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Abstract

By considering linear scattering of laser-driven cold atoms inside an undriven
high-finesse optical resonator, we experimentally demonstrate effects unique to a
strongly coupled vacuum field. Arranging the atoms in an incommensurate lattice
with respect to the radiation wavelength, the Bragg scattering into the cavity can be
suppressed by destructive interference: the atomic array is subradiant to the cavity
mode under transverse illumination. We show however, that strong collective
coupling leads to a drastic modification of the excitation spectrum, as evidenced by
well-resolved vacuum Rabi splitting in the intensity of the fluctuations. Furthermore,
we demonstrate a significant polarization rotation in the linear scattering off the
subradiant array via Raman scattering induced by the strongly coupled vacuum field.

Keywords: Cavity quantum electrodynamics; Cold atoms; Subradiant scattering;
Vacuum Rabi splitting

1 Introduction
Beyond the peculiar emission from collective Dicke-states of an ensemble of indistin-
guishable atoms [1], the concept of superradiance [2-5] and subradiance [6-8] has re-
cently been extended to ordered atom arrays [9, 10] in which the interplay of the reso-
nant dipole-dipole interaction together with a constructive or destructive spatial interfer-
ence leads to enhancement, or inhibition of spontaneous emission, respectively. The latter
has application in long-term storage of quantum information [11-13]. Accordingly, there
has been an extensive study of regular one-, two-, and three-dimensional atomic arrays,
e.g., subradiance has been shown to correspond to optical guided polariton modes in the
atomic array [14]. Besides ordering atoms, the radiation can also be shaped to favour emis-
sion into selected output channels, such as when coupling them to fibre-guided modes
[15-17]. Confinement of the electromagnetic field to waveguides or resonators also re-
sults in a spatial enhancement of the range of radiative atom-atom interactions, reinforc-
ing the formation of collective states of an atomic ensemble. Subradiant configurations
have been experimentally demonstrated for a one-dimensional array near a waveguide
[18].

In this paper, we revisit low-intensity light scattering from a one-dimensional atom array,
when the scattered output is directed into strongly coupled radiation modes sustained by
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an optical resonator [19, 20]. Dynamics of laser-driven atoms interacting with cavity field
modes is of high interest producing a great variety of effects: experiments started with ef-
ficient cooling schemes [21], atomic self-organization [22-24] and led to the exploration
of superradiant [25-27] and other types of quantum phase transitions [28—38]. Collec-
tive radiation effects in many-atom cavity QED systems have been explored, such as the
interference in Rayleigh scattering with controlled positioning of atoms in a cavity mode
[19, 20, 39-41], quantum non-demolition measurements [42], as well as lasing [43, 44]
and superradiant lasing [45—-47] with cold atoms as the gain media.

We explore the spectral and polarization properties of scattering from a cold atomic
ensemble into a quasi-resonant mode of a high-finesse optical cavity. The atoms are ar-
ranged into an optical lattice with periodicity incommensurate with the wavelength of
the cavity mode resonating with the driven atomic transition. When they are illuminated
from a direction perpendicular to the cavity axis, the coherent Bragg scattering from the
atom array is suppressed into the cavity. However, destructive interference does not en-
tail a decoupling from the cavity field even if the laser-driven atom array is without the
Bragg condition. There is a collective strong coupling between the subradiant array and
the cavity mode, which is manifested by vacuum Rabi splitting [48—51] in the frequency
dependence of the outcoupled cavity field intensity fluctuations. We observe another re-
markable effect unusual in the fluorescence of atoms in the low-saturation limit: the field
polarization is rotated. In coherent Rayleigh scattering, the dipole oscillation of an atom
is parallel with the polarization of the impinging field; hence, the scattered field preserves
this polarization. This component is, however, suppressed by the destructive interference
in the atom array subradiant to the cavity field. The incoherent scattering is enhanced in a
high-finesse cavity also into the mode with polarization orthogonal to that of the incom-
ing field. The polarization rotation is associated with a two-photon Raman transition in
the atomic hyperfine ground state manifold in accordance with the conservation of angu-
lar momentum [26, 52, 53]. We show that this process is on the same order of the drive
power and reflects the same vacuum Rabi split spectrum as the polarization-preserving
scattering.

2 Results

The experimental scheme is sketched in Fig. 1. Rubidium atoms were trapped in an 805 nm
optical lattice sustained by a resonantly driven TEMg, mode of a high finesse optical cavity
[54]. Another, undriven, fundamental mode of bare cavity resonance frequency wc, was
set to resonance with the F = 2 <> F’ = 3 atomic excitation frequency w, . The weak probe
laser beam, of frequency w was swept over about 50 MHz around w,, and illuminates the
atoms from a direction perpendicular to the cavity axis. The common detuning A = A, =
Ac where Ay = w — wa and Ac = o — wc. Two single photon counters record separately
the cavity output for vertical (z) and horizontal (y) linear polarizations.

Cavity photons in the mode with frequency wc &~ w could be generated only by scatter-
ing from the laser drive beams. Since the atomic distribution had a periodicity incommen-
surate with the wavelength of the drive (780 nm), the scattered coherent wave components
from different positions of the mode average out along the cavity axis [20, 55]. Quantum
emitters can be prepared in subradiant states such that the collective emission amplitude
is deterministically canceled out, as seen in perfectly ordered atomic arrays [56] or pure
Bose-Einstein condensates. In the present case, the atoms have a finite thermal motion
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Figure 1 Scheme of our experiment on the scattering from a subradiant atomic configuration. Cold 8’Rb
atoms in an intra-cavity dipole lattice at wavelength 805 nm are illuminated by two counter-propagating
coherent laser beams with equal intensity and opposite circular polarizations from the two opposite
directions perpendicular to the cavity axis. The laser was set near resonant with the F = 2 <> F' = 3 transition
of the D2 line at 780 nm (only two transitions from the sublevel mr = 2 are shown by solid arrows, for
simplicity, but all the other mg sublevels are coupled similarly by o and o~ transitions) and close to
resonance with one of the fundamental cavity modes coupling to the atomic transitions denoted by dashed
lines in the inset (only three transitions from mg = -1 are shown but all the other sublevels are similarly
coupled by the cavity modes). The cavity field output is monitored by single photon counters on
discriminating the photon polarization. The cavity linewidth is k = 2 x 4 MHz (HWHM), the maximum
single-atom coupling constant is g = 2r x 0.33 MHz

along the cavity axis around the trap centers. Therefore, suppression of the collective co-
herent scattering into the cavity is expected only on average over a large statistical ensem-
ble. In each individual measurement, density fluctuations in the half wavelength 805 nm
lattice order lead to cavity field fluctuations that are monitored in the outcoupled field by
the photodetectors.

2.1 Vacuum Rabi splitting

To start, the number of atoms loaded into the mode volume was varied in the range of
~ 1500 to ~ 10* by setting different MOT cycle protocols. The effective atom number Ng
was determined from independent measurements: it was calibrated by the cavity trans-
mission of a near resonant weak probe detuned from the atomic transition such that the
atoms acted as a dispersive medium. The transverse drive laser intensity was lowered as
much as possible so that a reasonable rate of photons, ~ 1000 count/second, scattered by
the atoms into the cavity could be detected by the single photon counters well above the
background. It was ~ 50 count/second coming from ambient light and the 805 laser, while
the intrinsic dark count rate was below 1 count/second for the superconducting nanowire
single-photon detector. So different drive power was employed for different atom numbers
to get this required level of photo-detection rate. Then, at fixed atom number and corre-
sponding drive intensity, the drive laser detuning A was varied in the range of 50 MHz
to probe the excitation spectrum of the system. Figure 2 presents that the intensity fluctu-
ations reflected the vacuum Rabi splitting for large enough atom number. The observed
large variance is intrinsic to the density fluctuations of atoms in a subradiant configuration
set by the 805 nm wavelength intra-cavity optical lattice. As there is no perfect destruc-
tive interference for the finite-size sample of atoms, there is a field with random amplitude.
The shot-to-shot fluctuations of the field intensity was found close to the average, indicat-
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Count rate |kHz]

Figure 2 Vacuum Rabi splitting with a subradiant array of atoms. The photon count rate in the first 1 ms of
exposure time is plotted versus the laser drive detuning A for various effective atom numbers Neg. Fach
point and error bar is obtained from an ensemble of 70 runs assuming log-normal distribution, given that the
photon count rate is a priori a non-negative quantity. The maxima of the fitted Lorentzian resonance
functions, projected on the bottom plane (orange circles), fit well on a parabola Neg = Az/géff with

Geff = 27T x 0.26 MHz, in accordance with the /Neg dependence known for the collective coupling of a
number of Neg atoms to a single cavity mode
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Figure 3 Power dependence of the vacuum Rabi splitting spectrum for horizontal (a-d) and vertical (e-h)
polarization. In panels (b) and (f), the photon count rate normalized to the laser drive power as a function of
the drive frequency is shown for 10, 16, 32, 64, 128 and 256 pW in the subplots from top to bottom. Each
point is obtained by averaging 50 runs of 100 ps exposure time, and the statistical variance is represented by
the error bars. A sum of four Lorentzian curves is a very good fit on all the measured spectra (see text), shown
by solid lines. The photon count rate at the outer two peaks of the fit spectra are shown in panels (c) and (g),
whereas the corresponding detunings are shown in panels (d) and (h) (left scale, red and blue crosses for
negative and positive detunings, respectively). The linewidths of the vacuum Rabi peaks are also presented in
panels (d) and (h) (right scale, dots). There is a constant fit on the linewidth data (dashed lines, red and blue,
according to the sign of detuning) and similarly on the peak positions (solid line) evidencing the linear
scattering regime for the drive power range below 128 pW. At 256 uW saturation effects can be noticed: the
peak heights deviate from the linear dependence, and the splitting between the Rabi peaks is also smaller
(Data points from the 256 pW measurement are not included in the fits in (), (d), (g), (h))

ing chaotic light statistics. The main features of the spectra fit a sum of four Lorentzians
(see below at Fig. 3), the outer resonances corresponding to normal mode splitting, the
inner ones are relevant only for the smallest atom number. The positions of these outer
two Lorentzian peaks projected onto the detuning-atom number plane in Fig. 2 are well
described by a parabola reflecting the A oc /N expected for strong collective coupling.
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The coefficient geg &~ 27 x 0.26 MHz from the fit (with uncertainty 27z x 0.006 MHz) is in
good agreement with the expected value of 27 x 0.225 MHz which can be obtained by av-
eraging over the atomic population distributed evenly in the F = 2, mr magnetic sublevels
with the corresponding Clebsch-Gordan coefficients. We attribute the 10% deviation to
the small but not entirely negligible saturation in the atom number calibration measure-
ment.

2.2 Linear scattering

Analysis of the drive power dependence of the vacuum Rabi splitting confirms that the
scattering is in the linear regime. The recorded spectra could be compared to a simple the-
ory based on a linear polarizability model of atoms [57] which assumes that the atomic in-
duced dipole is proportional to the local electric field, d o €0X (w)E(?) in the low-excitation
limit [58].

In our drive field configuration, the two counterpropagating beams have opposite circu-
lar polarizations. The resulting electric field is linearly polarized in a helical pattern along
the drive axis ‘z, i.e., E(?)ll?zy cos kz + €, sin kz. Note that the optical resonator does not sus-
tain modes with &, polarization, being the direction of the cavity axis; hence, effectively,
only the linear polarization e, couples into the resonator field. Linear scatterers lead then
to the intracavity field amplitude for the mode polarized in the direction ‘y’ [20, 58]

ngy., coskx,coskz,
a, = ,
? T (iAx - y)iDc — k) + g2 Y, cos? kx,

1)

where 7 is an effective drive amplitude and the summation goes over the atoms indexed
bya=1...N with positions 7, = (X4, Y4, z,). The squared modulus of the denominator has
two minima which, for our setting of resonance between the atoms and the mode, A =
Ac=A,areat A = :t\/m = 4./N.g g. The effective atom number is around
Neg ~ N/2 for cos? kx = 1/2. This two-peaked resonance behaviour is responsible for the
normal mode splitting shown in Fig. 2. A destructive interference leads to vanishing mean
field, o, which is formally represented by the numerator averaging out over the atomic
positions, (Za cos kx, cos kza) = 0. This is the case for a homogeneous distribution, but
also for a set of positions {x,} sampling the 805 nm wavelength optical lattice. Even if
the mean vanishes, however, there are finite size and thermal fluctuations of the atomic
distribution which result in cavity field intensity fluctuations, W #0. Considering the
atomic positions as random variables, the statistical average gives

|

where the power law scaling with the atom number N encapsulates two generic cases, i.e.,

N

E cos kx, coskz,

a=1

2
> ~ NP4 , (2)

the uniform random or perfectly ordered distributions, leading to 8 = 1 linear or 8 =2
quadratic dependences, respectively. The actual value of the exponent § can be deduced
from our measured data and gives information on the atomic distribution. For destructive
interference, as in our situation where the distribution of atoms is incommensurate with
the 780 nm cos kx mode function, B = 1 is expected. 8 = 2 would indicate superradiance
with perfect constructive interference. The photon count rate is proportional to the in-
tracavity photon number, i.e., the squared modulus of the amplitude in Eq. (1), having a
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statistical average that can be obtained by using Eq. (2). In the large vacuum Rabi splitting
regime and in leading order of (k% + y%)/Negg? < 1, the mean of the intensity fluctuations

can be approximated around the peak maxima by the Lorentzian functions

2 ppp-1 -1
(lay 2y ~ 1 - [(Ai‘/Neffg)%(K;y)] . 3)

This form of the Rabi splitting peaks can be tested experimentally to verify the linear po-
larizability model of atoms. Moreover, this is a crucial result because it provides a direct
measure of B via the scaling of the peak intensity with the number of atoms N.

Figure 3 shows the detected photo-count rate normalized to the pump power. Solid lines
show that a function composed of the sum of four Lorentzian functions is a very good fit
to the measured points. The outer two peaks correspond to the vacuum Rabi resonances
given by Eq. (3). The inner two (smaller) peaks are due to the multiplett structure of the
hyperfine states and are significant in the fit to account for the non-vanishing photo-count
rate around zero detuning. These peaks will be studied systematically in a subsequent
paper. Here we focus on the outer two peaks, i.e., the measured vacuum Rabi peaks which
have three features substantiating the validity of the model Eq. (3). First, their separation
is constant in the range of pump powers investigated, c.f. Fig. 3(d). It follows then that no
noticeable atomic saturation takes place apart from the strongest drive plotted. As a by-
product, this peak separation can be used to calibrate Ng. Second, the peak heights of the
curves are proportional to the drive power, n2, which is shown in Fig. 3(c). Some tendency
of shrinking peak separation and decreasing peak height can be observed for the strongest
drive plotted (256 1W), which indicates that atomic saturation becomes noticeable at this
power. However, in the power range up to 100 nW, the scattering is clearly in the linear
regime. Third, the linewidths of the vacuum Rabi peaks are constant and are close to the
theoretical value (k + y)/2 ~ 27 x 3.5 MHz.

2.3 Subradiant atomic array

Having established the linearity of the scattering with driving power, we investigated the
dependence of the photon fluctuations scattered into the cavity as a function of the atom
number. It was changed by systematically delaying the switch-on time of the transverse
drive laser. The drive power was set to a low value, 16 W, being in the linear scattering
regime. The maximum cavity photon number is estimated to be 0.014 corresponding to
a saturation around 1.5%. The registered photo-counts were integrated over only 100 ps,
in order to minimize the effects of atom loss and atomic motion. The drive frequency was
tuned over the same range as in Fig. 3 so that the full excitation spectrum was recorded.
This allowed us (i) to calibrate the atom number from the distance of the peak maxima, and
(ii) to determine the peak photo-count rate for the given atom number. At the detunings
corresponding to the Rabi resonances, A = +-4/N.g g, the photo-count rate was measured
by averaging over 100 repetitions and is plotted in Fig. 4. This peak scattering rate can be
compared with the theoretical maximum rate at vanishing detuning in the denominator

of Eq. (3). The corresponding photo-count rate is

I 1 3x2 1 counts
deteet _ g g x = x —L X — ~6000
Py, 8 2 Agr (%) hw s uW

, (4)
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Figure 4 Collective scattering as a function of the atom number. The maximum photon scattering rates on
resonance with the vacuum Rabi peaks, both at the negative (red) and positive (blue) side of the detuning,
have been detected during a time duration of 100 us at a controlled delay after loading the atoms into the
lattice. For each atom number, the drive frequency were set to resonance with the vacuum Rabi peaks.
Horizontal and vertical polarizations are summed up. The exponents of the linear fit on the log-log scale are
obtained B =0.875 £ 0.009 for the red and 8 = 0.853 £ 0.031 for the blue, respectively

where k7 = 2w x 1.15 MHz is the cavity field decay by mirror transmission, £ = 0.5 is
the detection efficiency, y is the atomic linewidth (HWHM), Ay, is the drive beam cross
section, and the drive power Py, is measured in pW. With our experimental parameters,
the expected count rate is 96 kHz, which is in acceptable agreement with the measured
values in the range 30 £ 3 kHz, shown in Fig. 4, provided we take into account some un-
controlled misalignment of the transverse drive laser and incomplete illumination of the
entire atom cloud in the cavity. The measured maximum rates scatter within 10% around
a constant value, and show some dependence as a function of atom number, but the power
law fit results in an exponent only slightly below 1, which is consistent with 8 = 1 in Eq. (3).
This confirms the absence of coherent component in the scattered photon field and sup-
ports the observation of subradiance from an array of atoms. Beyond a simplified one-
dimensional form of subradiance, the cavity does not merely enhance the scattering into a
small solid angle for each individual atom, but the collective strong coupling to the cavity
mode modifies the excitation spectrum of the atom array.

2.4 Polarization rotation

The strongly coupled vacuum field influences not only the spectral features of scattering
but also the polarization. Within the scalar linear polarizability model leading to Eq. (1),
the atomic polarization induced by the ‘z’ travelling 0 beams excites the ‘y’ polarized
mode of the cavity. This is Rayleigh scattering which corresponds to the resonance fluo-
rescence of two-level atoms in the low-excitation limit. As far as coherent scattering and
interference of the scattered light off many atoms is concerned, the linear polarizability ap-
proach is suitable. However, the degeneracy of the atomic F = 2 ground-state level changes
substantially the incoherent scattering. The drive excites (2, mr) — (3, mp £ 1) transitions
which have dipole moments in the ‘y’ and ‘x’ directions. The Rayleigh scattering involves
thus (2, mp) <> (3, mp £ 1) atomic transitions within a two-level system, while creating an
‘y’ polarized photon from the laser drive. The strongly coupled ‘z’ polarized mode of the
cavity, however, even in vacuum state, can stimulate (3, mp £ 1) — (2, mp = 1) transitions.
This is Raman scattering: the initial and final atomic states (2, mr) and (2, mg £ 1), respec-
tively, are different along the excitation path. The change of the angular momentum state
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of the atom compensates for the rotation of the field polarization when a ‘z’ polarized pho-
ton is created in the cavity from a field polarized in the (x, y) plane. Another consequence
of the change of the atomic state in the Raman scattering process is that the scattered
photon carries which-way information; hence the scattered components from different
atoms in the ensemble do not interfere. Regardless the position of the atoms, there is no
collective enhancement, nor destructive interference, only the intensities from individual
sources add up.

The cavity-induced Raman scattering process has been observed by a photon flux em-
anating from the mode with polarization ‘z’ (6¢) which is the direction of propagation of
the input field. The scattering rate into the polarization ‘z’ as a function of the laser drive
detuning for a range of drive powers is shown in Fig. 3(f). It shows very similar features
and count rates to the ‘y’ polarization output: (i) vacuum Rabi peaks are linear in the in-
put power (panel (g)) and (ii) constant widths have been measured (panel (h)). The results
show that the cavity-stimulated Raman scattering is also linear in the drive intensity in
the low-excitation limit. This is at variance with the case of two-level atoms where the
incoherent part of the scattered light is connected to saturation and is of quadratic order
in the drive intensity. Furthermore, the peak heights were obtained close to those of the
polarization-maintaining light scattering, which reinforces the observation that the coher-
ent scattering was strongly suppressed, i.e., another indirect evidence for the subradiance.

The two-photon Raman transition has been exploited to realize quantum interfaces be-
tween light polarization and atomic memory states [59, 60] by means of stimulated adia-
batic passage processes with pulsed excitation in single-atom strong-coupling cavity QED
experiments. Cavity-enhanced Raman scattering has also been observed from a regular
half-wavelength ordered array [20] when the drive is detuned from the atoms. In our ex-
periment, we revealed that the Raman scattering, though being an incoherent process,
manifests the vacuum Rabi split spectrum characteristic of the strong collective coupling
of the atoms to the ‘2’ polarized cavity mode.

3 Discussion

An important conclusion is that radiation from atomic arrays is not only efficiently col-
lected but is substantially modified by the presence of a high-finesse resonator. Most im-
portantly, the strong coupling to selected resonator modes imposes a collective scattering
from the atoms into the resonator. This collective coupling, as we have shown, is due to
more than simply an interference effect, even in the extremely low intensity limit. The role
of collective coupling has been revealed in detecting the collective phase shift of Bragg
back-scattered light from a one-dimensional optical lattice along the axis of a ring cavity
[61]. Here we realized an experiment where the input field impinges on a one-dimensional
atom array from a direction perpendicular to the axis of an undriven resonator, and the
collective effect is captured by the Rabi splitting in the intensity of fluctuations around a
zero mean-field.

A natural continuation of this work consists in the exploration of the non-linear regime
arising at increased powers, e.g., the systematic study of the inner two Lorentzian reso-
nances appearing in the measured data. On a longer time scale, our experiment can be
developed toward the realization of new variants of the Dicke model [62] in disordered
manifolds with cavity-mediated interactions. Further, considering that multiply excited
subradiant states are said to be composed of the superposition of singly excited states in
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random ensembles [13], our system could be used to provide further insight into this su-
perposition. In particular, our system is well suited for time-resolved measurements and
so the dynamics of the underlying subradiant states in the single-mode limit are available.

We must conclude, too, that optical polarization enters the linear scattering regime. On
the one hand, the multiple ground-state level structure of atoms has to be taken into ac-
count in a linear polarizability description of atoms, beyond the usual scalar polarizability,
which was noted as a subtlety in Ref. [14]. On the other hand, the multiple ground states
open the possibility of entanglement-based, new type of subradiant states predicted re-
cently [63]. In our future work, the cavity-enhanced polarization rotation could be the de-
sign basis for long-range many-body interactions between atoms mediated by two-mode
fields. The cavity field fluctuations reflecting a non-trivial atom-cavity spectrum can be
exploited as a useful light source when the mean-field is suppressed. Finally, our config-
uration is very close to schemes for superradiant lasing [46] and for atomic clocks [27]

which we hope to explore with the incommensurate lattice trap.

4 Methods

Loading atoms into the cavity An ensemble of cold ¥Rb atoms was collected in a
magneto-optical trap (MOT). After the MOT cycle, the atoms were cooled by polariza-
tion gradient cooling (6" — o~ configuration) down to temperatures of 20-50 nK. Subse-
quently, they are magnetically polarized by optical pumping into the (F,mf) = (2,2) hy-
perfine ground state to allow capture with a magnetic quadrupole trap. The magnetically
trapped atomic cloud was then transported into the mode of a high-finesse (F /7 = 1430)
resonator by adiabatically displacing the trap center, and was released there by turning off
the magnetic field in 7 ms.

The cavity is / = 15 mm long and the mode waist is w = 127 num. A far red detuned
(805 nm) laser beam was injected into the cavity, serving two purposes: firstly, utilizing
the Pound-Drever-Hall technique, the cavity was locked to it, secondly, it provided a far-
red-detuned optical dipole lattice for the atoms with a depth of 140 nK and an unperturbed
lifetime of 200 ms.

Upon the arrival and release of the atoms, a second optical pumping was performed
into the (F, mr) = (2,2) hyperfine ground state defined by a homogeneous magnetic field
of 1G along ‘z! Starting from the initial Zeeman sublevel, the population spreads over
all other sublevels and tends to some steady state population distribution as a result of
the competition between fluorescence, Raman transitions and repumping from the F =1
level. The actual steady-state distribution in the mr sublevels is unknown, but it is not
very far from a uniform one (Markov chain simulation according to the Clebsch-Gordan
coeflicients).

For the measurements leading to Fig. 2, the atom number was varied by applying a delay
(in the range 8—12 ms, which is safely after the decay of magnetic field transients) before
the illumination of the atoms was switched on.

Calibration of the atom number The effective number of atoms which coupled to the
cavity (Neg) was measured from the light shift effect. In the dispersive limit, where A4 >
v, the atoms shift the cavity mode resonance proportional to their number. The laser drive,
resonant with the empty cavity mode, was set to w — w4 = Ay = -2 x 90 MHz detuning
from the atomic resonance, hence the corresponding total dispersive frequency shift was
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Negg?/ A4, that was determined directly from a transmission measurement. The effec-
tive number N includes the reduced coupling strength g away from the axis following a
Gaussian transverse mode profile (which effect is the same for the transverse drive con-
figuration), and the averaging over the mode function cos(kx) along the cavity axis.

Transverse drive  This laser was phase-locked to a reference laser with a variable detun-
ing from the atomic resonance, which we scanned in the frequency range +30 MHz. The
beam waist was 1 mm, the power in each direction was adjusted from 0.15 pW to 256 pW
by means of an acousto-optic modulator (AOM). Simultaneously, the F = 1 <> F' = 2 tran-
sition was also driven resonantly by a repumper laser, in order to keep the atoms in the
F =2 < F' =3 cycle. The beam waist of the repumper was 12 mm, the power in each
direction was 4 mW.

Detection The 805 nm component was removed by interference filters from the cavity
output beam which was then split by a polarizing beam splitter. Both the horizontal and
vertical polarization beams were coupled into a fibre, connected to a superconducting
nanowire single-photon detector (for the measurements shown in Fig. 2) or to a single
photon counter module (for the measurements shown in Fig. 3 and Fig. 4). The overall
detection efficiency was 7% and 50%, respectively, including the quantum efficiency and
the optical coupling into the detector. Although the superconducting nanowire single pho-
ton detector has a very high quantum efficiency (> 99%), the photon loss was significant
during the optical path from the cavity output to the detector including several fibre cou-
plings. Altogether the total efficiency was low (7%), therefore we decided to install a new
detection system with 65% quantum efficiency detectors but with very high optical cou-
pling (finally we reached 50% overall detection efficiency). We recorded few millisecond
long signals with time resolution 1 ps.

Shot-to-shot noise in the atom number In the experiment the averaging over many real-
izations may involve a random variation of the atom number. On taking this into account,
the Eq. (3) is modified and the peak intensity scaling on resonance gets a correction:

Smax(Apeak) =

4n2NA-1 4¢9%>  SN?
] (1 g ) 5)

k+y2 " w+y? N

where SN is the variance around the mean N. The correction is, however, small for the
sub-Poissonian atom number statistics in our MOT.
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