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3. BEVEZETÉS 

3.1. Epiteliális ion- és folyadékszekréció 

A szekréciós epitél sejtek számos szerv – többek között a tüdő, a hasnyálmirigy, a máj, a nyál- 

és verejtékmirigyek – lumenét borítják. Elsődleges feladatuk az ionok – főként a klorid (Cl⁻) és 

a bikarbonát (HCO₃⁻) – vektoriális transzportja a lumen felé, mely vízáramlással társul. Ez a 

folyamat biztosítja a nyálkahártyák megfelelő hidratációját, az emésztőenzimek működését, a 

hőszabályozásban szereplő verejtékképzést, és fenntartja a szekretált folyadékok 

ionösszetételét. Az epiteliális szekréció zavara számos betegség kialakulásában központi 

szerepet játszik, mint például a cisztás fibrózis (CF), a krónikus hasnyálmirigy-gyulladás, az 

autoimmun eredetű exokrin mirigybetegségek (pl. Sjögren-szindróma), illetve különböző 

szekréciós eredetű hasmenéses kórképek. Az epiteliális transzport károsodása jól szemlélteti, 

hogy a szekréciós epitél sejtek megfelelő, alapszintű működése elengedhetetlen az emberi 

szervezet homeosztázisának fenntartásához. 

3.2. A CFTR központi szerepe az epiteliális iontranszportban 

Az epiteliális transzportfolyamatok során fontos szerepe van a cisztás fibrózis transzmembrán 

konduktancia regulátor (CFTR) Cl⁻ csatornának. A CFTR egy Cl⁻/HCO₃⁻ csatorna, amely 

főként az apikális membránon helyezkedik el, és az ionok lumen felé irányuló áramlását 

eredményezi. Ez a folyamat a paracelluláris útvonalakon keresztül Na⁺-áramlást indukál és 

ozmotikus vízmozgást vált ki, így hozva létre a folyadék-szekréciót. A CFTR működése 

kulcsfontosságú a szekrétumok viszkozitásának és pH-jának fenntartásában. A CFTR gén 

funkcióvesztéses mutációi cisztás fibrózishoz vezetnek, amelyet a légutakban és a 

gasztrointesztinális traktusban dehidratált, savas nyák, a hasnyálmirigyben pedig a fő 

kivezetőcső elzáródása, valamint NaCl-ban gazdag verejték jellemez. Mindez rámutat a CFTR-

mediált iontranszport kulcsfontosságú jelentőségére. 

3.3. A CFTR molekuláris szabályozása 

A CFTR két membránt áthidaló doménből (MSD1/2), két citoszolikus nukleotid-kötő doménből 

(NBD1/2), valamint a két egységet összekapcsoló szabályozó (R) doménből áll. A csatorna 

nyitási-záródási mechanizmusát alapvetően az R domén szabályozza, defoszforilált állapotban 

gátolja az NBD-dimerizációját, így a pórusnyitást is. A klasszikus CFTR-aktiváció a 

cAMP/protein-kináz A (PKA) útvonalon keresztül valósul meg. G-fehérjéhez kapcsolt 

receptorok (GPCR) aktivációja fokozza az adenil-ciklázok (AC) működését, amely cAMP-szint 



 4 

emelkedéshez és így PKA-aktivációhoz vezet. A PKA több szerin oldalláncot foszforilál az R 

doménben, ezzel feloldva annak autoinhibíciót, lehetővé téve az NBD-k dimerizációját és a 

csatorna kinyílását. A foszforiláció-dependens szabályozáson túl a PKA közvetlen kötődéssel, 

foszforilációtól független módon is képes CFTR-aktivációt kiváltani, ami reverzibilis, finoman 

hangolható kontrollt biztosít. A CFTR működése szoros összefüggésben áll térbeli 

szerveződésével is, makromolekuláris komplexekbe rendeződik, amelyekben A-kináz 

horgonyfehérjék (AKAP-ok) és az Na⁺/H⁺ cserélő regulátor faktor 1 (NHERF1) 

kulcsfontosságú scaffoldként funkcionálnak az apikális membránon. Ezek a fehérjék PKA-t, 

foszfatázokat, foszfodiészterázokat (PDE-ket) és a citoszkeleton elemeit kapcsolják a CFTR-

hoz, ezáltal lokális és időben precíz szabályozást tesznek lehetővé. A csatorna inaktivációja 

GPCR-deszenzitizáción, defoszforiláción és a PDE4 által közvetített lokális cAMP hidrolízisen 

keresztül valósul meg. 

3.4. A Ca2+ jelátvitel szerepe a CFTR szabályozásában 

Habár a CFTR elsődleges szabályozása a cAMP/PKA útvonalon keresztül történik, a kalcium 

(Ca²⁺) jelátvitel fontos kiegészítő szerepet tölt be. A Ca²⁺ több mechanizmuson keresztül a 

kalmodulin kötődése révén modulálja a CFTR-t, Ca²⁺/kalmodulin-függő kináz II (CaMKII) és 

tirozin-kinázok foszforilációs hatása által. A Ca²⁺-függő szabályozás gyakran az adenil-

ciklázokon (AC) keresztül érvényesül, bizonyos AC izoformák (pl. AC1, AC3, AC8) 

Ca²⁺/kalmodulin által aktiválódnak, míg mások (pl. AC5, AC6) Ca²⁺ által gátoltak. Az AC 

izoformák sejten belüli elhelyezkedése lokális cAMP mikrodoméneket hoz létre, amelyek 

finoman szabályozott módon reagálnak a helyi Ca²⁺-jelre. A különböző AC- CFTR-

szabályozásban betöltött pontos szerepe azonban sejttípus-specifikus és még nem teljesen 

feltárt. A Ca²⁺ jelátvitel kulcsfontosságú a HCO₃⁻-szekréció szabályozásában is, különösen a 

hasnyálmirigy duktális epitél sejtjeiben, ahol a CFTR mind Cl⁻, mind HCO₃⁻ transzportot 

mediál, és így meghatározó az alkalikus pankreásznedv fenntartásában. A folyamat 

szabályozásában a CFTR, az SLC26 család Cl⁻/HCO₃⁻ cserélői, valamint a WNK1/SPAK 

kináz-útvonal Ca²⁺-függő kölcsönhatásai vesznek részt. 

3.5. Raktárfüggő és raktárfüggetlen Ca2+ beáramlás az epitél sejtekben 

Nem ingerelhető sejtekben – így az epitél sejtekben is – a raktárvezérelt Ca²⁺ belépés (SOCE) 

a Ca²⁺-beáramlás egyik fő útvonala. A SOCE-t az endoplazmatikus retikulum (ER) Ca²⁺-szintjét 

érzékelő STIM-fehérjék és a plazmamembránban található ORAI-csatornák, különösen az 

ORAI1 közvetítik. Az ER Ca²⁺-raktárainak kiürülésekor a STIM1 oligomerizálódik, ER–PM 

kontaktzónákba transzlokálódik, és ott aktiválja az ORAI1-csatornákat, ami Ca²⁺-beáramlást, 
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az ER-raktárak feltöltését és Ca²⁺-függő jelátviteli folyamatokat indít. A tüdő epitél sejtjeiben a 

SOCE hozzájárul a gyulladásos mediátorok termeléséhez és a mucin szekrécióhoz. Egyre több 

adat utal ugyanakkor arra, hogy az ORAI1 raktárfüggetlen Ca²⁺-belépést (store-independent 

calcium entry, SICE) is képes közvetíteni. A SICE egyik kulcsregulátora a szekréciós útvonal 

Ca²⁺-ATPáz 2 (SPCA2). Bizonyos sejttípusokban az SPCA2 a plazmamembránhoz jut, és C-

terminális doménje révén közvetlenül kapcsolódik az ORAI1-hez, olyan Ca²⁺-beáramlást 

generálva, amely független a STIM-fehérjéktől, az ER-raktárak kiürülésétől és magának az 

SPCA2 pumpafunkciójának aktivitásától. SPCA2-mediált SICE-t írtak le emlő epitél sejtekben 

és emlődaganat-sejtvonalakban, ahol a fokozott Ca²⁺-igény fedezésén túl a RAS–ERK 

jelátviteli út aktiválásához is hozzájárul. Annak ellenére, hogy az ORAI1-mediált Ca²⁺-belépés 

szerepe számos sejttípusban ismert, és a Ca²⁺ CFTR-szabályozásban betöltött funkciója jól leírt, 

az ORAI1 CFTR-aktivitásra gyakorolt közvetlen hatását epiteliális sejtekben eddig nem 

vizsgálták. A CFTR és Ca²⁺-érzékeny AC-ok apikális ko-lokalizációja, illetve a SICE 

mechanizmusok újabb leírásai alapján azonban valószínűsíthető, hogy az ORAI1 fontos 

szerepet tölt be a CFTR-működést meghatározó lokális Ca²⁺ mikrodomének kialakításában. 

3.6. Organoid modellek az epitél sejtek fiziológiájának vizsgálatában 

A szövet-specifikus őssejtekből származó háromdimenziós organoid kultúrák a natív epitélium 

felépítésének és működésének számos kulcselemét képesek visszaadni. A hasnyálmirigy-, tüdő-

, máj- és bél-organoidok megőrzik az apikális-bazális polaritást, a szoros kapcsolatok (tight 

junctionok) struktúráját és a szövetre jellemző differenciációs mintázatot. CFTR-kutatás 

szempontjából különösen fontos a csatorna apikális lokalizációjának és a natív fehérje–fehérje 

interakcióinak megőrzése. Az extracelluláris mátrixba (pl. Matrigelbe) ágyazott és WNT/R-

spondin/Noggin-t tartalmazó médiumban fenntartott organoidok hosszú távon passzálhatók, 

miközben duktális markereket (CFTR, KRT19, OCLN, SOX9) expresszálnak, és olyan 

morfológiai jellemzőket mutatnak, mint a natív duktuszok (apikális mitokondriális dúsulás, 

kefeszegély). Az organoidok fiziológiásan releváns platformot biztosítanak a CFTR-

szabályozás és az epiteliális iontranszport vizsgálatához, lehetővé téve funkcionális méréseket 

(pl. organoid-hízás, élősejtes Ca²⁺-képalkotás, Cl⁻ szekréció) olyan környezetben, ahol a 

szabályozó fehérjék endogén szerkezete és a nanodomén szerveződése megmarad. 
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4. CÉLKITŰZÉSEK 

1. Célul tűztük ki a STIM1–ORAI1 raktárfüggetlen aktivációjának és az SPCA2 

szerepének jellemzése, valamint e jelátviteli nanodomén fiziológiai jelentőségének vizsgálatát 

több szövet – hasnyálmirigy, tüdő, máj – polarizált epitél sejtjeiben. 

2. Továbbá célunk volt annak meghatározása, hogy az SPCA2-függő Ca²⁺-belépés 

hogyan szabályozza a bazális CFTR-aktivitást Ca²⁺-érzékeny AC-okon és lokális cAMP-

jelátvitelen keresztül. 

3. Valamint a humán organoid kultúrák standardizálását kísérletes modellként az 

epiteliális ion- és folyadékszekréció vizsgálatára primer, polarizált epitél sejtekben. 

5. ANYAGOK ÉS MÓDSZEREK 

5.1. Adherens sejtkultúrák és állatok 

A HeLa és HEK293 sejtvonalakat a gyártó protokollja szerint tenyésztettük, és tranziens 

transzfekciókhoz, illetve funkcionális mérésekhez használtuk. Az organoid kultúrákhoz 

szükséges kondicionált médium előállítására L-WRN (ATCC-CRL-3276) sejtvonalat 

alkalmaztunk. A hasnyálmirigy duktális fragmentumok izolálásához, a folyadékszekréciós 

mérésekhez és az organoid kultúrák létrehozásához 8–12 hetes, 20–25 gramm testtömegű 

FVB/N egereket használtunk. 

5.2. Duktális fragmentumok és acinus sejtek izolálása egér hasnyálmirigy szövetből 

A hasnyálmirigy duktális fragmentumok izolálását korábban leírt módszerek szerint végeztük 

(Maléth et al., 2015; Fanczal et al., 2020). Röviden, a hasnyálmirigy sebészi eltávolítását 

követően enzimes emésztést alkalmaztunk, majd sztereomikroszkóp alatt izoláltuk a kisebb 

duktuszokat. Az acinus sejtek izolálása során a szövet mechanikus aprítását követően kíméletes 

enzimes emésztéssel és centrifugálási lépésekkel végeztük. 

5.3. Egér és humán organoid kultúrák 

Első lépésben az egér hasnyálmirigy, máj és tüdő, valamint a humán hasnyálmirigy szövetek 

enzimatikus emésztését végeztük 37°C-on, vertikális rázóban. A centrifugálási és mosási 

lépések után a sejteket Wash médiumban szuszpendáltuk, Matrigellel kevertük, majd 10 µl-es 

„dómok” formájában 24 lyukú sejttenyésztő lemezben tettük. A 37°C-on történő polimerizációt 

követően Feeding médiumot adtunk a sejtekhez, amelyet minden második napon cseréltünk. 

Passzáláshoz a dómokat összegyűjtöttük, TrypLE™ Express enzimmel emésztettük, mostuk, 
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majd friss Matrigelben újra kiraktuk. A polaritásváltott, úgynevezett apical-out humán 

hasnyálmirigy organoidok előállításához a Matrigelt eltávolítottuk enzimes emésztéssel és az 

organoidokat legalább 48 órára szuszpenziós kultúrába helyeztük, ami lehetővé tette a 

polaritásváltást. 

5.4. Konstrukciók, transzfekciók, irányított mutagenezis és géncsendesítés 

Az ORAI1, STIM1, SPCA2 és különböző AC-ok expressziós konstrukcióit kollaborációs 

partnerektől, illetve kereskedelmi gyártóktól (ORIGENE, Addgene) szereztük be. A tranziens 

transzfekciókat Lipofectamine 2000 segítségével végeztük. Az irányított mutagenezishez Q5 

termostabil DNS-polimerázt alkalmaztunk. A géncsendesítést (pl. siAtp2c1, siAtp2c2, 

siSEPT7, siOrai1, siStim1, siAC-ok) egér hasnyálmirigy duktális fragmentumokban és humán 

organoidokban validált siRNS-ek segítségével, Lipofectamine 2000-rel végeztük. Mivel több 

fehérje heterológ túltermeltetése gyakran felborítja az endogén fehérjeszerkezetet, a főbb 

kísérleteket primer sejtekben, endogén fehérjeszint mellett is megismételtük. 

5.5. Génexpresszió analízis 

A teljes mRNS-t egér hasnyálmirigy duktális fragmentumokból NucleoSpin RNA XS kittel 

izoláltuk a gyártói protokoll szerint. A koncentrációt NanoDrop™ One/OneC 

spektrofotométerrel mértük, majd 1 µg mRNS-ből cDNS-t szintetizáltunk. A 

géncsendesítéseket követő génexpresszió-változásokat qRT-PCR-rel mértük, az 

adatfeldolgozás a ΔΔCq módszerrel történt. 

5.6. Egér hasnyálmirigy organoidok transzkriptomikai analízise RNS-

szekvenálással 

Az organoidokból a Matrigel eltávolítása után összegyűjtött sejtpelletből izoláltunk RNS-t, 

majd Illumina NextSeq 500 platformon végeztünk RNS szekvenálást. A génexpressziót TPM 

(transzkript per millió) értékekkel jellemeztük, a TPM<1 értéket nem-expresszált génként 

definiáltuk. A humán CFTR gén TPM-értékeit a laborunkban korábban publikált adatokból 

vettük át. 

5.7. Immunfluoreszcens jelölés és konfokális mikroszkópia 

Az organoidokat és a duktális fragmentumokból készített metszeteket 4%-os PFA–PBS oldattal 

fixáltuk, majd mosás és antigén-feltárás után BSA-t tartalmazó oldatban blokkoltuk. Ezt 

követően elsődleges és fluoreszcensen jelölt másodlagos ellenanyagokkal jelöltük meg a 
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célfehérjéket (pl. ORAI1, CFTR, SPCA2, STIM1, ductalis markerek). A képeket Zeiss LSM880 

konfokális mikroszkóppal rögzítettük. 

5.8. Western blot és sejtfelszíni biotiniláció 

A HeLa sejteket ORAI1-, STIM1- és SPCA2-konstrukciókkal transzfektáltuk, majd 18 óra után 

RIPA pufferben, proteáz gátlókkal kiegészítve lizáltuk. A fehérjéket SDS-PAGE-en választottuk 

szét, majd membránra transzferáltuk. GAPDH-t, HA-t és a tag-eket specifikus ellenanyagokkal 

detektáltuk. A sejtfelszíni fehérjék vizsgálatához Pierce™ Cell Surface Biotinylation and 

Isolation Kitet használtunk a gyártó által mellékelt protokoll szerint. A blottok denzitometriai 

kiértékelését ImageJ-vel végeztük. 

5.9. Fluoreszcens mikroszkópia 

A sejten belüli Ca²⁺-szint követésére Fura-2-AM, a Cl⁻-szekréció mérésére MQAE festéket 

alkalmaztunk. A Ca²⁺-mérések F340/F380 arányokon alapultak, a bazális szintet és a 

farmakonokra (pl. CM5480, CPA, karbakol) adott válaszokat kvantifikáltuk. Minden ROI egy-

egy sejtet vagy sejtrészletet reprezentált, az adatokat átlag ± SEM formában ábrázoltuk. 

5.10. In vitro és in vivo szekréciómérés 

Az izolált hasnyálmirigy duktuszokat fedőlemezre tapasztottuk ki, majd HEPES- vagy HCO₃⁻-

oldattal perfundáltuk 37°C-on. Az intraluminális térfogat változásait Olympus IX73 inverz 

mikroszkópon követtük. In vivo mérésekhez az egerek CM5480-at vagy vivőanyagot kaptak, 

majd szekretint adtunk. 30 percen keresztül gyűjtöttük a pankreásznedvet és a szekréciós rátát 

testtömeghez normalizáltuk. 

5.11. dSTORM szuperrezolúciós mikroszkópia 

Az immunfluoreszcens jelölést követően a mintákat glükóz-oxidázt és katalázt tartalmazó 

„blinking” pufferbe helyeztük, majd a képeket Nanoimager S (Oxford Nanoimaging) 

mikroszkóppal készítettük. A kolokalizáló klasztereket két fehérje 300 nm-en belüli 

klasztereiként definiáltuk, és ezen ko-klaszterek arányát, illetve méretét kvantifikáltuk. 

5.12. FLIM-FRET mérések 

A fehérje-fehérje kölcsönhatások nanométeres vizsgálatához FLIM-FRET-et alkalmaztunk. 

Donor (GFP/YFP) és akceptor (mCherry) jelölt fehérjekonstrukciókat használtunk. A donor 

élettartamát akceptor jelenlétében, majd az akceptor kiégetése után mértük. A FRET-

hatékonyságot az átlagos donor-élettartam változása alapján számítottuk ki. 
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5.13. Statisztikai analízis 

Az eredményeket átlag ± SEM formájában adtuk meg. A normalitást Shapiro–Wilk teszttel 

vizsgáltuk. Normál eloszlás esetén párosítatlan t-próbát vagy egyszempontos varianciaanalízist 

(ANOVA) Tukey-féle többszörös összehasonlításos teszttel, nem normális eloszlás esetén 

Mann–Whitney- vagy Kruskal–Wallis-tesztet alkalmaztunk. A p<0,05 értéket tekintettük 

szignifikánsnak. Az elemzéseket GraphPad Prism szoftverrel végeztük. 

6. EREDMÉNYEK 

6.1. Az ORAI1 által létrejövő extracelluláris Ca2+ beáramlás konstitutívan aktív 

primer, polarizált epitél sejtekben 

RNS szekvenálással és PCR vizsgálatokkal igazoltuk az ORAI1–3, STIM1/2 és több regulátor 

fehérje expresszióját egér és humán hasnyálmirigy duktális organoidokban. Immunfestés 

alapján az ORAI1 főként a duktális sejtek apikális membránján lokalizálódott. Egér 

hasnyálmirigy duktális fragmentumokban a szelektív ORAI1-gátló CM5480 csökkentette a 

bazális intracelluláris Ca²⁺-szintet extracelluláris Ca²⁺ jelenlétében, ER Ca²⁺-raktárak kiürítése 

nélkül. Az extracelluláris Ca²⁺ eltávolítása szintén csökkentette a [Ca²⁺]ᵢ-t, amelyet ezt követően 

a CM5480 már alig befolyásolt, alátámasztva, hogy az ORAI1 jelentősen hozzájárul a nyugalmi 

Ca²⁺-belépéshez. Karbakol által kiváltott Ca²⁺-jel esetén a CM5480 a platófázis alatt jelentősen 

csökkentette a jel amplitúdóját, ami arra utal, hogy az ORAI1 hozzájárul a tartós Ca²⁺-

emelkedés fenntartásához is. D1ER-rel végzett ER Ca²⁺ mérések igazolták, hogy bazális 

körülmények között az ER-raktárak telítettek, így a megfigyelt jelenség nem SOCE-eredetű. 

Az Orai1 vagy Stim1 géncsendesítését követően a bazális [Ca²⁺]ᵢ csökkent, és a CM5480-ra 

adott válasz megszűnt, miközben az extracelluláris Ca²⁺ eltávolítása továbbra is csökkentette a 

[Ca²⁺]ᵢ-t. Hasonló, CM5480-érzékeny bazális Ca²⁺-belépést detektáltunk egér tüdő és máj 

organoidokban, valamint humán hasnyálmirigy organoidokban is. Eredményeink azt mutatják, 

hogy az ORAI1 konstitutív, raktárfüggetlen Ca²⁺-belépést közvetít több szövet primer 

szekréciós epitél sejtjeiben, és ez jelentősen hozzájárul a bazális [Ca²⁺]ᵢ fenntartásához. 

6.2. Az SPCA2 fenntartja az ORAI1 konstitutív aktivitását primer epitél sejtekben 

Az egér és humán hasnyálmirigy organoidok teljes transzkriptom elemzése több ORAI1-

interakciós partnert tárt fel, köztük az SPCA1-et, SPCA2-t és a SEPTIN7-et. Közülük az 

SPCA2 bizonyult a SICE szabályozás szempontjából legígéretesebbnek. siSPCA2 kezelést 

követően egér hasnyálmirigy duktális fragmentumokban csökkent a bazális [Ca²⁺]ᵢ, és 
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jelentősen mérséklődött a CM5480-érzékeny Ca²⁺-belépés. Ezzel szemben siSPCA1 vagy 

siSEPT7 kezelés nem okozott szignifikáns változást, ami az SPCA2 specifikus szerepét 

támasztja alá. HeLa sejtekben, ahol ORAI1-et és SPCA2-t overexoresszáltattunk, konfokális 

mikroszkópiával az SPCA2 retikuláris, ER-szerű mintázatot mutatott, míg az ORAI1 pont-

szerű eloszlást a plazmamembránban. dSTORM felvételeken az SPCA2 és ORAI1 klaszterek 

részleges ko-lokalizációja volt megfigyelhető nyugalmi állapotban is, amely CPA-kezelés 

hatására átrendeződött, jelezve az ER–PM kontakthelyek dinamikus szabályozását. FLIM-

FRET mérések igazolták a térbeli közelséget az SPCA2 és ORAI1 között stimuláció nélkül is, 

amelyet a STIM1 jelenléte tovább fokozott. CPA-kezelés azonban nem növelte tovább a 

SPCA2–ORAI1 FRET-hatékonyságot, ami a raktárfüggetlen mechanizmust erősíti.  Ezek a 

megfigyelések arra utalnak, hogy az SPCA2 adaptor fehérjeként működve, pumpaaktivitásától 

függetlenül képes ORAI1-mediált SICE-t generálni epiteliális sejtekben. 

6.3. Az SPCA2 fokozza a STIM1 és az ORAI1 közötti kölcsönhatást 

Az SPCA2 STIM1–ORAI1 kölcsönhatásra gyakorolt hatását HeLa sejtekben vizsgáltuk, 

amelyben STIM1-et, ORAI1-et és SPCA2-t overexpresszáltattunk. ER Ca²⁺-raktárak kiürítése 

nélkül a STIM1 mérsékelt puncta képződést és limitált ko-lokalizációt mutatott az ORAI1-gyel. 

Az SPCA2 ko-expressziója ugyanakkor jelentősen fokozta a STIM1–ORAI1 ko-klaszterek 

számát és méretét nyugalmi körülmények között is. dSTORM klaszteranalízis alapján az 

SPCA2 jelenléte megnövelte a STIM1–ORAI1 ko-klaszterek számát és átlagos kiterjedését, 

CPA-kezelés hatására pedig a klasztereződés tovább fokozódott. FLIM-FRET kísérletek 

(STIM1-YFP és ORAI1-mCherry) megerősítették, hogy az SPCA2 jelenléte növeli a STIM1–

ORAI1 FRET-hatékonyságát, ami szorosabb protein–protein interakciót jelez. Mivel a 

konstitutív Ca²⁺-belépés és a megnövekedett STIM1-ORAI1 klasztereződés oka lehet az ER 

Ca²⁺ raktárak kiürülése az SPCA2-t expresszáló sejtekben, megmértük az ER Ca²⁺ tartalmat 

D1ER-rel transzfektált HeLa sejtekben 10 µM CPA kezelést követően. Ezek a kísérletek azt 

mutatták, hogy az SPCA2 nincs hatással az ER Ca²⁺ tartalmára. Sejtfelszíni biotinilálás és 

Western blot kísérletek során kimutattuk, hogy az SPCA2 sem a teljes, sem a sejtfelszíni ORAI1 

mennyiségét nem növelte számottevően, így fő szerepe nem a traffiking, hanem a funkcionális 

klaszterképzés támogatása. Ko-immunprecipitáció során HA taggel jelölt ORAI1 fehérjék 

kihúzása során STIM1-et és SPCA2-t is detektáltunk, ami a három fehérje közös komplexét 

bizonyítja. Összességében az adatok egy olyan modellt támasztanak alá, amelyben az SPCA2 

először az ORAI1 klasztereződését segíti elő, ez stabilizálja a STIM1-et az ER–PM 

junkciókban, és így lehetővé teszi a konstitutív SICE kialakulását. 
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6.4. Az ORAI1-en keresztül létrejövő SICE szabályozza a CFTR aktivitását és a 

folyadékszekréciót a hasnyálmirigy duktális epitél sejtekben 

A CFTR epiteliális szekrécióban betöltött központi szerepére tekintettel vizsgáltuk, hogy az 

SPCA2–STIM1–ORAI1-függő SICE hogyan befolyásolja a CFTR-funkciót. Egér 

hasnyálmirigy organoidok immunfestése az ORAI1 és CFTR apikális ko-lokalizációját mutatta. 

A CFTR-mediált Cl⁻ szekréciót izolált duktális fragmentumokban MQAE-vel követtük. 

HCO₃⁻/CO₂-ot tartalmazó pufferből a Cl⁻ eltávolítása növelte az MQAE-fluoreszcenciát, ami 

Cl⁻-kiáramlást jelez, ezt a CFTR specifikus gátlója, a CFTRinh-172 megszüntette. ORAI1 

gátlása CM5480-el vagy a sejten belüli Ca²⁺ lekötése BAPTA-AM-mel szignifikánsan 

csökkentette a bazális Cl⁻ effluxot. Hasonlóan, siOrai1 vagy siStim1 kezelés jelentős mértékben 

mérsékelte a CFTR-függő Cl⁻ áramlást nyugalmi körülmények között. Ezzel szemben a 

forskolinnal kiváltott CFTR-mediált Cl⁻ effluxot az ORAI1 gátlása nem befolyásolta érdemben, 

ami arra utal, hogy a stimulált szekréció SICE-független. siSPCA2 kezelés szintén csökkentette 

a CFTR-aktivitást, míg siSPCA1 vagy siSEPT7 nem okozott változást, összhangban a Ca²⁺ 

mérésekkel. Bazális HCO₃⁻ szekréció és a duktuszok hízásának mérése HCO₃⁻/CO₂ oldatban 

történt, mely CM5480 hatására romlott, ami az ORAI1 szerepét erősíti mind a Cl⁻, mind a 

HCO₃⁻ transzport, valamint a bazális folyadékszekréció fenntartásában. In vivo kísérletekben a 

CM5480-kezelt egerek szekretin-stimulált pancreasnedv-szekréciója szignifikánsan csökkent a 

kontrollhoz képest, ami a SICE fiziológiás jelentőségét támasztja alá a szekrécióban. 

Eredményeink alapján az SPCA2/STIM1/ORAI1-függő SICE kulcsfontosságú szereplője a 

bazális CFTR-aktivitásnak és a folyadékszekréciónak a hasnyálmirigy duktális epitél sejtjeiben. 

6.5.  A SICE az ORAI1-en keresztül más szekréciós epitél sejtekben is szabályozza 

a CFTR aktivitást 

Annak vizsgálatára, hogy a leírt szabályozó mechanizmus általános jelenség-e különböző 

epiteliális szövetekben, kísérleteinket elvégeztük egér tüdő és máj organoidokon, valamint 

humán hasnyálmirigy organoidokon is. Mindegyik modellben a CFTR–ORAI1 apikális ko-

lokalizációt figyeltünk meg. Nyugalmi állapotban a CM5480 a CFTR-függő Cl- kiáramlását 

jelentősen csökkentette. Tüdő organoidokban az ORAI1-gátlás a bazális CFTR-függő Cl⁻-

áramlást szinte teljes mértékben megszűntette. Ez arra utal, hogy az ORAI1-mediált SICE 

általános mechanizmus, amely a bazális CFTR-aktivitást többféle szekréciós epitéliumban 

meghatározza. 
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6.6. A SICE az ORAI1-en keresztül Ca2+-függő adenil-ciklázok révén szabályozza 

a CFTR aktivitást 

A SICE és CFTR közti kapcsolat további feltárása érdekében az AC-ok expresszióját és 

lokalizációját vizsgáltuk. Hasnyálmirigy organoidok RNS szekvenálása során több AC (Adcy1, 

3, 6, 8, 9) expresszióját mutattuk ki. Mivel egyes AC-ok Ca²⁺-aktiváltak (AC1, AC3, AC8), míg 

mások Ca²⁺-gátoltak (AC5, AC6), alkalmasak lehetnek a Ca²⁺/cAMP „cross-talk” közvetítésére. 

HeLa sejtekben CFTR és egyes AC-ok ko-expressziója mellett dSTORM mikroszkópia során 

azt találtuk, hogy a CFTR erőteljes nanodomén szintű ko-lokalizációt mutat AC1-gyel, AC3-

mal és AC8-cal, míg AC6-tal gyengébb átfedés figyelhető meg. Ezek az AC-ok ORAI1-gyel is 

ko-lokalizálódtak, és háromszínű dSTORM felvételeken igazolható volt, hogy CFTR, ORAI1 

és AC1/3/8 ugyanazon plazmamembrán nanodoménekben helyezkednek el. Humán apical-out 

hasnyálmirigy organoidokban az AC1, AC3 vagy AC8 siRNS-sel történő géncsendesítése 

csökkentette a bazális CFTR-aktivitást, melyek közül az AC8 csendesítése okozta a 

legkifejezettebb hatást. Ezek az adatok arra utalnak, hogy a Ca²⁺-aktivált AC-ok, különösen az 

AC8, kulcsfontosságúak a SICE downstream komponenseként a bazális CFTR-funkció 

fenntartásában. PKA-gátló szerek (PKI (5–24), KT5720) alkalmazása jelentősen csökkentette 

a bazális CFTR-függő Cl⁻ kiáramlást, megerősítve, hogy a PKA-függő foszforiláció 

nélkülözhetetlen ebben a szabályozási útvonalban. Összességében az adatok egy olyan modellt 

támasztanak alá, amelyben az ORAI1-mediált SICE Ca²⁺-érzékeny AC-okat (különösen AC8-

at) aktivál az apikális nanodoménekben, lokális cAMP- és PKA-aktivitást generálva, amely a 

bazális CFTR aktivitást fenntartja. 

7. DISZKUSSZIÓ 

Vizsgálataink során egy eddig kevéssé ismert szabályozó mechanizmust azonosítottunk, amely 

a bazális CFTR aktivitást polarizált szekréciós epitél sejtekben raktárfüggetlen Ca²⁺ 

beáramláson keresztül tartja fenn. Ez a SICE egy SPCA2–STIM1–ORAI1 komplex 

közvetítésével jön létre az apikális plazmamembrán nanodoménjeiben. Eredményeink szerint 

az ORAI1 nyugalmi körülmények között is konstitutívan aktív, jelentősen hozzájárul a bazális 

[Ca²⁺]ᵢ fenntartásához, és ez az aktivitás SPCA2- és STIM1-függő, ugyanakkor független az ER 

Ca²⁺-raktárak kiürülésétől. Az SPCA2 fontos szervezőelemként működik, ugyanis közvetlenül 

kötődik az ORAI1-hez, elősegíti annak klasztereződését, és fokozza a STIM1–ORAI1 

komplexképződést ER-depléció nélkül is. Az SPCA2 hatása nem igényli saját Ca²⁺-pumpa 

aktivitását, és nem jár az ER Ca²⁺ tartalmának megváltozásával, ami scaffold szerepére utal. 

Szövet-specifikus expressziója magyarázhatja, hogy a SICE kifejezetten duktális epitél 
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sejtekben hangsúlyos, míg acinus sejtekben nem. Az SPCA2–STIM1–ORAI1-függő SICE 

olyan apikális plazmamembrán nanodoménben szerveződik, ahol a CFTR és Ca²⁺-aktivált AC-

ok (AC1, AC3, AC8) is jelen vannak. E nanodoménben a konstans Ca²⁺-belépés aktiválja az 

AC-okat, ezen belül főként az AC8-at, ami lokális cAMP-termelést és PKA-aktivációt 

eredményez. Ez biztosítja a bazális CFTR-aktivitást és folyadékszekréciót. Farmakológiai vagy 

genetikai úton gátolva az ORAI1-et, STIM1-et, SPCA2-t vagy AC-okat, a bazális CFTR-

működés és szekréció nagymértékben csökken, miközben a forskolin által kiváltott, stimulált 

CFTR-aktivitás lényegében nem változik. Ez arra utal, hogy a SICE a bazális szekréció 

szabályozásában meghatározó. Eredményeink közvetlen mechanisztikus magyarázatot adnak 

korábbi megfigyelésekre, amelyek szerint a bazális CFTR-áramok Ca²⁺-belépéstől és a 

membránhoz kötött AC-ok aktivitásától függenek. Szuperrezolúciós mikroszkópia, FLIM-

FRET, funkcionális mérések és organoid modellek kombinációjával sikerült azonosítani és 

jellemezni egy kompakt jelátviteli egységet, amelyben Ca²⁺-beáramlás, cAMP-szintézis és 

CFTR-csatorna nyitása/zárása integráltan valósul meg természetes környezetben. Fiziológiai 

szempontból a bazális CFTR-aktivitás elengedhetetlen a lumen hidratáltságának fenntartásához 

és a mucociliaris clearance biztosításához a légutakban, az enzimek kimosásához a 

hasnyálmirigy duktuszból, valamint az epe és egyéb szekrétumok összetételének 

szabályozásához a hepatobiliáris rendszerben. Az SPCA2–STIM1–ORAI1–AC–CFTR 

nanodomén olyan mechanizmust kínál, amely lehetővé teszi a sejtek számára a stabil ion- és 

folyadékszekréció fenntartását. Ez a mechanizmus különösen fontos lehet nyugalmi, nem 

stimulált állapotokban, amikor a neurohormonális hajtóerő minimális, de egy alap szekréciós 

szintet fenn kell tartani. Eredményeink arra is rámutattak, hogy míg a forskolin globálisan 

aktiválja a cAMP/PKA utat, megkerülve a SICE szükségességét, addig a bazális CFTR-

aktivitás a lipid raft-szerű doménekben elhelyezkedő Ca²⁺-érzékeny AC-ok által generált, 

lokális cAMP-mikrodoménektől függ. Ez a kompartmentalizáció hozzájárulhat a 

transzportfolyamatok finoman hangolt, környezetfüggő szabályozásához. ORAI1 és SPCA2 

diszregulációját írták le különböző tumorokban, a CFTR hiánya pedig a tumorok 

kialakulásának rizikófaktorát növelte cisztás fibrózisban. A kísérleteink során azonosított 

jelátviteli egység ezen fehérjéket közös struktúrába szervezi, így befolyásolhatja mind az 

epiteliális homeosztázist, mind az onkogén folyamatokat. Az ORAI1/SPCA2 kölcsönhatás 

szabályozásának mélyebb megértése új terápiás támadáspontokat tárhat fel CFTR-hoz 

kapcsolódó betegségekben, gyulladásos kórképekben és rosszindulatú daganatokban. 

Végezetül, munkánk során bemutattuk a 3D organoidok jelentőségét. A polaritást, szoros 

kapcsolatokat és az eredeti szöveti tulajdonságokat megőrző humán hasnyálmirigy organoidok 
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megbízható platformot biztosítottak az intracelluláris Ca²⁺-szint és CFTR-szabályozás 

vizsgálatához. A nagy felbontású képalkotás, a célzott génmanipulációk és a funkcionális 

szekréciós mérések kombinációja kulcsszerepet játszott a SICE–CFTR kapcsolat feltárásában. 

Összességében egy olyan modellt vázoltunk fel, amely szerint az SPCA2 által vezérelt, STIM1-

függő ORAI1-mediált SICE apikális nanodoménekben biztosít folyamatos Ca²⁺-jelet. Ez a jel 

Ca²⁺-aktivált AC-okat és PKA-t aktivál, így fenntartva az alap CFTR-függő ion- és 

folyadékszekréciót, függetlenül az ER Ca²⁺-raktárak kimerülésétől és a hormonális 

stimulációtól. 

 

8. ÖSSZEFOGLALÁS 

A CFTR Cl⁻ csatorna alapvető szerepet játszik a transzepiteliális ion- és folyadékszekrécióban 

olyan szervekben, mint a hasnyálmirigy, a máj és a tüdő. Míg a stimulált szekréció során 

fennálló CFTR-szabályozás viszonylag jól ismert, az alap CFTR-aktivitás fenntartásának 

mechanizmusai kevéssé tisztázottak. A dolgozat egy új szabályozási útvonalat azonosít, 

amelyben az apikális SPCA2–STIM1–ORAI1 komplex által közvetített, raktárfüggetlen Ca²⁺-

belépés (SICE) fenntartja az alap CFTR-működést szekréciós epitél sejtekben. Igazolható, hogy 

az ORAI1-mediált Ca²⁺-belépés konstitutívan aktív primer, polarizált epitél sejtekben 

(hasnyálmirigy, tüdő, máj), és jelentősen hozzájárul a bazális intracelluláris Ca²⁺-szinthez.  

Ez az aktivitás nem igényli az ER Ca²⁺-raktárak kiürülését, viszont STIM1- és SPCA2-függő. 

Az SPCA2 az ORAI1-hez kapcsolódva elősegíti annak klasztereződését és a STIM1-gyel való 

kölcsönhatását egy jelátviteli nanodomént létrehozva az apikális plazmamembránban. Ebben a 

nanodoménben az ORAI1-en keresztül zajló Ca²⁺-belépés Ca²⁺-érzékeny adenil-ciklázokat 

(különösen AC8-at) aktivál, lokális cAMP-termelést és PKA-aktivációt hozva létre. Ennek 

eredményeként fennmarad a bazális CFTR-függő Cl⁻- és HCO₃⁻-szekréció. Az ORAI1, STIM1, 

SPCA2 és az AC-ok farmakológiai vagy genetikai gátlása jelentősen csökkenti a bazális CFTR-

aktivitást és a folyadékszekréciót, miközben a forskolin által kiváltott CFTR-aktiváció 

változatlan marad. Így a SICE szelektíven a bazális, nem pedig a stimulált CFTR-funkciót 

kontrollálja. Szuperrezolúciós dSTORM és FLIM-FRET mérések közvetlen bizonyítékot 

szolgáltatnak arra, hogy az SPCA2, STIM1, ORAI1, az AC-ok és a CFTR szorosan szervezett 

apikális nanodoménekben helyezkednek el. A polaritást megőrző humán hasnyálmirigy 

organoidok kulcsfontosságú szerepet játszottak e mechanizmusok fiziológiás környezetben 

történő igazolásában. A dolgozat összességében egy korábban nem ismert mechanizmust tár fel, 

amely révén az epiteliális szövetek külső stimulusoktól függetlenül fenntartják az alap 
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szekréciót. Az SPCA2–STIM1–ORAI1–AC–CFTR nanodomén olyan jelátviteli csomópontot 

képvisel, amely integrálja a Ca²⁺- és cAMP-jelátvitelt a homeosztázis fenntartása érdekében, és 

új terápiás célpontokat kínálhat CFTR-diszfunkcióval járó betegségekben. 

 

9. AZ ÚJ MEGFIGYELÉSEK ÖSSZEFOGLALÁSA 

1. Kimutatható, hogy polarizált szekréciós epitél sejtekben a bazális CFTR-aktivitás és a 

nyugalmi folyadékszekréció fenntartásáért nem klasszikus neurohormonális stimulusok, hanem 

egy konstitutív, raktárfüggetlen Ca²⁺-beáramlás felel. 

2. Az SPCA2 központi regulátorként azonosítható, amely ER Ca²⁺-raktárak kiürülése nélkül 

aktiválja a STIM1–ORAI1 komplexet. Ez az SPCA2-függő SICE folyamatos Ca²⁺-forrást 

biztosít a bazális epiteliális ion- és folyadékszekréció fenntartásához. 

3. A STIM1 vagy ORAI1 farmakológiai vagy genetikai gátlása csökkenti a bazális CFTR-

aktivitást és a nyugalmi folyadékszekréciót, miközben a forskolin-indukált válaszok 

változatlanok maradnak, így egyértelműen elkülönül a bazális és a stimulált szekréció 

szabályozása. 

4. Az eredmények egy olyan modellt támasztanak alá, amelyben az SPCA2 által 

folyamatosan fenntartott ORAI1-mediált Ca²⁺-belépés Ca²⁺-aktivált AC-ok (különösen AC8) 

segítségével lokális cAMP- és PKA-aktivitást generál, ezáltal biztosítva a bazális CFTR-

funkciót. Ez a mechanizmus független az ER Ca²⁺-raktárak kimerülésétől és a neurohormonális 

stimulációtól, és egy önálló szabályozási réteget képvisel az epiteliális homeosztázis 

fenntartásában. 
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