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CHAPTER 1: INTRODUCTION 

Chapter 1 sets the foundational stage for this thesis by elucidating the crucial role of 

groundwater as a sustainable resource and delineating the challenges it faces under increasing 

environmental and anthropogenic strains. Groundwater's significance is highlighted in the 

context of Southeast Hungary, where agricultural practices and climate variables pose 

persistent threats to its quality and availability. The chapter discusses the intrinsic and specific 

vulnerabilities of aquifers, establishing the urgent need for comprehensive vulnerability 

assessments. By outlining the objectives and structure of the thesis, this chapter prepares the 

reader for a detailed exploration of various groundwater vulnerability assessment methods. It 

aims to bridge the gap between theoretical frameworks and practical applications necessary for 

effective groundwater management, emphasizing the development of tailored strategies to 

safeguard this vital resource against the backdrop of Southeast Hungary's unique 

hydrogeological challenges.  
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1. 1 Background and significances 

Groundwater represents the world's largest accessible freshwater resource and sustains over 

half of the global population for both economic activities and daily survival (Jain, 2023). This 

vital resource replenishes naturally under most conditions, making it a renewable asset in the 

global water cycle (Mosavi et al., 2020). However, as global populations increase and 

anthropogenic activities intensify, groundwater faces significant threats from depletion and 

pollution, with clear detrimental effect. These challenges are compounded by the potential 

long-term impacts of climate change, which threaten to exacerbate these negative trends further 

(Aeschbach-Hertig and Gleeson, 2012). On top of that, aquifers in every part of the world 

receive today, the relentless discharge of waste and industrial effluents is overwhelming the 

natural purification capacities of the ecosystems, leading to the accumulation of pollutants deep 

within aquifers (Basu and Van Meter, 2014). Additionally, the widespread reliance on tube 

wells significantly contributes to groundwater contamination (Ghouili et al., 2021). 

In the context of Southeast Hungary, which forms a part of the Great Hungarian Plain, the 

region is characterized by its flat and fertile plains that are predominantly utilized for 

agriculture. This sector forms the economic cornerstone of the area, encompassing over 65% 

of the land dedicated to cultivating crops such as maize, sunflowers, wheat, onions, and various 

fruits (General Directorate of Water Management in Hungary - OVF, 2021). The prevalent and 

intensive use of fertilizers and pesticides associated with these agricultural practices poses 

significant risks to the groundwater quality. Additionally, the region is susceptible to severe 

and prolonged droughts, further exacerbating challenges related to groundwater depletion and 

influencing the dynamics of the groundwater table (Rossi et al., 2023; Szöllősi-Nagy, 2022). 

Given the multifaceted challenges, an integrated and multidisciplinary approach is essential to 

address the complex issues surrounding groundwater sustainability in Southeast Hungary. This 

approach must incorporate a variety of groundwater quality and vulnerability assessment 

techniques, which are deeply rooted in an extensive understanding of both local and regional 

geological contexts. A pivotal element of such approaches involves assessing the vulnerability 

of aquifers, particularly to leaching contaminant from surface to subsurface. This assessment 

is crucial as it serves not only to screen and manage groundwater resources effectively but also 

to facilitate the development of management plans that are specifically tailored to address the 

immediate and long-term sustainability needs of the region (Denizman, 2018; S. Foster et al., 

2013). Understanding the specific vulnerabilities of aquifers is essential for crafting strategies 
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that adeptly balance current developmental imperatives with the imperative of future resource 

sustainability. This strategic approach underscores the importance of a preventive framework 

that integrates scientific insights with practical management to ensure the enduring viability of 

groundwater resources (Focazio et al., 2003). 

While numerous studies have focused on general groundwater quality and quantity in Southeast 

Hungary, there remains a significant gap in comprehensive, method-specific vulnerability 

assessments within this specific region. Previous studies, such as those by Pinke et al. (2020) 

on the sensitivity of wheat and maize yields to variations in groundwater levels, Gribovszki et 

al. (2017) on the impact of surface covers on groundwater uptake, and Barreto et al., (2017) on 

groundwater quality and quantity assessments, have provided foundational insights. However, 

these studies have not thoroughly explored the vulnerability of the aquifer system to a wide 

array of potential contaminants through diverse and comparative methodological frameworks 

such as DRASTIC, GOD, SI, and Fuzzy-enhanced DRASTIC. This gap highlights a critical 

need for an integrated approach that not only assesses but also compares the effectiveness of 

various vulnerability assessment methodologies in detailing specific susceptibilities of the 

region's groundwater system. 

This research endeavors to address the identified gaps by conducting a detailed and 

comprehensive analysis of groundwater vulnerability in Southeast Hungary using multiple 

established methods. This study is unique in its comparative analysis of the DRASTIC, Fuzzy-

enhanced DRASTIC, GOD, and SI methods, aiming to evaluate their efficacy in accurately 

assessing the vulnerabilities of the local aquifer system. The findings from this research will 

provide crucial information for stakeholders, policymakers, and scientists, enabling them to 

better understand the specific vulnerabilities of Southeast Hungary’s aquifer. Such knowledge 

is crucial for developing strategic measures that effectively balance the needs of current 

agricultural and industrial activities with the long-term sustainability of groundwater resources. 

This research, therefore, provides essential information that will aid in the formulation of 

informed, strategic decisions aimed at protecting and managing the groundwater system more 

sustainably. 

The subsequent chapters will build on this background by systematically exploring and 

comparing different groundwater vulnerability assessment methods. Chapter 2 will delve into 

a literature review of existing groundwater vulnerability assessment methods, focusing on their 

theoretical underpinnings, applications, and the role of GIS in enhancing their accuracy and 
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applicability. Chapter 3 will outline the specific methodologies employed in this study, 

including the novel integration of established models with advanced analytical techniques. 

Chapter 4 will present the findings, discussing the implications of these assessments for 

sustainable groundwater management in the region. Finally, Chapter 5 will synthesize the 

insights gained, offering recommendations for policy, practice, and future research. 

1. 2 Importance of groundwater  

Groundwater is an indispensable component of the earth's hydrological system, occupying the 

pore spaces of soil and rock and fractures within rock formations beneath the earth's surface 

(Srebotnjak et al., 2012). Due to its subterranean nature, groundwater is generally less 

susceptible to contamination and pollution than surface water, making it a more stable and 

reliable source for domestic purposes. It undergoes natural filtration processes that eliminate 

bacteria and odors, thereby enhancing its quality for consumption (Pat M. Cashman and Martin 

Preene, 2021). As the largest reservoir of accessible freshwater, (26%) of the global renewable 

fresh water resources (FAO, 2021), groundwater's role extends beyond natural ecosystems to 

fundamental economic growth in both urban and rural areas globally (Cuthbert et al., 2019). 

Due to its high percentage, reduced sensitivity to pollution, and large storage capacity, 

groundwater is pivotal at a socioeconomic level worldwide, providing about 50% of the 

world’s drinking water and supporting 40% of industrial needs with the remainder crucial for 

irrigation (Saha et al., 2024). In Hungary, where more than 90% of drinking water is sourced 

from deep aquifers and riverbank filtrations, the integrity of groundwater is especially 

significant (Engloner et al., 2019). However, despite its advantages, the challenge of 

sustainable management looms large, compounded by the high demand and limited recharge 

rates. This imbalance has led to declining water tables, deteriorating water quality, and 

increased incidence of land subsidence (Ahmad et al., 2017). 

In Hungary, groundwater plays an important role in supporting drinking, industrial operations, 

and agricultural activities predominantly reliant on shallow aquifers. Annual consumption for 

irrigation alone amounts to approximately 42 million m³, underscoring the critical dependence 

on this resource (Barreto et al., 2017). 

Given these pressures, understanding and protecting groundwater resources become 

paramount. Aquifer vulnerability mapping emerges as a crucial strategy, enabling the 

identification of zones particularly susceptible to contamination from surface pollutants. This 
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process not only enhances our understanding of the aquifer dynamics but also directs attention 

towards managing human activities that pose risks to these vital resources. By focusing on 

these vulnerable areas, tailored management strategies can be developed to safeguard 

groundwater, ensuring its sustainability for future generations. 

1. 3 Overview of groundwater vulnerability 

Introduced in the 1960s, the concept of groundwater vulnerability was developed to highlight 

the intrinsic purity often associated with groundwater. In other words, this term underscore the 

resource's susceptibility to external agents and susceptible to pollution (Margat, 1968). While 

widely recognized, the term 'groundwater vulnerability' lacks a formal accepted definition and 

standardized assessment methodology, because the concept of vulnerability is not an absolute 

property but a complex indicator (Maxe and Johansson, 1998). The formalization of this 

concept in hydrological literature did not occur until the 1970s (Albinet, M. and Margat, 1970), 

driven by global increases in groundwater contamination worldwide. Albinet and Margat 

(1970) characterized groundwater vulnerability as the susceptibility of the water table to 

surface pollutants, utilizing various parameters to assess how exposed the water table is to 

surface contaminants.  Subsequently, multiple definitions have emerged. For example, the  

National Research Council (1993), p.1, defines it as “groundwater vulnerability is defined as 

the tendency or likelihood of contaminants reaching the groundwater system after introduction 

at the surface and is based on the fundamental concept that some land areas are more 

vulnerable to groundwater contamination than others”. Vrba and Zaporožec (1994), p.7 

describes it as "an intrinsic property of a groundwater system, depending on the sensitivity of 

that system to human and/or natural impacts”. Therefore, the term aquifer vulnerability refers 

to the degree to which a sub-surface system is likely to be adversely affected by any 

perturbation or stress from the land surface. This notion is based on the fundamental concept 

that some regions are more vulnerable to groundwater contamination compared with others 

(Jiradech M., 2013). This susceptibility is influenced by the natural attenuation capacity related 

to a set of physicochemical processes like filtration, biodegradation, hydrolysis, adsorption, 

dilution, volatilization, and dispersion (Stigter et al., 2006). Importantly, the vulnerability of 

aquifer zones to contaminants is considered a relative measure and is neither directly 

quantifiable nor dimensionless concept (Richts and Vrba, 2016). 

The concept of groundwater vulnerability is based on the origin-pathway-target model, as 

illustrated in Figure 1, which is employed in a notable European initiative aimed at 
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safeguarding aquifers. This initiative is part of a comprehensive European research program, 

'COST Action 620, 2004 European Cooperation in Science and Technology' (Zwahlen, 2003). 

In this model, the 'origin' of contamination corresponds to the place of infiltration of 

contaminants at the land surface, while the 'target' refers to the groundwater in which its 

protection is the main subject. This target could either be the groundwater surface itself or a 

drinking water abstraction point (well/spring). The 'pathway' describes the route that 

contaminants travel through natural media (i.e., from an unsaturated zone to a saturated zone), 

from origin to target. This concept is developed to identify and prioritize areas within a basin 

that are most susceptible where groundwater contamination may occur. It establishes a robust 

scientific framework for the protection of groundwater resources and the management of land 

use. Two primary approaches for groundwater protection can be described. The first pertains 

groundwater as a 'resource', and aims to preserve the aquifer storage, whereas the second 

regards groundwater as a 'source' and aims to safeguard specific abstraction points, such as 

production wells and springs (Basu and Van Meter, 2014). However, the two concepts are 

closely linked in terms of protecting the source, which generally also means protecting the 

resource. Vulnerability maps of resources consider the groundwater surface as the target, and 

the unsaturated zone is treated as the pathway. If the object of protection is the source (i.e., a 

well or spring is considered the target), the pathway encompasses the horizontal flow path 

within the aquifer (Goldscheider, 2005). From a quantitative perspective, assessing 

vulnerability involves considering three critical factors: travel time for a contaminant from 

origin to target, the attenuation process of the contaminant along its pathway, and the duration 

of the presence of contamination at the target.  

 

Figure 1. Conceptual framework illustrating 'Origin', 'Pathway', and 'Target' model for assessment 
groundwater vulnerability with emphasis on 'resource' and 'source' protection (Machiwal et al., 2018) 
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The groundwater vulnerability is influenced by a multitude of factors, including natural 

phenomena in the region, such as rainfall and aquifer recharge, anthropogenic activities (e.g., 

land use, the use of agricultural chemicals, and mining), as well as the intrinsic properties of 

the aquifer system itself, such as the depth to water table, topography, net recharge, and the 

natural attenuation processes of the groundwater system (Wachniew et al., 2016). 

The concept of groundwater vulnerability can be differentiated into two main notions, intrinsic 

and specific vulnerability. (i) Intrinsic vulnerability is used to represent the physical 

characteristics of the groundwater system (e.g., inherent geological, hydrological, and 

hydrogeological characteristics) that affect its susceptibility to contamination generated by 

anthropogenic activities regardless of the nature of contaminants (Civita, 1994; Wachniew et 

al., 2016). In the available literature, this type of analysis is the most frequently adopted 

because it does not include the comprehensive data required to assess the degradation processes 

that a pollutant could experience across different geological layers (Daly et al., 2002), (ii) 

specific vulnerability is used to define the susceptibility of groundwater to a selected 

contaminant or group of pollutants, considering the characteristics of the pollutants e.g. 

biogeochemical attenuation processes, and their interaction with the intrinsic properties of the 

groundwater system (Ribeiro et al., 2017). According to Vrba and Zaporožec (1994), this 

classification can be intricate, given the challenges associated with tracing the origins of 

pollutants. 

This comprehensive understanding of groundwater vulnerability forms the foundation upon 

which this thesis is built. The subsequent chapters of this study will delve deeper into the 

application of various assessment methods specifically within Southeast Hungary, an area that 

presents unique challenges due to its agricultural intensity and hydrogeological characteristics 

1. 4 Objectives of the study 

The overarching goal of this research is to provide a comprehensive evaluation of groundwater 

vulnerability in Southeast Hungary, utilizing and comparing multiple assessment 

methodologies. The objectives are structured to critically analyze existing methods, improve 

the understanding of how different methodologies can influence vulnerability assessments, 

determine the most effective approach for local groundwater management strategies. The 

specific objectives of the study are as follows: 

  



15  

(1) Review of groundwater vulnerability assessment methods:  

The objective of this component is to critically review existing approaches such as DRASTIC, 

GOD, and Susceptibility Index (SI) for assessing groundwater vulnerability. This review 

address the strengths and limitations of each method in the context of different hydrogeological 

settings providing a groundwork for subsequent analyses and methodological enhancements. 

(2) Evaluate existing groundwater vulnerability assessment methods 

Assess the suitability of the traditional DRASTIC, GOD, and Susceptibility Index (SI) methods 

to understand their strengths and limitations within the hydrogeological context of Southeast 

Hungary. This includes examining how these methodologies account for local variations in 

geology, hydrology, and human impact. 

(3) Enhance the DRASTIC model using Fuzzy logic 

The aim here is to enhance the traditional DRASTIC model using a Hierarchical Fuzzy 

Inference System (FIS) to address uncertainties inherent in the input parameters. This 

enhancement aims to provide a more accurate and nuanced assessment of groundwater 

vulnerability. 

(4) Conduct a comparative analysis of groundwater vulnerability assessment methods and 

develop spatially explicit vulnerability maps 

This objective involves a comparative analysis of the effectiveness and accuracy of the applied 

methodologies—DRASTIC, GOD, SI, and the Fuzzy-enhanced DRASTIC model—by 

examining their correlation with observed groundwater contamination indicators. The focus is 

particularly on nitrate concentrations. In parallel, Geographic Information Systems (GIS) is 

employed to generate spatially explicit vulnerability maps for each method, enabling 

visualization and interpretation of the results. This combined approach supports the 

identification of the most reliable methodology for the region and provides a valuable decision-

support tool for groundwater protection and land-use planning. 

(5) Inform policy and management strategies  

This objective involves providing scientifically backed recommendations to local and regional 

policymakers and stakeholders on the adoption of appropriate groundwater management and 

protection strategies based on the findings from the comparative effectiveness of the 

assessment methodologies. 
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(6) Contribute to the global body of knowledge on groundwater vulnerability 

Contribute to the scientific literature on groundwater vulnerability by providing insights into 

the application and modification of assessment methods in a specific regional context, thus 

offering a pathway for future research and methodology refinement.  
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CHAPTER 2: LITERATURE REVIEW 
 

This chapter systematically reviews the existing methods and technologies employed in 

groundwater vulnerability assessment, setting the foundation for the applied methodologies 

discussed later in this thesis. It begins by exploring a variety of established groundwater 

vulnerability assessment methods, providing a contextual backdrop for more detailed 

discussions of specific methods. This will include a critical evaluation of the DRASTIC, GOD, 

and SI methods exploring their theoretical bases, limitations and practical applications, and 

then discussing the integration of fuzzy logic with DRASTIC to address uncertainties inherent 

in the input parameters, and the role of GIS in enhancing their accuracy and applicability.   
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2. 1 Groundwater vulnerability assessment methods 

Groundwater serves as a crucial water source worldwide, supporting various purposes that span 

from domestic to industrial applications (Shirazi et al., 2012). However, challenges such as 

mismanagement, demographic growth, and the expansion of urban, agricultural, and industrial 

activities have heightened the risk of contamination to this vital resource (Serra et al., 2021). 

These factors, combined with the growing dependence on groundwater, underline the urgent 

need to develop comprehensive groundwater management strategies for its sustainable use and 

preservation (Foster et al., 2013). Assessing the vulnerability of aquifers is a pivotal approach 

for preserving and optimizing water resources now and in the future (Demiroǧlu and Dowd, 

2014). This evaluation is crucial for gaining a deeper understanding of which aquifers and 

regions are most susceptible to surface pollution. Within the framework of groundwater 

protection, three distinct approaches can be differentiated in evaluating groundwater 

vulnerability, each with its unique methodology for addressing contamination risks (Fannakh 

and Farsang, 2022; Machiwal et al., 2018). (i) The first approach focuses on the evaluation of 

vulnerability only by considering the soil and the unsaturated zone factors, excluding 

considerations of transport processes within the saturated zone. In this case, evaluation is 

limited to the relative possibility that contamination will reach the saturated zone. (ii) The 

second approach involves delineating protection zones for groundwater supply systems, where 

groundwater flow and transport processes in the saturated zone are considered to a certain 

extent. (iii) The third, more comprehensive approach encompasses both the soil and 

unsaturated zones as well as the saturated zones, providing a holistic evaluation of groundwater 

vulnerability. These approaches form the basis for a variety of groundwater vulnerability 

assessment methods, which differ significantly in their complexity, computational demands, 

and data requirements (National Research Council, 1993). The existing groundwater 

vulnerability assessment methods can be categorized into the following three broad categories 

(Fannakh and Farsang, 2022; Machiwal et al., 2018; Taghavi et al., 2022): 

• Overlay and index-based methods,  

• Process-based simulation methods, and 

• Statistical methods. 

These classifications and the specific methods under each will be discussed in detail in 

subsequent subsections. 
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2. 1. 1 Overlay and index-based methods 

 Overlay and index-based methods (qualitative methods), remain the most commonly 

employed models for groundwater vulnerability assessment due to their simplicity and 

effectiveness (Shrestha et al., 2017). These methods utilize a straightforward qualitative or 

semi-quantitative framework that principally depends on geological parameters. Within each 

methodology, different parameters are assigned numerical scores or ratings, which are then 

aggregated to form an overall groundwater vulnerability index (Moraru and Hannigan, 2018; 

Taghavi et al., 2023). The initial step involves identifying the soil, hydrogeological, 

hydrographical, and morphological characteristics that match each zone within a vulnerable 

range.  Subsequently, the entire zone is evaluated and categorized based on predefined criteria 

(Goyal et al., 2021). Integration with Geographic Information Systems (GIS) enhances these 

methods, facilitating the overlay and indexing of maps within the spatial domain (Kaur and 

Rosin, 2009). This allows for the generation of vulnerability maps of medium-to-large areas, 

encompassing diverse hydrographic and morphostructural features, which makes it easier for 

the users to interpret the results (Kumar et al., 2015). Numerous overlay and index-based 

methods have been tailored in various countries to suit specific types of aquifers, namely, 

methods for porous aquifers or methods for karst aquifers (Jenifer and Jha, 2018; Jha, M.K., 

Peiffer, 2006). The three methods, which are the subject of this research, are DRASTIC (Aller 

et al., 1987), GOD (Foster, 1987), and SI (Ribeiro, L., 2000) methods used to assess aquifer 

vulnerability, are the widely used GIS-based overlay and indexing methods (Ghazavi and 

Ebrahimi, 2015; Ghouili et al., 2021; Machiwal et al., 2018). 

Despite the simplicity aspects of overlay and index-based methods contributes to their 

widespread adoption, these approaches have significant drawbacks. The major limitation is the 

inherent subjectivity involved in selecting relevant parameters that influence groundwater 

vulnerability and assigning appropriate weights and ratings to each parametric map, which 

leads to significant uncertainties, and the lack of strong criteria for the classification of 

vulnerability (Gogu and Dassargues, 2000; Machiwal et al., 2018). Often, the weight and rate 

scores have been selected/modified based on the expertise and discretion of the researcher 

(Gogu et al., 2003). However, validating the vulnerability maps must be a required step and 

can be conducted using the water quality parameter. To reduce the risk of incorrect decisions, 

the objective of groundwater value assessment should always be as rigorous as possible (Oke, 

2017; Zwahlen, 2003). Another drawback is the lack of consistency across different models 

when applied to a given region, highlighting the critical importance of choosing the appropriate 
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method (Andreo et al., 2006; Pavlis et al., 2010). To address these inconsistencies, experts 

suggest that increasing confidence in vulnerability assessments involves comparing outcomes 

across various tools and corroborating these through case studies on areas, where 

contamination occurred (Stigter et al., 2006). Nonetheless, as Neukum et al. (2008) note, 

vulnerability levels typically expressed in qualitative terms like 'low,' 'moderate,' or 'high,' 

complicate direct comparisons of different models at the same site. For instance, (Richard et 

al., 2004) compared several approaches in porous media aquifer and in a fractured rock aquifer 

system and concluded that the vulnerability maps for a given hydrogeological system 

considerably vary according to the type of the selected method for vulnerability assessment. 

Notably, these approaches were primarily developed for unconfined aquifers and may not be 

suitable for confined aquifer systems (Goyal et al., 2021; Moraru and Hannigan, 2018). 

A comprehensive summary of significate overlay, and index-based methods is presented in 

Table 1, which delineates each method's defining parameters, applicable aquifer types, 

vulnerability types, and protection strategies. 

Table 1. Summary of significant overlay and index-based methods for evaluating groundwater 
vulnerability 
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2. 1. 2 Process-based methods 

Contrary to the qualitative approaches, quantitative or process-based methods, these methods 

can be used to assess the vulnerability (typically, specific vulnerability) of aquifer using natural 

processes that occur in the hydrogeological parameters of underlying unsaturated and saturated 
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zone systems (Focazio et al., 2003). These methods involve simulation models that integrate 

various physical, chemical, and biological processes to predict the transport of contaminants 

on the spatial and temporal scales. Furthermore, these methods emphasize the protection of the 

source and resource (Abokifa et al., 2020; Machiwal et al., 2018). The complexity of process-

based methods can vary significantly, ranging from relatively simple functional models to 

complex models dependent on data requirements and the level of complexity (Schlosser et al., 

2002). Advanced models can solve equations governing flow and transport processes in the 

unsaturated zone or aquifer porous media and can consider the stochastic nature of specific 

system parameters. For models intended to assess intrinsic vulnerability, parameters such as 

the thickness of the aquifer and site-specific hydrological regime can be used (Maxe L., 

Johansson, 1998). For instance, in process-based simulation utilizing MODFLOW, the 

groundwater body is segmented into cells using a two-dimensional or three-dimensional grid. 

Aquifer characteristics and all other features are then assigned to these cells, and the resulting 

model is solved by executing the program (Ghouili et al., 2021). The output information, such 

as groundwater velocity, hydraulic head and pollutant concentration, can be visualized in two 

or three dimensions (Aliyari et al., 2019; Madhavan et al., 2023).  

In the literature, some of the quantitative approaches to assessing groundwater vulnerability 

include: MODFLOW (Arlen W. Harbaugh, 2005; Zhao et al., 2022), Root Zone Water Quality 

Model (RZWQ)M (DeCoursey et al., 1992; L. Ma et al., 2012), HYDRUS-1D (Vogel and 

Zhang, 1996), Water Assessment Tool (SWAT) (Aliyari et al., 2019; Arnold et al., 1998), 

FEMWASTE (Yeh and Tripathi, 1991), HYDRUS-2D/3D (Simunek et al., 2012), Pesticide 

Analytical (PE- STANS) (Enfield et al., 1982), and LEACHM (Hutson and Wagenet, 1989). 

A complete description of the process-based methods and their applications can be found in 

references (Machiwal et al., 2018; Taghavi et al., 2022). 

The principal advantage of process-based models over overlay and index-based methods is 

their quantitative evaluation of groundwater vulnerability, and their ability to accurately model 

contaminant transport in spatial and temporal dimensions (Moraru and Hannigan, 2018). 

Unlike most index-based methods that focus on resource protection, process-based approaches 

evaluate the vulnerability of both the source and the resource founded on proven scientific laws 

(Oke, 2017). Despite their superior accuracy compared to qualitative methods, process-based 

models also face limitations, particularly their assumption that fractured or karst aquifers 

behave as continuous porous aquifer systems, which overlooks the existence of preferential 
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flow pathways (Gogu and Dassargues, 2000). This omission can lead to inaccurate transit time 

distributions in the case of preferential flow (e.g., flow systems in a karst aquifer), a challenge 

that has been acknowledged in the literature (Gazis and Feng, 2004; Logsdon, 2002). 

Moreover, the high demand for detailed field data, which is often unavailable, limits the 

reliability of these models when data must be estimated indirectly (Machiwal et al., 2018). The 

requirement for high-resolution data also restricts the application of these models to relatively 

small areas, such as parts of an aquifer system (Sajedi-Hosseini et al., 2018). 

2. 1. 3 Statistical methods 

The application of statistical methods in groundwater vulnerability assessment started during 

the 1990s, these methods gained traction alongside GIS-based qualitative methods due to 

advancements in computer technology and the enhanced availability of geo-environmental data 

(Sorichetta et al., 2013). The statistical methods provide a viable means for assessing aquifer 

vulnerability when groundwater quality data are linked to media data that affect groundwater 

contamination (e.g., hydrogeological data, soil properties, land use, and human activities) (Jain, 

2023). These methods can range from simple descriptive statistics of the concentrations of 

contaminants to more complex regression analyses that incorporate the effects of several 

explanatory variables (Machiwal et al., 2018). Simple descriptive statistical approaches are 

commonly used to summarize point data and produce point maps that illustrate the presence 

and spatial distribution of contaminants, providing the basis for more complex analyses that 

explore the correlation between geological settings and point data (Mendoza & Barmen, 2006). 

More rigorous statistical analyses, such as logistic regression (which intends to account for 

potential explanatory variables), additional information and data are frequently included as 

potential sources of contamination and factors that influence the intrinsic susceptibility of 

resources (Schleyer, 1994). 

According to (Machiwal et al., 2018; Taghavi et al., 2022), the most commonly used statistical 

techniques in the evaluation of vulnerability are: (i) logistic regression or binary logistic 

regression, which are useful methods for assessing the vulnerability of aquifers to pollution by 

different contaminants, such as nitrate, chloride, and pesticides, it predicts the likelihood of a 

contaminant's presence, categorizing outcomes as binary (true or false) rather than continuous 

values (Lonna et al., 2012). (ii) Multiple linear regression (MLR), which is conceptually similar 

to the logistic regression method. The MLR method conceptually evaluates the relationships 

between a dependent factor and several independent factors and predicts the concentration of 
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contamination instead of the probability of pollution (Stackelberg et al., 2012; Steichen et al., 

1988). It is useful for comparing drinking water standards. Lastly, (iii) artificial intelligence 

(AI) models, such as: fuzzy logic, artificial neural networks, and neuro-fuzzy modeling, which 

have been applied in the prediction of groundwater vulnerability (Dixon, 2005; Gesim & 

Okazaki, 2018). Fuzzy logic and fuzzy set theory are mainly used in fuzzy input modeling, 

because they account for imprecision and uncertainty and reduce information loss when 

coupled with GIS-based methods (F. Wang et al., 1990); other (AI) models that are powerful 

soft-computing methods and are highly limited in water resources studies (Rodriguez-Galiano 

et al., 2014), such as Random Fores (Judeh et al., 2022), and Support Vector Machine (SVM) 

(Elzain et al., 2022; Khan et al., 2022; Sajedi-Hosseini et al., 2018).  A complete description 

and a number of statistical methods used for groundwater vulnerability assessment, with 

several relevant studies can be found in references (Jain, 2023; Machiwal et al., 2018; Taghavi 

et al., 2022). 

While statistical methods excel at identifying complex relationships between variables, 

managing uncertainties, and predicting contamination probabilities, they also pose significant 

challenges. The major challenge is selecting the most suitable statistical model, it is complex 

to design and, once developed, the model comes with its own set of assumptions. Consequently, 

their applicability is generally limited to regions with environmental conditions similar to those 

where the model was originally formulated (Oke, 2017). Furthermore, they require substantial 

data inputs, making them both costly and time-consuming to implement effectively (Jain, 2023; 

Machiwal et al., 2018).  Despite these challenges, the capacity for using statistical methods to 

enhance GVA is substantial, meriting further investigation and application. 

2. 2 Principle of application of the DRASTIC, GOD, and SI approaches 

for assessing groundwater vulnerability 

2.2.1 DRASTIC method  
2.2.1.1 Overview of the DRASTIC method 

The DRASTIC method is a systematic approach developed in 1987 under a cooperative 

agreement between the United States Environmental Protection Agency and the National Water 

Well Association (Aller et al., 1987) for assessing groundwater vulnerability through an index 

and rating system. This method integrates seven critical hydrogeological factors that determine 

an aquifer's sensitivity to potential contaminants. These factors are depicted in Figure 2 and 

described in Table 2. 
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Figure 2. Thematic data layers required for mapping groundwater vulnerability using the DRASTIC, 
GOD, and Susceptibility Index (SI) models: (1) Depth to water table; (2) Aquifer recharge; (3) Aquifer 
media (or aquifer type); (4) Soil media; (5) Topography (slope); (6) Impact of the vadose zone; (7) 
Hydraulic conductivity; and (8) Land use/land cover. 

Table 2. Parameters and weights used by the index-overlay methods to calculate their vulnerability 
indices (Aller et al., 1987; Foster, 1987; Ribeiro, L., 2000) 

Parameters Description/relationship with 
vulnerability 

weight 

DRASTIC GOD SI 

D Depth to 
water table 

• A deeper water table implies longer 
travel times and less chance of 
contaminants reaching the aquifer. 5 1/3 0.186 

R Recharge 

• A high recharge rate leads to a high 
probability of contaminant transport 
vertically to the water table and 
horizontally within the aquifer, 
increasing vulnerability to pollution. 

4 - 0.212 

A 
Aquifer 

media (or 
Aquifer 

type) 

• Refers to the saturated zone system, 
serving as an aquifer. The flow 
system within the aquifer controls the 
pollutant attenuation processes. 
Larger granulometry and greater 
permeability within an aquifer 
contribute to the greater vulnerability 
of groundwater to pollution. 

3 1/3 0.259 
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• For GOD schemes, it indicates the 
type of groundwater occurrence (G) 

S Soil media 

• Refers to the uppermost portion of 
the vadose zone which controls the 
recharge rate, thereby influencing the 
ability of a contaminant to transfer 
vertically into the unsaturated zone. 

2 - - 

T Topograph
y (slope) 

• Indicate the slope variability of the 
land surface. A slight slope will 
determine a high retention time for 
surface water, a higher likelihood of 
more recharge of the aquifer system, 
and effects on the pollutant transport. 

1 - 0.121 

I 
Impact of 
the vadose 

zone 

• The type of material in the vadose 
zone determines the attenuation 
characteristics that could have an 
effect on the passage and attenuation 
of the contaminant, depending on its 
permeability and the attenuation 
characteristics of the medium, 
affecting the available time for 
mitigation and the quantity of 
material encountered. 

• With the GOD approach, the 
overlying lithological characteristics 
of the unsaturated zone in terms of 
lithology and porosity refer to the 
overlying lithology (O). 

5 1/3 - 

C 
Hydraulic 
conductivit

y 

• Refers to the capacity of aquifer 
medium to transmit water, the rate at 
which groundwater flows control the 
rate at which contaminating materials 
are transmitted through the aquifer 
system. 

3 - - 

LU/L
C 

Land 
use/cover 

• Indicated that higher industrial and 
wastewater pollution, pesticides and 
fertilizers, a higher risk of 
contaminant materials being 
transmitted into the aquifer 

- - 0.222 

2.2.1.2 Hypothesis 

Aller et al., (1987) hypothesized that the transport of contaminants in groundwater systems is 

primarily governed by the movement of groundwater itself. In this framework, a conservative 

contaminant is assumed to migrate at the same velocity and in the same direction as the 



27  

groundwater flow. This simplifying assumption allows the DRASTIC method to focus on 

hydrogeological parameters that influence groundwater flow rather than contaminant-specific 

properties. Whereas the study area considered has a surface area of more than 40 hectares. In 

other words, it is considered the probability of contaminants released from the surface to reach 

the groundwater system. It focuses on contamination from anthropogenic sources and does not 

assess pollutants introduced into the shallow or deep subsurface by certain processes, such as 

leakage from underground storage tanks, animal waste lagoons, or injection wells (Machiwal 

et al., 2018). The DRASTIC model employs a systematic rating and weighting system designed 

to predict vulnerability based on seven key hydrogeological factors. Each factor/parameter is 

evaluated on a scale from 1 (the aquifer system is not sensitive to that parameter) to 10 

(indicating high vulnerability of the parameter) and assigned a corresponding weight from 1 to 

5 based on its significance in affecting overall groundwater vulnerability (Aller et al., 1987). 

Theoretically, each parameter within the DRASTIC index acts as an independent variable, 

representing specific process or condition related with the leaching process within a seven-

dimension space. The comprehensive integration of these parameters through the DRASTIC 

index provides a nuanced representation of groundwater vulnerability, allowing for a spatially 

differentiated assessment of intrinsic vulnerability (Rama et al., 2022). 

2.2.1.3 Salient applications  
As previously discussed, DRASTIC is one of the widely used methods for assessing the 

vulnerability of groundwater resources due to its performance and ease of applicability. 

According to local needs and to improve the results of the DRASTIC method, two principal 

approaches for modifying the DRASTIC method are possible: 

(1) Modifying the weights and ratings on the basis of the thorough scientific analysis of data 

and the combination of the risk and vulnerability maps. Sahoo et al., (2016) identified three 

methods, namely, entropy information method (E-DRASTIC), fuzzy pattern recognition 

method (F-DRASTIC), and single-parameter sensitivity analysis (SA-DRASTIC), and applied 

them to Kanpur City, India. Furthermore, the authors changed the weights of the initial 

DRASTIC parameters to obtain the corresponding vulnerability index and compared the 

performance of the subjective (DRASTIC and SA-DRASTIC) and objective (E-DRASTIC and 

F-DRASTIC) weighting-based methods. The authors concluded that the objective approaches 

were suitable for vulnerability assessment in the study area. The effectiveness of E-DRASTIC 

and F-DRASTIC is based on the modification of the weights of only those parameters that are 
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essential in the vulnerability estimation process, as well as the objective methods assigning 

weights to features according to their relative importance in the final vulnerability assessment. 

Grey incidence analysis models have been used to evaluate the effectiveness of the modified 

DRASTIC methods. To improve the reliability of the model, Jafari and Nikoo, (2019) modified 

the DRASTIC model by adjusting the rating and weighting scores using Wilcoxon’s rank-sum 

test and the fuzzy optimization model for groundwater risk assessment and by considering the 

nitrate concentration. The results demonstrate that the correlation coefficient between the 

original and improved DRASTIC models and nitrate concentration indicates that this approach 

is effective in improving the accuracy of the assessment of groundwater risk (i.e., the 

correlation coefficient increased significantly from 0.573 to 0.789).  

(2) Altering the original DRASTIC parameters, such as subtracting parameters, or including 

other parameters, such as land use and irrigation type. Under the conditions of intense 

agricultural activities in Tiruchirappalli district, India, Jenifer and Jha, (2018) modified the 

original DRASTIC and pesticide DRASTIC (DRASTIC-P) models by introducing two extra 

parameters, namely, land use/land cover (LU/LC) and lineament density (LD), and compared 

them with six modified forms of these models, namely, DRASTIC-LD, DRASTIC-LU, 

DRASTIC-LDLU, DRASTIC-P-LD, DRASTIC-P-LU, and DRASTIC-P-LDLU. The results 

of the vulnerability maps generated by the eight vulnerability models were verified using a 

single water quality parameter (NO3- -N, F- and Cl-) individually. The performance of 

DRASTIC-P-LDLU indicated that the model is the most accurate one with accuracies of 61% 

and 68% for nitrate and chloride concentrations, respectively, followed by DRASTIC-LDLU 

with accuracies of 59% and 61% for the same concentrations. Other comparative studies 

conducted worldwide are presented in Table 3. 

2.2.1.4 Advantages 

Evidently, DRASTIC is one of the most widely known and used method for the assessment of 

aquifer vulnerability (Jain, 2023). It has been applied from municipal, such as National Capital 

Territory, Delhi, India (Tomer et al., 2019) to the continental scale, whereas the study 

developed by Rama et al., (2022) uses a critical application of the DRASTIC method to assess 

the intrinsic vulnerability of South American groundwater. The main strength of the DRASTIC 

method is its flexibility; the model allows for including or eliminating parameters or factors to 

adapt to different challenges, such as the conditions in the area of study and availability of data 

(Fritch et al., 2000; Jenifer & Jha, 2018; Sarkar & Pal, 2021; Singh et al., 2015; Singha et al., 
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2019). This adaptability extends to modifying the weight and rate scores depending on the field 

measurement data, enhancing the utility of susceptibility and risk maps when combined with 

DRASTIC (Khosravi et al., 2018). Over the past decade, several scientists have modified the 

original DRASTIC model by modifying the scoring ranges and relative weights and by 

including or omitting certain factors. However, Hamza et al., (2015) demonstrated that all 

parameters exert an equal influence on groundwater contamination, where each factor indicates 

a situation where it has exerted the greatest impact regardless of the weight assigned to the 

parameters. 

Furthermore, the DRASTIC approach is a useful tool for assessing groundwater vulnerability, 

because it is relatively low-cost and simplicity. It utilizes data that are widely available or 

estimated, and its integration Geographic Information Systems (GIS) facilitates the creation of 

clear, easily interpretable maps that can be seamlessly incorporated into decision-making 

processes (Maxe and Johansson, 1998). 

2.2.1.5 Limitations 

The major limitations of the DRASTIC method are: (i) the reliability of the different parameters 

used by the approach is dependent on data used in their realization. Typically, information 

related to parameters, such as net recharge, hydraulic conductivity, water body depth, 

unsaturated zone impact (Kouz et al., 2020), and the penetration of contaminants through the 

vadose zone, are influenced by its lithology and determined through interpolation (Barbulescu, 

2020; Cherkaoui Dekkakki H., 2006). This aspect leads to faults in the generation of parameter 

values because it is only accurate in the intervals delimited by the point data (Francés et al., 

2002). Thus, the DRASTIC model can only be used as a relative assessment tool and is not 

designed to provide an absolute assessment of groundwater vulnerability (Ouedraogo, 2017). 

(ii) The one-dimensional DRASTIC approach may be sufficient for assessing the vulnerability 

of an aquifer in porous media, where water and contaminants penetrate vertically from the soil 

surface to the water table. Nevertheless, the opposite is true for karst aquifers, where water and 

contaminants bypass the protective function by flowing laterally through shallow holes (Oke, 

2017). (iii) A few factors are overlapping, such as aquifer media and hydraulic conductivity, 

which is directly dependent on aquifer media, this can complicate independent variable analysis 

(Oke, 2017). (iv)  The DRASTIC method does not consider the dilution within groundwater 

system, although it has a strong control on the levels of contamination, which may lead to 

erroneous results (Aller et al., 1987). 
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Table 3. List of comparative studies of groundwater vulnerability assessment methods across different 
regions. 

Authors Study 
area Year Methods 
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Type of 
aquifer 
system 
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variation in key hydrogeological features. The 

DRASTIC and SINTACS approaches chose 

limitations in applications to karst aquifer systems. 

However, the methods EPIK, PI and COP, 
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aquifers, provide cost-effective results, highly 

consistent with karst and hydrogeological 
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By integrating the land use parameter, the results 

obtained with the SI model were more reliable 

compared to the DRASTIC model. The 

vulnerability maps produced were tested and 

validated by the distribution of groundwater nitrates 

in the study area. The correlation coefficient 

between the SI and the nitrate concentrations was 

85%, which is higher than the 75% obtained with the 

DRASTIC method 
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spatial distributions of vulnerability categories, 
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The application of the DRASTIC, GOD and SI 

methods shows a range of intervals divided into 

categories corresponding to fluctuating degrees of 

vulnerability ranging from "very low" to "extreme". 

The validation of the mapping result was carried out 

using the nitrate concentrations measured in April 

2017. The most reliable results were obtained with 
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the SI method in comparison with DRASTIC and 
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The DRASTIC and SI models are similar for the 

vulnerability assessment because both methods 

identify about 80% of the groundwater basin area 

under the highly vulnerable zone. By contrast, in the 

GOD model, vulnerability assessment identify areas 

with "low" and "moderate" vulnerability categories 

are 24% and 76% respectively. The correlation 

between the estimated risk and the measured nitrate 

concentration was performed to validate the 

resulting mapping. Comparing with DRASTIC and 

GOD, the authors conclude that the SI method has 

more reliable results 
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As the study area is marked by intensive agricultural 

activities. The authors confirm that DRASTIC 

Pesticide and SINTACS Nitrate were the more 

precise and efficient methods for evaluating the 

groundwater vulnerability in the study area. Using 

the coefficient of correlation (R2), the authors 

validated the results obtained by the seven methods 

using the nitrate concentrations from 23 observation 

wells. The most efficient and accurate approaches 

were Pesticide DRASTIC and Nitrate SINTACS 

with R2 = 0.6475 and 0.6438, respectively. The two 

methods have a slightly higher coefficient of 

determination compared to DRASTIC and Normal 

SINTACS. Besides, AVI, GOD methods were the 

less reliable, with correlation coefficients of GOD 

(R2 = 0.5348), AVI (R2 = 0.5045); SI method, 

which incorporates the land use parameter exhibited 

a greater R2 of 0.6084. 
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2.2.2 GOD Method 
2.2.2.1 Overview of the GOD method 

The GOD method, developed by Foster, (1987), provides a straightforward and effective 

framework for assessing groundwater vulnerability, particularly suited to regions with limited 

data availability (Kumar et al., 2015). It evaluates the vulnerability based on three primary 

parameters: Groundwater occurrence (G), Overlying lithology (O), and Depth to the 

groundwater table (D). This method has been widely applied in various hydrogeological studies 

around the world, proving particularly useful in preliminary assessments where detailed data 

may not be readily available, thus helping to prioritize areas for more intensive study or 

immediate management action (Alsharifa, 2017). 

2.2.2.2 Hypothesis 

The GOD method employs an empirical approach, where the vulnerability of aquifers is 

defined as a function of the inaccessibility of a saturated zone, in the sense of pollutant 

penetration, and the attenuation capacity of the layer above the saturated zone (Machiwal et al., 

2018). This approach assumes that the vulnerability is directly influenced by the physical 

properties of the materials above the aquifer, which control how rapidly contaminants can reach 

the saturated zone (Goyal et al., 2021). In the GOD scheme, each of the factors—groundwater 

occurrence, overlying lithology, and depth to groundwater—are treated equally without 

differential weighting, reflecting their presumed uniform impact on the vulnerability of the 

aquifer (Foster, 1987; Jain, 2023; Machiwal et al., 2018).  

2.2.2.3 Salient applications 

Although the GOD method is less popular than the DRASTIC model, it has been applied in 

several specific studies (Jain, 2023; Machiwal et al., 2018). Ghazavi and Ebrahimi, (2015) 

assessed the vulnerability of the Abarkooh aquifer in southeastern Yazd province, Iran, using 

both the DRASTIC and GOD models. The authors used nitrate concentration as the primary 

pollution parameter to validate the vulnerability maps produced by these models. The study 

concluded that the DRASTIC method was more appropriate for the assessment of the potential 

for contamination in the study area compared with the GOD method. The correlation 

coefficient between the DRASTIC index and nitrate content was 68%, which is clearly 

exceeded the 28% obtained using the GOD method. In the alluvial aquifer of the Florina basin, 

Northern Greece, Kazakis and Voudouris, (2011) compared among three methods, DRASTIC, 

GOD, and AVI. Nitrate concentrations in groundwater were examined to verify the results 
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obtained. Their findings suggested that the GOD approach displayed a correlation higher than 

those of the two other approaches, whereas the vulnerability map produced are generally 

comparable with the DRASTIC and AVI methods. Sayed et al., (2023) conducted a 

comprehensive groundwater vulnerability assessment using GIS-based DRASTIC and GOD 

methods in the industrialized peri-urban area of Araihazar Upazila, Bangladesh. The study 

highlighted that the DRASTIC model, by incorporating a broader set of hydrogeological 

parameters, produced a more detailed classification of vulnerability zones. In contrast, the 

GOD method, owing to its simplified and conservative framework, indicated substantially 

lower vulnerability levels, classifying 58% of the area as negligible and the remainder as low. 

A compilation of some comparative studies conducted worldwide can be found in Table 3. 

2.2.2.4 Advantages 

Although the GOD method is not as widely adopted as the DRASTIC method, it remains one 

of the best GIS-based overlay and indexing methods, mainly used in data-limited regions that 

require a rapid assessment of the groundwater situation, which can be applied in prioritizing 

management and protection efforts in vulnerable areas (Goyal et al., 2021; Sukmawati 

Rukmana et al., 2020). The major advantage of the GOD method is that it can be applied to 

any type of aquifer, except for those in karst regions. It is particularly effective in large-scale 

environments characterized by significant variations in vulnerability (Gogu and Dassargues, 

2000; Kumar et al., 2015; Polemio et al., 2009). 

2.2.2.5 Limitations 

The GOD method, while effective, presents certain limitations. In regions with moderate 

variations in the level of vulnerability, the GOD method can provide homogeneous 

distributions of values. Thus, using this method in areas with high contrasting vulnerability is 

preferable (Gogu and Dassargues, 2000). Another limitation is the neglect of the inherent 

heterogeneity of underground systems, whereas the nature of the subcutaneous zone and 

vertical wells are additional problems when applying this method in karst areas (Machiwal et 

al., 2018; Oke, 2017). Addressing these issues,  Foster, (1998) recommends adopting specific 

strategies in vulnerability assessments, such as using the predominant lithology of the layers 

above the aquifer; considering aquifers as unconfined in the case of doubts about the continuity 

and properties of the confining beds; and using shallow aquifers to assess pollution risk, except 

in the case of small-perched aquifers. Furthermore, the GOD method assumes a uniform impact 

of parameters on the vulnerability of the aquifer. This assumption can lead to the 
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oversimplification of complex hydrogeological variations, potentially obscuring critical local 

details that are essential for accurate vulnerability assessments (Goyal et al., 2021). 

2.2.3 Susceptibility Index (SI) approach 
2.2.3.1 Overview 

The Susceptibility Index (SI) method, developed by Ribeiro L., (2000), offers a refined 

approach to groundwater vulnerability assessment, particularly focusing on vertical 

contamination risks from agricultural activities. Unlike broader models, the SI method 

specifically integrates land use factor alongside traditional hydrogeological parameters, 

making it adept at addressing the impact of human activities on aquifer system (Ghouili et al., 

2021). Developed for medium to large-scale assessments (scales ranging from 1:50,000 to 

1:200,000) (Ribeiro et al., 2017), the SI method considers five parameters (Table 1). Each 

parameter is assigned a rating and weight that reflects its influence on contamination potential, 

with Land use acting as a dynamic factor that adjusts the vulnerability assessment to mirror 

actual land surface conditions, and the SI vulnerability index (IvSI) is computed by linearly 

combining the scores and weights of the five parameters. 

2.2.3.2 Theoretical basis of the SI method 

The Susceptibility Index (SI) method is founded on a theoretical framework that integrates both 

hydrogeological and anthropogenic factors to assess groundwater vulnerability (Stigter et al., 

2006). Recent studies emphasize the significance of including land use as a crucial factor in 

evaluating groundwater quality, highlighting its role in predicting the impact of human 

activities on aquifer system (Shrestha et al., 2017; Teixeira et al., 2015). At its core, the SI 

method enhances traditional vulnerability assessment by specifically considering land use 

patterns alongside natural hydrogeological parameters (Oke, 2017).  

Ribeiro (2000), posits that the two factors, namely, the lithology of aquifer media and soil 

media exert no significant impact on the pollutant movement to the groundwater table. 

Additionally, aquifer media and hydraulic conductivity are two overlapping factors. Hydraulic 

conductivity is directly dependent on the characteristics of the aquifer media, complicating its 

independent evaluation (Engel et al., 1996; Oke, 2017). Consequently, the SI method excludes 

parameters such as soil media (S), the unsaturated zone (I), and aquifer hydraulic conductivity 

(C) from its assessment criteria. 
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The SI method assigns varying degrees of susceptibility based on the potential for 

contaminants, such as nitrates and pesticides, to migrate vertically through the materials above 

the aquifer system. Each parameter within the SI model—Depth to water table, Recharge rate, 

Aquifer media, Topography—is evaluated for its potential to facilitate or hinder this vertical 

movement (Ghouili et al., 2021). The inclusion of land use as a dynamic parameter allows the 

adjustment of vulnerability scores to accurately reflect local conditions such as agricultural 

intensity, urban development, and other land configurations that directly influence the 

protective capacity of the aquifer and the risk of contamination. 

2.2.3.3 Salient applications 

In recent years, aquifer vulnerability assessed using the SI model has many applications. For 

instance, Ribeiro et al., (2017) assess the groundwater vulnerability of the Daule aquifer in 

Ecuador using the Susceptibility Index (SI) method for diffuse agricultural pollution as a 

specific vulnerability method. The study finding, indicate that regions with high recharge rates 

and extensive agricultural activities, particularly paddy fields, are most high-vulnerability 

zones. Moderately vulnerable to low-vulnerability zones correspond to less disturbed natural 

areas like forests and semi-natural zones. The study proposes the implementation of a 

monitoring network to validate the SI map using nitrate concentration data, emphasizing the 

need for integrated groundwater management to protect water quality effectively. In the 

Takelsa phreatic aquifer, North-East of Tunisia, Ghouili et al., (2021) applied the SI approach 

to assess the vulnerability of groundwater. The resulting vulnerability maps were validated by 

comparing areas at high risk of salinity with their relative vulnerability index. Moreover, 

(Ghouili et al., 2021) demonstrated that 50% of the study area is characterized by areas of high 

to very high levels of vulnerability. The main reasons for these high-vulnerability areas are the 

presence of high recharge rates, sandy soils, shallow water tables, and areas with high levels 

of agricultural activity in land use. Moreover, comparative studies by Kouz et al., (2020) and   

Hamza and Added, (2009) have shown the SI method to yield more reliable results than the 

DRASTIC model, the vulnerability classes mapped are higher with the application of the SI 

approach, which supports the idea that the SI method was designed to consider the properties 

of nitrates and the relationship between them and intrinsic vulnerability. By contrast, the 

DRASTIC model ignores the nature of contaminants and focuses solely on hydrogeological 

parameters. This integration of various spatial features through the land use parameter enhances 

the method’s applicability and accuracy in vulnerability assessments.  List of some comparative 

studies conducted worldwide are given in Table 3. 
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2.2.3.4 Advantages  

The main advantage of the Susceptibility Index (SI) method, its ability to incorporate land use 

changes as a parameter directly into the groundwater vulnerability assessment gives it a 

distinctive edge in accurately reflecting the specific vulnerability due to human activities 

(Brindha & Elango, 2015). This feature is crucial in agricultural regions where pesticide and 

nitrate usage heavily influence groundwater quality (Francés et al., 2002). Additionally, the SI 

model can be combined with Geographic Information Systems (GIS) and remote sensing to 

develop an integrated approach, especially for heterogeneous media that consider geological, 

hydrological, and geochemical data to improve the reliability of risk assessment (Anane et al. 

2013; Bartzas et al. 2015). Similar to the DRASTIC and GOD methods, the SI approach was 

developed to assess the vulnerability of aquifers on large and medium scales. 

2.2.3.5 Limitations  

In the Nabeul-Hammamet aquifer, Tunisia, Anane et al., (2013) applied this method in 

combination with consistency, where contamination by nitrate has occurred. Data on 

vulnerability exhibited certain limitations in assessing groundwater vulnerability. The first is 

that the application of the SI model displayed an overestimation of vulnerability due to not 

accounting for the dilution effect, which can significantly mitigate the level of contamination. 

Moreover, (Noori et al., 2019) highlighted the difference between the most vulnerable and most 

contaminated areas. The second limitation is that the SI method overlooks the recycling process 

of groundwater that contributes to the accumulation of pollutants. This tendency leads to an 

underestimation of vulnerability due to the failure to consider two factors, namely, soil media 

and unsaturated zone (Anane et al., 2013). By not incorporating these parameters, the SI 

method potentially underestimates vulnerability where these factors play a significant role in 

contaminant filtration and attenuation. This oversight can lead to inadequate protection 

measures for aquifers that are more susceptible than the SI method suggests, particularly in 

regions where the soil media and unsaturated zones are key barriers to pollutant migration. 

2. 3 Integration of fuzzy logic with the DRASTIC method 
2.3.1 Overview  

Fuzzy Logic (FL), introduced by Zadeh (1965), is an advancement over classical set theory 

that enhances the handling of imprecision by (i) extends classical set theory by removing strict 

boundaries typically associated with classical sets; and (ii) by redefining set membership of an 

object as a gradient from 0 (completely false) to 1 (completely true), rather than as a binary 
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condition (Demicco and Klir, 2003). Membership Functions (MFs) characterize these fuzzy 

sets with uncertain boundaries that facilitate smooth transitions between categories to better 

manage the inherent uncertainties often found in complex systems (Grande et al., 2010). Fuzzy 

Logic is particularly effective in handling the ambiguities and imprecision commonly 

encountered in environmental, hydrological, and hydrogeological factors subject to uncertainty 

and ambiguity (Nourani et al., 2023). Within the domain of groundwater vulnerability, fuzzy 

logic refines the DRASTIC model by integrating qualitative expert insights with quantitative 

data into a comprehensive evaluative framework (Nadiri et al., 2017). 

The operational framework of FL in this application comprises three pivotal stages (Fig. 3): (i) 

fuzzification, (ii) fuzzy inference (fuzzy rule base), and (iii) defuzzification, as described by 

(Zadeh, 2015). During fuzzification, crisp input values are converted into fuzzy sets to build 

the foundation of the inference system. The fuzzy inference mechanism employs a series of 

logical rules that relate these inputs to outputs, primarily using operations such as AND 

(minimum) and OR (maximum) to synthesize these relationships. This rule-based system 

integrates the fuzzy inputs into a unified output set through an implication process, which is 

then processed to deliver a singular decision outcome. The final stage, defuzzification, involves 

converting the fuzzy output back into a precise scalar value, completing the transition from 

fuzzy data inputs to actionable crisp outputs.  

 

Figure 3. Fuzzy logic system 

2.3.2 Methodological enhancements 

As previously discussed, while DRASTIC effectively simplifies complex hydrogeological 

settings into an accessible index format and is widely adopted to evaluate vulnerability in 

different parts of the world (Barbulescu, 2020; Rama et al., 2022). Nonetheless, the inherent 
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subjectivity of the data availability and/or the variability in hydrogeological characteristics 

across different regions require modifications to the DRASTIC model to enhance its accuracy, 

as evidenced by global studies on its adaptations (Baki and Ghavami, 2023; Huan et al., 2012; 

Javadi et al., 2011; Nguyen and Tat, 2024; Sener and Davraz, 2013; Thirumalaivasan et al., 

2003; Torkashvand et al., 2023). 

One of the persistent challenges of the DRASTIC model lies in its reliance on fixed parameter 

ratings, which often fail to capture the variability and uncertainty inherent in hydrogeological 

conditions (Saranya and Saravanan, 2021). Moreover, despite the need for a comprehensive set 

of input data for a thorough assessment of groundwater vulnerability, the data available for 

DRASTIC are often limited or compromised by the use of substandard measurement 

technologies (Taghavi et al., 2023). Fuzzy techniques are commonly used to overcomes these 

limitations by introducing flexibility and adaptability into the parameter ratings process (Das 

and Pal, 2020; Nadiri et al., 2017; Saranya and Saravanan, 2022). These techniques employing 

pseudo-trapezoidal membership function (MF) in conjunction with Mamdani inference and 

center-of-gravity defuzzification to establish linguistic definitions for DRASTIC indices. 

Building on this foundation, this study introduces an adaptation called the fuzzy-enhanced 

DRASTIC method, which integrates FL into the traditional DRASTIC method by employing 

hierarchical fuzzy inference systems (FIS) that enable dynamic adjustments to parameter 

ratings. This adaptation leverages expert knowledge and site-specific data to define fuzzy 

membership functions, allowing for a more nuanced representation of each parameter's impact 

on groundwater vulnerability. Unlike the static ratings of the original model, these fuzzy-

enhanced ratings are dynamic, allowing for more nuanced categorizations and continuous 

transitions between vulnerability classes. The hierarchical FIS further augments this capability 

by processing the DRASTIC parameters simultaneously through a rule-based framework that 

captures the complex interrelationships among them. This results in a more comprehensive and 

context-sensitive evaluation of groundwater vulnerability (Jesiya and Gopinath, 2019; Saranya 

and Saravanan, 2021).  

These methodological enhancements make the fuzzy-enhanced DRASTIC model a robust tool 

for groundwater vulnerability assessment, particularly in regions with heterogeneous 

hydrogeological settings or limited data availability. By refining parameter ratings and 

leveraging fuzzy logic's ability to manage imprecise and ambiguous information, the enhanced 
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model provides a more reliable basis for decision-making in groundwater management and 

protection (Iqbal et al., 2015; Saranya and Saravanan, 2021). 

2.3.3 Applications and case studies 

The integration of fuzzy logic techniques with the DRASTIC method has been applied in 

various hydrogeological settings, demonstrating significant improvements in the accuracy and 

specificity of groundwater vulnerability assessments. Afshar et al., (2007) used fuzzy logic 

(FL) techniques to enhance the specificity of DRASTIC index in groundwater vulnerability 

assessment. Using a pseudo-trapezoidal MF in conjunction with Mamdani inference and 

center-of-gravity defuzzification, they effectively categorized each parameter into three 

linguistic terms and defined eight linguistic terms for a normalized DRASTIC index, thereby 

refining the model’s ability to interpret and classify groundwater vulnerability data. Similarly, 

Nourani et al. (2023) advanced the DRASTIC model by integrating it with a Mamdani fuzzy 

logic (MFL) approach to reduce uncertainties in groundwater vulnerability assessments. This 

study applied MFL combined with data mining to address the inherent weaknesses of 

traditional DRASTIC method, especially the subjective rating of parameters. In their 

assessment of the Ardabil and Qorveh-Dehgolan plains, the authors found that the MFL model 

yielded higher accuracy in vulnerability predictions, as indicated by improved Heidke skill 

scores (HSS) and total accuracy (TA) values compared to the standard DRASTIC approach. 

The study demonstrated that even with reduced parameter inputs, the MFL model could 

reliably predict groundwater vulnerability, thus offering an efficient and flexible alternative for 

aquifers in complex hydrogeological settings. Furthermore, Iqbal et al. (2015) applied a 

hierarchical fuzzy system (HFS) model to address the limitation of DRASTIC method, in 

managing uncertainties inherent in hydrogeological data. The HFS model incorporates 

standard DRASTIC parameters within a fuzzy logic framework. In their assessment of Ranchi 

District, India, the authors found that the HFS model yielded higher accuracy in vulnerability 

predictions, as indicated by stronger correlation (R² = 0.621) with observed nitrate 

concentration data compared to the traditional DRASTIC model (R² = 0.481). The study 

highlights the HFS model’s capacity to better represent groundwater contamination risks. 

Another notable application by Saranya and Saravanan, (2021) refined groundwater 

vulnerability assessment by developing a hierarchical fuzzy inference model (HFIM) and 

applying it in Cuddalore District, India. The HFIM incorporated standard DRASTIC 

parameters within a GIS framework, enhancing adaptability and responsiveness to data 

changes. Comparison with the traditional DRASTIC model showed the HFIM's superior 
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performance, classifying vulnerability into seven nuanced categories, as opposed to 

DRASTIC’s five. Model validation using nitrate concentration data from 40 sampling points 

revealed a stronger correlation in the HFIM (R² = 0.704) versus DRASTIC (R² = 0.60), with 

the HFIM displaying a smoother transition across vulnerability categories. This approach 

demonstrated that hierarchical fuzzy inference enhances vulnerability mapping precision, 

providing a robust tool for sustainable groundwater management in agriculturally intensive 

regions. 

2. 4 Role of Geographic Information Systems (GIS) in vulnerability 
assessment 

The advent of Geographic Information Systems (GIS) has markedly enhanced the methodology 

for creating groundwater vulnerability maps. Since the development of GIS technology in the 

1990s (Esri, n.d.), it has enabled the implementation of qualitative methods within its 

framework and can easily perform map overlaying and indexing operations in the spatial 

domain (Kaur and Rosin, 2009). Merchant, (1994) was the first that applied this technology for 

DRASTIC implementation, and has since been widely adopted due to its robust capabilities in 

retrieving, storing, managing, analyzing, and visualizing geospatial data (Hasan et al., 2019; 

Jha and Peiffer, 2006; Koon et al., 2023; Oroji, 2018). In practice, GIS combines multiple 

spatial data layers, each representing critical variables influencing groundwater vulnerability, 

(e.g., soil type, aquifer media, and recharge rate) (See Fig. 4).  

Each feature/layer is assigned a weight relative to the other in order of their impact on 

vulnerability and integrated to produce comprehensive vulnerability maps through GIS's 

sophisticated overlay and indexing techniques (Goyal et al., 2021). This process is particularly 

important in the application of vulnerability assessment models like DRASTIC, GOD, and SI, 

which rely heavily on the spatial distribution of parameters to calculate an accurate 

vulnerability index (Machiwal et al., 2018). Moreover, numerous case studies across various 

geographical regions have underscored the utility of GIS in refining the assessment process, 

providing a clearer, more actionable output for groundwater management (refer to Table 1 for 

examples). However, despite its effectiveness, the application of GIS is not without challenges. 

The process of data entry is time-consuming and costly, requiring all data to be digitized and 

accurately modeled for terrain analysis, which can be complex and technically demanding. 

Additionally, constraints such as data availability, resolution, and the overall cost of GIS 
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technology can restrict its use, especially in settings with limited resources (Banerjee et al., 

2023; Goyal et al., 2021). 

 

Figure 4. Conceptual flowchart illustrating the integration of thematic layers within a GIS framework 
to construct groundwater vulnerability maps using DRASTIC, GOD, and SI methods. 
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CHAPTER 3: METHODOLOGY 

This chapter presents a detailed methodology used to assess shallow groundwater vulnerability 

in Southeast Hungary, starting with a description of the study area's geographical, hydrological, 

and socio-economic characteristics. It examines the applied assessment methods: the 

DRASTIC, GOD, Susceptibility Index (SI), and a pioneering Fuzzy-enhanced DRASTIC 

models. To validate the effectiveness of each model, the chapter employs a robust statistical 

validation approach using both Pearson and Spearman’s rho correlations, conducted using 

SPSS (Statistical Package for the Social Sciences) software. This dual correlation approach 

ensures a thorough evaluation of the models' accuracy in predicting groundwater vulnerability. 

After detailing the validation process, single-parameter sensitivity analysis (SPSA) is 

conducted to investigate the influence of individual parameters on the vulnerability 

assessments, thereby enhancing the understanding of model sensitivity and robustness. 

Additionally, the chapter outlines the data collection strategies and sources. This structured 

approach ensures a comprehensive evaluation of groundwater vulnerability, aligning with the 

thesis's overarching goal of providing a scientifically rigorous and practically applicable 

framework for sustainable groundwater management in Southeast Hungary. To ensure 

consistency and reproducibility of spatial analyses, all thematic layers, vulnerability indices, 

and sensitivity analyses in this study were prepared and processed using ArcGIS 10.6.1. 
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3. 1 Study area description 
3.1.1 Geographical characteristics 

The area featured in this study located at coordinates 46°20′–47°00′ N and 20°00′–21°00′ E 

(Fig. 5), is part of the Great Hungarian Plain (Alföld), Hungary, within the Carpathian Basin, 

East-Central Europe (19.38°–22.86° E and 46.18°–48.32° N). Covering an area of 8,690 km², 

the region is characterized by a predominantly flat, fertile plain with an average elevation of 

approximately 100 meters above Baltic Sea level (MASL). The topography, generally under 

2%, significantly influences surface water flow and land use, particularly agricultural practices 

that dominate the region’s economy. 

 

Figure 5. Location of the study area 
3.1.2 Hydrological and soil characteristics 

The climate of the region is characterized as arid continental, heavily influenced by both dry 

continental and mediterranean air masses, resulting in marked temperature extremes and 

notably limited precipitation. Specifically, the region lies near the threshold of sub-humid 

conditions (Climate - HungaroMet, n.d.). The average annual temperatures, long‑term data 

from 1991 to 2020 indicate that plain areas of Southeast Hungary average between 10.5 °C and 

11.5 °C, with some localized zones near the southern border occasionally exceeding 11.5 °C 
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(Temperature - HungaroMet, n.d.). In addition, the region is among the driest parts of Hungary, 

with mean annual precipitation ranging from 500 to 550 mm (Precipitation - HungaroMet, 

n.d.). The Tisza River, Hungary’s second major river (ICPDR—International Commission for 

the Protection of the Danube River, 2011), bisects the study region and delineates two distinctly 

different soil types: loose sandy soils and variable soils with finer texture. Along the riverbanks, 

the predominant soil types are clay and clay loam, which have low permeability, resulting in 

minimal infiltration. To the west of the Tisza River, the terrain is primarily sandy, interspersed 

with occasional areas of sandy loam, and a smaller region to the northwest is dominated by 

loam soils. The study area’s southeast section is largely composed of loam, interspersed with 

patches of clay loam (European Soils Bureau Network, 2005; Farsang et al., 2017). 

3.1.3 Socio-economic characteristics 

The study area has a population of approximately 708,000 people, the area spans several 

counties, including Csongrád-Csanád, parts of Békés, and Bács-Kiskun Counties (Hungarian 

Central Statistical Office, n.d.). Agriculture forms the economic backbone of this region, with 

over 65% of the land devoted to the cultivation of maize, sunflower, wheat, onions, and fruits 

(Hungarian Central Statistical Office, 2020), the first three crops are dominant on loessy areas 

while fruits and vegetables are typical on sand. These crops rely heavily on groundwater for 

irrigation, consuming approximately 4.9 million m³ of groundwater annually (Lower Tisza 

Region Water Management Directorate, n.d.). The intensive use of fertilizers and pesticides 

associated with these agricultural activities significantly increases the risk of groundwater 

contamination, highlighting the critical need for effective water management and 

contamination mitigation strategies (Barreto et al., 2017; Pinke et al., 2020). 

3.1.4 Environmental and pollution considerations 

Given its status as one of Hungary’s most productive agricultural regions and its critical role 

in national food production (Pinke et al., 2020), the selected study area exemplifies the 

challenges of balancing agricultural productivity with sustainable water management. This 

region is notably prone to severe, prolonged droughts, which exacerbate groundwater depletion 

and significantly affect groundwater table dynamics, influencing both the quantity and quality 

of groundwater (Rossi et al., 2023; Szöllősi-Nagy, 2022). The prevalence of agricultural 

practices, particularly the extensive use of nitrogenous fertilizers, contributes to elevated nitrate 

levels in groundwater, posing serious risks to water quality (Zhou et al., 2015). Therefore, 

assessing the vulnerability of aquifers to contamination is crucial for enabling policymakers to 

implement targeted management measures. These measures aim not only to mitigate risks of 
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groundwater contamination but also to address the socio-economic demands of the region, 

ensuring a balanced approach to environmental sustainability and agricultural efficiency 

(Haidery et al., 2023). 

3. 2 Preparation of thematic layers  

In this study, the assessment of groundwater vulnerability based on different combinations of 

the eight parameters listed in Table 2. These parameters and their application in this study are 

briefly described below, and their spatial distributions are presented in Fig. 6. 

  

  

  

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 6. Spatial distributions of parameters describing the groundwater vulnerability to 
contamination in the study area: (a) depth to water table (mbgl), (b) recharge rate (Piscopo method), 
(c) aquifer media, (d) soil media, (e) topography (slope%), (f) vadose zone, (g) hydraulic conductivity 
(m/day), and (h) land use. 

3.2.1 Depth to the water table 

The depth to the water table (D) controls the leaching process and defines the distance/time 

required for dissolved contaminants to move between the upper edge of the soil and upper edge 

of the aquifer (Kirlas et al., 2022). Shallow aquifers with water tables near the surface are 

highly vulnerable to contamination by diffusion, which can be attributed to the lower potential 

for natural attenuation. The depth to the water table was measured at 383 shallow wells in 

spring 2022 (Fig. 5), revealing depths ranging from 1.1 to 10.9 meters below ground level, and 

the observed data were interpolated by kriging and assigned a rating of 5–10 based on its impact 

on the vulnerability of the local area (Table 5), the weighting factors of the D parameter are 

provided in Table 2. This spatial distribution is visually represented in Figure 6a, illustrating 

the depth variations across the study area and aiding in the assessment of contamination risks. 

3.2.2 Aquifer recharge rate 

The aquifer recharge rate (R) refers to the annual volume of water that directly infiltrates the 

shallow aquifer, and it is the main pathway for contaminant transport. Because of the 

unavailability of data on recharge rates in the study area, the recharge rates were estimated by 

applying the Piscopo method (Piscopo, 2001), which integrates factors for the land slope, 

rainfall, and soil permeability, as shown in Eq. (1) (Asghari Moghaddam et al., 2023; Kirlas et 

al., 2022; Yankey et al., 2021): 

Net recharge index (Ri) = land slope factor (%) + rainfall factor (mm) + soil permeability factor

 (1) 

Saravanan et al., (2020) demonstrated the effectiveness of this method by comparing four 

different approaches to estimate the net recharge rate and assessing their suitability for 

(g) (h) 



47  

evaluating groundwater vulnerability in the Upper Palar River basin, Tamil Nadu, India, using 

the DRASTIC model. They found the Piscopo method to be very effective at calculating the 

recharge rate, and it showed a good correlation with the observed NO3− concentration. 

For this study, the land slope factor (%) was determined using Advanced Spaceborne Thermal 

Emission and Reflection Radiometer digital elevation model (ASTER-DEM) data in raster file 

format with a spatial resolution of 5m × 5m. The data showed that approximately 99.9% of the 

study area had a slope of less than 2%, leading to a uniform slope factor rating of 4 (Table 4). 

The rainfall factor was calculated at nine precipitation stations in the study area, and it was 

estimated at around 326 mm/year in 2021. Consequently, a fixed rating of 1 was assigned. The 

soil permeability factor was obtained using the results of a soil survey (0–40 cm depth) 

conducted within the study area (Farsang et al., 2017). The soil permeability was classified 

according to the USDA system (1994). The soil of the study area mainly comprised clay and 

clay loam along the eastern side of Tisza River (very low to low permeability), sandy loam to 

sand on the western side (moderate to high permeability), and loam in the southeast and small 

parts of the northwest (moderate permeability). Table 4 lists the ratings of the recharge rate, 

which mainly depended on the soil permeability in this study. The aquifer recharge ratings 

layer is visually mapped out in Figure 6b. 

Table 4. Ratings of the recharge rate according to the Piscopo method (Piscopo, 2001) 

Slope (%) Rainfall (mm/year) Soil permeability Recharge rate  

Range Rating Range Rating Range Rating Range Rating 

< 2 4 < 500 1 High 5 11 - 13 10 
2 – 10 3 500 - 700 2 Mod-high 4 9 - 11 8 
10 – 33 2 700 - 850 3 Moderate 3 7 - 9 5 

> 33 1 > 850 4 Slow 2 5 - 7 3 
    Very slow 1 3 - 5 1 

3.2.3 Aquifer media 

The aquifer media (A) characterizes the physical and hydraulic properties of the saturated zone, 

which controls the contaminant attenuation process (Rama et al., 2022). In this study, aquifer 

media were assessed by analyzing the lithological profiles from 383 wells within the study 

area. This analysis identified the main components of the aquifer media including fine to 

medium-grained sand, sandy clay, clay, and sandy silts. Based on their potential to attenuate 

contaminants, these media types were classified into five categories. Each category was 

assigned a rating ranging from 4 to 8, as detailed in Table 5. These scores reflect the varying 
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degrees of permeability and contaminant filtration capacity, where higher scores indicate 

materials with greater permeability that potentially allow for faster contaminant migration. The 

aquifer media layer is detailed in Figure 6c. 

Table 5. Ranges of values and ratings of the parameters used by the three index-overlay methods to 
calculate their vulnerability indices (Aller et al., 1987; S. Foster, 1987; Ribeiro, L., 2000). (mbgl: 
meters below ground level) 

Parameters Attributes Attribute values 

Depth to 
groundwater 
table 
(mbgl*) 

Range < 1.5 1.5 - 4.6 4.6 - 9.1 9.1 - 15.2 > 15.2  
Rating for 
DRASTIC 10 9 7 5 3  

Rating for 
GOD 1.0 0.9 0.8 0.7 0.6  

Aquifer 
media 
(for 
DRASTIC) 

Types Basalt  Sand & 
gravel 

Massive 
sandstone 

Metamorphic/ 
igneous   

Rating 9 8 6 4   

Aquifer type  
(for GOD) 

Types Sand & 
gravel 

Silty & 
clay Clay    

Rating 0.7 0.5 0.4    

Soil media  
Types Sand Sandy 

loam Loam Clay loam   

Rating 9 6 5 3   

Topography 
(slope, %) 

Range < 2% 2 - 6 6 - 12 12 - 18 > 18  

Rating 10 9 5 3 1  

Impact of 
vadose zone 

Types Sand & 
gravel Sandy silt Silty clay Clay   

Rating 8 7 6 3   

Hydraulic 
conductivity 
(m/day) 

Range > 81.5 40.8 - 81.5 28.5 - 40.8 12.3 - 28.5 4.1 - 12.3 0.04 - 
4.1 

Rating 10 8 6 4 2 1 

Land 
use/cover 

Types Agriculture Built-up 

Forests & 
semi-
natural 
zones 

River/ water 
bodies 

Shrub & 
grassland  

Rating 90 70 0 0 50  

3.2.4 Soil media 

The soil media (S) refers to the upper layer of the vadose zone, which is characterized by 

biological activities (e.g., microbial activity, organic matter, presence of roots) and contact with 

the atmosphere. It represents the initial medium that transfers the contaminant beneath Earth’s 

surface. Data on the soil media were extracted from a recent comprehensive report on soil 

conditions and irrigation possibilities in the local catchment area (Farsang et al., 2017). The 

soil types were mainly loam in the eastern part of the study area, and sand/sandy loam on the 
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western side of Tisza River. Clay/clay loam covered about one-sixth of the study area and was 

mostly distributed along the riverbanks with small patches to the south. For the purpose of 

vulnerability assessment, these soil types were categorized into four classes based on their 

infiltration capacities, with ratings assigned from 3 to 9. These ratings indicate the degree to 

which each soil type either facilitates or restricts water and contaminant movement, with higher 

values suggesting greater permeability and lower resistance to infiltration (Table 5). The spatial 

distribution of these soil types is visually detailed in Figure 6d, aiding in the comprehensive 

understanding of their implications for groundwater vulnerability.  

3.2.5 Topography  

The topography (T), or slope, represents the impact of the land surface on the leaching 

mechanism. In general, the rate of runoff is controlled by the local topography, which affects 

the probability of a contaminant being transported or retained on ground that it can infiltrate 

(Rama et al., 2022). Consequently, the topography represents a qualitative indication of the 

runoff/infiltration ratio as a function of the terrain conditions. For this assessment, topography 

was derived from DEM and was converted into slopes by using the 3D Analyst tool based on 

ArcGIS 10.6.1. The resulting slopes across most of the study area (approximately 99.9%) were 

between 0 and 2% and reached 4% in a narrow zone toward the south, which was close to the 

border with Serbia. Despite this variation, the slopes were uniformly classified into a single 

category and assigned the highest vulnerability rating of 10. This categorization was based on 

the understanding that even slight inclines could significantly affect runoff dynamics in flat 

terrains. The rationale behind the ratings is detailed in Table 5, with the weighting factors 

provided in Table 2. 

3.2.6 Vadose zone 

The vadose zone provides a pathway for contaminants from the land surface to reach the 

capillary fringe zone. It can be used to estimate the mitigation potential of the unsaturated layer 

between the soil cover and groundwater table (i.e., capillary fringe) (Jain, 2023). This zone was 

determined from lithological data collected at 383 wells, as depicted in Figure 5. Based on this 

data, the vadose zone was categorized into five classes: sand and gravel/sand, sand and silt with 

clay, silty clay and clay. These classifications reflect varying levels of permeability and 

contaminant transmission potential, with ratings assigned of 3–8 according to the 

transmissibility of contaminants to the aquifer, as detailed in Table 5. The corresponding 

weighting factors are listed in Table 2. Spatially, sand predominantly covers the western part 

of the study area and parts of the southeast, while clay is more concentrated around the middle 
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and southern parts of Szeged town. Silt and clay mixtures are found throughout the rest of the 

study area, indicating a diverse range of vadose zone compositions that influence groundwater 

vulnerability. 

3.2.7 Hydraulic conductivity 

The saturated hydraulic conductivity (K) refers to the capacity of an aquifer to transmit water 

based on the horizontal hydraulic conductivity of the saturated zone (Ks) (Darcy, 1856). Under 

the assumption that a contaminant mimics the mobility of groundwater (Aller et al., 1987), this 

parameter represents the migration of contaminants from the point of infiltration. In this study, 

hydraulic conductivity layer was estimated using the empirical Beyer equation (1964) (Eq. 2), 

which calculates conductivity based on the particle size distribution of aquifer sediments, such 

as the graphical standard deviation and cumulative weight percentage (Wang et al., 2017): 

!	 = 	$%	 ×	!" 	× 	log *
#$$
%& + × d

2
10

  (2)  

where V is the kinematic viscosity, g is the acceleration due to gravity, Cb = 6 ×	10−4 

(dimensionless), and Cu is the coefficient of uniformity (dimensionless), which is defined as 

the ratio of the grain sizes at 60% passing and 10% passing ($0	 =	d60/d10).  

The hydraulic conductivity values were spatially interpolated using kriging in ArcGIS 10.6.1. 

The average hydraulic conductivity of the study area was estimated at 4.18–38.72 m/day. Based 

on these values, three classes were established and assigned ratings from 1 to 6 to indicate 

varying degrees of water transmission potential (Table 5). The weighting for hydraulic 

conductivity, reflecting its relative importance in the vulnerability assessment, is detailed in 

Table 2. 

3.2.8 Land use/cover 

The land use and cover significantly inform the assessment of groundwater vulnerability by 

indicating the types of natural and anthropogenic activities occurring at the surface (e.g., 

agriculture, artificial development, natural areas), which profoundly impact groundwater 

quality (Nguyen and Tat, 2024). In this study, land use/cover categories were broadly classified 

into agriculture, rivers/water bodies, built-up areas, forests, and semi-natural areas. Each 

category was meticulously assigned a vulnerability rating based on its potential impact on 

groundwater contamination, as detailed in Table 5. For instance, agricultural activities, 

including irrigated perimeters and permanent crops, which constitute about 66% of the study 
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area, were assigned a high rating of 90 due to their significant potential to introduce 

contaminants into the groundwater system. Conversely, forests and semi-natural areas, along 

with water bodies, generally presumed to exert minimal contamination risk, received a minimal 

rating of 0.  Built-up areas, making up approximately 6% of the landscape, were rated at 75, 

reflecting their moderate impact relative to agricultural zones. The weighting for LU/LC 

parameter, reflecting its relative importance in the vulnerability assessment, is detailed in Table 

5. 

3. 3 Methodologies for groundwater vulnerability assessment  

Figure 7 illustrates the workflow used to evaluate the selected methodologies for groundwater 

vulnerability assessment, including the standard DRASTIC, GOD, SI, and Fuzzy-enhanced 

DRASTIC model. These methods are recognized for their qualitative efficiency in assessing 

groundwater vulnerability that are cost-effective and time-efficient (Elmeknassi et al., 2021; 

Machiwal et al., 2018). As discussed in Chapter 2, each method represents a different approach 

to assessing vulnerability—ranging from the intrinsic, parameter-weighted frameworks of 

DRASTIC and SI, to the simplified parametric classification of the GOD method, and finally 

to the advanced Fuzzy-enhanced DRASTIC model, which addresses uncertainties associated 

with conventional rating systems. The selected models rely on the spatial integration of 

multiple thematic layers and the subjective assignment of weights and ratings based on 

hydrogeological significance. Table 2 summarizes the parameters and their associated weights 

used in each method, while Table 5 presents the ranges of the ratings applied during the 

calculation of the vulnerability indices. ArcGIS Spatial Analyst was used to process and 

analyze spatial data for all methods. Both inverse distance weighting (IDW) and Kriging 

interpolation were tested to determine which provided the better accuracy. Kriging 

demonstrated the lowest Root Mean Square Error (RMSE) was selected for the remainder of 

the study, ensuring optimal accuracy in our spatial analyze. 

To evaluate the predictive effectiveness of each model, the vulnerability indices generated by 

the four methodologies were validated against measured concentrations of nitrate (NO₃⁻) from 

46 monitoring wells across the study area. Pearson’s and Spearman’s correlation coefficients 

were computed to quantify the strength and direction of the relationship between the 

vulnerability scores and observed nitrate levels, thereby determining each model’s reliability 

in identifying areas at risk of contamination. Additionally, this study incorporated Single-

Parameter Sensitivity Analysis (SPSA) for the DRASTIC, SI, and Fuzzy-enhanced DRASTIC 
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models to identify the most influential parameters affecting the vulnerability index. SPSA 

quantifies the contribution of each parameter by calculating its effective weight, which is 

derived from its rated value, assigned weight, and the total vulnerability index. This analysis 

enables a deeper understanding of the internal structure of each model and highlights how 

spatial variability in specific parameters influences final vulnerability scores. 

 

Figure 7. Methodological workflow for groundwater vulnerability analysis 

3.3.1 DRASTIC method 

DRASTIC, a systematic approach developed by the United States Environmental Protection 

Agency (Aller et al., 1987), assesses groundwater vulnerability through a rating and weighting 

system. Recognized for its cost-effectiveness, simplicity, and reliance on readily available data, 

DRASTIC is extensively utilized in groundwater vulnerability studies (Haidery et al., 2023). 

This method involves the integration of seven critical hydrogeological factors that are 

considered intrinsic to the sensitivity of an aquifer to potential contaminants from the ground 

surface (Rama et al., 2022). These thematic layers or factors include: Depth to water table (D), 

aquifer Recharge (R), Aquifer type (A), Soil media (S), Topography (slope) (T), Impact of the 

vadose zone (I), and Hydraulic Conductivity (C) of the aquifer. The final DRASTIC 

vulnerability index (Vi) for each pixel or unit grid cell within the study area is computed using 

a weighted linear combination of these parameters, represented by the equation detailed in the 

Table 1. Table 2 delineates both the parameters and their respective weights for computing the 
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DRASTIC index. After calculating the vulnerability index (Vi), areas are identified as more 

sensitive to groundwater contamination compared with others. The range of DRASTIC scores 

extends from 23, indicating the least vulnerability, to 226, indicating the highest potential for 

vulnerability. Corniello et al., (1997) have further categorized these scores into distinct classes 

ranging from very low to very high vulnerability potential, as outlined in Table 6. 

Table 6. Criteria used by the three index-overlay methods to assess their vulnerability indices 

Vulnerability degree Very 
low Low Moderate High Very high Reference 

Vulnerability 
index 

DRASTIC < 80 80 – 120 121 - 160 161 – 
200 > 200 (Corniello et al., 

1997) 

GOD 0 – 0.1 0.1 – 0.3 0.3 – 0.5 0.5 – 0.7 0.7 – 1 (Foster, 1987) 

SI - < 45 45 - 64 65 - 85 > 85 (Ribeiro, L., 
2000) 

3.3.2 GOD method  

In this study, the GOD method is employed to assess groundwater vulnerability in Southeast 

Hungary, utilizing its straightforward framework developed in England by Foster, (1987). This 

method assesses groundwater vulnerability by examining three key parameters: Groundwater 

occurrence (G), which categorizes the type of aquifer based on the degree of confinement; the 

Overlying lithological characteristics (O), referring to the properties of the vadose zone; and 

the Depth to the groundwater table (D). Each of these parameters is rated on a scale from zero 

(indicating no vulnerability) to one (indicating high vulnerability), reflecting their inherent 

characteristics to shield against or permit contaminant penetration. No weighting is applied to 

the parameters, as they are considered to have equal influence on aquifer vulnerability. The 

GOD vulnerability index (IvGOD) is then calculated by multiplying the ratings of these three 

parameters, as detailed in Table 5. IvGOD is then used to classify the vulnerability according to 

the criteria defined in Table 6. 

3.3.3 Susceptibility Index (SI)  

In Portugal, Ribeiro, (2000) introduced the SI as a specialized approach to assess groundwater 

vulnerability to vertical agricultural contamination, particularly with regard to nitrate and 

pesticides, is applied within the Southeast Hungary context to address the significant impacts 

of agricultural activities. The SI method considers five parameters, as detailed in Table 2, and 

it is a modified version of DRASTIC. Four parameters are identical to those used in DRASTIC, 
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and they are assigned ratings across a range 10 times larger than that used by DRASTIC. The 

fifth parameter is the land use/cover (LU/LC), allows for integrating the impact of 

anthropogenic activities in its calculation, thus transitioning the assessment from intrinsic to 

specific vulnerability (Ghouili et al., 2021; Ribeiro et al., 2017). Land use is rated according to 

the classification provided by Ribeiro as shown in Table 5. Then, weighting factors are 

assigned to each parameter are listed in Table 2, and the SI vulnerability index (IvSI) is 

computed by linearly combining the scores and weights of the five parameters represented by 

the equation detailed in the Table 1. IvSI is then used to classify the vulnerability into one of 

four classes according to the criteria defined in Table 6. 

3.3.4 Fuzzy-enhanced DRASTIC approach 

In addressing the inherent limitations and uncertainties of traditional groundwater vulnerability 

assessments, this study advances the integration of a hierarchical fuzzy inference system (FIS) 

with the established DRASTIC model, thus creating a Fuzzy-enhanced DRASTIC model. This 

approach utilizes fuzzy membership functions for each of the DRASTIC parameters—Depth 

to water table (D), Net recharge (R), Aquifer media (A), Soil media (S), Topography (T), 

Impact of the vadose zone (I), and Hydraulic conductivity (C)—to provide a more nuanced 

representation of each parameter’s contribution to groundwater vulnerability. These functions 

facilitate the handling of overlapping data ranges and the subjective nature of environmental 

assessments, allowing for a more accurate and flexible evaluation. Figure 8 presents a detailed 

flowchart of the proposed methodology, systematically outlining each step from data 

compilation to the final vulnerability mapping. Each of these steps is further elaborated in 

subsequent subsections, ensuring a comprehensive understanding of the methodology's 

application. 
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Figure 8. Flowchart of the Fuzzy-enhanced DRASTIC methodology for groundwater vulnerability 
assessment 

3.3.4.1 Hierarchical fuzzy inference system (FIS) 

In this study, the DRASTIC model is enhanced through the integration of a hierarchical fuzzy 

inference system (FIS), addressing the limitations of static parameter ratings inherent in 

traditional approache. This methodology employs a multi-level fuzzy inference system, 

depicted in Figure 9, that processes inputs through a series of interconnected layers. This 

structured approach substantially reduces the rule base size and computational demands, the 

hierarchical FIS offers a more efficient and scalable alternative to single-layer fuzzy systems, 

making it particularly suitable for groundwater vulnerability assessments in data-scarce or 

complex hydrogeological settings (Gesim & Okazaki, 2018; Nobre et al., 2007; Rezaei et al., 

2013; Saranya & Saravanan, 2022). The hierarchical structure organizes the DRASTIC 

parameters into six fuzzy inference systems (FISs), (FIS1 through FIS6), with the output of 

one level serving as the input of the next. For example, the parameters depth to the water table 

(D) and recharge rate (R) are combined to establish the first level of the hierarchy. The results 

of this level are then integrated with the aquifer media (A) parameter to form the second level, 

and this process continues sequentially. 
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In the application of this refined methodology, MATLAB R 2019 is utilized to develop the 

FIS. During fuzzification parametric values are converted into linguistic variables and assigns 

them trapezoidal membership functions MFs (Fig. 10), this function is chosen for its simplicity 

and computational efficiency, which contribute to its reliability in capturing parameter 

variability (Iqbal et al., 2015). Defined by four parameters that describe its shape— 1, %, 2, and 

3—the trapezoidal MF allows for nuanced representation of parameter ranges, as shown in Eq. 

(3). Table 7 presents the parameters and their corresponding MFs. This table provides accurate 

values across a diverse array of parameter subcategories, ensuring simplicity and convenience. 

This format is appropriate for managing multiple input points effectively.  

4Α(5) = 

⎩⎪
⎨
⎪⎧
0, (5	 < 	1)	>?	(5	 > 	3)
'	)*
+)* , (1	 ≤ 	5	 ≤ 	%)
1, (%	 ≤ 	5	 ≤ 	2)

,)'
,)- , (2	 ≤ 	5	 ≤ 	3)

  (3) 

Where: 

• 1: The starting point of the trapezoid where the membership value starts to increase 

from 0. 

• %: The point where the membership function reaches a value of 1, starting the flat "top" 

of the trapezoid. 

• 2: The point where the flat "top" of the trapezoid ends, and the membership value starts 

to decrease. 

• 3: The ending point of the trapezoid where the membership function value returns to 0. 

For B < 1 or B > 3: The membership value C(B) = 0, indicating that B is outside the trapezoid. 

For 1 ≤ B ≤ %: The membership value increases linearly from 0 to 1 as B moves from 1 to %. 

For % ≤ B ≤ 2 : The membership value C(B) = 1, indicating the plateau or "top" of the trapezoid, 

where B is fully in the fuzzy set. 

For 2 ≤ B ≤ 3 : The membership value decreases linearly from 1 to 0 as B moves from 2 to 3. 

The following phase entails constructing the conditional segment by establishing a rule that 

links the input parameters with the outputs analyzed by the inference engine. MATLAB 

supports two types of inference engines: Mamdani and Sugeno. The Mamdani inference engine 
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is selected in this study due to its superior capability to handle human inputs and its highly 

interpretable results (Selvaraj et al., 2020). This engine operates on IF–THEN rules, integrating 

OR/AND operators to connect the input and output parameters. The final step in this process 

is translating the fuzzy output values back into precise real-world values. 

The subsequent sections detail the operational hierarchy of the FIS, demonstrate the integration 

of the hydrogeological parameters (from the depth to the water table to hydraulic conductivity), 

ultimately assessing the vulnerability of groundwater in specific districts. This hierarchical FL 

approach presents a sophisticated framework designed to enhance the accuracy and 

applicability of groundwater vulnerability assessment 

 

Figure 9. Structure of hierarchical FL model for prediction of groundwater vulnerability to potential 
pollution 

i. FIS1: Groundwater depth vs. Recharge rate 

The initial component of our hierarchical FIS, FIS1, evaluates the relationship between 

groundwater depth (D) and aquifer recharge (R), two critical hydrogeological parameters that 

significantly influence groundwater vulnerability to contamination. In the spring of 2022, 

water-table depths measured at 383 well locations (Fig. 5), were interpolated using the kriging 

method in ArcGIS 10.8, revealing depths of 1.1–10.9 m below ground level (mbgl). These 

values were subsequently categorized into four vulnerability ranges—low, moderate, high, and 

very high. Each class corresponds to a specific Membership Function (MF), represented in 

Table 7. 
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In FIS1, the aquifer recharge (R) parameter is segmented into three ranges, each defined by a 

distinct MF, as detailed in Table 7. This setup allows for nuanced modelling of the interaction 

between depth and recharge in affecting vulnerability. For the outputs of FIS1, five MFs are 

designed to integrate these inputs into comprehensive vulnerability assessments. The total 

number of operational rules for this layer is calculated by multiplying the four MFs for depth 

to the water table by the three MFs for aquifer recharge, yielding a total of 12 rules. These rules 

are comprehensively listed in Table 8, which provides a detailed framework of the operational 

logic for FIS1. Example rules include: 

• Rule 1: If the depth to the water table is low (L) and the aquifer recharge is low (L), 

then the output for FIS1 is very low (VL). 

• Rule 2: If the depth to the water table is low (L) and the aquifer recharge is moderate 

(M), then the FIS1 classification is low (L). 

• … 

• Rule 9: If the depth to the water table is high (H) and the aquifer recharge is high (H), 

then the FIS1 output is very high (VH). 

Table 7. Parameters and corresponding MFs 

DRASTIC Parameters Fuzzy membership function 

Layers  Attribute values  Category  

Depth to groundwater 

table (mbgl*) 

< 1.5 Very high MF1 

1.5 - 4.6 High MF2 

4.6 - 9.1 Moderate MF3 

9.1 - 15.2 Low MF4 

Aquifer recharge ratings  7 - 9 High MF1 

5 - 7 Moderate MF2  

3 - 5 Low MF3 

Aquifer media Sand & gravel Very high MF1, MF2 

Massive sandstone High MF3 

Metamorphic/igneous Moderate MF4, MF5 

Soil media Sand Very high MF1 

Sandy loam High MF2 

Loamy sand Moderate MF3 

Sandy clay/clay loam/sandy clay 

loam 

Low MF4 

Clay Very low  MF5 

Topography (slope, %) < 2% Very high MF1 

2 - 6 High MF2 
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Impact of vadose zone Sand & gravel Very high MF1 

Sand/Sandy silt High MF2 

Sand and silty with clay Moderate  MF3 

Silty Clay Low MF4 

Clay Very low MF5 

Hydraulic conductivity 

(m/day) 

> 81.5 Very high MF1 

40.8 - 81.5 High MF2 

28.5 - 40.8 Moderate MF3 

12.3 - 28.5 Low MF4 

4.1 - 12.3 Very low MF5 
* mbgl: meters below surface 

	 	

	 	

	 	

	 	

 Figure 10. MFs of each parameter: (a) depth to water table, (b) aquifer recharge, (c) aquifer media, 
(d) soil media, (e) topography, (f) impact of vadose zone, (g) hydraulic conductivity, and (h) 
groundwater vulnerability index 

ii. FIS2: FIS1 vs. Aquifer media 

In the construction of FIS2 within our hierarchical fuzzy inference system, the outputs from 

FIS1, characterized by five membership functions (MFs)—very low (VL), low (L), moderate 

(M), high (H), and very high (VH)—serve as inputs alongside the aquifer media parameter. 

The aquifer media parameter is classified into four MFs: low (L), moderate (M), high (H), and 

very high (VH). This arrangement results in a comprehensive rule base consisting of 20 unique 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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rules, calculated as the product of the MFs from both FIS1 and aquifer media (5 × 4). These 

specific rules are detailed in Table 8. 

The aquifer media layer is delineated based on the lithological profiles obtained from the 383 

wells within the study site (Fig.2); primary components, such as fine to medium-grained sand, 

clay, and sandy silts, are identified (Fig. 6c). These components are transformed into 

quantitative fuzzy sets on a scale of 1–10, reflecting their respective influences on groundwater 

vulnerability. For instance, areas with sand and gravel sediments are assigned MFs of high to 

very high, whereas semi-consolidated sediments are classified as moderate. Silty clay/clayey 

sediments, associated with minimal percolation potential, are categorized with low MFs. Figure 

10c illustrates the MFs applied to the aquifer media, providing a visual representation of this 

categorization. 

Table 8. Rule bases for six FISs 

FIS1   

THEN FIS1  IF Aquifer recharge 

AND depth to water table   L M H 

L VL L M 

M L M H 

H M M VH 

VH M H VH 

FIS2   

THEN FIS2  IF Aquifer type  

AND FIS1  L M H VH 

VL VL L M M 

L VL L M M 

M L M H H 

H M M VH VH 

VH M H VH VH 

FIS3      

THEN FIS3  IF Soil media 

AND FIS2  VL L M H VH 

VL VL VL L M M 

L VL VL L M M 

M L L M H H 

H M M M VH VH 

VH M M H VH VH 

FIS4   
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THEN FIS4  IF Topography (slope) 

AND FIS3  H VH  

VL M M  

L M M  

M M H  

H VH VH  

VH VH VH  

FIS5   

THEN FIS5  IF Impact of vadose zone 

AND FIS4  VL L M H VH 

VL VL VL L M M 

L VL VL L M H  

M L L M H H 

H M M H VH VH 

VH M M H VH VH 

FIS6       

THEN FIS6  IF Hydraulic conductivity  

AND FIS5  VL L M  

VL VL VL L  

L VL VL L  

M L L M  

H L M H  

VH M M H  
VL: Very Low; L: Low; M: Moderate; H: High; VH: Very High  

iii. FIS3: FIS2 vs. Soil media 

The FIS2 outputs are integrated with the soil media parameter to form the basis of FIS3. In 

preparation for FIS3, the FIS2 outputs are reclassified into five classes: VL, low (L), moderate 

(M), high (H), and VH. This reclassification prepares the outputs for integration with the soil 

media parameter, enhancing the model's sensitivity to variations in soil type. The soil media 

data, derived from a comprehensive report on soil conditions and irrigation potentials within 

the study site (Farsang et al., 2017), indicate that loam predominates in the eastern sections, 

while sand and sandy loam are more common on the western side of Tisza River. Clay and clay 

loam soils are primarily found along the eastern side of Tisza River (Fig. 6d). These soil types 

are transformed into a fuzzy set scale of 1–10, with MFs are assigned based on their 

permeability and infiltration characteristics. Figure 10d depicts the MFs assigned to each soil 

type, categorized into five levels corresponding to the fuzzy set classes to reflect their influence 

on groundwater vulnerability: VH, high (H), moderate (M), low (L), and VL. This 
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categorization forms a comprehensive rule base of 25 unique rules, calculated as the product 

of the MFs from the reclassified FIS2 outputs and the soil media parameter (5 × 5). These 

specific rules are thoroughly detailed in Table 8. 

iv. FIS4: FIS3 vs. Topography 

In the development of FIS4 within our hierarchical FIS, the FIS3 outputs are integrated with 

the topography parameter. For this analysis, the topography of the study area is extracted from 

DEM data with a 5 × 5 m resolution and converted into slope percentages using the 3D Analyst 

tool in ArcGIS 10.6.1. The slope across of the study region varies between 0% and 2%, which 

encompasses approximately 99.9% of the area, while a narrow zone toward the southern part 

near the Serbian borders exhibited slopes up to 4%. Based on these findings, two MFs—VH 

and high (H)—are assigned to represent the slope classes. Figure 10e illustrates the MFs 

assigned to the topography parameter.  

To ensure consistency with previous stages, the FIS3 outputs are reclassified into five classes: 

very low (VL), low (L), moderate (M), high (H), and very high (VH), aligning with the 

integration of topography data. This integration generates a total of 10 operational rules, 

detailed in Table 8, which govern the combined impact of previous hydrogeological parameters 

and slope on groundwater vulnerability assessment. 

v. FIS5: FIS4 vs. impact of vadose zone 

In the formulation of the fifth FIS (FIS5), the FIS4 outputs are integrated with the impact of 

the vadose zone parameter, enhancing the understanding of contaminant transport from the soil 

surface to the aquifer. Figure 6f presents the characterization of the vadose zone within the 

study area, which is determined using the lithological data collected from the 383 wells. The 

vadose zone materials are then assigned MFs based on their potential influence on 

contamination pathways: sand and gravel, which are highly permeable, are assigned a very 

high (VH) rating; sand/sandy silt formations are rated as high (H); mixtures of sand and silty 

clay are moderate (M); silty clay which typically restricts fluid movement, is rated as low (L); 

and clay is categorized as very low (VL). Figure 10f displays the MFs assigned to the impact 

of the vadose zone, with each type quantified on a scale of 1–10 based on its influence on 

groundwater vulnerability. 

FIS5, thus, operates with two input parameters, each categorized into five MFs. The operational 

rules for this FIS are comprehensive and tailored to reflect the intricate interactions between 
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the vadose zone’s material characteristics and the topographic features processed in FIS4. 

These rules are systematically detailed in Table 8. 

vi. FIS6: FIS5 vs. hydraulic conductivity 

FIS6 stands as the culmination of our hierarchical fuzzy inference system, designed to deliver 

a comprehensive assessment of groundwater vulnerability to pollution. This final stage 

integrates the outputs from FIS5 with the hydraulic conductivity parameter. In the study area, 

hydraulic conductivity ranges from 4.18 to 38.72 m/day, as detailed in Figure 6g. These values 

are segmented into three distinct classes— very low, low, and moderate—each corresponding 

to a specific MF that reflects the varying conductivity level. These classifications are visually 

depicted in Figure 10g, and the Figure 10h further display the MFs utilized in FIS6, 

encapsulating the final input synthesis for predicting groundwater vulnerability accurately. The 

operational rules for FIS6, listed in Table 8, systematically combine the hydraulic conductivity 

membership functions (MFs) with the preceding FIS5 outputs.  

By synthesizing these factors, FIS6 accurately predicts areas at greatest risk, providing 

essential information for effective groundwater management strategies. 

3. 4 Methods validation and effectiveness assessment 
3.4.1 Correlation Analysis 

Validation of aquifer vulnerability assessment methodologies remains a significant challenge 

due to the absence of a universally standard validation approach (Hasan et al., 2019; Sayed et 

al., 2023). Researchers have applied different models to increase confidence in their 

vulnerability maps. The most common approach used to validate vulnerability maps is to 

compare the results of different tools and analyze their consistency based on the occurrence of 

certain common contaminant datasets obtained onsite from wells across the study area 

(Fannakh and Farsang, 2022; Machiwal et al., 2018).  

In this study, nitrate (NO₃⁻) concentrations were used as the primary contaminant for 

validation. Given its generally low natural presence in groundwater, elevated levels of nitrate 

often signify contamination from agricultural fertilizers or wastewater, making it a reliable 

indicator of anthropogenic influence (Karimzadeh Motlagh et al., 2023). A total of 46 

agricultural wells were selected to assess the spatial distribution of nitrate (NO₃⁻) 

concentrations across the study area (Fig. 1). The geographic coordinates of each well were 

recorded using a Global Positioning System (GPS). Of the total samples, 12 water samples 
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were analyzed in the laboratory of the Department of Geoinformatics, Physical and 

Environmental Geography, in accordance with Hungarian Standard MSZ EN ISO 13395:1999. 

The remaining 34 nitrate concentration data were obtained from the Lower Tisza Region Water 

Directorate (ATIVIZIG), Szeged, through their official groundwater quality monitoring 

database. 

This research assesses groundwater vulnerability using the DRASTIC, GOD, SI, and Fuzzy-

enhanced DRASTIC models. To validate the effectiveness of these methodologies, a dual 

correlation analysis was conducted using Pearson correlation analysis and Spearman’s rho 

correlation, performed with SPSS (Statistical Package for the Social Sciences) version 19.0. 

This approach is particularly suitable for environmental data, which often exhibit non-normal 

distributions and may contain outliers, common in studies involving natural variables (Agossou 

and Yang, 2021). 

The application of Pearson's correlation factor (r) is conducted to assess the linear relationships 

between the observed nitrate concentrations and the model predictions. This method assumes 

that the data are normally distributed and is sensitive to outliers. This form of analysis is for 

determining the strength and direction of linear correlations, thereby evaluating the predictive 

accuracy of each model under linear assumptions (Panagopoulos et al., 2006). Concurrently, 

Spearman’s rho correlation (ρ) is applied to evaluate the monotonic relationships between the 

same datasets. Unlike Pearson, Spearman’s rho correlation factor is not restrained by the 

general distribution form of two variables and the sample size, it allows for the assessment of 

relationships where the increases or decreases are consistent but not necessarily linear (Jafari 

and Nikoo, 2019). This method enhances the validation process by capturing a broader range 

of potential data interactions, where data distributions can be skewed or interrupted by atypical 

values. 

This dual analytical approach allows for a comprehensive evaluation of each model's accuracy 

in predicting groundwater vulnerability, highlighting the proportion of variance in nitrate 

concentrations explained by the vulnerability indices. The integration of these statistical 

techniques ensures a robust evaluation of the methods' effectiveness, reinforcing their utility in 

discerning groundwater vulnerability dynamics in Southeast Hungary, offering a reliable 

foundation for sustainable groundwater management strategies. 
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3.4.2 Sensitivity Analysis 

A comprehensive evaluation of groundwater vulnerability models necessitates a clear 

understanding of how individual parameters influence assessment outcomes. This study 

employs single-parameter sensitivity analysis (SPSA) to discern the criticality of parameters 

within the DRASTIC, Susceptibility Index (SI), and Fuzzy-enhanced DRASTIC methods. 

While the GOD method assigns equal weighting to its parameters (groundwater occurrence, 

overlying lithology, and depth to groundwater), the differential impact of individual parameters 

on the model's output is inherently assumed to be uniform (Foster, 1987). 

The sensitivity of each parameter is quantified using a sensitivity index, which measures the 

change in the vulnerability index relative to the change in the parameter values. This approach 

quantitatively assesses each parameter's contribution to the model's output, identifying those 

with significant impacts on the final vulnerability assessment (Singha et al., 2019; Torkashvand 

et al., 2023). Specifically, the SPSA analysis compares the theoretical weight (assigned by the 

model) with the effective weight (calculated based on the parameter's actual impact) 

(Napolitano and Fabbri, 1996). The effective weight (W) of each parameter is computed using 

the following equation: 

D = *./×.12 + × 100   (4) 

Where: 

• W: effective weight of the parameter, 

• Pr: rating value of the parameter, 

• Pw: theoretical weight of the parameter, and 

• V: overall vulnerability index. 

 

3.4.3 Determining the most suitable method 

In the critical evaluation of groundwater vulnerability assessment methodologies, identifying 

the most effective model is crucial for ensuring reliable and actionable insights. This study 

determines the most suitable groundwater vulnerability assessment method based on a 

comprehensive evaluation of predictive accuracy and correlation strength. The methods—

DRASTIC, GOD, SI, and Fuzzy-enhanced DRASTIC— are compared by analyzing their 

vulnerability indices against observed nitrate (NO3−) concentrations from 46 wells.  
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To validate the effectiveness of these methodologies, a dual analytical approach, as discussed 

in subsection 3.4.1, is utilized, employing both Pearson and Spearman’s rho correlations. 

Performed using SPSS software, these analyses measure the strength and direction of both 

linear and monotonic relationships between the vulnerability indices and nitrate concentrations. 

By synthesizing the outcomes of these correlation analyses, the study identifies which approach 

consistently demonstrates the highest accuracy and strongest correlation with the observed 

data. The method that exhibits the most robust correlation coefficients across both statistical 

measures is considered best suited to the hydrogeological conditions of Southeast Hungary. 

This systematic selection process ensures that the selected method is both statistically validated 

and practically applicable, thereby providing reliable guidance for groundwater management 

strategies in the region. 

3. 5 Data collection and sources  

The compilation of secondary data for this study was collected or derived from a diverse array 

of sources, including governmental agencies, private sector organizations, and individual 

scholarly contributions. This broad spectrum of sources ensures a comprehensive dataset that 

supports the varied hydrogeological analyses conducted in this research. Detailed in Table 9, 

the data encompasses various types, resolutions, and origins, each contributing uniquely to the 

study's integrity and depth of analysis.  

The thematic layers for delineating the hydrogeological parameters were developed using 

ArcGIS 10.6.1. This software facilitated the precise integration and spatial analysis of the 

collected data, enabling the creation of detailed maps that illustrate the geographic distribution 

and interrelationships of the study's key variables. 
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Table 9. Data and sources utilized in this research. (mbgl: meters below ground level) 

Data type Unit Resolution Source 
For use with the 

(name of the 
method) 

Water table depth at 
383 locations 

mbgl* 

Tabular data Lower Tisza Region Water 
Directorate of Szeged, Hungary 
(ATIVIZIG) 

o DRASTIC 
o GOD 
o SI 
o Fuzzy-enhanced 

DRASTIC 

Digital Elevation 
Model of the study 
site (for topography 
parameter): 
ArcView/ArcInfo 
Grid files 

- 

Spatial: 5 m × 
5 m 

Department of Geoinformatics, 
Physical and Environmental 
Geography, University of Szeged, 
Hungary 

o DRASTIC  
o SI 
o Fuzzy-enhanced 

DRASTIC 

Borehole lithology 

- 

Tabular data Lower Tisza Region Water 
Directorate of Szeged, Hungary 
(ATIVIZIG) 

o DRASTIC 
o GOD 
o SI 
o Fuzzy-enhanced 

DRASTIC 

Precipitation: point 
data at meteorological 
stations; year: 2021 mm 

Spatial: 12 
stations for 
precipitation; 
temporal: 
monthly 

Lower Tisza Region Water 
Directorate of Szeged, Hungary 
(ATIVIZIG) 

o DRASTIC 
o SI 
o Fuzzy-enhanced 

DRASTIC 

Land use/cover map; 
year: 2022  - Spatial: 15 m 

× 15 m 
ESRI land use\cover model for 
Landsat 8 imagery 

o SI 

Nitrate concentration 
in shallow aquifer; 
year: November 2022 
- April 2023 

mg/l 

 Personal work and Lower Tisza 
Region Water Directorate of 
Szeged, Hungary (ATIVIZIG) 

o DRASTIC 
o GOD 
o SI 
o Fuzzy-enhanced 

DRASTIC 

Soil Map 

- 

1:100000 (Farsang et al., 2017)  o DRASTIC 
o GOD 
o Fuzzy-enhanced 

DRASTIC 
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Chapter 4: Results and Discussion 
This chapter presents the findings from the application of the four groundwater vulnerability 

assessment approaches—DRASTIC, GOD, SI, and Fuzzy-enhanced DRASTIC—within the 

context of Southeast Hungary. It details the vulnerability maps produced by each method, 

highlighting their spatial distinctions and the underlying vulnerability levels identified across 

the study area. The subsequent section rigorously evaluates the accuracy of each model by 

performing dual correlation analyses, applying both Pearson and Spearman’s rho correlations 

between the predicted vulnerability indices and observed nitrate concentrations. Additionally, 

a comprehensive single-parameter sensitivity analysis (SPSA) is conducted to further evaluate 

the influence of individual parameters on the vulnerability indices, enhancing the precision of 

the methods used. By synthesizing these findings, the chapter aims to determine the most 

precise and efficient method for assessing groundwater vulnerability in the context of the 

region's specific hydrogeological conditions. This structured evaluation contributes to a deeper 

understanding of regional aquifer susceptibilities. Therefore, enhancing the scientific 

groundwork for sustainable groundwater protection.  
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4. 1 Results of DRASTIC groundwater vulnerability mapping 

In the assessment of groundwater vulnerability using the original versions of the DRASTIC 

model, a comprehensive analysis was conducted integrating seven hydrogeological parameters, 

presented in Figure 6, to produce a vulnerability index map. Each parameter—depth to water 

table, aquifer recharge rate, aquifer media, soil media, topography, impact of the vadose zone, 

and hydraulic conductivity—was rigorously rated, and weighted according to established 

guidelines to reflect its respective impact on groundwater vulnerability. The final vulnerability 

index (Vi) identifies areas as more sensitive to groundwater contamination compared with 

others, adopting the classification schema proposed by Corniello et al., (1997) as specified in 

Table 6. A higher vulnerability index indicates a greater potential for surface contaminants to 

reach the water table, highlighting areas at risk, whereas a lower index suggests regions where 

groundwater is comparatively protected from surface contamination. 

Figure 11 presents the vulnerability map generated by the DRASTIC method, classifies the 

study area into zones of low, moderate, and high vulnerability. This classification reveals a 

significant spatial variation in groundwater susceptibility, with a predominant trend of 

moderate to high vulnerability, covering 5241 km² (60.32%) and 2909 km² (33.48%) of the 

total study area, respectively (Table 10).  

Table 10. Vulnerability assessment criteria used by the three index-overlay methods and their 
attributes. (GW: Groundwater) 

Vulnerability classes Attributes Vulnerability index 
 

DRASTIC GOD SI 
Fuzzy-

enhanced 
DRASTIC 

Low 
Index range 80 - 120 0.1 - 0.3 < 45 0.25 - 0.4 
Area (% of 
GW* basin) 6.26 1.26 0.2 2.84 

Moderate 
Index range 121 - 160 0.3 - 0.5 45 - 64 0.4 - 0.6 
Area (% of GW 
basin) 60.32 53 22.42 33.18 

High 
Index range 161 - 200 0.5 - 0.7 65 - 85 0.6 - 0.75 
Area (% of GW 
basin) 33.48 45.74 77.38 63.91 

 

These areas typically feature shallow water table, presence of sandy sediment composition, low 

slope, and high recharge rates, all of which contribute to increased vulnerability. Conversely, 

the low vulnerability regions, constituting about 544 km² or 6.26% of the study area, are 

primarily located on the eastern side of the Tisza River. These areas are characterized by a 

higher clay content, which provides a natural barrier against the vertical movement of 
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contaminants due to its lower permeability. This protective characteristic significantly reduces 

the susceptibility of groundwater to surface contamination in these regions. 

 
Figure 11. Spatial distribution of groundwater vulnerability in Southeast Hungary as delineated by 
the standard DRASTIC method. 

4. 2 Results of GOD vulnerability model 

In the assessment of groundwater vulnerability within Southeast Hungary, the GOD model was 

applied. This method simplifies vulnerability assessment by employing a parametric class 

system where each of the three parameters—Groundwater occurrence (G), Overlying lithology 

(O), and Depth to groundwater (D)—contributes equally, with no differential weighting 

applied, as explained in chapters 2 and 3. Using ArcGIS 10.6.1, the GOD vulnerability index 

map was computed by multiplying the maps for each parameter, subsequently classifying the 

final results according to the criteria defined in Table 6. 

Figure 12 presents these results, displaying the area segmented into three vulnerability 

classes—low, moderate, and high. The majority of the area, covering 4606 km² or 53%, is 

categorized under the moderate vulnerability class, while 2909 km² or 45.74% is classified as 

high vulnerability (Table 10). This variation according to the GOD model is mainly due to the 

two layers representing overlying strata and depth to groundwater table, because the 
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groundwater confinement layer does not vary temporarily. Areas classified under the low 

vulnerability category, covering about 109 km² or approximately 1.26% of the study area, are 

characterized by high clay content, which offers greater protection against contaminant 

penetration. This spatial distribution underscores the model's capacity to differentiate regions 

based on intrinsic geologic and hydrologic conditions, albeit with a broad generalized scope 

ideal for large-scale assessments of aquifer vulnerability. The same conclusion was drawn by 

Kazakis and Voudouris, (2011); Ghazavi and Ebrahimi, (2015) and Mfonka, et al, (2018). 

 

Figure 12. Intrinsic groundwater vulnerability of Southeast Hungary according to GOD method.  

4. 3 Results of SI groundwater vulnerability mapping 

The susceptibility index (SI) method is applied within the Southeast Hungary context to address 

the significant impacts of agricultural activities. This approach specifically integrates land use 

factor alongside traditional hydrogeological parameters to address the significant impact of 

agricultural activities on the aquifer system. This integrative approach enriches the 

understanding of human activities' influence on groundwater vulnerability (Ghouili et al., 

2021). The five layers/parameters of the SI method, presented in Figure 6—depth to 

groundwater table; aquifer recharge; aquifer media; topographic slope of the land; and land 

use/cover—were aggregated together applying the weights as depicted in Table 2, to produce 
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a vulnerability index map. Then vulnerability classes for SI method were defined as per the 

criteria set forth in Table 6. 

Figure 13 illustrates the vulnerability map derived from the SI method, the overall picture is 

clearly distinct from the two vulnerability maps obtained by DRASTIC and GOD models. SI 

method identifies over 77% of the study area, approximately 6725 km², as highly vulnerable, 

with the discrepancies between methods occurring primarily in irrigated zones and areas with 

diverse annual crops. This difference attributed to the fact that SI incorporates land use as a 

crucial factor, which is not considered by the other two methods. The moderate vulnerability 

regions, which cover about 1948 km² or 22.42% of the study area, predominantly appear in the 

western parts, which are characterized by sandy soils, very different from the DRASTIC and 

GOD vulnerability assessment. These areas are mostly composed of forests and semi-natural 

zones which are considered non-polluted areas (see Table 5), and the fact that SI method does 

not consider soil and vadose zone media factors in its assessment. The analysis found a 

negligible proportion of the area (0.2%) to fall under 'low' vulnerability area. This classification 

correlates with deeper water tables, lower recharge rates, and the presence of forested and semi-

natural areas. 

 

Figure 13.  Groundwater vulnerability mapping using the Susceptibility Index (SI) method.  
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These results are consistent with other studies that have highlighted the importance of 

integrating land use with intrinsic vulnerability assessments in agricultural regions to improve 

contamination risk predictions (Anane et al., 2013; Ghouili et al., 2021; Noori et al., 2019; 

Ribeiro et al., 2017; Stigter et al., 2006). 

4. 4 Results of fuzzy-enhanced DRASTIC groundwater vulnerability 
mapping 

The application of the Fuzzy-enhanced DRASTIC model in this study significantly refined the 

assessment of groundwater vulnerability in Southeast Hungary. This approach addresses the 

limitations of traditional DRASTIC method, particularly the static nature of parameter ratings 

and uncertainties in hydrogeological data. The hierarchical fuzzy inference system (FIS) 

dynamically adjusted the ratings of the seven DRASTIC parameters—depth to water table, 

aquifer recharge, aquifer media, soil media, topography (slope), vadose zone impact, and 

hydraulic conductivity—using trapezoidal membership functions to capture the nuanced 

interactions between these factors. The final output of this system, FIS6, was defuzzified and 

transformed into a comprehensive vulnerability index, which was subsequently mapped and 

classified across the study area. This classification delineates the region into three vulnerability 

categories—low, moderate, and high—through quantile classification, effectively 

differentiating zones based on their susceptibility to contamination. The model outputs indicate 

that the fuzzy groundwater vulnerability index (FGWVI) range from 0.25 to 0.75. To better 

represent natural groupings within the data, the index was reclassified into three categories: 

low, moderate, and high, using the Jenks natural breaks method (Table 10). 

The resulting map, as depicted in Figure 14, shows that approximately 5561 km² or 64% of the 

study area has high vulnerability, indicating a substantial potential for surface contaminants to 

penetrate the water table. These high-vulnerability zones are predominantly located in the 

western part of the study area, characterized by shallow water tables. These zones also feature 

high recharge rates and consist mainly of sandy sediments, which collectively enhance the risk 

of contaminant infiltration. Additionally, patches in the southeast part of the study area display 

high vulnerability due to the presence of sand and sandy loam soils. In contrast, regions along 

and to the east of the Tisza River were identified as moderately vulnerable, covering about 

2883 km² or 33.2% of the area. These zones are characterized by clay loam and silty clay soils, 

which possess low permeability and substantially reduce infiltration rates. The relatively low 

recharge rate in these areas diminishes the likelihood of contaminant infiltration, resulting in 
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the moderate vulnerability classification. Only a small fraction (2.8%) of the area exhibits low 

vulnerability, indicating robust natural barriers. This classification correlates with high clay 

content and low recharge rates. 

 

Figure 14. Interpolated groundwater vulnerability generated through the Fuzzy-enhanced DRASTIC 
model. 

4. 5 Validation of methodologies using nitrate (NO₃⁻) concentrations 

Groundwater nitrate (NO₃⁻) concentration is commonly used in many studies as a key indicator 

of anthropogenic impact on aquifers. Given its low natural presence in groundwater, elevated 

concentrations are typically indicative of contamination from agricultural fertilizers or 

wastewater, making it a reliable marker of anthropogenic impact and agricultural activities 

(Halder et al., 2023; Krishna et al., 2015). In this study, NO₃⁻ concentration was selected as the 

primary indicator pollutant to validate the predictive accuracy of four groundwater 

vulnerability models: DRASTIC, GOD, SI, and the Fuzzy-enhanced DRASTIC. Its spatial 

distribution—NO₃⁻ concentration—across the study area provides a basis for evaluating which 

of the applied approaches offers a more precise delineation of vulnerable zones. The analysis 

incorporated nitrate concentration data from 46 agricultural wells (Fig. 5), collected during the 

period November 2022 to April 2023, with concentrations ranging from less than 1 mg/l to 
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25.3 mg/l. According to Hungary's national groundwater quality standards, as established by 

Regulation 6/2009 (IV.14), the environmental limit for nitrate concentrations in shallow 

groundwater is 50 mg/L. The measured values in this study, while below this threshold, indicate 

varying degrees of anthropogenic influence. 

To assess the predictive accuracy of the vulnerability models, two correlation coefficients—

Pearson’s and Spearman’s rank correlation—were calculated, examining the relationship 

between observed nitrate concentrations and the vulnerability indices predicted by each model. 

The results of these analyses are summarized in Table 11 and the plots illustrated in Fig. 15. 

Based on Pearson’s correlation coefficient, the degree of relationship between GOD and nitrate 

concentration across the study region exhibited a positive linear correlation, with an r value of 

0.592, indicating a moderate linear relationship with nitrate concentrations. The DRASTIC and 

Fuzzy-enhanced DRASTIC approaches have showed a moderately strong positive linear 

correlation, with Pearson’s r values increasing from 0.601 to 0.69, respectively. This 

improvement suggests that the Fuzzy-enhanced DRASTIC model provides a more accurate 

estimation of pollution risk zones compared to the GOD and original DRASTIC models. The 

SI method demonstrated the highest correlation (r = 0.751), indicating a stronger and more 

significant linear relationship with observed nitrate data. This higher correlation attributed to 

the inclusion of land use/cover (LU/LC) as a parameter in the SI model, which is a key factor 

in areas dominated by agricultural activities. 

Spearman’s rank coefficients, which are less sensitive to non-normal data distributions and 

outliers, further supported these findings. The correlation between nitrate concentrations and 

the GOD model was ρ = 0.583, while the DRASTIC and Fuzzy-enhanced DRASTIC 

approaches demonstrated stronger correlations with ρ  values of 0.602 and 0.675, respectively. 

These results align with findings from previous studies (Agossou and Yang, 2021; Ghazavi & 

Ebrahimi, 2015; Huan et al., 2012). The SI method showed the strongest correlation again 

outperformed the others (ρ = 0.812), demonstrating its robustness in capturing the consistent, 

yet non-linear relationships between the vulnerability indices and nitrate concentrations. This 

robust performance can be attributed to the inclusion of the additive parameter LU/LC, which 

accounts for land use and actual pollution sources, thereby providing a more precise definition 

of vulnerable areas. These findings are consistent with other studies that have highlighted the 

importance of integrating land use with intrinsic vulnerability assessments in agricultural 

regions to improve contamination risk predictions (Anane et al., 2013; Ghouili et al., 2021; 
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Noori et al., 2019; Ribeiro et al., 2017). Notably, the groundwater vulnerability map generated 

using the SI approach identified over 77% of the study area as highly vulnerable. A comparison 

of the SI-based pollution risk map with the land use/cover map revealed that the majority of 

high-risk zones are concentrated in agricultural and built-up areas, potentially serving as major 

sources of pollution. 

Table 11. Correlation analysis between groundwater vulnerability indices and nitrate levels 

Vulnerability map DRASTIC GOD SI Fuzzy-enhanced DRASTIC 

Pearson correlation coefficient 0.601* 0.592* 0.751* 0.692* 

Spearman rank coefficient 0.602* 0.583* 0.812* 0.675* 

* Correlation is significant at the 0.01 level 
 

  

  
Figure 15.  Linear regression plots between groundwater vulnerability indices and NO₃⁻ 
concentration (mg/l) 

4. 6 Single parameter sensitivity analysis 

The single parameter sensitivity analysis (SPSA) was conducted to evaluate the relative 

influence of individual parameters on groundwater vulnerability assessment results for 

Southeast Hungary, as generated by the DRASTIC, Susceptibility Index (SI), and Fuzzy-

enhanced DRASTIC models. This analysis assesses the robustness of the applied methods, 
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examines the sensitivity of the results, and ensures the coherence of the analytical findings, by 

comparing theoretical parameter weights, which is pre-assigned in the model structure, with 

their effective weights (Allouche et al., 2017; Kirlas et al., 2022). The effective weight of each 

parameter was calculated based on its relative contribution to the final vulnerability index. The 

Table 12 displays the findings of the single parameter sensitivity analysis for the DRASTIC, 

Fuzzy-enhanced DRASTIC, and SI methods, revealing a variation between each parameter’s 

effective weight and theoretical weight. 

For the DRASTIC model, the depth to water table (D) and impact of vadose zone (I) emerged 

as the most influential parameters, with effective weights of 29.56% and 21.08%, respectively, 

compared to their theoretical weights of 21.7%. This highlights their dominant role in 

groundwater vulnerability assessment. These findings align with previous studies (Hamed et 

al., 2024; Krishna et al., 2015; Panahi et al., 2017; Phok et al., 2021), that also highlight the 

importance of these parameters in groundwater vulnerability assessments. The high standard 

deviation (SD = 5.64) for the impact of vadose zone indicates that this parameter vary 

significantly across locations, emphasizing its spatial sensitivity. This is followed by aquifer 

recharge parameter, although with a slightly lower effective weight (15.41% instead of 17.4%), 

though still playing a notable role in defining vulnerability patterns, and this value is consistent 

with findings from other research (Kirlas et al., 2022; Neshat & Pradhan, 2017). The influence 

of aquifer media (A) and soil media (S) is relatively similar, with effective weights close to 

their theoretical values. However, aquifer media exhibited the second highest standard 

deviation (SD = 4.2%), indicating significant spatial variability. This suggests that lithological 

differences across the study area strongly impact groundwater vulnerability. Additionally, the 

Topography (T) parameter demonstrated higher effective weights (7.16%) compared to its 

theoretical weight (4.3%), with a low standard deviation (SD = 1.12%), reflecting the 

homogeneous flat terrain of Southeast Hungary. Conversely, hydraulic conductivity (C) 

showed a considerably lower effective weight (5.91%) compared to its theoretical weight 

(13%), indicating its limited influence on vulnerability in this context. 

Similarly, the Fuzzy-enhanced DRASTIC model, maintained the same dominant parameters 

with depth to water table (D) (26.71%) and impact of vadose zone (I) (23.42%) exhibiting the 

highest effective weights. However, unlike the conventional DRASTIC model, where aquifer 

recharge (R) was the third most influential parameter, the Fuzzy-enhanced approach assigned 

a higher effective weight to aquifer media (A) (15.21%). This shift reflects the enhanced ability 
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of fuzzy logic to better capture the spatial variability of lithological characteristics on 

groundwater vulnerability. Aquifer media factor exhibits greater spatial heterogeneity than the 

recharge rate factor, the fuzzy system prioritizes its varying influence across the study area, 

leading to a more adaptive and realistic representation of hydrogeological conditions (Fannakh 

et al., 2025; Khan et al., 2022). Additionally, recharge rate factor interacts early in the 

hierarchical FIS structure with depth to water table parameter, its influence is partially 

integrated at an earlier stage, whereas aquifer media enters later, retaining a stronger 

independent effect (Iqbal et al., 2015; Saranya and Saravanan, 2021). Another key difference 

from the conventional DRASTIC model is the slight reduction in standard deviations (SD) for 

most parameters. This reduction in SD suggests that fuzzy logic minimized abrupt transitions 

in rating assignments, refining the spatial representation of parameter sensitivity, rather than 

rigid categorical classifications of parameters rating (Gesim & Okazaki, 2018; Nobre et al., 

2007; Rezaei et al., 2013). The Topography (T) parameter also demonstrated higher effective 

weights (6.34%) compared to its theoretical weight (4.3%), reinforcing the homogeneous flat 

terrain of Southeast Hungary. Conversely, hydraulic conductivity (C) showed a considerably 

lower effective weight (5.08%) compared to its theoretical weight (13%). This further 

emphasizes the limited influence of hydraulic conductivity on groundwater vulnerability in this 

context. 

For the Susceptibility Index (SI) model, depth to water table (D), aquifer media (A), and land 

use/cover (LU/LC) emerged as the most critical parameters, with mean effective weights of 

22.15%, 24.19% and 22.87%, respectively, confirming that both hydrogeological and 

anthropogenic factors contribute significantly to groundwater vulnerability (Anane et al., 2013; 

Ghouili et al., 2021). Notably, LU/LC exhibited the highest variability (SD = 7.76), indicating 

that land use practices significantly affect groundwater vulnerability in some areas while 

having a lesser effect in others. Additionally, topography (T) in the SI model exhibited a 

slightly higher effective weight (14.02%) than its theoretical weight (12%), reinforcing the 

findings from DRASTIC and Fuzzy-enhanced DRASTIC, highlighting the importance of the 

slope in the groundwater vulnerability assessment of the Southeast Hungary. 

Overall, the SPSA results highlight the importance of depth to water table (D), impact of vadose 

zone (I), aquifer recharge (R), and aquifer media (A) as the primary contributors to 

groundwater vulnerability across all models, with land use/cover (LU/LC) emerging as a 

critical factor in the SI model. The discrepancies between theoretical and effective weights 
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highlight the limitations of uniform parameter weighting, as seen in the GOD method, and 

emphasize the value of sensitivity analysis in refining vulnerability models for more accurate 

predictions. 

Table 12. Statistical summary of single-parameter sensitivity analysis for DRASTIC, SI, and Fuzzy-
Enhanced DRASTIC Models 

DRASTIC parameters Theoretical 
weight 

Theoretical 
weight (%) 

Effective weight (%) 

Mean Min Max Standard 
Deviation 

Depth to water table (D) 5 21,7 29,56 19,77 42,01 3,36 

Aquifer recharge (R) 4 17,4 15,41 8,82 21,47 3,44 

Aquifer media (A) 3 13 13,41 8,39 19,2 4,2 

Soil media (S) 2 8,7 8,3 4,41 12,08 2,89 

Topography (T) 1 4,3 7,16 5,34 9,9 1,04 

Impact of vadose zone (I) 5 21,7 21,08 11,81 32,25 5,64 

Hydraulic conductivity (C) 3 13 5,91 2,55 15,06 2,42 

Fuzzy-enhanced DRASTIC 
parameters 

Theoretical 
weight 

Theoretical 
weight (%) 

Effective weight (%) 

Mean Min Max Standard 
Deviation 

Depth to water table (D) 5 21,7 26,71 12,66 40,06 3,06 

Aquifer recharge (R) 4 17,4 14,58 7,62 19,78 2,68 

Aquifer media (A) 3 13 15,21 6,89 21,31 3,73 

Soil media (S) 2 8,7 7,92 4,89 13,15 2,38 

Topography (T) 1 4,3 6,34 3,63 8,7 1,12 

Impact of vadose zone (I) 5 21,7 23,42 12,55 34,41 4,85 

Hydraulic conductivity (C) 3 13 5,08 1,86 14,4 2,23 

SI parameters Theoretical 
weight 

Theoretical 
weight (%) 

Effective weight (%) 

Mean Min Max Standard 
Deviation 

Depth to water table (D) 0,186 18,6 22,15 15,72 31,83 3,17 

Aquifer recharge (R) 0,212 21,2 16,75 8,58 27,65 3,21 

Aquifer media (A) 0,259 26 24,19 14,81 29,85 4,95 

Topography (T) 0,121 12 14,02 11,98 23,95 1,16 

Land use/cover (LU/LC) 0,222 22,2 22,87 6,49 32,31 7,76 
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4. 7 Comparative analysis of methodologies 

This study represents one of the first comprehensive efforts to evaluate shallow aquifer 

vulnerability in Southeast Hungary using four groundwater vulnerability assessment 

approaches: DRASTIC, GOD, SI, and the Fuzzy-enhanced DRASTIC model. Assessing 

aquifer vulnerability is a critical step in protecting groundwater resources and guiding land use 

(LU) planning based on scientific evidence (Halder et al., 2023). Given the hydrogeological 

complexity and anthropogenic pressures in the region, selecting the most appropriate 

assessment method remains a challenge, as different models vary in structure, parameter 

weighting, and sensitivity to local conditions. These challenges are further compounded by the 

need to balance intrinsic vulnerability factors (e.g., depth to water table, recharge rates, and 

aquifer media) with external influences such as land use (LU) and contamination sources. To 

address this, the study applied three widely used GIS-based index-overlay methods—

DRASTIC, GOD, and SI—alongside an advanced Fuzzy-enhanced DRASTIC approach, to 

evaluate their effectiveness at assessing the vulnerability of aquifer in Southeast Hungary to 

leaching of contaminants from the land surface. Each method integrates key groundwater 

system attributes, listed in Table 2 and illustrated in Figure 2, which influence the overall 

vulnerability index (Moraru and Hannigan, 2018; Taghavi et al., 2023). To ensure a robust 

comparison, this study employs a multifaceted validation approach, integrating both 

vulnerability map outputs and validation results using nitrate (NO₃⁻) concentrations, ensuring 

that the findings capture both theoretical and field-based perspectives. Additionally, this study 

incorporated single parameter sensitivity analysis (SPSA) to evaluate the relative influence of 

each parameter across the methodologies, providing quantitative insights into model 

performance and parameter impact on vulnerability assessments.  

A fundamental distinction between these methodologies lies in how thematic layers are 

integrated and weighted in groundwater vulnerability assessments. The DRASTIC and SI 

models use predefined weighting systems, where the relative weights of depth to water table 

and aquifer recharge are comparable in both methods (22% and 17% in DRASTIC; 19% and 

21% in SI). However, aquifer media carries twice the weight in SI (26%) compared to 

DRASTIC (13%), while hydraulic conductivity is excluded in SI but holds equal weight as 

aquifer media in DRASTIC. Topography plays a more significant role in SI (12%) than in 

DRASTIC (4%), while soil media and vadose zone media, which are critical in DRASTIC, are 

omitted in SI. Instead, SI incorporates land use (LU) with a 22% weight, reflecting its 
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significant influence on contamination risk assessments. Consequently, the SI approach 

provides a relative evaluation of the groundwater vulnerability, focusing on areas where 

contaminants are likely to migrate vertically to the aquifer system. In fact, this approach does 

not identify the flow path that the contaminants will follow within the hydrogeological system. 

In contrast, while DRASTIC involve in integrates seven intrinsic thematic layers it excludes 

land use/cover, a factor that significantly influences groundwater susceptibility to pollution. 

The GOD method employs a parametric class system without weighting, treating all parameters 

equally. This simplifies its structure but fails to account for the varying influence of different 

hydrogeological factors, potentially overestimating or underestimating vulnerability in specific 

conditions. The Fuzzy-enhanced DRASTIC model retains the original DRASTIC weighting 

factors to preserve the model’s original structure and ensure comparability with previous 

studies, while introducing fuzzy logic adjustments to handle the inherent variability and 

uncertainty in parameter ratings, and refine parameter interactions, allowing for greater 

adaptability in parameter influence based on local hydrogeological conditions. This hybrid 

approach combines the strengths of the DRASTIC framework with the flexibility of fuzzy 

logic, providing a more refined vulnerability index without altering the fundamental principles 

of the original method. 

The comparative analysis of the applied methodologies is grounded on both nitrate (NO₃⁻) 

validation results and findings from single parameter sensitivity analysis (SPSA), which 

quantify the influence of individual parameters on vulnerability assessments. All four methods 

classified the study area into low-, moderate-, and high-vulnerability zones, with a predominant 

trend of moderate to high vulnerability. In many areas, this tendency seems to be driven by 

shallow water table, presence of sandy sediments, a high recharge rate and the predominance 

of high agricultural activity areas in land use. The areas of high vulnerability highlighted by 

Shrestha et al., (2017) and Kouz et al., (2020) on the basis of the application of the DRASTIC, 

GOD and SI methods in comparable geomorphic settings (i.e. shallow aquifers with a 

lithological nature consisting of sand and silt, and high recharge rate) increase their 

susceptibility to contamination. However, the extent and distribution of high-vulnerability 

areas varied significantly between models, driven by differences in parameter influence 

observed in the SPSA results.  

The DRASTIC model assigned the highest vulnerability to areas with a shallow water table, 

permeable vadose zone, and high recharge rates, consistent with its high effective weights for 
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depth to water table (29.56%), impact of vadose zone (21.08%), and aquifer recharge (15.41%). 

The Fuzzy-enhanced DRASTIC model demonstrated improved spatial accuracy of 

vulnerability zones, reducing abrupt classification transitions by applying adaptive rating 

adjustments through fuzzy logic. One of the key strengths of the hierarchical FIS is its ability 

to handle the imprecision inherent in environmental data. Traditional DRASTIC method 

assigns fixed ratings to parameters, which may not reflect real-world variations. By contrast, 

the fuzzy-enhanced DRASTIC model applies fuzzy membership functions to each parameter, 

allowing for gradual transitions between vulnerability classes, this flexibility has improved the 

model’s accuracy, particularly in distinguishing between moderate and high vulnerability 

zones. Notably, aquifer media factor (15.21%) became the third most influential parameter in 

Fuzzy-enhanced DRASTIC, replacing recharge (R), which dominated the conventional 

DRASTIC model. This shift suggests that fuzzy logic captures lithological variability more 

effectively, reducing the dominance of fixed recharge rates. In contrast, the GOD method 

identifies a greater extent of highly vulnerable zones compared to the DRASTIC approach. 

This discrepancy is likely attributable to the GOD method's more generalized framework and 

its underlying assumption that groundwater vulnerability is only influenced by three 

parameters. This difference aligns with findings reported by Kazakis and Voudouris, (2011) in 

their study of the alluvial aquifer in the Florina Basin, Greece, where the GOD model produced 

a broader high-vulnerability classification compared to DRASTIC method. The SI model is 

clearly distinct from the three vulnerability maps. SI approach identifies over 77% of the study 

area, as highly vulnerable, primarily occurring in irrigated zones and areas with diverse annual 

crops. This difference attributed to the fact that SI incorporates land use patterns, which is 

absent in the other methods. Furthermore, the DRASTIC and GOD methods focus exclusively 

on assessing intrinsic vulnerability and do not incorporate pollution risk. As defined by Foster, 

(1987), pollution risk arises from the interplay between aquifer vulnerability and the magnitude 

of pollutant loading, a factor not addressed by these approaches. The SPSA results confirm that 

depth to water table (D), aquifer media (A), and land use/cover (LU/LC) emerged as the most 

influential parameters in SI, with mean effective weights of 22.15%, 24.19% and 22.87%, 

respectively. 

Validation of the vulnerability maps was conducted by correlating vulnerability indices with 

nitrate (NO₃⁻) concentrations from 46 monitoring wells. Both Pearson’s and Spearman’s 

correlation coefficients were computed to quantify the relationships between vulnerability 

indices and nitrate measurements. The GOD method exhibited the weakest correlations 
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(Pearson’s r = 0.592; Spearman’s ρ = 0.583), reflecting its limitations in capturing detailed 

vulnerability nuances needed in complex hydrogeological settings. The DRASTIC method 

demonstrated moderate predictive accuracy, with Pearson’s and Spearman’s correlation 

coefficients of 0.601 and 0.602, respectively, while its Fuzzy-enhanced counterpart 

demonstrated slightly improved accuracy (Pearson’s r = 0.69; Spearman’s ρ = 0.675). 

However, the exclusion of LU in both DRASTIC approaches limited their effectiveness in 

agriculturally dominated regions. In contrast, the SI method outperformed the other 

approaches, achieving the strongest correlations with nitrate concentrations (Pearson’s r = 

0.751; Spearman’s ρ = 0.812). This superior performance is attributed to the inclusion of LU 

as a parameter, which directly accounts for the impact of agricultural activities on 

contamination risk, confirming its ability to capture complex interactions between 

hydrogeological factors and agricultural land use underscores its effectiveness in regions where 

nitrate contamination is primarily driven by agricultural activities. The SPSA results explain 

these validation outcomes, as the SI model's high effective weights for aquifer media and land 

use allowed it to better capture nitrate contamination trends. In contrast, the DRASTIC models’ 

and GOD approach exclusion of land use limited their ability to predict contamination in 

agricultural regions. 

These findings highlight the importance of integrating anthropogenic factors, such as land use, 

and advanced techniques, such as fuzzy logic, into groundwater vulnerability assessments. The 

results suggest that the SI method is particularly well-suited for regions with intensive 

agricultural activities, such as Southeast Hungary. While the Fuzzy-enhanced DRASTIC 

model offers a valuable alternative for areas with complex hydrogeological settings. Overall, 

the comparative analysis highlights the need for tailored vulnerability assessments that account 

for both intrinsic hydrogeological factors and anthropogenic influences, providing 

policymakers with reliable tools for protecting groundwater resources in agriculturally 

dominated regions. 

To enhance the clarity and readability of the comparative analysis, a summary table was 

prepared to synthesize the key aspects of the four applied methods: DRASTIC, GOD, SI, and 

the Fuzzy-enhanced DRASTIC. The table integrates validation outcomes (correlation 

coefficients with nitrate concentrations), identifies the most influential parameters based on 

SPSA, and outlines each method’s major strengths and limitations, together with their relative 

data and computational requirements. This consolidated overview provides a concise 



84  

comparative framework, facilitating a clearer understanding of the trade-offs between 

methodological simplicity, predictive accuracy, and practical applicability in the context of 

Southeast Hungary. 

Table 13. Comparative summary of the applied groundwater vulnerability assessment methods 
(DRASTIC, GOD, SI, and Fuzzy-enhanced DRASTIC) in Southeast Hungary. 
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Chapter 5: Conclusions and Recommendations 

Chapter 5 synthesizes the key findings, implications, and recommendations derived from the 

comparative evaluation of four groundwater vulnerability assessment methodologies—

DRASTIC, GOD, SI, and Fuzzy-enhanced DRASTIC—applied to the environmental and 

hydrogeological conditions of Southeast Hungary. The chapter begins by summarizing the key 

findings, including the results of the vulnerability assessments, the comparative analysis of the 

methods, and the insights from the single parameter sensitivity analysis (SPSA). Emphasis is 

placed on the superior performance of the SI method in regions with intensive agricultural 

activities and the improved accuracy of the Fuzzy-enhanced DRASTIC model in capturing 

spatial variability and refining vulnerability classifications. It then explores the theoretical and 

practical implications of these findings for effective groundwater management. 

Recommendations for future research are presented, focusing on methodological refinements, 

data integration, and the development of hybrid models. The chapter also acknowledges the 

limitations of the study, and proposes strategies to overcome these challenges in future work. 

Finally, policy recommendations are provided to guide sustainable groundwater management 

in Southeast Hungary, with an emphasis on stakeholder engagement and the implementation 

of vulnerability-based land use regulations.  
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5. 1 Key Findings  

The detailed systematic study conducted in this research evaluated the effectiveness of four 

groundwater vulnerability assessment methodologies—DRASTIC, GOD, SI, and the Fuzzy-

enhanced DRASTIC—applied within the specific hydrogeological and land-use context of 

Southeast Hungary. The objective was to determine the most suitable approach for assessing 

groundwater vulnerability in a region characterized by intensive agricultural activities and 

heterogeneous hydrogeological conditions. Nitrate (NO₃⁻) concentrations in groundwater were 

used as the primary metric for validating each method's effectiveness. Additionally, a single-

parameter sensitivity analysis (SPSA) was conducted to assess the influence of individual 

parameters on the vulnerability indices, providing deeper insights into the robustness and 

reliability of each method. The results provide valuable insights into the performance, 

limitations, and applicability of these methods within the regions. The key findings of the study 

are summarized as follows: 

• The generated vulnerability maps indicate that approximately 95% of the region is at 

moderate to high risk of contamination. This trend is primarily driven by factors such 

as low slope, shallow water table, presence of sandy sediments, a high recharge rate 

and the predominance of intensive agricultural practices in land use. These factors 

collectively enhance the susceptibility of groundwater to contamination from surface 

pollutants. 

• The DRASTIC method, a widely used index-overlay approach, identified 33% of the 

study area as highly vulnerable, demonstrating a moderate positive correlation with 

nitrate concentrations (Pearson’s r = 0.601; Spearman’s ρ = 0.602). While its 

comprehensive integration of seven hydrogeological parameters makes it a robust tool 

for intrinsic vulnerability assessment, its reliance on static ratings and exclusion of land 

use (LU) data reduces its accuracy in highly agricultural regions, where anthropogenic 

influences significantly impact contamination risks. 

• The Fuzzy-enhanced DRASTIC model demonstrated improved predictive accuracy, 

classifying 64% of the study area as highly vulnerable and yielding a stronger 

correlation with nitrate concentrations (Pearson’s r = 0.69; Spearman’s ρ = 0.675). By 

incorporating fuzzy logic to refine parameter ratings and minimize abrupt classification 

transitions, this model enhanced sensitivity to hydrogeological variability while 

preserving the structured framework of DRASTIC. Notably, the shift in parameter 
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influence observed in the SPSA results, particularly the increased role of aquifer media, 

highlights fuzzy logic’s ability to better capture lithological variability. 

• The GOD method identified 45% of the study area as highly vulnerable but exhibited 

the weakest correlation with nitrate concentrations (Pearson’s r = 0.592; Spearman’s ρ 

= 0.583). This is primarily due to its simplistic, unweighted classification framework, 

which considers only groundwater confinement, overlying lithology, and depth to water 

table. The absence of hydrogeological complexity and land use considerations reduces 

its capacity to accurately reflect real-world contamination dynamics. 

• In contrast, the SI method outperformed all other approaches, classifying 77% of the 

study area as highly vulnerable and achieving the strongest correlation with nitrate 

concentrations (Pearson’s r = 0.751; Spearman’s ρ = 0.812). This superior performance 

is attributed to the incorporation of land use patterns alongside hydrogeological factors, 

which significantly enhanced its ability to predict contamination risks associated with 

agricultural pollutants. The SPSA results further confirm the dominant influence of land 

use (22.87%), aquifer media (24.19%), and depth to water table (22.15%) in the SI 

model, underscoring the importance of incorporating anthropogenic variables in 

vulnerability assessments. 

• These findings emphasize the importance of integrating anthropogenic factors (e.g., 

land use) and advanced modeling techniques (e.g., fuzzy logic) into groundwater 

vulnerability assessments to improve predictive accuracy. The study highlights that 

traditional models, such as DRASTIC and GOD, may not fully capture contamination 

risks in agricultural landscapes, whereas SI and Fuzzy-enhanced DRASTIC offer more 

context-sensitive vulnerability assessments. 

• The generated vulnerability maps of Southeast Hungary represent a valuable decision-

support tool for policymakers and water resource managers to achieve sustainable land-

use planning, groundwater protection zoning, and the development of targeted 

monitoring programs. These maps can guide the balanced use of territory and reduce 

anthropogenic pressure in areas naturally prone to groundwater contamination, thereby 

supporting long-term groundwater protection and resource sustainability within the 

region. 

5. 2 Theoretical and practical implications 

This research represents one of the first comprehensive evaluations of shallow aquifer 

vulnerability in Southeast Hungary, through the application of four groundwater vulnerability 
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assessment approaches—DRASTIC, GOD, SI, and the Fuzzy-enhanced DRASTIC model. The 

study makes significant theoretical contributions to the field of groundwater vulnerability 

assessment by demonstrating the necessity of integrating anthropogenic factors (e.g., land use) 

and advanced modeling techniques (e.g., fuzzy logic) to improve predictive accuracy. The 

findings reinforce that the SI method, which incorporates land use alongside traditional 

hydrogeological parameters, outperforms other methods in predicting contamination risk in 

agricultural regions, achieving the strongest correlation with nitrate concentrations (Pearson’s 

r = 0.751; Spearman’s ρ = 0.812). This superior performance demonstrates the importance of 

considering human-induced pressures on groundwater systems, as land use plays a pivotal role 

in controlling contaminant transport and aquifer recharge patterns.  

Similarly, the Fuzzy-enhanced DRASTIC model effectively addresses the limitations of static 

parameter ratings inherent in traditional DRASTIC approach, providing a more adaptive and 

spatially accurate representation of groundwater vulnerability. The model's ability to gradually 

transition parameter influences rather than relying on fixed rating classes has led to a notable 

increase in high-vulnerability zones identified compared to the conventional DRASTIC 

method. This enhancement is reflected in its improved correlation with nitrate concentrations 

(Pearson’s r = 0.69; Spearman’s ρ = 0.675). The integration of hierarchical fuzzy inference 

systems (FIS) refined parameter interactions, particularly reducing rating subjectivity and 

improving sensitivity to lithological variability. These methodological advancements highlight 

the value of incorporating flexible, data-adaptive frameworks within intrinsic vulnerability 

assessments, enhancing their ability to capture nuanced variations in groundwater 

susceptibility even in the absence of explicit contamination source data. 

On a practical level, the findings offer valuable tools for effective groundwater management in 

Southeast Hungary. The vulnerability maps generated by the study serve as a scientific basis 

for understanding shallow aquifer vulnerability in the region for identifying and prioritizing 

areas at high risk of contamination, enabling local authorities to implement targeted monitoring 

programs and the implementation of measures to mitigate the impact of agricultural practices. 

The results emphasize the necessity of spatially explicit management approaches that align 

land use planning with groundwater vulnerability zones. This is particularly relevant for 

agricultural land use regulations, where vulnerability maps can support sustainable irrigation 

practices and pollutant control measures. Furthermore, this study emphasizes the importance 

of stakeholder engagement, demonstrating how scientific outputs, such as vulnerability maps, 
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can serve as effective communication tools for raising awareness about groundwater 

contamination risks and promote collaborative efforts to protect water resources. By integrating 

these findings into water resource management policies, regulatory frameworks can 

incorporate adaptive measures that balance economic development with groundwater 

protection goals. Overall, this research not only advances scientific understanding of 

groundwater vulnerability assessment methodologies but also provides actionable insights for 

evidence-based groundwater protection strategies, ensuring long-term sustainability of water 

resources in Southeast Hungary and comparable regions worldwide. 

5. 3 Limitations of the study 

Despite the robust methodological framework and comprehensive evaluation conducted in this 

study, certain limitations must be acknowledged. These limitations relate primarily to data 

availability and resolution, methodological constraints, the generalizability of results, fuzzy 

logic subjectivity, and policy implementation challenges.  

Given the relatively large size of the study area (~8700 km2), the unavailability of densely 

distributed values for the various thematic layers was the main barrier to generating a high-

resolution vulnerability maps. Coarser spatial datasets can lead to generalization errors, 

particularly in heterogeneous hydrogeological environments. While GIS-based interpolation 

techniques were used to address spatial gaps, the accuracy of vulnerability maps is inherently 

dependent on the resolution of input data. Furthermore, the spatial resolution of validation data 

must be acknowledged. Although nitrate (NO3−) measurements from 46 monitoring wells 

provided a reasonable basis for model validation, this sampling density may not fully capture 

the spatial variability in contamination levels, particularly in a heterogeneous aquifer system. 

The study applied index-overlay models (DRASTIC, GOD, and SI), which rely on predefined 

weighting schemes. While these models are widely used for groundwater vulnerability 

assessment, they are subject to inherent subjectivity in parameter weighting and ratings. The 

DRASTIC and SI models assign fixed weights to hydrogeological parameters, which may not 

fully account for spatial variations in parameter influence. Additionally, the GOD model does 

not employ parameter weighting, potentially leading to oversimplification in certain areas 

where hydrogeological factors exert varying levels of control over groundwater vulnerability. 

The Fuzzy-enhanced DRASTIC model was introduced to address the limitations of static 

parameter ratings. However, the design of fuzzy membership functions remains a subjective 
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process, as it depends on expert judgment and predefined rules, which can introduce potential 

biases. Additionally, the computational complexity of hierarchical fuzzy inference systems 

(FIS) present practical challenges for real-time applications and require significant 

computational resources compared to simpler index-based models. Future research could 

explore machine learning-driven fuzzy logic optimizations to enhance automation and reduce 

subjective dependencies. 

While the methodologies applied in this study are widely used in groundwater vulnerability 

assessment, the findings are specific to Southeast Hungary and may require modifications when 

applied to other regions. The hydrogeological conditions, land use practices, and pollution 

sources in the study area are unique, influencing the relative importance of individual 

parameters in vulnerability assessments. For instance, the dominance of agricultural activities 

in Southeast Hungary increased the predictive strength of the SI method, but this may not hold 

true in other regions where contamination sources differ. Additionally, while the integration of 

fuzzy logic demonstrated improvements in spatial accuracy, its applicability should be 

validated in diverse hydrogeological settings. Future studies should test the adaptability of this 

method across different environmental conditions to enhance their generalizability. 

Although this study provides scientific insights into groundwater vulnerability, the translation 

of findings into policy and management decisions presents challenges. The successful 

implementation of vulnerability-based groundwater protection strategies requires collaboration 

between researchers, policymakers, and local stakeholders. However, integrating scientific 

assessments into regulatory frameworks is often hindered by institutional barriers, lack of 

enforcement mechanisms, and competing land-use priorities. 

5. 4 Recommendations for future research 

Building upon the findings and limitations identified in this study, several areas for future 

research can be explored to enhance the accuracy, applicability, and policy relevance of 

groundwater vulnerability assessments. 

• Future studies should explore the integration of high-resolution remote sensing data for 

land use, soil properties, and recharge rate estimation to reduce spatial generalization 

errors and improve model precision in heterogeneous hydrogeological settings. 

Additionally, expanding the spatial and temporal resolution of validation datasets—

particularly for groundwater nitrate (NO₃⁻) concentrations—would enhance model 
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validation robustness by capturing seasonal and long-term contamination trends. The 

use of multi-year groundwater quality data would further allow for trend analysis, 

improving the predictive capability of vulnerability models over time. 

• Future research should focus on refining vulnerability models by integrating machine 

learning (ML) techniques, such as artificial neural networks (ANNs), support vector 

machines (SVMs), or random forest (RF) algorithms. These approaches would allow 

for data-driven parameter weighting optimizations, reducing the reliance on predefined 

expert-based assignments. 

• Conducting longitudinal studies on groundwater vulnerability would help capture 

temporal variations in aquifer susceptibility and assess how climate change and 

evolving land-use patterns impact groundwater contamination risks. Future research 

should explore hydro-climatic modeling approaches to analyze the effects of shifting 

precipitation patterns, extreme weather events, and prolonged droughts on groundwater 

recharge and contamination susceptibility. 

• While the Fuzzy-enhanced DRASTIC model demonstrated improved predictive 

accuracy, its applicability should be tested across different hydrogeological and 

climatic conditions. Conducting comparative assessments in regions with varying 

lithologies, and pollution sources would refine the adaptability of the methodology and 

improve its predictive robustness in different environmental contexts. 

• While this study focused on intrinsic vulnerability assessments, future research should 

incorporate numerical groundwater flow and contaminant transport simulations to 

enhance risk prediction accuracy. Models such as MODFLOW and MT3DMS could 

provide critical insights into pollutant dispersion pathways, travel times, and 

groundwater flow dynamics, allowing for more precise assessments of contamination 

risks. This would enable decision-makers to not only identify areas prone to 

contamination but also understand how pollutants migrate through the aquifer system 

over time, leading to more effective groundwater protection strategies. 

5. 5 Policy recommendations 

The findings of this study underscore the urgent need for science-based policy interventions to 

safeguard groundwater resources in Southeast Hungary. Given the region's high vulnerability 

to contamination, particularly from agricultural activities, the following policy 

recommendations are proposed to enhance groundwater management, strengthen regulatory 

enforcement, and promote stakeholder engagement: 
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• Policymakers should integrate vulnerability-based land use planning into 

environmental policies, ensuring that high-risk areas identified in vulnerability maps 

are designated as protected zones. In such areas, restrictions on intensive agricultural 

activities, industrial waste disposal, and urban expansion should be enforced to 

minimize contamination risks. Additionally, establishing mandatory groundwater 

monitoring programs with higher spatial and temporal resolution is essential for 

tracking nitrate concentrations and other pollutants over time. The implementation of 

real-time monitoring systems, coupled with open-access groundwater databases, would 

enhance transparency and data-driven decision-making among researchers, 

policymakers, and environmental agencies. 

• Given the strong correlation between land use practices and groundwater vulnerability, 

sustainable agricultural policies should be prioritized. Government should encourage 

precision agriculture techniques, such as controlled fertilizer application, optimized 

irrigation strategies, and crop rotation, to reduce excessive nitrogen leaching into 

aquifer. Furthermore, raising awareness among agricultural stakeholders through 

educational campaigns and training programs will further promote sustainable land and 

water management practices. 

• Environmental Impact Assessments (EIAs) should be mandatory for all new 

development projects in areas identified as high-vulnerability zones, ensuring that 

groundwater contamination risks are systematically evaluated before project approval. 

Furthermore, regulatory agencies should periodically review and update environmental 

guidelines to reflect emerging groundwater risks associated with urbanization, 

industrialization, and climate change. 

• Effective groundwater management also requires multi-stakeholder collaboration and 

community engagement. The Lower Tisza Water Management Directorate 

(ATIVIZIG) should establish a regional groundwater governance structure by bringing 

together scientists, policymakers, local authorities, and community representatives to 

develop integrated water management strategies. Additionally, public participation in 

groundwater monitoring programs, including citizen science initiatives and 

community-led water quality assessments, would foster greater accountability and 

collective responsibility for groundwater protection. 

• Finally, continued research and technological advancements should be encouraged to 

support innovative groundwater protection strategies. Investment in smart groundwater 
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monitoring systems, artificial recharge methods, and AI-driven contamination 

prediction models would enhance long-term resilience in groundwater management. 

Moreover, fostering cross-disciplinary collaborations between hydrologists, geospatial 

analysts, and policymakers will ensure that scientific findings are effectively translated 

into policy frameworks. By implementing these policy recommendations, decision-

makers can proactively mitigate contamination risks, ensure long-term groundwater 

sustainability, and support the region’s broader environmental and economic goals. 
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Abstract 

Groundwater represents a critical resource in Southeast Hungary, serving as a critical supply 

for drinking water, industry, and especially agriculture. This region’s flat, fertile landscape 

supports intensive farming – Over 65% of the area is devoted to intensive crop cultivation, 

including maize, sunflower, and wheat – leading to heavy use of fertilisers and pesticides. 

These agricultural practices, coupled with the region’s susceptibility to severe and prolonged 

droughts, pose significant risks to both groundwater quantity and quality. Consequently, the 

aquifer of Southeast Hungary face persistent threats of contamination and over-exploitation. 

While prior studies in Southeast Hungary have addressed groundwater quality and quantity 

concerns, a comprehensive vulnerability assessment comparing multiple methodological 

approaches was lacking. This research addresses this knowledge gap by conducting a 

comprehensive evaluation of groundwater vulnerability – the susceptibility of groundwater to 

contamination from surface activities – in Southeast Hungary through a comparative analysis 

of multiple assessment approaches—DRASTIC, GOD, the Susceptibility Index (SI), and a 

Fuzzy-enhanced DRASTIC model. The overarching aim of the research is to determine the 

most effective model for mapping and understanding groundwater vulnerability in Southeast 

Hungary and to generate scientifically tools that support sustainable water management, land 

use planning, and policy development. 

The study begins with an in-depth review of established methodologies for assessing 

groundwater vulnerability, with a focus on their theoretical underpinnings, spatial modeling 

techniques, and limitations when applied to real-world conditions. These insights informed the 

selection of three standard index-overlay models—DRASTIC, GOD, and SI—as well as the 

development of a fuzzy logic-based enhancement of the DRASTIC model. The standard 

DRASTIC method integrates seven intrinsic hydrogeological factors—Depth to water table, 

Recharge rate, Aquifer media, Soil media, Topography, Impact of the vadose zone, and 

Hydraulic conductivity—each assigned a fixed weight based on expert judgement. The 

DRASTIC Index is computed by combining these weighted ratings, producing a spatially 

explicit vulnerability map. The GOD model simplifies vulnerability assessment by focusing on 

only three parameters: Groundwater occurrence (confined/unconfined), Overlying lithology, 

and Depth to water table. It assumes equal weighting of these parameters, offering ease of 

application at the expense of adaptability. In contrast, the SI method introduces land use/land 

cover as a key parameter, thereby extending the traditional concept of intrinsic vulnerability 

toward a more risk-based approach. The SI method uses five parameters—Depth, Recharge, 
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Aquifer media, Topography, and Land use/cover—weighted and aggregated to reflect both 

hydrogeological and anthropogenic drivers of vulnerability. To address limitations associated 

with fixed parameter ratings, a Fuzzy-enhanced DRASTIC model was developed using a 

Hierarchical Fuzzy Inference System (FIS). While retaining the original DRASTIC parameters 

and weights to ensure methodological comparability, the fuzzy system replaced discrete 

parameter ratings with continuous fuzzy membership functions, thereby allowing for more 

continuous transitions in the vulnerability index. Each of the four methods was applied across 

the same study area using thematic GIS layers, including interpolated surfaces for each 

parameter. The resulting maps were validated using nitrate (NO₃⁻) concentrations from 46 

groundwater wells, sampled between November 2022 and April 2023. Pearson’s and 

Spearman’s correlation coefficients were used to quantify the relationship between model 

outputs and observed nitrate levels. Additionally, a Single-Parameter Sensitivity Analysis 

(SPSA) was also conducted for the DRASTIC, SI, and fuzzy-DRASTIC models to determine 

the relative influence of each parameter based on its effective weight in the final vulnerability 

index. 

The results demonstrated significant spatial variability in vulnerability across Southeast 

Hungary, with a predominant trend of moderate to high vulnerability. In many areas, this 

tendency seems to be driven by shallow water table, presence of sandy sediments, a high 

recharge rate and the predominance of high agricultural activity areas in land use. However, 

the extent and distribution of high-vulnerability areas varied significantly between models, 

driven by differences in parameter influence observed in the SPSA results. The conventional 

DRASTIC model classified approximately 33% of the region as highly vulnerable and 

achieved moderately strong correlation with nitrate data (Pearson’s r = 0.601; Spearman’s ρ = 

0.602), confirming its utility as a baseline method while also revealing its limitations in 

predictive precision. The simpler GOD method identified ~45% as high vulnerability but 

yielded the weakest correlation with observed contamination (Pearson’s r = 0.592; Spearman’s 

ρ = 0.583), reflecting its limited parameter scope. In contrast, methodologies integrating 

anthropogenic factors and advanced modeling achieved higher predictive accuracy. The SI 

method, which incorporates land-use alongside intrinsic parameters, outperformed all others 

by delineating about 77% of the area as highly vulnerable and attaining the strongest correlation 

with groundwater nitrate levels (Pearson’s r = 0.751; Spearman’s ρ = 0.812). Similarly, the 

fuzzy-enhanced DRASTIC model classified ~64% of the area as highly vulnerable and 

improved the predictive correlation (Pearson’s r = 0.690; Spearman’s ρ = 0.675), due to its 
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refined parameter ratings that better capture hydrogeological variability. These findings 

underscore the advantages of integrating land-use data and fuzzy logic adjustments into 

groundwater vulnerability assessments to improve predictive accuracy, as the traditional 

models, such DRASTIC and GOD, may not fully capture contamination risks in intensive 

agricultural landscapes and complex hydrogeological settings.  

The SPSA findings further provided insights into parameter influence across models. In the 

conventional DRASTIC method, the most influential parameters were depth to water table 

(29.56% effective weight) and impact of the vadose zone (21.08%), while aquifer recharge 

emerged as the third most important. In contrast, the fuzzy-enhanced DRASTIC model 

maintained depth and vadose zone as dominant parameters (26.71% and 23.42%, respectively) 

but elevated the importance of aquifer media (15.21%) above recharge rate, highlighting the 

fuzzy system’s enhanced capacity to capture lithological heterogeneity. Standard deviations 

across parameters were slightly reduced in the fuzzy model, indicating a more balanced 

representation of parameter influence. For the SI model, aquifer media, depth to water, table 

and land use/cover were the most critical parameters (each contributing roughly 22–24% to the 

vulnerability index). These findings reinforce the argument that land use must be considered 

alongside intrinsic hydrogeological properties in regions facing agricultural pressures. While 

the GOD model inherently employs a parametric class system without weighting, treating all 

parameters equally. This simplifies its structure but fails to account for the varying influence 

of different hydrogeological factors, potentially overestimating or underestimating 

vulnerability in specific conditions. Across all approaches, parameters related to vadose zone 

media, aquifer media, and water table depth emerged as critical factors, and the inclusion of 

anthropogenic variable (land use) in the SI method significantly improved its predictive 

capability, the superior performance of the SI method suggests it as the effective tool for 

assessing groundwater vulnerability within Southeast Hungary, while the fuzzy logic approach 

offers a promising enhancement for index-based models in capturing gradational changes in 

vulnerability. 

Through its comparative analysis and introduction of a fuzzy logic enhancement, this PhD 

research contributes to the broader understanding of groundwater vulnerability assessment both 

in theory and practice. It demonstrates the importance of tailoring vulnerability assessments to 

regional conditions, integrating both intrinsic and anthropogenic factors, and employing 

adaptive models capable of representing spatial complexity. For Southeast Hungary, the 
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research outcomes have important practical implications for sustainable water resource 

management within the region. The resulting vulnerability maps serve as valuable decision-

support tools for land-use planning, groundwater protection zoning, and the design of targeted 

monitoring programs. By identifying zones of high contamination risk, local authorities and 

stakeholders can prioritize interventions and balance land-use practices to protect vulnerable 

areas. The thesis recommends incorporating these vulnerability assessment findings into policy 

and planning, including stakeholder engagement and the implementation of vulnerability-based 

land-use regulations, to guide long-term groundwater protection in Southeast Hungary. Lastly, 

the study highlighted and shed light on some areas that need future studies. These include (1) 

the integration of high-resolution remote sensing data to improve the spatial representation of 

land use, soil properties, and recharge estimations, thereby reducing generalisation errors in 

heterogeneous hydrogeological settings. Expanding both the spatial and temporal resolution of 

nitrate concentration data would also enhance validation robustness and support long-term 

trend analysis, (2) future research should focus on integrating machine learning techniques—

such as artificial neural networks, support vector machines, or random forest algorithms. These 

approaches would allow for data-driven parameter weighting optimizations, reducing the 

reliance on predefined expert-based assignments, (3), longitudinal investigations studies to 

capture temporal dynamics in groundwater vulnerability under shifting land use and climatic 

conditions, (4) incorporating numerical simulations of groundwater flow and contaminant 

transport, such as MODFLOW and MT3DMS, would enable more accurate modelling of 

pollutant pathways and travel times, thereby supporting more targeted and effective 

groundwater protection strategies. 
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