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Abbreviations

AOM acousto-optic modulator 21, 37, 38, 49, 63, 66

APD avalanche photodiode 31, 32

BCS bipolar current source 30

CQED cavity quantum electrodynamics 4–6, 19, 27, 48, 51, 55, 94
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DQPT dissipative quantum phase transition 7, 46, 47, 69–71, 75
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EIT electromagnetically induced transparency 50
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FALC Fast Analog Linewidth Control 21, 26

FM frequency modulation 21–23, 25

FORT far off-resonance trap 29

FPGA field-programmable gate array 26

FSR free spectral range 71
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GUI graphical user interface 26
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Introduction

If physicists were asked to name the birthdate of quantum theory, many would proba-

bly say 14 December 1900. This was the day when Planck published his explanation

of the spectrum of thermal blackbody radiation [1], in which he heuristically as-

sumed the quantum nature of light. This groundbreaking idea inspired a series of

conceptual developments [2–6], each contributing to the establishment of quantum

mechanics as a distinct branch of physics. A comprehensive quantum theory was

proposed by Heisenberg [7] and Schrödinger [8], unified and formalized later by

Dirac [9] and von Neumann [10]. This early history of quantum mechanics, briefly

outlined above, usually referred to as the first quantum revolution [11–13] had set

the stage for an optics and solid-state physics based on quantum mechanics, which

revealed the deeper nature of light and matter. It could be then exploited in various

applications, such as transistors, LEDs, lasers etc.

By today, in the era of the second quantum revolution, manipulating, and what

is more, designing and constructing individual quantum systems, such as atoms and

photons have become possible. Since the foundation of quantum mechanics, ad-

vances in spectroscopy and high-level manipulation of atoms had been achieved,

taking full advantage of the invention of lasers as well-controlled sources of light.

Optical pumping [14–16], magnetic trapping [17], laser cooling and trapping [18–

21] of atoms are techniques that have been developed since the second half of the

20th century, and are now routinely employed in experiments studying their interac-

tion with electromagnetic radiation. The primary objective extends beyond a deeper

understanding of light-matter interactions to the development of new technologies
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4 Introduction

based on the quantum nature of these systems. Key research directions include quan-

tum sensing [22], quantum metrology [23], quantum cryptography [24], quantum

communication [25] and quantum computing [26].

Various platforms are suitable for such investigations: beyond different neutral

atoms (mostly but not exclusively alkaline and alkaline earth metals) [27], ions

[28], nanoparticles [29] and artificial atoms [30] can be exposed to electromag-

netic radiation, which may take the form of microwave, infrared (IR), visible light or

ultraviolet (UV). For the latter three, continuous wave (cw) lasers play a key role, as

narrow-linewidth, coherent sources of radiation. Since their invention, laser technol-

ogy has seen remarkable advancements in both linewidth and stability [31], which

had an influence on the improvement of our ability of manipulating atomic mat-

ter. Lasers with linewidth well below that of the addressed atomic transitions are

available today, allowing for precise spectroscopic measurements and well-controlled

experiments.

The effect of electromagnetic radiation can be further enhanced and modified by

means of optical resonators. The research field of cavity quantum electrodynamics

(CQED), arising from the application of optical cavities, reveals a genuinely distinct

regime of light-matter interactions. In many cases of interest, matter is considered

as means of manipulating light: it can modify the properties of propagation (e.g. via

scattering or dispersion), the frequency (through Raman scattering, harmonic gener-

ation etc.), the polarization (through birefringence or dichroism) or the intensity (by

amplification or absorption). By contrast, as mentioned above, light can also be used

as a tool to manipulate matter. Cavity QED combines the two domains of phenom-

ena in a coupled dynamics of light and matter, in which they can mutually influence

each other. This interaction becomes particularly interesting when the characteris-

tic frequency of the coupling strength exceeds the dissipative rates. Aiming for this

so-called strong coupling regime, CQED, as a research field, is devoted to explore the

ultimate limits of non-linear atom-light interaction at the single atom, single photon

level.

Strong atom-cavity coupling can be achieved by either cavity design, as the cou-
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pling constant is determined by the geometry, or by making use of the collective

behaviour of multiple identical atoms interacting with the same cavity mode. When

an ensemble of atoms interacts with a mode of a resonator, each atom couples to the

mode, and its electronic state and spatial position influences the mode. This field,

in turn, acts back on the state and position of all the atoms. As a consequence, the

atoms communicate with each other via the cavity field, regardless of their spatial

separation. This approach also allows for tuning the collective coupling by adjusting

the number of atoms in the mode volume.

Cavity QED schemes typically involve few degrees of freedom that are relevant to

the atom-light interaction. The field is composed of a single or only a few modes,

and the interacting atoms can be represented by a small set of electronic states. In

these systems, cold atoms can be held in a magneto-optical trap (MOT), or loaded

into a cavity-sustained optical dipole trap, or be tightly confined in atom-chip based

magnetic traps [32]. Such physical realizations of CQED systems have a multitude of

applications in quantum information processing and quantum sensing: the cavity can

enable sensitive measurement of the atomic dynamics or state at spectroscopic sen-

sitivity below the standard quantum limit for coherent spin states [33, 34], real-time

monitoring of the spatial distribution [35] or the atom number in evaporative cool-

ing of atoms [36]. Superradiance decoherence caused by long-range Rydberg atom

pair interactions, too, has been demonstrated by using cavity-assisted measurements

[37]. Another prospect of strongly coupled atom-cavity systems is given by optical

lattice clocks, which are based on lasing on a narrow atomic transition within a res-

onator [38–41]. The cavity mode can have a dynamical role such that the hybrid

atom-photon excitations introduce new features to non-linear optics. For example, in

the case of multiple laser drives, the suppression of polariton excitation by quantum

interference [42] and the proof-of-principle of a multiplexed quantum memory based

on spin-waves [43] have been demonstrated.

Within this general perspective of strongly-coupled, interacting atom-light sys-

tem, CQED is an outstanding platform to study phase transitions in driven-dissipative

open quantum systems [44–46]. In its natural setting, a CQED system (see a generic
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Figure 1: A scheme of a generic CQED system. Atoms with natural linewidth γ are
positioned between the mirrors of an optical resonator, coupled to its mode with coupling
strength g. The cavity is driven coherently with angular frequency ω and drive amplitude
η. The cavity mode decays through one of the mirrors with rate κ towards a detector.
The evolution of the atom-cavity system takes place under the effect of the measurement
back action.

scheme in Fig. 1) is driven by external coherent sources, e.g. by laser or microwave

radiation, meanwhile the energy is dissipated through a number of channels leading

to a steady state resulting from a dynamical equilibrium between driving and loss

[47]. One of the dissipation channels is the coupling of the cavity field to external,

freely propagating, spatially well-defined modes, which can be efficiently collected

for detection. The outcoupled field then affords an indirect observable of the intra-

cavity steady state [48], in the sense of continuous weak quantum measurement.

Although the intracavity system size is small, the continuously measured outcoupled

field is a macroscopic observable, and it can be considered an order parameter of

the system and the steady states can be referred to as phases. Transitions between

phases can be affected by changing drive parameters (control parameters) and moni-

tored as a macroscopic change in the recorded signal. Such driven-dissipative phase

transitions have been discussed and experimentally studied recently in CQED [49–

56].

In 2016, the Quantum Optics Group of the HUN-REN Wigner Research Centre for

Physics started to build a CQED laboratory [57]. The aim was to realize quantum

technological applications based on atoms and photons. Today, the laboratory, called

Atom-photon interface, hosts experiments which are based on complex procedures

of routinely trapping and cooling rubidium atoms, coupling them to a single mode
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of a high-finesse optical resonator and observing feeble light signals by avalanche

photodiodes as well as by single photon counters. By the time I joined in 2021, the

group had already published experimental results [58, 59]. In the spirit of learning

by doing, I started to use, maintain and develop the system with my colleagues.

Now, I have the honour of being the first in the group to write a PhD thesis out of

measurements performed in the Atom-photon interface. As a pioneering work in

this sense, the present thesis (beyond its natural aim of summarizing my scientific

results) also provides a detailed description of the setup, the experimental methods

and the underlying principles, serving as a useful reference for both current and

future members of the group.

The thesis is structured in two parts. In Part I, both the theoretical and experi-

mental background of my work are reviewed. In Ch. 1, a semiclassical, mean-field

model is invoked to describe the interaction of multiple atoms and a single mode of

a high-finesse optical cavity. In Ch. 2, I describe the laboratory setup in detail: all the

employed lasers and cavities are enumerated with the connections between them,

elaborating on the stabilization techniques applied on them. After a brief descrip-

tion of the vacuum chamber and the detection system, the whole cold atom sample

preparation cycle is explained. Part II is devoted to the results of the three major

research projects I participated in during the three-year period spent in the Quantum

Optics Group. The first study (Ch. 3) reports on the observation of a finite-size real-

ization of a dissipative quantum phase transition (DQPT) between hyperfine ground

states of cold rubidium atoms interacting with a single mode of a high-finesse optical

cavity and an external laser field. The phase diagram of the phase transition is deter-

mined by means of a semi-classical mean-field model. The remarkable feature of the

phase diagram is that it predicts the coexistence of two solutions, each describing a

phase with atoms very close to their hyperfine ground states. Although the predicted

bistability region is rather limited in range for the control parameters, the bistability

effect has been confirmed by recording hysteresis curves. Enhancement of intensity

fluctuations well above the shot-noise level, accompanying the phase transition, is

also revealed and investigated. The second project (Ch. 4) is a theoretical study to
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extend the concept of phase transitions between ground states: whether it is possible

to enlarge the bistability domain and achieve phases which include pure quantum

states in the thermodynamic limit? The initial idea was to consider the case when

instead of the external laser field, another driven cavity mode excites the atoms.

This configuration is not available in the existing experimental setup, because the

free spectral range of our cavity is larger than the hyperfine splitting. However, we

could study this system on the basis of the mean-field model, constructed for the first

study, extending it with the dynamical variable of the new cavity mode, and another

excited state of the atoms coupled to it. A non-trivial phase diagram is obtained,

and the finite-size scaling of the phase transition towards the thermodynamic limit

shows that pure quantum states represent the coexisting phases and, ultimately, the

bistability sets in the full range of the ratio of the control parameters. The third and

last work in this thesis (Ch. 5) demonstrates strong collective coupling between a

subradiant atom array and undriven modes of a high-finesse optical cavity. The vac-

uum Rabi splitting spectrum, an evidence of the strong collective coupling, predicted

by the simple linear polarizability model of the atoms, is measured in a specific ge-

ometry. The atoms, placed in an optical lattice incommensurate with the resonant

wavelength, and hence forming a subradiant array, are driven by a closely resonant

external laser field in a direction perpendicular to the cavity axis. The linearity and

the subradiance of the scattering is confirmed by scaling with the driving power and

the number of atoms, respectively. Polarization rotation, exceeding the range of the

linear polarizability model, is also observed and accounted for. The results presented

in this thesis were published in [T1, T2, T3], which form the basis of the correspond-

ing chapters, and the theses formulated from page 94.



Part I

Prerequisites





Chapter 1

Theoretical background

1.1 Interaction of atoms with a single optical mode

In this section, a semiclassical, mean-field model is constructed for the case of many

atoms interacting with a single mode of a high-finesse optical cavity. The equations

of motion are derived for the atomic polarization and population, as well as for the

electromagnetic field amplitude. These Maxwell–Bloch equations (and their exten-

sions with additional modes, fields and atomic levels) are used for modelling the

experiments in Ch. 3 and Ch. 5, and for deriving the main results of Ch. 4.

Let us consider N identical atoms, placed at the positions x(i), (i = 1, . . . , N)

along the axis of a high-finesse linear optical resonator with resonance at angular

frequency ωC (see Fig. 1.1). The cavity is driven by a laser field with amplitude η̃,

and angular frequency ω, close enough to the resonance frequency ωA = (Ee − Eg) /ℏ

of an atomic transition, g ↔ e, so that we can neglect all other levels. Since the atoms

are much smaller than the optical wavelengths (248 pm and 780 nm for the radius of

the Rb atom and the wavelength of its D2 line, respectively), their interaction with

the electromagnetic field can be described in dipole approximation, meaning that the

atoms are considered to be pointlike objects with a dipole moment

d(i) = deg

(
σ(i) + σ(i)†) , (1.1)

11



12 Theoretical background

where σ(i) ≡
∣∣g(i)〉 〈e(i)∣∣ is the lowering operator, and the matrix element of the dipole

moment deg is chosen to be real. The interaction between a dipole moment and a

radiation field is represented by the Hamiltonian

H
(i)
dip = −d(i)D

ε0
, (1.2)

where D is the quantized electric displacement vector. Quantizing D, rather than

E, is chosen to eliminate the A-square term from the Hamiltonian, which would

couple the electromagnetic modes and challenge the validity of the single mode ap-

proximation. In this picture, this is performed consistently and without additional

approximations [60, 61]. The quantized electric displacement field in a single mode

of the optical resonator is given by

D (x, t) = iϵ
√

ε0ωC

2ℏV cos (kx)
(
a (t)− a† (t)

)
, (1.3)

where ϵ is the polarization of the field, V is the volume of the cavity mode, and

the time dependence is carried by the creation and annihilation operators (a†, a) in

Heisenberg picture.

Figure 1.1: Scheme of two-level atoms interacting with a cavity mode.

The Hamiltonian of the total system consists of terms describing the free cavity

mode and the free atoms, the interaction between them (1.2), and the driving of the

cavity. Substituting the dipole moment (1.1) and the electric displacement field (1.3)

in the expression (1.2), in the frame rotating with ω, the total Hamiltonian takes the

form:
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H/ℏ = −∆Ca
†a−∆A

N∑
i=1

σ(i)†σ(i) + i

N∑
i=1

g̃(i)
(
a†σ(i) − aσ(i)†)+ iη̃

(
a† − a

)
, (1.4)

in the order given above, where ∆C ≡ ω − ωC, ∆A ≡ ω − ωA are detunings of the

laser from the cavity and from the atoms, respectively, g̃(i) =
√

ωC

2ϵ0ℏV deg cos
(
kx(i)

)
is

the coupling coefficient between the i-th atom and the cavity mode (with deg being

the projection of the matrix element of the dipole moment to the field polarization,

and k = ωC/c the wavenumber of the cavity mode). The terms aσ(i) and a†σ(i)† have

been omitted according to the rotating wave approximation (RWA), as they rotate at

ωC + ωA ≈ 2ω, and average out during the time scale of the atom-cavity interaction,

determined by the coupling coefficient, having the order of magnitude of several

MHz.

The conservative dynamics of an operator O can be straightforwardly obtained in

terms of Heisenberg equations of motion:

Ȯ = − i

ℏ
[O, H] . (1.5)

The dissipation of the cavity mode amplitude with a rate κ, the decay of the ex-

cited state with the spontaneous emission rate γ can be taken into account in the

Heisenberg–Langevin equations of motions [62] with the associated noise described

by noise operators ξ, ζ(i), ϑ(i)
e , ϑ(i)

g , specifically:

ȧ = (i∆C − κ) a+
N∑
i=1

g̃(i)σ(i) + η̃ + ξ̃

σ̇(i) = (i∆A − γ)σ(i) + 2g̃(i)aσ(i)
z + ζ(i),

ṅ(i)
e = −2γn(i)

e − g̃(i)
(
σ(i)† a+ a† σ(i)

)
+ ϑ(i)

e ,

ṅ(i)
g = 2γn(i)

e + g̃(i)
(
σ(i)† a+ a† σ(i)

)
+ ϑ(i)

g ,

(1.6)

where we introduced the population operators n
(i)
e = σ(i)†σ(i), n

(i)
g = σ(i)σ(i)†. Note
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that these are not independent, as for a closed two-level atom n
(i)
e + n

(i)
g = 1 holds.

The mean value of the noise operators is zero, and they are defined by diffusion

coefficients:

〈
ξ̃(t1) ξ̃

†(t2)
〉
= 2κ δ(t1 − t2),〈

ζ(i)(t1) ζ
(j)†(t2)

〉
= 2γ δij δ(t1 − t2),〈

ϑ(i)
e (t1) ζ

(j)† (t2)
〉
= 2γ

〈
σ(i)†〉 δijδ (t1 − t2) ,〈

ϑ(i)
g (t1) ζ

(j)† (t2)
〉
= −2γ

〈
σ(i)†〉 δijδ (t1 − t2) ,〈

ϑ(i)
e (t1)ϑ

(j)
e (t2)

〉
= 2γ

〈
n(i)
e

〉
δijδ (t1 − t2) ,〈

ϑ(i)
g (t1)ϑ

(j)
e (t2)

〉
= −2γ

〈
n(i)
e

〉
δijδ (t1 − t2) ,〈

ϑ(i)
g (t1)ϑ

(j)
g (t2)

〉
= 2γ

〈
n(i)
e

〉
δijδ (t1 − t2) .

(1.7)

All the other first-order correlations vanish. This set of correlation functions can be

derived either from a microscopic model of the dissipative processes, or simply by

using the generalized fluctuation-dissipation theorem [62].

Now, if we assume that the atoms are equally coupled to the mode, that is g̃(i) ≡ g̃

for all i, the coupling coefficient can be factored out, and a closed set of equations

can be obtained for the collective atomic operators Σ =
∑N

i=1 σ
(i) and Ne =

∑N
i=1 n

(i)
e ,

Ng =
∑N

i=1 n
(i)
g , given as:

ȧ = (i∆C − κ) a+ g̃Σ + η̃ + ξ̃,

Σ̇ = (i∆A − γ) Σ + g̃ (Ne −Ng) a+N Ξ,

Ṅe = −2γNe − g̃
(
Σ†a+ a†Σ

)
+N Θe,

Ṅg = 2γNe + g̃
(
Σ†a+ a†Σ

)
+N Θg,

(1.8)

where the noise terms are simply the sum of the individual atomic noise terms, e.g.,

N Ξ =
∑N

i=1 ζ
(i), keeping the atom number as a prefactor for later convenience. The

use of collective atomic operators is a crucial assumption to close the set of equations,
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which is exact e.g. for atoms in the antinodes of the mode, in an optical dipole lattice.

This approximation is the starting point for a mean-field description of a randomly

distributed ensemble of atoms when their collective behaviour is considered, such

as in the experiment discussed in Ch. 3. By contrast, spatially dependent coupling

coefficients must be maintained when the different positions of the individual atoms

play a significant role in the dynamics, like in the case studied in Ch. 5.

The operator products in the above equations (e.g. the product Σ†a in the evo-

lution equation for the population Ne) make this problem analytically intractable.

We resort therefore to the standard mean field approach, linearizing the above op-

erator equations around the mean values. For later convenience, let us introduce

scaled variables in the form of a sum of the scaled mean-field and scaled fluctuation

variables, i.e., a =
√
N(α + δa), Σ = N(m + δΣ), Ne = N (ne + δNe) and Ng =

= N (ng + δNg). With a suitable scaling of the parameters g =
√
Ng̃ and η = η̃/

√
N ,

the mean field variables obey the Maxwell–Bloch equations

α̇ = (i∆C − κ)α + g m+ η,

ṁ = (i∆A − γ)m+ g (ne − ng) α,

ṅe = −2γne − g (m∗α + α∗m) ,

ṅg = 2γne + g (m∗α + α∗m) .

(1.9)

The linearized dynamical equations for the fluctuations read

δ̇a = (i∆C − κ) δa+ g δΣ + ξ,

˙δΣ = (i∆A − γ) δΣ + g ( [δNe − δNg] α + [ne − ng] δa) + Ξ,

˙δNe = −2γδNe − 2gRe
(
m∗δa+ αδΣ†)+Θe,

˙δNg = 2γδNe + 2gRe
(
m∗δa+ αδΣ†)+Θg,

(1.10)

where ξ = ξ̃/
√
N . These are linear equations with the noise terms as driving. The
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non-vanishing noise terms are obtained straightforwardly from their definition,

〈
ξ(t1) ξ

†(t2)
〉
=

2κ

N
δ(t1 − t2),〈

Ξ(t1) Ξ
†(t2)

〉
=

2γ

N2
δ(t1 − t2),〈

Θe (t1) Ξ
† (t2)

〉
=

2γ

N2

〈
Σ†〉 δ (t1 − t2) ,〈

Θg (t1) Ξ
† (t2)

〉
= − 2γ

N2

〈
Σ†〉 δ (t1 − t2) ,

⟨Θe (t1)Θe (t2)⟩ =
2γ

N2
⟨Ne⟩ δ (t1 − t2)

⟨Θg (t1)Θe (t2)⟩ = − 2γ

N2
⟨Ne⟩ δ (t1 − t2) ,

⟨Θg (t1)Θg (t2)⟩ =
2γ

N2
⟨Ne⟩ δ (t1 − t2) ,

(1.11)

All the above diffusion coefficients vanish in the limit of large N .

The model above can be straightforwardly extended with other atomic levels,

drives and cavity modes. Such extensions are used throughout the thesis. In Ch. 3,

Eq. (3.6), another ground state |f⟩ and an effective drive, λ from |g⟩ to |f⟩ are in-

troduced. In Ch. 4, Eq. (4.1), there are two excited and two ground states with two

driven cavity modes. Finally, in Ch. 5, instead of the cavity, the atoms are driven, and

two orthogonally polarized cavity modes are considered, however, in this problem,

the mean-field equations will not be used.



Chapter 2

Atom-photon interface

In this chapter, I provide a detailed description of the laboratory setup used for the

measurements that form the basis of my experimental results presented in this work.

In the next section, I present the lasers and optical resonators employed in the setup,

with emphasis on their frequency stabilization and synchronization. In Sec. 2.2, I

briefly describe the vacuum chamber, in which the interaction between the cold 87Rb

atoms and the photons takes place. Sec. 2.3 discusses the properties of the uti-

lized detectors. In the final section of this chapter, I outline the typical experimental

protocol.

2.1 Frequency stabilized lasers and cavities

Quantum optics experiments rely on frequency stabilized, continuous wave (cw)

laser sources. Given that the D2 line of the 87Rb has the linewidth (HWHM) of

γ = 2π · 3MHz [63], for precise measurements, the linewidth of the laser sources

needs to be well below that. It is also important that the frequencies of these laser

sources are fixed in the long term against drifts induced by a variety of environmen-

tal effects (temperature, pressure, humidity, etc.), and that they are synchronized to

each other, and ultimately, to an atomic resonance as reference. In this section, we

will discuss the lock chain depicted in Fig. 2.1 in detail, and see, how different lock-

17
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ing and linewidth-narrowing techniques were utilized to reach our goal: frequency

stabilized and synchronized lasers and optical resonators. The frequencies of the

lasers are shown on the rubidium level scheme for comparison in Fig. 2.2. Before

the detailed description of the lasers and cavities, here is a short summary of their

purpose:

1. Reference laser: A laser locked to a rubidium reference, used as frequency stan-

dard for other lasers, furthermore, for optical pumping and absorption imaging.

2. Repumper laser: Whenever other lasers can pump the atoms from the F = 2

ground state to F = 1, this laser is used to compensate by pumping the atoms

back.

3. MOT laser: A laser with a tapered amplifier, driving the F = 2 → F ′ = 3 cooling

transition, necessary for the magneto-optical trap.

4. ‘Science’ laser: A laser with tunable frequency, used to manipulate the atoms

in the cavity. One part of its light drives the cavity, the other one drives the

atoms directly, from up and down, in a direction perpendicular to the cavity

axis (transverse drive).

5. ‘Transfer’ cavity: A high-finesse optical resonator, used to transfer the frequency

stability of the reference laser to the ‘science’ cavity.

6. ‘Science’ cavity: A high-finesse optical resonator in the vacuum chamber where

the atom-light interaction takes place.

7. ‘805’ laser: A laser with a wavelength of 805 nm used to stabilize the ‘science’

cavity and to realize an intra-cavity optical dipole lattice.

2.1.1 Reference laser

Our reference laser (blue beamline in Fig. 2.1) is a Toptica external-cavity diode

laser (ECDL). One portion of the beam is sent through an electro-optic modulator



2.1 Frequency stabilized lasers and cavities 19

12 MHz

6.8 GHz

φ-f

f / V

f / V

φ-f

frequency generator

frequency mixer

frequency-voltage
converter

phase-frequency
detector

to transverse drive

to MOT

to repump

science cavity

transfer cavity

absorption imaging

to optical pumping

quarter-wave plate

half-wave plate

polarizer

neutral density filter

longpass filter

shortpass filter

vacuum
chamber

photodetectors

polarizing
beamsplitter

80 MHz

saturation 
absorption 
spectroscopy

RbReference

15 MHz

EOM

MOT

Repumper

Science AOM

≤ 22 GHz

EOM805

≤ 24 GHz

FALC

Pieso Controller

FALC

Figure 2.1: Scheme of the frequency stabilized and synchronized laser sources of our
CQED laboratory [64]. Laser beampaths marked with dashed lines are detailed in
Fig. 2.7.
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Figure 2.2: Hyperfine structure of the D2 line of 87Rb [63] with the frequencies of the
lasers and the science cavity. Landé g-factors, gF and Zeeman splittings in MHz/G are
also given.
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(EOM): a device made of a crystal whose refraction index is affected by the strength

of the local electric field. The EOM is driven by a radio frequency (RF) signal of

15MHz, which is translated into the phase modulation of the transmitted light. The

modulated light is utilized to perform frequency modulation (FM) saturated absorp-

tion spectroscopy of a room temperature rubidium cell, in order to lock the laser

to the crossover resonance of the F = 2 → F ′ = 3 and F = 2 → F ′ = 2 transitions

of the D2 line of 87Rb (see Fig. 2.2). The error signal from the FM spectroscopy is

fed back into the piezo voltage, as well as onto the diode current, via a Toptica Fast

Analog Linewidth Control (FALC) Pro module, a high-speed linear control amplifier.

With these techniques, the linewidth of the reference laser can be reduced down to

∼100 kHz (HWHM).

The reference light is utilized in different ways: the unmodulated part is divided

further to give reference to other lasers for frequency stabilization, and to use it

for absorption imaging and optical pumping. In order to achieve resonance with

the F = 2 → F ′ = 2 transition for imaging or the F = 2 → F ′ = 3 transition for op-

tical pumping, the laser frequency is shifted by −133MHz or 133MHz, respectively,

by means of an acousto-optic modulator (AOM) in each corresponding beampath.

In this device, an acoustic wave is propagated through a crystal, modulating its re-

fraction index. The transmitted light is diffracted from the periodic structure of the

refraction index profile of the crystal with a frequency shifted by multiples of the

acoustic frequency, according to the diffraction order [65]. It is also utilized for fast

(∼ ns) switching, as the optical power gets transferred between spatially separated

diffraction orders when the acoustic modulation is switched on and off.

Saturated absorption spectroscopy

Saturated absorption spectroscopy is a method allowing for resolving atomic reso-

nances below the Doppler limit [66]. To this end, a pump-probe scheme is utilized

(see top right in Fig. 2.1), where the probe is just the reflection of the pump, reduced

in intensity by a neutral density filter. As the frequency of the laser is being swept,

the pump beam addresses atoms of different velocity classes (red/blue detuned pump
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excites atoms moving towards/away from the laser source). These classes of atoms

are, in general, distinct for the pump and the probe. When the frequency is at the

atomic resonance, those atoms are excited whose velocity is perpendicular to the

beam propagation, which are the same atoms for both beams. In this case, the pump

saturates these atoms, so that they become transparent for the probe. Since these

atoms have a well-defined velocity (0 in the direction of illumination), no Doppler

broadening takes place. If there are two resonances within the Doppler broadened

spectrum (e.g. ω1 < ω2) with a shared ground state, a third absorption peak will

appear in the saturated absorption spectrum, right in the middle, at (ω0 = ω1+ω2)/2

(crossover frequency). This can be understood as follows: at the crossover frequency,

the pump will saturate transition 1 (2) of the atoms moving away from (towards) the

source with velocity v = c|ω1 − ω0|/ω0, while the probe will address the other tran-

sition of the same atoms. Atoms in these two velocity classes will be less likely to

be found in their ground state, so they will become transparent for the probe. In

our case, we use the transitions F = 2 → F ′ = 3 and F = 2 → F ′ = 2, and the laser

is locked to their crossover resonance.

Frequency modulation spectroscopy

A resonance peak is not ideal for a feedback error signal due to various reasons. At

the top of the peak, a frequency mismatch from resonance in either direction results

in the same change of the signal, and hence, the direction of the deviation cannot be

determined and compensated. One side of the peak could be used, given that it is

monotonous with respect to the frequency difference. The difficulty, aside from the

fact that the side of the peak is not at the exact resonance, is that laser intensity noise

and background light add fluctuations to the signal and can also lead to a drift of the

working point.

Frequency modulation (FM) spectroscopy provides a solution to this problem

[67]. According to the Kramers–Kronig relation, the dispersion of a medium changes

sign at the extremal value of its absorption. This implies that a nearly resonant light

(i.e. one with frequency within the linewidth of the absorption line), when propagat-
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ing through the medium, gains a phase shift which is proportional to the detuning of

the light from the resonance. As this is the case, if we could measure the phase of the

light instead of its intensity, we would obtain a zero-crossing at the exact resonance,

undisturbed by any intensity fluctuations, providing the desired error signal.

Figure 2.3: Intensity and phase shift (a) of a light transmitted through a resonant
medium, and the error signal (b) provided by FM spectroscopy (simulated data). The
error signal provides a steep line at resonance.

In FM spectroscopy, the light is phase-modulated with an RF signal, whose fre-

quency is larger than the linewidth of the absorption peak. The phase modulation

can be performed by an EOM or by driving the diode current with the RF signal.

It generates sidebands symmetrically to the carrier, at a distance in frequency equal

to that of the modulation. The interfering signal of the transmitted carrier and the

two sidebands, which contains harmonics of the modulation frequency, is detected

by a fast photodiode. It can be shown (see e.g. [67]) that the amplitude of one

of the quadratures oscillating with the modulation frequency is proportional to the

phase shift of the carrier, thus to the frequency mismatch between the laser and the

resonance line. This amplitude can be extracted from the photodiode output by de-

modulation, that is mixing it with the RF signal used for the phase modulation, with

an appropriate phase. The resulting DC signal is proportional to the frequency devi-

ation, so that it can be used as an error signal, e.g. in a PID control loop, to lock the

laser.
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2.1.2 MOT laser

The laser used for magneto-optical trap (MOT) and polarization gradient cooling

(referred to simply as MOT laser, orange beamline in Fig. 2.1) is a Toptica tapered

amplifier (TA) Pro. Its seed beam is split inside the box: the main part is injected into

a tapered amplifier (TA), and the amplified beam is used for experimental purposes

(see in Sec. 2.4); the other, smaller portion serves to lock the frequency to that of

the reference. The two beams are interfered in a fibre and the beat signal is detected

by a fast photodiode. The error signal is produced from the photodiode signal by

a frequency-to-voltage converter, an electronic device, generating a voltage output,

proportional to the frequency of the sinusoidal input signal. Finally, the laser is

locked 17MHz below the F = 2 → F ′ = 3 transition.

2.1.3 Repumper

The repumper (green beamline in Fig. 2.1) is a home-made laser, which is based on a

distributed-feedback (DFB) laser diode. Its beat signal with the reference is detected

with a fast photodiode, whose signal is compared to a 6.8GHz local oscillator in a

phase-frequency detector. This device outputs a voltage with a sign corresponding to

the detuning if there is a mismatch between the beat and the local oscillator, and

it is sensitive to the phase difference if the frequencies match. Utilizing this tool,

a phase-locked loop (PLL) can be realized between two lasers by feeding back the

error signal on the current of the laser diode. As a result, the repumper is locked to

the reference with sub-Hz precision, having a frequency resonant with the transition

F = 1 → F ′ = 2.

2.1.4 ‘Science’ laser

The laser that we used to manipulate the atoms in the cavity, called ‘science’ laser

(red beamline in Fig. 2.1), was initially a Toptica ECDL, beatlocked to the reference

with a frequency-to-voltage converter, the same way as we did with the MOT laser.
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Later (after the experiments discussed in Ch. 3), in order to reach larger intensities,

it was replaced by a Toptica TA Pro, which we phase-locked to the reference in a

similar way as it is done in the case of the repumper.

The beam is split on a polarizing beamsplitter, so that one part can drive the

science cavity mode along the cavity axis through one of the cavity mirrors on careful

optimization of spatial mode matching, the other can drive the atoms from a direction

perpendicular to the cavity axis (transverse drive).

2.1.5 ‘Transfer’ cavity

A temperature stabilized high-finesse cavity (see Table 2.1 for parameters) in an invar

tube is utilized to transfer the frequency stability of the reference laser to the science

cavity at a wavelength far from the ones involved in the light-atom interaction effects

to be studied. The length of the cavity is adjustable by means of a piezo crystal, fixed

on one of the mirrors. Voltage control and feedback on the piezo is governed by a

specific device, developed together with our group.

linewidth (HWHM) κ/2π 0.36MHz
finesse F/π 666
length d 5 cm
free spectral range νFSR 3GHz
mode waist w0 146 µm

Table 2.1: Transfer cavity parameters. We use LaserOptik HR mirrors of 10mm diam-
eter. The reflectivity of both mirrors is R = 0.9985, and is closely constant over a range
of ∼50 nm around 790 nm, so the cavity parameters are the same for the two modes at
780 nm and 805 nm that we use.

The reference light is coupled into the cavity after passing a polarizing beamsplit-

ter (PBS), using its transmitting path, and a λ/4 plate, with the slow axis oriented

at 45◦ with respect to the polarization plane. This way the polarization of the light

reflected from the input mirror is rotated by 90◦, and gets reflected on the PBS. This

reflected light is used to lock the cavity to the reference with the Pound–Drever–Hall

(PDH) technique, a locking method based on FM spectroscopy, discussed above.

There is a feedback loop in the opposite direction as well: the error signal of the
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transfer cavity is fed back to the diode current of the reference laser using the same

FALC device as for the rubidium spectroscopy. This way, the transfer cavity mode

serves as a narrow-line etalon to reduce the linewidth of the reference laser, down

below 100 kHz (HWHM).

Piezo controller device

A low-noise piezo controller, called ‘Quantum piezo controller’ was developed to-

gether with our group by R&D Ultrafast Lasers Ltd. One device is capable of handling

two control loops, each corresponding to one piezo actuator attached to a cavity.

Each loop has an input channel for the error signal, a high-voltage output channel for

setting the workpoint (−20V to +100V with a resolution of ∼3.33mV), and a low-

voltage output channel for the control signal around the workpoint (−5V to +5V

with a resolution of ∼0.17mV). Additionally, there are two monitor channels for

tracing both the input and the output signals.

The control is implemented by means of field-programmable gate arrays (FPGAs),

handled by a front-end GUI on a computer, connected to the controller via ethernet.

The workpoint (i.e. the cavity resonance) can be found by scanning the length of the

cavity (in terms of the voltage on the piezo actuator), and looking for the PDH signal

in the input. When the workpoint is selected, the voltage range is reduced in an

automated operation by means of scans of smaller and smaller amplitudes. After this

zooming process, when the scanning range is constricted to the actual error signal

(the slope corresponding to the resonance), the lock can be switched on.

Each input signal is split into two paths: one goes to a fast feedback loop, realized

by a PID controller, and the other to a slow one, realized by an integrator. Both parts

are filtered by digital filters, in order to properly separate the fast and slow part (by

means of high-pass and low-pass filters), and to rule out the mechanical resonance

of the cavity holder (by means of a notch filter). The transfer function of these filters,

having the form

H(z) =
b2z

−2 + b1z
−1 + b0

a2z−2 + a1z−1 + 1
, (2.1)
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can be designed and implemented by defining the constants ai and bi between +10

and −10, with a precision of 7 decimal digits. The maximum sampling frequency

of the filters is 1MHz. The outputs of the fast and the slow feedback are summed,

this will be the control signal on the low-voltage output. If the voltage on this output

reaches the edge of its working range, the workpoint is shifted, and the control signal

is rewound to the opposite edge of the interval. This is done in a harmonized way, so

that the two changes in the voltage with opposite signs cancel each other.

During my work, my task was to test this device, to optimize the settings (e.g. PID

and digital filter parameters) with respect to lock noise and stability. I was in contact

with the developer regarding occasional bugs in the software and implementing new

features (e.g. the above-mentioned smooth compensation of the low-voltage output

with the high-voltage one).

2.1.6 ‘Science’ cavity

Another high-finesse resonator (see Table 2.2 for parameters), used for the CQED

experiments, is placed inside the vacuum chamber. This is what we call ‘science’

cavity. It can be driven by the ‘science’ light, and locked by using the same electronic

control device as that for the transfer cavity. The locking principle is presented in the

next subsection.

linewidth (HWHM) κ/2π 3MHz
finesse F/π 1430
length d 1.5 cm
free spectral range νFSR 10GHz
mode waist w0 127 µm
atom-mode coupling g/2π 0.33MHz

Table 2.2: Science cavity parameters. The arrangement of the mirrors is planoconcave,
so that the mode waist is situated on the planar mirror that we use for incoupling.
We use LaserOptik HR mirrors of 5mm diameter. The reflectivity of both mirrors is
R = 0.9993, and is closely constant over a range of ∼ 50 nm around 790 nm, so the
cavity parameters are the same for the two modes at 780 nm and 805 nm that we use.
The single-atom coupling constant g was calculated using the cavity mode volume: V =
= π w2

0 d/4 ≈ 0.2mm3.
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2.1.7 ‘805’ laser

A Toptica ECDL similar to the reference is used for locking the science cavity (purple

beamline in Fig. 2.1). Its wavelength must be very far from any atomic resonances so

that the lock laser does not influence the atom-cavity system under study, therefore,

it is tuned to 805 nm. In order to rule out the broadband amplified spontaneous

emission coming from the laser diode, which contains light at 780 nm resonant with

the atoms, a long-pass filter is placed in the beampath just before it is combined with

the science light. In the following, this laser is referred to simply as ‘805 laser’.

Locking a resonator near to a specific frequency with a laser detuned from that

by 25 nm is a highly non-trivial task. The principle is illustrated in Fig. 2.4. One of

the modes of the transfer cavity (upper comb in the figure) is locked to the reference,

representing the atomic resonance, from which a certain detuning, δ = ωC − ωref

(typically in the MHz to GHz range) is to be set for one of the science cavity modes

(lower comb). Sidebands are generated on a portion of the 805 light by means of a

fibre-EOM driven by an RF signal with adjustable frequency. One of the sidebands

of the 805 laser is locked to a mode of the transfer cavity. If ωC is set to the desired

value, the carrier of the 805 light, which is to be used for locking the science cavity,

misses the closest cavity mode by the amount of ∆. This mismatch, which can be at

maximum half of the free spectral range of the transfer cavity (i.e. 1.5GHz, see Table

2.1), can be bridged by the tunable RF signal that generates the sidebands on the

805 laser. If a red (blue) sideband was locked to the transfer cavity, when changing

the modulation frequency, the frequency of the carrier is also changing in the same

(opposite) direction.

The fixed sidebands for the PDH lock to the transfer cavity are generated by a

12MHz AC modulation on the diode current. The fibre-EOM is driven by a Rohde &

Schwarz Vector Signal Generator, allowing for creating the additional sidebands for

the ‘mode matching’ at arbitrary distance from the carrier up to 20GHz.

It is important to note, that the lock scheme could be the other way around: one

could lock the carrier of the 805 light to the transfer cavity, and lock the science
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Figure 2.4: Principle of locking the science cavity.

cavity to one of the sidebands. Initially, the lock system used this latter, however, it

was later realized that the higher intensity of the 805 light in the carrier injected to

the science cavity can be used to create an intracavity far off-resonance trap (FORT)

for the atoms in the cavity mode at the wavelength around 805 nm [F1].

2.2 Rubidium-87 atoms in the vacuum chamber

Rubidium-87 atoms are collected, trapped and cooled in a vacuum chamber. A pres-

sure of ∼ 7 · 10−11 mbar is attained in it by applying various techniques consecutively:

baking out the chamber to evaporate contaminants, using a scroll pump to eliminate

them and create pre-vacuum for the turbomulecular pump, which can remove small

particles, utilizing an ion pump to capture residual molecules through ionization,

and finally, a titanium sublimation pump to adsorb any remnant particles by coating
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the interior of the chamber with titanium. Once the ultra-high vacuum (UHV) is

achieved, it is maintained by the latter two methods.

Figure 2.5: Vacuum chamber surrounded by compensating coils (red and blue). Only
the cavity drive (red, entering at the front flange) and the MOT beams (orange) are
shown here. More detailed internal geometry of the chamber is shown in Fig. 2.6.

Two pairs of identical cylindrical copper coils are placed in the chamber, with

their axis aligned. We refer to the coils with the names upper MOT+, upper MOT,

lower MOT, lower MOT+, in top-down order. There is a separation of 34mm between

the upper MOT coil and the lower MOT coil. The centre of symmetry defines the centre

of the MOT. The chamber is surrounded by two pairs of rectangular coils (red and

blue in Fig. 2.5), compensating the background magnetic field (e.g. that of the

Earth) together with the intra-vacuo coils, used for MOT and magnetic trapping. All

the coils are driven by HighFinesse bipolar current source (BCS) devices.

A rubidium dispenser is placed in the chamber with its opening oriented towards

the centre of the MOT. When current (∼3.8A) flows through the dispenser, Rb vapour

is released due to the heat, and the atoms are captured by the MOT.



2.3 Detection 31

Figure 2.6: Schematic drawing and photo of the insight to the vacuum chamber. The
viewpoint in the drawing corresponds to the right side of Fig. 2.5, while the photo shows
the front view. Laser beam colours match those used in Fig. 2.1. Further details of the
beamline alignment are shown in Fig. 2.7. In the photo, upper MOT, lower MOT and
lower MOT+ coils are visible, with the science cavity between them. The coils on the right
side of the photo are not used in the experiments discussed in present thesis.

2.3 Detection

Before detection, the 805 nm part of the cavity output is filtered, utilizing shortpass

and resonant optical filters, and split by a polarizing beamsplitter. The cavity out-

put can be detected with an avalanche photodiode (APD) (Thorlabs APD410A/M),

avalanche single photon counter (SPC) (Laser Components COUNT-500N-FC) mod-

ules or a superconducting nanowire single photon detector (SNSPD) (ID Quantique

ID218). The detectors are compared in Table 2.3. The overall detection efficiency

in our setup was significantly lower than the quantum efficiency of the detectors

themselves. Additional fibre couplings and filtering decreased the signal intensity

by a factor of 10 for the SNSPD. Later, when the SPC modules were implemented,

I managed to optimize the setup and improve the cavity-to-fibre coupling, reducing

the overall loss to 20%. With the upgraded configuration, the capabilities of the SPC

modules were proved to be sufficient for our experiments, while having the advan-

tage of compactness and working without cryogenic cooling.
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SNSPD SPC APD
quantum efficiency at 780 nm ∼80–95% ∼60% -
saturation 30Mcps 20Mcps 1.5 µW
time resolution ∼30 ps ∼1 ns 50 ns
dead time 30 ns 45 ns -
dark count <1 cps ∼70 cps -
operating temperature <1K ≲300K ∼300K

Table 2.3: Comparison of the detectors employed in our laboratory. The saturation
value for the single photon detectors are given in ‘megacounts per second’, which is in
the order of magnitude of picowatt at wavelength 780 nm. The operating temperature
of the diode inside the SPC module is somewhat lower than room temperature, achieved
by thermoelectric cooling.

The single photon detectors are connected to an ID900 Time Controller, a time

tagger capable of ps resolution, allowing for precise time course and photon correla-

tion measurements. During my work, my task was to set up the optical connection

to the single photon detectors, and to implement the time tagger into the software

control of the experiment. Given that the single photon counters are very sensitive

devices, the background light, scattering into the fibres via the incouplers or infiltrat-

ing through their cladding, could produce a noise comparable to the measured signal.

By careful shielding of the coupling setups and the fibres themselves, we could re-

duce this noise down to the intrinsic dark count rate of the detectors. We made test

measurements, and improved further the signal-to-noise ratio by spectral filtering of

the cavity output and increasing the efficiency of its coupling into the optical fibres

(up to 80%).

2.4 Experimental protocol

Each experiment begins with a cold atom sample preparation cycle, which varies only

in its specific parameters (e.g. time duration of steps). In this section, I will follow the

protocol step by step, describing the corresponding configuration (see Fig. 2.6 for the

interior of the chamber and Fig. 2.7 for the geometry of the optical alignment) and

outlining the actions to be taken. The protocol is illustrated by means of ‘timelines’:
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these plots show the values to which the devices are set, as functions of time.

The whole experimental sequence is controlled by an ADwin-Pro II real-time pro-

cess controller, that allows for timing digital and analogue output signals with a

precision of 500 ns, and acquire analogue input signals with a resolution down to

250 ns. For defining experimental sequences (and generating the timelines), we use

a Python front-end developed in our group.

Figure 2.7: Beamline alignment and control scheme. Dashed lines are the continuation
of those in Fig. 2.1. Transverse drive is divided and reunited before joining the optical
pumping beam to allow for adjustment of the two directions independently of the MOT
beams.

2.4.1 Magneto-optical trapping

Magneto-optical trapping is the standard method to produce cold atomic sample with

high density and large atom numbers [68]. In the usual configuration the atoms

are illuminated by three counter-propagating σ+ − σ− pairs of red detuned laser
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beams, while a quadrupole magnetic field is present, centred at the intersection of

the optical beams. The principle of operation lies in the spatially varying Zeeman

shift on the atoms, caused by the inhomogeneous magnetic field. This leads to a

spatially dependent radiation pressure force, induced by the laser fields, restoring

the atoms towards the trap centre. At the same time, velocity dependence arises

from the Doppler effect, and leads to motional damping (Doppler cooling). As a

result, this trap simultaneously confines spatially and cools the atoms.

The quadrupole magnetic field, needed for the trap, is generated by the upper

and lower MOT coils, driven in anti-Helmholtz configuration, by −0.98A and −1A,

respectively. Six independently adjustable laser beams, derived from the TA laser

constitutes the optical part of the MOT, the counter-propagating σ+−σ− pairs in each

dimension. Each direction is separated from a common beam by means of polarizing

beamsplitters, and the proper polarizations are achieved by quarter-wave plates. The

beam waist was 12mm during the experiment in Ch. 3 and 9mm during the one in

Ch. 5. The detuning from the cooling transition of the atoms (F = 2 → F ′ = 3

in our scheme) is −17MHz determined experimentally to balance a high velocity

capture range with low temperature. Lower temperature can be achieved with larger

detuning at the cost of smaller capture range. That being the case, at the end of the

MOT phase, when the cloud is already in a steady state, the laser is detuned further

(see Fig. 2.8).

Driving the F = 2 → F ′ = 3 by the MOT beams, though off-resonantly, excites the

F = 2 → F ′ = 2 transition as well, opening an escape channel for the atoms from the

cooling cycle towards the F = 1 ground state. In order to restore the atoms to the

F = 2 ground state, another tone, a repumper is illuminating the atoms constantly

during the MOT phase, driving the F = 1 → F ′ = 2 transition resonantly. This beam

is joined to the vertical beams of the MOT at the point where the vertical and the

horizontal directions are split (see Fig. 2.7). It illuminates the atoms from up and

down in equal measure (power: 4mW per direction, waist: 12mm).

Approximately 106 atoms are collected over a time duration of ∼1–30 s. Their

temperature at this stage is ∼150 µK. The fluorescence image of the cloud is con-
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Figure 2.8: Tuning the MOT laser at the end of a 15 s long MOT phase. For the last
90ms of the collection phase, the MOT laser is detuned further by −5MHz in 10ms as a
means of achieving lower temperature. Shifting the frequency is carried out by ramping
the offset voltage on the frequency-voltage converter (‘lockbox’). The names written on
the timeline graphs correspond to the quantity or device in question, used also in the
software control, containing the unit of the quantity for analogue signals (e.g. __V

means volt).

Figure 2.9: Fluorescence images of the atomic cloud in the magneto-optical trap. The
left image also shows the science cavity below the cloud, with the resonant mode spot
visible on the incoupling mirror. The right image captures the same cloud from a per-
pendicular viewpoint, with a closer zoom.

stantly monitored for diagnostic purposes with a CCD camera placed at one of the

viewports of the vacuum chamber (see Fig. 2.9).

2.4.2 Polarization gradient cooling

Cooling below the Doppler limit (146 µK for the D2 line of 87Rb [63]) can be achieved

by methods based on laser polarization gradients [20]. There are two radically dif-

ferent approaches to realize such a scheme with counter-propagating laser beams:
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either the waves have orthogonal linear polarizations or orthogonal circular polar-

izations. The two methods operate on different principles, have different friction

coefficients and velocity capture ranges. In our system, the σ+ − σ− configuration is

implemented, so the brief explanation here is restricted to that case.

The net polarization in this case is linear, and rotates around the propagation axis

with a periodicity of the wavelength. When an atom is moving in such a field, in the

frame moving with the atom and rotating in accordance with the local polarization,

an extra inertial interaction will take place, coupling together the external and inter-

nal degrees of freedom (the velocity and the angular momentum) of the atom. This

coupling leads to a motion induced population difference among the Zeeman sub-

levels of the ground state, resulting in an imbalance between the radiation pressures

of the two counter-propagating waves, realizing a net friction force on the atom.

The same MOT beams at detuning −107MHz are utilized to perform polariza-

tion gradient cooling. The repumper remains on during the cooling to prevent the

escaping mechanism discussed at the MOT phase. Unlike magneto-optical trapping,

polarization gradient cooling is performed without any magnetic field. In fact, for an

efficient polarization gradient cooling, it is crucial to completely eliminate the back-

ground magnetic field and achieve degeneracy of the different magnetic sublevels

[69]. The appropriate currents, driving the external coils (Ix = 0.25A, Iy = 1.5A for

the red and the blue coil in Fig. 2.5, respectively) and the MOT coils (Iz = −0.1A),

compensating the background magnetic field, were found in an iterative process,

where we optimized for the lowest temperature of the cloud. The external coils are

driven continuously throughout the protocol at the compensation values, while the

compensating current on the MOT coils is added to the operating currents as an offset.

The magnetic fields are switched off in 1ms, and the lasers are on for 4.5ms.

Temperatures of ∼10–20 µK of the atom cloud have been achieved.
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2.4.3 Optical pumping

The process of gathering atoms in a specific quantum state is called optical pumping.

A homogeneous magnetic field is necessary to define a quantization axis, and to lift

the degeneracy of the Zeeman sublevels. The atoms are excited by a resonant, circu-

larly polarized light pulse with a duration of a few tens of microseconds, propagating

along the direction of the magnetic field. Each time an atom absorbs a circularly

polarized photon, its mF quantum number changes by 1 (with a sign according to

the handedness of the polarization and the direction of the magnetic field). When

the atom relaxes, mF changes randomly by plus or minus 1, or does not change at all

(for σ+, σ− and π transitions, respectively). As a result, after several cycles (in tens

of microseconds), the atoms end up in an extremal mF state (stretched state). Opti-

cal pumping has to be kept short because this illumination by resonant light induces

heating of the cloud.

The optical pumping beam is derived from the reference laser by tapping it with

a polarizing beamsplitter, then frequency-shifted by −133MHz using an AOM, so

that it drives the F = 2 → F ′ = 2 transition resonantly. It is combined with the

vertical beam path of the MOT and the repumper at the beamsplitter where the

up-down and down-up directions are separated. The optical pumping beam goes only

in one direction (from down to up), since there must be only one circular polarization

present. Using σ+ polarization, the atoms are pumped in to the F = 2,mF = 2

ground state. The repumper laser is still switched on in this stage as well.
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Figure 2.10: Timeline of optical pumping. The MOT coils are driven with a small
(120mA) current in Helmholtz configuration to generate a weak (∼1G), homogeneous,
vertical magnetic field defining the quantization axis. With the aim of fast switching,
two shutters are placed in a row and operated consecutively. The AOM opens in the short
time window (∼0.5ms) when the two shutters are simultaneously open. Opening and
closing only one shutter would result in a longer time window) due to its lag (1.5ms).
The trigger for the operation of the two shutters precedes that of the AOM because of the
lags of the shutters. Both shutters are reset afterwards to their initial position (closed
for no. 1, open for no. 2, the latter not shown here), allowing for an additional optical
pumping on demand. The AOM is kept on from the beginning of the experimental cycle,
in order to maintain a steady working temperature, and avoid switching transients.

2.4.4 Magnetic trapping

Particles with magnetic moment, µ in a magnetic field, B experience a potential,

given by U = −µ ·B. A pair of coils driven in anti-Helmholtz configuration, produces

a quadrupole field, which creates a linear potential for these particles. The magnetic

moment of an atom is proportional to its mF quantum number and its gF Landé

factor, and directed parallel (for mF > 0) or antiparallel (for mF < 0) to the local

magnetic field. Atoms with positive (negative) mF states are trapped (repelled) by

the potential, and those with mF = 0 remain untouched. In the previous optical

pumping step, the atoms were prepared in the F = 2,mF = 2 ground state with the

aim of achieving the most efficient trapping possible, as this state yields the largest
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magnetic moment.

After the optical pumping, when ramping the magnetic field from homogeneous

into quadrupole, a point with zero magnetic field sweeps along the vertical axis,

settling finally in the centre of the quadrupole magnetic trap. For atoms being at a

magnetic field zero point, the direction of the magnetic moment is undefined. This

can lead to the so-called Majorana spin flip, when the magnetic moment changes

sign, and the atom escapes from the trap. In order to decrease this effect, the ramp

starts with a quick ‘initial catch’, and then the field is strengthened (see the timeline

in Fig. 2.11).

μ

Figure 2.11: Timeline of the magnetic trapping. The homogeneous field is quickly
ramped into a quadrupole over a period of 50 µs (‘initial catch’), then strengthened in
3ms to strength 66Gcm−1.

Approximately 5 ·105 atoms are collected in the magnetic trap. Their temperature

is close to that achieved by the polarization gradient cooling, but due to imperfect

matching of the centre of the magnetic trap and that of the cloud, additional heating

can take place.

2.4.5 Magnetic transport to the cavity

The magnetic transport from the MOT centre to the cavity is performed by lowering

the centre of the quadrupole magnetic trap adiabatically. The ramps follow a smooth

function (tangent hyperbolic), in order to avoid sudden jerks (see the timeline in Fig.

2.12 and the nonlinear displacement of the cloud in time in the absorption-image

sequence in Fig. 2.13). Since the vertical distance between the MOT centre and the
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cavity is ∼11mm, and the separation of the MOT coils is 34mm, the transport brings

the cloud close to the lower MOT coil. The shape of the magnetic quadrupole would

therefore be strongly distorted if we used only a single coil pair. This is the reason

for using the MOT+ coils.

Figure 2.12: Timeline of the magnetic transport. The currents in the coils are ramped
asymmetrically to lower the zero-field centre of the trap towards the cavity axis. Up to
small corrections from optimization, the current in the lower MOT coil is ‘transferred’ to
the lower MOT+ coil, the current in the upper MOT+ coil is ramped up to the same value
as in the upper MOT coil, while the latter is kept constant.

Figure 2.13: Absorption images of an atomic cloud during magnetic transport.

After the magnetic transport, the experiment protocol can vary significantly (e.g.

maintaining the magnetic trap or releasing the atoms; different laser drives can be

applied etc.). The subsequent steps are detailed therefore in the chapters correspond-

ing to the individual experiments. Here, only one more possible step is described in

general, loading the atoms into an intra-cavity dipole lattice.

2.4.6 Intra-cavity dipole lattice

Atoms in a standing wave, red detuned from resonance, experience a periodic po-

tential, with minima in the antinodes, proportional to the intensity of the field. This
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potential is called optical dipole lattice [70]. As the 805 light is coupled into the

science cavity mode, the wavelength being far red detuned from any resonance in

question, there is an optical dipole lattice in the cavity.

Due to the large volume mismatch of the traps, loading the atoms into this lattice

from the magnetic trap is a non-trivial task, worked out and optimized by our group

[F1]. The crucial parameter for the optimization is the transport position, which

could be varied in horizontal direction by superimposing homogeneous magnetic

fields on the quadrupole by the external coils, and in vertical direction by changing

the transport parameters, i.e. the currents on the MOT and MOT+ coils. At the optimized

position, the magnetic trap is switched off in 7ms, and the atoms remain in the dipole

lattice for up to 200ms. An ongoing project is to switch off the magnetic trap and

ramp up the optical intensity simultaneously. This approach avoids the issue when

atoms, falling into an already existing, conservative potential, escape from the optical

lattice with their initial energy. By gradually strengthening the laser intensity as the

magnetic trap is turned off, the atoms are expected to be captured more effectively,

providing a controlled and efficient transfer.





Part II

Scientific results





Chapter 3

Ground state bistability of cold atoms

in a cavity

3.1 Introduction

Driven-dissipative open quantum systems, such as atoms in a laser-driven cavity, can

realize phase transitions, where the phases are steady (quantum) states of the system,

arising from the dynamical equilibrium of drive and loss. By tuning one or more of

the system parameters, called control parameters, the phase of the system can con-

tinuously change, or it can happen that there is a phase transition to another phase,

accompanied by enhanced fluctuation and abrupt change of a macroscopic observ-

able, called order parameter [71]. It gives information about the system state via a

continuous measurement, e.g. the signal obtained from a photodetector monitoring

the cavity output field. According to the Ehrenfest classification of phase transitions,

those characterized by a discontinuity in the order parameter are called first-order

phase transitions, while those with a discontinuity in the first derivative of the order

parameter are referred to as second-order phase transitions [72]. The focus of my

research described in this chapter was on a cavity QED system where two phases can

coexist in the form of a statistical mixture with macroscopically distinct order param-

eters. The order parameter is continuous, however, as the system transitions between

45
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the two phases in a finite size realization, the order parameter jumps between the

corresponding two values. In the following, we describe in more detail this bistability

type of phase transitions.

Phase transitions in open quantum systems, called (driven-) dissipative quantum

phase transitions (DQPTs) [73–80], can be treated in the density operator formalism

[81]. The density operator, ρ, describing the state of an open quantum system, obeys

a master equation,

ρ̇ = Lρ, (3.1)

where L is a linear superoperator (in Markovian approximation, it is the so-called Li-

ouvillian superoperator) acting on the density operator. In this formalism, the steady

state, ρss is defined by the homogeneous linear equation

Lρss = 0. (3.2)

Both L, containing the parameters of the system, and ρss, its eigenoperator, depend

on the control parameters, collectively denoted here by η. The order parameter is

the expectation value, Tr (ρO) of an observable, O, which discriminates between

the phases. The steady state, ρss of the system, showing the phase transition with a

bistability region, can be written in the form

ρss(η) = w(η) · ρ1 + (1− w(η)) · ρ2, (3.3)

where ρ1 and ρ2 yields different expectation values of O, and the weight function

w(η) reads:

w = 1 if η < ηcrit,1

0 < w < 1 if ηcrit,1 < η < ηcrit,2

0 if ηcrit,2 < η.

(3.4)

As the weight factor varies smoothly, there is no jump in the order parameter as-
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sociated with ρss. However, the system is under continuous measurement, therefore,

only one of the two macroscopically distinct solutions, ρ1 and ρ2 can be present at a

time. The two phases are separated temporally, leading to a series of spontaneous

jumps of the order parameter in the form of a random telegraph signal. Note that

neither ρ1 nor ρ2 is an eigenstate of L in general, as the steady state is the statisti-

cal mixture of the two, given by (3.3), with the weight function w(η). However, in

the thermodynamic limit, defined specifically for the system in question, the coupling

between them decreases, and both become steady state. On approaching the ther-

modynamic limit, the dwelling times in the telegraph signal diverge, and ultimately

it is the prepared initial state which determines the phase in the bistability domain.

My first project was an experimental investigation of a system, realizing a DQPT,

which is conjectured to belong to the above described class. It was inspired by an

experiment, performed previously by the group [59]. The dynamics of the collapse

of an unstable phase, the so-called transmission-blockaded phase was observed with

high time resolution. Transmission-blockade-breakdown (TBB) was shown to be a

dynamical phase transition of a system prepared initially in a metastable phase. The

phases are realized by different hyperfine ground states of cold atoms accompanied

by macroscopically distinct photon populations in a single mode of a driven optical

resonator [82–85]. When the atoms are in the ground state of the cavity-coupled

dipole transition, the cavity transmission is inhibited due to the large resonance shift

effect. The blockade can be broken down by enhancing the strength of the laser

drive, which breakdown involves the atomic ground state population being trans-

ferred to another hyperfine ground state uncoupled to the resonator field. In the

density operator formalism outlined above, there is a ‘dark’ (D) and a ‘bright’ (B)

phase,

ρD = |0⟩ ⟨0| ⊗ |g⟩ ⟨g|
ρB = |α̃⟩ ⟨α̃| ⊗ |f⟩ ⟨f |

(3.5)

with |g⟩ and |f⟩ denoting the two hyperfine ground states, |0⟩ and |α̃⟩ standing for

the vacuum state and the coherent state of the cavity mode with mode amplitude
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α̃, respectively. The control parameter is the cavity drive amplitude, η̃, the order

parameter is the mean cavity photon number, 0 and |α̃|2 in the dark and the bright

phase, respectively.

This effect can be considered the extension of the photon-blockade-breakdown

(PBB) phenomenon, known from single- or few-atom CQED [86, 87], to many-atom

CQED systems. Whereas with PBB, a large cooperativity C = g̃2/(γ κ) is needed at

the single-atom level (g̃ ≫ κ, γ), for TBB, the large cooperativity C = Ng̃2/(|∆A|κ)
is achieved by increasing the number of atoms, N , i.e. by reaching the “collective

strong coupling regime” (the same notation is used here for the CQED parameters as

in Ch. 1).

The goal of the research presented below was to reverse this transition by means

of an additional laser field applied on the atoms, which stabilizes the otherwise only

metastable transmission-blockading phase. With this, we aimed to confirm the pre-

viously proposed explanation of the mechanism underlying the observed effect, and

demonstrate the coexistence of phases, which supports the classification of the TBB

phenomenon as a type of first-order phase transition.

In the present study, the system involves thus two control parameters provided

by tunable laser drive powers. One of the lasers is used to probe the transmission

of the resonator, whose driven mode is coupled to an atomic transition. When the

atoms are in the ground state of the cavity-coupled dipole transition, the resulting

transmission blockade can be broken down by enhancing the strength of this laser

drive. The other laser effectively repumps the atoms back into the hyperfine ground

state that is coupled to the cavity.

In the theoretical limit of infinitely strong repumper, the well-known scenario of

the atomic-saturation-induced optical bistability in an effectively two-level system is

recovered [88–91]. Decreasing this control parameter, that is, with finite repumper,

the system still exhibits bistability with the cavity drive strength control parameter,

however, the role of saturation is taken over by populating another hyperfine ground

state. Ultimately, the bistability develops into the statistical mixture of two phases

in which the internal electronic state of the atoms in the cloud is a pure collective
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state: all atoms are in either one or the other of the two hyperfine ground states.

The extreme limit of zero repumper corresponds to the above-mentioned TBB effect.

In the following, we will explore the full phase diagram spanned by the two control

parameters, invoking a semiclassical mean-field theory.Experimentally, we observed

hysteresis in the order parameter when either of the two control parameters is swept

repeatedly across the bistability region.

We report an effect between collective states of high quantum purity, which is

essential for future information storage. In this aspect, the bistability demonstrated

here differs substantially from the familiar case of optical bistability, where the bistable

region is created through atomic saturation [92]. Here, in the weak driving limit,

where the population of the excited states remains close to zero, the source of non-

linearity is a cavity-assisted population transfer between ground states of the atoms,

and the stability depends on the intensity of two driving lasers.

Although a repumper laser was already used in the sample preparation proto-

col (see Sec. 3.7), its optical power control was not implemented, so the setup

required development. My task was to create a solution that allows for flexible and

consistent power tuning. I replaced the acousto-optic modulator (AOM) previously

used to switch the repumper light with one capable of adjustable amplitude modula-

tion. By varying modulation amplitudes and measuring the optical power transmit-

ted through the AOM in the first diffraction order, I calibrated the device. I modified

the software control of the experiment, enabling in-situ modulation amplitude ad-

justment, to set the desired optical power of the repumper or to sweep it in a given

range during the experiment.

The chapter is structured as follows. In Sec. 3.2, a model system of competing

dynamical optical pumping processes is presented to establish a framework in which

to describe our experiments. In Sec. 3.3, the phase diagram is mapped out by solving

the mean-field equations of the model and new features of the bistability domain are

pointed out. A clear distinction is made with respect to the case of absorptive optical

bistability. In Sec. 3.4, the experimental scheme is described and the correspondence

to the theoretical model is established. Sec. 3.5 is devoted to measurements on the
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long-time behaviour of the system and to the dynamical signatures of the bistabil-

ity. Both dynamical oscillations and enhanced fluctuations of the order parameter

are demonstrated. In Sec. 3.6 it is shown that adiabatic ramp cycles of the control

parameters lead to hysteresis, which is supporting evidence of a first-order phase

transition in the system [79]. In Sec. 3.7, the interpretation of the observed bista-

bility, namely, that it is based on the competition of two concurrent optical pumping

processes, is experimentally verified. Finally, the chapter is concluded in Sec. 3.8.

3.2 Model of two-way optical pumping of atoms in the

cavity

Let us consider N atoms interacting with a single mode of a linear optical resonator,

as represented schematically in Figure 3.1. The cavity mode is driven by a laser with

effective amplitude, η̃, and angular frequency, ω. This latter is close to the mode

resonance, ωC, such that the detuning ∆C ≡ ω − ωC ≲ κ, where κ is the mode

linewidth (HWHM), and red-detuned from the electric dipole transition |g⟩ ↔ |e⟩,
that is ∆A ≡ ω − ωeg < 0. The cavity field couples to the transition |g⟩ ↔ |e⟩, with

coupling constant g̃ (single-photon Rabi frequency). The excited atomic state, |e⟩,
decays mostly to |g⟩ with rate γ (HWHM), however, a weak decay channel exists to

another state, |f⟩, with rate Γ ≪ γ. There is a repumper laser illuminating the atoms

from the side, which performs optical pumping on the atoms back to the state |g⟩ at a

rate λ. The repumper excites another hyperfine excited state (F ′ = 2), and thus does

not form an electromagnetically induced transparency (EIT) type of spectrum in the

Λ scheme.

The steady-state of this system manifests a non-trivial phase diagram as a func-

tion of the control parameters η̃ and λ. Bistability originates from the competition

of the two optical pumping processes, where one of them involves a non-linear

cavity-assisted population transfer. A single atom in state |g⟩ detunes the cavity mode

resonance by an amount δ = g̃2∆A/ (∆
2
A + γ2), which can be approximated by g̃2/∆A
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Figure 3.1: (a) The configuration of our CQED scheme. Cold atoms are loaded into a
linear cavity and kept in a magnetic quadrupole trap. The cavity is driven with variable
effective amplitude, η̃, through an incoupling mirror and the transmitted light detected
with an avalanche photodiode. The atoms are illuminated from the side by a repump
laser of variable power, characterized by the pumping rate, λ. (b) The relevant part
of the atomic level scheme. The transition from the ground state, |g⟩, to the excited
state, |e⟩, couples to the cavity mode, resulting in an effective drive amplitude, g̃ α̃,
where α̃ is the field mode amplitude. The transversely injected repump laser drives the
transition from |f⟩ to |g⟩ via other excited states (not indicated). Panels show the cavity
transmission accompanying the optical pumping into the states |f⟩ and |g⟩. (c) Atoms
in state |g⟩ detune the cavity mode resonance with respect to the laser frequency set on
resonance with the empty cavity.

in the large atomic detuning regime (|∆A| ≫ γ). This effect is routinely used in our

lab (see e.g. Sec. 5.3 and [F1]) to determine the number of atoms in the mode, by

probing the cavity with a weak laser at ωL and inverting the term for the measured

transmittance,
(
(ωL − (ωC −Nδ))2 /κ2 + 1

)−1
. For large-enough atom number, the

collective dispersive shift of the atom cloud, Nδ, can push the mode out of resonance,

|∆C−Nδ| ≫ κ, so that the drive η̃ is ineffective in exciting the cavity mode. As there

is no field in the cavity, the atoms are not excited from the state |g⟩. This solution,

called “transmission blockade”, is a steady state. However, it becomes unstable for

very large drive strength η̃. The Lorentzian cutoff does not eliminate perfectly the

transmission. The blockade may break down in a runaway process: for increased

cavity drive amplitude, the tiny amount of light infiltrating the cavity excites atoms
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to |e⟩, which, in turn, results in a reduction of the collective resonance shift and in

even more light entering the cavity. This positive feedback amounts to a run-away

optical pumping toward the state |f⟩. The extent to which the atoms accumulate in

state |f⟩ depends on the repump rate, λ. For weak λ, they accumulate; for strong

λ, the atoms are pumped back to |g⟩ and restore the blockaded regime. In between,

there is a bistability domain where the two steady states can coexist in the form of a

statistical mixture.

The competition between the two optical pumping processes can be described by

the semiclassical mean-field model discussed in Ch. 1 [93]. The scaled mean-field

equations of motion (1.9) are extended with the relative population in the state |f⟩,
nf , the decay rate from |e⟩ to |f⟩, Γ and the repump rate, λ. The set of equations

with the additional terms (using the scaled variables, noted without the tilde) read

α̇ = (i∆C − κ)α + gm+ η ,

ṁ = (i∆A − γ − Γ)m+ g (ne − ng)α ,

ṅe = −g (α∗m+m∗α)− 2(γ + Γ)ne ,

ṅg = g (α∗m+m∗α) + 2γne + λnf ,

ṅf = 2Γne − λnf .

(3.6)

In the rest of this chapter, the case of resonant driving of the empty cavity, ∆C = 0 is

considered.

Although the model is heavily simplified, it is sufficient to capture the main fea-

tures of the steady-state phase diagram. In particular, the reason we consider the

repumper acting only on the populations of states |g⟩ and |f⟩, without creating co-

herence between them, will be explained in Sec. 3.4.
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3.3 Steady-state phase diagram

The driven-dissipative system defined by Eqs. (3.6) evolves towards a steady state

that can be calculated by setting the temporal derivatives to zero, and solving the

inhomogeneous nonlinear system of equations. Fig. 3.2 presents a colour map of the

cavity transmittance in the steady state as a function of the two drive strengths, the

scaled cavity drive amplitude η and repump rate λ, for N = 104. The transmittance is

the transmitted intensity normalized to that of the empty resonator with exactly the

same drive η, ω. One can clearly observe the blockaded regime for small η, where the

cavity field mode is not populated (dark blue region) as well as a ‘bright’ phase with

high transmission (yellow region). These phases are separated by a bistable domain

(white stripe), where the system has two stable steady states. These solutions are

plotted in Fig. 3.3 for cross-sections of fixed η and λ values, indicated by dotted and

dashed lines in Fig. 3.2, respectively.

The transmittance exhibits an S-shaped curve as a function of the cavity drive,

that is familiar from saturation-induced optical bistability (cf. Fig. 3.3(b) and (c)).

There are two stable steady states and one unstable solution. In the present case of a

three-level Λ scheme, a similar multivalued domain occurs if the repumper power is

varied, as shown in panel (a). This highlights the crucial role of the repumper and the

third level |f⟩ in the system. The distinctive feature with respect to the well-known

case of optical bistability can be revealed by investigating the populations in the

three atomic levels in the steady-state solutions, shown in the bottom row of panels

in Figs. 3.3(d-f). In the transmission-blockaded phase, the atoms are dominantly in

the state |g⟩, i.e. ng ≫ nf , ne independently of the repumper and the cavity pump

strength. When the blockade is broken down and there is a finite transmittance

approaching unity, the populations strongly depend on the repumping rate.

In the low λ limit (λ ≪ Γ), the cavity photons optically pump the atoms to the

other ground state |f⟩, resulting in nf ≫ ng, ne (see the bottom-right inset scheme

in the phase diagram in Fig. 3.2). This limit of bistability, represented by Fig. 3.3(e),

features a bistable switching between steady states, corresponding to collective elec-
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Figure 3.2: Phase diagram of the transmission blockade breakdown in the steady state
for N = 104 atoms. The colour map shows the cavity transmittance referenced to the
resonant empty cavity transmission as a function of the scaled cavity drive amplitude, η,
and repumping rate, λ. The latter quantity is rescaled with a monotonically increasing
function, G ≡ (1 + 2Γ/λ)−1, which tends to G = 1 for λ → ∞. The white stripe in the
middle corresponds to the domain where the system of equations admits multiple stable
solutions. There are distinct phases to the left and right of this boundary, which are the
blockaded and the bright states of the cavity field, respectively.

tronic ground states, |g⟩ and |f⟩ with high purity, and the cavity-transmitted pho-

tocurrent enables a direct monitoring of which ground state the atoms are in.

As a reference, the case of classical bistability is displayed [94–96], which is re-

produced in the limit of λ → ∞, G ≡ (1 + 2Γ/λ)−1 = 1, when the strong repumper

confines the atomic state to the two-level manifold spanned by |e⟩ and |g⟩ (corre-

sponding to the top-right inset scheme in Fig. 3.2)). Fig. 3.3(f) shows that the bright

cavity phase is connected to a full mixture of the atomic state ne ≈ ng, while nf ≈ 0.

This means that cavity photons saturate the atoms in the two-level manifold, while

state |f⟩ is effectively eliminated from the dynamics by the strong repumper. This

model thus reveals that the control parameter λ bridges the well-known saturable

absorber optical bistability and the much more recent paradigm of first-order dis-

sipative phase transitions, that has been shown to be represented by the photon-

blockade-breakdown bistability.
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(b) (c)

(e) (f)(d)

(a)

Figure 3.3: Cavity transmittance and atomic populations as a function of pumping
rates. Transmission is first considered with respect to varying repump rates, with the
cavity drive fixed at η = 3γ, (a). Secondly, transmission is considered as a function
of the cavity drive amplitude for fixed repumping rates G = 0.1, (b), and G = 1,
(c). Similarly, the relative steady-state populations, nf (dash-dotted green), ne (dashed
blue) and ng (solid orange) are plotted with respect to the same pumping rates, (d-f).
All the plots show a crossing of the bistability domain, represented by the white stripe,
in Fig. 3.2 along a vertical, (a and d), and horizontal (panels (b), (c), (e) and (f)) axis.
Where the control parameters, η and λ, give rise to multiple solutions, the dotted lines
correspond to unstable solutions, the rest to stable steady states.

In the following, experimental results are presented from measurements on a

CQED system that is more involved than the above-discussed abstract model. How-

ever, it will be shown that the main features of the interaction are properly captured

by the model, and the phase diagram presented in Fig. 3.2 underlies the actual CQED

system of the experiment.

3.4 Experiment

Approximately N ∼ 105 atoms were loaded into the mode volume of the optical

cavity, and maintained in the magnetic trap, according to the protocol described in

Sec. 2.4. A single mode of the resonator was resonantly driven, ∆C = 0, with the
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science laser tuned below the F = 2 ↔ 3 atomic resonance by ∆A = −2π · 29 MHz.

Along with a circularly polarized drive field, σ+, the single-atom frequency shift was

δ ≈ 2π · 3 kHz, such that N ≈ 104 relevant atoms could shift the mode by more than

10κ from resonance.

A mapping between the abstract model of Eq. (3.6) and the actual level scheme

of 87Rb is presented in Fig. 3.4, together with the given configuration of laser drives.

The state |g⟩ corresponds to the hyperfine ground state (F,mF ) = (2, 2) in 52S1/2,

whereas the excited state |e⟩ is realized by (F,mF ) = (3, 3) in 52P3/2. This is a

closed-cycle transition within the D2 line for σ+ circular polarization. As the atoms

are in a magnetic quadrupole trap, the magnetic field defining the local quantization

axis varies in space. In the plane of the cavity mode, the magnetic field lies in the

same plane, pointing radially outward from the trap centre which coincides with the

centre of the cavity (Fig. 3.5). Therefore, the magnetic field is oriented, to a good ap-

proximation, parallel to the cavity axis within the mode. However, in the two halves

of the mode volume, being on the two opposite sides of the mode centre, the mag-

netic field is pointing in opposite directions. Therefore, the circularly polarized cavity

drive field is effectively σ+ in one half, and σ− in the other half of the mode volume

with respect to the local quantization axis. The atomic motion in the magnetic trap

averages these two distinct effects.

The σ− polarized field generates transitions from |g⟩ to (F,mF ) = (2, 1) in 52P3/2,

which has a much smaller Clebsch-Gordan coefficient than the σ+ transition (ratio

1/15). Nevertheless, excitation to the (F,mF ) = (2, 1) implies that the atoms can

decay into (F,mF ) = (1, 1), which is the state |f⟩. The decay can also lead to the

other hyperfine state (F,mF ) = (1, 0). However, this state can be incorporated into

|f⟩. The coupling between the ground-state manifolds F = 1 and F = 2 includes a

spontaneous emission process in both directions, therefore only the populations, not

coherences between the states |f⟩ and |g⟩, |e⟩ play a role. The repumper resonantly

drives the transition from the (F,mF ) = (1, 1) ground state to the (F,mF ) = (2, 2)

excited state with σ+ polarized light, which amounts to an optical pumping into the

state |g⟩. This is considered as a population pumping with rate λ in equation (3.6).
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Figure 3.4: The 87Rb levels behind the simplified model in Fig. 3.1. Red arrows represent
cavity field excitations and the green arrow the repumper. Other states in the hyperfine
manifold with smaller magnetic quantum numbers are not shown.

The other simplification in the semiclassical model is that the state |f⟩ is populated

directly from the state |e⟩, rather than introducing additional variables to include the

state (F,mF ) = (2, 1). The population in this latter is proportional to that of |e⟩, since

both of them are excited by the cavity field from the state |g⟩. Therefore, the crucial

dependence on the cavity field intensity and the population in |g⟩ is captured by the

model with a phenomenological rate, Γ, determined previously as Γ = 0.93 · 10−3γ,

by fitting the numerical simulation to the observed transition dynamics [59].

The mean-field model, appropriately accounting for the cavity-assisted optical

pumping processes, does not include the atom loss from the trap. The total atom

number, N , in Eqs. (3.6) is not a conserved quantity. The loss can occur due to recoil

heating, background gas collisions, etc. There are other processes which follow from

the dynamics: when the atom is in state |f⟩, the magnetic trap potential vanishes for

the (F,mF ) = (1, 0) and is repulsive for the (1, 1) states. Because of the atom loss,

the system ultimately evolves into the resonant empty-cavity transmission on a slow

timescale of a few 100 ms (cf. measurement results below). Note also that atoms in

the magnetic trap but outside the mode can enter the mode volume. However, these

atoms adapt their internal state on a timescale of ms to the actual global phase of the
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Figure 3.5: Magnetic field lines and orientation with respect to the cavity axis (red lines
representing the cavity mode waist in the x-y plane). In the x-z plane, the quadrupole
trap creates field lines that bend away from the origin and that are cylindrically sym-
metric around the z axis (green lines). Perpendicular to this, within the x-y plane of the
cavity axis (grey), the magnetic field lines (thin blue arrows) point radially outward.
The quantization axis (thick blue arrows), within the cavity mode, is then parallel to
the cavity axis but with opposite orientation in the two halves of the mode.

system determined by the control parameters. Therefore, this reloading process can

be treated together with the losses by embedding them into an effective loss.

3.5 Driven-dissipative phase transitions

The end of the atom transport into the cavity mode defines the time t = 0. The cavity

drive was switched on at t = 3 ms at the chosen power level. The cavity transmission

was recorded by an avalanche photodiode until t = 5 s. In all the measurements,

the atoms were initially in the ground state, |g⟩ ↔ (F,mF ) = (2, 2). Therefore, the

transmission at the beginning of the interaction, with N ∼ 105 atoms in state |g⟩,
was always suppressed by the dispersive shift of the mode with respect to the fixed
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drive frequency by more than ten times the linewidth. Depending on the strength of

the cavity drive and that of the repumper, this state could be the stable phase or an

unstable one, according to the phase diagram in Fig. 3.2.

Figure 3.6: The time evolution of the system with respect to varying control parameters,
as monitored by the cavity transmission (blue lines, left scale) and the excess noise
(red lines, right scales). The cavity drive amplitude increases from left to right (η̃/γ =
= 25, 117, 236) and the repumping rate decreases from top to bottom (λ/γ = 5.9 ·
· 10−3, 0.85 · 10−3, 0.27 · 10−3), such that G = 0.76, 0.31 and 0.13, respectively. The
dynamics of the transition between the blockaded phase (close to zero transmission)
and the transparent steady-state (transmittance reaches the maximum corresponding to
a driven empty resonator) illustrate different domains of stability in the selected time
windows. The transition changes from a smooth one induced by inevitable atom loss
from the trap (weak cavity drive, left column of panels) to a sharp runaway dynamics
for strong drive (panel (i)), and oscillatory behaviour for stronger repump (panel (f)).
The excess noise (in cavity photon number) accompanying the transitions is shown by the
red curves. When the control parameters are in the bistability domain, the single-mode
cavity field manifests significantly enhanced fluctuations during the transition between
the steady-states.

Figure 3.6 shows the cavity transmission as a function of time for 3 × 3 differ-

ent pairs of fixed values of the control parameters η̃, λ. The cavity drive strength η̃

increases from left to right, whereas the rescaled repumping rate G increases from

bottom to top. The left column represents a weak cavity drive compared to the effect

of the repumper. According to the phase diagram in Fig. 3.2, the stable phase is the

blockaded one with atoms in |g⟩, which is the initially prepared state of the system.

In this case, only atom loss can lead to the transparent cavity state. Indeed, the left
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column shows that the transition is independent of the repumper strength and takes

place on a long timescale of about 350 ms. This timescale can be attributed to the sit-

uation that even atoms in state |g⟩ are gradually lost from the trap, due to the above

described mechanisms not contained in our idealized theoretical model of Sec. 3.2.

On increasing the cavity drive intensity (middle column of panels), an earlier and

faster emptying of the trap can be observed. This indicates that the steady state is

still the transmission blockade, and the cavity drive merely increases the population

in the states |e⟩ and |f⟩, thereby speeding up the atom loss.

Qualitatively different behaviour of the transition is depicted in the right column

of panels, where the cavity drive is strongest. For the bottom right panel, (i), the

repumper drive intensity is so weak that the stable phase is the transparent resonator

with atoms in |f⟩. However, the system, initially, is prepared in the other, trans-

mission blockaded phase with all atoms in |g⟩. Before considerable atom loss can

take place, the system undergoes a non-linear runaway process to transition into the

stable phase. This is clearly the case in (i), and traces of this dynamics can be ob-

served in (h). So the bottom row shows that the transition varies from an atom-loss

dominated smooth transition (bottom left panel) to a phase-transition-like switch on

increasing the intensity of the cavity drive. This effect has been thoroughly analysed

in the paper preceding and motivating this extended study [59].

The key new observation is represented mostly by panels Fig. 3.6(f) and (c).

Rather than a fast, monotonic switching to the stable phase, as in panel (i), stronger

repumping leads to an oscillatory transition in (f) and, somewhat less clearly, in (c).

The strong dynamical oscillations are indications of the competition of the opposing

optical pumping processes. They appear only in a limited range of the control param-

eters for which the system is in the bistability region of the phase diagram. However,

when monitoring the transmitted intensity, the oscillatory effect due to bistability is

limited by the loss of atoms from the trap. One can unravel the dynamical signatures

of the transition which are beyond the effects of the atom loss by analysing the in-

tensity fluctuations. An alternative method, presented in the next section, is to vary

the system parameters on a timescale shorter than that of the loss.
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The phase transition is confirmed by the increased intensity of fluctuations in the

detected transmitted signal. In the steady states, the atoms are either in the |g⟩ or in

the |f⟩ ground state, with the single-mode cavity field being in either the |0⟩ vacuum

state or an |α ̸= 0⟩ coherent state, respectively. In a more general context, these states

of the mode can be considered as thermal states of zero temperature [97]. During

the transition, however, the atoms exist in a statistical mixture of the blockading |g⟩
ground state and the |e⟩ excited state, leading to the broadening of the Wigner func-

tion for the cavity mode. Assuming the state remains Gaussian and positive definite,

this broadened state can be described as a displaced thermal (chaotic) state repre-

sented by the P function, Pth,disp(β) =
1

πnth
e−|β−α̃|2/nth, with mean field denoted by the

complex amplitude α̃, and the width of the distribution characterized by the thermal

photon number nth. This parameter is zero for coherent states, and greater than 0

for thermal states of non-zero temperature, serving as a measure of the excess noise

of the state with respect to the Poissonian noise. This excess noise, corresponding

to fluctuations of the mean-field amplitude, α, is beyond the scope of the mean-field

model. It can be inferred from the recorded intensity noise following the procedure

described in Ref. [59].

The atom-loss dominated transition to the bright phase (left column of panels)

does not exhibit excess noise during the transition (note that the initial fluctuations

including even negative photon numbers in panel Fig. 3.6(a), (d), and (g) indicate

the finite accuracy of the method close to zero mean value of the field, i.e. uncertainty

is below 0.5 photon). There is some excess noise generated during the transition

with increased η̃ (middle column), while significantly enhanced intensity fluctuations

accompany the transition for strong cavity drive (right column). An equivalent of 20

and 100 thermal photons characterize the width of the photon number distribution in

the cavity mode during the limited time period when the system is in the transmission

blockade breakdown and the bistability region, Figs. 3.6(i) and (f), respectively. This

is comparable, but in addition to the Poissonian noise, which is approximately 100

photons at the observed mean photon number (∼ 104).

The enhancement of fluctuations depends systematically on the control parame-
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Figure 3.7: The magnitude of the excess noise (in thermal cavity photon number) with
respect to the cavity drive power (empty cavity photon number). Different colours and
line styles correspond to different repumper strengths, G = 0.127 (dash-double-dotted
blue), 0.144 (dotted orange), 0.542 (solid green), 0.632 (dashed red) and 0.708 (dash-
dotted purple). Each point represents the average of ten measurements. The linear fits
in the log-log scale reveal power laws with exponents 1.19±0.15, 1.58±0.11, 2.73±0.27,
2.68± 0.11 and 2.49± 0.36, respectively.

ters. For example, consider the rows of Fig. 3.6 in which only the cavity drive varies.

Expressing this enhancement in terms of a thermal photon number, it shows a power

law dependence on the cavity drive as seen on the log-log plot in Fig. 3.7 where

the drive is also expressed as the photon number the drive would generate in an

empty cavity. The exponent varies with the repumper strength (numerical values

given in the figure caption). A deeper theoretical interpretation of this experimen-

tal observation requires the description of higher-order quantum correlations in the

atom-light interaction, which is beyond the scope of the mean-field approximation of

the Heisenberg–Langevin equations.

3.6 Hysteresis

The total atom number in the trap, N , evolves in time due to loss processes not

included in the theoretical model. As such, these changes are not reflected in the

phase diagram of Fig. 3.2. As atoms are being lost, the bistability domain of the

diagram shifts towards smaller cavity drive strengths, i.e. the transmission-blockaded



3.6 Hysteresis 63

phase gradually shrinks. Nevertheless, the atom loss process is slow enough that the

multistability of the system can be demonstrated for quickly varying probe light, in

the form of hysteresis [79].

To this end, the control parameters were swept repeatedly across the bistability

domain. The intensities were varied, ramping the drive voltage of the AOM up and

down linearly. For the cavity probe laser, η̃, the ramp times were 30 ms up, and 10 ms

down, while for the repumper, the corresponding values were 15 and 5 ms, respec-

tively. Fig. 3.8 presents the cavity transmission for ramping, (a), the cavity drive and,

(b), the repumper intensity five times, while the other control parameter was kept

fixed. An individual trajectory of the order parameter is depicted, since the bista-

bility must be manifested at this level of single runs. With the current parameters,

we experienced little variation between runs, so the presented sample was typical.

The atoms were initially prepared in state |g⟩, so the cavity transmission was initially

suppressed. The first ramping cycle of the cavity drive did not move the system out

of this phase (cf. Fig. 3.8(a)) because even if this phase becomes unstable for high

cavity drive, when the bistability domain is crossed during the ramp, the transition

from such a steady state takes place after a long waiting time. The lifetime of this

metastable phase is random, but, on average, increases with the number of atoms

in the cavity. At this first ramp, it happened to exceed the sweep period. This sce-

nario was more likely during the first cycle than in subsequent ones, as no atoms had

been lost yet. During the second ramp-up (orange curve), the transition to the bright

phase, atoms in |f⟩, did occur. Hence, during the ramp-down, there was a higher cav-

ity transmission at the same drive strength. This is convincing evidence of bistability.

It was only at the end of the ramp down period that the repumper transferred the

atoms back to state |g⟩, reinstating the blockaded phase. At the beginning of the next

ramp up period (green), this was still the ongoing direction of optical pumping until

the cavity drive started to dominate. Accordingly, the corresponding transmission

curve (green) is slightly below than the preceding ramp-down curve (orange). This

ramp cycle, with the same features, could be observed three more times before the

atoms were lost from the cavity. We re-emphasize that the hysteresis window shrinks
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Figure 3.8: Hysteresis in the cavity transmittance when the cavity drive power, (a), and
the repump power, (b), sweep across the bistability domain back and forth five times.
The corresponding sweep axis in the phase diagram is shown in the small panels to the
right. The temporal order of the ramps is indicated by the blue, orange, green, red and
purple lines, respectively, and the ramp direction by the arrows. For (b), a log10 scale is
used.
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for consecutive cycles due to the decreasing number of atoms.

The hysteresis was also confirmed at fixed cavity drive by varying the repumper

as a control parameter. Considering the transition across the bistability domain, the

repumper powers are widely varied, therefore, a logarithmic scale is used on the

horizontal axis. In Fig. 3.8(b) the curve starts at the large repumper limit, where the

initial state of atoms in |g⟩ corresponds to the stable phase. Within a sweep cycle, the

value of the repumper power was below the bistability domain for short times only,

so the transition to the states |f⟩ did not happen in the first cycle (blue) but only in

the second one (orange). In this cycle, a partial population transfer to the states |f⟩
was accomplished within the ramp-down time and a part of the atoms remained in

the blockading state |g⟩. The cavity transmission increased noticeably, but to a value

well below the empty cavity reference. At subsequent cycles, the atom number was

smaller due to loss, and a full transfer from the state |g⟩ to |f⟩ has been achieved

during the period where the repumper intensity was decreased below the bistability

domain. At these smaller atom numbers, on the other hand, the mode frequency

shift did not reach the level necessary to suppress the transmission, meaning, the red

and purple curves do not go down to zero for strong repumper on the right side of

the plot. Nevertheless, hysteresis was clearly observed in these cycles, implying the

presence of bistability.

3.7 The role of the repumper

An additional measurement was performed in order to outline the role of the re-

pumper and to detect the atomic state in the bright phase. The repumper was pulsed

between zero and a large value, G = 0.44, with a period of 5 ms (on/off ratio 1).

The time evolution of the cavity transmission is plotted in Fig. 3.9, where the blue

curve represents the evolution of the system without repumping, while green gives

the transmission with constant repumping, for the same value of G. These configura-

tions correspond qualitatively to the (i) and (c) panels of Fig. 3.6, respectively. In the

prior case, the system with atoms in |g⟩ is prepared in a phase which is unstable at
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finite cavity drive and without repumper. Therefore, the system switches to the stable

phase in a runaway process at a random time. With the repumper on, the blockaded

phase is stabilized to some extent, and the runaway transition is delayed until fewer

atoms are present, due to inevitable atom loss from the trap. The observed curve for

the pulsed repumper demonstrates that the atoms can be transferred back to the state

|g⟩ by means of the repumper. The blockade was reinstated repeatedly, following the

pulse sequence exactly. This shows that when the cavity transmission blockade was

broken down, the atoms were shelved in the state |f⟩, from where they could be

pumped back to the blockading state |g⟩. This proves, on the one hand, that the cav-

ity transmissivity is not due to an atomic saturation effect on the |g⟩ ↔ |e⟩ transition.

On the other hand, since the repumper reinstated the blockade at the same level as it

was a period of 5 ms earlier, there is no significant light-induced loss of atoms from

the trap during the timescale 40 ms of the observed transition. There is of course loss

on the longer time scale, as can be seen, for example, in Fig. 3.6(g) corresponding to

weak drive and repump, on a time scale of several hundreds of milliseconds.

In addition, this measurement served for the calibration of the model parameter,

λ, characterising the AOM-controlled repumper intensity. When there is a sudden

increase of the cavity transmittance (repumper is off), the magnitude of its change

gives information on the depletion of the population in |g⟩. One can safely assume

that these atoms are accumulated in the state |f⟩. On switching on the repumper,

from the initial slope of the transmittance drop, it is possible to deduce the rate of

change in the population of |f⟩. It is given by −λnf , according to the last term in

Eqs. (3.6), from which the rate λ can be obtained.
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Figure 3.9: The time evolution of the cavity transmission without repumping (blue),
with repumping (green) and with pulsed repumping (orange). When the repumper is
switched off, the system starts to evolve in a runaway process toward the bright phase at
a given time near t = 0.04s. With the repumper on, however, the system undergoes the
transmission blockade breakdown at a later time than without it. As the repumper is
strong in this case, the transition to the high transmittance phase, with atoms in state
|f⟩, takes place only when the atom number is significantly reduced due to other loss pro-
cesses. With pulsed repumping, the transition occurs every 5 ms, because the repumper
brings the atoms back from state |f⟩ to state |g⟩ (the blockaded phase): switching be-
tween the two hyperfine ground states.

3.8 Conclusion

I have experimentally demonstrated bistability in a cold atom-cavity QED system,

where the steady states correspond, dominantly, to hyperfine ground states. Hav-

ing explored the runaway pumping processes involved, I have described the phe-

nomenon in terms of a driven-dissipative phase transition, with two optical driving

intensities as control parameters and cavity transmission as the order parameter of

the system. Crucially, by exploring different combinations of optical pump intensi-

ties, I have shown that the steady state of the system depends on the history. This

observed hysteresis, in both control parameters, not only confirms the bistability but

that the transition is a first-order effect. In fact, high pumping intensity in one of the

control beams recovers the original, widely known, optical bistability, such that it is
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included as a special case in the system presented here.

Considering future directions, it is important to note that the system size is charac-

terised by the cooperativity, i.e. the collective coupling strength between the atomic

cloud and the cavity mode. In our system, the cooperativity, C, was about 100 which

is comparable with the one reached in the circuit QED systems with single artificial

atoms [87]. However, in this Λ atom scheme, the cooperativity can be increased

by the number of atoms, so one can better approach the thermodynamic limit. One

possible solution is to use Bose condensed gases, for which the steady-states would

be entirely quantum in all degrees of freedom. As the cavity transmittance is asso-

ciated with hyperfine states, which can be coherently manipulated with microwave

radiation, the system shows analogy with single-atom based quantum switches [98]

and quantum birefringence systems [99]. Within many-body systems, the observed

effect suggests a pathway for bringing microscopic quantum effects to a mesoscopic

system size.



Chapter 4

Quantum bistability in the hyperfine

ground state of atoms

4.1 Introduction

First-order phase transitions are ubiquitous in nature, however, this concept is am-

biguous and often contested regarding open quantum systems. The study presented

in this chapter, while offering a paradigmatic example that clarifies the essential con-

cepts, shows that atoms in an optical cavity can exhibit a first-order dissipative phase

transition, where the stable co-existing phases are collective quantum states with

high quantum purity. These states correspond to atomic hyperfine ground states and

coherent states of electromagnetic field modes. The scheme takes advantage of the

collective enhancement of the coupling between the atoms and the cavity field. In

this way, a readily implementable experimental scheme is proposed to study the dis-

sipative phase transition phenomenology in the quantum limit, enabling, specifically,

a finite-size scaling toward the thermodynamic limit.

First-order dissipative quantum phase transitions (DQPTs) [100, 101] feature the

following defining properties: (i) the quantum system has multiple stable steady-

states in a finite interval of a given control parameter, these states are (ii) macro-

scopically distinguishable by an order parameter, and (iii) are approximately pure

69



70 Quantum bistability in the hyperfine ground state of atoms

quantum states. When the control parameteris swept across the critical domain, the

steady state depends on the history of the system, and hysteresis is manifested in

the order parameter. While many classical systems show the multistability properties

(i) and (ii), quantum counterparts that also fulfill condition (iii), have only recently

been identified in various systems. A first-order DQPT was predicted theoretically

for the clustering of Rydberg atoms [102–104], although the experimental feasibility

has been contested [105–108]. Optical lattices with engineered losses [109, 110],

ultracold-atom cavity QED systems [111], nonlinear photonic or polaritonic modes

[56, 79], exciton-polariton condensates [112], and circuit QED systems [87, 113,

114] have also been shown to feature first-order dissipative phase transitions.

Optical bistability [80, 115–118] is a paradigmatic example of a first-order phase

transition in cavity QED. In its common form [116] it satisfies conditions (i) and (ii),

but not (iii). Depending on the state of atoms in a laser-driven optical resonator, its

transmissivity can be switched between high and low values at a fixed drive inten-

sity. The nonlinearity arises from the saturation effect of two-level atoms. However,

the bright phase, involving saturated atoms, is a high-entropy mixed state, violating

condition (iii) above.

All the three properties can be identified in the case of the recently revealed

photon-blockade-breakdown (PBB) phase transition [73, 86, 119]. The experimental

configuration is very similar, but only a single two-level atom is coupled to the mode

with very large dipole coupling. This can be achieved in superconducting circuit QED

systems in the microwave frequency regime, where the signatures of a closely related

bistability effect have been observed with three-level atoms [87].

Similarly to PBB, the thermodynamic limit, where a bimodal phase-space distri-

bution composed of two metastable states becomes true bistability between macro-

scopically distinct phases, is reached by increasing the cooperativity. However, in

contrast to PBB, this can be achieved by increasing the atom number rather than

the single-atom coupling constant, the latter being impossible to vary in the optical

domain.
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4.2 Mean-field model

The proposed scheme is the extension of the experiment discussed in the previous

chapter, cf. also [120] for a related scenario: in this case, two cavity modes are

used instead of just one. The modes interact with an ensemble of atoms modelled

by a four-level scheme (see Fig. 4.1). The two cavity modes must have a spectral

separation close to the atomic hyperfine splitting, which is not available actually in

our experimental setup (the FSR is larger than the hyperfine splitting, see Table 2.2

and Fig. 2.2, respectively). However, the theoretical study is motivated by the strik-

ing feature of the present scheme within the above listed zoo of first-order DQPTs,

namely the high quantum purity of the metastable steady states, whereas in the ther-

modynamic limit, the bistable phases become perfectly pure. The two modes are either

in vacuum or in a high-intensity coherent state, meanwhile the atoms are in one of

their hyperfine ground states. The essential features and the phase diagram can be

captured by the mean-field theory introduced in Ch. 1 with the inclusion of the ad-

ditional cavity mode and atomic states. The atoms collectively couple to the cavity

modes, which mediate an infinite-range interaction. As a result, the mean field the-

ory provides an accurate description of our system. While in the case of short-range

interactions the fluctuations can wash out the mean-field bistability [121], in the case

of collective coupling the mean-field equations become exact in the thermodynamic

limit [122].

The system can be split into two subsystems (denoted by indices 1 and 2), ac-

cording to the two cavity modes and the two pairs of (hyperfine) ground and excited

states electric-dipole coupled to each of the cavity modes. Both subsystems, being

just an ensemble of two-level atoms coupled to a single cavity mode, can be de-

scribed in the same way as the system in Ch. 1. The only difference, importantly

for the scheme, is that atoms from the excited levels may decay not only to the

cavity-coupled ground state, i.e. |ei⟩ ↔ |gi⟩, but cross decays |e1⟩ → |g2⟩, |e2⟩ → |g1⟩
are also possible with rates Γ1 and Γ2, respectively. This mechanism couples the sub-

spaces 1 and 2. The drive 1 (2) is very far detuned from the transition e2(1) → g2(1),
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Α

Α

Figure 4.1: (a) Parameters of the cavity QED scheme with two laser-driven modes
interacting with an ensemble of atoms. The modes are spatially separated only for
illustrative purposes, in practice, two fundamental modes of the cavity can be used. (b)
Relevant level scheme of the atoms with two dipole-allowed transitions cross-coupled by
relaxation processes. Schematic panels at the bottom represent that the atomic ground
states switch the transmission or reflection of the cavity drives.

thus no cross-coherence is created between the states 1 and 2. By extending Eq. (1.9)

to include these considerations, the mean-field equations of motion become:

α̇1 = (i∆C1 − κ1)α1 + g1m1 + η1 ,

ṁ1 = (i∆A1 − γ1 − Γ1)m1 + g1 [ne1 − ng1]α1 ,

ṅe1 = −g1 [α
∗
1m1 +m∗

1α1]− 2(γ1 + Γ1)ne1 ,

ṅg1 = g1 [α
∗
1m1 +m∗

1α1] + 2γ1 ne1 + 2Γ2 ne2 , (4.1a)
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α̇2 = (i∆C2 − κ2)α2 + g2m2 + η2 ,

ṁ2 = (i∆A2 − γ2 − Γ2)m2 + g2 [ne2 − ng2]α2 ,

ṅe2 = −g2 [α
∗
2m2 +m∗

2α2]− 2(γ2 + Γ2)ne2 ,

ṅg2 = g2 [α
∗
2m2 +m∗

2α2] + 2γ2 ne2 + 2Γ1 ne1. (4.1b)

Without loss of generality, for simplicity, a symmetric case will be considered: the

parameters with index i = 1 and 2 are equal pairwise, γi = γ, Γi = Γ, κi = κ, and

gi = g for i = 1, 2. Resonant driving of the cavity modes will be considered, i.e.

∆C1 = ∆C2 = 0. The cavity linewidth κ = 1.32γ and the atom-cavity coupling are

taken from the experiment presented in the previous chapter, for this latter the single

atom coupling g(N = 1) = 0.1γ. Without loss of generality, Γ = γ is chosen. The

effect of the coherent drive η1 on the atomic variables involving states 2 scale with

(ω1 − ω2)
−1, which is the inverse of the hyperfine splitting, i.e. 1/(103γ) and is thus

negligibly small compared to the other variables. The drive amplitudes η1 and η2

are left to be the control parameters of the system, which can be tuned to explore

different phases and transitions between them.

Note that N does not appear in the system (4.1), due to the scaling with N of

the dynamical variables and parameters before Eqs. (1.9). Moreover, g with the

above
√
N -scaled definition makes g2 proportional to the ensemble cooperativity C ≡

≡ g2/
√
(∆2

C + κ2)(∆2
A + γ2). This latter quantity is a measure of nonlinearity, as

attested by that optical bistability in a system of two-level atoms coupled to a cavity

mode becomes possible in the C ∼ 1 regime. Note that for Γi = 0, the system (4.1)

separates to two uncoupled two-level systems, where bistability would originate from

the saturation of the atoms. Although a large atomic detuning, ∆A will be considered

with respect to the linewidth γ (for numerical calculations ∆A = −12γ was chosen),

significant excited state population nei can occur for large intensities. This possibility

is taken into account in these equations. Nevertheless, in the following, another

solution of the mean-field equations will be studied, which is bound to the cross-

coupling decay terms, and takes place in the low-excitation limit of the atoms.
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4.3 Phase diagram

The steady state solution of Eqs. (4.1) can be obtained by setting the temporal deriva-

tives on the left-hand side to zero. The remaining system of algebraic equations can

be transformed into a single, 7th order polynomial equation with real coefficients for

the variable ne1 − ng1. Such an equation can have 1, 3, 5, or 7 real solutions out

of which respectively 1, 2, 3, or 4 are stable, the rest are unstable. The number of

stable solutions depends on the control parameters η1 and η2, as shown in the phase

diagram in Figure 4.2.

The phase diagram depends on the cooperativity that in the present setup can be

changed by the atom number N . Whereas N = 5 · 103 (panel (a)) allows for 1 or 3

solutions only, the large atom numbers N = 105 and 106 (panels (c) and (d)) give

rise to domains with 5 (orange edge of the bright yellow domain) or even 7 solutions

(bright yellow domain). An intermediate phase diagram is obtained for N = 104

(panel (b)) where a domain with 5 solutions exist, but one with 7 solutions does

not. Closer look at the concrete solutions in the domains with 5 and 7 solutions (not

shown here) reveal that the excited states nei are significantly populated, while the

polarizations mi have low values. This means that the steady states correspond to

statistical mixtures, i.e., the quantum purity of the state is low. In the following, we

will focus on the bottom left corner of the phase diagrams, where only one or two

stable solutions exist.

The different solutions in a given domain of the phase diagram are distinct in

a macroscopic observable, which is the transmitted power κ|αi|2 in our case (i =

= 1, 2). This is a suitable order parameter of phases and is readily obtained from the

mean-field model. The solution (valid for our case of ∆C = 0 and |∆A| ≫ γ + Γ)

reads

|αi|2 =
η2i
κ2

1

1 + C2(nei − ngi)2
, (4.2)

highlighting the role of the cooperativity as a measure of nonlinearity. The factor

η2i /κ
2 is simply the number of photons in the resonantly driven empty cavity and

will be used as a normalization factor. The second factor above can be identified as
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Figure 4.2: Phase diagram with domains with different number of solutions of the
system (4.1) on the plane of the drive amplitudes η1, η2. The cooperativity increases from
(a) to (d), corresponding to atom numbers N = 5 · 103, 104, 105, and 106, respectively,
with the single atom coupling g(N = 1) = 0.1γ. Relevant quantities along the coloured
quarter circular arcs plotted on the phase diagrams will be shown later in Figs. 4.3 and
4.4. Radii of the coloured circular arcs are η/γ = 0.29, 1.13, 2.25, 3.38, 4.5. The white
arcs in the low drive limit are of particular interest with respect to DQPT. The symmetry
to the diagonal is a consequence of the artificial choice of equal parameters for the 1 and
2 transitions.

transmittance. Equation (4.2) is not an explicit solution, as the population difference

nei − ngi depends on the intracavity intensity |αi|2. However, this form allows for

getting insight to the phases.

If the population ng1 ≃ 1 and ne1 ≪ ng1, the transmittance through the mode 1 is

suppressed for large cooperativity C ≫ 1. As there is no field in the cavity mode 1, all

the atoms being in state |g1⟩ is a stable solution. On the other hand, according to the

solution above with ne2 ≈ 0 and ng2 ≈ 0, mode 2 is closely resonantly excited, which
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Figure 4.3: Crossing domains with multiple stable solutions along the circular arcs
in Fig. 4.2 (a) (N = 5 · 103). The transmittance of cavity for mode 1 (a), and relative
atomic population (b-c) are shown in corresponding colour as a function of the arc angle
φ measured from the vertical axis. Solid (dashed) lines correspond to stable (unstable)
solutions.

leads to transmittance 1. Reversely, there is also a stable solution in which all the

atoms are in |g2⟩, i.e. ng2 ≃ 1, and the transmittance of mode 1 is close to unity. The

domain with 3 solutions in Fig. 4.2 corresponds to the case when these stable steady

states coexist. This will be further investigated along circular sections of the phase

diagram, i.e., where η21 + η22 ≡ η2 is constant. As the total input power per atom is

proportional to η21 + η22, this section represents a fixed total drive intensity per atom,

and increasing the angle φ = arctan η2/η1 from 0 to π/2 corresponds to a continuous

switching from driving mode 1 to 2.

Figure 4.3 shows cavity transmittance (a), ground state (b) and total excited state

populations (c) as a function of the angle measured from axis η1 for case N = 5000

along circular arcs of various radii plotted in Figure 4.2 (a) with the same colours.

Because of the 1 ↔ 2 symmetry of the scheme, the plot of the same quantities with

index 2 are just the mirror images of the ones with index 1, therefore only the latter

is shown. The red and the green arcs do not cross the bistable region, hence there is

only one real solution along those, which is, of course, stable. The rest of the curves,

both for the transmittance and the ground state population, show a characteristic

S-shaped form of a bistability with overlapping stable solutions (solid line) connected

by an unstable one (dashed line). The stability has been checked by means of linear

perturbation analysis on Eqs. (4.1). High (low) transmittance corresponds to low
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Figure 4.4: Finite size scaling to the thermodynamic limit. The order parameter repre-
sented by the transmittance of cavity for mode 1 is plotted in (a), and relative atomic
population are shown in (b-c) along the circular arcs on the phase space in Figure 4.2
(a) with a radius of η/γ = 0.29 for different atom numbers N . φ is measured from the
vertical axis. Solid (dashed) lines correspond to stable (unstable) solutions.

(high) relative ground state population. For decreasing the total input power, the

S-shaped curves show convergence in panels (a) and (b), whereas a gradual decrease

of the population in the excited states is shown in (c). In this limit, the bistability

is formed between the two hyperfine ground states, the excited states being only

virtually populated underway the two-photon transition between the ground states.

One can identify thus a dissipative quantum phase transition in the spirit of the three

conditions given in the introduction, where in particular, the phases correspond to

quantum states of high purity.

The thermodynamic limit, where the duality of metastable phases becomes a

phase transition, can be defined as C → ∞ while η is kept constant. In a practi-

cal case, the cooperativity can be increased by the atom number, hence the N → ∞
implies that the actual drive power N η2 has to go to infinity. The axes of the phase

diagrams in Figure 4.2 already used this scaling. Therefore, the circular arcs of a

radius η/γ = 0.29, plotted in each phase diagram (white), are fixed in the finite-size

scaling. While the boundaries of the multivalued domain vary slightly, the phase

diagram is qualitatively the same. For increasing cooperativity (via atom number),

Fig. 4.4 (a) and (b) show that the S-shaped curve tends to a sharper Z-shaped one

(mirrored). Interestingly, when going towards the thermodynamic limit, both so-



78 Quantum bistability in the hyperfine ground state of atoms

lutions become stable in almost the total range of the control parameter η2/η1.The

initial condition determines which phase the system takes in the bistability domain.

Even a very strong drive η1(2) can not kick off the atoms from the state g1(2) because

the light cannot penetrate into the cavity. Simultaneously, as shown in Fig. 4.4 (c),

the population in the excited states tends to completely vanish in this limit. Thus,

in the thermodynamic limit, the proposed system has two stable solutions with the

atoms being in one of the ground states |g1(2)⟩ and the other mode 2 (1) being pop-

ulated by a coherent state, meaning that in this limit, the perfect quantum purity of

the phases of the system is achieved.

4.4 Conclusion

I have proposed an experimentally accessible scheme, featuring metastability of steady

states turning into true bistability, that is, a first-order dissipative quantum phase

transition in a non-extensive thermodynamic limit, where, moreover, the phases be-

come pure collective states. The four-level atomic scheme can be realized to a good

approximation within the hyperfine structure of e.g. the D2 line of rubidium-87, as

discussed in the previous chapter. The atom number can be varied in a controlled

way over many orders of magnitude in an experiment, allowing thus for a finite-size

scaling to the thermodynamic limit. Beside the investigation of fundamental con-

cepts of phase transitions in mesoscopic quantum systems, the bistability between

long-lived ground states holds prospects for new atomic memory architectures.



Chapter 5

Demonstration of strong coupling of a

subradiant atom array to a cavity

vacuum

5.1 Introduction

In the experiment discussed in Ch. 3, the atoms in the optical resonator were driven

from the side in order to pump them optically back to a ground state coupled by

the cavity to an excited state. The main control parameter was the intensity of this

repumper laser. However, the repumper laser was very far from resonance with any

of the cavity modes, hence the repumper laser photons could not have been scattered

into the cavity. In the following experimental research work, we studied a scheme

in which the transverse drive was close to resonance with a cavity mode and photon

scattering into the resonator was possible. Here, the frequency fine-tuning of the

transverse drive becomes a relevant parameter beside its intensity. Furthermore,

as a new element with respect to the breakdown experiments, the position of the

atoms within the resonator was much better controlled as an essential element of

the phenomenology. In particular, the atoms have been ordered and sustained in an

intra-cavity optical lattice dipole trap rather than in a magnetic trap.

79
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Considering atoms as linearly polarizable particles is a conventional approach

when they are weakly illuminated, so that the atomic saturation is low. Even if

the complicated internal electronic structure can be neglected, the interaction with

low-intensity light, basically Rayleigh scattering, can still produce a large variety

of interesting phenomena, depending on the specific electromagnetic configuration.

Collective atomic emission, for example, is of great interest, particularly in the con-

text of superradiance [123–127] and subradiance [128–130]. The latter has appli-

cation in long-term storage of quantum information [131–133]. Accordingly, there

has been an extensive study of regular three-dimensional atomic arrays [134] in

which geometric constraints lead to destructive interference of the scattered light.

Increased storage time, i.e., the collective suppression of spontaneous emission, has

been shown to correspond to optical guided modes in the atomic array [135]. In

addition to ordering atoms, the radiation can also be tailored to favour specific out-

put channels in the scattering process, for example, when coupling to fibre-guided

modes, [136, 137] where subradiant behaviour has been both predicted and experi-

mentally demonstrated [138].

In this chapter, we revisit low-intensity light scattering from a one-dimensional

atomic array in a subradiant configuration, when the scattered output is directed

into strongly coupled radiation modes sustained by an optical resonator [139, 140].

Dynamics of laser-driven atoms interacting with cavity field modes is of high inter-

est producing a great variety of effects: experiments started with efficient cooling

schemes [141], atomic self-organization [51, 142, 143] and led to the exploration of

superradiant [144–146] and other types of quantum phase transitions [46, 50, 54,

55, 59, T1, 147–151]. Collective radiation effects in many-atom cavity QED systems

have been observed, such as the interference in Rayleigh scattering with controlled

positioning of atoms in a cavity mode [139, 140, 152–154], quantum non-demolition

measurements [155] have been performed, as well as lasing [156, 157] and super-

radiant lasing [158–160] with cold atoms as the gain media.

We will study the spectral and polarization properties of light scattered off a cold

atomic ensemble into a quasi-resonant mode of a high-finesse optical cavity. The
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atoms are arranged into a lattice with periodicity incommensurate with respect to

the wavelength of the cavity mode resonant with the driven atomic transition. In

such a configuration, destructive interference inhibits the build-up of a coherent field

in the cavity, hence this configuration of atoms is referred to as a subradiant array.

Experimental evidence will be presented that this interference, however, does not

result in a decoupling from the cavity field. A strong collective coupling between the

atomic ensemble and a cavity mode is manifested by vacuum Rabi splitting [161–

163] in the spectrum of the outcoupled cavity field intensity fluctuations. Another

remarkable effect is revealed, i.e., the rotation of field polarization by the subradi-

ant array. In coherent scattering, the dipole moment of an atom is parallel with the

polarization of the exciting optical field; hence, the scattered light preserves this po-

larization. This component is, however, suppressed by the destructive interference.

The incoherent scattering is enhanced in a high-finesse cavity also into the mode

with polarization orthogonal to that of the incoming field. The polarization rota-

tion is accompanied by a two-photon Raman transition between Zeeman sublevels

in the atomic hyperfine ground state manifold in accordance with the conservation

of angular momentum [120, 145, 164]. We will see that this process is on the same

order of the drive power and reflects the same vacuum Rabi splitting spectrum as the

polarization-preserving scattering.

Prior to the experiment, my task was to build the optical path of the transverse

drive, sketched in Fig. 2.7. Its beam is derived from the science laser and joined

with the path of the optical pumping beam by a non-polarizing beamsplitter. Since it

shares the mirrors with the vertical part of the MOT alignment, I have also built an

independent adjustment setup. Regarding the frequency requirements of the trans-

verse drive laser, I have implemented a phase-locked loop (PLL), developed in our

group, which enables fine-tuning near resonance and provides sub-Hz precision rel-

ative to the reference. As the intensity of the detected signal was expected to be

very low, I also had to connect the system to a superconducting nanowire single pho-

ton detector (SNSPD), and later to avalanche single photon counter (SPC) modules.

Both detectors work with a time controller device, which I had to implement into the
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experiment software control.

5.2 Experiment

The experimental scheme is sketched in Fig. 5.1. Rubidium atoms were collected

in an 805 nm intra-cavity optical dipole lattice, described in Subsection 2.4.6. The

atomic cloud was then driven in a direction perpendicular to the cavity axis, at an

angular frequency ω, with varying detuning from the F = 2 ↔ F ′ = 3 transition, ωA.

This laser was phase-locked to the reference laser with a variable detuning from the

atomic resonance. The beam waist was 1mm, the power in each direction was ad-

justed from 0.15 µW to 256 µW by means of an acousto-optic modulator (AOM). The

angular frequency ωC of another (undriven) longitudinal mode was set to resonance

with ωA, such that the transverse drive had equal detuning with respect to the atom,

∆A ≡ ω − ωA, as it had to the cavity mode, ∆C ≡ ω − ωC, i.e. ∆ ≡ ∆A = ∆C. Simulta-

neously, the F = 1 ↔ F ′ = 2 transition was also driven resonantly by the repumper

laser (see Subsection 2.1.3), in order to keep the atoms in the F = 2 ↔ F ′ = 3 cycle.

Cavity photons could be generated only by scattering from the transverse laser

drive beams. Since the atomic distribution had a periodicity incommensurate with

the wavelength of the drive (780 nm), the scattered wave components from different

positions of the mode were expected to have averaged to zero along the cavity axis

[140, 165]. Such destructive interference is imposed by the geometry, regardless of

the intensity, detuning and polarization of the drive. Even if coherent field build-

up in the cavity mode was suppressed, presence of photon field fluctuations was

expected. Such was the case, and the outcoupled cavity field was detected by single-

photon counters after passing through a polarizing beamsplitter (PBS) discriminating

between horizontally (‘y’) and vertically (‘z’) polarized photons.
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Figure 5.1: Scheme of our experiment on the scattering from a subradiant atomic
configuration. Cold 87Rb atoms in an intra-cavity dipole lattice at wavelength 805 nm
are illuminated by two counter-propagating coherent laser beams with equal intensity
and opposite circular polarizations from the two opposite directions perpendicular to the
cavity axis. The laser was set near resonant with the F = 2 ↔ F = 3 transition of the
D2 line at 780 nm and close to resonance with one of the fundamental cavity modes. The
cavity field output is split using a polarizing beamsplitter (PBS) to distinguish photon
polarization. Both the horizontal and vertical polarization beams were coupled into
a fibre, and they are monitored by single photon detectors (see Sec. 2.3). The cavity
linewidth is κ = 2π · 3MHz (HWHM), the maximum single-atom coupling constant is
g = 2π · 0.33MHz.

5.3 Vacuum Rabi splitting

As a first step, the number of atoms loaded into the mode volume was varied in

the range of ∼ 1500 to ∼ 104 by systematically adjusting the Rb dispenser current,

the duration of the MOT collection and the switch-on time of the transverse drive

laser. The effective atom number was determined from independent measurements:

it was calibrated by the cavity transmission of a near resonant probe detuned from

the atomic transition, such that the atoms acted as a dispersive medium. The drive

laser intensity was lowered as much as possible (16 µW) so that a reasonable rate of

photons (in the range of kHz, with an estimated maximum of cavity photon number

0.014, producing a saturation around 1.5%), scattered by the atoms into the cavity
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and then outcoupled from it, still could be detected by a superconducting nanowire

single photon detector (SNSPD). At fixed atom number and drive intensity, the drive

laser detuning ∆ was varied in the range of ±50MHz to record a spectrum. Fig-

ure 5.2 presents that the intensity fluctuations reflected the vacuum Rabi splitting

for large enough atom number. The observed large variance is intrinsic to the pho-

Figure 5.2: Vacuum Rabi splitting with a subradiant array of atoms. The photon
count rate in the first 1ms of exposure time is plotted versus the laser drive detuning
∆ for various atom numbers N . Horizontal and vertical polarizations are summed up.
Each point and error bar is obtained from an ensemble of 70 runs assuming log-normal
distribution, given that the photon count rate is a priori a non-negative quantity. The
photons were counted by a superconducting nanowire single photon detector (SNSPD).
The maxima of the doublets, projected on the bottom plane (orange circles), fit well on a
parabola N = ∆2/g2eff with geff = 2π · 0.26MHz, in accordance with the

√
N dependence

known for the collective coupling of a number of N atoms to a single cavity mode.

ton statistics: it indicates that the mean-field vanishes, which is in agreement with

our expectation that the atoms ordered with a periodicity of the half of the 805 nm

wavelength form a subradiant configuration. This expectation was verified in a sub-

sequent step by a more involved analysis. The spectra have been fit by a sum of two
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Lorentzians providing for the peak maxima indicated by empty orange circles in the

bottom plane. The parabola fit on these peak positions is thus a
√
N function, clearly

evidencing that a strong collective coupling between the atomic ensemble and the

mode is present. The coefficient geff ≈ 2π ·0.26MHz from the fit is in good agreement

with the expected value of 2π · 0.225MHz which can be obtained by averaging over

the atomic population distributed evenly in the F = 2,mF magnetic sublevels with

different Clebsch-Gordan coefficients. The 10% deviation is attributed to the small

but not entirely negligible saturation in the atom number calibration measurement.

5.4 Linear scattering

In the next step, the vacuum Rabi splitting spectrum was analysed for a range of drive

powers in order to verify that the scattering is in the linear regime. The recorded

spectra could be compared to a simple theory based on a linear polarizability model

of atoms [45] which assumes that the atomic induced dipole is proportional to the

local electric field, d⃗ ∝ ϵ0χ(ω)E⃗(r⃗) in the low-excitation limit [44].

In our configuration, the two counterpropagating beams have opposite circular

polarizations. The resulting electric field is linearly polarized in a helical pattern

along the drive axis ‘z’, i.e., E⃗(r⃗)∥e⃗y cos kz + e⃗x sin kz. Note that the optical resonator

does not sustain modes with e⃗x polarization, being the direction of the cavity axis;

hence, effectively, only the linear polarization e⃗y couples into the resonator field.

Linear scatterers lead then to the intracavity field amplitude for the mode polarized

in the direction ‘y’ [44, 140]

αy =
η g

∑
a cos kxa cos kza

(i∆A − γ)(i∆C − κ) + g2
∑

a cos
2 kxa

, (5.1)

where η is an effective drive amplitude and the summation goes over the atoms in-

dexed by a = 1 . . . N with positions r⃗a. The modulus square of the denominator has

two minima which, for our setting of resonance between the atoms and the mode,

∆A = ∆C = ∆, are at ∆ = ±
√

g2
∑

a cos
2 kxa ≡ ±√

Neff g. The effective atom number
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is around Neff ≈ N/2 for cos2 kx = 1/2. This two-peaked resonance behaviour is re-

sponsible for the normal mode splitting shown in Fig. 5.2. A destructive interference

leads to vanishing mean field, α, which is formally represented by that the numera-

tor averages to zero over the atomic positions, ⟨∑a cos kxa cos kza⟩ = 0. This is the

case for a homogeneous distribution, and also for a set of positions {xa} sampling

the 805 nm wavelength optical lattice. Even if the mean vanishes, however, there are

finite size fluctuations of the atomic distribution, which result in cavity field intensity

fluctuations, |∆αy|2 ̸= 0. Considering the atomic positions as random variables, the

statistical average gives

〈∣∣∣∣∣∑
a

cos kxa cos kza

∣∣∣∣∣
2〉

≈ Nβ/4 , (5.2)

where the proportionality to the number of atoms has been taken into account with

an exponent β. The actual value of the exponent can be deduced from our measured

data and gives information on the atomic distribution. For destructive interference

β = 1; this is expected for our case, where the distribution of atoms is incommen-

surate with the mode function cos kx. If β > 1 was measured, it would imply the

presence of a coherent component in the field amplitude, ultimately, exponent β = 2

would correspond to superradiance and perfect constructive interference. In the large

vacuum Rabi splitting regime and in leading order of (κ2 + γ2)/Neffg
2 ≪ 1, the spec-

trum of the intensity fluctuations around the peak maxima can be approximated by

Sy(∆) ≈ η2Nβ−1

8

[
(∆±

√
Neff g)

2 +

(
κ+ γ

2

)2
]−1

. (5.3)

In the experiment, the averaging over many realizations may involve a random

variation of the atom number. On taking this into account, the Eq. (5.3) is modified

and the peak intensity scaling on resonance gets a correction:

Smax(∆peak) =
4η2Nβ−1

(κ+ γ)2

(
1− 4g2

(κ+ γ)2
δN2

N

)
, (5.4)
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where δN is the variance around the mean N̄ . The correction is, however, small for

the sub-Poissonian atom number statistics in our MOT.

This form of the Rabi splitting peaks can be tested experimentally to verify the

linear polarizability model of atoms. Moreover, this is a crucial result because it

provides a direct measure of β via the scaling of the peak intensity with the number

of atoms N .

Figure 5.3 shows the detected photo-count rate, normalized to the pump power,

as a function of the detuning ∆, which was varied in the range of ±30MHz. Al-

though the linear polarizability model outlined above accounts only for horizontally

polarized scattered light (a), similar spectra are recorded in vertical polarization as

well (b), which will be explained in Sec. 5.6. As shown by the orange solid line, the

spectrum deviates from the sum of two Lorentzian curves, in fact, the fit is composed

of the sum of four Lorentzian functions. The inner two (smaller) peaks, which will be

investigated in a subsequent study, are due to the multiplett structure of the hyper-

fine states. The outer two resonances are in very good agreement with Eq. (5.3) in

three features, which confirms the validity of the linear scattering regime. First, the

separation of the two outer peaks, indicated by red and blue crosses in the bottom

plane for the negative and positive detunings, respectively, is constant in the range

of pump powers investigated. It follows then that no noticeable atomic saturation

takes place. As a by-product, this peak separation can be used to calibrate Neff . Sec-

ond, the peak heights of the curves normalized to the input power, this latter being

proportional to η2, are also constant, which is shown by the empty circles on the side

plane. In the case of the strongest drive plotted, some tendency of shrinking peak

separation and decreasing peak height can be observed, indicating that at this power

the scattering begins to leave the linear regime. Third, the linewidths of the vacuum

Rabi peaks, represented by the line sections in the bottom plane, are also constant

and are close to the theoretical value (κ+ γ)/2 = 2π · 3MHz.
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Figure 5.3: Power dependence of the vacuum Rabi splitting spectrum for horizontal (a)
and vertical (b) polarization. Each point is obtained from 50 runs by averaging the pho-
ton count rate in the first 100 µs of exposure. 15ms long signals were detected by single
photon counter (SPC) modules with a time resolution of 1 µs and an overall detection
efficiency of 50%. The detected photon rate is normalized to the laser drive power, which
was set to 10, 16, 32, 64, 128 and 256 µW for the spectra (shown in log scale, in units
of dBm). A sum of four Lorentzian curves can be fit on each spectrum, one example is
shown for the spectrum at the 16 µW drive power (−18 dBm, orange solid line). Heights
of the fit spectra are projected onto the left plane, the corresponding detunings are pro-
jected onto the bottom plane (red and blue circles and crosses for negative and positive
detunings, respectively). At 256 µW (−6 dBm), saturation manifests itself: the peaks
are lower, and the splitting between them is also smaller. For the drive powers being
safely in the linear scattering regime, the average of their heights is shown for reference
by dashed lines on the left plane, red and blue, according to the sign of detuning.
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5.5 Subradiant atomic array

Having established the linearity of the scattering with driving power up to 64 µW,

the dependence of the photon fluctuations scattered into the cavity on the atom

number was investigated at driving power 16 µW (the one with the fitted spectrum

in Fig. 5.3). The registered photo-counts were integrated over only 100 µs, in order

to minimize the effects of atom loss and atomic motion. The drive frequency was

tuned over the same range as in Fig. 5.3 so that the full spectrum was recorded. This

allowed us (i) to calibrate the atom number from the distance of the peak maxima,

and (ii) to determine the peak photo-count rate for the given atom number. The latter

was compared with the maximum rate for vanishing detuning in the denominator

of Eq. (5.3). The measured maximum rates, shown as a function of atom number

in Fig. 5.4, scatter within 10% around a constant value. The power law fit yields

an exponent slightly below 1, which is consistent with β = 1 in Eq. (5.3). This

confirms the lack of coherent component in the scattered photon field and supports

the observation of subradiance from an array of atoms. Beyond a simplified one-

dimensional form of subradiance, the cavity does not merely enhance the scattering

into a small solid angle for each individual atom, but the collective strong coupling

to the cavity mode modifies the excitation spectrum of the atom array.
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Figure 5.4: Collective scattering as a function of the atom number. The maximum
photon scattering rates on resonance, both at the negative (red) and positive (blue) side
of the detuning, have been detected during the first 100 µs of transverse drive exposure.
Horizontal and vertical polarizations are summed up. The exponents of the linear fit on
the log-log scale are obtained β = 0.875 ± 0.009 for the red and β = 0.853 ± 0.031 for
the blue, respectively.

5.6 Polarization rotation

The strongly coupled vacuum field influences not only the spectral features of scatter-

ing but also the polarization, beyond the simple linear polarizability model presented

above and leading to Eq. (5.1). The atomic polarization induced by the ‘z’ travelling

σ± beams is expected to excite the ‘y’ polarized mode of the cavity, which corresponds

to a Rayleigh scattering process. However, in linear order of the drive intensity, a pho-

ton flux was observed arising from the mode with polarization ‘z’ (σ0) which is the

direction of propagation of the input field. The scattering rate into the polarization

‘z’ as a function of the laser drive detuning for a range of drive powers is shown in

Fig. 5.3(b). In full similarity with the ‘y’ polarization shown in panel (a), vacuum

Rabi peaks with constant heights (normalized to the input power) and widths have

been measured. The peak heights are close to those of the polarization-maintaining

light scattering, which verifies that the coherent scattering from the subradiant array

is strongly suppressed.

There are two sources of incoherent light: density fluctuations of Rayleigh scat-

terers and the incoherent scattering at the level of individual atoms. The prior can
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yield only ‘y’ photons; hence, it underlies the difference between the recorded in-

tensities in the two polarizations ‘y’ and ‘z’, respectively. The incoherent scattering

from single atoms can be well incorporated into the semiclassical model of Eq. (5.1)

for the cavity field amplitude αy: the averaging over the spatial distributions along

the mode function cos kxa can be complemented by random phase factors eiϕa. Such

an extension does not change the spectrum and the scaling with the atom number,

which was thus correctly treated for the polarization ‘y’. Concerning the polarization

‘z’, the underlying process is a Raman scattering in which the atoms undergo a hyper-

fine Zeeman-sublevel transition. The cavity-stimulated Raman scattering also scales

linearly with the drive intensity. Note that this process has been exploited to real-

ize quantum interfaces between light polarization and atomic memory states [166,

167] by means of stimulated adiabatic passage processes with pulsed excitation in

single-atom strong-coupling cavity QED experiments. Cavity-enhanced Raman scat-

tering has also been observed from a regular half-wavelength ordered array [140]

when the drive is detuned from the atoms. This experiment revealed that the Raman

scattering, though being an incoherent process in free space, manifests the vacuum

Rabi splitting spectrum characteristic of the strong collective coupling of the atoms

to the ‘z’ polarized cavity mode.

5.7 Conclusion

As evidenced above, an important conclusion is that radiation from atomic arrays is

not only efficiently collected, but is substantially modified by the presence of a high-

finesse resonator. Most importantly, the strong coupling to selected resonator modes

imposes a collective scattering from the atoms into the resonator. This collective

coupling, as I have demonstrated, is due to more than simply an interference effect,

even in the extremely low intensity limit.

Such coupling can be seen in the vacuum-induced spectral features of our exper-

iment. It suggests that new variants of the Dicke model [168], extended to disor-

dered manifolds with cavity-mediated interactions, could be realized and simulated
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in systems like presented here. In fact, considering that multiply excited subradiant

states are said to be composed of the superposition of singly excited states in random

ensembles [133], our system could be used to provide further insight into this super-

position. In particular, such a system is well suited for time-resolved measurements

and so the dynamics of the underlying subradiant states in the single-mode limit are

now readily available.

Furthermore, I have shown that optical polarization rotation enters the linear

scattering regime. On the one hand, the multiple ground-state level structure of

atoms has to be taken into account in a linear polarizability description of atoms,

beyond the usual scalar polarizability, which was noted as a subtlety in [135]. On

the other hand, the multiple ground states open the scene for entanglement-based,

new type of subradiant states predicted recently [169]. More generally, the cavity-

enhanced polarization rotation could be the design basis for long-range many-body

interactions between atoms mediated by two-mode fields. The cavity field fluctua-

tions reflecting a non-trivial atom-cavity spectrum can be exploited as a useful light

source when the mean-field is suppressed. Finally, the configuration presented here

is very close to schemes for superradiant lasing [159] and for atomic clocks [146]

which could be explored with the incommensurate lattice trap.



Summary

In this thesis, driven-dissipative phase transitions and collective scattering properties

of atoms have been explored within a system of cold rubidium-87 atoms coupled to a

high-finesse optical cavity. My work, carried out in the Quantum Optics ‘Momentum’

Group of HUN–REN Wigner Research Centre for Physics, contributes both experi-

mentally and theoretically to our understanding of light-matter interactions under

collective strong coupling conditions.

A phase transition between hyperfine states of atoms has been demonstrated in

an optical cavity, controlled by the intensities of external laser fields. The resulting

phase diagram shows distinct dark and bright phases, with a bistable region emerg-

ing between them. By varying laser intensities, I have experimentally observed this

transition, measuring hysteresis curves associated with the bistability.

As a theoretical extension of this system, I have constructed a model which leads

to extreme properties in the bistability. An additional cavity mode and an additional

atomic level have been taken into account. Phase diagrams for a variety of cooper-

ativity parameters, i.e. in finite-size scaling, show that a broad range of the control

parameter domain corresponds to coexistence of two semiclassical solutions that cor-

responds to the statistical mixture of phases represented by pure quantum states in

the thermodynamic limit.

Collective scattering properties of cold rubidium atoms have been investigated

in a new configuration: atoms were arranged in an intra-cavity optical lattice in-

commensurate with the resonant wavelength, and being excited by two counter-

propagating, orthogonally circularly polarized laser beams, perpendicularly to the
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cavity axis. Measuring the photon noise spectrum, collective strong atom-cavity cou-

pling has been confirmed through the observation of vacuum Rabi splitting. Subra-

diance has also been demonstrated through scaling with the number of atoms.

Throughout my stay in the group, I have contributed to both experimental ad-

vancements and numerical modelling of these systems. This included development

of a cavity stabilizing device, building new optical paths, and the implementation

of single-photon detectors, as well as the creation of a versatile simulation package

for modelling semiclassical and quantum dynamics within atom-cavity systems. This

program allows for simulations involving multiple lasers and magnetic fields, greatly

enhancing our capability to understand and design complex quantum-optical exper-

iments.

In summary, this thesis gives account of experimental and theoretical results that

enhance our understanding of driven-dissipative quantum systems and offer poten-

tial applications in quantum information storage, while also contributing tools and

methods for future investigations in CQED and quantum technologies.

Contributions of the thesis

The first thesis group summarizes the results of the publication [T1]. Detailed

discussion can be found in Ch. 3.

I/1. I have shown that a first-order, driven-dissipative phase transition can be real-

ized between hyperfine ground states of atoms loaded in a high-finesse optical

cavity, by laser driving the resonator and the atoms. I have identified the inten-

sities of the external fields as control parameters of the phase transition, and

the mean intra-cavity photon number as an order parameter. Using semiclas-

sical approximation, I have determined the phase diagram of the interacting

system, in which two macroscopically discernible phases (dark and bright) are

apparent, with a bistability region between the two.

I/2. I have experimentally observed the phase transition described in Thesis I/1
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between hyperfine ground states F = 1 and F = 2 of laser cooled and mag-

netically trapped rubidium-87 atoms. Varying the intensities of the laser drive

of the cavity mode and that of the atoms, I have identified the dark and bright

phases, performed fast switching between them, and demonstrated bistability

by measuring hysteresis curves on scanning the control parameters across the

bistability region.

The second thesis group summarizes the results of the publication [T2]. Detailed

discussion can be found in Ch. 4.

II/1. I have constructed a cavity QED model based on two driven cavity modes

resonant with electronic transitions from different hyperfine ground states of

atoms. Using semiclassical approximation, I have determined the phase dia-

gram of the system under different cooperativities. Beyond the macroscopi-

cally discernible dark and bright phases and the bistable region, I have identi-

fied multistable regions as well, up to 4 coexisting phases.

II/2. I have performed a finite-size scaling of the phase transition, and showed that

in the thermodynamic limit (that is in the case of infinite cooperativity), the

phases correspond to pure collective quantum states: hyperfine ground states

of atoms, and the bistability extends to the total range of the ratio of the two

control parameters.

The third thesis group summarizes the results of the publication [T3]. Detailed

discussion can be found in Chapter 5.

III/1. By loading cold rubidium atoms in an intra-cavity optical dipole lattice with

a wavelength incommensurate with that of the atomic resonance, and illu-

minating them with laser perpendicularly to the cavity axis, I have observed
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subradiant scattering from the array of atoms. I have found that the subra-

diant atomic ensemble does not decouple from the cavity mode: I have mea-

sured the spectrum of the photon noise arising from the fluctuations in the

configuration of the atoms, and it shows vacuum Rabi splitting, the hallmark

of strong collective coupling.

III/2. I have observed a significant polarization rotation effect by the atom array de-

scribed in Thesis III/1. The incoherent scattering from the atoms is enhanced

by the cavity also into the mode with polarization orthogonal to that of the

incoming field. I have provided an explanation of the polarization rotation in

terms of a two-photon Raman transition within the atomic hyperfine ground

state manifold.



Összefoglalás

Dolgozatomban nagy jósági tényezőjű optikai rezonátorhoz csatolt hideg rub́ıdium-

87 atomok rendszerén vizsgáltam hajtott-veszteséges fázisátalakulásokat és az ato-

mok kollekt́ıv szórási tulajdonságait. Munkám, melyet a HUN–REN Wigner Fizikai

Kutatóközpont Kvantumoptika “Lendület” Kutatócsoportjában végeztem, mind ḱısér-

leti, mind elméleti szempontból hozzájárul a kollekt́ıv erős csatolás mellett meg-

valósuló fény-anyag kölcsönhatások megértéséhez.

Külső lézeres gerjesztések intenzitásaival vezérelt fázisátalakulást mutattam ki a-

tomok hiperfinom állapotai között, optikai rezonátorban. A fázisdiagram elkülönülő

sötét és világos fázisokat mutat, köztük bistabil tartománnyal. Az átalakulást ḱısérle-

tileg is megfigyeltem, kimérve a bistabilitáshoz tartozó hiszterézisgörbéket.

E rendszer elméleti kiterjesztéseként megalkottam egy olyan modellt, amely a

bistabilitásban extrém tulajdonságokhoz vezet. A fázisdiagramok különböző kooper-

ativitás-paraméterek mellett – vagyis végesméret-skálázásban – azt mutatják, hogy a

termodinamikai határesetben tiszta kvantumállapotokkal megvalóśıtott fázisok együtt

létezhetnek a kontrollparaméterek széles tartományában.

Hideg rub́ıdiumatomok optikai rezonátorban mutatott kollekt́ıv szórási tulajdon-

ságait vizsgáltam, a rezonátor tengelyére merőleges irányú megviláǵıtás mellett. A

fotonzaj spektrumát mérve igazoltam a kollekt́ıv erős csatolást az atomok és a re-

zonátor között a vákuum-Rabi-felhasadás megfigyelésével, valamint a szubradianciát

az atomok számának változtatásával.

A csoportban eltöltött idő alatt hozzájárultam a laboratórium fejlesztéséhez és a

ḱısérletek numerikus modellezéséhez. Részt vettem egy rezonátorstabilizáló eszköz
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98 Összefoglalás

fejlesztésében, új optikai utakat éṕıtettem ki, egyfoton-detektorokat implementáltam

a ḱısérleti rendszerbe. Általános célú szimulációs csomagot késźıtettem atom-rezoná-

tor rendszerek szemiklasszikus és kvantumos modellezésére.

Összefoglalva, dolgozatom olyan ḱısérleti és elméleti eredményekről ad számot,

melyek hozzájárulnak a hajtott-veszteséges kvantumrendszerek mélyebb megértésé-

hez, és alkalmazási lehetőséget ḱınálnak a kvantuminformáció-tárolás terén. Mun-

kám egyúttal eszközökkel és módszerekkel is szolgál a rezonátoros kvantumelektro-

dinamika és a kvantumtechnológia további kutatásához.

A disszertáció tézisei

Az első téziscsoport a [T1] publikáció eredményeit foglalja össze. A részletes bemu-

tatás a 3. fejezetben található.

I/1. Megmutattam, hogy optikai rezonátorba helyezett atomok hiperfinom alap-

állapotai között elsőrendű, hajtott-veszteséges fázisátalakulást lehet megvaló-

śıtani a rezonátor és az atomok lézeres meghajtásával. Beazonośıtottam a külső

terek intenzitását mint a fázisátalakulás kontrollparamétereit, és a rezonátor-

módus fotonszámának várható értékét mint annak rendparaméterét. Szemi-

klasszikus közeĺıtésben meghatároztam a kölcsönható rendszer fázisdiagramját,

melyen két makroszkopikusan elkülöńıthető (sötét és világos) fázis figyelhető

meg, a kettő között pedig bistabil tartomány van.

I/2. Az I/1. tézispontban ismertett fázisátalakulást ḱısérletileg is megfigyeltem léze-

resen hűtött és mágnesesen csapdázott rub́ıdium-87 atomok F = 1 és F =

= 2 hiperfinom alapállapotai között. A rezonátormódust illetve az atomokat

gerjesztő lézerek intenzitását változtatva beazonośıtottam a sötét és a világos

fázist, gyors kapcsolást valóśıtottam meg közöttük, valamint a kontrollparamé-

terekkel pásztázva, hiszterézisgörbék mérésével kimutattam a bistabil tarto-

mányt.
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A második téziscsoport a [T2] publikáció eredményeit foglalja össze. A részletes

bemutatás a 4. fejezetben található.

II/1. Rezonátoros kvantumelektrodinamikai modellt alkottam két hajtott rezonátor-

módust véve alapul, melyek atomok különböző hiperfinom alapállapotaihoz

tartozó dipólátmeneteivel rezonánsak. Szemiklasszikus közeĺıtést alkalmazva

meghatároztam a rendszer fázisdiagramját különböző kooperativitások mel-

lett. A makroszkopikusan elkülönülő sötét és világos fázisok, valamint a bista-

bil tartomány mellett multistabil tartományokat is beazonośıtottam, legfeljebb

4 koegzisztens fázissal.

II/2. Elvégeztem a fázisátalakulás végesméret-skálázását, és megmutattam, hogy

a termodinamikai határesetben (vagyis végtelen kooperativitás esetében) a

fázisok tiszta, kollekt́ıv kvantumállapotoknak, az atomok hiperfinom alapálla-

potainak felelnek meg, a bistabilitás pedig kiterjed a kontrollparaméterek ará-

nyának teljes tartományára.

A harmadik téziscsoport a [T3] publikáció eredményeit foglalja össze. A részletes

bemutatás az 5. fejezetben található.

III/1. Hideg rub́ıdiumatomokat nagy jósági tényezőjű optikai rezonátorban meg-

valóśıtott, az atomi rezonancia hullámhosszával inkommenzurábilis optikai

rácsba rendezve és a rezonátor tengelyére merőlegesen lézerrel megviláǵıtva

az atomok szubradiáns szórását figyeltem meg. Megállaṕıtottam, hogy a szub-

radiáns atomi sokaság nem csatolódik le a rezonátormódusról: megmértem

az atomok konfigurációjában fellépő fluktuációkból származó fotonzaj spekt-

rumát, amely az erős kollekt́ıv csatolásra jellemző vákuum Rabi-felhasadást

mutatja.

III/2. Megfigyeltem a III/1. tézispontban léırt atomi sokaság polarizációforgató

hatását. Az atomok inkoherens szórását a rezonátor erőśıti, olyan módusban
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is, amelynek polarizációja merőleges a beérkező mezőével. A polarizációforga-

tást megmagyaráztam az atomok hiperfinom alapállapoti sokaságában bekö-

vetkező kétfotonos Raman-átmenettel.
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J. Simon, and V. Vuletić. “Interaction between Atomic Ensembles and Optical

Resonators”. en. In: Advances In Atomic, Molecular, and Optical Physics 60

(2011), pp. 201–237. DOI: 10.1016/B978-0-12-385508-4.00004-8.

[46] F. Mivehvar, F. Piazza, T. Donner, and H. Ritsch. “Cavity QED with quantum

gases: new paradigms in many-body physics”. en. In: Advances in Physics 70.1

(Jan. 2021), pp. 1–153. DOI: 10.1080/00018732.2021.1969727.

[47] D. Walls and G. J. Milburn. Quantum Optics. Springer Berlin Heidelberg,

2008, pp. 127–141. DOI: 10.1007/978-3-540-28574-8_7.

[48] H. M. Wiseman and G. J. Milburn. Quantum Measurement and Control. Cam-

bridge: Cambridge University Press, 2009. DOI: 10.1017/CBO9780511813948.

[49] D. Nagy, G. Kónya, G. Szirmai, and P. Domokos. “Dicke-Model Phase Tran-

sition in the Quantum Motion of a Bose-Einstein Condensate in an Optical

Cavity”. In: Phys. Rev. Lett. 104 (Apr. 2010). Publisher: American Physical

Society, p. 130401.

[50] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger. “Dicke quantum

phase transition with a superfluid gas in an optical cavity”. In: Nature 464

(Apr. 2010). Publisher: Macmillan Publishers Limited. All rights reserved,

pp. 1301–1306. DOI: 10.1038/nature09009.

[51] K. J. Arnold, M. P. Baden, and M. D. Barrett. “Self-Organization Threshold

Scaling for Thermal Atoms Coupled to a Cavity”. In: Physical Review Letters

109.15 (Oct. 2012), p. 153002. DOI: 10.1103/PhysRevLett.109.153002.

[52] D. Schmidt, H. Tomczyk, S. Slama, and C. Zimmermann. “Dynamical Insta-

bility of a Bose-Einstein Condensate in an Optical Ring Resonator”. In: Phys.

Rev. Lett. 112 (Mar. 2014). Publisher: American Physical Society, p. 115302.

[53] J. Klinder, H. Keßler, M. Wolke, L. Mathey, and A. Hemmerich. “Dynamical

phase transition in the open Dicke model”. In: P. Natl. Acad. Sci. USA (Mar.

2015). Publisher: National Academy of Sciences, p. 201417132.

https://doi.org/10.1016/B978-0-12-385508-4.00004-8
https://doi.org/10.1080/00018732.2021.1969727
https://doi.org/10.1007/978-3-540-28574-8_7
https://doi.org/10.1017/CBO9780511813948
https://doi.org/10.1038/nature09009
https://doi.org/10.1103/PhysRevLett.109.153002


Bibliography 109
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I must mention here Péter Földi as well, who supervised me during the first year

of my doctoral studies. He respected my decision to change the topic of my research

and allowed me to make this transition peacefully. He did not cease to support me

up to this day, for which I remain deeply grateful.

I am also thankful to the entire Quantum Optics “Momentum” Research Group, as

research – particularly experimental work – is a team effort, and the results presented

here reflect their contributions as well. I cannot list all the help I received from them,
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