR),
the Benjamini–Hochberg procedure is employed, reporting the adjusted p-values.
For BRCA PAM50 subtype classification datasets, several of the 15 selected genes from

the mRNA expression dataset were included in GO terms linked with breast cancer
such as β-alanine transmembrane transporter activity (GO:0001761, p = 2.324E − 2),
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ROSMAP

DeepMKL Configuration ACC AUC F1

[100, 50] 0.689 ± 0.031 0.768 ± 0.028 0.697 ± 0.033
[200, 100] 0.717 ± 0.015 0.801 ± 0.021 0.719 ± 0.023
[400, 200] 0.736 ± 0.010 0.805 ± 0.015 0.746 ± 0.014

[100, 100, 50] 0.704 ± 0.022 0.774 ± 0.018 0.687 ± 0.038
[200, 200, 100] (baseline) 0.715 ± 0.028 0.800 ± 0.021 0.721 ± 0.027
[400, 400, 200] 0.726 ± 0.013 0.806 ± 0.022 0.747 ± 0.022

[100, 100, 100, 50] 0.649 ± 0.070 0.739 ± 0.073 0.690 ± 0.045
[200, 200, 200, 100] 0.724 ± 0.016 0.808 ± 0.016 0.732 ± 0.015
[400, 400, 400, 200] 0.726 ± 0.025 0.802 ± 0.014 0.747 ± 0.030

Table 4.12: Comparative study for different width and depth of the architecture -
ROSMAP dataset.

carnitine transmembrane transporter activity (GO:0015226, p = 4.953E − 2) and dys-
troglycan binding (GO:0002162, p = 3.759E − 3). For instance, β-alanine has been
targeted for its several anti-tumor effects and as a co-therapeutic agent in the treat-
ment of breast tumors [178]. Moreover, the gene SLC6A14 involved in the β-alanine
and carnitine transmembrane transporter activities has already been addressed to have
a pivotal role in the cancer stage [127], where its deletion has been linked to a reduction
of cancer growth and metastatic spread [146], thus being selected as potential direct
drug target for cancer therapy [15]. Also, the dystroglycan binding has been linked
with breast cancer as the expression of this adhesion molecule is frequently reduced

Omics data type Biomarkers

mRNA expression (15) GABRP, SOX10, TFF1, KRT6B, AGR3,
KLK7, SERPINB5, DSC3, KLK6, AGR2,
MIA, TRIM29, SLC6A14, KRT16, KLK8

DNA methylation (10) IGFBP4, RARA, NHLRC4, CA12, DNALI1,
MIR26B, GPR37L1, RSAD1, RARG, NR2F6

miRNA expression (10) hsa-mir-224, hsa-mir-452, hsa-mir-505, hsa-mir-675, hsa-mir-577,
hsa-mir-375, hsa-mir-18a, hsa-mir-196b, hsa-mir-511-2, hsa-mir-145

Table 4.13: Important biomarkers identified by DeepMKL + KPCA-IG in the BRCA
dataset.
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Omics data type Biomarkers

mRNA expression (15) PREX1, CSRP1, MID1IP1, PLXNB1, MINDY1,
SLC44A1, ANLN, CAVIN1, SLC6A9, DOCK5,
ITPKB, SASH1, YES1, CLMN, CARHSP1

DNA methylation (10) R3HDML, MYOD1, HYAL2, ALDH3B1, OTOP3,
CHST14, GPR152, LAG3, ENG, MYO1C

miRNA expression (10) hsa-miR-423-3p, hsa-mir-374b, hsa-miR-487b, hsa-miR-361-5p,
hsa-miR-30b, hsa-miR-885-5p, hsa-miR-376a, hsa-miR-216a,
hsa-miR-548b-3p, hsa-miR-26a

Table 4.14: Important biomarkers identified by DeepMKL + KPCA-IG in the
ROSMAP dataset.

in human breast and colon cancers and is associated with tumor progression [150].
Within this GO, the two enriched genes that we found are AGR3 and AGR2. For
instance, AGR3 had already been characterized as a novel potential biomarker both
for breast cancer prognosis and early breast cancer detection [50], while AGR2 ex-
pression has been correlated with poor outcomes of patients with ER-positive breast
cancer [70]. Among others, SERPINB5, DSC3, and GABRP have also been linked
with malignant neoplasms of the breast. SERPINB5 has been indicated to inhibit tu-
mor progression [152], DSC3 downregulation has been linked with several cancer types
[36] and GABRP over-expression has been linked with poor prognosis, metastatic can-
cer, basal-like breast cancer [76, 97, 167]. For genes related to the identified DNA
methylation features, several interesting GO were enriched, including prosaposin re-
ceptor activity (GO:0036505, p = 1.607E − 2) and insulin-like growth factor II binding
(IGF-2) (GO:0031995, p = 4.011E − 2). Several studies have shown that prosaposin, a
regulator of estrogen receptor alpha, promotes breast cancer growth [77, 189] and that
IGFs play an important role in cancer development [92] and specifically and increased
IGF-2 production has been linked with cancer development and progression in many
conditions [32, 35, 120, 181]. Moreover, the highly-ranked miRNAs selected by our
method have also exhibited an association with cancer. [204] found over-expression
of hsa-miR-224 in breast cancer cell lines and in TNBC primary cancer samples. An-
other example is hsa-mir-675 as in [179] it has been shown that over-expression of this
miRNA enhances the aggressive phenotype of breast cancer cells, including increased
cell proliferation and migration in vitro and increased tumor growth and metastasis in
vivo.
Deep MKL with KPCA-IG also identifies important biomarkers related to Alzheimer’s
disease. For AD patient classification, for genes identified by mRNA expression fea-
tures, several enriched GO has been linked with the Alzheimer patalogy. For instance
inositol-1,4,5-trisphosphate 3-kinase activity (GO:0008440 , p = 3.912E − 2 ) linked
with the gene ITPKB, it has been found to increase in human Alzheimer brain and to
exacerbates mouse Alzheimer pathology [162]. Also the choline transmembrane trans-
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porter activity (GO:0015220, p = 4.110E − 2) as been showed to be linked with the
disease, as the choline transporter was marked to be incremented in cortical brain re-
gions from AD patients compared to non-AD control [17], as also the gene involved in
the signature, namely SLC44A1 has been found to be up-regulated in Alzheimer pa-
tients [131]. Moreover, the first gene in the list, namely PREX1 has been reported to be
linked with brain-related conditions, such as aberrant neuronal polarity and psychosis-
related behaviors, in case of over-expression [96].
Additionally, the GO transforming growth factor beta binding (GO:0050431, p =
2.69E − 2) was enriched for genes linked to the selected DNA methylation features
by our procedure. Dysfunction in TGFβ signaling has been linked to exacerbated
neuroinflammation promoting microglia’s cytotoxic activation, which may contribute
to neurodegeneration in AD [89]. Moreover, several genes are significantly annotated
in aldehyde dehydrogenase (NADP+) activity (GO:0033721, p = 2.911E − 2) where
aldehyde dehydrogenase two activity and aldehydic load has been associated to a con-
tribution in neuroinflammation and Alzheimer’s disease-related pathology [78]. An-
other molecular function is the protein tyrosine kinase inhibitor activity (GO:0030292,
p = 3.271E − 2). It has been shown that tyrosine kinase inhibition can be viewed
as a potential target for therapeutic intervention for treating Alzheimer’s disease as it
represents a valid mechanism for improving autophagic clearance of neurotoxic protein
and mitigating mast cell and microglial-mediated inflammation [161]. Other GO po-
tentially related to AD are hexosaminidase activity (GO:0015929, p = 4.290E −2) and
galactose binding (GO:0005534, p = 3.271E − 2), where abnormal cortical lysosomal
β-hexosaminidase and β-galactosidase activity has been linked both to early and the
advanced stage of Alzheimer’s disease [107]. Regarding the miRNA biomarkers, our
methods selected, among others, hsa-miR-361-5p, which was found to be abnormally
expressed in AD patients [111]. Another highly-ranked miRNA, hsa-miR-885-5p, is
substantially expressed in brain tissues and has been associated with AD [175].

4.5 Concluding remarks
In this chapter, we introduced and discussed the problem of multi-omics integration,
providing a rich literature background on the multiple kernel learning framework and
state-of-the-art deep learning approaches. In particular, we focused on a common issue
observed in many of the current methods: their reliance on early or late integration
strategies, which can be potentially limiting when dealing with different biological lay-
ers [132]. Multiple kernel learning is a well-established algorithm in the machine learn-
ing community, but its use remains limited among practitioners in bio-data mining.
Unlike early or late integration methods, MKL naturally supports a mixed integration
framework, making it a flexible and promising solution for combining heterogeneous
biological data sources. This chapter presents two novel different approaches for Mul-
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tiple kernel learning in the context of multi-omics data integration. One employs un-
supervised learning techniques along with Support Vector Machines (SVM). The other
utilizes deep learning as a substitute for convex linear optimization to integrate kernels.
The proposed methodologies are tested and compared with state-of-the-art methods
performances. The experimental results on four publicly available biomedical datasets
show that approaches based on kernel mixed integration exhibit comparable or even
improved performance w.r.t [183] [55] [63] while being considerably simpler. Also the
novel deep learning-based procedures used to integrate input kernels and for classifica-
tion demonstrate to be a valid alternative to the more classical Multiple kernel learning
optimizations in the case of datasets with large enough sample size. In addition, we
proposed a novel method for biomarkers discovery based on our newly proposed Deep
MKL method, which proved effective for predicting the disease of interest, potentially
showing disease mechanisms and helping in the development of personalized treatment
protocols. In this case, our method offers deeper insights than traditional methods
focused solely on prediction performance, such as those that sequentially remove fea-
tures to rank their importance based on the impact on prediction accuracy, as in [183]
and [55]. Future work could investigate other types of data kernel embedding and
different deep architectures to exploit the kernel framework in the context of Deep
multiple kernel learning. For classical multiple kernel learning, different types of kernel
functions can be tested, as each omic dataset could benefit from ad-hoc kernel function
choices. MKL showed that despite being under-utilized in multi-omics data analysis,
it provides a fast and reliable solution that can compete with and outperform more
complex architectures.

The code of the work presented in this chapter can be found at https://github.
com/gabrieletaz/MKL_MO.

The author of this PhD thesis is responsible for the following contributions presented
in this chapter:

III/1. Contributed to conceptualization and design of the work: comparing deep learn-
ing state-of-the-art approaches to multiple kernel learning ones, based on SVM
and deep learning, on biomedical multi-omics datasets.

III/2. Literature survey regarding the deep learning approaches in the Related Work
section.

III/3. Implementation of the data preprocessing steps.

III/4. Conceptualization and implementation of all DeepMKL architectures and rela-
tive evaluation pipeline and experiments.

https://github.com/gabrieletaz/MKL_MO
https://github.com/gabrieletaz/MKL_MO
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III/5. Conceptualization and implementation of the novel two-steps intepretability
method used for biomarker discovery.

III/6. Design of figures related to the DeepMKL architectures.



Chapter 5

MINN: A Metabolic-Informed Neural
Network for Integrating Omics Data
into Genome-Scale Metabolic Modeling

The understanding of cellular behavior relies on the integration of metabolism and its
regulation. Multi-omics data provide a detailed snapshot of the molecular processes
underpinning cellular functions and their regulation, describing the current state of the
cell. While Machine Learning (ML) models can uncover complex patterns and relation-
ships within these data, they require large datasets for training and often lack inter-
pretability. On the other hand, mathematical models, such as Genome-Scale Metabolic
Models (GEMs), offer a structured framework for analyzing the organization and dy-
namics of specific cellular mechanisms. At the same time, they don’t allow for seam-
less integration of omics information. Recently, a new framework to embed GEMs in
a neural network has been introduced: these hybrid models combine the strengths of
mechanistic and data-driven approaches, offering a promising platform for integrating
different data sources with mechanistic knowledge. In this chapter, we present our
works ”Metabolic-informed Neural Network for Multi-omics Data Integration” pub-
lished in the proceedings of FOODSIM 2024 and ”MINN: A metabolic-informed neural
network for integrating omics data into genome-scale metabolic modeling” published
in ”Computational and Structural Biotechnology Journal”. After the Introduction 5.1,
this chapter is structured as follows. The Related Works section 5.2 provides a litera-
ture background on Genome-Scale Metabolic Models and Flux Balance Analysis, the
integration of omics data into GEMs, and the development of hybrid approaches com-
bining mechanistic and machine learning models. This section explains why combining
data-driven and mechanistic frameworks is a promising direction for metabolic flux
prediction. The Materials and Methods section 4.3 describes the MINN architectures
proposed in our work, the datasets used, the preparation of GEMs, and the imple-
mentation of different optimization strategies to balance data-driven and mechanistic
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objectives. It also details the evaluation pipeline, metrics, and computational set-
tings used for the evaluations of our methods. The Results and Discussion section 5.4
presents the predictive performance of MINN compared with classical machine learn-
ing methods and pFBA, as well as results from different optimization strategies, GEM
configurations, and the MINN-reservoir approach. It also includes statistical signifi-
cance tests and additional analyses to highlight the robustness of the method. Finally,
in the Concluding Remarks section 5.5, we summarize the main findings of our work,
emphasizing the advantages of hybrid models for flux prediction, the role of mecha-
nistic constraints in regularization, and the trade-offs between predictive accuracy and
mechanistic fidelity.

5.1 Introduction
The phenotype of a cell is a complex interplay between its metabolic network, consist-
ing of thousands of biochemical reactions, and the regulatory mechanisms controlling
diverse cellular functions. Mechanistic models, such as GEMs [173], provide a struc-
tured framework to integrate and connect the available knowledge to find emergent
properties in cellular systems. GEMs mathematically represent cellular metabolism,
summarizing our information about the biochemical processes present in an organ-
ism [113, 125, 156]. One common approach to simulate cellular behavior using GEMs
is constraint-based modeling (CBM). Among these methods, Flux Balance Analysis
(FBA) [24, 124, 128] is particularly notable. FBA applies linear programming to op-
timize the distribution of metabolic fluxes, aiming to maximize specific objectives like
biomass production while considering nutrient availability constraints. However, the
predictive power of a mechanistic model like FBA is limited by the completeness of
our understanding of cellular processes. Moreover, FBA typically has multiple fea-
sible solutions. In such cases, the solution with the lowest sum of fluxes is usually
selected, based on the assumption that cells try to minimize their enzyme production
[93]. However, this assumption is often an oversimplification, which does not account
for the complex regulatory mechanisms within cells.

Omics data can be integrated in GEMs to enhance their predictive power and tai-
lor models to specific cellular contexts [105, 196]. Transcriptomics and proteomics
offer indirect and direct proxies for metabolic activity, respectively, and have been
incorporated into GEMs using tools such as GIMME [13] and CoCo [201] for gene ex-
pression data, and GECKO [29] and sEnz [174] for enzyme abundances. Metabolomics
and fluxomics provide additional constraints through extracellular metabolite levels
or isotope-labeling experiments [10, 68]. While multi-omics integration offers a more
comprehensive view of the cellular state [103], these efforts remain limited by standard-
ization challenges and the difficulty of mechanistically linking non-metabolic features
to model reactions [99].
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On the other hand, data-driven machine learning (ML) models can effectively ex-
tract patterns in high-dimensional datasets, such as multi-omics data, without prior
knowledge of underlying molecular mechanisms. These models often demonstrate
strong predictive capabilities, but are limited by the scarcity of biological datasets, fre-
quently constrained by experimental costs and time. In recent years, ML models have
also been explored for predicting metabolic fluxes using multi-omics data. Although
FBA remains the preferred mechanistic framework for this task, integrating omics data
into CBM frameworks remains a significant challenge [105]. Interestingly, recent work
[56] demonstrated that purely ML-based approaches trained on omics data can out-
perform FBA-based methods in metabolic flux prediction. A more detailed overview
of the literature is provided in the next section.

Given the complementary strengths and limitations of ML and GEMs, there has
been increasing interest in trying to combine these two approaches [9, 82, 202]. Hybrid
models that merge mechanistic knowledge with the predictive capabilities of ML offer
a promising direction but so far, as highlighted in [143], the existing applications do
not truly integrate ML and FBA. Instead, they mostly combine them in two separate
steps: using ML as input for FBA [39, 81, 115], or using FBA as input for ML [37, 106].

Recently, [46] developed a framework that truly combines CBM with ML in a neural
network architecture called an Artificial Metabolic Network (AMN). Their approach
leveraged GEM structures and FBA constraints within neural networks to predict
growth rates from media compositions.

In [46], the authors suggested three different possible configurations for incorporat-
ing the GEM structure and the FBA constraints in a neural network (NN). In this work,
we selected one of these configurations, inspired by Physics-Informed Neural Networks
(PINNs) [38], and we re-implemented and expanded it to integrate multi-omics data as
inputs. We will refer to this new architecture as Metabolic-Informed Neural Network
(MINN) with multi-omics integration (Figure 5.1). We applied this hybrid model to
the dataset analyzed by [56], which examines how the metabolism of Escherichia coli
adapts to varying growth rates and single-gene knockouts [75]. As discussed in [171],
the combination of fluxes measured experimentally lies outside the solution space of
FBA, causing a conflict between the optimization of the data-driven and the mecha-
nistic objectives. To address this, we provide different mitigation strategies.
To summarize, in this work:

i. We describe the implementation of a MINN with multi-omics integration, using
an early concatenation approach.

ii. We benchmark its predictive performances on the ISHII dataset, compared to
pure ML methods [56].

iii. We recalculated the data to be in the FBA solution space and compared the
predictive performances with those based on the original measurements.
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iv. We explore different hybrid optimization strategies to address the conflict between
the objectives, while using the original data.

v. Finally, we adapt the MINN to a “reservoir” configuration [46], which uses the
MINN predictions to directly constrain pFBA, and compare its predictions with
those of pFBA alone.

With these analyses, we provide a detailed overview of methods and strategies to
adapt and use hybrid ML-FBA methods for multi-omics integration. Our findings
highlight the potential of hybrid models to enhance the predictive accuracy and ro-
bustness of metabolic flux predictions. This can be intended as a first step in the
direction of more precise and comprehensive metabolic network analyses, particularly
for phenotypes where metabolism is significantly influenced by other layers of cellular
organization, which are challenging to incorporate into FBA. Furthermore, with this
work we aim to provide a guide to the use of the MINN framework, helping researchers
choose the most suitable configuration based on the specific objective of their study.

5.2 Related Works
Given the multidisciplinary nature of this work, we considered it important to provide
a common starting point for the main topics covered, namely: Genome-Scale Metabolic
Models and Flux Balance Analysis, Omics Data Integration, and Hybrid mechanistic
and data-driven modeling.

5.2.1 Genome-Scale Metabolic Models and Flux Balance Analysis
A genome-scale metabolic model (GEM) is a comprehensive reconstruction of an or-
ganism’s metabolic network, representing the full metabolic capacity encoded by its
genome. It serves as a structured knowledge base, integrating information on genes,
proteins, enzymes, and metabolic pathways [113? ]. GEMs have been primarily re-
constructed for microorganisms, but models also exist for multicellular organisms, in-
cluding humans. A typical microbial GEM contains hundreds or even thousands of
reactions and metabolites, increasing in complexity for multicompartment systems like
yeast [156]. To analyze such large models, a commonly used method is Flux Balance
Analysis (FBA), which relies on the assumption of steady state or balanced growth
[24? ]. Under these conditions, the concentrations of metabolites remain constant over
time, and the rates of production and consumption are balanced across all reactions.
GEMs can therefore be formulated only in terms of reaction rates and treated as linear
programming problems. FBA uses this framework to predict the metabolic behavior
of the organism by optimizing, given the stoichiometric constraints, a specific objective
function: commonly biomass production or, in biotechnological contexts, the yield of
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a desired product. However, stoichiometric constraints alone are often insufficient to
determine a realistic flux distribution. To improve predictive accuracy, FBA requires
context-specific inputs—such as growth medium composition—typically incorporated
by constraining exchange fluxes. These constraints may be derived from experimental
measurements, assumptions about nutrient uptake kinetics, or a combination of both
[128].

5.2.2 Omics Data Integration in Genome-Scale Metabolic Models and
Flux Balance Analysis

GEMs are reconstructed primarily from genomic information, encoding the metabolic
network of an organism. A GEM can be tailored to represent different cell strains by
including or excluding reactions based on the presence or absence of genes encoding
the relevant metabolic enzymes [173]. Beyond genomics, a broad range of omics data
(e.g., transcriptomics, proteomics, metabolomics, and fluxomics) can significantly en-
hance the accuracy and predictive capacity of GEMs [105, 196]. The challenge lies
in translating these data into metabolic fluxes. For enzyme-catalyzed reactions, the
reaction rate is typically described by:

v = kcat · e · f(s, p) (5.1)

where:

• v is the reaction’s flux;

• kcat is the catalytic constant, or turnover number, which represents the number
of substrate molecules converted to product per enzyme molecule per unit time
when the enzyme is fully saturated with substrate, i.e., the enzyme efficiency;

• e is the enzyme concentration;

• f(s, p) is a (often nonlinear) function of the concentrations of substrates s and
products p, and the corresponding affinity parameters.

It is worth also noting that, while genomic, transcriptomic, and proteomic data pro-
vide rich layers of information, only features that can be explicitly linked to metabolic
reactions can be directly integrated into GEMs [99]. As a result, much of the broader
cellular context captured by these datasets, including regulatory, structural, or signal-
ing components, is typically excluded from the model.

Transcriptomics data, while often weakly correlated with actual protein levels or
enzymatic activity [133], remain useful to identify active metabolic genes and infer
condition-specific pathway activation. When comparing multiple conditions, tran-
scriptome profiles may suggest shifts in metabolic strategy. Several frameworks have
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been developed to incorporate transcriptomics and gene co-expression data into GEMs
[105, 126, 201]. Transcriptomic data have also enabled the development of metabolism
and gene expression models (ME-models), which explicitly couple metabolic reactions
with the expression of the genes encoding the corresponding enzymes [102, 119]. These
models account for the transcriptional and translational cost of enzyme production and
provide a mechanistic link between gene expression and flux capacity.

To address the challenge of nonlinear and context-dependent relationships between
transcript levels and metabolic fluxes, some methods avoid imposing direct constraints
and instead seek to maximize the consistency or correlation between gene expression
and flux predictions [7, 129, 130, 209].

Proteomics data provide a closer proxy for metabolic capability. Presence or ab-
sence of specific enzymes can directly constrain which reactions are allowed under given
conditions. Assuming enzyme saturation (f(s, p) = 1), enzyme levels scaled by kcat val-
ues provide upper bounds for fluxes (vmax). These catalytic parameters can be obtained
from databases such as BRENDA [26] and SABIO-RK [187], or estimated using sta-
tistical approaches or enzyme-kinetic models [43, 154]. Although these resources are
growing rapidly, retrieving the relevant kinetic parameters remains a semi-automated
process that often requires manual curation to ensure accuracy and model compatibil-
ity. Building on these concepts, more complex model formulations have been developed,
such as enzyme-constrained GEMs (ecGEMs), which treat metabolism as a problem
of protein budgeting under limited cellular capacity [29, 144]. Proteome-constrained
models (pcGEMs) further account for the resource cost of enzyme production [45, 58].
While building these models often requires custom pipelines, tools such as GECKO
[29] and sEnz [174] are making these tasks increasingly standardized and accessible.

Metabolomics data offer insights into both the structure and dynamics of metabolism.
Although metabolite concentrations cannot be directly used in GEMs due to the steady-
state assumption and lack of proportionality between concentrations and fluxes, their
presence or absence can indicate pathway activity. Time-series measurements of extra-
cellular metabolite levels can be converted into flux constraints for exchange reactions,
allowing us to tune the GEMs to match observed uptake or secretion patterns [68].
Moreover, when quantitative metabolomics data are available for the reagents of a re-
action, thermodynamic constraints can be imposed on its direction, further narrowing
the feasible flux space and improving biological realism [118, 129, 130].

Fluxomics data: isotope-labeling experiments (e.g., growth in 13C-glucose medium)
allow direct estimation of intracellular flux distributions via Metabolic Flux Analysis
(MFA) [10]. MFA uses 13C metabolomics data to fit simplified metabolic models,
enabling the estimation of intracellular fluxes based on the observed labeling patterns.
These experimentally derived fluxes can be used to constrain specific reactions or to
find the flux profile that best fits the measured data.

Multi-omics data : The simultaneous integration of diverse omics layers yields a
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more holistic view of the cellular state. This systems-level approach is especially valu-
able for understanding dynamic or context-dependent responses, as it captures the
interactions between different biological processes [103]. Tools like the IOMA (Integra-
tive Omics-Metabolic Analysis) framework facilitate the incorporation of diverse omics
layers into GEMs to enhance predictive fidelity [196].

In summary, omics data integration represents a powerful way to contextualize
and refine GEMs, improving their ability to simulate real-world biological behavior.
However, current methods remain limited by a lack of standardization and automa-
tion. Moreover, mechanistic integration is restricted to metabolic features explicitly
represented in GEMs, meaning that valuable context from a broader view of cellular
processes is still usually excluded.

5.2.3 Integrating FBA and Machine Learning for Enhanced Metabolic
Predictions

In the previous sections, we discussed how FBA is a powerful approach to exploit the
information stored in GEMs to predict the metabolic behavior of cells. However, FBA
has at least four main limitations. First, its predictive power heavily depends on the
amount of experimental measurements of exchange fluxes. Second, incorporating multi-
omics data is challenging, because all measurements must be converted into fluxes, a
process that usually requires iterative steps of time-consuming manual curation. Third,
FBA and GEMs focus solely on metabolism and typically do not link it to the general
status of the cell. Finally, FBA predicts flux distributions that tend to maximize the
yield on the limiting substrates [176], often missing to capture ”high rate-low yield”
solutions [45].

In recent years, with the increasing availability of high-throughput technologies and
data, ML has gained popularity as a valid alternative to mechanistic-based approaches
[6, 56, 190]. The success of ML lies in its ability to find patterns in the data without
making any mechanistic assumptions. However, a main drawback is that ML requires a
high volume of data to train models successfully, and in many biology-related domains,
datasets of suitable size are rare. In particular, experiments in microbial physiology
tend to be one, if not two, orders of magnitude smaller than what ML requires. More-
over, ML behaves mostly as a black-box model, making it difficult to extract mecha-
nistic understanding from its results. On the other hand, this black-box nature makes
ML more amenable than mechanistic models for integrating diverse data sources, even
those for which there is no clear understanding of their connections.

Therefore, it seems natural to integrate these two approaches to overcome each
other’s limitations and exploit their strengths. In recent years, as reviewed in [143]
and [202], there have been many attempts to integrate these methods. [143] categorize
these works into two groups: ML as input of FBA [39, 81, 115] and FBA as input of
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ML [37, 106]. This division highlights that these methods do not truly integrate ML
and FBA but rather concatenate them, using them in two distinct steps. To the best
of our knowledge, only three works presented hybrid models that genuinely integrate
FBA and ML: [46], [65], and [7]. The first introduces Artificial Metabolic Neural Net-
works (AMNs), which are Neural Networks that use FBA constraints to refine their
solution and to regularize the network. This is achieved through a Mechanistic Layer,
representing the structure of the mechanistic model inside the NN, and a custom loss
function, similar to those of other Knowledge Informed Neural Networks (e.g. Physics-
Informed Neural Network [38]). When using FBA alone for growth rate prediction,
nutrient uptake fluxes often need manual adjustment to match experimental growth
rates. This process can involve labor-intensive experiments or unsystematic ”trial-and-
error” adjustments, which may introduce arbitrary assumptions to align the model
with observed data. The hybrid AMN framework proposed by [46] addresses these
challenges by embedding mechanistic information into neural networks, providing a
more systematic approach. The second presents FlowGAT, which integrates the struc-
ture of the GEM and the solution of FBA in a Graph Attention Network (GAT) to
predict the gene essentiality. The third method, scFEA, combines single-cell transcrip-
tomics with FBA-inspired constraints using a Graph Neural Network. Like AMNs,
scFEA treats flux balance as a soft constraint in the loss function, but it also includes
a term that explicitly maximizes the agreement between gene expression and predicted
fluxes.

The MINN models follow the blueprint of AMNs and, in line with the approach
presented in [46], represent a true hybrid model, integrating FBA constraints and
multi-omics data to improve predictions of fluxes. One key feature of MINN is that it
incorporates omics data not only for elements (genes, proteins, etc.) directly linked to
metabolic activity, but also those representative of the broader cellular context, and it
leaves it to the neural network component to learn the complex relationships between
all omics layers and metabolic fluxes. However, as a possible future development, GPRs
could be embedded directly into the network architecture or in the loss function of a
MINN, strengthening the mechanistic link between omics data and flux predictions and
further leveraging the structure encoded in the GEM.

5.3 Materials and Methods

5.3.1 Dataset

The dataset analyzed in this work was originally published by [75] and consists of 29
chemostat experiments, in which E. coli was grown in glucose minimal medium. Wild-
type strain K-12 was grown at 5 different dilution rates (D = 0.1, 0.2, 0.4, 0.5, and 0.7
h−1), while 24 different single-knockout mutant strains were cultivated at fixed dilution
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rate (D = 0.2 h−1). The same dataset was already used by [56] to test traditional ML
for the prediction of metabolic fluxes from multi-omics data.
The dataset consists of transcriptomic, proteomic, and fluxomic measurements. For
each sample, microarrays were used to assess the expression profiles of 79 genes and
LC-MS/MS quantitative proteomics to measure the abundances of 60 proteins. 13C-
labeled metabolomics experiments were analyzed with MFA to estimate 47 metabolic
fluxes: 37 reactions of the central carbon metabolism, 9 exchange fluxes (production
or consumption of external metabolites) and biomass growth.

The metabolic model used by [75] to perform MFA is a core model that mainly rep-
resents the central carbon metabolism of E. coli and how it connects to the measured
external metabolites. This model is much smaller and less complete than the GEM [47]
integrated in the MINN. For the GEM to grow, many more different biomass compo-
nents must be synthesized, diverting some metabolic precursors outside the pathways
represented in the MFA model. For this reason, the fluxomics data from [75] lie out-
side the solution space [171]. In most of our analyses we used the original fluxomics
data, to highlight the ability of the MINN to reconcile MFA fluxomics data with the
structure of the full-size GEMs. However, to investigate the impact of this discrepancy,
we repeated some of the analyses with a second set of fluxes, now residing in the FBA
solution space. This second set of fluxomics data is composed of the fluxes with the
minimum Euclidean distance from the original ones, following an approach detailed in
the Supplementary Material of [105] and we refer to it as FBA fit data.

GEMs

GEM name original splitted reactions reduced and splitted reactions

iAF1260 2957 NA
iAF1260 FVA-reduced 2957 1873
iAF1260 FBA-reduced 2957 587
e coli core 115 NA
iNF517 FVA-reduced 1022 704

Table 5.1: Dimensions of all the GEM used in this analysis.

5.3.2 GEM preparation

In this section we describe all the genome-scale metabolic reconstructions utilized to
build the MINNs. The most recent GEM available for E. coli K-12 is iML1515 [114], but
we opted for iAF1260 [47]. The two differ mainly for the more comprehensive coverage
of accessory pathways of iML1515, which are relevant in complex environments like the
human gut, but not for growth on minimal medium. On the other hand, the size of
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the GEM can heavily affect the complexity of the MINN: using a smaller GEM would
improve the efficiency of our hybrid model by reducing the computational resources
required for training. Possibly, it would also reduce the noise in the model, enhancing
the prediction accuracy. iAF1260 is reasonably smaller than iML1515 (2382 reactions
vs. 2712) and is also the same model used by [56] in their analyses.

We further reduced the size of the model by excluding all the reactions which cannot
carry flux during growth in glucose minimal medium. This was achieved performing
Flux Variability Analysis (FVA) and retaining only the reactions with a non-zero span.
We refer to this model as FVA-reduced GEM. We also tested a second strategy, inspired
from [46], to further reduce the model. We generated a dataset of 2000 FBA solutions
by randomly selecting single-gene knockouts and varying the maximum glucose uptake
rate within the experimentally observed range. Reactions that consistently carried zero
flux across all the simulations were removed from the model. We refer to this model as
FBA-reduced GEM. To investigate the impact of an extreme decrease in the genome-
scale reconstruction size, we also built a MINN using the e coli core model [123], a
manually reduced GEM focused on central carbon metabolism, which is the smallest
model available in the BiGG database.

Finally, to further test the role of the GEM and the underlining metabolic network,
we also tested our baseline configuration including the GEM of a different organism.
We used the iNF517 model [49] for Lactococcus lactis subsp. cremoris MG1363. This
microorganism is a lactic acid bacterium, with an incomplete TCA cycle, which makes
it an interesting comparison for E.coli, both in terms of structure of the network in the
central carbon metabolism and of general metabolic behavior. The model was reduced
using the FVA-guided reduction approach. The results of this comparison are available
in the Section 5.4.4.

In Table 5.1 we summarize the dimensions of each GEM. The GEMs were down-
loaded from the BiGG database [84] and handled/modified using CBMPy 0.8.4 [122].
In each model, reversible reactions were split into a forward and a reverse reaction
using the built-in CBMPy function cbmpy.CBTools.splitReversibleReactions.

5.3.3 MINN architecture
This work presents a MINN architecture designed to predict multiple fluxes using multi-
omics data, which provide key insights for metabolic predictions but are challenging to
integrate with FBA [105]. Figure 5.1 illustrates the structure of our MINN architecture,
built to predict fluxes measured in the ISHII dataset using proteomics, transcriptomics,
and the measurements of two exchange fluxes, namely R EX glc D e, R EX o2 e. The
data are integrated using an early concatenation strategy [5], where the three omics
datasets are combined into a single matrix that is fed into the MINN.

The omics data are used in the first part of the model (shown in red in Figure
5.1), which is a pure feed-forward neural network. Here, the network is trained to
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Figure 5.1: Schematic representation of the MINN architecture. Protein and gene
expression levels, and exchange flux data are used as input to a feed-forward neural
network, which produces an initial estimate for the flux distribution V0. This estimate
is refined in a mechanistic layer via a gradient descent step to better align with flux bal-
ance constraints, resulting in the final flux distribution Vout. The custom loss function
combines the discrepancy between the model predictions and the target fluxomics data
with the violation of FBA constraints, and is used to train the network via backpropa-
gation.

learn a mapping from the input omics profiles to an initial estimate of the flux distri-
bution, denoted as V0. The input dimension din corresponds to the total number of
features after concatenating the transcriptomics, proteomics, and exchange flux data,
while the output dimension dout corresponds to the total number of reactions in the
GEM. This part of the model is purely data-driven, meaning that it does not rely on
any mechanistic assumption or require prior knowledge such as gene-protein-reaction
(GPR) associations. Instead, it learns directly from the data how to associate the
omics features with a plausible flux configuration. This makes the method flexible and
compatible with a wide range of input omics data, including those not directly related



88
MINN: A Metabolic-Informed Neural Network for Integrating Omics Data into

Genome-Scale Metabolic Modeling

to metabolism but still informative of the broader cellular context.
The second part, the mechanistic layer, blue in Figure 5.1, consists of a gradient

descent optimization loop. This loop refines the output of the first neural network step
by adjusting the final predicted flux distribution V to better comply with the FBA
constraints, minimizing the FBA loss function LF BA. The neural network weights are
trained using a standard back-propagation algorithm and a custom loss function LMINN

that considers both the data error and the FBA constraints.
To formalize this, let the input data be X ∈ RN×din where N is the mini-batch

dimension in the back-propagation algorithm and din is the number of features of X.
The first NN part can be expressed as:

V0 = σ(XW h + bh)W out + bout (5.2)

with σ the ReLU activation function, W h ∈ Rdin×dh , bh ∈ R1×dh , W out ∈ Rdh×dout ,
bout ∈ R1×dout , the weight matrices and the biases of the input and hidden layer re-
spectively, where dh is the hidden layer dimension and dout is the output dimension,
which coincides with the dimension of the flux distribution. Then, V 0 is refined in the
mechanistic layer through a gradient descent optimization, using only the mechanistic
constraints. For simplicity, the notation refers to the simple case when the loop has
one iteration:

Vout = V − lr
∂LFBA

∂V
(5.3)

LFBA = 1
m

|SV |2 + 1
nin

|ReLU(PinV − Vin)|2 + 1
n

|ReLU(−V )|2 (5.4)

The first element represents the steady-state constraint of FBA, with S as the
stoichiometric matrix of the GEM. The term m denotes the number of metabolites
and serves as the normalization term. The second element represents the upper-bound
constraint on the vector of fluxes Vin. Here, Pin represents the projection matrix that
projects the flux distribution vector V into the dimension of Vin, while the normalization
term nin stands for the number of bounded fluxes. Lastly, the last element symbolizes
the lower bound constraint, which required since the GEM is built to ensure that all
the fluxes are positive.

The custom loss used to train the weights of the MINN is:

LMINN = L1 + L2 + L3 + L4 (5.5)
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= |PrefV − Vref|
Vref

+ 1
m

|SV |2 + 1
nin

|ReLU(PinV − Vin)|2 + 1
n

|ReLU(−V )|2

where Vref is the vector with the measured fluxes and Pref a projection matrix
that projects V to the dimension of Vref ; while the other elements represent the FBA
constraints and are the same as in LF BA.
In order to guide the reader through the understanding of the MINN architecture, we
provide an illustrative toy example in Section 5.3.3

In [46], the authors used Mean Squared Error (MSE) as L1 because they wanted to
predict a single flux, specifically the growth rate. In our work, we use the Normalized
Error (NE) [56] to have a scale-invariant L1 when predicting multiple fluxes in order
to avoid favoring reactions with higher flux values.

In addition, during our analysis a conflict between the data-driven and mechanistic
losses emerged. In order to mitigate this issue, we multiply L1 with a constant c, which
allow us to adjust the balance between the two losses:

LMINN-balanced = c · L1 + L2 + L3 + L4 (5.6)

The c constant becomes a hyperparameter of the model, tuned using k-fold cross-
validation and the optimized value determines the best balance between L1 and (L2 +
L3 + L4).

It is important to note that the mechanistic part of the loss function includes only
terms enforcing FBA constraints, to reduce the solution space, but does not include
any term related to the FBA objective (e.g., biomass maximization). As a result, the
optimization is guided solely by L1, a data-driven objective, without imposing any
predefined metabolic goal. This is particularly advantageous in cases where no clear
cellular objective exists, such as in gene knockout mutants.

MINN-reservoir

Similarly to [46], we tested an additional configuration of the MINN, named MINN-
reservoir. The training of the MINN-reservoir requires two steps, as shown in Figure
5.2. In the first step (5.2a), a MINN (with no omics data in input) is trained only to
reproduce FBA using a dataset of FBA solutions. This dataset contains the results
of 2000 FBA simulations, in which the reactions belonging to Vin (R EX glc D e,
R EX o2 e, R EX co2 e, R EX etoh e and R EX ac e) were assigned random values,
within the ranges of variability observed in the ISHII dataset. This procedure creates
a model that acts as a pure approximator of an FBA solver (Pretrained block in
Figure 5.2), capable of predicting the optimal flux distributions from measurements of
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external metabolite fluxes, similar to an FBA solver. In the second step (Figure 5.2b),
this Pretrained block is embedded into a new MINN architecture, where it replaces
the Mechanistic Layer. The resulting architecture consists of a neural network layer
that predicts Vin from multi-omics data and medium exchange fluxes (R EX glc D e,
R EX o2 e), followed by the Pretrained block, which computes the flux distribution Vout

from the predicted Vin. The two-step approach ensures that the predicted Vin values
are compatible with FBA and can be reliably used by the solver to produce a true,
linear programming solution. For the test sample in each split, the predicted Vin are
extracted and used as additional constraints for pFBA: increasing the input information
in a data-driven way while preserving the mechanistic structure of the model. Unlike
the default configuration of the MINN, this approach produces as final output not only
the full flux distribution, but a complete solution from a Linear Programming solver,
which can be analyzed with all the tools developed for this purpose.

Figure 5.2: Two-step training strategy of the MINN-reservoir architecture: a) In the
first step, a MINN (with no omics data in input) is trained to approximate an FBA
solver, using a dataset of simulated FBA solutions. The network learns to predict
the flux distribution Vout from randomly sampled external fluxes Vin (R EX glc D e,
R EX o2 e, R EX co2 e, R EX etoh e and R EX ac e). Once trained, its weights are
frozen, and the resulting model is reused as a fixed Pretrained block. b) In the second
step, this Pretrained block is embedded within a new architecture that takes omics data
and medium exchange fluxes (R EX glc D e, R EX o2 e) as input. A neural network
predicts Vin, which is then passed to the Pretrained block to compute Vout.
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MINN architecture: toy example

Here we present a toy example (Figure 5.3) that shows step by step how the MINN
architecture works. Starting from a single input sample, we walk through the key
components of the model: from omics feature concatenation, to the neural network
prediction, and finally to the mechanistic refinement using FBA constraints.

Figure 5.3: Toy example illustrating the workflow of the MINN architecture. (a) Omics
features (proteomics, transcriptomics, exchange fluxes) are concatenated into a single
input vector X. (b) A feedforward neural network maps X to an initial flux prediction
V0 using learned weights. (c) A mechanistic layer refines V0 via one step of gradient
descent, enforcing FBA constraints, and outputs the predicted flux distribution Vout.
(d) A custom loss combining prediction error and FBA constraints is used to update
the neural network during training.
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5.3.4 Hybrid Optimization Strategies for Data-Driven and Mechanis-
tic Integration

Equation 5.5 highlights how the loss of the MINN is composed of two components:
L1, which drives the optimization on the data, and LF BA = L2 + L3 + L4, which min-
imizes the divergence from the mechanistic constraints. In Equation 5.6, we already
introduced the coefficient c, which allows us to tweak the balance between the two
components, either manually or through hyperparameter optimization. In this section,
we introduce three other methods to tune this balance while minimizing the trade-off
between the two components.
In developing hybrid models that integrate mechanistic constraints with data-driven
approaches, we propose different strategies to balance the objectives of maintaining
adherence to the FBA constraints without substantially compromising predictive per-
formance. These methods address the challenge posed by different scales of mechanistic
and data-driven losses, ensuring that neither dominates the optimization process and
that the model generalizes well to unseen data.

Figure 5.4: Illustration of the mechanistic loss bound application. The original loss
(blue dashed line) remains linear, while the modified loss (orange line) increases steeply
after surpassing the bound (red vertical line). This demonstrates how the bound prevents
the mechanistic loss from exceeding a set threshold by applying a multiplicative factor
beyond this limit.
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Bound on Mechanistic Loss

The first method introduced is a bound on the mechanistic loss. This method ensures
that the model’s predictions do not deviate too far from the mechanistic solutions. A
fixed threshold is set, and when the mechanistic loss exceeds this threshold, a multi-
plicative factor is applied to penalize further deviations. This approach softly constrains
the model within a feasible solution space derived from mechanistic constraints, pre-
venting the model from paying an excessive cost in terms of mechanistic loss to improve
the data-driven one. To provide a clear view of the described bound on the mechanis-
tic loss, Figure 5.4 shows the bound on mechanistic loss which penalizes solutions that
stray too far from the mechanistic loss threshold, encouraging the model to respect
mechanistic constraints during training.

Loss Balancing

A loss balancing mechanism was employed to handle the different scales of mechanistic
and data-driven losses. This method normalizes each loss dividing it by the exponential
average of its previous values, as detailed in [71]. Through this approach, both losses
are considered equally during gradient updates, preventing one from outweighing the
other during the training process. The loss balancing ensures that the mechanistic
loss, which would typically be underrepresented due to its smaller scale, contributes
adequately to model optimization alongside the data-driven loss.

Loss Weight Scheduler

Lastly, a dynamic loss weight scheduler was implemented to gradually shift the model’s
focus between the mechanistic and data-driven tasks over the course of training. For
the first phase, the scheduler prioritizes the mechanistic loss, ensuring it starts from
a solution closer to the mechanistic model’s feasible space. As training progresses,
there is a transition phase where the scheduler gradually increases the importance of
the data-driven loss until it reaches the final phase, where the data-driven loss has a
higher weight, guiding the model toward better predictive performance for the data-
driven task. The transitions between the three training phases were defined based on
the learning curves of the validation data from the inner K-Fold cross-validation loop
(also used for hyperparameter optimization). The transition phase was triggered once
the mechanistic loss had converged, which occurred at epoch 30. This phase lasted
for 40 epochs, followed by a final phase of 80 epochs, during which the data-driven
objective was given higher priority. The loss balance in the initial phase was fixed at
90% mechanistic and 10% data-driven. In contrast, the balance parameter for the final
phase was subject to hyperparameter tuning, with a search space ranging from 80% to
100% data-driven loss (and the remainder assigned to the mechanistic loss). For the
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sake of clarity, Figure 5.5 illustrates how the scheduler dynamically adjusts the weight
of the losses over the course of training, allowing the model to optimize both objectives.

Figure 5.5: Visualization of the dynamic loss scheduler. The scheduler adjusts the
weight of the mechanistic and data-driven losses throughout training, starting with the
mechanistic objective and gradually transitioning to prioritize the data-driven objective.
This ensures the model initially aligns with mechanistic constraints before focusing on
data-driven optimization.

These methods provide a comprehensive framework for balancing the trade-offs
between data-driven accuracy and mechanistic integrity.

5.3.5 Performance evaluation
We adopted the same evaluation pipeline for all our MINN configurations to evaluate
the MINN performance and have a fair comparison with the results obtained by [56].
It consists of a dual-loop cross-validation process. The outer loop is a leave-one-out,
and in each train loop, there is an inner loop of a k-fold with k = 5 to tune the
hyper-parameters. The tuning concerns the dimension of the first hidden layer, the
learning rate of the NN, the intensity of dropout and L2 regularization, and the c

constant for the L1 loss in the case of the MINN-c-balanced. Instead, for the MINN-
scheduler model, only the hyperparameter controlling the balance between data-driven
and mechanistic losses in the final training phase was tuned, where the data-driven
component becomes predominant. The initial balance and the epoch marking the
transition between phases were kept fixed. For a consistent comparison with the work
of [56], we employed identical metrics to evaluate all our experiments: the regression
coefficient R2, the mean absolute error (MAE), the root mean squared error (RMSE)
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and the normalized error (NE). As described later, in some of our results, we also
report the L2 as a metric to measure the quality of the predicted flux distribution.

Computational Settings

In this section, we report the runtime of the main experiments conducted in our analy-
sis. The goal is to provide practical insights into the computational cost of each method,
guiding practical adoption. All experiments were managed using the ClearML frame-
work. While ClearML introduces a slight overhead due to logging and management
features, this does not significantly affect the runtimes provided. For methods pre-
sented in Gonçalves et al., quantitative runtime data are not available in the original
publication. Therefore, we provide qualitative intervals. For MINN-based approaches
and other models we developed, we report quantitative runtime measurements obtained
directly from our experimental pipeline. All experiments were executed on a machine
equipped with an NVIDIA GeForce RTX 2080 Ti GPU (11GB memory), 20 CPU
cores, and 126 GB of RAM. Full software configurations, including the Docker image
and package dependencies, are available in the associated code repository to ensure full
reproducibility. A summary of all runtime estimates is provided in Table 5.2.

Method GEM Evaluation pipeline Runtime

pFBA iAF1260 Test only ¡ 1min
NN NA Train + Val + Test ¡ 5h
RF NA Train + Val + Test ¡ 2h
MINN-c-balanced iAF1260 Train + Val + Test 44h
MINN-c-balanced iAF1260 FVA-reduced Train + Val + Test 24h
MINN-c-balanced iAF1260 FBA-reduced Train + Val + Test 12h
MINN-c-balanced e coli core Train + Val + Test 9.45h
MINN-c-balanced iNF517 FVA-reduced Train + Val + Test 14.30h
reservoir + pFBA iAF1260 FBA-reduced (Pretrain) + Train + Val + Test (6.40h) + 6.16h

Table 5.2: Runtime details for baselines and MINN-based methods

Hyperparameters details

Table 5.3 shows a detailed list of the hyperparameter search spaces used during the
tuning process for each of the methods presented in this work. As described in the
main manuscript, hyperparameter optimization is performed in the inner loop of the
evaluation pipeline, which follows a 5-fold cross-validation scheme. We used random
search to explore the search space. Some hyperparameters were optimized, while others
were fixed based on prior knowledge from [56]. Specifically, we fixed the number of
epochs at 100, the batch size at 5, and we always used the Adam optimizer. As shown
in Table 5.3, we defined different search spaces for the value of the constant c, the
parameter balancing the data-driven and mechanistic losses (for the last phase of the
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schedulers models), the hidden layer size of the neural network, the dropout rate, the
learning rate, and the L2 regularization term.

Hyperparameter Search Space (Part 1/2)

Method c Final Loss Balance Weight Hidden Size

MINN-MSE-base NA NA {200, 250, 300}
MINN-unbalanced NA NA {200, 250, 300}
MINN-c-balanced {10, 20, 30, 40, 50} NA {200, 250, 300}
MINN-bound {10, 20, 30, 40, 50} NA {200, 250, 300}
MINN-scheduler NA [0.8, 1] {200, 250, 300}
MINN-scheduler-bound NA [0.8, 1] {200, 250, 300}
MINN-reservoir + pFBA NA NA {200, 250, 300}

Hyperparameter Search Space (Part 2/2)

Learning Rate Dropout Rate L2

{0.0002, 0.0005, 0.0007} {0.1, 0.25, 0.5} {0, 0.0001, 0.001}
{0.0002, 0.0005, 0.0007} {0.1, 0.25, 0.5} {0, 0.0001, 0.001}
{0.0002, 0.0005, 0.0007} {0.1, 0.25, 0.5} {0, 0.0001, 0.001}
{0.0002, 0.0005, 0.0007} {0.1, 0.25, 0.5} {0, 0.0001, 0.001}
{0.0002, 0.0005, 0.0007} {0.1, 0.25, 0.5} {0, 0.0001, 0.001}
{0.0002, 0.0005, 0.0007} {0.1, 0.25, 0.5} {0, 0.0001, 0.001}
{0.0002, 0.0005, 0.0007} {0.1, 0.25, 0.5} {0, 0.0001, 0.001}

Table 5.3: Hyperparameter search spaces used during tuning for each method. Each
row continues across the two subtables. Square brackets denote discrete values, curly
brackets indicate intervals.

5.4 Results and discussion
This work aims to compare the predictive performance of the MINN w.r.t pure ML
approaches and mechanistic models such as pFBA. For clarity, we divide all the results
and discussions into three groups. The first one (Table 5.4) contains the results of
the performance comparison between our approach and the pure ML ones presented
in [56]. Here, we evaluate the predictive performance of different methods on the 45
reference fluxes measured in the ISHII dataset. The second one (Table 5.5) includes
the results of the comparison between different approaches employed to mitigate the
issue of conflicting losses. Here, we compare the performance of the different methods
on the measured fluxes and the quality of the predicted flux distribution, which we
measure using, as a proxy, L2. The third group (Table 5.6), instead, compares the
results obtained using the MINN-reservoir configuration with those of pFBA.
Lastly, we tested the impact of using different GEMs in the mechanistic layer of the
MINN. In particular, when we included the GEM of Lactococcus lactis subsp. cremoris,
a bacterium with an incomplete TCA cycle compared to E. coli, we observed a decrease
in the quality of the predicted flux distribution. Although the difference was moderate,
probably due to the conservation of central carbon metabolism, these results suggest
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that the biological relevance of the GEM has an important role in the regularizing
effect of the mechanistic layer. A more detailed analysis is available in Section 5.4.4.

5.4.1 MINN to predict measured fluxes
In the first group, as a baseline, we used the MINN architecture with an MSE as L1

(MINN-MSE-base), as in [46]. As shown in Table 5.4, the results are already com-
parable with a Random Forest (RF), the best machine learning method in [56], and
better than the NN approach. To avoid potential bias from the large discrepancies
(up to two orders in magnitude) between the values of the fluxes we are predicting, we
replaced the MSE in L1 with a NE. As detailed in the Section 5.3, we multiply L1 with
a constant c, optimized during the cross-validation. This method, incorporating the c

parameter, is referred to as MINN-c-balanced, while the one without this adjustment
as MINN-unbalanced. Although the change from MSE to NE ensures a scale-invariant
L1, it also reduces its magnitude, amplifying the conflict between losses as the mecha-
nistic constraints gain more influence. For this reason, the MINN-unbalanced obtained
worse results w.r.t. the MINN-MSE-base, but the MINN-c-balanced shows the best
results, achieving comparable or better performance than the RF in three out of four
metric averages.
Moreover, the MINN-c-balanced shows a reduction in standard deviation. This sug-
gests that the inclusion of biological constraints stabilizes the learning process, reduces
overfitting, and leads to more robust and consistent predictions across the 29 leave-one-
out splits. In addition, MINN not only learn flux values from data but also derive the
entire flux distributions, as done by FBA simulations. These results suggest that MINN
is a promising hybrid approach for flux prediction, showing consistent improvements in
both average performance and standard deviation across all baselines, including pure
mechanistic and ML methods. However, the statistical significance tests detailed in
the sections 5.4.4 indicates that the difference between MINN-c-balanced and Random
Forest is not statistically significant. This, together with the fact that our analysis was
limited to a single microorganism, highlights the need for further investigations to bet-
ter understand the effectiveness of hybrid approaches in the context of flux prediction.
The challenge of predicting multiple fluxes, with significant variability in their values,
was effectively addressed by substituting the MSE with an NE for the L1 and adding
the c constant that handled the emerging imbalances. The MINN’s flexibility also
makes it a powerful tool for integrating multi-omics and potentially other kinds of
data with GEMs, enabling its application in diverse systems biology contexts.

5.4.2 MINN to predict a qualitative flux distribution
Regarding the second group of results, we aim to compare different methods to mitigate
the issue of the conflicting losses already introduced in Section 5.3. We address this
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ISHII
Model R2 MAE RMSE NE
pFBA* 0.823 ± 0.156 0.692 ± 0.733 1.058 ± 1.029 0.381 ± 0.185
NN* 0.967 ± 0.036 0.652 ± 0.945 0.936 ± 1.314 0.338 ± 0.338
RF* 0.970 ± 0.037 0.507 ± 0.804 0.729 ± 1.105 0.271 ± 0.347
MINN-MSE-base 0.950 ± 0.060 0.525 ± 0.525 0.736 ± 0.703 0.287 ± 0.282
MINN-unbalanced 0.951 ± 0.051 0.563 ± 0.739 0.814 ± 1.067 0.325 ± 0.442
MINN-c-balanced 0.950 ± 0.055 0.473 ± 0.480 0.678 ± 0.653 0.272 ± 0.280

Table 5.4: Comparison of predictive performance between our proposed MINN-based
approaches and purely mechanistic and machine learning methods from [56]. Metrics
average and standard deviation over 29 leave-one-out splits. All the MINN models were
generated using the iAF1260-FVA reduced GEM.

*results from [56]

problem from two different points of view. First, we act on the mechanistic aspects
of the MINN: the reference data. In contrast, the second perspective addresses the
optimization process of the MINN, where we apply various hybrid optimization strate-
gies discussed in Section 5.3.4 As a baseline, we employ our best method in terms of
prediction performance, hence MINN-c-balanced.
In the first case, we compare it with a configuration of the same MINN-c-balanced
which uses different fluxes data, recalculated to be in the solution space of FBA. We
described this process in Section 5.3.1. As shown in the first section of Table 5.5, this
approach, named MINN-c-balanced FBA fit, does not reduce the quality of the fluxes
prediction, represented by the four metrics, but it improves theL2 by reducing its value
by a third. The results show that MINN maintains strong predictive performance even
when the flux data are not in the FBA solution space. This suggests that its data-
driven component can compensate for deviations from mechanistic constraints.
However, using flux data that aligns with the FBA solution space improves the qual-
ity of the predicted flux distribution. This correction makes the optimization process
easier by alleviating the issue of conflicting losses.
Regarding the hybrid optimization strategies, we compare the MINN-c-balanced with
three other methods previously introduced in Section 5.3.4: MINN-bound, which penal-
izes violations of the mechanistic loss that exceed a threshold; MINN-scheduler, which
gradually shifts the focus from mechanistic to data-driven loss during training; and
MINN-scheduler-bound, which combines both approaches. From the second section of
the table, we observe that the MINN-c-balanced model achieves the lowest RMSE, in-
dicating the best performance on the data-driven task. However, this comes at the cost
of a higher L2, suggesting a trade-off where improved performance is achieved at the
expense of mechanistic fidelity. On the other hand, the models incorporating a mecha-
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nistic bound, such as MINN-bound and MINN-scheduler-bound, show a small increase
in RMSE and a modest reduction in L2, suggesting a limited effect on improving the
trade-off between mechanistic accuracy and data-driven performance. Interestingly,
the MINN-scheduler model finds a better compromise between these objectives: at the
cost of a moderate RMSE worsening, it achieves the lowest L2 by a consistent margin.
This demonstrates the strength of dynamic scheduling in keeping the solution close to
the FBA feasible space, without heavily impacting data-driven performance. Interest-
ingly, the balance parameter between the data-driven and mechanistic losses of the last
phase, optimized during hyperparameter tuning, converged to values around 90–95%
in favor of the data-driven loss, rather than the maximum of 100%, suggesting that
the mechanistic component remained beneficial even during the data-driven–oriented
phase.

Figure 5.6: Comparison of different methods based on data-driven task performance
(RMSE) and mechanistic fit (L2 loss), highlighting the trade-off between the two objec-
tives.

Figure 5.6 provides a visual comparison of the performance of these methods, focus-
ing on the trade-offs between mechanistic fit and data-driven task performance. The
MINN-scheduler model demonstrates a balanced performance across both objectives,
with a moderate decline in data-driven accuracy but a substantial reduction in mecha-
nistic loss, positioning it much closer to the FBA feasible solution. On the other hand,
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the models incorporating a mechanistic bound (MINN-bound and MINN-scheduler-
bound) show improvements in mechanistic fit but at a comparable cost in terms of
data-driven performance.
These results highlight a clear trade-off between optimizing for mechanistic fidelity
and predictive accuracy. While the MINN-c-balanced method achieves the lowest
RMSE, indicating better performance on the data-driven task, its high mechanistic
loss shows that the model prioritizes predictive accuracy over adherence to mecha-
nistic constraints. In contrast, the MINN-scheduler method effectively reduces the
mechanistic loss, with only a marginal increase in RMSE.

Overall, these results emphasize the need to carefully select hybrid optimization
methods based on the specific priorities of the task. In cases where mechanistic accu-
racy is crucial, dynamic scheduling methods like MINN-scheduler provide a balanced
solution, allowing the model to gradually adjust the emphasis between mechanistic
fidelity and data-driven optimization.
Additionally, as shown in the third section of Table 5.5, we tested a configuration of the
MINN, called MINN-divided loss, where the loss is purely data-driven (LMINN = L1),
to check if we could further improve the prediction performance at the cost of L2.
The results show that the improvement in terms of prediction performance is marginal
w.r.t. the substantial (four orders of magnitude) increase in the L2 value. This con-
firms that the regularization effect happens exclusively in the Mechanistic Layer, while
the complete LMINN is needed to obtain a qualitative flux distribution as output of
the MINN.

ISHII

Model R2 MAE RMSE NE L2

MINN-c-balanced 0.950 ± 0.055 0.473 ± 0.480 0.678 ± 0.653 0.272 ± 0.280 8.75 · 10−5 ± 2.95 · 10−4

MINN-c-balanced FBA fit 0.957 ± 0.061 0.489 ± 0.497 0.706 ± 0.720 0.295 ± 0.403 2.98 · 10−5 ± 8.75 · 10−5

MINN-bound 0.949 ± 0.050 0.548 ± 0.556 0.790 ± 0.779 0.308 ± 0.314 7.1 · 10−5 ± 2.1 · 10−4

MINN-scheduler 0.949 ± 0.058 0.581 ± 0.823 0.833 ± 1.146 0.299 ± 0.320 1.60 · 10−5 ± 7.63 · 10−5

MINN-scheduler-bound 0.946 ± 0.062 0.560 ± 0.551 0.806 ± 0.761 0.304 ± 0.287 7.47 · 10−5 ± 3.78 · 10−4

MINN-divided loss 0.951 ± 0.050 0.489 ± 0.471 0.703 ± 0.648 0.281 ± 0.289 0.22 ± 0.29

Table 5.5: Performance comparison of different methods addressing the issue of con-
flicting losses. Metrics average and standard deviation over 29 leave-one-out splits. All
the models were generated using the iAF1260-FVA reduced GEM.

5.4.3 MINN-reservoir to improve pFBA predictions
In this third group, we present results for the MINN-reservoir method, which extends
the use of MINN beyond applications focused solely on prediction. As introduced by
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[46], the MINN-reservoir can be used to generate constraints for a mechanistic model
in a data-driven manner. In our case, we trained the MINN-reservoir to predict three
arbitrarily selected exchange fluxes ( R EX co2 e, R EX etoh e and R EX ac e) which
were then used as additional inputs for pFBA. FBA relies on optimization and is
generally more accurate in predicting metabolic shifts caused by gene knockouts only
after the microbial population has undergone an adaptation period. It is therefore of
interest to explore whether the data-driven insights provided by the MINN-reservoir
can help overcome this limitation in the case of the newly generated knockout strains
from the ISHII dataset. Our baseline consists of a standard pFBA model that uses only
the uptake rates of glucose (R EX glc D e) and oxygen (R EX o2 e) as inputs. We
compare it with pFBA when it is provided with the same inputs plus the three extra
constraints generated by the MINN-reservoir. This setup reflects a realistic use case,
in which multi-omics data are available for all samples, while fluxomics data are only
partially available. In this context, the MINN-reservoir allows us to estimate missing
input fluxes from omics measurements, avoiding the need to experimentally quantify
them for every sample.

ISHII
Model R2 MAE RMSE NE
pFBA 0.892 ± 0.127 0.496 ± 0.353 0.836 ± 0.625 0.306 ± 0.367
MINN-reservoir + pFBA 0.910 ± 0.091 0.445 ± 0.261 0.740 ± 0.421 0.253 ± 0.159

Table 5.6: Performance comparison between the standard pFBA and MINN-reservour
+ pFBA. The results evaluate the effectiveness of the MINN-reservoir approach to en-
rich the input for pFBA in comparison to standard pFBA. Metrics average and standard
deviation over 29 leave-one-out splits. The MINN-reservoir model was generated using
the iAF1260-FBA reduced GEM.

The advantage of this neural network-based approach is that, once trained, it can
generate additional inputs for pFBA based on initial conditions alone, enabling a more
informative and automated modeling pipeline. As shown in Table 5.6, the enhanced
version (MINN-reservoir + pFBA) slightly improves the performance in terms of av-
erage metrics across the 47 fluxes. However, the most evident benefit is the reduction
in the standard deviation, which indicates that the model produces more stable and
consistent predictions across the 29 leave-one-out splits.
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5.4.4 Additional Results
Other GEMs comparison

Here we present the results of the analysis to explore the role of the GEM in the models’
performance. As shown in Table 5.7, we divided the results in two parts. The first
one contains different GEMs in terms of dimension. Here the GEM is always iAF1260,
but reduced in different ways described in details in the Section ”GEM preparation”.
We also built a MINN with the E. coli core model (e coli core), to test the smallest
version available on BiGG http://bigg.ucsd.edu/. The GEM’s dimension can affect
the complexity of the NN block in the MINN. Having a layer with many neurons can
cause both overfitting and a higher computational time. At the same time, excessively
reducing the GEM can decrease the flexibility in the optimization of FBA constraints
and make the GEM less representative of the experimental context considered. The
first section of Table 5.7 shows how the FVA reduction has better performances, in
terms of metrics and L2, and lower computational time (24h vs 44h) than the full
GEM. FBA reduction, instead, performs slightly worse than FVA, but it halves the
computational time. On the other hand, the e coli core GEM performs drastically
worse than all the others, making this GEM unfit for this task.

The results show a trade-off between GEM size and computational efficiency. A
stricter reduction, such as FBA reduction, shortens the computational time, but at the
cost of slightly worse metrics and less reliable flux distribution. While this compromise
may not be ideal for small models, it can be helpful for large GEMs, such as yeast
or microbial communities, where computational feasibility is critical. In such cases,
sacrificing some predictive power in exchange for reasonable runtimes can be a proper
trade-off.
Additionally, the poor performance of the e coli core model highlights the need for an
adequate dimension of the GEM, reinforcing the idea that excessively small models
may not represent the experimental context of interest.

ISHII

GEM R2 MAE RMSE NE L2

iAF1260 0.818 ± 0.670 0.602 ± 0.653 1.084 ± 0.813 0.417 ± 0.268 4.05 · 10−5 ± 1.57 · 10−4

iAF1260 FVA-reduced 0.950 ± 0.055 0.473 ± 0.480 0.678 ± 0.653 0.272 ± 0.280 8.75 · 10−5 ± 2.95 · 10−4

iAF1260 FBA-reduced 0.950 ± 0.048 0.509 ± 0.518 0.730 ± 0.719 0.289 ± 0.295 1.26 · 10−4 ± 2.84 · 10−4

e coli core 0.061 ± 0.099 4.647 ± 9.959 19.46 ± 65.30 7.584 ± 26.70 6.04 · 105 ± 2.55 · 106

iAF1260 FVA-reduced 0.956 ± 0.056 0.512 ± 0.596 0.759 ± 0.815 0.285 ± 0.337 4.27 · 10−5 ± 1.3 · 10−4

iNF517 FVA-reduced 0.954 ± 0.057 0.546 ± 0.612 0.801 ± 0.855 0.304 ± 0.358 5.24 · 10−5 ± 1.02 · 10−4

Table 5.7: Performance comparison between different GEMs. Metrics average and
standard deviation over 29 leave-one-out splits.

The second part includes a comparison between two GEMs representing two dif-

http://bigg.ucsd.edu/
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ferent bacteria, namely E.coli and Lactococcus lactis subsp. cremoris. The aim of this
analysis is to explore how relevant the nature of the GEM is in the MINN architecture.
We want to investigate if the regularization that improves the predictive power of the
MINN w.r.t. a classical ML approaches is based on a relevant biological information
injected in the model through the mechanistic layer, or it’s simply a random type of
regularization such as Dropout [158]. Since the L.cremoris GEM (iNF517) does not
have some of the reactions present in the ISHII dataset, in order to have a fair compar-
ison with the E.coli GEM (iAF1260), we reduced the number of fluxes to only those in
common between L.cremoris and the ISHII dataset. As expected, using a GEM which
belongs to another bacterium worsen the prediction performance and also the quality
of the predicted flux distribution.

However, the difference in performance between the iAF1260 FVA-reduced and
iNF517 FVA-reduced GEMs is not particularly large. One possible explanation is that
the measured fluxes in ISHII dataset belong to the central carbon metabolism, which
is highly conserved between both bacteria, reducing the impact of GEM differences.
Another factor could be the neural network data-driven component, which may help
compensate for discrepancies between GEMs, reducing their effect on predictive per-
formance.

While further investigation is needed, these results suggest that the nature of the
GEM plays an important role in the MINN framework. The mechanistic layer likely
contributes with biologically relevant information beyond acting as a generic regular-
ization mechanism.

Tests of Significance

To assess whether the performance differences observed in our experiments are sta-
tistically significant or potentially due to chance, we conducted a series of Wilcoxon
signed-rank tests. For each of the main models comparison, we computed four separate
p-values, one for each evaluation metrics used. To combine these into a single measure
of significance, we employed Fisher’s method, as implemented in the scipy library. We
first compared MINN-c-balanced to pFBA (Table 2 of the main manuscript). The
final combined p-value resulting from Fisher’s method is 6.09 · 10−18, allowing us to
confidently state that the performance difference is statistically significant. We then
compared MINN-c-balanced to the pure neural network (also Table 2), obtaining a
combined p-value of 0.0009, which also confirms statistical significance. In contrast,
the comparison between MINN-c-balanced and the Random Forest model showed a
final combined p-value of 0.97, meaning we cannot reject the null hypothesis and con-
clude that there is a significant difference in performance between the two models.
Lastly, for the comparison between the reservoir model and pFBA reported in Table
4 of the main manuscript, the final combined p-value is 2.34 · 10−19, strongly indicat-
ing a statistically significant improvement in performance. These results highlight the
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potential of hybrid approaches such as MINN-based methods, but also indicate that
their advantage over traditional ML models like Random Forests may vary depending
on the context or the dataset and remains an open question for future work.

5.5 Concluding remarks
Faure et al. [46] introduced a new hybrid architecture, which incorporates a Genome-
Scale Metabolic Model in a neural network structure, and used it to predict E. coli
growth rates in different growth media. In our work, we adapted this framework into
a Metabolic-Informed Neural Network, which also uses multi-omics data as input, and
tested it with a more challenging task: predicting metabolic fluxes for different E. coli
single-gene KO strains grown in minimal glucose medium. The MINN showed im-
proved performance compared to traditional machine learning, and the mechanistic
component showed a regularizing effect on the predictions. We then explored the effect
of different components of the architecture on the predictions and their accuracy. Fi-
nally, we tested the ability of the MINN to reconcile data and models in a flexible way,
even in scenarios where data-driven and mechanistic optimization show a trade-off. To
achieve this, we suggested different hybrid optimization strategies.
We chose a naive multi-omics integration approach, such as early concatenation. While
the predictive performances are encouraging, as discussed in Chapter 3, mixed integra-
tion strategies are often to be preferred and they could be tested to further improve the
prediction power of a MINN-based method. Moreover, GPR rules could be leveraged
to more directly link omics data to metabolic fluxes, for example by incorporating into
future versions of MINN a loss term that maximizes the correlation between expression
levels and predicted fluxes [7].

Additionally, more work is needed for assessing the interpretability of the flux dis-
tribution. As a first step in this direction, in our simulation we kept track of L2, as a
proxy for how much the predicted metabolic profile complies with the theoretical as-
sumptions of FBA. Moreover , this novel framework has been tested only for E. coli, the
classical “work-horse” of microbial physiology. We hope the promising result of these
works will prompt the creation of suitable datasets to apply these techniques to other
microorganisms and to more diverse scenarios, in which secondary metabolism plays a
bigger role and the information provided by the GEM is potentially even more effective
in complementing the data-driven learning. In addition, the mechanistic component of
MINN holds strong potential to improve predictions in more complex systems, such as
eukaryotic cells or microbial communities, and the architecture of MINN is designed
to scale seamlessly to these settings.
Although this was not the most favorable scenario for FBA, the results of the MINN-
reservoir highlight its potential as a promising strategy to enable the full integration of
FBA into a machine learning framework, effectively combining the advantages of both
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mechanistic and data-driven approaches.
Finally, with this work, we provide a practical guide for choosing the most suitable
MINN configuration based on the modeling objective. If the goal is only to achieve
high predictive performance, the standard MINN configuration is sufficient. When
the aim is to improve the quality of the predicted flux distribution, the optimization
strategies presented here can reduce the mechanistic constraints violation. Lastly, if the
objective is to enrich mechanistic models with additional inputs, the MINN-reservoir
offers a viable solution to generate constraints in a data-driven way, while keeping the
structure and interpretability of classical FBA.

The code used for the analyses presented in this chapter is available at https:
//github.com/gabrieletaz/MINN.

The author of this PhD thesis is responsible for the following contributions presented
in this chapter:

IV/1. Contributed to conceptualization and design of the work: MINN architecture
for integrating multi omics into Genome Scale metabolic modeling.

IV/2. Literature survey regarding the hybrid modeling methods in the Related Work
section.

IV/3. Implementation of the MINN and MINN-reservoir relative experiments.

IV/4. Implementation of the code used in our analysis that regards the MINN and the
MINN-reservoir.

https://github.com/gabrieletaz/MINN
https://github.com/gabrieletaz/MINN
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Sunagawa, Céline Dimier, Stefanie Kandels-Lewis, Marc Picheral, Julie Poulain,
Sarah Searson, Lars Stemmann, Fabrice Not, Pascal Hingamp, Sabrina Speich,
Mick Follows, Lee Karp-Boss, Emmanuel Boss, Hiroyuki Ogata, Stephane Pe-
sant, Jean Weissenbach, Patrick Wincker, Silvia G. Acinas, Peer Bork, Colomban
de Vargas, Daniele Iudicone, Matthew B. Sullivan, Jeroen Raes, Eric Karsenti,
Chris Bowler, and Gabriel Gorsky. Plankton networks driving carbon export in
the oligotrophic ocean. Nature, 532(7600):465–470, February 2016.
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Declaration on the use of AI

AI tools were used during the preparation of this thesis mainly to assist writing and
software development. In particular, the ChatGPT Premium and the Grammarly
Premium versions were used for small specific tasks related to writing and software
development. For the writing part, these tools were used mainly for language assistance,
such as improving sentence structure, clarity, readability and suggesting alternative
phrasings for sentences or short portions of text. Any text generated or modified
with the assistance of AI tools was carefully reviewed, edited where necessary, and
approved by the author. For the software part, ChatGPT was used as a programming
assistant to support debugging and to suggest small code snippets, mainly for data
visualization and for auxiliary steps of data analysis pipelines, such as logging, saving
and organizing outputs for reporting, and supporting experiment management tasks.
The use of AI tools was limited and did not replace the original scientific contributions
of the author. All research design, analysis, interpretation of results, and scientific
conclusions presented in this thesis remain responsibility of the author.
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Summary

The PhD thesis presents machine learning approaches at genome-scale. Specifically,
it focuses on methods that can improve predictions in the context of data scarcity, a
common challenge in bioinformatics.

After an Introduction and a Background chapters, which serve to give a common
starting point to the readers from different backgrounds, the dissertation consists of
three major parts. In Chapter 3, we present a framework to improve microbiome-
based disease prediction transforming the problem into an image classification one
and exploiting image data augmentation as a regularization technique. Chapter 4
explores several supervised MKL methods for multi-omics integration and introduces
a novel framework called DeepMKL which use deep learning optimization as a kernel
fusion technique. In Chapter 5, we present MINN, a hybrid data-driven/mechanistic
framework for integrating multi-omics into genome scale metabolic modeling to improve
flexibility and prediction power.

Improving microbiome-based disease prediction with Su-
perTML and data augmentation

In Chapter 3, we examined the challenges of predicting disease from microbiome data,
where the small sample size and high dimensionality often limit the performance of
traditional neural networks. To address this, we tested SuperTML, a deep learning
framework originally designed for small tabular datasets, and applied it to this context.
Our results show that SuperTML is a valid alternative to state-of-the-art methods, and
that its performance further improves when combined with data augmentation tech-
niques. In most of the datasets studied, this approach outperformed traditional models,
highlighting the importance of augmentation as a regularization method. Overall, this
chapter presents SuperTML as a promising tool for microbiome-based disease predic-
tion.
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Supervised Multiple Kernel Learning approaches for multi-
omics data integration
In Chapter 4, we explored the challenge of multi-omics integration. The diversity and
complexity of these data sources often limit the effectiveness of traditional bioinformat-
ics methods. To address this, we introduced two new approaches based on Multiple
Kernel Learning (MKL), a framework that, despite being relatively underused, offers
strong potential for this task. We explored an approach that adapts unsupervised
learning techniques for supervised prediction using Support Vector Machines, as well
as DeepMKL, a deep learning–based framework that integrates kernels without rely-
ing on convex linear optimization. Experiments on four publicly available biomedical
datasets showed that both approaches provide a reliable and competitive solution,
achieving comparable or even better performance than more complex state-of-the-art
methods. In addition, we proposed a two-step strategy for biomarker discovery that
leverages DeepMKL together with a novel interpretability procedure. This method
proved effective in identifying biomarkers associated with diseases such as breast can-
cer and Alzheimer’s, highlighting its potential to generate insights beyond prediction
accuracy. Overall, this chapter showed that MKL represents a fast and robust solution
for multi-omics integration, with the flexibility to compete with and complement more
advanced architectures.

MINN: A Metabolic-Informed Neural Network for Inte-
grating Omics Data into Genome-Scale Metabolic Model-
ing
In Chapter 5, we present the Metabolic-Informed Neural Network (MINN), a hybrid
framework designed to integrate multi-omics data with Genome-Scale Metabolic Mod-
els for flux prediction. Unlike purely data-driven or purely mechanistic approaches,
MINN combines the flexibility of neural networks with the structured constraints of
metabolic models. We tested different versions of the architecture to handle the trade-
off between predictive accuracy and biological consistency, and we proposed a strategy
to couple MINN with parsimonious Flux Balance Analysis (pFBA) to enhance inter-
pretability. On a small E. coli multi-omics dataset of single-gene knockouts, MINN out-
performed both classical machine learning methods and mechanistic models, showing
that the inclusion of biological constraints stabilizes the learning process and reduces
overfitting. Overall, our findings show that MINN is an effective and robust framework
for metabolic flux prediction and it provides a flexible tool that can be extended to
more complex systems and larger datasets, opening the way for more comprehensive
and interpretable analyses in systems biology.



Összefoglalás

A doktori értekezés a gépi tanulás genom-szintű alkalmazásait mutatja be. Különös
hangsúlyt kapnak azok a megközeĺıtések, amelyek jav́ıthatják az előrejelzések pon-
tosságát adatszegény környezetben – ez a bioinformatika egyik leggyakoribb kih́ıvása.
Az bevezető fejezetek (Introduction és Background) közös kiindulópontot adnak a
különböző tudományterületekről érkező olvasóknak. Ezt követően a dolgozat három
fő részből áll. A 3. fejezet egy olyan keretrendszert mutat be, amely a mikrobiom
alapú betegség-előrejelzést képfelismerési problémává alaḱıtja, és az adat augmentáció
módszerét használja regularizációs technikaként. A 4. fejezet az ún. Supervised Multi-
ple Kernel Learning (MKL) megközeĺıtéseit vizsgálja a multi-omikai adatok integráció-
jára, és bemutatja a DeepMKL nevű, mélytanulás alapú keretrendszert, amelyben
egy újszerű kernel fúziós megoldás kerül bemutatásra. Végül, az 5. fejezetben is-
mertetett Metabolic-Informed Neural Network (MINN) egy hibrid, adatvezérelt és
mechanisztikus elemeket ötvöző neurális modell, amely a multi-omikai adatokat a
genomszintű anyagcsere-modellekbe integrálja azzal a céllal, hogy jav́ıtsa a predikciós
teljeśıtményt és a biológiai értelmezhetőséget.

A mikrobiom-alapú betegség előrejelzés fejlesztése Su-
perTML és adat augmentáció seǵıtségével

A 3. fejezet a mikrobiom-adatokból történő betegség előrejelzés kih́ıvásait tárgyalja. A
kis mintaszám és a magas dimenziószám gyakran korlátozza a hagyományos neurális
hálózatok teljeśıtményét. Ennek kezelésére a SuperTML keretrendszert alkalmaztuk,
amelyet eredetileg táblázatos adatok feldolgozására fejlesztettek ki. Eredményeink
szerint a SuperTML versenyképes alternat́ıvát nyújt a jelenlegi state-of-the-art
módszerekhez képest, és teljeśıtménye tovább javul, ha adat augmentációs technikákkal
kombináljuk. A legtöbb vizsgált adathalmazon ez a megközeĺıtés jobb eredményt ért el,
mint a hagyományos modellek, kiemelve az augmentáció szerepét, mint regularizációs
módszert. Összességében a SuperTML ı́géretes és rugalmas eszköznek bizonyult a
mikrobiom-alapú betegség előrejelzésben.
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Supervised Multiple Kernel Learning megközeĺıtések a
multi-omikai adatintegrációban
A 4. fejezet a multi-omikai adatok integrációjának problémáját vizsgálja, amelyet
a források sokfélesége és komplexitása neheźıt. Ennek megoldására két új, Multi-
ple Kernel Learning (MKL) alapú megközeĺıtést vezettünk be. Az egyik módszer
a felügyelet nélküli tanulási technikákat alaḱıtja át felügyelt feladattá Support
Vector Machine módszer seǵıtségével, mı́g a másik, a DeepMKL, mély tanulási
megoldást használ a kernelfúzió megvalóśıtásához, elkerülve a hagyományos konvex
lineáris optimalizálási módszerek korlátait. Négy publikusan elérhető orvosbiológiai
adathalmazon végzett ḱısérleteink azt mutatták, hogy mindkét megközeĺıtés stabil és
versenyképes teljeśıtményt nyújtott, gyakran felülmúlva a komplexebb state-of-the-
art modelleket. Emellett bemutattunk egy kétlépcsős biomarker felfedező stratégiát
is, amely a DeepMKL-t egy új interpretability eljárással kombinálja. A módszer
hatékonyan azonośıtotta a mellrákhoz és az Alzheimer kórhoz kapcsolódó biomar-
kereket, ezzel bizonýıtva, hogy az MKL nemcsak predikt́ıv pontosságban, hanem
biológiai értelmezhetőségben is előnyt jelenthet.

MINN: Metabolic-Informed Neural Network – neu-
ronhálós modell az omikai adatok genomszitnű anyagcsere-
modellekbe való integrálására
Az 5. fejezetben a Metabolic-Informed Neural Network-öt (MINN) mutattuk be,
egy hibrid keretrendszert, amelyet arra terveztünk, hogy a multi-omikai adatokat a
genomszintű metabolikus modellekkel integrálva anyagcsere-flux folyamatokat jelezzen
előre. A kizárólag adatvezérelt és a tisztán mechanisztikus megközeĺıtésekkel szem-
ben a MINN a neurális hálózatok rugalmasságát a metabolikus modellek struk-
turált megkötéseivel ötvözi. A módszer több architekturális változatát is teszteltük a
predikt́ıv pontosság és a biológiai konzisztencia közötti kompromisszum megteremtése
érdekében. Emellett stratégiát javasoltunk a MINN parsimonious Flux Balance
Analysis (pFBA) módszerrel történő összekapcsolására, ami jav́ıtja az eredmények
értelmezhetőségét. Egy kisméretű egygénes kiütéseket tartalmazó, E. coli multi-omikai
adathalmazon a MINN teljeśıtménye felülmúlta a klasszikus gépi tanulási módszerek
és a mechanisztikus modellek teljeśıtményét is. Az eredmények azt mutatják, hogy
a biológiai megkötések beéṕıtése stabilizálja a tanulási folyamatot, és csökkenti a
túlillesztés kockázatát. Összességében megállaṕıtottuk, hogy a MINN hatékony és
robusztus keretrendszer metabolikus fluxfolyamatok előrejelzésére, ami kiterjeszthető
összetettebb rendszerek és nagyobb adatkészletek feldolgozására is. Mindez lehetőséget
teremt átfogó, jobban értelmezhető rendszerbiológiai elemzések megvalóśıtására.
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Déjean Supervised multiple kernel learning approaches for multi-omics data inte-
gration . In BioData Mining , 17, 53, 2024.

[4] Dario Ruggeri, Gabriele Tazza and László Vidács Introducing MLOps to Facilitate
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