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Abstract

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD),
which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via
the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism,
particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders. The majority of KYNA is produced
by the aadat (kat2) gene-encodedmitochondrial kynurenine aminotransferase (KAT) isotype 2. Little is known about the consequences of
deleting the KYN enzyme gene. Methods: In CRISPR/Cas9-induced aadat knockout (kat2-/-) mice, we examined the effects on emotion,
memory, motor function, Trp and its metabolite levels, enzyme activities in the plasma and urine of 8-week-old males compared to wild-
type mice. Results: Transgenic mice showed more depressive-like behaviors in the forced swim test, but not in the tail suspension,
anxiety, or memory tests. They also had fewer center field and corner entries, shorter walking distances, and fewer jumping counts in
the open field test. Plasma metabolite levels are generally consistent with those of urine: antioxidant KYNs, 5-hydroxyindoleacetic acid,
and indole-3-acetic acid levels were lower; enzyme activities in KATs, kynureninase, and monoamine oxidase/aldehyde dehydrogenase
were lower, but kynurenine 3-monooxygenase was higher; and oxidative stress and excitotoxicity indices were higher. Transgenic mice
displayed depression-like behavior in a learned helplessness model, emotional indifference, and motor deficits, coupled with a decrease in
KYNA, a shift of Trp metabolism toward the KYN-3-hydroxykynurenine pathway, and a partial decrease in the gut microbial Trp-indole
pathway metabolite. Conclusions: This is the first evidence that deleting the aadat gene induces depression-like behaviors uniquely
linked to experiences of despair, which appear to be associated with excitatory neurotoxic and oxidative stresses. This may lead to the
development of a double-hit preclinical model in despair-based depression, a better understanding of these complex conditions, and more
effective therapeutic strategies by elucidating the relationship between Trp metabolism and PTSD pathogenesis.

Keywords: post-traumatic stress disorder (PTSD); depression; anxiety; tryptophan; kynurenine; microbiota; oxidative stress; transgenic
mice; translational medical research; CRISPR/Cas9

1. Introduction
The interaction between memory and emotion in-

volves a complex interplay of neural, cognitive, and physi-
ological processes involving the amygdala, hippocampus,
and prefrontal cortex [1–6]. Orderly function at multi-
layered levels is essential tomaintaining soundmental well-
being [7–10]. The reciprocal interaction between cogni-

tive function and affective states can significantly impact
each other. Cognitive impairment can lead to affective dis-
turbances, triggering emotional responses such as frustra-
tion, anxiety, and stress, particularly when individuals feel
a loss of control over their cognitive abilities [11]. Simi-
larly, emotional disturbances such as depression and anxi-
ety can influencememory function, increasing vulnerability
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to cognitive challenges [12–15]. This intricate bidirectional
link between cognition and emotions can lead to changes
in brain structure, function, behavior, lifestyle, and neu-
rotransmitter systems [15–17]. Memory impairment and
emotional disturbance are associated with a wide range of
systematic diseases and neuropsychiatric disorders such as
Alzheimer’s disease (AD), Parkinson’s disease, traumatic
brain injury, major depressive disorder (MDD), and post-
traumatic stress disorder (PTSD) [18–26].

The serotonergic nervous system plays an important
role in regulating mood, anxiety, and cognition [27–30].
Serotonin (5-hydroxytryptamine, 5-HT) is involved in cog-
nitive processes such as attention, learning, and memory
[31–34]. Studies indicate that 5-HT enhances long-term
memory consolidation and improves cognitive flexibility,
which is the ability to switch between different cogni-
tive tasks or mental sets [35–44]. 5-HT is implicated in
regulating mood and anxiety, influencing cognitive func-
tion [45,46]. Mental illnesses like MDD, eating disorders,
obsessive-compulsive disorder, schizophrenia (SCZ), and
PTSD are associated with dysregulation of 5-HT [47–52].
Selective serotonin reuptake inhibitors (SSRIs) are com-
monly used for these conditions, targeting the serotoner-
gic nervous system [53–55]. Furthermore, abnormalities
in the serotonergic system also affect norepinephrine and
dopamine [56–58].

The complex interplay of tryptophan (Trp)-
kynurenine (KYN) and 5-HT metabolism is crucial
for comprehending the pathogenesis of mental illnesses
[59,60]. The Trp-KYN metabolic system, closely asso-
ciated with 5-HT metabolism, plays a pivotal role in the
production of prooxidants and antioxidants, regulation of
the immune system, and the balance between neurotoxi-
city and neuroprotection [61,62]. Approximately 2% of
L-Trp undergoes metabolism through the 5-HT metabolic
pathway; however, over 90% of Trp is catabolized through
the KYN route, which safely to say that it governs Trp
metabolism (Fig. 1a,b, Ref. [63–83]) [84]. Various factors,
including stress, inflammation, and the gut microbiome,
influence this system [85–88]. Dysregulation of the KYN
route has been linked to mental health conditions such
as MDD, SCZ, and AD [89]. About 5% of dietary Trp
is converted by gut bacteria, like E. coli and Clostrid-
ium sporogenes, into indole and its derivatives (e.g.,
indole-3-acetic acid, indoxyl sulfate) (Fig. 1c) [63,90–98].
Disruptions in this pathway are linked to gastrointestinal
and liver conditions (e.g., colorectal cancer, irritable
bowel syndrome, non-alcoholic fatty liver disease, hepatic
encephalopathy) and affect brain neurotransmitters and
communication via the vagus nerve [64,95,99–109]. The
gut microbial indole pathway is increasingly recognized
for its role in mental health disorders like depression,
anxiety, autism, SCZ, and AD [103,110–116].

However, the understanding of the interplay between
Trp-KYN, 5-HT, and indole metabolism in the patho-

genesis of mental illnesses remains limited. Kynurenine
aminotransferases (KATs) are members of the pyridoxal-
5′-phosphate-dependent enzyme family involved in the
KYN metabolic pathway. The KYN metabolism is re-
sponsible for the conversion of L-KYN to kynurenic
acid (KYNA), an antioxidant and neuroprotective metabo-
lite with implications for various central nervous sys-
tem (CNS) diseases [73,117,118]. Among the KAT en-
zymes, kynurenine/alpha-aminoadipate aminotransferase
(KAT/AadAT, aka KAT II) is a mitochondrial enzyme en-
coded in the gene aadat (kat2) [119]. KAT II is considered
to play the most important role among the four isozymes
in the cellular environment due to its highest enzymatic ac-
tivity close to the physiological pH. Thus, KAT II plays a
prominent role in KYNA production in the human brain and
is considered a crucial target for managing CNS disorders
[120].

Preclinical research has significantly contributed to
our understanding of mental illnesses by elucidating the un-
derlying pathomechanisms and identifying potential thera-
peutic targets [121–129]. Researchers have employed pre-
clinical animal models to examine the causes and effects
of mental disorders, thereby attaining a comprehensive un-
derstanding of their underlying pathology [130–137]. In
vitro models, such as cell cultures and organoids, have fa-
cilitated the investigation of complex molecular pathways
linked to mental disorders [138–141]. Animal models,
along with other in vivo models, have been instrumental
in studying the behavioral, cognitive, and physiological
dimensions of mental disorders [142–148]. These mod-
els allow researchers to simulate disease conditions, as-
sess symptomatology, and evaluate the efficacy of poten-
tial interventions [148,149]. Transgenic animals are vital
in biomedical research, enabling the replication of human
conditions through gene deletion or the introduction of al-
tered genes into their genome [150]. These animals offer
indispensable insights into human diseases, facilitating the
exploration of disease mechanisms, experimentation with
potential treatments, and assessment of therapeutic effec-
tiveness [151–155]. Moreover, they offer crucial insights
into changes in structure and imaging techniques in clinical
cases [156–175]. Preclinical and clinical research collabo-
ratively contribute to innovative therapeutics and personal-
ized medicine [176–182].

This study involved manipulating the gene kat2 in
mice to create a knockout (kat2-/-) model, allowing us to
observe the behavioral consequences of KAT II deficiency.
By focusing on negative valence in emotional domain,
memory acquisition, and motor function, we aimed to gain
insights into the role of KAT II in these specific behav-
ioral domains in young adult kat2-/- mice. Furthermore,
we assess the levels of Trp and its metabolites in three dis-
tinct metabolic pathways in both plasma and urine samples,
the enzyme activities of Trp metabolism, and the oxidative
stress and excitotoxicity indices of KYN metabolites, with
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Fig. 1. Tryptophan (Trp) metabolism. (a) The serotonin (5-HT) pathway: A fraction exceeding 2% of L-Trp is metabolized within
the 5-HT pathway. The rate-limiting enzyme tryptophan hydroxylase 1 and 2 (TPH1, TPH2) converts Trp to 5-hydroxytryptophan
(5-HTP), which is then decarboxylated by aromatic L-amino acid decarboxylase (AADC) to 5-HT. 5-HT is oxidized by monoamine
oxidase A and B (MAO A, MAO B) in different tissues to 5-hydroxyindoleacetaldehyde (5-HIAL), which is subsequently further ox-
idized to 5-hydroxyindoleacetic acid (5-HIAA) by aldehyde dehydrogenase (ALDH) or reduced to 5-hydroxytryptophol (5-HTOL) by
alcohol dehydrogenase (ADH). 5-HIAA is the main metabolite and a marker of serotonergic activity, whereas 5-HTOL is a minor path-
way of 5-HT degradation [65]. On the other hand, 5-HT synthetizes melatonin (MEL, N-acetyl-5-methoxytryptamine). First, 5-HT
is converted into N-acetylserotonin (NAS) by arylalkylamine N-acetyltransferase (AANAT), then hydroxyindole-O-methyltransferase
(HIOMT) transform MEL [66–69]. (b) The kynurenine (KYN) pathway: More than 90% of Trp enters the KYN pathway, which pro-
duces a variety of biomolecules. The primary metabolites include N-formyl-L-kynurenine (NFK), KYN, kynurenic acid (KYNA), an-
thranilic acid (AA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), 3-hydroxyanthranilic acid (3-HAA), quinolinic acid (QA),
picolinic acid (PA), and nicotinamide adenine dinucleotide (NAD+). These metabolites are produced through the catalytic actions of
various enzymes, namely tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenases (IDOs), kynurenine formamidase (KFA),
kynurenine 3-monooxygenase (KMO), kynurenine aminotransferases (KATs), kynureninase (KYNU), 3-hydroxyanthranilate oxidase
(3-HAO), quinolinate phosphoribosyl transferase (QPRT) [70], nicotinamide mononucleotide adenylyltransferase (NMNAT) [71], NAD
synthetase [72], amino-β-carboxymuconate-semialdehyde-decarboxylase (ACMSD) and 2-aminomuconic-6-semialdehyde dehydroge-
nase (AMSD) [73–75]. KYNA is subsequently metabolized by the gut microbiome to quinaldic acid (QAA) and 8-hydroxyquinaldic
acid [76]. 8-hydroxyquinaldic acid can be dehydroxylated from XA [77,78]. (c) The gut microbial indole pyruvate pathway: The
metabolism of Trp is accomplished through four distinct pathways, which include the indoxyl sulfate pathway, the indole-3-acetamide
(IAM) pathway, the tryptamine pathway, and the indole-3-propionic acid (IPA) pathway. The pyridoxal phosphate-dependent trypto-
phanase (TNA) enzyme serves as the rate-limiting component of the indoxyl sulfate pathway. Its primary function is to facilitate the
transformation of Trp into indole, which is passing through the gut epithelium, then hydroxylated into 3-hydroxyindole (indoxyl) and
ultimately transformed into indoxyl sulfate (INS) by p450 cytochrome and sulfanate in the liver [79]. In the IAM pathway, tryptophan-
2-monooxygenase (TMO) catalyzes the conversion of Trp to IAM. This is followed by the conversion of IAM to indole-3-acetic acid
(IAA) by indole-3-acetamide hydrolase (IaaH), which can then be further metabolized into indole-3-aldehyde (IAld) or decarboxyl-
ized into 3-methylindole (skatole) [63,80]. Tryptophan decarboxylase (TrD) catalyzes the conversion of Trp to tryptamine by amino
acid decarboxylase (AAD), which subsequently undergoes conversion into indole-3-acetaldehyde (IAAld) [81]. IAAld can be further
converted into IAA by indole-3-acetaldehyde dehydrogenase (AldA). It is also worth noting that IAAld can be reversibly converted into
indole-3-ethanol (tryptophol) by IAD reductase and tryptophol dehydrogenase [82]. The transformation of Trp into indole-3-pyruvic acid
(IPyA) is catalyzed by aromatic amino acid aminotransferase (ArAT), resulting in the formation of either tryptamine, or indole-3-lactic
acid (ILA) by phenyllactate dehydrogenase (fldH), then 3-indoleacrylic acid (IA) by phenyllactate dehydratase (fldBC), and ultimately
IPA by acyl-coenzim A dehydrogenase (acdA) [64,82,83]. Black arrows: the host pathways, yellow arrows: the gut microbiome path-
ways. AA, anthranilic acid; acdA, acyl-coenzim A dehydrogenase; AAD, amino acid decarboxylase; AADC, aromatic L-amino acid de-
carboxylase; AANAT, arylalkylamine N-acetyltransferase; ACMSD, amino-β-carboxymuconate-semialdehyde-decarboxylase; ADH,
alcohol dehydrogenase; AldA, indole-3-acetaldehyde dehydrogenase; ALDH, aldehyde dehydrogenase; AMSD, 2-aminomuconic-6-
semialdehyde dehydrogenase; ArAT, aromatic amino acid aminotransferase; decar., decarboxylation; dehyd., dehydroxylation; fldBC,
phenyllactate dehydratase; fldH, phenyllactate dehydrogenase; 3-HAA, 3-hydroxyanthranilic acid; 3-HAO, 3-hydroxyanthranilate ox-
idase; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HIAL, 5-hydroxyindoleacetaldehyde; HIOMT, hydroxyindole-O-methyltransferase; 3-
HK, 3-hydroxykynurenine; 5-HT, serotonin/5-hydroxytryptamine; 5-HTOL, 5-hydroxytryptophol; 5-HTP, 5-hydroxytryptophan; hyd.,
hydroxylation; IA, 3-indoleacrylic acid; IAA, indole-3-acetic acid; IaaH, indole-3-acetamide hydrolase; IAAld, indole -3-acetaldehyde;
IAld, indole-3-aldehyde; IAA, indole-3-acetic acid; IAM, indole-3-acetamide; IDOs, indoleamine 2,3-dioxygenases 1 and 2; ILA,
indole-3-lactic acid; INS, indoxyl sulfate; IPA, indole-3-propionate; IPyA, indole-3-pyruvic acid; KAT III, kynurenine aminotrans-
ferase III/cysteine conjugate beta-lyase 2; KATs, kynurenine aminotransferases; KFA, kynurenine formamidase; KMO, kynurenine
3-monooxygenase; KYN, kynurenine; KYNA, kynurenic acid; KYNU, kynureninase; MAO A, monoamine oxidase A; MAO B,
monoamine oxidase B; MEL, melatonin/N-acetyl-5-methoxytryptamine; NAAD, nicotinic acid adenine dinucleotide; NAD+, nicoti-
namide adenine dinucleotide; NAS, N-acetylserotonin; NFK, N-formyl-L-kynurenine; NMN, nicotinic acid mononucleotide; NMNAT,
nicotinamide mononucleotide adenylyltransferase; PA, picolinic acid; QA, quinolinic acid; QAA, quinaldic acid; QPRT, quinolinate
phosphoribosyl transferase; TDO, tryptophan-2,3-dioxygenase; TMO, tryptophan-2-monooxygenase; TNA, tryptophanase; TrD, tryp-
tophan decarboxylase; Trp, tryptophan; TPH1/2, tryptophan hydroxylase 1 and 2; XA, xanthurenic acid; ?, unknown. The figure was
created with Scientific Image and Illustration Software Biorender.
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the aim of elucidating the Trp metabolic profiles that un-
derlie the behavioral phenotype. This research contributes
to our understanding of the genetic factors influencing be-
haviors related to emotional valence, memory, and motor
function and Trp catabolism.

2. Materials and Methods
CRISPR/Cas9 was applied on C57BL/6N and CD1

(ICR; Institute for Cancer Reseach)mice to generate knock-
out kat2-/- mice, and Taqman allelic discrimination was
used to prove that the gene had been deleted. The emo-
tional domain, including depression-like and anxiety-like
behaviors, was evaluated with the modified forced swim
test (FST), tail suspension test (TST), elevated plus maze
(EPM) test, open field (OF) test, and light dark box (LDB)
test; the cognitive domain was evaluated with the passive
avoidance test (PAT); and the motor domain was evaluated
with the OF test. Furthermore, the levels of Trp and its ma-
jor metabolites, as well as enzyme activities in plasma and
urine samples, were determined, and oxidative stress and
excitotoxicity indices were calculated.

2.1 Ethical Approval
Animal experiments were conducted humanely in ac-

cordance with the Regulations for Animal Experiments of
Kyushu University and the Fundamental Guidelines for
Proper Conduct of Animal Experiments and Related Ac-
tivities in Academic Research Institutions governed by the
Ministry of Education, Culture, Sports, Science, and Tech-
nology of Japan, and with the approval of the Institu-
tional Animal Experiment Committees of Kyushu Univer-
sity (A29-338-1 (2018), A19-090-1 (2019)). The Depart-
ment of Nature Conservation of the Ministry of Agricul-
ture has authorized us to use genetically modified organ-
isms in a closed system of the second security isolation level
(TMF/43-20/2015). The import of genetically modified an-
imals has been approved by the Department of Biodiver-
sity and Gene Conservation of the Ministry of Agriculture
(BGMF/37-5/2020). In accordance with the guidelines of
the 8th Edition of the Guide for the Care and Use of Labo-
ratory Animals, the Use of Animals in Research of the In-
ternational Association for the Study of Pain, and the direc-
tive of the European Economic Community (2010/63/EU),
the experiments conducted in this study received ethi-
cal approval from two committees. The Scientific Ethics
Committee for Animal Research of the Protection of An-
imals Advisory Board (XI./95/2020, CS/I01/170-4/2022)
and the Committee of Animal Research at the University
of Szeged (I-74-10/2019, I-74-1/2022) both approved the
experiments. Furthermore, Directive 2010/63/EU on the
protection of animals used for scientific purposes provides
guidance for the ethical evaluation of animal use proposals.
The directive allows individual institutions to make deter-
minations based on the recommendations of their ethical re-
view committees. These ethical guidelines and regulations

ensure that the experiments conducted on animals adhere
to the highest standards of animal welfare and scientific in-
tegrity. The approval from the Scientific Ethics Committee
for Animal Research of the Protection of Animals Advi-
sory Board and the Committee of Animal Research at the
University of Szeged demonstrates that the study was con-
ducted in compliance with these ethical principles and reg-
ulations.

2.2 Animals
C57BL/6N and CD1 (ICR) mice were purchased from

Japan SLC, Inc. (Hamamatsu, Japan) and Charles River
Laboratories International, Inc. (Yokohama, Japan), re-
spectively, in order to generate kat2-/- mice utilizing the
CRISPR/Cas9 technique. After genetic modifications,
breeding, and transport from Japan to Hungary, the animals
were housed in groups of 4–5 in polycarbonate cages (530
cm2 floor space) under pathogen-free conditions in the An-
imal House of the Department of Neurology, University of
Szeged, maintained at 24 ± 1 °C and 45–55% relative hu-
midity under a 12:12-h light:dark cycle. Throughout the
duration of the investigation, mice had unrestricted access
to standard rodent food and water.

The deletion was introduced into the KATs gene us-
ing the CRISPR/Cas9 method. The single guide RNAs
(sgRNA) were selected using the CRISPRdirect software
[183]. Artificially synthesized sgRNA were purchased
from FASMAC (Atsugi, Japan). The 8–12 weeks old fe-
male C57BL/6N mice were injected with pregnant mare
serum gonadotropin (PMSG) and human chorionic go-
nadotropin (hCG) with a 48-h interval, and mated with 8–
20 weeks old male C57BL/6N mice. The fertilized one-
cell embryos were collected from the oviducts. Then, 25
ng/µL of the sgRNA and 75 ng/µL Guide-it™ Recombi-
nant Cas9 protein (TaKaRa, Kusatsu, Japan) were injected
into the cytoplasm of these one-cell-stage embryos. The in-
jected two-cell embryos were then transferred into pseudo-
pregnant ICRmice (Fig. 2) anesthetized with a combination
anesthetic (M/M/B: 0.3/4/5) [184] prepared with 0.3 mg/ kg
of medetomidine, 4.0 mg/kg of midazolam, and 5.0 mg/kg
of butorphanol by intraperitoneal injection.

The kat2-/- mouse line expresses a carboxy-terminal
truncated polypeptide consisting of the first 47 amino acids
of the intact KAT II with a 2-nucleotide deletion (CCDS
nucleotide sequence 32–33) in the mRNA.

2.3 DNA Extraction and Sequencing
Genomic DNA of tails collected from mice was ex-

tracted using NucleoSpin Tissue (MACHEREY-NAGEL
GmbH&Co, KG, Düren, Germany). Each targeted frag-
ment around the sgRNA targeting site from the extracted
genomic DNA as a part of the KATs genes was amplified
with TAKARAExTaq (Takara Bio, Kusatsu, Japan) and the
1st primers pair and subsequentlywith 2nd primers pair (Ta-
ble 1). The polymerase chain reaction (PCR) product was
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Fig. 2. Generation of the knockout kat2-/- mice. Female C57BL/6Nmice were treated with pregnant mare serum gonadotropin (PMSG)
and human chorionic gonadotropin (hCG) with a 48-hour interval between administrations, then mated with male C57BL/6Nmice. From
the oviducts, fertilized one-cell embryos were collected and injected with single guide RNA (sgRNA) and Guide-itTM Recombinant Cas9
protein. At the two-cell stage, the embryos were transferred into pseudopregnant Institute for Cancer Research (ICR) mice. PMSG,
pregnant mare serum gonadotropin; hCG, human chorionic gonadotropin; sgRNA, single guide RNA. The figure was created with
Scientific Image and Illustration Software Biorender.
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Table 1. Properties of sgRNA, primers and KAT gene.
Name of sgRNA Sequence

M-KAT II-2
GTTCCTCACTGCAACGAGCCguuuuagagcuagaaauagcaaguu-
aaaaaaggcuaguccguuaucaacuugaaaaaguggcacggacucggugcuuuu

Name of primer Sequence
M-KAT II_1st_F CCCTCTGTGGATGGACTTTG
M-KAT II_1st_R TTGAAAGATGTGCCTCATGC
M-KAT II_2nd_F GGATGGACTTTGTCCCTTCT
M-KAT II_2nd_R ATGTGCCTCATGCTTGGCCC
Name of KAT gene Transcript ID CCDS CCDS Nucleotide Sequence
Aadat-201 ENSMUST00000079472.4 CCDS22320 32–33 (2 nucleotide deletion)

sgRNA, single guide RNA; KAT, kynurenine aminotransferase; KAT II, aminoadipate aminotransferase;
CCDS, Consensus Coding Sequence.

purified with a Fast Gene Gel/PCR Extraction Kit (Nippon
Genetics Co., Ltd., Tokyo, Japan), and the PCR products
were purified by agarose gel electrophoresis and Monarch
Gel Extraction Kit (NEW ENGLAND BioLabs Inc., Ip-
swich, MA, USA). Then, the PCR products were sequenced
with M-KAT II_2nd_R (Table 1).

2.4 Western Blotting

For Western blotting, tissue extracts from the liver (20
mg) of the knockout and wild-type (WT) mice were pre-
pared by the Total Protein Extraction Kit for Animal Cul-
tured Cells and Tissues (Invent Biotechnologies, Plymouth,
MN, USA) according to the manufacturer’s instructions.
Subsequently, the tissue extracts were passed through Pro-
tein G HP SpinTrapTM (Cytiva, Buckinghamshire, UK) to
remove immunoglobulin G. 14 µL of each sample were
mixed with 7 µL of SDS Blue Loading Buffer (New
England BioLabs Inc.) and separated on a 12% SDS-
polyacrylamide gel. Subsequently, the protein was trans-
ferred to the membranes. The membranes were blocked
and incubated with anti-human KAT II rabbit polyclonal
antibody (1:500, Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA) at room temperature for 2 h, fol-
lowed by combination with alkaline phosphatase-labeled
secondary goat anti-rabbit immunoglobulin G (IgG) FC an-
tibody (1:10,000, Sigma-Aldrich Co. LLC, St. Louis, MO,
USA) at room temperature for 2 h, followed by visualiza-
tion of dystrophin and utrophin usingWestern Blue® Stabi-
lized Substrate for Alkaline Phosphatase (Promega, Madi-
son, WI, USA). The Multicolor Protein Ladder (10–315
kDa) from Nippon Gene Co., Ltd. (Tokyo, Japan) was used
as a molecular weight marker for western blotting, allowing
visualization and size estimation of target proteins.

2.5 Phenotype Analysis with Modified SHIRPA Test

The 8–48 weeks old male and female mice mated
in August 2023 and became pregnant about three to four
weeks later. The RIKEN (The Institute of Physical
and Chemical Research) modified SHIRPA (SmithKline

Beecham, Harwell, Imperial College, Royal London Hos-
pital, phenotype assessment) test was conducted to ascer-
tain the comprehensive phenotypic traits of the mutant ro-
dents. The assessment included the evaluation of diverse
behaviors and physical attributes such as motion, bowel
movements, urination, locomotor activity, startle response,
tactile escape, pinna reflex, trunk curling, limb grasping,
contact-righting reflex, grip strength, wire maneuver test,
corneal reflex, toe pinching, and overall appearance. The
animals were also monitored for vocalization, aggression,
head bobbing, jumping, circling, retropulsion, grooming,
and tail-wagging [185,186]. The experiment was captured
on video using a camera (Basler ace Classic acA1300 -
60gm, Basler AG, Ahrensburg, Germany) and software
(EthoVision XT14, Noldus Information Technology BV,
Wageningen, the Netherlands).

2.6 Behavioral Tests
The 8–48 weeks old male and female mice mated be-

tween April 2021 and April 2022 and became pregnant ap-
proximately three to four weeks later. 8-week-old male
C57BL/6N and kat2-/- mice (n = 10–13) were tested. In
order to make the results comparable, all behavioral exper-
iments were performed between 8 a.m. and 12 p.m. The
animals were transferred to the laboratory, where the mea-
surements were made, one hour before the start of the ex-
periment, thus they had time to acclimatize to the environ-
mental conditions.

2.6.1 Modified Forced Swim Test (FST)
The modified FST was performed as reported previ-

ously. The mice were placed individually in a glass cylin-
der of 12 cm in diameter and 30 cm in height. Water (25± 1
°C) was filled to a height of 20 cm. Freshwater was used for
each mouse. A 15-min pretest was carried out 24 hours be-
fore the 3-min test session. A time-sampling technique was
conducted to count the duration of time spent with climb-
ing, swimming, and immobility [187,188].
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2.6.2 Tail Suspension Test (TST)
The mice were placed in a 28× 28× 23.5 cm wooden

box with three side walls and a clip hanging from the top of
the box. The animals were suspended by their tails from
the base to the middle two-thirds using a clip and allowed
to hang for 6minutes. Wemeasure the duration of immobil-
ity. A cotton swab was pre-attached to the clip’s interior to
prevent the mice’s tails from injuring or severely restricting
blood circulation. If the animal is able to climb or falls off
the clip, it is removed from the experiment and its results
are discarded [189,190]. The experiment was captured on
video using a camera (Basler ace Classic acA1300 -60gm,
Basler AG, Ahrensburg, Germany) and software (EthoVi-
sion XT14, Noldus Information Technology BV, Wagenin-
gen, the Netherlands).

2.6.3 Elevated Plus Maze (EPM) Test
The animals were positioned in a plus-shaped appara-

tus with four arms measuring 35 × 10 cm. Two of the op-
posite arms are open, while the other two are closed, form-
ing an angle of 90 degrees. The open arms have no side
walls, while the closed arms have walls that are 20 cm tall.
The entire apparatus is situated 50 cm off the ground. The
device is surrounded by a screen that does not display any
visual signals. The mouse was placed in the device’s cen-
ter with its nose facing an open arm and allowed it to ex-
plore for 5 minutes. We measure the time spent in each part
(open arms, closed arms, and central part). The experiment
was captured on video using a camera (Basler ace Classic
acA1300 -60gm, Basler AG, Ahrensburg, Germany) and
software (EthoVision XT14, Noldus Information Technol-
ogy BV, Wageningen, the Netherlands). Between each an-
imal, the apparatus was disinfected with 70% ethanol and
left exposed to the air for 5 minutes [191,192].

2.6.4 Light Dark Box (LDB) Test
The LDB apparatus is comprised of larger illuminated

(2/3 of the box) and smaller dark (1/3 of the box) compart-
ments that are connected by a 5× 5 cm door. The length of
time a mouse spent in the lighted compartment during the
5-minute session was determined 5 seconds after a mouse
was placed in the bright area. After each session, the box
was cleaned with 70% ethanol and allowed to air for 5 min-
utes [192–194].

2.6.5 Passive Avoidance Test (PAT)
Each mouse was individually placed in a box contain-

ing two apparatuses with distinct lighting. The animals be-
gan in the bright compartment and had 5 minutes to pass
through the 5 × 5 cm door into the dark, smaller portion of
the box. As soon as the animals entered the dark compart-
ment, they received a 0.3 mA electroshock through their
paws, and the door shut. After 10 seconds, the animals
were removed, and the experiment was repeated 24 hours
later. Those animals that did not enter the dark area within

5 minutes during the pre-testing phase were omitted from
the measurement. The box was cleaned with 70% ethanol
and left to air for 5 minutes between mice [195].

2.6.6 Open Field (OF) Test

A standard table lamp illuminated the center of the
48 × 40 cm OF box, while the Conducta 1.0 system (Ex-
perimetria Ltd., Budapest, Hungary) monitored themouse’s
movements. Each mouse was placed individually in the
center of the box. Ambulation distance, time spent in the
center zone, and number of entries to the center zone were
measured for 10 minutes. After each session, the box was
wiped down with 70% ethanol and allowed to for 5 minutes
[196,197].

Throughout the experiment, the animals’ general
physical condition was constantly assessed using a scoring
scale, which included body weight, appearance and over-
all condition, respiration, mobility, and the presence of ba-
sic reflexes. Humane endpoints were determined using the
scales. If any animal reached the required score for with-
drawal from the behavioral assessments, it was euthanized
via transcardial perfusion under isoflurane anesthesia, ef-
fectively terminating its participation in the evaluation.

2.7 Ultra-High-Performance Liquid Chromatography with
Tandem Mass Spectrometry

The 8–48 weeks old male and female mice mated
in August 2023 and became pregnant about three to four
weeks later. The urine samples were collected before
anesthesia, and were immediately stored at –80°C after
the sample collection. For plasma collection, the mice
were anesthetized with 2% isoflurane, and after expos-
ing their chest, blood samples were taken from the left
heart ventricle using a syringe into Eppendorf tubes con-
taining disodium ethylenediaminetetraacetate dihydrate.
Plasma was separated by centrifugation (10,300 rpm for
10 minutes at 4 °C). The supernatant plasma samples
were pipetted into new Eppendorf tubes. The samples
were stored at –80 °C until use. The animals were per-
fused with artificial cerebrospinal fluid for 5 minutes to re-
move additional organs for later use. Trp and its metabo-
lites were measured in plasma and urine using previ-
ously published protocols [198,199] using ultra-high per-
formance liquid chromatography-tandem mass spectrom-
etry (UHPLC-MS/MS). Picolinic acid multiple reaction
monitoring (MRM) showed a change from 124.0 to 106.0
over 1.21 minutes, with 75 V acting as the declustering po-
tential and 13 V acting as the collision energy. All reagents
and chemicals were of analytical or liquid chromatography–
mass spectrometry grade. Trp and its metabolites, and
their deuterated forms: d4-serotonin, d5-tryptophan, d4-
kynurenine, d5-kynurenic acid, d4-xanthurenic acid, d5-
5-hydroxyindole-acetic acid, d3-3-hydroxyanthranilic acid,
d4-picolinic acid, and d3-quinolinic acid were purchased
from Toronto Research Chemicals (Toronto, ON, Canada).
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d3-3-hydroxykynurenine was obtained from Buchem B.
V. (Apeldoorn, The Netherlands). Acetonitrile (ACN)
was provided by Molar Chemicals (Halásztelek, Hungary).
Methanol (MeOH) was purchased from LGC Standards
(Wesel, Germany). Formic acid (FA) and water were ob-
tained from VWRChemicals (Monroeville, PA, USA). The
UHPLC-MS/MS system consisted of a PerkinElmer Flexar
UHPLC system (two FX-10 binary pumps, solvent man-
ager, autosampler and thermostatic oven; all PerkinElmer
Inc. (Waltham, MA, USA)), coupled to an AB SCIEX
QTRAP 5500 MS/MS triple quadrupole mass spectrometer
and controlled by Analyst 1.7.1 software (both AB Sciex,
Framingham, MA, USA).

2.8 The Enzyme Activities of Tryptophan (Trp) Metabolism
The enzyme activities of each Trp metabolism were

determined by dividing the concentration of the product by
the concentration of the substrate.

2.9 Oxidative Stress and Excitotoxicity Indices
The oxidative stress index was calculated as the ratios

of putative prooxidant metabolite 3-hydroxykynurenine (3-
HK) concentrations to the sums of putative antioxidant
metabolite concentrations (KYNA, anthranilic acid (AA),
and xanthurenic acid (XA)) (Eqn. 1) [200–202].

Oxidative stress index = [3 − Hydroxykynurenine]/

{[Kynurenic acid] + [Anthranilic acid] + [Xanthurenic acid]}
(1)

The excitotoxicity index is calculated by dividing the
concentration of N-methyl-D-aspartate (NMDA) receptor
agonist quinolinic acid (QA) by that of NMDA receptor an-
tagonist KYNA (Eqn. 2) [203–205].

Excitotoxicity index = [Quinolinic acid]/[Kynurenic acid]
(2)

2.10 Statistical Analysis
We used IBM SPSS Statistics 28.0.0.0 (IBM SPSS

statistics, Chicago, IL, USA) for the statistical analysis. The
Shapiro–Wilk test was used to determine the distribution of
data. In addition, we used a Q-Q plot to find out if two sets
of data come from the same distribution. Our data followed
a normal distribution. One-way ANOVA test was used to
evaluate the results of the behavioral tests and neurochem-
ical measurements followed by the Tamhane post hoc test.
Values p < 0.05 were considered statistically significant.
Our data are reported as means± SD for all parameters and
groups.

3. Results
3.1 DNA Sequence Analysis and Western Blot

To generate knockout mice of kat2 gene, 25 ng/µL
of sgRNA and 75 ng/µL Cas9 protein were injected into

the cytoplasm of the one-cell-stage embryos. Sequenc-
ing analyses with their founder mice showed that various
deletions and/or insertions were introduced in the target se-
quence. One of the founders was selected and established
the homozygous mouse line for further analyses. KAT II
knockout mouse line expresses a carboxy-terminal trun-
cated polypeptide consisting of the first 47 amino acids of
the intact KAT II with 2 nucleotides deletion (CCDS nu-
cleotide sequence 32–33) in the mRNA. Western blotting
with antibodies against KAT II revealed that the band with
approximately 50-kDa supposed to be KAT II was not de-
tected in the knockout mice, while it was detected in the
wild-type (WT) counterparts (Fig. 3).

3.2 Phenotype Analysis with SHIRPA Protocol
We did not detect any significant differences between

the knockout mice and their wild-type counterparts.

3.3 Behavioral Tests
3.3.1 Forced Swim Test (FST)

The immobility time was significantly longer and the
swimming time was significantly shorter in kat2-/- mice
than in WT mice (Fig. 4a,b; Table 2). There were no sig-
nificant differences in climbing time (Table 2).

3.3.2 Open Field (OF) Test
The ambulation distance of the kat2-/- mice was sig-

nificantly shorter in the first 10-minute timeframe than that
of their WT counterparts (Fig. 4c; Table 2). The number of
jumps was significantly fewer in the kat2-/- mice than that
of their WT counterparts (Fig. 4d; Table 2). There were
significantly fewer entries into the center and corner zones
compared to their WT counterparts (Fig. 4e; Table 2).

3.3.3 Other Behavioral Tests
There were no statistically significant distinctions ob-

served between the transgenic mice and their WT counter-
parts in TST, PAT, EPM test, and LDB test (Table 2).

3.4 Ultra-High-Performance Liquid Chromatography with
Tandem Mass Spectrometry

Transgenic mice had significantly lower levels of
KYN, KYNA, XA, AA, 5-hydroxyindoleacetic acid (5-
HIAA), indole-3-acetic acid (IAA), and higher levels of
3-HK in plasma samples than wild-type mice. In urine
samples, KYNA, XA, and IAA were significantly lower,
whereas KYN, 3-HK, and 5-HT were significantly higher
than those of the wild-type counterparts (Fig. 5; Table 3).

3.5 Enzyme Activities in Tryptophan (Trp) Metabolism
The transgenic mice showed significantly lower

KATs, kynureninase (KYNU), KAT III, monoamine ox-
idase (MAO), aldehyde dehydrogenase (ALDH), and
tryptophan-2-monooxygenase (TMO) activities and signif-
icantly higher kynurenine 3-monooxygenase (KMO) activ-
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Fig. 3. DNA sequence and western blot analysis of knockout kat2-/- mouse line. (a) Genomic sequences around the mutation site of
knockout kat2-/- mouse strain. (b) Western blot analysis of knockout kat2-/- mouse line. MM: molecular weight marker, WT: wild-type
mouse. The figure was created with Scientific Image and Illustration Software Biorender.

Table 2. Behaviors of kat2-/- mice and the wild-type counterparts.
Test type Number of animals Perspectives Mean ± SD of wild-type Mean ± SD of kat2-/- p-value

Modified forced
swim test (FST)

WT: n = 12 Immobility time (s) 157.73 ± 17.23 174.09 ± 6.64 0.022 *
kat2-/-: n = 11 Swimming time (s) 18.18 ± 15.37 3.18 ± 4.62 0.014 *

Climbing time (s) 4.09 ± 4.37 1.82 ± 6.03 0.681

Tail suspension
test (TST)

WT: n = 10
Immobility time (s) 194.50 ± 66.76 209.58 ± 67.23 0.625

kat2-/-: n = 13

Passive avoida-
nce test (PAT)

WT: n = 12
kat2-/-: n = 12

Time spent in the lit box
on the training day (s)

48.33 ± 29.24 64.67 ± 55.78 0.979

Time spent in the lit box
on the test day (s)

256.00 ± 76.94 283.75 ± 39.60 0.822

Elevated plus
maze (EPM) test

WT: n = 10
Time spent in the open arms (s) 42.90 ± 61.60 30.64 ± 43.70 0.500

kat2-/-: n = 11

Light dark box
(LDB) test

WT: n = 12
Time spent in the lit box (s) 119.00 ± 31.38 113.91 ± 24.41 0.957

kat2-/-: n = 11

Open field
(OF) test

WT: n = 12
kat2-/-: n = 11

Number of entries to the
center zones (times)

281.67 ± 69.13 210.73 ± 65.20 0.011 *

Number of entries to the
corner zones (times)

83.08 ± 26.95 51.27 ± 17.88 0.001 ***

Ambulation distance (cm) 2191.75 ± 364.45 1609.27 ± 381.96 0.002 **
Number of jumps (times) 7.33 ± 4.94 2.45 ± 3.08 0.034 *

*, p < 0.05; **, p < 0.01; ***, p < 0.001.

ity in plasma samples thanwild-typemice. In the urine sam-
ples, the transgenic mice showed significantly lower KATs,
KYNU, KAT III, MAO, ALDH, and TMO activities, and
significantly higher tryptophan-2,3-dioxygenase (TDO)/

indoleamine 2,3-dioxygenases (IDOs) (KFA), KMO, and
aromatic L-amino acid decarboxylase (AADC) activities
compared to the wild-type counterparts (Fig. 6, Table 4).
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Fig. 4. Behavioral tests. (a) Time spent immobile in the modified forced swim test (FST). (b) Time spent swimming in the modified
FST. (c) Ambulation distance in the open field (OF) test. (d) Number of jumps in the OF test; and (e) Number of entries into the center and
corner zones in the OF test. Wild-type mice (light green); kat2-/- mice (dark green). WT, wild-type; kat2-/-, kynurenine aminotransferase
II knockout mice; FST, forced swim test; OF, open field test; •, outliner. Mean ± SD. *, p < 0.05; **, p < 0.01; ***, p < 0.001. The
figure was created with Labplot 2.9.0 (KDE, Berlin, Germany) and Scientific Image and Illustration Software Biorender.
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Fig. 5. Concentration level of tryptophan metabolites in plasma and urine. (a) Kynurenine. (b) Kynurenic acid. (c) 3-
hydroxykynurenine. (d) Anthranilic acid. (e) Xanthurenic acid. (f) Serotonin/5-hydroxytryptamine. (g) 5-hydroxyanthranilic acid.
(h) Indole-3-acetic acid. We marked wild-type mice with light, and kat2-/- mice results with dark green boxes. WT, wild-type;
kat2-/-, kynurenine aminotransferase II knockout; 3-HK, 3-hydroxykynurenine; 5-HIAA, 5-hydroxyanthranilic acid; 5-HT, serotonin/5-
hydroxytryptamine; AA, anthranilic acid; IAA, indole-3-acetic acid; KYN, kynurenine; KYNA, kynurenic acid; XA, xanthurenic acid;
•, outliner; ▲, far out. Mean ± SD; *, p < 0.05; **, p < 0.01; ***, p < 0.001. The figure was created with Labplot 2.9.0 (KDE, Berlin,
Germany) and Scientific Image and Illustration Software Biorender.
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Fig. 6. Tryptophan metabolism’s enzyme activity in plasma and urine. (a) Tryptophan 2,3-dioxygenase/indoleamine 2,3-
dioxygenases (kynurenine formamidase). (b) Kynurenine aminotransferases. (c) Kynurenine 3-monooxygenase. (d,e) Kynureninase.
(f) Kynurenine aminotransferase III/cysteine conjugate beta-lyase 2. (g) Aromatic L-amino acid decarboxylase. (h) Monoamine ox-
idases + aldehyde dehydrogenase. (i) Tryptophan-2-monooxygenase (tryptophan decarboxylase, aromatic amino acid aminotrans-
ferase). We marked wild-type mice with light, and kat2-/- mice results with dark green boxes. 3-HAA, 3-hydroxyanthranilic acid; 3-
HK, 3-hydroxykynurenine; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, serotonin/5-hydroxytryptamine; 5-HTP, 5-hydroxytryptophan;
AADC, aromatic L-amino acid decarboxylase; ALDH, aldehyde dehydrogenase; ArAT, aromatic amino acid aminotransferase; IAA,
indole-3-acetic acid; IDOs, indoleamine 2,3-dioxygenases; KAT III, kynurenine aminotransferase III/cysteine conjugate beta-lyase 2;
kat2-/-, kynurenine aminotransferase II knockout; KATs, kynurenine aminotransferases; KFA, kynurenine formamidase; KMO, kynure-
nine 3-monooxygenase; KYNU, kynureninase; MAO, monoamine oxidase; TDO, tryptophan 2,3-dioxygenase; TMO, tryptophan-2-
monooxygenase; TrD, tryptophan decarboxylase; Trp, tryptophan; WT, wild-type; XA, xanthurenic acid; KYN, kynurenine; KYNA,
kynurenic acid; AA, anthranilic acid; •, outliner; ▲, far out. Mean ± SD; *, p < 0.05; **, p < 0.01; ***, p < 0.001. The figure was
created with Labplot 2.9.0 (KDE, Berlin, Germany) and Scientific Image and Illustration Software Biorender.
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Table 3. Quality control samples of mouse plasma and urine (runtime 25 h, (mean concentrations, 14-14 replicates of each, the given n is the samples size of the pooled individual
samples)).

Plasma (nM) Urine (nmol/mmol Creatinine)

Mean ± SD
p value

Mean ± SD
p value

WT kat2-/- WT kat2-/-

Tryptophan (Trp) 40,901.678 ± 21,056.888 35,543.573 ± 16,203.237 0.532 2022.196 ± 908.643 1972.014 ± 286.954 0.870
Kynurenine (KYN) 440.674 ± 102.886 327.348 ± 76.385 0.012 ** 25.238 ± 10.185 50.883 ± 17.134 <0.001 ***
Kynurenic acid (KYNA) 96.960 ± 70.837 3.654 ± 0.860 <0.001 *** 11,783.938 ± 5040.178 920.990 ± 215.223 <0.001 ***
Quinaldic acid (QAA) 6.884 ± 5.397 5.608 ± 1.234 0.476 14.248 ± 9.716 12.014 ± 7.490 0.572
3-hydroxykynurenine (3-HK) 70.714 ± 18.994 130.851 ± 82.199 0.037 ** 55.472 ± 31.438 5986.833 ± 3157.255 <0.001 ***
Xanthurenic acid (XA) 93.624 ± 45.637 7.406 ± 1.452 <0.001 *** 127,228.662 ± 52,582.223 3273.334 ±1021.511 <0.001 ***
Anthranilic acid (AA) 32.655 ± 13.114 19.335 ± 7.280 0.012 ** 69.112 ± 45.347 60.862 ± 22.368 0.612
3-Hydroxyanthranilic acid (3-HAA) 22.992 ± 6.140 20.920 ± 5.921 0.452 1741.538 ± 824.887 1789.475 ± 454.422 0.874
Quinolinic acid (QA) 132.185 ± 75.409 112.000 ± 41.600 0.468 10,059.485 ± 4601.597 11,718.491 ± 2401.051 0.326
Picolinic acid (PA) 193.797 ± 93.230 154.895 ± 88.753 0.352 190.435 ± 91.394 193.898 ± 113.072 0.941
5-Hydroxytryptophan (5-HTP) 2.790 ± 1.577 2.708 ± 1.297 0.901 21.742 ± 8.520 19.297 ± 3.833 0.419
Serotonin (5-HT) 277.309 ± 353.179 1010.379 ± 2219.355 0.316 371.974 ± 125.489 479.383 ± 63.304 0.027 *
5-hydroxyindoleacetic acid (5-HIAA) 362.241 ± 199.450 201.217 ± 99.184 0.035 ** 3774.968 ± 1666.005 2969.725 ± 598.373 0.167

Indole-3-acetic acid (IAA) 457.329 ± 153.046 229.142 ± 68.266 <0.001 *** 6030.306 ± 4737.901 1513.400 ± 1097.122 0.009 **
Indoxyl-sulphate (INS) 6738.111 ± 3559.896 5404.257 ± 2292.535 0.332 400,636.750 ± 185,880.105 497,063.585 ± 190,235.646 0.267

SD, standard deviation; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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Table 4. Enzymes activities in plasma and urine.

Enzyme Product/Substrate
Plasma Urine

Mean ± SD
p value

Mean ± SD
p value

WT kat2-/- WT kat2-/-

TDO/IDOs (KFA) KYN/Trp 0.013 ± 0.007 0.011 ± 0.006 0.532 0.013 ± 0.002 0.026 ± 0.006 <0.001 ***
KATs KYNA/KYN 0.205 ± 0.107 0.011 ± 0.002 <0.001 *** 476.464 ± 164.156 18.937 ± 5.057 <0.001 ***
KMO 3-HK/KYN 0.168 ± 0.062 0.386 ± 0.180 0.002 ** 2.219 ± 0.827 122.983 ± 75.543 <0.001 ***
KYNU AA/KYN 0.075 ± 0.028 0.059 ± 0.016 0.120 2.593 ± 0.862 1.253 ± 0.529 <0.001 ***
KYNU 3-HAA/3-HK 0.330 ± 0.070 0.194 ± 0.080 <0.001 *** 35.177 ± 16.776 0.372 ± 0.182 <0.001 ***
KAT III XA/3-HK 1.374 ± 0.714 0.070 ± 0.033 <0.001 *** 2702.990 ± 1524.430 0.629 ± 0.229 <0.001 ***
3-HAO QA/3-HAA 5.l771 ± 2.978 5.486 ± 1.994 0.804 6.240 ± 2.487 6.856 ± 1.779 0.532
3-HAO + ACMSD PA/3-HAA 8.797 ± 4.263 7.681 ± 4.872 0.592 0.123 ± 0.071 0.119 ± 0.085 0.906
TPHs 5-HTP/Trp <0.001 ± <0.001 <0.001 ± <0.001 0.128 0.011 ± 0.002 0.010 ± 0.003 0.410
AADC 5-HT/5-HTP 97.585 ± 87.384 307.233 ± 509.276 0.216 17.608 ± 3.583 25.997 ± 7.185 0.004 **
MAOs + ALDH 5-HIAA/5-HT 4.217 ± 4.818 0.905 ± 0.712 0.045 * 10.209 ± 2.530 6.181 ± 0.859 <0.001 ***
TMO (TrD, ArAT) IAA/Trp 0.013 ± 0.005 0.007 ± 0.002 0.005 ** 2.570 ± 1.243 0.786 ± 0.636 <0.001 ***
TNA INS/Trp 0.208 ± 0.178 0.170 ± 0.089 0.555 215.671 ± 100.757 248.916 ± 81.413 0.428

*, p < 0.05; **, p < 0.01; ***, p < 0.001.

15

https://www.imrpress.com


Table 5. The oxidative stress and excitotoxicity indices in the plasma and urine.
Oxidative stress index

Oxidant/antioxidant
metabolites

Plasma (nM) Urine (nmol/mmol Creatinine)

Mean ± SD
p value

Mean ± SD
p value

WT kat2-/- WT kat2-/-

3-HK/KYNA+AA+XA 0.378 ± 0.163 4.090 ± 1.478 <0.001 *** 0.085 ± 0.011 1.352 ± 0.473 <0.001 ***

Excitotoxicity index

NMDA Plasma (nM) Urine (nmol/mmol Creatinine)

agonist/antagonist Mean ± SD
p value

Mean ± SD
p value

metabolites WT kat2-/- WT kat2-/-

QA/KYNA 1.648 ± 0.810 30.514 ± 8.618 <0.001 *** 0.884 ± 0.320 13.092 ± 2.833 <0.001 ***
***, p < 0.001.

3.6 Oxidative stress and Excitotoxicity indices

Transgenic mice had higher levels of oxidative stress
and excitotoxicity in both plasma and urine than wild-type
mice (Fig. 7, Table 5).

4. Discussion
Dysregulation of 5-HT metabolism is a key factor in

mental symptom development, with attention focused on
its imbalance with neurotransmitters like dopamine, nore-
pinephrine, and biosystems such as substance P [206–210].
Alterations in 5-HT precursor Trp metabolism are noted in
mental illnesses, but their connection with the Trp-KYN
metabolic system remains poorly understood [211–213].
Growing evidence suggests that the gut microbial indole
pyruvate pathway can influence the microbiome-gut-brain
axis, implying that intestinal Trp metabolism may play a
significant role in psychological health. The microbiome-
gut-brain axis is responsible for regulating mood, cogni-
tion, stress response, and behavior [101]. As a result, the
gut-microbial indole pyruvate pathway can influence the
microbiome-gut-brain axis by controlling the production
and availability of neurotransmitters, hormones, cytokines,
and bioactivemetabolites involved in neuropsychiatric con-
ditions.

KATs are cytosolic and mitochondrial aminotrans-
ferases that convert KYN to KYNA [74,214–216]. The mi-
tochondrial isoform KAT II exclusively influences cellular
bioenergetics due to its exclusive location in the mitochon-
dria [117,205]. CRISPR/Cas9 was employed to knock out
the kat2 gene, creating kat2-/- mice. This study aimed to
examine the negative emotional aspects and evaluate any
behavioral alterations caused by the knockout of the kat2
gene in young adults aged 8 weeks. kat2-/- mice, studied in
8-week-old adults, induce a unique depression-like pheno-
type marked by increased immobility in FST, likely linked
to serotonergic pathways. TST did not show significant dif-
ferences, possibly due to FST conditioning. The results that
the PAT did not show a significant difference may suggest

that depression-like behavior is more likely to be related
to depression-like behavior caused by despair experiences
than to aversive-conditioned memory. Anxiety-like behav-
iors (EPM and LDB) showed no difference, but the OF
test revealed shorter ambulation distance, fewer jumping
counts, and fewer entries into both center field and corners,
suggesting a la belle indifference-like trait. kat2-/- mice
exhibited despair-based depression-like behavior without
anxiety-like traits, demonstrating motor deficits. The study
suggests the kat2 gene deletion potentially leads to a PTSD-
like phenotype, including a la belle indifference trait, in-
dicative of complex PTSD with emotional dysregulation
[217–219].

The gene knockout significantly alters Trpmetabolism
in both 5-HT, KYN, and indole pathways in plasma and
urine. A major 5-HT metabolite, 5-HIAA, is markedly re-
duced, possibly explained by scarce mitochondrial enzyme
activity. Lower levels of KYNA and antioxidant KYNs in-
dicate decreased production in peripheral tissues of kat2-/-
mice. Conversely, 3-HK is significantly elevated. The lev-
els of the gut microbial metabolite IAA, an antioxidant and
anti-inflammatory molecule, were reduced. The disruption
of the KAT II gene may lead to a reduction in the levels of
IAA in the indole pathway of the gut microbiota, as the en-
zyme plays a role in controlling Trp metabolism. KAT II
has an impact on the availability of Trp and its subsequent
metabolic pathways, including the production of IAA. In
the absence of KAT II, the Trpmetabolite balancemay shift,
resulting in less IAA synthesis by gut bacteria. This change
may disrupt the gut-brain axis and have an impact on intesti-
nal health, as IAA is required for immune response regula-
tion, intestinal barrier integrity, and modulating the produc-
tion of other indole derivatives. Furthermore, gene knock-
out affects enzyme activity, puts organisms under oxidative
stress, imposes high excitotoxicity and neurotoxicity, and
alters immune responses. The study demonstrates that the
deletion of the kat2 gene leads to a specific set of charac-
teristics, including behavior similar to depression, impaired
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Fig. 7. Oxidative stress and excitotoxicity indices in plasma and urine. (a) The oxidative stress indices in kat2-/- mice’s plasma
and urine samples are significantly higher than those in the wild-type. (b) The excitotoxicity indices in kat2-/- mice’s plasma and urine
samples are significantly higher than those in the wild-type. We marked wild-type with light, and kat2-/- mice results with dark green
boxes. WT, wild-type; kat2-/-, kynurenine aminotransferase II knockout; •, outliner. Mean± SD; ***, p< 0.001. The figure was created
with Labplot 2.9.0 (KDE, Berlin, Germany) and Scientific Image and Illustration Software Biorender.

motor function, decreased levels of KYNA, and a change in
the way Trp is metabolized towards the KYN pathway. This
phenotype exhibits similarities to PTSD in humans, poten-
tially indicating the presence of complex PTSD due to the
observed belle indifference-like trait.

The amygdala encodes and stores fear memory af-
ter receiving sensory input from the thalamus, which also
consolidates and retrieves memories from the initial stim-
uli that induce fear [220–222]. Fear memory is associ-
ated with the release of stress hormones such as adrenaline
and cortisol, which stimulate the sympathetic nervous sys-
tem and the hypothalamic-pituitary-adrenal axis [46,223–
227]. This study does not show evidence of fear memory
acquisition. In contrast, the encoding and storage of mem-
ories associated with despair occur in the prefrontal cortex,
which plays a crucial role in the cognitive and emotional
processing of negative experiences [228]. Recalling dis-
tressing memories, triggered by cues linked to the initial
negative encounter, results in the disruption of 5-HT, nore-
pinephrine, and dopamine regulation. Although fear and
despair memories have similarities in terms of encoding and
retrieval processes, they are associated with different brain
regions, neurotransmitters, and neural circuits [229,230].

Furthermore, despair memory and despair experience
differ. The latter pertains to an instantaneous, personal feel-
ing of despair or hopelessness, prompted by present circum-
stances, as opposed to a remembrance of past experiences
[231]. Despair memory involves the consolidation and re-
trieval of long-term memories, influenced by stress and

emotion [232]. In contrast, a despair experience entails im-
mediate emotional responses influenced by factors like cog-
nitive assessments, environmental cues, and physiological
states [233]. Additionally, la belle indifference arises from
a discrepancy between cognitive and emotional symptom
processing, including altered emotional processing in the
amygdala and insula, changed self-awareness in the medial
prefrontal cortex, and adjusted activity in the somatosen-
sory cortex influenced by dopamine and 5-HT [234]. Thus,
kat2-/- mice show more despair-based depression-like be-
havior involving a change in 5-HT metabolism.

Approximately 60% of individuals on antidepressants,
including SSRIs, for two months experience a 50% reduc-
tion in depression symptoms [235]. The observation aligns
with the monoamine hypothesis, suggesting depression’s
pathogenesis is linked to low 5-HT levels. Transgenic mod-
els are used to study 5-HT dysmetabolism behaviors, with
a focus on the Tph gene, which encodes tryptophan hy-
droxylase, a key enzyme in 5-HT synthesis [236]. Pre-
clinical studies found normal 5-HT levels with no behav-
ioral changes in Tph1-/- mice, while Tph2-/- mice’s behav-
iors are inconclusive [237,238]. The knock-in mice of the
TPH2 variant (R439H) showed depression-like behavior in
TST [239]. Intriguingly, Tph1/Tph2-/- mice exhibited con-
trasting behaviors: antidepressant-like in FST, depressive
in TST, and anxious in the MB test, accompanied by low
5-HT levels in the brain and periphery [240]. 5-HT1A re-
ceptor knockout (5-HT1AR-/-) mice display heightened fear
memory to contextual cues, suggesting a role for 5-HT re-
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ceptors in PTSD-like phenotype [241]. 5-HT 2C receptor
knockout 5-HT2CR-/-mice attenuates fear responses in con-
textual or cued but not compound context-cue fear condi-
tioning [242]. Knockout of the 5-HTT gene in mice (5-
HTT -/-) leads to impaired stress response, fear extinction,
and abnormal corticolimbic structure [243].

Over 90% of 5-HT precursor Trp undergoes
catabolism in the Trp-KYN metabolic system, generating
a variety of bioactive molecules including prooxidants,
antioxidants, inflammation suppressants, neurotoxins, neu-
roprotectants, and/or immunomodulators [244]. Growing
evidence indicates disrupted KYN metabolism in MDD,
bipolar disorder, and SCZ [245–247]. Earlier, KYN
metabolites were suggested to be either neuroprotective or
neurotoxic [248]. However, increasing evidence suggests
that KYN metabolites exhibit versatile actions, potentially
influenced by concentrations and the microenvironment
[249]. Previously, cognitive and motor functions of
129/SvEv kat2-/- mice were reported. These transgenic
mice exhibited transient hyperlocomotive activity and
motor coordination issues at postnatal day 21. However,
from postnatal day 17 to 26, they demonstrated notable
improvements in cognitive functions, particularly in object
exploration and recognition tasks in PAT and T-maze tests
[250,251].

Other biosystems play an important role in the patho-
genesis of PTSD, including dopaminergic and gamma-
aminobutyric acid (GABA)ergic, and cannabinoid sys-
tems. Catechol-O-methyltransferase (COMT) degrades
dopamine. COMT -/- mice exhibited an increased response
to repeated stress exposures [252]. Glutamic acid decar-
boxylase (GAD) synthesizes GABA [253]. GAD6-/- mice
shows increased generalized fear and impaired extinction
of cued fear [254]. GABA receptor subunit B1a knockout
GABAB1a-/- mice showed a generalization of conditioned
fear to nonconditioned stimuli [255]. Cannabinoid 1 recep-
tor (CBIR) knockout CB1R-/- mice showed an increased re-
sponse to repeated stress exposures [256].

The potential of this study is to characterize the nega-
tive valence of emotional domain in context with aversive-
conditioned memory and despair experience in the young
adult (8 week) of kat2-/- mice. The findings complement the
previous studies of kat2-/- mice in the early adolescence (2
and 1/2 to 4 weeks) to reveal that, toward adulthood, there
is a dynamic change in emotional susceptibility and mo-
tor function derived from despair experience in adjunct to
Trp metabolism. Furthermore, urinary Trp metabolite lev-
els were generally consistent with plasma levels, suggesting
that urinary samples may serve as non-invasive biomarkers
for Trp metabolism status. This study may shed new light
on the deletion of the kat2 gene as a new avenue toward
understanding a KYN metabolite as an oxidative stressor,
a potential barrier between aversive-conditioned memory
and despair experience, a distinction between memory and
experience, their mechanism for the formation of intrusive

memories, and the pathogenesis of PTSD. The ultimate goal
is to probe a potential interventionable stage in age where
the progression of PTSD is preventable and to identify tar-
gets which drugs or psychotherapy can relieve symptoms
of PTSD. The greatest challenge lies in preclinical animal
models that are difficult to simulate and interpolate to men-
tal illnesses to achieve high model validity.

This research on transgenic mice offers great poten-
tial for future studies. By examining the link between be-
havioral changes and variations in Trp and its metabolites
in plasma and urine, scientists can gain insights into Trp
metabolism’s role in emotional and cognitive functions.
Additionally, assessing enzyme activities related to Trp
metabolism and their effects on oxidative stress and neu-
rochemical imbalances may uncover mechanisms behind
observed behavioral differences. This thorough approach
could reveal causal or parallel relationships, shedding light
on how altered Trp metabolism impacts neurochemical im-
balances and oxidative stress, contributing to conditions
like depression and PTSD. The results may help identify
specific biomarkers and therapeutic targets, opening new
pathways for precision medicine and more effective treat-
ments for neuropsychiatric disorders. The study’s find-
ings could lead to the development of customized therapies,
enhancing mental health by focusing on unique metabolic
pathways and genetic factors. This research highlights the
importance of combining metabolic, behavioral, and ge-
netic data to deepen our understanding of complex psychi-
atric disorders [257].

This study suggests that behavioral sampling in
rodents can distinguish between fear-, memory-, and
despair-based depression-like behavior associated with Trp
metabolism gene deletions. Further research incorporat-
ing neurochemical, neurogenetic, and electrophysiological
biomarkers may reinforce this finding. Additionally, us-
ing inhibitory RNA or antisense RNA on neurotransmit-
ters in specific brain regions could elucidate the precise
mechanisms underlying emotional behaviors. Preclinical
research drives advances in clinical applications like preci-
sion medicine and drug discovery [258–260]. The study ac-
knowledges weaknesses, noting distinctions in interpreting
animal behaviors and drug responses compared to humans.
Recent perspectives consider depression-like behavior in
FST as related to different stages of stress-coping behav-
iors [261]. Consequently, Translational research has limita-
tions that necessitate careful interpretation [262–264]. This
study employed animal models with standard protocols, fo-
cusing on the negative valence of the emotional domain and
motor function in kat2-/- mice. Further exploration with di-
verse models such as sucrose preference tests, fear condi-
tion tests, and those using non-standard protocols is crucial
for a more accurate characterization of kat2-/- mouse be-
havior. Notably, the Diagnostic and Statistical Manual of
Mental Disorders, Fifth Edition, emphasizes four symptom
clusters in PTSD diagnosis [265–267]. The transgenic mice
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in this study did not exhibit signs related to negative cog-
nitions and mood, and arousal state and reactivity were not
investigated.

5. Conclusions
Psychiatric disorders, including PTSD, have a signif-

icant impact on memory and emotion, and disruptions in
5-HT metabolism have been associated with these disor-
ders. The Trp-KYN metabolic pathway plays a crucial role
in metabolizing over 95% of the 5-HT precursor Trp. To
investigate the effects of gene deletion on negative valence
in emotion, memory, and motor function, transgenic kat2-/-
mice were created and compared to WT mice. The kat2-/-
mice exhibited depression-like behavior characterized by
despair experiences, diminished motor functions, and la
belle indifference-like characteristics without anxiety-like
behavior. This study provides insights into the negative va-
lence of the emotional domain in the context of aversive-
conditionedmemory and despair experiences in 8-week-old
kat2-/- mice. Understanding the complex interplay between
memory, emotion, and genetic factors is crucial for advanc-
ing our knowledge of psychiatric disorders [268,269]. By
elucidating the specific effects of gene deletion on negative
valence and related behaviors, this research contributes to
our understanding of the underlying mechanisms and po-
tential interventions.
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Abstract

Background: Cognitive, emotional, and social impairments are pervasive across neuropsy-
chiatric conditions, where alterations in the tryptophan (Trp)–kynurenine pathway and
its product kynurenic acid (KYNA) from kynurenine aminotransferases (KATs) have been
linked to Alzheimer’s disease, Parkinson’s disease, depression, and post-traumatic stress
disorder. In novel CRISPR/Cas9-engineered KAT II knockout (aadat−/− also known as
kat2−/−) mice, we observed despair-linked depression-like behavior with peripheral excito-
toxicity and oxidative stress. KAT II’s role and its crosstalk with serotonin, indole-pyruvate,
and tyrosine–dopamine remain unclear. It is unknown whether deficits extend to cog-
nitive, emotional, motor, and social domains or whether brain tissues mirror peripheral
stress. Objectives: Delineate domain-wide behaviors, brain oxidative/excitotoxic profiles,
and pathway interactions attributable to KAT II. Results: Behavior was unchanged across
strains. kat2−/− deletion remodeled Trp metabolic pathways: 3-hydroxykynurenine in-
creased, xanthurenic acid decreased, KYNA fell in cortex and hippocampus but rose in
striatum, quinaldic acid decreased in cerebellum and brainstem. These region-specific
changes indicate metabolic stress across the brain and align with higher oxidative load and
signs of excitotoxic pressure. Conclusions: Here, we show that KAT II deletion reshapes
regional Trp metabolism and amplifies oxidative and excitotoxic imbalance. Although
domain-wide behavioral measures, spanning cognition, sociability, and motor coordination,
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remained largely unchanged, these neurochemical alterations signify a latent emotional
bias rather than overt depressive-like behavior. This work, therefore, refines prior find-
ings by delineating KAT II–linked biochemical vulnerability as a potential substrate for
stress-reactive affective dysregulation.

Keywords: tryptophan metabolism; kynurenine; serotonin; dopamine; kynurenine
aminotransferase (KAT); oxidative stress; excitotoxicity; gut microbiota; transgenic mice;
behavioral test; emotional bias; affective vulnerability

1. Introduction
Cognitive dysfunction, emotional dysregulation, motor impairment, and atypical

social behavior represent core clinical features across a broad spectrum of neuropsychi-
atric and neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease,
schizophrenia (SCZ), and autism spectrum disorder (ASD) [1–5]. As the incidence of these
conditions continues to rise globally, their cumulative impact on public health infrastruc-
ture, caregivers, and society becomes increasingly profound [2,3,6–8]. These growing
challenges underscore the urgent need for elucidating the molecular and cellular mecha-
nisms that drive these complex disorders [1,4,9,10]. Among the neurobiological systems
under investigation, the metabolism of tryptophan (Trp)—an essential amino acid and a
biochemical precursor to numerous neuroactive compounds—has garnered substantial
attention in recent years [9,11–14].

Trp metabolism plays a pivotal role in modulating central nervous system (CNS)
functions, particularly those related to cognitive abilities, mood regulation, and social
behavior [15–19]. Dysregulation within these metabolic pathways has been increasingly
linked to the pathophysiology of diseases marked by cognitive decline and deficits in social
functioning [15–17,20,21]. The kynurenine (KYN) pathway is the principal route for Trp
catabolism, accounting for approximately 90% of total metabolic flux [15,16,21–23] (Figure 1).
This pathway produces a variety of bioactive metabolites with diverse effects on CNS
function [15,16,18,24,25]. Among these, kynurenic acid (KYNA) stands out due to its ability
to modify excitatory neurotransmission through its action on multiple receptors, including
N-methyl-D-aspartate (NMDA), α7-nicotinic acetylcholine, α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA), and kainate receptors [24,26–30]. KYNA is synthesized
via the irreversible transamination of KYN by kynurenine aminotransferase enzymes
(KATs), with the KAT II isoform being particularly prominent in the brain [19,25,28,31,32].
In contrast, another KYN pathway metabolite, 3-hydroxykynurenine (3-HK), contributes
to neurotoxicity by promoting oxidative stress through the generation of reactive oxygen
species [17,20,22,33,34]. While historically KYNA and 3-HK were categorized as strictly
neuroprotective and neurotoxic, respectively, emerging evidence reveals more complex,
context-dependent functions that vary based on concentration, receptor expression patterns,
and disease-specific factors [15,24,33,35,36].

In addition to the KYN pathway, several alternative routes for Trp metabolism signifi-
cantly influence CNS homeostasis [15,37–40]. One such pathway is the 5-HT–melatonin
(MEL) system [15,37,40–42]. 5-HT, synthesized from Trp, is a critical neurotransmitter
involved in mood regulation, affective balance, and social cognition. Its downstream
metabolite, MEL, regulates circadian rhythms and sleep architecture—factors integrally
linked to learning, memory consolidation, and executive functioning [39,42–44]. Perturba-
tions in this pathway are associated with a wide range of psychiatric disorders, including
major depressive disorder (MDD), generalized anxiety disorder (GAD), and disturbances
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in sleep and circadian regulation [12,39,41,45,46]. Here, we quantify regional 5-HT and
5-hydroxyindoleacetic acid (5-HIAA) to estimate serotonergic turnover in vivo and relate
these indices to KYN-pathway shifts.

Figure 1. Host–microbiota co-metabolism of aromatic amino acids: tryptophan (Trp) and phenylala-
nine routes to neuroactive and redox-active metabolites. (a) Kynurenine pathway (green): tryptophan
enters the kynurenine axis via TDO/IDOs to N-formyl-L-kynurenine → kynurenine, branching
through KMO to 3-hydroxykynurenine and 3-hydroxyanthranilic acid (→ quinolinic acid) or through
KATs to kynurenic acid. 2-amino-3-carboxymuconic-6-semialdehyde cyclizes/oxidizes toward quino-
linic acid, which is converted by QPRT → nicotinic acid mononucleotide and onward to NAD+ (via
NMNAT/NAD synthetase). This pathway balances neurotoxic (3-hydroxykynurenine, quinolinic
acid) and neuroprotective (kynurenic acid) signals while supplying cellular NAD+. (b) Serotonin
pathway (rose): tryptophan is hydroxylated by TPHs to 5-hydroxytryptophan and decarboxylated by
aromatic L-amino acid decarboxylase (AADC) to serotonin. Serotonin is catabolized by MAOs/ALDH
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to 5-hydroxyindole-3-acetic acid, or acetylated/methylated by AANAT → N-acetylserotonin and
HIOMT/ASMT → melatonin. This route links gut/brain serotonin tone with circadian signaling.
(c) Indole-pyruvate pathway (blue; microbiota–host): bacterial TNA converts tryptophan to in-
dole, which is oxidized to indoxyl and sulfated in the host to indoxyl sulfate. Parallel microbial
transamination/reduction/oxidation steps yield indole-3-pyruvic acid → indole-3-lactic acid/indole-
3-acetic acid, indole-3-acetaldehyde, 3-indoleacrylic acid, and indole-3-propionic acid. These ligands
engage AhR, fortify epithelial barriers, and shape systemic immunity. Note: microbiome composi-
tion/function was not assessed here; indole readouts are interpreted as central metabolic signatures
rather than direct measures of microbial activity. (d) Tyrosine (Tyr)–dopamine (DA) pathway (yellow):
phenylalanine → tyrosine (PAH) → levodopa (TH) → dopamine (AADC) → noradrenaline (DBH)
→ adrenaline (PNMT), with COMT/MAOs/ALDH producing 3,4-dihydroxyphenylacetic acid, 3-
methoxytyramine, homovanillic acid, vanyllilmandelic acid, and 3-methoxy-4-hydroxyphenylglycol.
In parallel, microbial fermentation of phenylalanine/tyrosine generates p-Hydroxyphenylacetic acid
and p-Cresol, further host-conjugated to p-Cresyl sulfate—an impactful uremic/toxic metabolite.
The enzymes AADC, ArAT, MAOs, ALDH, and SULTs are involved not only in the Tyr–DA pathway
but also participate in the 5-HT or indole–pyruvate metabolic pathways. Black arrows: the host
routes; red arrows: the gut microbiota routes; white arrows: host and microbiota routes with the
same enzyme. 3-HAA, 3-hydroxyanthranilic acid; 3-HAO, 3-hydroxyanthranilate oxidase; 3-HK, 3-
hydroxykynurenine; 3-MT, 3-methoxytyramine; 3-OMD, 3-O-methyldopa; 5-HIAA, 5-hydroxyindole-
3-acetic acid; 5-HIAL, 5-hydroxyindole-3-acetaldehyde; 5-HT, 5-hydroxytryptamine/serotonin; 5-
HTP, 5-hydroxytryptophan; A, adrenaline; AA, anthranilic acid; AAD, amino acid decarboxy-
lase; AADC, aromatic L-amino acid decarboxylase; AANAT, arylalkylamine N-acetyltransferase;
acdA, acyl-CoA dehydrogenase; ACMS, 2-amino-3-carboxymuconic-6-semialdehyde; ACMSD,
amino-β-carboxymuconate-semialdehyde-decarboxylase; AldA, indole-3-acetaldehyde dehydro-
genase; ALDH, aldehyde dehydrogenase; AMS, 2-aminomuconic-6-semialdehyde; ArAT, aromatic
amino acid aminotransferase; ASMT, acetylserotonin-O-methyltransferase; COMT, catechol-O-
methyltransferase; CYP2D6, cytochrome P450 2D6; CYPs, cytochrome P450 monooxygenases; DA,
dopamine; DBH, dopamine β-hydroxylase; DOPAC, 3,4-dihydroxyphenylacetic acid; DOPAL, 3,4-
dihydroxyphenylacetaldehyde; fldBC, phenyllactate dehydratase; fldH, indole-3-pyruvate ferre-
doxin oxidoreductase; FMOs, flavin-containing monooxygenases; HPAD, 4-hydroxyphenylacetate
decarboxylase; HVA, homovanillic acid; IA, 3-indoleacrylic acid; IAA, indole-3-acetic acid; IaaH,
indole-3-acetamide hydrolase; IAAld, indole-3-acetaldehyde; IAM, indole-3-acetamide; ICA, indole-
3-carboxylic acid; IDOs, indoleamine 2,3-dioxygenases (IDO1 and IDO2); ILA, indole-3-lactic acid;
INS, indoxyl sulfate; IPA, indole-3-propionic acid; IPDC, indole-3-pyruvate decarboxylase; IPyA,
indole-3-pyruvic acid; KAT III, kynurenine aminotransferase III; KATs, kynurenine aminotrans-
ferases (KAT I, II, III, and IV); KFA, kynurenine formamidase; KMO, kynurenine-3-monooxygenase;
KYN, kynurenine; KYNA, kynurenic acid; KYNU, kynureninase; L-DOPA, dihydroxyphenylala-
nine/levodopa; MAOs, monoamine oxidases (MAO-A and MAO-B); MEL, melatonin; MHPG,
3-methoxy-4-hydroxyphenylglycol; MHPGS, 3-methoxy-4-hydroxyphenylglycol sulfate; NA, no-
radrenaline; NAD+, nicotinamide adenine dinucleotide; NAAD, nicotinic acid adenine dinu-
cleotide; NAS, N-acetylserotonin; NFK, N-formyl-L-kynurenine; NMN, nicotinic acid mononu-
cleotide; NMNAT, nicotinamide mononucleotide adenylyltransferase; p-Cre, p-Cresol; p-HPA, para-
hydroxyphenylacetic acid; pCS, p-Cresyl sulfate; PA, picolinic acid; PAH, phenylalanine hydroxylase;
Phe, phenylalanine; PNMT, phenylethanolamine N-methyltransferase; QA, quinolinic acid; QAA,
quinaldic acid; QPRT, quinolinate phosphoribosyl transferase; SULTs, sulfotransferases; TDC, tyrosine
decarboxylase; TDO, tryptophan-2,3-dioxygenase; TH, tyrosine hydroxylase; TMO, tryptophan-2-
monooxygenase; TNA, tryptophanase; TPHs, tryptophan hydroxylases (TPH1 and TPH2); TrD,
tryptophan decarboxylase; Trp, tryptophan; Tyr, tyrosine; TYRA, tyramine; VMA, vanyllilmandelic
acid; XA, xanthurenic acid; ?, unknown.

Another prominent route is the indole–pyruvate pathway, primarily driven by the
gut microbiota [47–51]. In this pathway, microbial enzymes convert Trp into several indole
derivatives through distinct enzymatic reactions [47–49,51,52]. These indole metabolites
are capable of crossing the intestinal barrier and influencing the CNS by modulating neu-
roinflammatory processes, maintaining gut epithelial integrity, and regulating blood–brain
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barrier (BBB) permeability [47,48,51,53,54]. This bidirectional communication along the gut–
brain axis has been implicated in the pathophysiology of mood disorders, ASD, and other
conditions characterized by social and emotional dysregulation [48,52,55–57]. We therefore
profile brain-region levels of indole-3-acetic acid (IAA) and indole-3-carboxaldehyde (ICA)
as sentinel markers of gut–brain indole signaling in KAT II knockout mice. ICA, IAA, and
indoxyl sulfate (INS) are established readouts of microbiota-derived indole flux, but micro-
biome profiling was not performed here; thus, brain-region values represent neurochemical
correlates rather than direct measures of microbial composition or function.

Additionally, Trp metabolism exerts regulatory effects on dopaminergic neurotrans-
mission via its influence on the tyrosine (Tyr)–dopamine (DA) pathway [37,58–61]. Specif-
ically, Trp availability impacts the synthesis of tetrahydrobiopterin (BH4), a critical
cofactor required by tyrosine hydroxylase—the rate-limiting enzyme in DA produc-
tion [37,58,59,62,63]. Given DA’s fundamental role in mediating reward processing, at-
tentional control, and social engagement, this intersection further emphasizes the ex-
tensive reach of Trp metabolism in orchestrating complex behavioral and cognitive out-
comes [39,59,64–66]. To capture this crosstalk, we quantify Tyr, levodopa (L-DOPA), DA,
and downstream metabolites alongside the pterin pool (BH4, dihydrobiopterin [BH2], and
biopterin [BIO]).

In earlier research, we examined the interrelationships between affective disorders—such
as MDD, GAD, and post-traumatic stress disorder—and systemic alterations in Trp and its
downstream metabolites in the kat2−/− mice model [67]. Although traditionally con-
ceptualized as mood disorders, these conditions also encompass profound cognitive
impairments, including deficits in memory, sustained attention, and executive functio-
ning [68–72]. Such impairments frequently manifest early in the course of illness and may
persist independently of affective symptoms [68,70,72–74]. Notably, MDD has emerged as
a significant risk factor for the subsequent development of neurodegenerative conditions
like AD [68,70,75–77]. In parallel, individuals suffering from MDD and GAD often ex-
hibit marked social dysfunction, including social withdrawal, blunted affect, and reduced
empathic capacity [68,69,71,72,78]. These features closely parallel behavioral phenotypes
observed in ASD and SCZ, further complicating differential diagnosis and therapeutic
decision-making [68,71,78–81]. A mechanistic understanding of the molecular pathways
that underlie these shared features is therefore of paramount importance [68,75,81–83].

To probe the contributions of Trp metabolic dysregulation to these behavioral pheno-
types, we utilized a genetically engineered mouse model deficient in KAT II (kat2−/−) [67].
This knockout model disrupts the biosynthetic pathway for KYNA, allowing for detailed
investigation of downstream metabolic consequences. Targeted metabolomic profiling
of urine and plasma revealed a pronounced decrease in KYNA levels, accompanied by
elevated concentrations of 3-HK. These findings reinforce the essential role of KAT II in
modulating the balance between neuroprotective and neurotoxic metabolites within the
KYN pathway. Building directly on this peripheral signature, the current study extends
metabolomics to five brain regions (striatum [STR], cortex [CTX], hippocampus [HIPP],
cerebellum [CER], brainstem [STEM]) to resolve central, region-specific consequences of
KAT II deletion.

Despite inherent limitations in modeling human psychiatric and neurodegenerative
diseases in rodents—especially with regard to complex cognitive processes and nuanced
social behaviors—this genetic model affords a valuable platform for dissecting the neuro-
chemical substrates of behavior [84–88]. In the present study, we aimed to systematically
evaluate cognitive function and social behavior in kat2−/− mutant mice, with a particular
focus on mapping these behavioral parameters to region-specific changes in the concentra-
tions of Trp and its metabolites within the brain. To avoid overreach, links to depression
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and post-traumatic stress disorder are framed at the pathway level rather than the disorder
level, recognizing that this model does not reproduce full clinical syndromes. To enhance
cross-domain alignment, behavioral endpoints are mapped to region-specific metabolic
indices using shared labels and synchronized panel order across figures and tables, with
NORT and 3CT panels cross-referenced to cortical and hippocampal KYNA, 3 HK, and XA,
and Rotarod aligned to striatal metrics. This integrative approach offers a robust frame-
work for uncovering potential neurochemical signatures that underlie cognitive and social
impairments. Accordingly, our prespecified objectives were to (i) map region-resolved Trp
metabolism across the KYN, 5-HT, and indole axes; (ii) quantify the Tyr to L-DOPA to DA
cascade and its enzymatic and cofactor milieu (BH4, BH2, BIO); (iii) infer pathway activities
using product-substrate ratios (for example, KMO and KAT fluxes, monoamine oxidase
[MAO] and aldehyde dehydrogenase [ALDH] turnover) and derive oxidative-stress and
excitotoxicity indices; (iv) link these neurochemical states to a broadened behavioral bat-
tery encompassing cognition (novel object recognition [NORT], object-based attention
[OBAT], Y-maze test), motor coordination (rotarod test), emotion (marble burying test
[MBT]), and sociability (three-chamber test [3CT]); and (v) test concordance between brain
and peripheral metabolic signatures. By coupling this expanded behavioral panel with
multi-region neurochemical profiling, we aim to delineate how KAT II loss reshapes a
KYN-tilted, cofactor-constrained, and indole-modulated milieu, and to determine whether
such biochemical disequilibria necessarily generalize to global cognitive or social dysfunc-
tion, thereby informing pathway-targeted therapeutic strategies across neuropsychiatric
spectra [89]. We therefore consider whether regionally divergent KYN remodeling could
preserve baseline performance through circuit-level buffering while predisposing selected
behavioral domains to failure under cognitive load or stress.

In our previous investigation [67], kat2−/− mice exhibited despair-like responses under
stress-inducing paradigms such as the forced swim test, suggesting enhanced affective
vulnerability. The present study, however, was specifically designed to determine whether
these affective alterations persist under non-stressful baseline conditions and extend to
cognitive, social, and motor domains. The absence of significant behavioral divergence
observed here indicates that KAT II deficiency alone does not elicit broad behavioral
dysfunction but may instead confer a latent predisposition that becomes evident only
under environmental or metabolic stress. This distinction refines our earlier interpretation
by differentiating stress-contingent affective reactivity from baseline behavioral stability.

2. Materials and Methods
This study used a standardized behavioral battery (NORT, OBAT, Y-maze, marble bury-

ing, three-chamber, rotarod) with targeted ultra-high-performance liquid chromatography
with tandem mass spectrometry (UHPLC–MS/MS) metabolomics across five brain regions.
Reporting followed ARRIVE 2.0 guidelines; genotypes were confirmed by a TaqMan allelic
discrimination assay on HotSHOT-extracted DNA. Behavioral readouts were acquired
with automated video tracking (EthoVision XT14, Noldus Information Technology BV,
Wageningen, The Netherlands), and metabolite quantification employed isotope-labeled
internal standards and established multiplex panels. Enzyme-activity proxies and oxida-
tive/excitotoxic indices were computed from product–substrate ratios. Statistical analysis
prespecified normality testing, variance checks, outlier detection, effect sizes (Hedges g
with bootstrap CIs), and post hoc power. Methodological choices align with validated
OBAT/NORT protocols, EthoVision reliability, and best practices for UHPLC–MS/MS
quantitation and animal reporting.
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2.1. Ethical Approval

The Department of Nature Conservation of the Ministry of Agriculture authorized
the use of genetically modified organisms in a level 2 biosafety closed system (permit
number: TMF/43-20/2015). The import of genetically modified animals was approved
by the Department of Biodiversity and Gene Conservation of the Ministry of Agriculture
(permit number: BGMF/37-5/2020). The investigations were conducted in accordance with
the Ethical Codex for Animal Experiments and were approved by the Ethics Committee of
the Faculty of Medicine at the University of Szeged, as well as by the National Food Chain
Safety Office, under permission number XI./84/2025. and XI./1008/2025, in accordance
with Government Decree 40/2013 (II.14.), and the European Communities Council Directive
2010/63/EU.

2.2. Animals

The C57BL/6N wild-type (WT) strain was originally sourced from Charles River
Germany. The kat2−/− strain was provided by our collaboration partners at Kyushu
University (Fukuoka, Japan). A comprehensive description of the generation of the ge-
netically modified strain can be found in our previously published article [67]. The ani-
mals were housed in groups of 4–5 per cage in polycarbonate enclosures (530 cm2 floor
area) under specific pathogen-free conditions at the Animal Facility of the Department of
Neurology, University of Szeged. Environmental parameters were stringently controlled,
with ambient temperature maintained at 24 ± 1 ◦C and 45–55% relative humidity under
a 12:12 h light–dark cycle. Throughout the duration of the investigation, mice had unre-
stricted access to standard rodent food and water. Environmental enrichment was provided
using paper rolls, gnawing wood, and nesting cotton. In total, 46 WT and 49 kat2−/− mice
were included in the behavioral assessments, while an additional cohort of 10 WT and
10 kat2−/− mice was used for metabolomic analyses. The general condition of the animals
was monitored weekly until the start of the experiments, and daily during the experimental
period, using a standardized scoring system. This system was applied to assess body
weight, general appearance, respiration, mobility, and basic reflexes. If an animal were to
reach the predetermined critical score threshold, it would be humanely withdrawn from
the study.

2.3. Genotyping with Taqman Allelic Discrimination Assay

All animals were genotyped prior to enrollment. Tail biopsies were collected under
2% isoflurane anesthesia with topical lidocaine and processed by an alkaline lysis protocol
adapted from HotSHOT. The extraction yielded DNA suitable for downstream analysis.
Concentration and purity were verified by spectrophotometry, and extracts were stored at
−20 ◦C until use [89].

Genotypes were determined with a TaqMan allelic discrimination assay on a CFX
Opus 96 real-time PCR system (Bio-Rad Laboratories, Hercules, CA, USA). Reactions were
run in singleplex with allele-specific primers and dual-labeled probes. Each plate contained
non-template controls together with verified WT and kat2−/− controls. Allele calls were
assigned from endpoint fluorescence scatter plots and were cross-checked by amplification
curves. Ambiguous calls were repeated from the DNA stock.

To improve readability, only the assay overview is retained in the main text. Com-
plete procedural details, including primer and probe sequences, reagent compositions,
thermal cycling parameters, plate layout, cluster calling criteria, and representative allelic
discrimination plots, are provided in the Supplementary Materials.
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2.4. Behavioral Tests

Cognitive, emotional, motor, and social domains were assayed with NORT for recog-
nition memory, OBAT for attention, Y-maze spontaneous alternation for working memory,
MBT, the accelerating rotarod for motor coordination, and 3CT for sociability. The behav-
ioral experiments were performed on 8-week-old male mice of the C57BL/6N and kat2−/−

strains, with n = 10–13 animals included per group. Sample sizes were determined using
a power analysis performed with the GPower 3.1 statistical software. A t-test (difference
between two independent means, two groups, two-tailed) was applied with the follow-
ing parameters: significance level (α) = 0.05, power (1–β) = 0.8, effect size d = 1.33, and
allocation ratio N2/N1 = 1. Based on these calculations, the required sample size for the
behavioral tests was n = 10 per group. After completing the tests, a post hoc analysis was
performed to verify whether the sample size was adequate for detecting large effect sizes.
The following results were obtained: normality parameter = 2.973, critical t = 2.100, Df = 18,
yielding an achieved power of 0.802. Based on these calculations, the resulting statistical
power was approximately 0.80, indicating that under the given assumptions, the sample
size was sufficient to detect large effect sizes. The animals were habituated to handling by
the experimenters for one week prior to testing. all tests were conducted between 8:00 a.m.
and 12:00 p.m. Prior to testing, animals were transferred to the experimental laboratory
one hour in advance. NORT, OBAT, Y-maze, MBT, and 3CT were recorded using a video
tracking system (Basler ace Classic acA1300-60 gm, Basler AG, Ahrensburg, Germany)
in combination with behavioral analysis software (EthoVision XT14, Noldus Information
Technology BV, Wageningen, The Netherlands). For the rotarod test, we used the TSE
RotaRod V4.2.6 system (TSE Laboratory, Ormskirk, UK).

2.4.1. Novel Object Recognition Test (NORT)

For the NORT, we used n = 12 animals per group (total of 24 animals). The behav-
ioral assessments were conducted in a 60 × 60 × 60 cm open-field arena. Three distinct
objects—different in color and shape but matched in size and scale relative to the
animals—were utilized. The test was carried out across three consecutive days [90–94].
On the habituation day, each animal was placed in the empty arena for a duration of 10
min on the second day (training session), animals were allowed to explore two of the three
objects for 10 min, Animals that failed to exhibit any interaction with the object designated
as the familiar object during the training phase were excluded from further analysis in the
experiment. On the third day (test session), one of the familiar objects from the training
phase was substituted with the previously unencountered third object. This unfamiliar
item functioned as the novel object, whereas the remaining object served as the familiar
object. During NORT, we measured the following parameters: (1) time spent with the
training object in the training phase, (2) time spent with the familiar object in the training
phase, (3) time spent with the familiar object in the testing phase, (4) time spent with the
novel object in the testing phase.

During both NORT and OBAT, the duration of investigation directed toward the
novel and familiar objects was systematically recorded. object recognition and novelty
preference, two normalized metrics were employed: the discrimination index (DI) and
the preference index (PI). The DI quantifies the relative preference for the novel object
compared to the familiar one, while the PI expresses the proportion of total exploration
time that the animal allocated to the novel object. Both indices account for individual
variability in total investigation time and were computed using the following formulas
(Equations (1) and (2)).

discrimination index(DI) =
Tnovel − T f amiliar
Tnovel + T f amiliar

(1)
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pre f erence index(PI) =
Tnovel

Tnovel + T f amiliar
× 100 (2)

2.4.2. Object-Based Attention Test (OBAT)

The object-based attention test (OBAT), originally developed by Wulaer and colleagues,
represents a validated behavioral paradigm for evaluating attentional performance in
rodents [95–99]. This method is similar to the NORT; the OBAT leverages the rodent’s
intrinsic exploratory drive and preference for novelty. A total of 24 animals were used, with
12 assigned to each group (n = 12). The experimental setup comprises a two-compartment
arena with dimensions of 40 × 40 × 40 cm (larger compartment) and 20 × 40 × 40 cm
(smaller compartment) and utilizes six distinct objects. These objects differ in color and
shape but are comparable in size. The procedure consists of two sequential phases: a
training phase and a testing phase. During the training phase, the animal is introduced into
the larger compartment containing five distinct objects and is allowed a 3 min exploration
period. Animals that did not engage in any interaction with the object assigned as the
familiar object during the training phase were excluded from subsequent experimental
analysis. Subsequently, one of these previously encountered objects, along with a sixth,
novel object, is placed in the smaller compartment for the 3 min test phase. The novel
item serves as the novel object, while the reintroduced item functions as the familiar object.
Animals that did not engage with the object, later serving as the familiar stimulus during
the training phase, were systematically excluded from subsequent experimental evaluation.

The following parameters were assessed during the NORT: (1) duration of interaction
with the training objects during the training phase, (2) duration of interaction with the
familiar object during the training phase, (3) time spent exploring the familiar object
during the testing phase, and (4) time spent interacting with the novel object during the
testing phase.

2.4.3. Y-Maze Test

Rodents exhibiting intact working memory capacity, and thereby preserved prefrontal
cortical function, are capable of recalling which arms have been recently explored and
display a preferential inclination to enter the arm that has not been visited in the most
recent sequence [100–103]. A total of 24 animals were used, with 12 assigned to each
group (n = 12). At the onset of the trial, the animal is positioned at the distal end of the
longest arm of the Y-maze, oriented toward the central zone. Thereafter, it is granted an
eight-minute period to freely explore the maze. The spontaneous alternation rate was
determined according to the following formula (Equation (3)).

spontaneous alternation(%) =
number o f spontaneous alternations

total number o f arm entries − 2
× 100 (3)

During the Y-maze test, we measured spontaneous alternation behavior as well as the
total number of entries into all three arms.

2.4.4. Marble Burying Test (MBT)

The marble burying test (MBT) was used to evaluate repetitive and compulsive-
like behaviors. Although its interpretation remains debated, several studies suggest that
increased marble burying may be associated with enhanced behavioral rigidity and social
withdrawal, particularly in animal models displaying impaired sociability [104–108].

The MBT was conducted with 23 animals in total, including 10 WT and 13 kat2−/−

mice (n = 10–13 per group). The animals were individually placed in a transparent plastic
arena measuring 40 × 24 × 18 cm. The base of the apparatus was filled with a 5 cm deep
layer of fresh bedding material. To allow adequate ventilation while preventing escape.
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The enclosure was covered with a transparent plastic lid (40 × 24 cm, 1 cm thick) featuring
six circular perforations, each 1 cm in diameter. At one end of the arena, sixteen glass
marbles (each with dimensions of 1 × 1 × 1 cm3) were positioned on the bedding in a
regular square grid formation. The outermost marbles were placed 3.5 cm from the arena
walls, with 5 cm spacing between adjacent marbles. Each mouse was allowed to explore
the arena freely for a period of 30 min. The marbles were categorized based on their status:
intact, displaced, partially buried (0–75%), or fully buried (75–100%). These measurements
were subsequently analyzed and compared across experimental groups.

2.4.5. Three Chamber Test (3CT)

Sociability is operationally defined as the propensity of the test mouse to spend a
greater proportion of time in the compartment containing a novel conspecific, as opposed
to the compartment housing a novel inanimate object. A supplementary and confirmatory
metric involves the quantification of time spent engaging in olfactory investigation of the
novel conspecific relative to the novel object, thereby providing an index of direct social
interaction. Additionally, the number of transitions between compartments [109–113].

A total of 24 animals were used, with 12 assigned to each group (n = 12). A rectangular
three-chambered apparatus was employed for the 3CT. Each compartment measured
20 × 40.5 × 22 cm. The chambers were divided by opaque gray plastic walls, each
containing manually operated doors (7.5 × 5 cm) to allow controlled access between
compartments. Cylindrical wire-mesh enclosures (15 cm in height, 7 cm in diameter)
were positioned in both lateral chambers. The mesh structure, composed of bars spaced
1 cm apart, permitted adequate airflow between the interior and exterior of the cylinder
while simultaneously preventing direct physical contact between the test subject and the
stimulus animal or object placed within. This configuration allowed for the assessment of
social preference and investigatory behavior while minimizing confounding factors related
to tactile interaction [109,114–117]. The test protocol consisted of three distinct phases.
During the habituation phase, the subject mouse was confined to the center chamber of
the apparatus for a period of 10 min with all doors closed, allowing acclimatization to the
environment. In the sociability phase, the doors to the lateral chambers were opened, and
the test mouse, starting from the center chamber, was allowed to freely explore all three
compartments for 10 min. One lateral chamber contained an empty wire-mesh enclosure,
while the other housed a wire cage enclosing a novel conspecific that was matched to the
test animal in sex, age, and body weight. The social novelty preference phase followed a
similar structure: the subject animal started from the center chamber and was given 10 min
to explore the entire apparatus. In this phase, the previously encountered conspecific from
the sociability phase served as the familiar animal, while a non-familiar, sex-, age-, and
weight-matched conspecific was introduced into the formerly empty cage, serving as the
novel animal.

During the sociability phase, we quantified (1) time spent in the social chamber,
(2) time spent in the non-social chamber, (3) time spent in the center chamber, (4) time spent
sniffing the social cage, (5) time spent sniffing the non-social cage, (6) number of entries to
the social chamber, (7) number of entries to the non-social chamber, (8) number of entries
to both chambers. In the social novelty preference phase, we measured the (1) time spent
in the novel chamber, (2) time spent in the familiar chamber, (3) time spent in the center
chamber, (4) time spent sniffing the novel animal’s cage, (5) time spent sniffing the familiar
animal’s cage, (6) number of entries to the novel chamber, (7) number of entries to the
familiar animal’s chamber, (8) number of entries to both chambers.
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2.4.6. Rotarod Test

The apparatus comprised a rotating rod equipped with an automated fall-detection
system at the base, which interfaced with the TSE RotaRod V4.2.6 system (TSE Laboratory,
Berlin, Germany) to automatically terminate the timer upon the animal’s fall [118–122].
We used n = 12 animals per group (a total of 24 animals). Animals underwent a two-day
habituation and training protocol. On Day 1, each mouse was placed individually on the
rotating rod, which was maintained at a constant speed of five revolutions per minute
(rpm) for a duration of three minutes. Should the animal have fallen before the allotted
time elapses, it was promptly repositioned on the rod. Following the initial session, the
animal was returned to its home cage, and the procedure was repeated twice more at 30 min
intervals. On Day 2, the training procedure was repeated, with the rotation speed increased
to a constant 10 rpm, thereby introducing a higher motoric challenge and reinforcing task
familiarity. The testing phase was conducted on Day 3. During this phase, animals were
placed on the rod, which now accelerated linearly from 5 to 40 rpm over a 3 min period.
Each animal underwent three test trials, with a 30 min inter-trial interval. Unlike during
training, animals were not returned to the rod after falling. The latency to fall—defined as
the time the animal remained on the rod before falling—was recorded automatically via the
tracking software. The average latency across the three test trials served as the composite
performance score for each subject, reflecting overall motor coordination and skill retention
under increasing demands.

2.5. Ultra-High-Performance Liquid Chromatography with Tandem Mass
Spectrometry (UHPLC-MS/MS)
2.5.1. Brain Samples

A total of n = 10 animals per group were included in the metabolomic measurements.
Sample sizes were estimated through power analysis using GPower 3.1 statistical software.
Calculations were based on a two-tailed t-test comparing two independent means, with the
following parameters: significance level (α) = 0.05, power (1–β) = 0.8, effect size (d) = 1.33,
and an allocation ratio (N2/N1) of 1. According to these estimates, a sample size of n = 10
animals per group was required for the measurements. Following the completion of the
measurements and statistics, a post hoc power analysis was conducted to assess whether
the sample size was sufficient to detect large effect sizes. The analysis yielded the following
parameters: normality = 2.973, critical t = 2.100, and degrees of freedom (Df) = 18, resulting
in an achieved power of 0.802. These findings indicate that, under the given assumptions,
the statistical power was approximately 0.80, confirming that the sample size was adequate
for detecting large effect sizes.

For tissue collection, mice were anesthetized with 2% isoflurane and then perfused
transcardially with artificial cerebrospinal fluid. The brains were subsequently dissected
into five distinct regions—striatum, cortex, hippocampus, cerebellum, and brainstem. All
tissues were collected on ice and stored at −80 ◦C until further analysis. Tissue sampling
was performed between 8 am and 12 pm local time to limit circadian variability in Trp
pathway measures.

We used a randomized, blinded, region-resolved design that integrates targeted liq-
uid chromatography with tandem mass spectrometry (LC-MS/MS) metabolomics with a
standardized behavioral battery in kat2 knockout and WT mice, and we report procedures
according to ARRIVE 2.0 to maximize reproducibility. Regarding the brain samples, follow-
ing the determination of tissue weights, the samples were homogenized using an ultrasonic
homogenizer (UP100H, Hielscher Ultrasound Technology, Germany) set to 100% amplitude
and a 0.5 cycle setting. Homogenization was performed in threefold volumes of ice-cooled
LC-MS grade water relative to tissue mass (e.g., 90 µL of water was added to 30.0 mg of
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tissue). Data from any brain regions in which tissue preparation or homogenization did
not meet predefined quality standards were excluded from subsequent analyses to ensure
methodological consistency and data reliability. We quantified Trp-KYN, serotonergic,
and indole metabolites, plus catecholamine intermediates and selected cofactors, using
previously published multiplex LC-MS/MS methods and protocols [123,124]. For PA,
the MRM transition was 124.0 → 106.0 m/z, with a retention time of 1.21 min, using a
declustering potential of 75 V and a collision energy of 13 V. For ICA, the MRM transition
was 146.1 → 118.0 m/z, with a retention time of 12.40 min, using a declustering potential
of 50 V and a collision energy of 19 V. For IPA, the MRM transition was 190.1 → 130.1 m/z,
with a retention time of 13.00 min, using a declustering potential of 50 V and a collision
energy of 19 V. For ILA, the MRM transition was 206.1 → 188.1 m/z, with a retention
time of 12.00 min, using a declustering potential of 50 V and a collision energy of 13 V.
For INS, the MRM transition was 211.9 → 131.9 m/z, with a retention time of 11.80 min,
using a declustering potential of −50 V and a collision energy of −25 V. For pCS, the MRM
transition was 186.9 → 107.0 m/z, with a retention time of 12.70 min, using a declustering
potential of −50 V and a collision energy of −26 V. All reagents and chemicals were of
analytical or liquid chromatography–mass spectrometry grade. Trp and its metabolites,
and their deuterated forms: d4-serotonin, d5-tryptophan, d4-kynurenine, d5-kynurenic
acid, d4-xanthurenic acid, d5-5-hydroxyindole-acetic acid, d3-3-hydroxyanthranilic acid,
d4-picolinic acid, and d3-quinolinic acid were purchased from Toronto Research Chem-
icals (Toronto, ON, Canada). d3-3-hydroxykynurenine was obtained from Buchem B. V.
(Apeldoorn, The Netherlands). Acetonitrile (ACN) was provided by Molar Chemicals
(Halásztelek, Hungary). Methanol (MeOH) was purchased from LGC Standards (Wesel,
Germany). Formic acid (FA) and water were obtained from VWR Chemicals (Monroeville,
PA, USA). The UHPLC-MS/MS system consisted of a PerkinElmer Flexar UHPLC sys-
tem (two FX-10 binary pumps, solvent manager, autosampler, and thermostatic oven; all
PerkinElmer Inc. (Waltham, MA, USA)), coupled to an AB SCIEX QTRAP 5500 MS/MS
triple quadrupole mass spectrometer and controlled by Analyst 1.7.1 software (both AB
Sciex, Framingham, MA, USA).

2.5.2. Plasma and Urine Samples

Plasma and urine samples were collected, prepared, and measured according to
previously published methodologies [67,123,124]. The samples were collected between
8 a.m. and 12 p.m. local time to limit circadian variability.

2.6. The Enzyme Activities of Tryptophan (Trp) Metabolism

The enzyme activity of Trp metabolism was estimated by calculating the ratio of the
product-to-substrate concentration ratio.

2.7. Oxidative Stress and Excitotoxicity Indices

The oxidative stress index was derived by calculating the ratio between the concentra-
tion of the presumed pro-oxidant metabolite 3-HK and the combined concentrations of the
putative antioxidant metabolites KYNA, anthranilic acid (AA), and xanthurenic acid (XA)
(Equation (4)).

Oxidative stress index =
[3 − hydroxykynurenine]

[Kynurenic acid] + [Anthranilic acid] + [Xanthurenic acid]
(4)
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The excitotoxicity index was determined by computing the ratio of quinolinic acid
(QA), an NMDA receptor agonist, to KYNA, an endogenous NMDA receptor antagonist
(Equation (5)).

Excitotoxicity index =
[Quinolinic acid]
[Kynurenic acid]

(5)

2.8. Statistical Analysis

All statistical analyses were conducted using IBM SPSS Statistics, version 28.0.0.0
(IBM Corp., Armonk, NY, USA). The normality of data distribution was assessed with the
Shapiro–Wilk test, and Q-Q plots were additionally employed to evaluate whether two
datasets originated from the same distribution.

In the statistical evaluation of the NORT, OBAT, and Y-maze, 3CT, and rotarod test,
inter-strain comparisons were performed using the independent samples t-test for normally
distributed data, whereas the non-parametric Mann–Whitney U test was employed in cases
where the assumption of normality was violated. Intra-strain comparisons of individual
parameters were carried out using the paired samples t-test when data conformed to a
normal distribution, and the Wilcoxon signed-rank test was applied for non-normally
distributed datasets.

For the MBT, a mixed ANOVA model was used, followed by the Tamhane post
hoc test.

Regarding the UHPLC-MS/MS measurements, the normality of the variables was
checked using the Kolmogorov–Smirnov test and visually checked using quantile-quantile
plots, and the equality of variances was examined using Welch’s F-test. Outliers were
identified using Grubbs’s test. Comparisons between the two groups were conducted using
an independent samples t-test.

Values p < 0.05 were considered statistically significant. Our data are reported as
means ± standard deviations (SD) for all parameters and experimental groups.

3. Results
3.1. Behavioral Tests
3.1.1. Novel Object Recognition Test (NORT)

During the NORT, both WT and kat2−/− animals spent significantly more time interact-
ing with the novel object compared to the familiar one. However, no significant differences
were detected between the strains (Figure 2, Tables S1 and S2).

3.1.2. Object-Based Attention Test (OBAT)

In the OBAT, no statistically significant differences were detected between the strains
in terms of overall object interaction time. Nonetheless, animals from the kat2−/− strain
exhibited a marked preference for the novel object, spending significantly more time
engaging with it compared to the familiar object during the testing phase (Figure 2,
Tables S1 and S2).

3.1.3. Three Chamber Test (3CT)

During the 3CT, both examined strains spent significantly less time in the lateral
chambers compared to the central starting chamber in both the second and third phases of
the test. Apart from this difference, no other significant variations were observed (Figure 2,
Tables S1 and S2).

3.1.4. Other Behavioral Tests

No significant differences were observed between the strains or within strains in the
Y-maze, MBT, and rotarod tests (Table S1).
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Figure 2. Behavioral assessment of wild-type (WT) and kat2−/− mice in object recognition and social
interaction paradigms. (a) Time spent sniffing familiar vs. novel objects in the novel object recognition
test (NORT). During the NORT, both WT and kat2−/− animals spent significantly more time exploring
the novel object. (b) Time spent sniffing familiar vs. novel objects in the object-based attention test
(OBAT). In the OBAT, the mutant strain spent more time with the novel object. (c) Time spent in the
center, social, and non-social chambers during the three-chamber test (3CT, Phase 2). Both WT and
kat2−/− mice spent more time in the side chambers than in the center chamber. (d) Time spent in
the center, novel animals, and familiar animals’ chambers during the 3CT (Phase 3). Both WT and
kat2−/− mice spent more time in the side chambers than in the center chamber. Wild-type mice (light
green); kat2−/− mice (dark green). Data are presented as mean ± SD. •, outlier. *, p < 0.05; **, p < 0.01;
***, p < 0.001. The figure was created with LabPlot 2.9.0 (KDE, Berlin, Germany) and BioRender.com.
3CT, three-chamber test; kat2−/−, kynurenine aminotransferase II knockout mice; NORT, novel object
recognition test; OBAT, object-based attention test; WT, wild-type mice.
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3.2. Ultra-High-Performance Liquid Chromatography with Tandem Mass
Spectrometry (UHPLC-MS/MS)

Several differences were observed between the WT and mutant strains in the vari-
ous brain regions examined during the chemical analytical measurements (Figures 3–5,
Tables S3 and S4). The most prominent difference was observed in the level of 3-HK, which
was uniformly and significantly increased in all examined brain regions of the kat2−/−

strain compared to the WT. In a similar pattern, xanthurenic acid (XA) levels were reduced
across all analyzed regions relative to the WT. In contrast, the concentration of KYNA,
whose alteration was most strongly anticipated, exhibited a significant reduction only in
the CTX and HIPP; however, the level of KYNA is increased in the STR. Interestingly, the
level of its downstream metabolite, quinaldic acid (QAA), remained unaltered in these
same areas, while a marked decrease was observed in the CRB and STEM.

In addition to the detailed concentration values presented above, a region- and matrix-
integrated overview of metabolite alterations is provided (Table S3). Consistent across all
examined brain regions, 3-HK was significantly elevated, whereas XA showed a uniform
reduction, underscoring a shift toward an oxidative and excitotoxic milieu. KYNA exhibited
a divergent pattern, being decreased in the CTX and HIPP yet elevated in the STR, while
QAA was selectively reduced in the CER and STEM. Within the serotonergic pathway,
5-hydroxytryptophan (5-HTP) declined in CTX and CER, whereas 5-HT increased in CTX
and urine, indicating altered turnover. Further changes included decreased Tyrin CTX
and HIPP and selective reductions in pterins. Peripheral findings in plasma and urine,
previously published, are integrated here for comparison, emphasizing the concordance
between central and systemic metabolic rewiring.

Complementing our previous measurements of Trp metabolite levels in plasma and
urine, we also measured the concentrations of additional metabolites from the indole-
pyruvate and TYR-DA pathways; however, we observed significant changes only in
3-methoxy-4-hydroxyphenylglycol sulfate (MHPGS) levels compared to WT (Figure 5,
Table S4).

3.3. Enzyme Activities

Enzyme activity ratios revealed pronounced remodeling of tryptophan metabolic
fluxes in kat2−/− mice (Figure 6, Table S5). As expected, KAT activity (KYN/Trp) displayed
a selective reduction in the STR, consistent with the genetic deletion of KAT II. Conversely,
KMO activity (3-HK/KYN) was markedly elevated across STR, CTX, HIPP, CER, and
STEM, indicating enhanced pro-oxidant pressure through 3-HK production. KYNU activity
(3-HAA/3-HK) showed a modest yet significant increase in the HIPP, while KAT III activity
(XA/3-HK) was consistently reduced in CTX, HIPP, CER, and STEM, reinforcing the
loss of protective XA formation. Within the serotonergic arm, tryptophan hydroxylase
(TPH) activity (5-HTP/Trp) was reduced in CTX and CER, whereas aromatic L-amino
acid decarboxylase (AADC) activity (5-HT/5-HTP) was elevated in STR, CTX, and HIPP,
suggesting compensatory 5-HT turnover. MAO/ALDH activity (5-HIAA/5-HT) was
decreased only in CTX, while TMO activity (IAA/Trp) was reduced in CTX, HIPP, and
CER. Furthermore, the activity of MAOs (DOPAC/DA) significantly decreased, while the
activity of COMT (HVA/DOPAC) increased in CER. Collectively, these shifts highlight
a pathway-specific reorganization, with KMO dominance, curtailed XA buffering, and
altered 5-HT–indole and Tyr-DA dynamics shaping the kat2−/− metabolic phenotype.
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Figure 3. Regional distribution of kynurenine (KYN) pathway metabolites in wild-type (WT)
and kat2−/− mouse brains. (a) Tryptophan (Trp), (b) Kynurenic acid (KYNA), (c) Quinaldic acid
(QAA), (d) Anthranilic acid (AA), (e) 3-hydroxykynurenine (3-HK), (f) Xanthurenic acid (XA), and
(g) 3-Hydroxyanthranilic acid (3-HAA) concentrations measured in striatum (STR), cortex (CTX),
hippocampus (HIPP), cerebellum (CER), and brainstem (STEM). Trp was significantly lower in
STR, CTX, and HIPP. While KYNA increased in STR, its concentration lowered in CTX and HIPP.
QAA’s concentration was significantly lower in CER and STEM. The level of AA was higher in CTX.
The concentration of 3-HK increased in every brain region. XA decreased in CTX, HIPP, CER, and
STEM. The level of 3-HAA increased in CTX. Wild-type (WT, light green) and kat2−/− (dark green)
groups are shown. Data are expressed as mean ± SD. •, outlier; ▲, far out. *, p < 0.05; **, p < 0.01;
***, p < 0.001. The figure was created with LabPlot 2.9.0 (KDE, Berlin, Germany) and BioRender.com. 3-
HAA, 3-hydroxyanthranilic acid; 3-HK, 3-hydroxykynurenine; AA, anthranilic acid; CER, cerebellum;
CTX, cortex; HIPP, hippocampus; KYNA, kynurenic acid; QAA, quinaldic acid; STEM, brainstem;
STR, striatum; Trp, tryptophan; WT, wild-type mice; kat2−/−, kynurenine aminotransferase II knock-
out mice; XA, xanthurenic acid.
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Figure 4. Region-specific alterations in serotonin (5-HT)-, indole-pyruvate-, and tyrosine (Tyr)–
dopamine (DA)-derived metabolites in wild-type (WT) and kat2−/− mice. Box plots showing con-
centrations of metabolites across brain regions in wild-type (WT, light green) and kat2−/− (dark
green) mice. (a,b) Serotonin pathway: 5-HTP (5-hydroxytryptophan), 5-HT (5-hydroxytryptamine,
serotonin). (c–f) Indole-pyruvate pathway: IAA (indole-3-acetic acid), ICA (indole-3-carboxaldehyde),
ILA (indole-3-lactic acid), INS (indoxyl sulfate). (g–j) Tyrosine-dopamine pathway: Tyr, DOPAC (3,4-
dihydroxyphenylacetic acid), BIO (biopterin), BH2 (dihydrobiopterin). Brain regions: STR, striatum;
CTX, cortex; HIPP, hippocampus; CER, cerebellum; STEM, brainstem. 5-HTP concentrations were
reduced in the STR, CTX, and CER, whereas 5-HT levels were selectively increased in the CTX. IAA
concentrations were diminished in the HIPP, ILA, and INS within the STEM, while ICA levels were
elevated in the CTX. Tyr levels were reduced in the CTX, and decreases in DOPAC, BIO, and BH2
were detected in the CER. Data are shown as mean ± SD. Symbols: •, outlier; ▲, far out. Significance:
*, p < 0.05; **, p < 0.01; ***, p < 0.001. Figures created with LabPlot 2.9.0 (KDE, Berlin, Germany) and
BioRender.com. 5-HT, serotonin (5-hydroxytryptamine); 5-HTP, 5-hydroxytryptophan; BH2, dihydro-
biopterin; BIO, biopterin; CER, cerebellum; CTX, cortex; DOPAC, 3,4-dihydroxyphenylacetic acid;
HIPP, hippocampus; ICA, indole-3-carboxaldehyde; IAA, indole-3-acetic acid; ILA, indole-3-lactic
acid; INS, indoxyl sulfate; kat2−/−, kynurenine aminotransferase II knockout mice; STEM, brainstem;
STR, striatum; Tyr, tyrosine; WT, wild-type mice.
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Figure 5. Overview of region- and matrix-specific alterations in tryptophan-derived metabolites
in 8-week-old male kat2−/− mice compared to wild-type (WT) controls in ultra-high-plasticity liq-
uid chromatography with tandem mass spectrometry. This figure summarizes significant alter-
ations in tryptophan–kynurenine, serotonin, indole-pyruvate, and tyrosine–dopamine pathway
metabolites across distinct brain regions (striatum, cortex, hippocampus, cerebellum, brainstem),
plasma, and urine in kat2−/− mice compared to the WT. Results highlight the region- and pathway-
selective metabolic rewiring induced by kat2 deletion, particularly the consistent increase of 3-
hydroxykynurenine and decrease in xanthurenic acid, alongside mixed kynurenic acid responses
and downstream shifts in serotonin, indole, and catecholamine derivatives. We marked significant
changes with circles. Red circles mean a statistically significant decrease, and green shows a sig-
nificant increase in the concentration compared to the WT mice. The increasing size of the circles
indicates higher levels of significance (small circle: p < 0.05; medium circle: p < 0.01; large circle:
p < 0.001). Gray rectangle background: previously published results [67]. Black square: no
data. 3-HAA, 3-hydroxyanthranilic acid; 3-HK, 3-hydroxykynurenine; 5-HIAA, 5-hydroxyindole-
3-acetic acid; 5-HT, serotonin (5-hydroxytryptamine); 5-HTP, 5-hydroxytryptophan; AA, an-
thranilic acid; BH2, dihydroxybiopterin; BIO, biopterin; CER, cerebellum; CTX, cortex; DOPAC,
3,4-dihydroxyphenylacetic acid; HIPP, hippocampus; IAA, indole acetic acid; ICA, indole-3-
carboxaldehyde; ILA, indole-3-lactic acid; INS, indoxyl sulfate; KYN, kynurenine; KYNA, kynurenic
acid; MHPGS, 3-methoxy-4-hydroxyphenylglycol sulfate; QAA, quinaldic acid; Trp, tryptophan; Tyr,
tyrosine; STEM, brainstem; STR, striatum; XA, xanthurenic acid.
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Figure 6. Regional enzyme activity alterations in tryptophan- and serotonin (5-HT)-associated
pathways in WT and kat2−/− mice. Box plots showing enzyme activities across striatum (STR),
cortex (CTX), hippocampus (HIPP), cerebellum (CER), and brainstem (STEM) in wild-type (WT, light
green) and kat2−/− (dark green) mice. Activities were calculated as product-to-substrate ratios for:
(a) KATs (KYNA/KYN), (b) KMO (3-HK/KYN), (c) KYNU (3-HAA/3-HK), (d) KAT III (XA/3-HK),
(e) TPHs (5-HTP/Trp), (f) AADC (5-HT/5-HTP), (g) MAOs + ALDH (5-HIAA/5-HT), (h) TMO [TrD,
ArAT] (IAA/Trp), (i) MAOs (DOPAC/DA), (j) COMT (HVA/DOPAC). Enzyme activity of KATs
decreased in STR. KMO’s activity significantly increased in every brain region. KYNU’s activity
decreased in HIPP. KAT III enzyme activity decreased in CTX, HIPP, CER, and STEM. Activity of
TPH enzymes decreased in CTX and CER. AADC’s activity decreased in STR, CTX, and CER. MAOs
+ ALDH decreased in CTX. TMO’s activity decreased in HIPP and CER. Activity of MAOs in the
tyrosine-dopamine pathway significantly decreased in CER. COMT’s activity increased in CER. Data
are shown as mean ± SD. Symbols: •, outlier; ▲, far out. Statistical significance: *, p < 0.05; **, p < 0.01;
***, p < 0.001. Figures were created with LabPlot 2.9.0 (KDE, Berlin, Germany) and BioRender.com.
3-HAA, 3-hydroxyanthranilic acid; 3-HK, 3-hydroxykynurenine; 5-HIAA, 5-hydroxyindoleacetic
acid; 5-HT, serotonin (5-hydroxytryptamine); 5-HTP, 5-hydroxytryptophan; AADC, aromatic L-amino
acid decarboxylase; ALDH, aldehyde dehydrogenase; ArAT, aromatic amino acid aminotransferase;
CER, cerebellum; COMT, catechol-O-methyltransferase; CTX, cortex; DA, dopamine; DOPAC, 3,4-
dihydroxyphenylacetic acid; HIPP, hippocampus; HVA, homovanillic acid; IAA, indole-3-acetic acid;
KAT III, kynurenine aminotransferase III; KATs, kynurenine aminotransferases; kat2−/−, kynurenine
aminotransferase II knockout; KMO, kynurenine-3-monooxygenase; KYN, kynurenine; KYNU,
kynureninase; MAOs, monoamine oxidases; STEM, brainstem; STR, striatum; TMO, tryptophan-2-
monooxygenase; TPHs, tryptophan hydroxylases; TrD, tryptophan decarboxylase; Trp, tryptophan;
WT, wild-type mice; XA, xanthurenic acid.
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3.4. Oxidative Stress and Ecitotoxicity Indices

To further evaluate the balance between oxidative pressure and excitotoxic potential,
we calculated composite indices from key KYN metabolites (Figure 7, Table S6). The ox-
idative stress index, defined as 3-HK/(KYNA + AA + XA), was significantly elevated in
multiple brain regions of kat2−/− mice. Compared to WT controls, the CTX, HIPP, CER,
and STEM all exhibited marked increases, with the HIPP and STEM showing the most
robust elevations. This pattern reflects the combined impact of increased 3-HK and reduced
antioxidant metabolites, underscoring a shift toward pro-oxidant load. In contrast, the exci-
totoxicity index, measured as QA/KYNA, showed a more selective profile. While values
remained unchanged in STR, CTX, and CER, a significant increase emerged in the HIPP,
where diminished KYNA coincided with elevated QA. A similar trend, though nonsignifi-
cant, was observed in the STEM. Taken together, these data indicate that KAT II deficiency
imposes a dual burden of oxidative stress and region-specific excitotoxic vulnerability, with
the HIPP emerging as a particularly sensitive locus of metabolic imbalance.

Figure 7. Regional indices of oxidative stress and excitotoxicity in wild-type (WT) and kat2−/− mice.
Box plots showing oxidative stress and excitotoxicity indices across striatum (STR), cortex (CTX),
hippocampus (HIPP), cerebellum (CER), and brainstem (STEM) in WT (light green) and kat2−/−

(dark green) mice. (a) Oxidative stress index, calculated as the ratio 3-HK/(KYNA + AA + XA),
reflecting the balance between pro-oxidant and antioxidant metabolites. The oxidative stress index
significantly increased in CTX, HIPP, CER, and STEM. (b) Excitotoxicity index, calculated as the
ratio QA/KYNA, representing the N-methyl-D-aspartate (NMDA) receptor agonist-to-antagonist
balance. The excitotoxicity index increased in HIPP. Data are shown as mean ± SD. Symbols: •,
outlier; ▲, far out. Statistical significance: *, p < 0.05; **, p < 0.01. Figures generated with LabPlot 2.9.0
(KDE, Berlin, Germany) and BioRender.com. 3-HK, 3-hydroxykynurenine; AA, anthranilic acid; CER,
cerebellum; CTX, cortex; HIPP, hippocampus; kat2−/−, kynurenine aminotransferase II knockout
mice; KYNA, kynurenic acid; QA, quinolinic acid; STEM, brainstem; STR, striatum; WT, wild-type
mice; XA, xanthurenic acid.

Results begin with region-resolved metabolomics across STR, CTX, HIPP, CER, and
STEM, followed by enzyme-ratio proxies, cofactor mapping, and alignment with behavioral
outcomes. A convergent central signature emerges: 3-HK increases and XA decreases pan-
regionally, KYNA reduction localizes to CTX and HIPP, KMO activity indices rise while KAT
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III flux falls, and oxidative-stress measures increase broadly, with a hippocampal-specific
rise in the excitotoxicity index. Cofactor analyses identify BIO depletion in CER and STEM
and BH2 loss in CER. Gut–brain and serotonergic markers also shift, with hippocampal
IAA reduction, cortical and cerebellar ICA elevation, and reduced cortical 5-HT turnover,
yet cognition, sociability, and coordination remain intact. While these preserved functions
are reported alongside metabolic profiles, we did not conduct formal correlations linking
regional metabolite concentrations to behavioral readouts. This omission reflects the study
scope and sample size rather than a conceptual barrier. We now state this as a limitation
and outline plans to evaluate specific associations, such as hippocampal KYNA with NORT
performance, within a prospectively powered framework. Consistent with region-specific
rewiring rather than a uniform KAT II effect, we note a paradoxical pattern: striatal KYNA
elevation likely reflects compensatory KAT isoforms or astrocyte-mediated KYN shunting;
forebrain bias toward AA aligns with oxidative-stress–driven KMO→KYNU flux that
diverts 3-HK from KYNA. In sum, findings delineate a KMO-tilted, pterin-constrained,
indole-modulated milieu that selectively burdens affective and motor subdomains while
sparing core cognitive and social functions.

4. Discussion
The metabolism of Trp has emerged as a central hub in the neurobiology of cognition,

mood, and social behavior, with imbalances along its KYN, 5-HT, indole, and DA branches
increasingly linked to neuropsychiatric and neurodegenerative disorders [15,16,22,28,39].
Within this network, KAT II has been considered the dominant enzymatic source of KYNA,
a metabolite long viewed as neuroprotective through NMDA, α7-nAChR, AMPA, and
kainate antagonism [20,67,125–130]. Yet, earlier reports of global KAT II inhibition or
genetic deletion left unresolved how local shifts in KYNA and related metabolites shape
functional brain states [20,28,67,126,129,131]. By combining region-resolved metabolomics
with behavioral phenotyping, our study addresses this gap, asking whether neurochemical
disequilibria in KAT II deficiency necessarily translate into overt cognitive, motor, or social
dysfunction [20,22,67,132,133]. To support cross-domain reading, behavioral tasks are
mapped to region-specific metabolite indices using shared labels and synchronized panel
order, pairing NORT and three chambers with cortical and hippocampal KYNA and 3 HK,
and Rotarod with striatal metrics.

Mechanistic bridge linking regional rewiring to behavior. The metabolomic pattern
combines KYNA reduction in CTX and HIPP with KYNA elevation in STR, alongside higher
oxidative pressure in several regions and a hippocampal rise in the excitotoxicity index.
Such spatial heterogeneity can stabilize baseline outputs via compensatory gating while
lowering the threshold for deficits when tasks recruit prefrontal hippocampal integration or
impose stress. This perspective shifts the focus from global impairment to domain-specific
resilience versus vulnerability that depends on region and task demand.

Notably, the lack of inter-strain differences across cognitive, social, and motor tests
suggests that kat2 deletion does not inherently induce depressive-like behavior under
baseline conditions. This finding contrasts with our previous report of despair-linked
phenotypes under stress paradigms [67], implying that the emotional alterations in kat2−/−

mice are context-dependent. Rather than manifesting as overt depression-like behavior, the
current data support a model in which KAT II deficiency biases affective circuitry through
neurochemical disequilibrium, particularly elevated 3-HK and diminished KYNA, thereby
establishing a stress-reactive emotional predisposition. Hence, “emotional bias” in this
context refers to a neurochemical vulnerability rather than a direct behavioral outcome.

The metabolic profile emerging from kat2−/− brains reveals a striking shift toward a
pro-oxidant milieu, characterized by pan-regional accumulation of 3-HK and consistent
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loss of XA, with an additional region-selective reduction in KYNA in CTX and HIPP. Such
changes converge on a biochemical signature that indicates heightened KMO activity
alongside impaired KAT II flux, effectively tilting the KYN pathway toward neurotoxic
branch products [35,67,134]. The imbalance between reduced antioxidant buffering (XA,
KYNA) and sustained excitatory drive amplifies oxidative-stress indices across regions,
with the HIPP exhibiting a peak excitotoxicity signal. This constellation suggests that,
although behavioral performance remained intact, the HIPP in particular resides in a
precarious metabolic state, vulnerable to secondary insults [135]. Thus, the observed
disequilibrium highlights a latent central risk architecture, in which KAT II deficiency may
predispose selective circuits to degeneration under stress or aging.

The selective decline of KYNA in HIPP and CTX is particularly consequential, as these
structures form the backbone of glutamatergic integration underlying memory, attentional
control, and affective regulation [126,136–140]. Lower KYNA levels in these regions im-
ply diminished tonic antagonism at NMDA and α7-nicotinic receptors, a state that can
facilitate plasticity yet simultaneously heighten vulnerability to excitotoxic cascades. Such
changes resonate with the well-documented link between KYN pathway imbalance and
affective or cognitive disturbances. In contrast, the cerebellar and STEM pattern, where
QAA and related metabolites decline, speaks to circuits subserving motor coordination
and arousal [126,136,137,141]. Here, altered metabolic buffering could subtly recalibrate
sensorimotor integration and vigilance states, aligning with CER–STEM contributions
to motor timing and autonomic tone. Together, these region-specific shifts underscore
circuit-level rebalancing rather than global disruption.

The consistent elevation of 3-HK across regions, paralleled by a decline in XA, un-
derscores a shift toward a redox-imbalanced milieu that favors oxidative stress [142–144].
This pro-oxidant tilt is further amplified when considered in the context of derived in-
dices, where the 3-HK–to–antioxidant ratio signals a vulnerability state rather than an
immediate injury [142–144]. In parallel, the excitotoxicity index, weighted by QA/KYNA
balance, delineates selective windows in which NMDA drive may outweigh intrinsic
antagonism [140,142,143,145,146]. These biochemical loads, however, need not manifest
uniformly as behavioral deficits at baseline [147–149]. Accordingly, references to depression
or post-traumatic stress disorder denote hypothesis-generating convergence on shared
metabolic nodes, not confirmation of disorder-specific phenotypes in mice [67,150,151].
Instead, they may represent latent liabilities, poised to surface under developmental, aging,
or environmental stressors, thereby marking a hidden susceptibility rather than an overt
phenotype [15,143,144].

Region-specific perturbations in the pterin pool highlight a subtle but consequential
layer of metabolic vulnerability [152–154]. In kat2−/− hindbrain, the concurrent depletion
of BIO and loss of BH2 suggest an erosion of the redox-cycling capacity that normally safe-
guards BH4 availability [152–154]. Because BH4 is indispensable for tyrosine hydroxylase
activity, even modest shifts in this cofactor equilibrium may attenuate DA biosynthesis
and, secondarily, compromise broader monoaminergic tone [152–155]. These alterations
could reverberate into nitric oxide biology, given that endothelial and neuronal nitric oxide
synthase (NOS) also require BH4, thereby coupling monoamine insufficiency to redox
imbalance and impaired vasomodulation [152–154].

The neurochemical profile in kat2−/− mice suggests that reduced serotonergic turnover
in the CTX converges with decreased hippocampal IAA and concomitant elevations of ICA
in cortical and cerebellar regions to shape circuit-level excitability [156–158]. Lower 5-HT
turnover may weaken cortical inhibitory tone, thereby amplifying the impact of indole-
derived signaling [157,158]. The reduction in IAA, a ligand with protective barrier and anti-
inflammatory properties, contrasts with the elevation of ICA, a potent AhR agonist capable
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of reprogramming microglial states [156–158]. Through this shift, cortical and cerebellar
microglia may adopt transcriptional phenotypes that subtly recalibrate glutamatergic drive
and synaptic responsiveness [156–158]. Such AhR-mediated modulation, in concert with
altered serotonergic dynamics, delineates a mechanism by which KAT II deficiency reshapes
microcircuit stability without overtly impairing cognitive or social behaviors.

The parallel remodeling of Trp metabolism across central and peripheral compartments
suggests a degree of concordance that greatly enhances translational traction [15,159,160].
When brain signatures mirror those detected in plasma or urine—such as the uniform elevation
of 3-HK and the consistent reduction in XA—biomarker feasibility is strengthened because
measurements in accessible fluids reliably report on neurochemical states [15,159,160]. This
concordance further supports longitudinal monitoring, since repeated peripheral sampling can
index dynamic shifts in pathway fluxes without invasive procedures [15,159,160]. Importantly,
the pattern of a KMO-tilted, pterin-constrained phenotype provides a stratification handle:
individuals or models exhibiting this profile may constitute a distinct subgroup marked by
heightened oxidative burden and diminished neuroprotection [15,131,159]. Thus, the central–
peripheral alignment not only validates observed signatures but also operationalizes them for
precision tracking and targeted intervention [161].

Despite a pervasive biochemical tilt toward oxidative stress and excitotoxic vulnerabil-
ity, baseline cognition and sociability remain largely preserved in kat2−/− mice. This dissoci-
ation likely reflects both redundancy within cognitive and social circuits and compensatory
plasticity that stabilizes performance until a higher stress threshold is breached [67,162,163].
Cortico-hippocampal KYNA loss may sensitize affective and attentional pathways, but
parallel buffering via dopaminergic and indole-linked mechanisms appears sufficient to
maintain recognition memory and sociability in standard tasks. In contrast, motor and
affective domains, subserved by CER–STEM loops and stress-responsive hippocampal
circuits, manifest early pressure, consistent with lower redundancy and higher task sensitiv-
ity. These findings underscore that metabolic disequilibria need not uniformly generalize
to behavior and that endpoint detectability hinges on domain-specific thresholds. For
experimental design, this argues against relying solely on cognition- or sociability-based
readouts and instead favors composite panels that capture latent affective or motor liabili-
ties, especially when probing therapeutic interventions or stress challenges.

The paradoxical distribution of metabolites across brain regions points to a region-
specific metabolic rewiring rather than a uniform effect of kat2 loss [125,164]. Striatal KYNA
increased, while it declined in CTX and HIPP and remained unchanged in CER and STEM.
This striatal KYNA elevation in the absence of kat2 likely arises from alternative KAT
isoform activity or astrocyte-mediated KYN shunting, consistent with the region’s dense
dopaminergic and glial milieu [165]. In contrast, plasma and urine showed marked KYNA
reductions, underscoring that regional enzymatic compensation and astrocytic buffering,
rather than systemic availability, govern KYN metabolism within the brain.

Serotonergic metabolism revealed equally complex shifts. 5-HTP fell consistently in
STR, CTX, and CER, suggesting precursor depletion, yet cortical 5-HT paradoxically rose.
This contrast hints at selective upregulation of decarboxylase activity or altered transporter
dynamics in cortical circuits. Importantly, urine samples captured a 5-HT increase, while
plasma remained unaltered—underscoring a clear brain–periphery mismatch. Similarly,
Trp declined in CTX and HIPP but stayed unchanged peripherally, whereas KYN itself was
stable in the brain yet shifted downward in plasma and upward in urine.

Other metabolites highlighted both paradoxical and stable nodes. 3-HK rose broadly
across central and peripheral compartments, but its downstream metabolite XA decreased
everywhere, revealing a systemic enzymatic bottleneck. AA, however, increased in CTX
but decreased in HIPP and STEM, with no peripheral reflection. Several intermediates, in-
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cluding Tyr and 3-HAA, remained stable in most regions, pointing to strong compensatory
buffering. Taken together, these findings illustrate that kat2 deletion drives a patchwork
of paradoxical imbalances, where regional demands, oxidative stress, and glial density
dictate divergent metabolic trajectories, while peripheral readouts capture only a partial,
homogenized snapshot of these changes.

Furthermore, the single-gene kat2 knockout, which markedly reduces KYNA concen-
trations, exerts consequences that extend far beyond the KYN branch alone. The disruption
alters the enzymatic dynamics and metabolite distribution of the Trp–KYN axis and also
propagates into parallel domains, such as serotonin biosynthesis, indole-pyruvate flux,
and DA turnover. These cross-pathway perturbations likely emerge from shared sub-
strate dependencies and competitive enzymatic hierarchies, wherein the depletion of one
metabolic sink amplifies pressure on adjacent routes. In particular, diminished serotonin
availability can be interpreted as a direct consequence of altered Trp partitioning, whereas
DA irregularities appear linked to secondary changes in redox balance and cofactor utiliza-
tion. Thus, kat2 deletion should not be conceptualized merely as a KYNA-specific deficit;
rather, it reshapes a broader neurochemical network in which serotonergic, dopamin-
ergic, and indole-derived pathways become entrained into a cascade of adaptive yet
destabilizing responses.

A key strength of this study lies in the methodological rigor that enabled reliable
mapping of subtle, region-specific metabolic shifts. The UHPLC-MS/MS workflow was
not only optimized for brain tissue matrices but was applied in a region-resolved fashion,
thereby allowing contrasts across CTX, HIPP, STR, CER, and STEM rather than relying on
pooled homogenates [166–168]. Enzyme activities were inferred through calibrated product–
substrate ratios, providing functional proxies that extend beyond absolute metabolite
abundance [166,168,169]. Importantly, these measurements were embedded in a multi-axis
coverage that integrated KYN, serotonergic, indole-derived, and catecholamine pathways.
Behavioral assays were performed with a balanced panel that minimizes habituation or
training artifacts. Such a design requires a composite technical skill set—ranging from
advanced metabolomics and stringent quality control pipelines to expertise in behavioral
neuroscience and translational modeling—ensuring robust and reproducible interpretation.

Several limitations should be recognized when interpreting these findings. First, the
study design relied on baseline-only testing, which restricts inference on developmental
trajectories or dynamic responses to stressors [170–172]. Bulk tissue homogenates were
analyzed, inevitably averaging across heterogeneous cell types and masking circuit-specific
alterations [170,172,173]. The absence of cell-type resolution is particularly relevant, as as-
trocytic and neuronal pools may contribute divergently to KYN pathway flux [170,172,173].
Temporal resolution was also limited to a single time point, precluding assessment of
circadian phase–dependent or activity-driven fluctuations [170,172,174]. Sex and age ef-
fects remain underpowered, raising the possibility that strain differences may emerge
in females or in older cohorts [170,172,173]. An important limitation is the absence of
microbiome profiling. The microbiome was not systematically characterized, despite its
capacity to shape Trp-indole metabolism [175–177]. To establish intestinal origin and sys-
temic distribution, future work will pair brain measurements with quantification of indole
derivatives in fecal and plasma samples. This paired design will allow direct assessment
of compartmental gradients and transport [178–180]. Without taxonomic or functional
data, shifts in ICA, IAA, and INS cannot be assigned to specific microbial pathways or
sources, which narrows mechanistic inference regarding gut–brain communication in this
dataset [175–177]. To dissect source contributions, we will consider microbiota-targeted
interventions, including antibiotic depletion, fecal microbiota transplantation, and probiotic
supplementation. These perturbations, combined with fecal and plasma profiling of ICA,
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IAA, and related indoles, can distinguish host from microbial activity and probe their
interaction, thereby sharpening translational relevance [181–183]. Finally, circadian control
was standardized but not manipulated, and phase-dependent metabolic reorganization
could shift interpretations [170,172,174].

The neurochemical profile observed in kat2−/− mice points toward several therapeutic
avenues [67,129,143,184]. Elevated 3-HK alongside reduced XA underscores excessive
KMO flux, highlighting selective KMO inhibition as a rational intervention to rebalance
the neuroprotective–neurotoxic equilibrium [184,185]. At the same time, the consistent
depletion of BH4 and riboflavin-sensitive cofactor pools suggests that restoring the pterin
milieu could stabilize DA synthesis and restrain aberrant redox cycling [129,184]. An-
tioxidant strategies targeting the 3-HK–driven oxidative load may provide additional
neuroprotection, particularly in regions where KYNA is diminished [55,129]. Importantly,
our data emphasize the need for composite biomarker frameworks that integrate periph-
eral indices of KYN pathway activity with region-sensitive readouts such as KYNA/QAA
ratios, thereby offering translational precision in stratifying patients [55,67,161,184]. For
navigation, Table 1 crosswalks behavioral endpoints with regional metabolite and cofactor
panels using shared labels and coordinated panel order.

Table 1. Crosswalk of behavioral endpoints and regional metabolic indices. This provides a reader
guide that aligns behavioral endpoints with region-specific metabolic indices using shared labels and
panel order. Each row lists the task, the regions emphasized in the corresponding metabolite panels,
and the indices displayed in figures and Supplementary Tables.

Domain Behavioral Task Primary Regions Referenced Key Indices Listed Figure Panels

Cognition NORT CTX, HIPP KYNA, 3-HK, XA,
QA/KYNA

Figure 2a; Figure 3b,e,f;
Figure 5

Attention OBAT CTX, HIPP KYNA, 3-HK, XA Figure 2b; Figure 3b,e,f;
Figure 5

Working memory Y-maze HIPP, CTX KYNA, 3-HK, QA to
KYNA Figure 3b,e; Figure 5

Sociability 3CT sociability CTX, CER ICA, IAA, 5-HIAA Figure 2c,d; Figure 4c,d;
Figure 5

Social novelty 3CT novelty preference CTX, CER, HIPP ICA, IAA, KYNA Figure 2c,d; Figure 4c,d;
Figure 3b; Figure 5

Motor coordination Rotarod STR, CER KYNA, 3-HK, AA, XA Figure 3b,d–f; Figure 5

Affective proxy MBT HIPP, STEM 3-HK to KYNA plus AA
plus XA Figure 5; Figure 7a

Monoamine milieu Task-agnostic pairing CTX, STEM BH4, BH2, BIO, DA
cascade Figure 4; Figure 5

AA, anthranilic acid; BIO, biopterin; BH2, dihydrobiopterin; BH4, tetrahydrobiopterin; CTX, cortex; DA, dopamine;
HIPP, hippocampus; ICA, indole 3 carboxaldehyde; IAA, indole 3 acetic acid; 3-HK, 3 hydroxykynurenine; KYNA,
kynurenic acid; QA, quinolinic acid; STR, striatum; CER, cerebellum; STEM, brainstem.

Microbiota-derived indoles may also function as behavior modulators through AhR-
dependent signaling, glial state regulation, and serotonergic control of network excitabil-
ity [156,186,187]. Aligning indole panels with selected behavioral readouts can link periph-
eral variation to circuit-level outcomes while maintaining conservative inference [52,188].
These convergent insights open the path toward mechanism-guided interventions that
cut across psychiatric and neurodegenerative spectra [55,67,184]. Accordingly, microbiota-
targeted designs should prespecify behavioral endpoints sensitive to indole tone, including
NORT discrimination, three-chamber novelty preference, and open-field indices [161]. Such
alignment enables tests of correspondence between ICA, IAA, or INS shifts and measurable
changes in performance without reinterpreting existing results [52,189,190]. Furthermore,
future work should integrate stool metagenomics or metatranscriptomics with targeted
metabolomics to resolve indole biosynthetic routes [177,190,191]. Stable isotope tracing
of tryptophan can quantify flux from microbial pathways into circulating indoles and
help partition host and microbial contributions [192–194]. Causal designs could include
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antibiotic perturbation with recovery, fecal microbiota transfer into gnotobiotic hosts, and
longitudinal sampling across clinically relevant transitions [52,190,191]. Joint modeling
of taxa, gene families, and indole derivatives will strengthen pathway attribution while
maintaining analytic rigor [177,195,196].

Moving forward, the central challenge is to shift from descriptive associations toward
mechanistic causation [131,197,198]. Stable-isotope-based in vivo flux tracing could clarify
how KMO and KAT activities dynamically shape regional metabolite pools under physio-
logical and stress conditions [197,199]. Complementary pharmacologic or genetic rescue
experiments, targeting either KMO suppression or KAT reconstitution, will be critical to
determine reversibility and compensatory limits of the pathway [128,131,197]. Behavioral
paradigms that introduce stress load or learning demands should be layered on top of
biochemical profiling to reveal context-dependent vulnerabilities [198–202].

Assays that tax prefrontal hippocampal control, including attentional set shifting, reversal
learning, and contextual extinction, and assays that probe striatal gating under load, including
progressive ratio and effort discounting, should be most sensitive to unmask domain-specific
vulnerability [203–205]. Coupling these behaviors to region-resolved metabolomics and
pathway indices, such as QA to KYNA and 3 HK to KYNA, plus AA, plus XA, will determine
whether the cortical and hippocampal KYNA decrease with striatal KYNA increase marks
resilience at baseline, yet reduces reserve under demand [139,206,207].

Spatial metabolomics, single-cell resolution analytics, and mesoscale circuit physiology
offer the means to connect biochemical imbalances with cellular and network-level adapta-
tions [197,199,202,208,209]. Finally, microbiome manipulation stands as a tractable lever to
probe gut–brain indole inputs [131,197,199,210–212]. Integrating these platforms will close
the loop from correlation to causation, refining translational targets across psychiatric and
neurodegenerative disease contexts [202,213–215].

KAT II loss establishes a distinctive biochemical landscape marked by a KMO-driven
tilt, reduced pterin support, and modulation through indole intermediates. This state
disproportionately burdens affective and motor circuits, as evidenced by elevated 3-HK,
reduced XA, and region-specific KYNA/QAA shifts, while sparing cognition and sociability
under baseline conditions. Such dissociation between neurochemical disequilibria and
behavioral resilience highlights the selective vulnerability of motor and emotional nodes.
Viewed together, region-specific metabolic rewiring offers a parsimonious account of
preserved baseline behavior through compensatory stabilization while flagging circuit and
task-dependent vulnerability that is predicted to surface during cognitive challenge or
stress. Crucially, these pathway imbalances converge into a coherent, biomarker-ready
framework that not only clarifies the mechanistic underpinnings of Trp metabolism but
also provides a tractable platform for targeted intervention strategies in neuropsychiatric
disease contexts.

5. Conclusions
This work integrates region-resolved metabolomics across the STR, CTX, HIPP, CER,

and STEM with enzyme-ratio proxies, cofactor mapping, and behavioral readouts. A
convergent central signature emerges: 3-HK increases and XA decreases pan-regionally,
KYNA reduction localizes to CTX and HIPP, KMO activity indices rise while KAT III flux
falls, and oxidative-stress measures increase broadly, with a hippocampal-specific rise in
the excitotoxicity index [33]. Cofactor analyses identify BIO depletion in CER and STEM
and BH2 loss in CER. Gut–brain and serotonergic markers also shift, with hippocampal
IAA reduction, cortical and cerebellar ICA elevation, and reduced cortical 5-HT turnover,
yet cognition, sociability, and coordination remain intact. While these preserved functions
suggest circuit-level compensation, the current behavioral battery was limited to baseline
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conditions. Stress paradigms or cognitively demanding tasks could potentially unmask
subtle or latent deficits that remain silent under low-load conditions. Recognizing this
limitation refines the interpretation of apparent resilience and underscores the value of
incorporating such paradigms in future investigations to delineate compensatory versus
genuinely preserved function. Consistent with region-specific rewiring rather than a uni-
form kat2 effect, we note a paradoxical pattern: striatal KYNA elevation likely reflects
compensatory KAT isoforms or astrocyte-mediated KYN shunting; forebrain bias toward
AA aligns with oxidative-stress-driven KMO→KYNU flux that diverts 3-HK from KYNA.
Taken together, the KAT II/kat2 loss establishes a reproducible brain–periphery signa-
ture (KYNA↓, 3-HK↑, region-tuned KMO/KAT flux) without broad baseline behavioral
deficits—best interpreted as evidence of circuit rewiring that buffers output, i.e., whole-axis
metabolic disturbance does not immediately translate into behavior [216]. This framing
motivates mechanism-targeted interventions (e.g., KMO inhibition, cofactor restoration,
antioxidant support) and argues for biomarker-informed stratification [184]. Finally, be-
cause microbiome profiling was outside the present scope, ICA/IAA/INS findings should
be viewed as hypothesis-generating for targeted microbiome-manipulation studies. In
sum, findings delineate a KMO-tilted, pterin-constrained, indole-modulated milieu that
selectively burdens affective and motor subdomains while sparing core cognitive and
social functions.
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Abbreviations
The following abbreviations are used in this manuscript:

3-HAA 3-hydroxyanthranilic acid
3-HK 3-hydroxykynurenine
3CT three-chamber test
5-HT 5-hydroxytryptamine (serotonin)
5-HTP 5-hydroxytryptophan
5-HIAA 5-hydroxyindoleacetic acid
AA anthranilic acid
AADC aromatic L-amino acid decarboxylase
ALDH aldehyde dehydrogenase
ARRIVE animal research: reporting of in vivo experiments
ASD autism spectrum disorder
BBB blood–brain barrier
BH2 dihydrobiopterin
BH4 tetrahydrobiopterin
BIO biopterin
CER cerebellum
CNS central nervous system
COMT catechol-O-methyltransferase
CTX cortex
DA dopamine
DI discrimination index
DOPAC 3,4-dihydroxyphenylacetic acid
GAD generalized anxiety disorder
HIPP hippocampus
HVA homovanillic acid
IAA indole-3-acetic acid
ICA indole-3-carboxylic acid
INS indoxyl sulfate
KAT kynurenine aminotransferase
KMO kynurenine 3-monooxygenase
KYN kynurenine
KYNA kynurenic acid
KYNU kynureninase
L-DOPA dihydroxyphenylalanine/levodopa
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LC-MS liquid chromatography–tandem mass spectrometry
MAO monoamine oxidase
MBT marble-burying test
MDD major depressive disorder
MEL melatonin
MHPGS 3-methoxy-4-hydroxyphenylglycol sulfate
NMDA N-methyl-D-aspartate
NORT novel object recognition test
OBAT object-based attention test
PI preference index
QA quinolinic acid
QAA quinaldic acid
SCZ schizophrenia
STEM brainstem
STR striatum
Trp tryptophan
TPH tryptophan hydroxylase
Tyr tyrosine
UHPLC-MS ultra-high-performance liquid chromatography–tandem mass spectrometry
VMA vanillylmandelic acid
WT wild-type
XA xanthurenic acid
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Supplement to the description of section 2.3 Genotyping with TaqMan 

allelic discrimination assay in the Materials and Methods part of the 

manuscript. 

All animals were genotyped in advance, ensuring verification before the subsequent 

experimental studies. Mice were anesthetized with 2% isoflurane, and following local an-

algesia with 5% lidocaine ointment, a 3 mm fragment of the tail was excised using sterile 

instruments under aseptic conditions. Tissue samples were stored at -80°C until further 

processing. For DNA extraction, 75 µl of a freshly prepared lysis buffer containing equal 

volumes of 25 mM NaOH and 0.2 mM disodium EDTA was added to each sample. After 

incubation at 95°C for 30 minutes, the suspension was cooled to 4°C and then neutralized 

with 75 µl of 40 mM TRIS-HCl buffer. This method was adapted from the HotSHOT pro-

tocol and consistently yields DNA suitable for reliable genotyping, as previously demon-

strated by Truett et al. DNA concentration and purity were assessed using a NanoDrop 

spectrophotometer (MaestroGen, Taipei, Taiwan). The resulting DNA extracts were 

stored at -20°C until analysis. 

Genotyping was performed using a fluorescence-labeled TaqMan allelic discrimina-

tion assay. The forward primer sequence was 5’–TAACAGTGCATCCCGAGTGA–3’, the 

reverse primer sequence was 5’–GAGGGCTCTGGCTTTGTTTT–3’, while probe 1 and 

probe 2 sequences were 5’–6-FAM-CAACGAGCCTGGCCAGAA-BHQ-1–3’ and 5’–HEX-

TGCAACGACTGGCCAGAAAG-BHQ-1–3’, respectively (Metabion, Steinkirchen / 

Planegg, Germany). For each reaction, the PCR was assembled using the following rea-

gents: PCR Master Mix (5 µl; PCRBiosystems, London, UK), forward primer (1 µl), reverse 

primer (1 µl), probe 1 (0.5 µl), probe 2 (0.5 µl), DNA template (1 µl), and water (1 µl). Non-

template control reactions contained water instead of DNA. Reaction mixtures were ali-

quoted into 96-well plates. PCR amplification and allelic discrimination were performed 

in single-plex reactions using a CFX Opus 96 Real-Time PCR System (Bio-Rad Laborato-

ries, Hercules, California, USA) according to the manufacturer’s instructions. The ampli-

fication protocol consisted of an initial denaturation at 95°C for 10 min, followed by 40 

cycles of 92°C for 15 sec and 60°C for 1 min. Fluorescence data were analyzed with CFX 

Maestro software. 

This approach ensured that all mutant animals included in the experiments were 

confirmed to carry the targeted genetic modification, and wild-type mice were correctly 

identified as controls. 

Table S1. Behavioral performance in WT and kat2⁻/⁻ mice across multiple cognitive, social, and motor 

tests (NORT, OBAT, Y-Maze, MBT, 3CT, and Rotarod). Analyses revealed no significant inter-strain 

differences. 

Behavioral 

Test 

Type 

Number of 

Animals 

(WT/kat2-/-) 

Phase of 

the Test 

Parameter of 

the Test 

WT 

Mean ± SD 

kat2-/- 

Mean ± SD 
p-Value

NORT 12/12 
Testing 

phase 

Time spent with 

familiar object (s) 

17.500 

± 8.635 
18.556 

± 11.886 
p < 0.839 

Time spent with 

novel object (s) 

66.250 

± 59.461 

72.444 

± 38.730 
p < 0.596 

Discrimination 

index 

0.455 

± 0.321 

0.592 

± 0.141 
p < 0.294 

Preference 72.760 79.604 p < 0.293 
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index ± 16.032 ± 7.061 

OBAT 12/12 
Testing 

phase 

Time spent with 

familiar object (s) 

15.362 

± 7.437 

10.729 

± 6.786 
p < 0.905 

Time spent with 

novel object (s) 

19.747 

± 7.820 

15.796 

± 6.372 
p < 0.268 

Discrimination 

index 

0.136 

± 0.239 

0.239 

± 0.287 
p < 0.428 

Preference 

index (%) 

56.802 

± 11.943 

61.944 

± 14.355 
p < 0.428 

Y-maze 12/12 - 

Spontaneous 

alternations (%) 

52.833 

± 27.996 

66.500 

± 18.880 
p < 0.175 

Number of 

total entries 

15.583 

± 11.579 

18.000 

± 15.788 
p < 0.954 

MBT 10/13 - 

Buried 

marbles 

5.467 

± 4.207 

6.133 

± 4.121 
p < 0.738 

Partially buried 

marbles 

4.267 

± 2.344 

4.533 

± 2.326 
p < 0.757 

Displaced 

marbles 

1.733 

± 1.870 

1.333 

± 1.345 
p < 0.731 

Intact 

marbles 

4.533 

± 3.248 

4.000 

± 2.976 
p < 0.643 

3CT 12/12 

Testing 

sociability 

Time in  

social chamber (s) 

265.717 

± 40.368 

260.658 

± 54.993 
p < 0.799 

Time in  

non-social chamber (s) 

247.748 

± 25.751 

247.988 

± 56.056 
p < 0.989 

Time in  

center chamber (s) 

86.536 

± 32.148 

91.355 

± 28.005 
p < 0.699 

Sniffing  

social cage (s) 

145.955 

± 39.690 

136.336 

± 37.149 
p < 0.546 

Sniffing  

non-social cage (s) 

114.603 

± 33.637 

117.447 

± 33.452 
p < 0.837 

Total sniffing 

time (s) 

260.558 

± 38.784 

253.783 

± 47.129 
p < 0.704 

Social chamber entries (num-

ber) 

12.667 

± 3.725 

13.417 

± 4.621 
p < 0.666 

Non-social chamber entries 

(number) 

13.167 

± 4.174 

12.833 

± 4.687 
p < 0.855 

Total entries (number) 
25.833 

± 7.673 

26.250 

± 9.245 
p < 0.905 

Testing 

novelty 

preference 

Time in  

novel chamber (s) 

263.188 

± 60.124 

253.058 

± 68.641 
p < 0.704 

Time in  

familiar chamber (s) 

238.687 

± 55.961 

237.654 

± 56.502 
p < 0.964 

Time in  

center chamber (s) 

98.126 

± 40.008 

109.288 

± 53.470 
p < 0.568 

Sniffing  

novel animal’s cage (s) 

129.261 

± 50.164 

109.373 

± 44.085 
p < 0.313 

Sniffing  

familiar animal’s cage (s) 

95.015 

± 51.306 

92.903 

± 62.090 
p < 0.928 

Total sniffing 

time (s) 

224.276 

± 75.342 

202.276 

± 79.270 
p < 0.493 
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Novel chamber entries (num-

ber) 

9.917 

± 3.450 

11.083 

± 3.679 
p < 0.431 

Familiar chamber entries 

(number) 

10.250 

± 3.279 

11.167 

± 4.764 
p < 0.589 

Total entries (number) 
20.167 

± 6.548 

22.250 

± 7.979 
p < 0.492 

Rotarod 12/12 - 
Mean time spent 

on the rod 

100.428 

± 35.017 

89.708 

± 41.453 
p < 0.501 

Mean ± SD. 3CT, three-chamber test; MBT, marble burying test; NORT, novel object recognition test; 

OBAT, object-based attention test. 

Table S2. Comparative behavioral performance of wild-type (WT) and kat2−/− mice in object recog-

nition (NORT, OBAT) and social interaction/novelty preference (3CT). In the NORT, both WT and 

kat2-/- mice demonstrated a significant preference for the novel object. In the OBAT, the mutant strain 

exhibited greater exploration of the novel object. In the 3CT, both genotypes spent more time in the 

side chambers than in the center chamber during both the sociability and novelty preference phases. 

Test 

Type 
Phase of the Test WT kat2−/− 

NORT 
Testing 

phase 

Sniffing 

familiar 

object (s) 

Sniffing 

novel 

object (s) 

p-value

Sniffing 

familiar 

object (s) 

Sniffing 

novel 

object (s) 

p-value

17.500 

± 8.635 

66.250 

± 59.461 
p < 0.018 * 

18.556 

± 11.886 

72.444 

± 38.730 
p < 0.001 *** 

OBAT 
Testing 

phase 

Sniffing 

familiar 

object (s) 

Sniffing 

novel 

object (s) 

Sniffing 

familiar 

object (s) 

Sniffing 

novel 

object (s) 

15.362 

± 7.437 

19.747 

± 7.820 
p < 0.081 

10.729 

± 6.786 

15.796 

± 6.372 
p < 0.039 * 

3CT 
Testing 

sociability 

Time in 

social 

chamber (s) 

Time in 

center 

chamber (s) 

Time in 

social 

chamber (s) 

Time in 

center 

chamber (s) 

265.717 

± 40.368 

86.536 

± 32.148 
p < 0.001 *** 

260.658 

± 54.993 

91.355 

± 28.005 
p < 0.001 *** 

Time in 

non-social 

chamber (s) 

Time in 

center 

chamber (s) 

Time in 

non-social 

chamber (s) 

Time in 

center 

chamber (s) 

247.748 

± 25.751 

86.536 

± 32.148 
p < 0.001 *** 

247.988 

± 56.056 

91.355 

± 28.005 
p < 0.001 *** 

Time in 

social 

chamber (s) 

Time in 

non-social 

chamber (s) 

Time in 

social 

chamber (s) 

Time in 

non-social 

chamber (s) 

265.717 

± 40.368 

247.748 

± 25.751 
p < 0.319 

260.658 

± 54.993 

247.988 

± 56.056 
p < 0.691 

Sniffing 

social 

cage (s) 

Sniffing 

non-social 

cage (s) 

Sniffing 

social 

cage (s) 

Sniffing 

non-social 

cage (s) 

145.955 

± 39.690 

114.603 

± 33.637 
p < 0.110 

136.336 

± 37.149 

117.447 

± 33.452 
p < 0.240 

Social 

chamber 

entries 

Non-social 

chamber 

entries 

Social 

chamber 

entries 

Non-social 

chamber 

entries 
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(number) (number) (number) (number) 

12.667 

± 3.725 

13.167 

± 4.174 
p < 0.389 

13.417 

± 4.621 

12.833 

± 4.687 
p < 0.089 

Testing 

novelty 

preference 

Time in 

novel 

chamber (s) 

Time in 

center 

chamber (s) 

Time in 

novel 

chamber (s) 

Time in 

center 

chamber (s) 

263.188 

± 60.124 

98.126 

± 40.008 
p < 0.001 *** 

253.058 

± 68.641 

109.288 

± 53.470 
p < 0.002 ** 

Time in 

familiar 

chamber (s) 

Time in 

center 

chamber (s) 

Time in 

familiar 

chamber (s) 

Time in 

center 

chamber (s) 

238.687 

± 55.961 

98.126 

± 40.008 
p < 0.001 *** 

237.654 

± 56.502 

109.288 

± 53.470 
p < 0.001 *** 

Time in 

novel 

chamber (s) 

Time in 

familiar 

chamber (s) 

Time in 

novel 

chamber (s) 

Time in 

familiar 

chamber (s) 

263.188 

± 60.124 

238.687 

± 55.961 
p < 0.453 

253.058 

± 68.641 

237.654 

± 56.502 
p < 0.754 

Sniffing 

novel 

animal’s 

cage (s) 

Sniffing 

familiar 

animal’s 

cage (s) 

Sniffing 

novel 

animal’s 

cage (s) 

Sniffing 

familiar 

animal’s 

cage (s) 

129.261 

± 50.164 

95.015 

± 51.306 
p < 0.109 

109.373 

± 44.085 

92.903 

± 62.090 
p < 0.530 

Novel 

chamber 

entries 

(number) 

Familiar 

chamber 

entries 

(number) 

Novel 

chamber 

entries 

(number) 

Familiar 

chamber 

entries 

(number) 

9.917 

± 3.450 

10.250 

± 3.279 
p < 0.474 

11.083 

± 3.679 

11.167 

± 4.764 
p < 0.681 

Statistical significance was assessed for within-group contrasts (familiar vs. novel; social vs. non-

social; chamber comparisons), and p-values are reported. Mean ± SD. Asterisks denote significance 

levels: *, p < 0.05, **, p < 0.01, ***, p < 0.001. 3CT, three-chamber test; kat2-/-, kynurenine aminotrans-

ferase II knockout mice; NORT, novel object recognition test; OBAT, object-based attention test; WT, 

wild-type mice. 
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Table S3. Regional brain concentrations of tryptophan (Trp) and its downstream metabolites in wild-type (WT) and kat2⁻/⁻ mice across striatum, cortex, hippo-

campus, cerebellum, and brainstem. 

Metabolite 

Striatum (nM) Cortex (nM) Hippocampus (nM) Cerebellum (nM) Brainstem (nM) 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

WT kat2-/- WT kat2-/- WT kat2-/- WT kat2-/- WT kat2-/- 

Trp 
25511.111 

± 5688.243 

21988.889 

± 1940.647 
p < 0.098 

30780.000 

± 5921.674 

24090.000 

± 2431.026 
p < 0.004 ** 

30433.333 

± 7230.664 

25000.000 

± 2256.103 
p < 0.047 * 

29530.000 

± 6997.468 

25410.000 

± 2154.814 
p < 0.092 

29210.000 

± 8273.579 

24730.000 

± 2685.786 
p < 0.121 

KYN 
146.444 

± 32.423 

152.000 

± 45.031 
p < 0.768 

123.880 

± 27.763 

121.230 

± 40.829 
p < 0.867 

126.822 

± 25.699 

124.600 

± 38.033 
p < 0.886 

204.000 

± 173.369 

129.880 

± 56.356 
p < 0.215 

132.130 

± 37.311 

119.560 

± 41.100 
p < 0.483 

KYNA 
1.757 

± 0.623 

3.561 

± 2.124 
p < 0.026 * 

5.428 

± 3.032 

2.963 

± 1.108 
p < 0.027 * 

2.683 

± 0.885 

1.787 

± 0.647 
p < 0.026 * 

5.347 

± 0.925 

4.832 

± 1.728 
p < 0.417 

4.315 

± 1.303 

3.273 

± 0.974 
p < 0.058 

QAA no data no data no data 
0.812 

± 0.298 

0.714 

± 0.127 
p < 0.349 

0.765 

± 0.216 

0.807 

± 0.188 
p < 0.671 

0.416 

± 0.210 

0.249 

± 0.113 
p < 0.040 * 

0.469 

± 0.323 

0.171 

± 0.102 
p < 0.012 * 

AA 
2.534 

± 0.771 

2.431 

± 1.145 
p < 0.825 

0.320 

± 0.089 

0.461 

± 0.176 
p < 0.036 * 

0.323 

± 0.136 

0.213 

± 0.077 
p < 0.050 

0.400 

± 0.148 

0.296 

± 0.193 
p < 0.192 

0.554 

± 0.209 

0.477 

± 0.308 
p < 0.523 

3-HK 
43.078 

± 7.418 

78.644 

± 40.163 
p < 0.019 * 

50.230 

± 15.967 

87.210 

± 42.381 
p < 0.019 * 

57.667 

± 15.585 

104.467 

± 41.026 
p < 0.006 ** 

77.460 

± 30.378 

118.100 

± 51.104 
p < 0.044 * 

47.070 

± 12.161 

83.740 

± 35.505 
p < 0.006 ** 

XA 
1.906 

± 1.161 

1.342 

± 0.662 
p < 0.224 

7.316 

± 5.644 

2.516 

± 1.631 
p < 0.019 * 

1.698 

± 0.800 

0.885 

± 0.406 
p < 0.015 * 

2.402 

± 0.838 

1.349 

± 0.903 
p < 0.015 * 

3.945 

± 2.037 

1.324 

± 0.854 
p < 0.001 *** 

3-HAA no data no data no data 
6.581 

± 2.409 

10.128 

± 3.732 
p < 0.021 * 

3.820 

± 1.574 

3.994 

± 2.532 
p < 0.863 no data no data no data no data no data no data 

QA 
20.337 

± 11.449 

32.537 

± 15.421 
p < 0.075 

35.650 

± 11.656 

32.946 

± 20.266 
p < 0.719 

18.296 

± 7.872 

24.667 

± 11.260 
p < 0.183 

27.057 

± 21.057 

20.015 

± 12.182 
p < 0.372 

28.390 

± 16.309 

30.201 

± 13.870 
p < 0.792 

PA 
223.877 

± 45.544 

233.296 

± 67.819 
p < 0.734 

146.707 

± 43.541 

171.643 

± 46.369 
p < 0.231 

165.885 

± 81.710 

146.251 

± 46.419 
p < 0.540 

213.970 

± 57.567 

291.345 

± 135.202 
p < 0.152 

220.273 

± 63.283 

246.122 

± 89.874 
p < 0.467 

Serotonin pathway 

5-HTP 
55.689 

± 11.051 

37.989 

± 20.492 
p < 0.037 * 

80.070 

± 26.609 

37.490 

± 15.897 
p < 0.001 *** 

48.167 

± 15.514 

42.011 

± 9.346 
p < 0.323 

11.708 

± 4.638 

6.451 

± 2.871 
p < 0.007 ** 

65.120 

± 19.882 

65.200 

± 34.451 
p < 0.995 

5-HT 
2854.444 

± 281.741 

3087.778 

± 318.856 
p < 0.119 

2780.000 

± 364.722 

3238.000 

± 304.478 
p < 0.007 ** 

3162.222 

± 368.571 

3316.667 

± 482.519 
p < 0.457 

382.600 

± 182.449 

423.500 

± 218.472 
p < 0.655 

3542.000 

± 426.375 

3554.000 

± 334.006 
p < 0.945 

5-HIAA 
2771.111 

± 232.886 

2825.556 

± 493.739 
p < 0.769 

2816.000 

± 511.147 

2634.000 

± 333.340 
p < 0.358 

3984.444 

± 640.666 

3618.889 

± 412.566 
p < 0.169 

952.300 

± 165.692 

954.100 

± 216.632 
p < 0.984 

3998.000 

± 733.664 

4076.000 

± 651.804 
p < 0.804 

Indole-pyruvate pathway 
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IAA 
263.000 

± 94.166 

196.111 

± 59.711 
p < 0.091 

174.300 

± 46.294 

160.100 

± 32.385 
p < 0.437 

179.000 

± 41.985 

113.767 

± 30.709 
p < 0.002 ** 

47.260 

± 26.084 

62.300 

± 18.091 
p < 0.151 

126.790 

± 38.684 

106.450 

± 17.163 
p < 0.146 

ICA 
52.522 

± 15.104 

67.000 

± 25.999 
p < 0.168 

53.590 

± 10.768 

85.520 

± 23.399 
p < 0.001 *** 

58.078 

± 12.274 

48.344 

± 7.459 
p < 0.059 

46.850 

± 16.225 

70.060 

± 31.928 
p < 0.055 

57.430 

± 18.870 

56.190 

± 21.972 
p < 0.894 

IPA no data no data no data no data no data no data no data no data no data 
14.509 

± 7.547 

12.995 

± 6.244 
p < 0.631 

29.370 

± 14.081 

19.479 

± 5.821 
p < 0.055 

ILA 
88.656 

± 49.392 

54.078 

± 17.784 
p < 0.066 

91.820 

± 24.495 

74.690 

± 11.764 
p < 0.062 

122.067 

± 43.164 

91.444 

± 23.630 
p < 0.080 

62.750 

± 18.591 

59.500 

± 12.143 
p < 0.649 

106.910 

± 19.352 

68.030 

± 12.774 
p < 0.001 *** 

INS 
136.444 

± 124.642 

66.144 

± 22.154 
p < 0.115 

181.320 

± 108.171 

129.140 

± 54.474 
p < 0.190 

102.700 

± 93.846 

48.411 

± 15.970 
p < 0.106 

114.680 

± 46.885 

73.380 

± 32.000 
p < 0.034 * 

135.570 

± 66.490 

86.080 

± 27.670 
p < 0.043 * 

pCS 
22.863 

± 45.643 

6.428 

± 3.057 
p < 0.297 

13.201 

± 15.641 

6.452 

± 6.191 
p < 0.221 

11.421 

± 14.434 

2.932 

± 1.870 
p < 0.099 

28.415 

± 45.171 

4.284 

± 2.878 
p < 0.109 

5.987 

± 5.293 

4.280 

± 4.371 
p < 0.442 

Tyrosine-dopamine pathway 

Tyr 
55533.333 

± 25146.620 

47200.000 

± 66.11.354 
p < 0.351 

74760.000 

± 27036.856 

55710.000 

± 9047.216 
p < 0.049 * 

76522.222 

± 33835.513 

57944.444 

± 10032.337 
p < 0.134 

72320.000 

± 27354.983 

57480.000 

± 6273.542 
p < 0.112 

67800.000 

± 25030.026 

53600.000 

± 9267.026 
p < 0.110 

L-DOPA no data no data no data 
130.840 

± 71.182 

119.180 

± 91.862 
p < 0.755 

147.389 

± 60.587 

122.400 

± 31.455 
p < 0.288 

97.580 

± 16.040 

103.530 

± 54.909 
p < 0.746 

144.090 

± 139.318 

118.740 

± 19.909 
p < 0.576 

3OMD 
43.067 

± 11.017 

48.467 

± 22.082 
p < 0.521 

42.010 

± 7.379 

46.620 

± 10.305 
p < 0.265 

42.867 

± 13.189 

41.678 

± 9.240 
p < 0.828 

44.220 

± 8.036 

38.350 

± 6.488 
p < 0.089 

36.990 

± 11.834 

35.540 

± 8.342 
p < 0.755 

DA 
238805.321 

± 62124.925 

226596.946 

± 85742.994 
p < 0.734 

11460.000 

± 4415.938 

9733.000 

± 1997.838 
p < 0.265 

327.778 

± 184.660 

301.556 

± 119.914 
p < 0.726 

126.260 

± 129.803 

90.500 

± 32.822 
p < 0.409 

373.800 

± 137.416 

320.700 

± 78.006 
p < 0.302 

3-MT 
12277.778 

± 3429.001 

15417.778 

± 7109.386 
p < 0.250 

2637.000 

± 1213.370 

3510.000 

± 2184.272 
p < 0.284 

72.811 

± 27.012 

76.333 

± 42.626 
p < 0.837 

48.360 

± 51.290 

39.780 

± 27.131 
p < 0.646 

108.990 

± 55.943 

100.420 

± 45.985 
p < 0.713 

DOPAC 
9731.111 

± 2098.681 

8508.889 

± 2173.571 
p < 0.243 

3231.000 

± 662.528 

2604.000 

± 1298.026 
p < 0.190 

99.844 

± 31.080 

119.122 

± 46.575 
p < 0.317 

118.510 

± 70.272 

58.230 

± 22.991 
p < 0.019 * 

286.600 

± 83.187 

269.700 

± 90.096 
p < 0.668 

HVA 
8845.556 

± 1621.983 

9957.778 

± 2933.235 
p < 0.334 

3219.000 

± 465.271 

2994.000 

± 815.383 
p < 0.458 

563.667 

± 249.747 

622.000 

± 272.426 
p < 0.642 

241.000 

± 72.399 

235.410 

± 110.270 
p < 0.895 

512.900 

± 142.529 

479.100 

± 199.441 
p < 0.668 

VMA no data no data no data 
6.815 

± 4.531 

9.876 

± 7.149 
p < 0.268 

4.113 

± 2.537 

7.131 

± 3.580 
p < 0.056 

23.772 

± 34.420 

34.862 

± 38.254 
p < 0.504 

7.121 

± 4.828 

8.801 

± 6.926 
p < 0.537 

MHPGS 
31.467 

± 15.193 

33.022 

± 10.663 
p < 0.805 

42.420 

± 20.320 

47.070 

± 7.532 
p < 0.506 

49.722 

± 16.118 

46.011 

± 9.992 
p < 0.565 

23.668 

± 27.307 

17.066 

± 6.494 
p < 0.467 

21.700 

± 9.295 

22.040 

± 5.288 
p < 0.921 

BIO 
43.611 

± 16.815 

55.533 

± 18.984 
p < 0.178 

22.410 

± 7.193 

18.823 

± 10.159 
p < 0.374 

15.201 

± 11.095 

14.789 

± 12.229 
p < 0.941 

15.690 

± 3.897 

9.233 

± 3.056 
p < 0.001 *** 

62.380 

± 19.428 

41.020 

± 9.643 
p < 0.006 ** 

BH2 
514.956 

± 164.623 

441.378 

± 173.194 
p < 0.369 no data no data no data no data no data no data 

117.947 

± 16.544 

76.528 

± 22.014 
p < 0.001 *** 

222.409 

± 82.207 

192.147 

± 59.659 
p < 0.359 
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Mean ± SD. Asterisks indicate significance levels: *, p < 0.05; **, p < 0.01; ***, p < 0.001. 3-HAA, 3-hydroxyanthranilic acid; 3-HK, 3-hydroxykynurenine; 3-MT, 3-

methoxytyramine; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, serotonin (5-hydroxytryptamine); 5-HTP, 5-hydroxytryptophan; AA, anthranilic acid; BH2, dihy-

drobiopterin; BIO, biopterin; DA, dopamine; DOPAC, 3,4-dihydroxyphenylacetic acid; HVA, homovanillic acid; ICA, indole-3-carboxaldehyde; IAA, indole-3-

acetic acid; ILA, indole-3-lactic acid; INS, indoxyl sulfate; IPA, indole-3-propionic acid; KYN, kynurenine; KYNA, kynurenic acid; L-DOPA, levodopa; 3OMD, 3-

O-methyldopa; MHPGS, 3-methoxy-4-hydroxyphenylglycol sulfate; PA, picolinic acid; pCS, p-Cresyl sulfate; QA, quinolinic acid; QAA, quinaldic acid; Trp, tryp-

tophan; Tyr, tyrosine; VMA, vanillylmandelic acid; XA, xanthurenic acid. 
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Table S4. Concentrations of indole-pyruvate and tyrosine-dopamine pathway metabolites in wild-

type (WT) and kat2-/- mice in plasm and urine. 

Metabolite 

Plasm (nM) Urine (nM) 

Mean ± SD 
p-Value

Mean ± SD 
p-Value

WT kat2-/- WT kat2-/- 

Indole-pyruvate pathway 

ICA no data no data no data no data no data no data 

IPA no data no data no data no data no data no data 

ILA no data no data no data no data no data no data 

pCS 
853.520 

± 961.663 

1097.193 

± 1196.572 
p < 0.622 

9683.873 

± 15558.939 

7429.639 

± 12598.662 
p < 0.726 

Tyrosine-dopamine pathway 

Tyr 
50824.432 

± 20811.617 

35775.857 

±16975.863 
p < 0.093 

9411.420 

± 2214.266 

8789.288 

± 1547.575 
p < 0.476 

L-DOPA
36.800 

± 15.606 

35.109 

± 13.708 
p < 0.800 no data no data no data 

3OMD 
36.340 

± 5.556 

31.128 

± 5.595 
p < 0.051 

41.828 

± 21.255 

40.299 

± 17.829 
p < 0.864 

DA no data no data no data 
671.105 

± 320.951 

779.887 

± 193.877 
p < 0.371 

3-MT
2.653 

± 1.315 

1.796 

± 0.655 
p < 0.082 

241.517 

± 93.336 

235.939 

± 50.578 
p < 0.870 

DOPAC no data no data no data 
370.196 

± 224.797 

301.471 

± 108.291 
p < 0.395 

HVA no data no data no data 
1120.520 

± 890.606 

731.657 

± 173.621 
p < 0.192 

VMA no data no data no data 
820.064 

± 567.571 

760.459 

± 124.132 
p < 0.749 

MHPGS 
27.657 

± 12.496 

15.392 

± 6.886 
p < 0.014 * 

8533.153 

± 3929.104 

14639.178 

± 3364.617 
p < 0.002 ** 

BIO 
68.419 

± 23.013 

82.535 

± 17.725 
p < 0.142 

231.328 

± 80.142 

221.133 

± 88.018 
p < 0.790 

BH2 
588.898 

± 122.352 

577.701 

± 178.965 
p < 0.872 

4508.851 

± 2655.882 

4488.304 

± 2298.353 
p < 0.985 

Mean ± SD. Asterisks indicate significance levels: *, p < 0.05; **, p < 0.01. 3OMD, 3-O-methyldopa; 3-

MT, 3-methoxytyramine; BH2, dihydroxybiopterin; BIO, biopterin; DA, dopamine; DOPAC, 3,4-di-

hydroxyphenylacetic acid; HVA, homovanillic acid; ICA, indole-3-carboxaldehyde; ILA, indole-3-

lactic acid; IPA, 3-indolepropionic acid; kat2-/-, kynurenine aminotransferase II knockout mice; L-

DOPA, levodopa; MHPGS, 3-methoxy-4-hydroxyphenylglycol sulphate; pCS, para-Cresol sulphate; 

SD, standard deviance; Tyr, tyrosine; VMA, vanillylmandelic acid; WT, wild-type mice. 
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Table S5. Ratios of kynurenine (KYN), serotonin (5-HT), indole-pyruvate and tyrosine (Tyr)-dopamine (DA) metabolites to their precursors and associated enzyme 

activities across brain regions in wild-type (WT) and kat2⁻/⁻ mice. Activities were estimated using product-to-substrate ratios for key enzymatic steps. 

Enzyme Product/Substrate 

Striatum Cortex Hippocampus Cerebellum Brainstem 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

WT kat2-/- WT kat2-/- WT kat2-/- WT kat2-/- WT kat2-/- 

TDO/IDOs KYN/Trp 
0.006 

± 0.001 

0.007 

± 0.002 
p < 0.188 

0,004 

± 0,001 

0.005 

± 0.001 
p < 0.212 

0.004 

± 0.001 

0.005 

± 0.001 
p < 0.245 

0.006 

± 0.004 

0.005 

± 0.002 
p < 0.349 

0.005 

± 0.001 

0.005 

± 0.002 
p < 0.907 

KATs KYNA/KYN 
0.012 

± 0.005 

0.026 

± 0.017 
p < 0.035 * 

0.045 

± 0.027 

0.026 

± 0.012 
p < 0.063 

0.022 

± 0.010 

0.015 

± 0.007 
p < 0.099 

0.036 

± 0.015 

0.041 

± 0.019 
p < 0.487 

0.034 

± 0.011 

0.032 

± 0.017 
p < 0.696 

KMO 3-HK/KYN 
0.305 

± 0.075 

0.510 

± 0.216 
p < 0.002 ** 

0.413 

± 0.131 

0.714 

± 0.262 
p < 0.001 ** 

0.463 

± 0.121 

0.844 

± 0.264 
p < 0.001 *** 

0.458 

± 0.139 

0.957 

± 0.365 
p < 0.001 *** 

0.365 

± 0.087 

0.709 

± 0.230 
p < 0.001 *** 

KYNU AA/KYN 
0.018 

± 0.006 

0.018 

± 0.009 
p < 0.951 

0.003 

± 0.001 

0.004 

± 0.003 
p < 0.208 

0.003 

± 0.001 

0.002 

± 0.001 
p < 0.301 

0.003 

± 0.001 

0.003 

± 0.002 
p < 0.913 

0.004 

± 0.002 

0.005 

± 0.004 
p < 0.651 

KYNU 3-HAA/3-HK no data no data no data 
0.135 

± 0.040 

0.125 

± 0.034 
p < 0.540 

0.072 

± 0.036 

0.038 

± 0.020 
p < 0.026 * no data no data no data no data no data no data 

KAT III XA/3-HK 
0.045 

± 0.027 

0.022 

± 0.018 
p < 0.052 

0.151 

± 0.106 

0.035 

± 0.027 
p < 0.001 ** 

0.031 

± 0.017 

0.011 

± 0.009 
p < 0.007 ** 

0.034 

± 0.015 

0.014 

± 0.015 
p < 0.001 ** 

0.088 

± 0.054 

0.020 

± 0.017 
p < 0.001 *** 

3-HAO QA/3-HAA no data no data no data 
5.910 

± 2.878 

3.693 

± 2.022 
p < 0.112 

6.125 

± 4.070 

10.220 

± 9.885 
p < 0.508 no data no data no data no data no data no data 

3-HAO + ACMSD PA/3-HAA no data no data no data 
23.688 

± 7.982 

20.024 

± 13.316 
p < 0.082 

66.477 

± 82.924 

51.852 

± 33.947 
p < 0.895 no data no data no data no data no data no data 

TPHs 5-HTP/Trp 
0.002 

± 0.000 

0.002 

± 0.001 
p < 0.313 

0.003 

± 0.001 

0.002 

± 0.001 
p < 0.005 ** 

0.002 

± 0.000 

0.002 

± 0.000 
p < 0.331 

0.000 

± 0.000 

0.000 

± 0.000 
p < 0.003 ** 

0.002 

± 0.001 

0.003 

± 0.001 
p < 1.000 

AADC 5-HT/5-HTP 
53.246 

± 12.810 

110.941 

± 73.047 
p < 0.015 * 

37.833 

± 12.360 

102.426 

± 43.532 
p < 0.001 ** 

72.470 

± 26.437 

82.603 

± 22.339 
p < 0.393 

34.597 

± 17.138 

74.676 

± 41.567 
p < 0.004 ** 

63.557 

± 38.662 

68.894 

± 37.313 
p < 0.496 

MAOs + ALDH 5-HIAA/5-HT 
0.982 

± 0.148 

0.922 

± 0.180 
p < 0.453 

1.036 

± 0.280 

0.822 

± 0.141 
p < 0.044 * 

1.290 

± 0.327 

1.126 

± 0.285 
p < 0.274 

2.905 

± 1.239 

2.539 

± 0.796 
p < 0.442 

1.150 

± 0.271 

1.160 

± 0.232 
p < 0.926 

TMO (TrD, ArAT) IAA/Trp 
0.010 

± 0.003 

0.009 

± 0.002 
p < 0.212 

0.006 

± 0.002 

0.007 

± 0.001 
p < 0.054 

0.006 

± 0.001 

0.005 

± 0.001 
p < 0.021 * 

0.002 

± 0.001 

0.002 

± 0.001 
p < 0.026 * 

0.004 

± 0.001 

0.004 

± 0.001 
p < 0.597 

TNA INS/Trp 
0.005 

± 0.003 

0.003 

± 0.001 
p < 0.554 

0.006 

± 0.003 

0.005 

± 0.002 
p < 0.624 

0.003 

± 0.002 

0.002 

± 0.001 
p < 0.161 

0.004 

± 0.002 

0.003 

± 0.001 
p < 0.170 

0.005 

± 0.003 

0.003 

± 0.001 
p < 0.147 

TH L-DOPA/Tyr no data no data no data 
0.002 

± 0.001 

0.002 

± 0.002 
p < 0.968 

0.002 

± 0.001 

0.002 

± 0.001 
p < 0.555 

0.001 

± 0.000 

0.002 

± 0.001 
p < 0.126 

0.002 

± 0.001 

0.002 

± 0.001 
p < 0.132 
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AADC DA/L-DOPA no data no data no data 
110.049 

± 70.406 

132.849 

± 107.738 
p < 0.880 

2.583 

± 1.810 

2.556 

± 1.048 
p < 0.969 

1.370 

± 1.513 

1.101 

± 0.682 
p < 0.821 

3.589 

± 1.777 

2.775 

± 0.933 
p < 0.216 

MAOs DOPAC/DA 
0.044 

± 0.020 

0.043 

± 0.020 
p < 0.452 

0.320 

± 0.142 

0.274 

± 0.140 
p < 0.290 

0.376 

± 0.178 

0.427 

± 0.156 
p < 0.532 

1.324 

± 0.697 

0.669 

± 0.210 
p < 0.023 * 

0.810 

± 0.238 

0.909 

± 0.393 
p < 0.500 

COMT HVA/DOPAC 
0.944 

± 0.256 

1.279 

± 0.584 
p < 0.143 

1.045 

± 0.290 

1.444 

± 0.799 
p < 0.165 

6.137 

± 3.971 

5.665 

± 2.558 
p < 0.895 

2.271 

± 0.755 

4.685 

± 2.395 
p < 0.012 * 

1.933 

± 0.850 

2.145 

± 1.626 
p < 0.791 

MAOs + COMT HVA/DA 
0.039 

± 0.010 

0.046 

± 0.009 
p < 0.141 

0.309 

± 0.094 

0.314 

± 0.094 
p < 0.892 

1.821 

± 0.365 

2.140 

± 0.577 
p < 0.181 

2.849 

± 1.324 

2.763 

± 1.020 
p < 0.872 

1.453 

± 0.413 

1.469 

± 0.320 
p < 0.922 

Mean ± SD. Asterisks indicate significance levels: *, p < 0.05; **, p < 0.01; ***, p < 0.001. 3-HAA, 3-hydroxyanthranilic acid; 3-HAO, 3-hydroxyanthranilate oxidase; 

3-HK, 3-hydroxykynurenine; AA, anthranilic acid; AADC, aromatic L-amino acid decarboxylase; ACMSD, aminocarboxymuconate-semialdehyde decarboxylase;

ALDH, aldehyde dehydrogenase; COMT, catechol-O-methyltransferase; DA, dopamine; DOPAC, 3,4-dihydroxyphenylacetic acid; HVA, homovanillic acid; IAA, 

indole-3-acetic acid; IDOs, indoleamine 2,3-dioxygenases; INS, indoxyl sulfate; kat2-/-, kynurenine aminotransferase II knockout mice; KATs, kynurenine ami-

notransferases; KMO, kynurenine 3-monooxygenase; KYNA, kynurenic acid; KYNU, kynureninase; L-DOPA, dihydroxyphenylalanine/levodopa; MAOs, mono-

amine oxidases; PA, picolinic acid; QA, quinolinic acid; QAA, quinolinic acid analog; TDO, tryptophan 2,3-dioxygenase; TH, tyrosine hydroxylase; TMO, trypto-

phan monooxygenase; TNA, tryptophan N-acetyltransferase; TrD, tryptophan deaminase; Trp, tryptophan; Tyr, tyrosine; 5-HIAA, 5-hydroxyindoleacetic acid; 5-

HT, serotonin (5-hydroxytryptamine); 5-HTP, 5-hydroxytryptophan; WT, wild-type mice; XA, xanthurenic acid. 

Table S6. Ratios of oxidant/antioxidant and N-methyl-D-aspartate (NMDA) agonist/antagonist metabolites across brain regions in wild-type (WT) and kat2⁻/⁻ mice. 

Regional indices of oxidative stress and excitotoxicity in WT and kat2⁻/⁻ mice. 

Oxidant/antioxidant 

metabolites 

Striatum Cortex Hippocampus Cerebellum Brainstem 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

Mean ± SD 
p-Value 

WT kat2-/- WT kat2-/- WT kat2-/- WT kat2-/- WT kat2-/- 

3-HK/(KYNA+AA+XA) 
6.951 

± 2.904 

10.723 

± 10.215 
p < 0.627 

4.700 

± 2.112 

17.670 

± 13.315 
p < 0.001 ** 

13.509 

± 6.992 

37.148 

± 15.859 
p < 0.002 ** 

9.667 

± 3.839 

20.311 

± 9.275 
p < 0.006 ** 

5.740 

± 1.892 

18.705 

± 9.300 
p < 0.002 ** 

NMDA agonist/antagonist 

metabolites 

Striatum Cortex Hippocampus Cerebellum Brainstem 

Mean ± SD 
p-value 

Mean ± SD 
p-value 

Mean ± SD 
p-value 

Mean ± SD 
p-value 

Mean ± SD 
p-value 

WT kat2-/- WT kat2-/- WT kat2-/- WT kat2-/- WT kat2-/- 

QA/KYNA 
11.575 

± 18.379 

9.138 

± 7.260 
p < 0.923 

9.263 

± 7.574 

14.235 

± 14.254 
p < 0.597 

7.957 

± 5.478 

16.120 

± 9.907 
p < 0.046 * 

5.306 

± 4.601 

4.998 

± 4.789 
p < 0.880 

7.724 

± 7.414 

10.224 

± 5.544 
p < 0.096 

Mean ± SD. Asterisks indicate significance levels: *, p < 0.05; **, p < 0.01; ***, p < 0.001. 3-HK, 3-hydroxykynurenine; AA, anthranilic acid; kat2⁻/⁻, kynurenine aminotransferase II knockout mice; 

KYNA, kynurenic acid; NMDA. N-methyl-D-aspartate; QA, quinolinic acid; WT, wild-type mice; XA, xanthurenic acid. 
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