
 

 

Bevezetés 

A belvízi elöntések Magyarország síkvidéki térségeiben – különösen az 

Alföldön – a 19. század óta visszatérő hidrológiai problémát jelentenek, 

amelyek jelentős gazdasági, társadalmi és környezeti hatással bírnak. A 

mezőgazdasági területek mintegy 1,8 millió hektárja számít belvíz által 

veszélyeztetettnek, és az elmúlt évtizedekben több ízben is (1999, 2000, 

2010, 2013, 2015, 2016, 2018) több százezer hektárnyi elöntés fordult elő 

(Pálfai, 2004; Kozák, 2006; Bíró, 2017). A szélsőséges időjárási események 

gyakoribbá válása – különösen az intenzív csapadék és a hirtelen hóolvadás 

– tovább növeli a belvízi kockázatot és az operatív monitoring iránti igényt 

(Mezősi et al., 2017; Bezdan et al., 2024). 

A belvíz kialakulását komplex természeti és antropogén tényezők 

együttes hatása szabályozza: a domborzat, a talajtani viszonyok, a 

talajvízmélység és a csatornahálózat állapota egyaránt befolyásolja az 

elöntések térbeli mintázatát és időtartamát (Kozák, 2005). Míg a belvíz 

gazdasági károkat okoz, időszakos megjelenése ökológiai és 

természetvédelmi szempontból is értékes, mivel hozzájárul a biodiverzitás és 

a táji vízmegtartás fenntartásához (Pál et al., 2006; Molnár és Lukács, 2014). 

A belvíz hagyományos megfigyelése sokáig terepi méréseken és statikus 

veszélyeztetettségi térképeken alapult, amelyek korlátozott tér- és időbeli 

felbontásuk miatt nem voltak alkalmasak a dinamikus változások részletes 

feltárására. A modern távérzékelési és térinformatikai módszerek – 

különösen a Sentinel–1 radaros és Sentinel–2 multispektrális 

műholdfelvételek – új lehetőségeket kínálnak a felszíni vízborítás pontos és 

rendszeres monitorozására (Van Leeuwen, 2012; Birinyi et al., 2023). 

Az elmúlt években egyre szélesebb körben alkalmazták a vízfelületek 

detektálására különböző spektrális indexeket (NDVI–Normalized Difference 

Vegetation Index, NDWI–Normalized Difference Water Index, MNDWI– 

Modified Normalized Difference Water Index), felügyelt osztályozási 

módszereket (ML–Maximum Likelihood, RF–Random Forest, SVM–

Support Vector Machine) és gépi tanulási modelleket, ugyanakkor ezek 

érzékenyek a küszöbértékekre és a légköri feltételekre, ezért új, 

automatizálható megoldások iránt nőtt az igény (Chen et al., 2018; Miao et 

al., 2018). A legújabb kutatások szerint a mélytanulási technikák, különösen 

a konvolúciós neurális hálózatok (CNN–Convolutional Neural Network), 

alkalmasak a vízborítás nagy pontosságú és általánosítható detektálására 

(Szatmári et al., 2011; Simón Sánchez et al., 2022). 



 

 

A kutatás célja egy komplex belvízmonitoring és előrejelző módszertan 

kidolgozása, amely a Sentinel–1 radaros és Sentinel–2 multispektrális 

műholdfelvételek integrált feldolgozásán alapul. A módszertan 

középpontjában a belvízfoltok pontos térbeli és időbeli lehatárolása, valamint 

a gyakorisági térképek előállítása és elemzése áll. E folyamatokhoz 

kapcsolódva olyan predikciós modell került kifejlesztésre, amely a statikus 

(domborzati, talajtani, földhasználati) és dinamikus (meteorológiai) tényezők 

integrálásával képes rövid távú (1–2 hetes) előrejelzésekre, valamint a belvíz 

tartósságának becslésére. 

A módszertan célja, hogy hozzájáruljon a fenntartható vízgazdálkodás, a 

vízvisszatartási stratégiák és a döntéstámogató rendszerek fejlesztéséhez, 

ezáltal erősítve a klímaadaptációs törekvések tudományos alapjait a síkvidéki 

területeken. 

Adatok és módszerek 

A kutatás során egy komplex, távérzékelési és gépi tanulási alapú 

módszertani keretet alakítottam ki, amely a Sentinel–1 és a Sentinel–2 

műholdfelvételek integrált feldolgozásán alapul. A cél a belvízfoltok 

megbízható detektálása, gyakorisági mintázataik feltárása és rövid távú (1–2 

hetes) előrejelzése síkvidéki környezetben. Az optikai (Sentinel–2) adatokon 

indexalapú vízlehatárolást végeztem (NDWI, MNDWI, NDVI), majd 

klasszikus felügyelt gépi tanulási módszereket (ML, RF, SVM) és neurális 

hálózatokat (ANN, CNN) használtam a pontosság növelésére. A radaros 

(Sentinel–1) feldolgozásban a VV/VH polarizációk mellett RVI és GLCM 

textúra-mutatók kerültek számításra.  

A modellezésben két bemeneti csoportot különítettem el: dinamikus 

(hidrometeorológiai) tényezőket – így különösen a csapadékot, 

hőmérsékletet, szélsebességet és a potenciális evapotranszspirációt (PET), 

továbbá a korábbi vízborítási állapotokat (t–1, t–7, t–14) –, valamint statikus 

(környezeti) tényezőket, ideértve a domborzati derivátumokat, a talajtani és 

földhasználati jellemzőket, illetve az antropogén hatásokat leíró rétegeket 

használtam fel a predikciós modell felépítéséhez. 

A kutatás több lépcsőben zajlott, eltérő kiterjedésű mintaterületeken, 

amelyek a módszertani fejlesztés és a végső modellezés különböző fázisait 

támogatták. Az első vizsgálatok a Sentinel–2 műholdképek teljes, 34TDT 

jelű csempéjére terjedtek ki, amely 10 000 km² területet fedett le. Ez a 

metodikai tesztfázis lehetőséget biztosított a vízlehatárolási eljárások és 

feldolgozási paraméterek nagy területre vonatkozó összehasonlítására és 

optimalizálására, megalapozva a későbbi fejlesztési irányokat. Ezt követően 



 

 

egy 82,3 km²-es részterületen történt a feldolgozási folyamatok finomítása, a 

paraméterek validálása és a modell tanításához szükséges adatbázisok 

egységesítése. 

A végleges, 1600 km²-es fő mintaterület szolgált a belvízmonitoring, a 

gyakorisági elemzések és a predikciós modellek alapjául. A vizsgálati térség 

az Alföld két középtáját – a Közép-Tisza-vidéket és a Berettyó–Körös 

vidéket – foglalja magába, és öt kistájat érint: a Tiszafüredi–Kunhegyesi-

síkot, a Nagy-Sárrétet, a Dévaványai-síkot, a Körösmenti-síkot és a Szolnoki-

Túri-síkot. A térség síkvidéki jellegéből, agyagos üledékeiből és időszakosan 

vízzel borított mélyfekvésű területeiből adódóan ideális környezetet 

biztosított a belvízdetektálási és előrejelzési módszerek fejlesztéséhez és 

validálásához (Csorba, 2021). 

A Sentinel–2 multispektrális műholdfelvételek 10–20 m térbeli 

felbontásban és ötnapos ismétlési idővel biztosítanak optikai információt a 

látható, közeli és rövidhullámú infravörös tartományban. Az elemzéshez a 13 

sáv közül tízet használtam, a 20 m-es sávokat 10 m-re resample-elve az 

egységes feldolgozás érdekében. A felhő- és árnyékmaszkolást az ESA Scene 

Classification Layer (SCL) alapján végeztem, a mesterséges felszíneket a 

NÖSZTÉP adatbázis, az állandó víztesteket manuális digitalizáció 

segítségével zártam ki. A vízlehatárolást indexalapú (NDWI, MNDWI, 

NDVI), gépi tanulási (ML, RF, SVM) és mélytanulási (ANN, CNN) 

módszerekkel végeztem.  

A Sentinel–1 radaros adatok bevonása lehetővé tette a felhőborítottságtól 

független vízdetektálást és a Sentinel–2 adatok időbeli sűrítését. A vizsgálat 

során a C-sávú VV és VH polarizációs felvételeket használtam, valamint az 

ezekből származtatott Radar Vegetation Index (RVI) és Gray-Level Co-

occurrence Matrix (GLCM) textúraindexeket, összesen 18 mutató 

előállításával. Az előfeldolgozás magában foglalta a hőzaj-eltávolítást, a 

radiometriai kalibrációt, a domborzati torzítás korrekcióját, valamint a 

Refined Lee speckle-szűrőt, amely javította a textúraelemzés 

megbízhatóságát. A feldolgozást a Google Earth Engine (GEE) 

környezetében végeztem, míg az adatintegrációt és a CNN-modellek 

előkészítését Jupyter Notebook és ArcPy környezetben hajtottam végre. A 

Sentinel–1 adatok felhasználása a felszíni visszaverődésből származtatott 

információk segítettek hozzá a vízfelületek térbeli lehatárolásához. 

A modellek értékelését standard pontossági mutatók alapján végeztem: 

Overall Accuracy (OA), Kappa-index (κ), Precision (P), Sensitivity (S), F1-

score és QADI (Quantity Allocation Disagreement Index). A validáció során 

manuálisan digitalizált vízpoligonokat használtam referenciaként, valamint a 



 

 

modellek térbeli felbontásával egységesített pixel-alapú 

pontosságvizsgálatokat végeztem. 

A Sentinel–1 és Sentinel–2 műholdfelvételek integrálása lehetővé tette a 

belvízfoltok kvázi-folyamatos, napi szintű nyomon követését a 2020.06.03–

2021.06.02. közötti időszakban. Az előfeldolgozott adatokból CNN-alapú 

bináris víz/nem víz térképek készültek, ahol a víz jelenlétét 1, a száraz felszínt 

0, az adathiányt –1 érték jelölte. A két adatforrás együttes alkalmazása 

jelentősen növelte az időbeli lefedettséget: 151 napon Sentinel–1, 32 napon 

Sentinel–2, míg 31 napon mindkét szenzor biztosított adatot. Az azonos 

napokra eső térképeket pixelszintű fúzióval egyesítettem, ahol víznek csak 

azokat a pixeleket tekintettem, amelyeket mindkét adatforrás elöntöttként 

azonosított. A felhőborítottság és a radaros csempehatárok okozta hiányos 

értékek pótlására idősoros interpolációt alkalmaztam, legfeljebb 4 napos 

időablakon belül. Amennyiben ez időn belül sem állt rendelkezésre érvényes 

megfigyelés, az adott pixel „nem víz” értéket kapott. A módszer biztosította 

a folytonos idősor előállítását, amelyből a 364 napot lefedő vízborítottsági 

térképsorozat létrejött. Ez az integrált adatbázis képezte alapját a belvíz 

gyakorisági és tartóssági térképek, valamint a prediktív modellek 

előállításának. 

A belvíz-előrejelzés céljából egy adatvezérelt predikciós modellt 

alakítottam ki, amely a Sentinel–1 és Sentinel–2 adatokból származó 

vízborítottsági térképeket statikus (talajtani, domborzati, földhasználati, 

antropogén) és dinamikus (meteorológiai) tényezőkkel kibővítettem (1. 

ábra). A modell két algoritmusra épült: a Deep Neural Network (DNN) és az 

Extreme Gradient Boosting (XGBoost) módszerekre, amelyek a vízborítás 

térbeli és időbeli valószínűségének becslését végezték. Az eredeti 24 

inputparaméter közül az xAI elemzés alapján 17 bizonyult meghatározónak. 

A predikciók a vízborítás valószínűségi értékein alapultak, amelyek 1–2 hetes 

előrejelzést biztosították a belvízveszélyes területek azonosítását. 



 

 

 
1. ábra: Előfeldolgozási és modellezési munkafolyamata Kajári et al., 2024 

nyomán 

A belvízelöntések tartósságának becslése a gyakorisági térképezés 

módszertanára épült, kiegészítve a vízborítás fennmaradásának időtartamával 

és a becsült vízmélységgel. Az elemzés gyakorisági térkép, valamint egy 5 m 

felbontású digitális domborzatmodell bevonásán alapult, amely a 



 

 

mikrodomborzati mélyedések és vízgyűjtő egységek azonosítását is lehetővé 

tette. A domborzati és radaros paraméterek kombinációja a vízborítás 

térfogatának és tartósságának becslését szolgálta. Az elöntések időtartamát a 

napi felbontású vízfedettségi térképek egymást követő összevetésével 

határoztam meg, így azonosíthatóvá vált, hogy egy adott terület hány napon 

keresztül maradt víz alatt. Az így előállított tartóssági térképek a belvízfoltok 

kialakulásának, fennmaradásának és visszahúzódásának dinamikáját 

jellemzik, hozzájárulva a hidrológiai folyamatok pontosabb értelmezéséhez, 

valamint a vízvisszatartási potenciál és a kockázati besorolás finomításához. 

Eredmények és következtetések 

A vizsgálatok alapján a Sentinel–1 és Sentinel–2 adatok egyaránt 

alkalmasak a síkvidéki belvízelöntések detektálására, azonban eltérő 

erősségekkel és korlátokkal rendelkeznek. A Sentinel–2 optikai felvételek 

tiszta légköri körülmények között pontosabb osztályozást eredményeztek, 

míg a Sentinel–1 adatok előnye az időbeli folytonosságban és a felhőborítás 

alatti megfigyelhetőségben rejlik. A két adatforrás harmonizálása és együttes 

feldolgozása jelentősen növelte a térbeli és időbeli lefedettséget, így lehetővé 

tette a kvázi folyamatos elöntés-monitoringot a teljes vizsgálati időszakban. 

A Sentinel–2 multispektrális felvételek alkalmazása igazolta, hogy az 

optikai adatok 10 m-es térbeli és ötnapos időbeli felbontása megfelelő a 

belvízfoltok térbeli lehatárolásához és dinamikájuk elemzéséhez. Az 

indexalapú módszerek közül az MNDWI bizonyult a legpontosabbnak (κ = 

0,66; P = 0,68; QADI = 0,023), ugyanakkor a küszöbértékek érzékenysége 

miatt korlátozott automatizálhatóságot mutatott. A gépi tanulásos modellek 

(ML, RF, SVM) növelték az osztályozás pontosságát, közülük az SVM érte 

el a legstabilabb eredményt (κ = 0,69). A legjobb teljesítményt azonban a 

mélytanulásos (CNN) modellek konzisztensen magas pontosságot értek el 

egyrészt a tanítás során (F1 = 0,84), valamint a modellezés folyamán (κ = 

0,61; P = 0,90; QADI = 0,020). A modell stabil teljesítményt nyújtott változó 

légköri viszonyok mellett is. 

A Sentinel–1 adatok feldolgozása során a VV és VH polarizációs sávok, 

az RVI és a GLCM textúraindexek együttes alkalmazása javította az 

osztályozási teljesítményt. A radaros modellek ugyanakkor érzékenyek 

voltak a felszín érdességére, a növényzet szerkezetére és a speckle-zajra. A 

pontosság jellemzően elmaradt az optikai adatokétól (átlagosan κ = 0,30; F1 

= 0,32), de a radaros felvételek pótolhatatlan információt nyújtottak a 

felhőborításos időszakokban. 



 

 

A Sentinel–1 és Sentinel–2 adatok integrált feldolgozása 63 napról 214 

napra növelte a megfigyelési időablakot. Az integrált modell különösen a 

felhővel terhelt időpontokban bizonyult hatékonyabbnak, mivel a radaros 

adatok kiegészítették az optikai felvételek hiányzó információtartalmát. Az 

adatintegráció eredményeként stabilabb és részletesebb elöntési térképek 

készültek, amelyek megbízható alapot biztosítottak az idősoros elemzésekhez 

és a gyakorisági térképek előállításához (2. ábra). 

 
2. ábra: A vizsgált időszakra elkészített gyakorisági térkép a teljes vizsgálati 

területen (1600km2) (Kajári et al., 2024b) 

A térkép pontosan elkülönítette az állandó, közepes és ideiglenes 

elöntéseket, és kimutatták a magas gyakoriságú területeket, amelyek döntően 

a mikrodomborzati mélyedésekhez, rizskazettákhoz és vizenyős rétekhez 

kapcsolódtak. A gyakorisági térkép dinamikus frissíthetősége révén 

pontosabb és aktuálisabb képet adott a belvízveszélyeztetettségről, mint a 

korábbi statikus veszélytérképek. 

A belvíz-előrejelzéshez fejlesztett predikciós modellek közül a Deep 

Neural Network (DNN) és az Extreme Gradient Boosting (XGBoost) 

algoritmusokat használtam, amelyek a 24 bemeneti paraméterből az xAI-

elemzés (SHAP) alapján kiválasztott 17 releváns változót vették figyelembe. 

A két modell hasonló pontosságot ért el (F1: 0,85 és 0,84), azonban az 

XGBoost számítási hatékonysága lényegesen jobb volt (18 másodperc a 102 



 

 

másodperccel szemben), ezért rövid távú, 1–2 hetes előrejelzésekhez 

alkalmazhatóbbnak bizonyult. A DNN tanítását 0,001-es tanulási rátával, 

0,0001-es decay értékkel, 10-es batch-mérettel és 100 epoch mellett 

optimalizáltam (F1 = 0,84; κ = 0,68), míg az XGBoost-modell 0,02-es 

tanulási rátával, 350 döntési fával és hat maximális mélységgel futott, 

némileg jobb teljesítménnyel (F1 = 0,854; κ = 0,703). Az interpretálhatóságot 

biztosító SHAP-elemzés kimutatta, hogy a predikciókat elsősorban a korábbi 

vízborítottsági jellemzők (WATER, IEWSUM) határozták meg, míg a 

dinamikus meteorológiai tényezők (pl. csapadék, PET) másodlagos szerepet 

játszottak. A statikus változók – különösen a domborzat és a talajtani 

jellemzők – a lokális érzékenységek leírásában bizonyultak meghatározónak. 

Az összehasonlító értékelés során a CNN-alapú vízdetektálás 0,84-es F1-

értéket ért el, míg a Sentinel–1 és Sentinel–2 modellek pontossága rendre 

0,56 és 0,71 volt. Összességében a CNN-osztályozás és az XGBoost-alapú 

előrejelzés integrálása olyan robusztus és automatizálható módszertani 

keretet eredményezett, amely képes a belvízi események megbízható 

detektálására, 1–2 hetes előrejelzésére, és döntéstámogató rendszerként is 

alkalmazható a hazai vízgazdálkodási gyakorlatban. 

A belvízi elöntések tartósságának vizsgálata a gyakorisági térképezés 

eredményeire épült, kiegészítve a vízborítás időtartamának és becsült 

vízmélységének elemzésével. A feldolgozás alapját a Sentinel–1 radaros és 

Sentinel–2 multispektrális adatok integrált idősorai, valamint egy 5 m 

felbontású digitális domborzatmodell képezték, amelyek együttesen lehetővé 

tették a mikrodomborzati mélyedések és a vízgyűjtő egységek pontos 

azonosítását. Az éves adatsor alapján meghatároztam, hogy a mintaterületen 

(3. ábra) az elöntés legnagyobb kiterjedése 3,08 ha volt, 58 napon keresztül 

fennmaradó vízborítással.  



 

 

 
3. ábra: A tartósság vizsgálata az általam kiválasztott mezőgazdasági táblán 

(Kajári et al., 2024c) 

A közepes tartósságú elöntések 1,72 ha területet érintettek (68 nap), míg 

a legmagasabb tartóssági kategóriába sorolt vízfoltok 0,98 ha kiterjedésben 

116 napon át maradtak meg. A felszíni víztérfogat-becslés alapján a belvíz 

mennyisége 1984 m³, ami átlagosan 6,4 cm-es vízmélységnek felelt meg. Az 

eredmények alátámasztják, hogy a kisebb kiterjedésű, de tartósan víz alatt 

álló területek jelentős szerepet játszanak a belvizek hidrológiai 

viselkedésében, és alapvető információt szolgáltatnak a mezőgazdasági károk 

és a vízvisszatartási potenciál térbeli értékeléséhez. 

A kutatás kimutatta, hogy a vízborítás kiterjedése és időbeli tartóssága 

között szignifikáns, pozitív kapcsolat áll fenn, ami különösen a mélyfekvésű 

és lefolyástalan területeken jelentős. 

 



 

 

     A dolgozatban felállított célkitűzésekhez kapcsolódó kutatási 

kérdésekre az alábbi válaszok adhatók: 

1. Léteznek-e olyan költséghatékony multispektrális és radaros 

műholdfelvételek, amelyek megfelelő időbeli és térbeli felbontást 

biztosítanak Magyarország síkvidéki területein a belvízlehatárolás 

szempontjából? 

Megmutattam, hogy a szabadon elérhető multispektrális 

műholdfelvételek közül a Sentinel–2 biztosítja a legnagyobb térbeli 

felbontást (10 m) és a legszélesebb spektrális lefedettséget (13 sáv) a vizsgált 

adatkészletekhez (MODIS, Landsat, PlanetScope) képest. A radaros 

rendszerek közül a Sentinel–1 C-sávú radarműhold nyújt térítésmentesen 

elérhető adatokat, amelyek a fényviszonyoktól és a felhőborítottságtól 

függetlenül teszik lehetővé a felszíni vízborítás detektálását, így a síkvidéki 

belvizek vizsgálatában nélkülözhetetlen adatforrást jelentenek. 

2. Biztosítható-e a belvízelöntések megbízható lehatárolása 10 

méteres terepi felbontás mellett? 

Bebizonyítottam, hogy a Sentinel–2 optikai adatok 10 méteres térbeli 

felbontása elegendő a belvízfoltok pontos lehatárolására (κ = 0,62; F1 = 

0,62). A Sentinel–1 radaros felvételek önállóan alacsonyabb pontosságot 

értek el (κ = 0,30; F1 = 0,32), ugyanakkor kiegészítő adatforrásként javították 

a térbeli és időbeli lefedettséget, különösen a felhős időszakok megfigyelése 

során. 

3. Integrálhatók-e a Sentinel–1 és Sentinel–2 műholdfelvételek 

hatékonyan a síkvidéki belvizek azonosítására és előrejelzésére szolgáló 

térinformatikai modellezési folyamatokba? 

Igazoltam, hogy a Sentinel–1 és Sentinel–2 műholdfelvételek 10 méteres 

térbeli felbontásra történő harmonizálása lehetővé tette a radaros és optikai 

adatok integrálását, ami közel napi szintű elöntés-térképek előállítását tette 

lehetővé. A fúziós feldolgozás növelte a megfigyelések időbeli sűrűségét, és 

javította a belvízdetektálás megbízhatóságát. 

4. Nyújtanak-e a szabványosított távérzékelési módszerek kellően 

nagy pontosságot a vízborítottság megbízható lehatárolásához? 

Eredményeim szerint a szabványosított távérzékelési indexek (NDWI, 

MNDWI, NDVI) önállóan nem biztosítanak kellően nagy pontosságot a 

belvízlehatároláshoz, mivel érzékenyek a küszöbértékek és a légköri 

viszonyok változásaira. A MNDWI módszer adta a legjobb eredményt (κ = 

0,66; P = 0,68; QADI = 0,023). A felügyelt gépi tanulási modellek (ML, RF, 



 

 

SVM) javították az osztályozás pontosságát, közülük az SVM modell 

bizonyult a legstabilabbnak (κ = 0,69), de teljesítményük erősen függött a 

tanítóterületek homogenitásától és az aktuális légköri feltételektől. A 

mélytanulásos (CNN) modell ezzel szemben konzisztensen magas 

pontosságot ért el (κ = 0,61; P = 0,90; QADI = 0,020), felhős körülmények 

között is stabilan működött, és jól illeszthető volt az automatizált feldolgozási 

láncba. 

5. Alkalmasak-e bizonyos távérzékelési módszerek az idősoros 

elemzésekre, különösen a belvízelöntések gyakoriságának és 

dinamikájának vizsgálatában? 

Igazoltam, hogy az alkalmazott módszerek idősoros elemzésre eltérő 

mértékben alkalmasak. Az indexalapú eljárások (NDVI, NDWI, MNDWI) 

minden időpontra külön küszöbérték-beállítást igényelnek, ami korlátozza az 

automatizálhatóságot és a módszertani konzisztenciát. A hagyományos gépi 

tanulásos modellek (ML, RF, SVM) növelték ugyan a pontosságot, de 

minden új időpontra újratanítást igényeltek, és érzékenyek maradtak a légköri 

viszonyokra. A mélytanulásos modellek – különösen a CNN – ezzel szemben 

megbízhatóbbnak bizonyultak az időbeli variabilitás kezelésében, és 

lehetőséget biztosítottak a folyamatos belvíz-monitoring megvalósítására. 

6. Képesek-e a mesterséges intelligencián alapuló módszerek 

felülmúlni a hagyományos megközelítéseket a belvizek detektálásának 

pontosságában és megbízhatóságában? 

Megmutattam, hogy a mesterséges intelligencián alapuló módszerek – 

különösen a CNN modell – felülmúlták az indexalapú és hagyományos gépi 

tanulási eljárásokat. A CNN stabil teljesítményt nyújtott változó légköri 

viszonyok mellett is (κ = 0,61; P = 0,90; QADI = 0,020), átlagosan magasabb 

precizitást (P = 0,90) és kiegyensúlyozottabb eredményeket biztosított, 

különösen felhővel terhelt felvételek esetén. A módszer automatizálható 

feldolgozási folyamatba illeszthető, és a legmegbízhatóbb megoldásnak 

bizonyult a síkvidéki belvízdetektálásban. 

7. Alkalmasak-e a Sentinel–1 radaros műholdfelvételek önállóan a 

vízborítás pontos és megbízható lehatárolására? 

Bebizonyítottam, hogy a Sentinel–1 radaros felvételek önállóan is 

alkalmasak a vízborítás detektálására, ugyanakkor korlátozott pontossággal. 

A radaros mérések érzékenyek a felszín érdességére, a növényzet 

szerkezetére és a szórási zajra (speckle noise). A radaros feldolgozás átlagos 

pontossága (κ = 0,30; F1 = 0,32) alacsonyabb az optikai modellekénél, 



 

 

ugyanakkor a Sentinel–1 adatok felhős időszakokban pótolhatatlan 

kiegészítő információt biztosítanak. 

8. Lehetséges-e a multispektrális és radaros műholdfelvételek 

hatékony integrációja (fúziója) a belvízlehatárolás céljára? 

Megmutattam, hogy a multispektrális és radaros adatok integrációja 

jelentősen javította a belvízlehatárolás térbeli és időbeli lefedettségét. A 10 

méteres térbeli harmonizálás és az idősorok egyesítése 63 napról 214 napra 

növelte a megfigyelési időablakot, ezáltal lehetővé téve a kvázi folyamatos 

elöntés-monitoringot. A fúziós feldolgozás különösen a felhős időszakokban 

eredményezett pontosabb és stabilabb vízlehatárolást. 

9. Növelhető-e a belvízi gyakorisági térképek pontossága a 

multispektrális és radaros adatok integrációjával? 

Eredményeim szerint a multispektrális és radaros adatok integrálása 

növelte a belvízi gyakorisági térképek pontosságát és részletességét. Az éves 

idősor alapján készült térképek pontosan elkülönítették az állandó, közepes 

és ideiglenes elöntéseket, valamint javították a mikrodomborzati mélyedések 

felismerhetőségét. A dinamikus, időben frissíthető gyakorisági térképek 

lényegesen pontosabb képet adnak a belvízveszélyeztetettségről, mint a 

hagyományos statikus veszélytérképek, és alkalmasak az operatív 

kockázatbecslés és döntéstámogatás alapjául. 

10. Kimutatható-e statisztikailag is jelentős összefüggés a 

belvízelöntések kiterjedése és időbeli tartóssága között? 

Bizonyítottam, hogy a belvízelöntések kiterjedése és időbeli tartóssága 

között statisztikailag szignifikáns, pozitív összefüggés áll fenn. A nagyobb 

elöntések jellemzően hosszabb ideig maradtak fenn, míg a kisebb, izolált 

foltok gyorsabban visszahúzódtak. A kapcsolat különösen markáns volt a 

mélyfekvésű területeken, a rizstermesztéshez kapcsolódó kazettákban, 

valamint a lefolyástalan mikrodomborzati mélyedésekben. 

11. Javítja-e a belvízelöntésekre vonatkozó predikciók pontosságát a 

műholdfelvételek statikus (pl. domborzati, talajtani) és dinamikus (pl. 

meteorológiai) adatokkal való kiegészítése? 

Bebizonyítottam, hogy a belvíz-előrejelzések pontosságát jelentősen 

növeli a műholdfelvételek statikus (domborzati, talajtani, földhasználati, 

antropogén) és dinamikus (meteorológiai) adatokkal való kiegészítése. Az 

XGBoost modell rövid távon (1–2 hét) megbízható előrejelzést adott, amelyet 

az xAI (SHAP) elemzés is alátámasztott: a predikciókat elsősorban a korábbi 

vízborítottsági jellemzők (WATER, IEWSUM) határozták meg, míg a 



 

 

dinamikus meteorológiai tényezők (pl. potenciális evapotranszspiráció, 

csapadék) másodlagos szerepet játszottak. A statikus környezeti tényezők – 

különösen a talaj és a domborzat – kiegészítő információt nyújtottak, főként 

a lokális mikrodomborzati anomáliák azonosításában. E tényezők együttes 

figyelembevétele magas predikciós pontosságot eredményezett (F1 = 0,84). 

12. Játszanak-e érdemi szerepet ezek a kiegészítő adatok a predikciós 

modellek megbízhatóságának és alkalmazhatóságának növelésében? 

Bebizonyítottam, hogy a kutatás során létrehozott gépi tanuláson alapuló, 

moduláris előrejelző rendszer alkalmas a síkvidéki belvízelöntések rövid távú 

modellezésére és térképi megjelenítésére. A Sentinel–1 és Sentinel–2 adatok 

integrált feldolgozásán alapuló rendszer 1–2 hetes előrejelzési horizonton 

működik, automatizálható, és döntéstámogató eszközként alkalmazható az 

operatív vízgazdálkodási gyakorlatban. 
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Summary 

The occurrence of inland excess water (IEW) poses a serious challenge 

for agriculture and water management in the Hungarian Great Plain. Climate 

change, land-use intensification, and the low-lying topography increase the 

risk and persistence of inundations. Remote sensing and machine learning 

provide new opportunities for monitoring and predicting these processes 

more accurately than traditional approaches. This research aimed      to 

develop a methodology that integrates Sentinel–1 radar and Sentinel–2 

multispectral imagery with advanced machine learning and deep learning 

algorithms in order to monitor and predict IEW. 

The results demonstrated that both Sentinel–1 and Sentinel–2 data are 

suitable for IEW detection, but with different advantages. Sentinel–2 imagery 

produced more accurate classifications under clear atmospheric conditions, 

whereas Sentinel–1 radar data ensured continuous monitoring under cloudy 

weather. Among the spectral indices, the Modified Normalized Difference 

Water Index (MNDWI) performed best, although the sensitivity of threshold 

values limited the robustness of index-based approaches. Supervised machine 



 

 

learning algorithms such as ML, RF, and SVM provided acceptable results, 

however     their performance was inconsistent in the presence of atmospheric 

disturbances. 

Deep learning models, especially the Convolutional Neural Network 

(CNN), yielded the most accurate and consistent classifications. CNN 

achieved stable Kappa and precision values, while requiring minimal user 

intervention. Radar-based CNN models performed slightly worse than 

optical-based ones, but played a crucial role in filling temporal gaps caused 

by cloud cover. The fusion of Sentinel–1 and Sentinel–2 further improved 

temporal coverage and reliability, highlighting the benefits of combined data 

usage. 

Daily inundation maps generated by CNN classification enabled the 

derivation of water frequency maps, which provide a dynamic and updateable 

alternative to traditional static hazard maps. These maps clearly distinguished 

between permanent and temporary water bodies and revealed areas with 

recurrent inundations. For predictive modelling, both Deep Neural Network 

(DNN) and XGBoost were tested. While their accuracy was comparable, 

XGBoost proved computationally more efficient, making it more suitable for 

operational applications. 

The analysis of predictor variables confirmed that previous water 

occurrence and surrounding pixels with water dominated the models, while 

meteorological factors (precipitation, potential evapotranspiration) played a 

secondary role, and static environmental and soil parameters contributed only 

marginally. This underlines the strong temporal autocorrelation of IEW 

processes. 

Overall, this research demonstrated that the integration of freely available 

satellite data and advanced machine learning algorithms offers a powerful 

framework for IEW monitoring and prediction. The proposed methodology 

can serve as a foundation for operational systems that support sustainable 

water management, agricultural damage mitigation, and climate adaptation 

strategies in lowland regions. 
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