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Simple Summary

Neuroendocrine neoplasms (NENs) are a highly diverse group of tumors in which somato-
statin receptor expression plays a central role in diagnosis and treatment planning. The
present study underlines the value of [99mTc]Tc-EDDA/HYNIC-TOC SPECT/CT in the
assessment of receptor expression and the making of therapeutic decisions, particularly in
the context of radioligand therapy. Using nonlinear mathematical modeling and imaging
results, as well as analysis of histological, immunohistochemical, and laboratory data, we
identified key factors—such as tumor origin, treatment history, CK7 status, and tumor
markers—that can help predict receptor status even without imaging. These findings lend
support to a more individualized approach to the treatment of metastatic NENs and may
lead to new perspectives in imaging for this heterogeneous group of diseases.

Abstract

Background: Neuroendocrine neoplasms (NENs) are a diverse group of malignancies in
which somatostatin receptor expression can be crucial in guiding therapy. We aimed to
evaluate the effectiveness of [99mTc]Tc-EDDA/HYNIC-TOC SPECT/CT in differentiat-
ing neuroendocrine tumor histology, selecting candidates for radioligand therapy, and
identifying correlations between somatostatin receptor expression and non-imaging pa-
rameters in metastatic NENs. Methods: This retrospective study included 65 patients
(29 women, 36 men, mean age 61) with metastatic neuroendocrine neoplasms confirmed
by histology, follow-up, or imaging, comprising 14 poorly differentiated carcinomas and
51 well-differentiated tumors. Somatostatin receptor SPECT/CT results were assessed
visually and semiquantitatively, with mathematical models incorporating histological,
oncological, immunohistochemical, and laboratory parameters, followed by biostatistical
analysis. Results: Of 392 lesions evaluated, the majority were metastases in the liver, lymph
nodes, and bones. Mathematical models estimated somatostatin receptor expression ac-
curately (70–83%) based on clinical parameters alone. Key factors included tumor origin,
oncological treatments, and the immunohistochemical marker CK7. Associations were
found between age, grade, disease extent, and markers (CEA, CA19-9, AFP). Conclusions:
Our findings suggest that [99mTc]Tc-EDDA/HYNIC-TOC SPECT/CT effectively evaluates
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somatostatin receptor expression in NENs. Certain immunohistochemical and labora-
tory parameters, beyond recognized factors, show potential prognostic value, supporting
individualized treatment strategies.

Keywords: SPECT/CT; [99mTc]Tc-EDDA/HYNIC-TOC SPECT/CT; neuroendocrine neoplasm;
somatostatin receptor; machine learning; PRRT

1. Introduction
The incidence of neuroendocrine neoplasms (NENs), including neuroendocrine tu-

mors (NETs) and neuroendocrine carcinomas (NECs), is steadily increasing [1,2]. Accurate
histological differentiation of these malignancies, according to the WHO-2022 recommen-
dation, is crucial, especially in view of their differentiation status. Well-differentiated forms
are called neuroendocrine tumors, whereas poorly differentiated forms are called neu-
roendocrine carcinomas [3]. These usually asymptomatic tumors are typically diagnosed
at an advanced stage, when distant metastases are already present [4]. Originating from
various organs through the malignant transformation of neuroendocrine cells, these tumors
display significant biological diversity. One of the hallmark features of neuroendocrine
neoplasias is the expression of somatostatin receptors (SSTRs), which play a central role in
both the pathogenesis and treatment of these tumors. SSTRs function as pivotal therapeutic
targets for somatostatin analogues (SSA), pharmaceutical agents that can effectively inhibit
hormone overproduction and delay tumor progression. Beyond their therapeutic relevance,
SSTR expression levels also possess significant prognostic value. Numerous studies have
demonstrated that higher SSTR expression correlates with improved therapeutic response
and longer overall survival in NET patients [5]. Consequently, the SSTR expression profile
not only serves as a fundamental basis for contemporary treatment strategies but also
functions as a valuable biomarker, facilitating the prediction of patient outcomes and the
development of personalized therapeutic approaches in neuroendocrine neoplasms. [6].
Both immunohistochemical and functional imaging techniques are available to detect this
pattern. Imaging guidelines favor somatostatin receptor PET/CT because of its subtle
resolution advantage, but the availability of the method is limited. However, SPECT/CT
alternatives are widely available in nearly all countries around the world [7,8]. In instances
where the test result indicates receptor positivity, peptide receptor radionuclide therapy
(PRRT), a relatively novel yet extensively utilized selective nuclear medicine therapy, can
be recommended as a treatment option in combination with conventional somatostatin
analog therapy [9,10].

Our study aimed to evaluate the effectiveness of [99mTc]Tc-EDDA/HYNIC-TOC
SPECT/CT in assessing somatostatin receptor expression across various NENs. We focused
on its usefulness in differentiated neuroendocrine tumors and on identifying patients who
would benefit from peptide receptor radioligand therapy. By analyzing receptor expression
via SSTR SPECT/CT, we sought to understand variations in receptor density influenced by
specific and non-specific histological, oncological, immunohistochemical, and laboratory
parameters. Additionally, we examined correlations between receptor expression and
non-imaging parameters in metastatic NENs, aiming to enhance understanding of tumor
behavior and support more personalized treatment strategies. Figure 1 provides a concise
flowchart of our study.
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Figure 1. Simplified flowchart of the study. The figure illustrates the key steps of our analysis, from
data collection through machine learning to finding the final variables.

2. Materials and Methods
2.1. Patient Selection

This single-center retrospective study included 65 patients (29 women and 36 men;
mean age 61 years; age range 25–84 years) with metastatic neuroendocrine neoplasms
(neuroendocrine tumors and carcinomas). Only cases with histologically confirmed neu-
roendocrine neoplasia were enrolled. Exclusion criteria included the presence of another
malignant primary tumor or the patient’s general condition being unsuitable or contraindi-
cated for PRRT. In the patient-based analysis, researchers collected 100 binary and numeric
features, while the lesion-based approach included 104 features. The most commonly used
and newly identified variables were documented in detail throughout the data collection.

Immunohistochemical tests were carried out for chromogranin-A in all patients, and
synaptophysin analysis was performed in most cases (83%). Several additional non-specific
immunohistochemical markers were measured at relatively high frequencies, among which
cytokeratin-7 (CK7; 51%), thyroid transcription factor 1 (TTF1; 43%), and cytokeratin-
20 (CK20; 35%) were primarily employed to determine tumor origin. Among serum
markers, chromogranin-A and neuron-specific enolase (NSE) were measured multiple
times, while carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9), and alpha-
fetoprotein (AFP) were also frequently tested prior to SPECT/CT (in 58%, 51%, and 32% of
patients, respectively).

Somatostatin receptor scintigraphy and SPECT/CT scans relied on the liver and spleen
as reference organs for the semiquantitative Krenning score. Lesions with radiopharma-
ceutical uptake higher than the liver were rated Krenning 3–4, indicating potential PRRT
eligibility, while lesions with moderate uptake were labeled Krenning 2, and those with
minimal or no uptake were designated Krenning 0–1. In the patient-based approach, only
the least active lesion in each patient determined overall PRRT suitability.

Prior oncological treatments included surgical intervention or oncotherapy (chemother-
apy or radiotherapy) in 45 out of 65 patients. Thirteen patients received somatostatin analog
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therapy, with an average withdrawal period of 36 days prior to the scheduled somatostatin
receptor SPECT/CT scan.

2.2. Protocol for Somatostatin Receptor SPECT/CT Image Acquisition

All patients underwent somatostatin receptor scintigraphy. The radiopharmaceutical
[99mTc]Tc-EDDA/HYNIC-TOC SPECT/CT (Tektrotyd©, Polatom Ltd., Otwock, Poland;
700 MBq) was used for the study. An initial whole-body (AP/PA) scan was performed one
hour after intravenous administration, though it was not included in the assessment. Four
hours later, a short whole-body SPECT/CT scan (360◦; 96 projections, 10 s/image; matrix:
128 × 128; pixel: 4.22 mm) was conducted, extending from the base of the skull to mid-
thigh, and these images were analyzed in detail. SPECT data collection was followed by
low-dose CT acquisition (120 kV and 70 mAs). All scans were performed on an integrated
whole-body SPECT/CT system (Mediso AnyscanTRIO. Mediso Medical Imaging Systems
Ltd., Budapest, Hungary). Occasionally, 24-hour SPECT scans were also taken for a more
accurate assessment of certain lesions’ characteristics (10/65 patients); however, these scans
were not evaluated in detail. Prior to imaging, patients were given an oral negative contrast
agent (1000 mL of polyethylene glycol solution) to drink continuously, starting 60 min
before the examination. This approach promoted bowel distention without introducing
artefacts from contrast-material-induced attenuation correction.

2.3. Image Analysis and Lesion Detection

The somatostatin receptor scintigraphy was visually assessed by two nuclear medicine
physicians, each with over 5 years of experience. In all cases, the 4-hour SPECT/CT
scans were analyzed. A lesion was considered abnormal if there was focal and intense
uptake of the radiopharmaceutical or if there was moderate or no tracer accumulation,
but it was detectable on low-dose CT scans, with the presence of a malignant process
confirmed by previous conventional radiological (CT, MRI, ultrasound, endosonography),
endoscopic and nuclear medicine (bone scintigraphy, MIBG scintigraphy, FDG- or FDOPA-
PET/CT) imaging modalities, or through histopathological examination during follow-up
(see Supplement S1). The number of selected metastases per organ was maximized at
5. Metastatic lesions were primarily selected based on size, followed by activity level,
allowing for the evaluation of lesions lacking somatostatin receptor expression. Findings in
bones and lymph nodes were classified as part of the same organ group.

Somatostatin receptor SPECT/CT images were also analyzed semiquantitatively. So-
matostatin receptor-positive lesions were identified semi-automatically using a minimum
threshold of 42% [11]. Conversely, somatostatin-receptor-negative lesions were contoured
based on CT morphology. The rate of accumulated activity in each lesion was calculated
relative to reference organs (liver and spleen) (see Supplement S2), and a semiquantitative
Krenning-score-based classification was performed [12]. Lesions with a low Krenning
score (Krenning 0–2) exhibit reduced or similar radiotracer uptake compared to the liver.
Conversely, malignant lesions with high scores (Krenning 3–4) demonstrate greater ra-
diopharmaceutical uptake than the liver, potentially making them suitable candidates for
radioligand therapy. The reference organ volume of interest (VOI) was always placed in
a tumor-free segment, using a fixed 30 mm3 sphere. In one case, where splenectomy had
been performed, a healthy kidney was used as the reference organ.

2.4. Data Analysis and Machine Learning Approach

The primary goal was to determine which clinical, pathological, and laboratory factors
are most closely associated with SSTR expression in metastatic neuroendocrine neoplasms.
We examined this question at two distinct levels. First, we focused on individual lesions to
predict each one’s Krenning score and assess whether its activity might indicate suitability
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for peptide receptor radionuclide therapy. Second, we considered each patient as a whole,
identifying the least active lesion and determining whether it would still qualify the patient
for PRRT.

2.4.1. Variable Grouping

To organize the extensive set of parameters, variables were grouped into four main categories:

1. oncological (group Onco, for example, previous treatments and tumor origin)
2. pathological (group Path, such as Ki-67 and tumor grade)
3. immunohistochemical (group Imm, including CK7 or CK20)
4. laboratory (group Lab, such as CEA, CA19-9, and AFP).

The imaging findings, including Krenning scores derived from SPECT/CT, were
considered outcome data. The variable groups are presented in Supplement S3 and S4.

2.4.2. Data Splitting and Model Development

To train and evaluate our models, we randomly split the dataset into an 80% training
subset and a 20% test subset one hundred times, generating multiple partitions for more
robust performance estimates.

During model development, we did not include all features simultaneously. Instead,
models were trained using the predefined variable groups (Onco, Path, Imm, and Lab) both
individually and in all possible combinations (e.g., Onco + Lab). This approach served a
dual purpose: first, it allowed us to explore which clinical domains held the most predictive
value; second, it helped mitigate the risk of overfitting given the relatively limited sample
size compared to the number of available features.

We initially tested linear models as a baseline, but the principal focus was on Random
Forest (RF) and Extreme Gradient Boosting (XGB), which are widely used decision-tree-
based methods with proved efficiency in both classification and regression tasks. While
RF builds multiple decision trees in the training phase and predicts using tree average
prediction, XGB builds trees sequentially; therefore, it incrementally improves its prediction.
Due to the methods’ loss functions, feature selection mechanism, and train phases, they
can capture nonlinear relationships effectively [13–16]. Every classification algorithm
was tested twice: once with the Synthetic Minority Oversampling Technique (SMOTE)
applied exclusively to the training data, and once without SMOTE. Intuitively, SMOTE
addresses class imbalances by generating new samples from the minority classes, thus
creating a more homogeneous distribution [17,18]. Rather than simply duplicating original
examples, SMOTE slightly varies the features of existing minority-class cases to produce
synthetic instances. Because SMOTE is only applied to the training data, it does not inflate
performance on the test set or leak information from the test set into the training process,
preserving the validity of our performance estimates.

Model accuracy was assessed using the F1 score (harmonizing positive predictive
value and sensitivity), and higher F1 values indicated superior overall classification perfor-
mance [19].

2.4.3. Feature Selection

We evaluated permutation-based feature importance per lesion and per patient to
reveal the most influential variables in the models. This process is illustrated in Figure 2
and briefly outlined below.

The process begins by training Random Forest or XGBoost models on the data, some-
times including SMOTE as described previously (Figure 2, Step 1). Once each model is
built, its predictive accuracy is assessed via the F1 score (Figure 2, Step 2).
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Permutation importance (PI) was calculated to quantify the contribution of each vari-
able to model performance (Figure 2, Step 3). For each feature, the values were randomly
permuted 100 times across the dataset, while all other variables remained unchanged. The
resulting decrease in the F1 score was averaged over the 100 permutations and used to
estimate the variable’s relative importance [20].

Any features that exhibit negligible relevance—determined partly by examining cor-
relations in the PI patterns—are removed (Figure 2, Step 4). This step ensures that the
analysis focuses on factors that offer genuine explanatory power.

Because PI can fluctuate from run to run (i.e., across repeated model trainings using
different data splits), the importance values were converted to absolute magnitudes and
averaged (Figure 2, Step 5). Each model’s F1 score is normalized relative to the mean F1
of all models (Figure 2, Step 6). Good performers thus carry more weight, while weaker
models’ results have proportionally less influence on subsequent calculations.

With stabilized PI and normalized F1 values in hand, a final feature importance (FI)
is computed for both lesion- and patient-level analyses (Figure 2, Step 7). This yields two
rankings—one focusing on individual metastatic lesions, the other on overall patient status.

Only the most influential variables—generally the top 10%—are retained for deeper
consideration (Figure 2, Step 8). Eliminating lower-ranked features prevents the models
from being burdened by weak predictors.

The refined list of variables is then subjected to classical statistical tests to verify that
the same parameters singled out by the machine learning process also show statistically
meaningful differences or associations (Figure 2, Step 9). This helps confirm their clinical
relevance. Any variables confirmed at both the lesion and patient levels, and supported by
standard statistical significance, are deemed most relevant (Figure 2, Step 10).

 

Figure 2. Flowchart of feature selection. The process shows step by step how to select the vari-
ables. (RF: Random forest, XGB: Extreme gradient boosting, PI: Permutation importance, FI:
Feature importance).
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2.5. Additional Statistics

To corroborate the potential clinical utility of the highest-ranked predictors, we per-
formed standard statistical tests on the final dataset. For continuous-type variables, such as
lesion-to-liver and lesion-to-spleen uptake ratios, the Mann–Whitney U or Kruskal–Wallis
test was employed, depending on whether two or more groups were compared. For binary
outcomes, such as a patient’s likelihood of benefiting from PRRT, the Chi-square test was
used. A p-value under 0.05 was considered indicative of statistical significance. All analyses
were conducted using R version 4.3.3.

3. Results
3.1. Metastatic Neuroendocrine Neoplasms Frequently Exhibit PRRT-Suitable Lesions

Of the 65 patients, 51 presented with an advanced neuroendocrine tumor (NET),
whereas 14 had neuroendocrine carcinoma (NEC). The most common primary site was
the gastrointestinal system (GIS) in 33 patients (of whom 94% had an NET and 6% NEC),
followed by the lung in 10 patients (equal 50–50% distribution of NET and NEC). In
7 patients, the primary tumor remained unknown, and 15 patients had tumors located in
less frequent sites, such as the thyroid, reproductive organs, breast, MEN1–2 syndrome,
or paraganglioma. Poorly differentiated cancers were more frequent in these less typical
locations, with a ratio of 68% NET to 32% NEC. In terms of tumor grading, 24 were Grade I,
25 were Grade II, and 16 were Grade III. Consistent with an advanced-disease population,
T3–4 lesions predominated in 32 cases, while 15 cases were considered T1–2 and 18 cases
were considered Tx.

In total, 392 pathological lesions were confirmed, comprising 47 primary tumors and
345 metastases. Every patient had at least one non-regional lymph node and/or distant
metastasis. There was a slight predominance of vascular spread in 49 of the 65 cases,
compared with 35 presenting lymphatic dissemination, and 24 patients had both distant
and lymph node metastases detectable on SPECT/CT. Most of the metastatic lesions were
detected in the liver (147 out of 392), followed by lymph nodes (105 out of 392) and bones
(55 out of 392). The remaining 38 lesions occurred in the lungs, skin, adrenal glands,
pancreas, or serosal surfaces. A total of 24 patients presented malignant involvement
in three or more organs. The distribution of tumor origin and metastatic locations is
summarized in Figure 3.

Figure 3. Distribution of tumor origin and metastasis location. The figure shows the distribution of
tumors by origin (A) in the patient sample and the distribution of metastases by location (B). The
blue-to-red gradient indicates increasing frequency.

In gastrointestinal tumors, CK7 negativity was predominant, whereas in all other
tumor types, CK7 positivity and negativity were observed at nearly the same rate (50–50%).
Among all detected lesions, 197 were classified as Krenning 3–4, indicating radiotracer
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uptake above liver levels and rendering them potentially eligible for PRRT. Of the remaining
lesions, 35 were Krenning 2 and 160 were Krenning 0–1. When considering only each patient’s
least active lesion, 21 patients were categorized as PRRT-suitable, while 44 were not. Notably,
among the 21 PRRT-eligible cases, one patient had a high-grade NET and one had NEC.

3.2. Model Performances: Complex Approaches Yield Better Accuracy

The modelling process began with linear analysis after grouping the features, but the
results indicated low F1 values (mean F1 = 0.39), suggesting that there was no clear linear
relationship between the study factors and somatostatin receptor expression. Consequently,
further testing was linear models was discontinued.

3.2.1. Lesion-Based Models Accurately Predict PRRT Suitability

For the lesion-based analysis, we ran six different models: two aimed to estimate the
Krenning score, while the remaining four assessed the suitability for PRRT (ProPRRT).
These calculations were performed using all 15 possible combinations of the four large
variable groups. The models demonstrated the highest accuracy in predicting ProPRRT
per lesion, with or without the SMOTE algorithm, achieving a mean F1 score of 0.83.
Krenning score estimation was slightly lower but remained acceptable (F1 = 0.76). Among
the groups, models incorporating pathological features performed the best, with a mean F1
of 0.83, while models lacking histological data scored 0.77. The most accurate predictor was
an XGB-based (extreme gradient boosting) model estimating ProPRRT with the SMOTE
algorithm using only pathological and laboratory data (F1 = 0.94).

3.2.2. Patient-Based Models Benefit from Histological Data for Enhanced PRRT Prediction

In patient-based calculations, two models primarily assessed PRRT eligibility based
on the patient’s least active lesion. Consistent with previous observations, models incorpo-
rating histological data proved to be successful predictors (mean F1 = 0.77), while those
excluding histological factors showed a weaker performance (F1 = 0.63). Interestingly,
random forest (RF) outperformed extreme gradient boosting (XGB) in this context, with F1
scores of 0.74 and 0.69. The best result in this group was achieved by an RF model using the
SMOTE algorithm to estimate ProPRRT based on pathological and immunohistochemical
features, reaching an F1 score of 0.95. Overall, mathematical models incorporating the
pathological variables produced the highest F1 scores across evaluations. The results from
the various models are summarized in Figure 4.

3.3. Feature Selection Identifies Key Predictive Biomarkers for PRRT Eligibility

The factors used in the different models can be ranked by their influence, measured
by the permutation importance parameter. First, correlation triangles are created for
both lesion- and patient-based descriptors to filter out factors with zero correlation (see in
Supplement S5 and S6). To compare residual values across models with different strengths,
standardization was applied, as shown in Figure 2. The resulting number, called feature
importance, provides a basis for ranking factors in both lesion- and patient-based calculations.

In the lesion-based models, age emerged as the primary influencing factor, followed by
CEA, metastasis location, serum chromogranin A, and CK7 marker. Similarly, in the patient-
based ranking, age was observed as the primary factor, followed by serum chromogranin,
number of lymph nodes involved, primary lung origin, and CA19-9 tumor marker. We
identified the most relevant factors—those playing key roles in both simulations—allowing
us to create a refined list of 12 factors for further testing with quantitative data during
statistical assessment. The prominent factors identified in the simulated models include
age, Ki-67, tumor origin (especially pancreatic and lung tumors), serum chromogranin A,
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tumor markers (CA19-9, CEA, AFP), immunohistochemical marker CK7, completed or
ongoing oncological treatment, number of metastatic lymph nodes, and tumor size.

Factors were analyzed to determine whether the dataset extracted by a particular
feature was significantly different from the remaining dataset or from the dataset defined
by another factor. Mann–Whitney tests were used for numerical variables (Kruskal–Wallis
for multiple groups), and Chi-square tests for binominal values. Among the parameters
selected from previous models, both patient-based and lesion-based analyses revealed
significant differences in somatostatin receptor expression based on tumor origin, previous
or current oncological treatment, and CK7 status (Figure 5).

 

Figure 4. Heat map of the model performance. The heat map shows how efficiently each model
predicted different output variables using each set of variables individually and in combination. The
color of the cells changes from blue to red as the F1 score increases. (Imm: Immunohistochemical
variables; Lab: Laboratory variables; Onco: Oncological variables; Path: Pathological variables;
RF: Random Forest; XGB: Extreme Gradient Boosting; SMOTE: Synthetic Minority Oversampling
Technique, PAT: Patient-based modelling).

Figure 5. Feature selection. The flowchart illustrates the most significant variables that emerged
following the model simulations, as well as those that remained after statistical assessment.
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Quantitative lesion-based analysis showed that neuroendocrine tumors (Mann–
Whitney, p < 0.001), gastrointestinal neuroendocrine neoplasia (Mann–Whitney, p < 0.001),
and, most notably, pancreatic origin (Mann–Whitney, p = 0.04) were associated with signifi-
cantly increased somatostatin receptor expression. On the other hand, lung origin tumors
(Mann–Whitney, p < 0.001) and neuroendocrine carcinoma (Mann–Whitney, p < 0.001)
showed a notably lower radiopharmaceutical uptake. Adequate oncological treatment
was associated with a significant reduction in SSTR expression (Mann–Whitney, p < 0.001).
Interestingly, CK7-negative tumors exhibited a very strong association with increased
somatostatin receptor status (Mann–Whitney, p < 0.001) (Figure 6).

Figure 6. Lesion-based distribution of somatostatin receptor expression. This figure shows the
lesion-based distribution of somatostatin receptor by CK7 factor (A), oncological therapy (B), degree
of differentiation (C), different tumor origins (D–F), age (G), tumor size (H), and carcinoembryonic
antigen (I).

In line with these findings, patient-based calculations showed that NETs (Chi-square,
p = 0.002), gastrointestinal origin (Chi-square, p < 0.001), absence of oncological therapy
(Chi-square, p = 0.047), and CK7 negativity (Chi-square, p < 0.001) were associated with



Cancers 2025, 17, 2935 11 of 18

the highest suitability for PRRT (Figure 7). Further lesion-level analysis of the CK7 marker
showed that CK7 negativity was linked to significantly increased somatostatin receptor
expression in several specific subgroups. This association was observed in tumors of
unknown origin (Mann–Whitney, p = 0.003); in both neuroendocrine carcinomas (p = 0.001)
and neuroendocrine tumors (p < 0.001); in grade I and II NETs (p = 0.005 and p = 0.011);
and in lesions from patients undergoing oncological treatment (p = 0.017).

Figure 7. Patient-based results of PRRT suitability. Figure shows the patient-based results of PRRT
suitability by CK7 factor (A), oncological therapy (B), and degree of differentiation (C).

In lesion-based calculations, significant differences were observed between age groups
above and below 55 years (Mann–Whitney, p = 0.015); tumor grade (Kruskal–Wallis,
p < 0.001); tumor size (Kruskal–Wallis, p < 0.001); and tumor markers CEA (Mann–Whitney,
p = 0.017), CA19-9 (Mann–Whitney, p = 0.005), and AFP (Mann–Whitney, p = 0.001)
(Figure 5). Patients who were younger, had low-grade tumors, and showed normal CEA
and CA19-9 but elevated AFP levels displayed increased radiopharmaceutical uptake in
lesions on SPECT/CT scans. Among primary tumor sizes, lesions between 20 and 40 mm
demonstrated the highest activity.

The influential effects of chromogranin-A and lymph node status were not confirmed
during the statistical process. Additionally, although not being selected through modelling,
patient-based calculations indicated that more widespread, multi-organ disease (Chi-square,
p = 0.039) was associated with a reduced likelihood of PRRT eligibility. In lesion-based anal-
yses, negativity for TTF1 (Mann–Whitney, p < 0.001) and CK20 (Mann–Whitney, p = 0.008)
suggested increased somatostatin receptor expression.

4. Discussion
Both well-differentiated and poorly differentiated neuroendocrine neoplasms are inva-

sive tumors that can metastasize to distant organs [3]. This makes it especially important to
study a cohort of patients with distant metastases to identify potential therapeutic targets,
such as somatostatin receptor expression. Although diagnostic guidelines recommend
somatostatin receptor PET/CT for this purpose, we used a 99mTc-labelled radiopharma-
ceutical ([99mTc]Tc-EDDA/HYNIC-TOC SPECT/CT) in this study [21,22]. Our patient
distribution and lesion prevalence by site align with literature findings, where gastrointesti-
nal neuroendocrine neoplasias are the most common form, while rare tumor sites, such as
the reproductive organs and breast, are predominantly neuroendocrine carcinomas [23–26].

While numerous publications on NETs form the basis of our current knowledge, NECs
have become a distinct subgroup with aggressive clinical behavior and high mortality rates,
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especially under the new WHO-2022 classification [27,28]. Our study showed variability
in somatostatin receptor expression on SPECT/CT between well-differentiated (neuroen-
docrine tumor) and poorly differentiated (neuroendocrine carcinoma) tumors, supporting
the recommendations of international guidelines (Figures 6C and 7C) [3,7].

Advancements in technology narrowed the resolution gap between PET/CT and
SPECT/CT [29]. The primary hybrid diagnostic modality for neuroendocrine tumors is
somatostatin-receptor-based imaging (SPECT/CT or PET/CT), while carcinomas fall within
the spectrum of FDG-PET/CT [30]. With regard to SPECT/CT, 99mTc -based imaging is
superior to 111indium-based imaging due to its better diagnostic performance, as shown by
Gabriel et al. [31–34]. For somatostatin receptor-based imaging, PET/CT generally offers
superior sensitivity and specificity compared to SPECT. However, exceptions occur in both
tumor types: some tumors may lack SSTR expression despite appearing as NETs, while
others may express somatostatin receptors even when histologically identified as NECs.
Exploring this gray area necessitates a comprehensive study of these tumors’ biological
behavior. Our study aimed to identify and clarify links between specific factors to elucidate
somatostatin receptor status across different types of malignant neuroendocrine lesions.
These insights could potentially expand the current range of SSA-based therapies.

Currently, PRRT is indicated for inoperable, progressive, well-differentiated gastroen-
teropancreatic (GEP) neuroendocrine tumors that have been treated with somatostatin
analogues. However, our findings suggest that PRRT might also offer a curative option for
neuroendocrine neoplasms of non-gastrointestinal origins or higher grades [10,35,36]. No-
tably, combining PRRT with systemic chemotherapy may serve as an effective alternative in
treating partially dedifferentiated neuroendocrine neoplasms, broadening the therapeutic
options for these cases [37].

By utilizing RF and XGB-based modelling, as outlined in the Methods section, the
objective was to identify nonlinear relationships between the various factors in this hetero-
geneous disease group [13–16]. This approach enabled a comprehensive exploration of the
variables influencing the suitability of PRRT. Our advanced machine learning algorithms
yielded high-quality results, showing that lesion-based models were more accurate predic-
tors of key parameters compared to patient-based assessment. This improved accuracy was
largely attributed to the higher data volume (392 vs. 65), which allowed for more robust
insights in lesion-focused analyses. To address methodological differences among various
machine learning techniques, we developed a standardized framework for determining
feature importance across models. By aggregating over all subsets, we derived the overall
feature importance. Through this approach, we identified 12 key parameters—age, Ki-67,
pancreas origin, lung origin, serum chromogranin A, CA19-9, CEA, AFP, CK7 immunohis-
tochemical factor, oncological treatment, number of metastatic lymph nodes, and tumor
size— and ultimately validated three of these parameters explicitly using both patient- and
lesion-based statistical methods: tumor origin, adequacy of oncological treatment and the
immunohistochemical marker CK7 (Figure 5). Somatostatin receptors are well recognized
for their overexpression in well-differentiated gastroenteropancreatic neuroendocrine neo-
plasms. Recent studies have demonstrated a progressive decline in somatostatin receptor
2A (SST2A) expression as malignancy advances from G1 neuroendocrine tumors to G3 neu-
roendocrine carcinoma [38,39]. Additionally, some data suggest variations in malignancy
and overall survival rates based on the location of GEP-NEN along the gastrointestinal
tract: malignant potential (Ki-67 level) is higher in hindgut tumors, resulting in lower
survival rates compared to foregut tumors [40,41].

Our results partially align with previous findings: while GEP-NENs showed the
strongest somatostatin receptor expression, tumors originating from the hindgut did not
differ significantly from other gastrointestinal tumors. In contrast, pancreatic tumors
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had a significantly high somatostatin receptor expression. Lung-origin neuroendocrine
neoplasms, though less frequently discussed, also demonstrated SSTR expression on the
cell surface, albeit at levels lower than GEP-NETs—a pattern that our analysis similarly
reflected (Figure 6D–F) [42,43].

Our findings suggest that gastroenteropancreatic tumors, particularly those of pancre-
atic origin, are likely linked to increased radiopharmaceutical uptake, indicating a better
prognosis. Conversely, lung tumors are likely to have reduced SSTR expression and a
poorer prognosis [28,43]. It is worth noting that histologic dedifferentiation does not al-
ways result in a total loss of somatostatin receptors, making somatostatin-based imaging
potentially valuable, especially for gastrointestinal neuroendocrine carcinomas (Figure 8).

 

Figure 8. Somatostatin receptor expression in neuroendocrine carcinoma. A 73-year-old patient
with grade III neuroendocrine carcinoma of unknown origin. (Ki67 = 50%) shown on [99mTc]Tc-
EDDA/HYNIC-TOC SPECT/CT axial section images. Immunohistochemical factors CK7 and TTF1
were negative. Arrows mark somatostatin receptor-positive lymph node metastases.

Lesion-based analyses revealed a significantly increased uptake of radiopharmaceuti-
cals in younger patients, in low-grade tumors, and when CEA and CA19-9 tumor markers
levels were within the normal range (Figure 6G–I). Conversely, extensive multi-organ
disease was linked to decreased uptake, which correlated with a higher likelihood of PRRT
ineligibility. Factors such as grade, age, and disease progression are well-documented in
the literature [44]. However, the relationship between tumor markers and somatostatin
receptor expression has not been established in previous studies.

Our findings suggest an indirect link between certain tumor markers and increased
radiopharmaceutical uptake, possibly reflecting tumor origin or stage. Normal tumor
marker levels may indicate localized disease, whereas high values may reflect disseminated
tumors. Additionally, CA19-9 is predominantly a marker for pancreatic tumors, while
CEA is associated with colon, lung, and thyroid tumors [45–48]. This area holds promise
for applications in clinical practice but will require further research to fully understand
its implications.

Among immunohistochemical factors, CK7 emerged as a dominant marker throughout
the study. Overall, CK7 negativity was associated with increased SSTR expression in
both patient- and lesion-based comparisons (Figure 6A; Figure 7A). Furthermore, our
results confirmed CK7-negative and corresponding somatostatin receptor-positive status
in challenging diagnostic subgroups, including tumors of unknown origin, post-chemo-
radiotherapy patients, and high-grade neoplasia. Figure 9 illustrates the importance of CK7
through a specific case. These findings have not been previously reported in the literature.

An immunohistochemical analysis, albeit limited to a NEC population, has reached
similar conclusions to ours, showing that tumors of gastrointestinal origin are predomi-
nantly CK7-negative, whereas those of lung origin are CK7-positive (p < 0.0001), and that
GEP-NECs are significantly more likely to express somatostatin receptors (p = 0.0021) [44,47].
The analysis of other immunohistochemical factors, including CK20 and TTF1 negativity,
further highlighted increased somatostatin receptor expression in lesions, primarily aiding
in the distinction between gastrointestinal and pulmonary origins [49–51].
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Figure 9. Demonstration of the clinical relevance of CK7 by an example. [99mTc]Tc-EDDA/HYNIC-
TOC SPECT/CT axial slice images showing a CK7 immunohistochemical marker-negative (A) and
CK7-positive (B) patient with a Grade II neuroendocrine tumor of unknown origin. Arrows mark the
metastatic lesions.

Oncological therapies aim to modify the biological behavior of tumors and inhibit their
proliferation. Following such therapeutic protocols can mitigate the defining characteristics
of the tumor type. Assessing therapy response through molecular hybrid imaging is
already an integral part of standard practice in most cases [52]. In this context, our results
indicated that even oncological therapies not specifically targeting somatostatin receptor
expression can induce downregulation of these transmembrane proteins—a change that
can be visualized through somatostatin receptor-based imaging (Figures 6B and 7B).

5. Limitations
This is a single-center retrospective study, which limits the generalizability of these

findings. Our method utilized 99mTc-based somatostatin receptor SPECT/CT for its gen-
eral availability and superior sensitivity compared to other SPECT radiopharmaceuticals,
although its sensitivity remains below that of the internationally endorsed somatostatin
receptor PET/CT. In daily clinical practice, our selected patient population with metastatic
neuroendocrine neoplasia is highly heterogeneous, representing only those referred to our
institute. Histopathological examination was not available for all lesions, so we relied on
follow-up imaging studies to confirm all abnormalities as thoroughly as possible. Addi-
tionally, due to the retrospective nature of the data collection, not all immunohistochemical
and laboratory parameters were determined for every patient.

6. Conclusions
Using machine learning algorithms, we identified factors influencing somatostatin

receptor expression, including tumor origin, the effects of oncological therapy, and an
unexplored factor: the immunohistochemical marker CK7. These findings underscore
the pronounced heterogeneity of neuroendocrine neoplasms, suggesting that the precise
assessment of somatostatin receptor status may depend on multiple variables. We hope that
future research will expand the use of these less commonly studied immunohistochemical
markers within the realm of hybrid imaging.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers17172935/s1, Supplement S1: Basic dataset; Supplement
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Abbreviations
The following abbreviations are used in this manuscript

SPECT Single photon emission computer tomography
PET Positron emission tomography
CT Computer tomography
MRI Magnetic resonance imaging
PRRT Peptide receptor radioligand therapy
NEN Neuroendocrine neoplasm
NET Neuroendocrine tumor
NEC Neuroendocrine carcinoma
SSTR Somatostatin receptor
SSA Somatostatin analog
SST2A Somatostatin receptor type 2A
GIS Gastrointestinal system
GEP Gastro-entero-pancreatic
CK7 Cytokeratin-7
CK20 Cytokeratin-20
TTF-1 Thyroid transcription factor 1
CEA Carcinoembryonic antigen
CA19-9 Cancer antigen 19-9
AFP Alpha-fetoprotein
NSE Neuron-specific enolase
WHO World Health Organization
MIBG Metaiodobenzylguanidine
FDG Fluorodeoxyglucose
F-DOPA Fluoro-dihydroxy phenylalanine
VOI Volume of interest
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AP Antero-posterior
PA Postero-anterior
RF Random forest
XGB Extreme Gradient Boosting
SMOTE Synthetic Minority Oversampling Technique
PI Permutation importance
FI Feature importance
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