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CHAPTER 1: INTRODUCTION

Chapter 1 sets the foundational stage for this thesis by elucidating the crucial role of
groundwater as a sustainable resource and delineating the challenges it faces under increasing
environmental and anthropogenic strains. Groundwater's significance is highlighted in the
context of Southeast Hungary, where agricultural practices and climate variables pose
persistent threats to its quality and availability. The chapter discusses the intrinsic and specific
vulnerabilities of aquifers, establishing the urgent need for comprehensive vulnerability
assessments. By outlining the objectives and structure of the thesis, this chapter prepares the
reader for a detailed exploration of various groundwater vulnerability assessment methods. It
aims to bridge the gap between theoretical frameworks and practical applications necessary for
effective groundwater management, emphasizing the development of tailored strategies to
safeguard this vital resource against the backdrop of Southeast Hungary's unique

hydrogeological challenges.



1.1 Background and significances

Groundwater represents the world's largest accessible freshwater resource and sustains over
half of the global population for both economic activities and daily survival (Jain, 2023). This
vital resource replenishes naturally under most conditions, making it a renewable asset in the
global water cycle (Mosavi et al., 2020). However, as global populations increase and
anthropogenic activities intensify, groundwater faces significant threats from depletion and
pollution, with clear detrimental effect. These challenges are compounded by the potential
long-term impacts of climate change, which threaten to exacerbate these negative trends further
(Aeschbach-Hertig and Gleeson, 2012). On top of that, aquifers in every part of the world
receive today, the relentless discharge of waste and industrial effluents is overwhelming the
natural purification capacities of the ecosystems, leading to the accumulation of pollutants deep
within aquifers (Basu and Van Meter, 2014). Additionally, the widespread reliance on tube

wells significantly contributes to groundwater contamination (Ghouili et al., 2021).

In the context of Southeast Hungary, which forms a part of the Great Hungarian Plain, the
region is characterized by its flat and fertile plains that are predominantly utilized for
agriculture. This sector forms the economic cornerstone of the area, encompassing over 65%
of the land dedicated to cultivating crops such as maize, sunflowers, wheat, onions, and various
fruits (General Directorate of Water Management in Hungary - OVF, 2021). The prevalent and
intensive use of fertilizers and pesticides associated with these agricultural practices poses
significant risks to the groundwater quality. Additionally, the region is susceptible to severe
and prolonged droughts, further exacerbating challenges related to groundwater depletion and

influencing the dynamics of the groundwater table (Rossi et al., 2023; Sz61l6si-Nagy, 2022).

Given the multifaceted challenges, an integrated and multidisciplinary approach is essential to
address the complex issues surrounding groundwater sustainability in Southeast Hungary. This
approach must incorporate a variety of groundwater quality and vulnerability assessment
techniques, which are deeply rooted in an extensive understanding of both local and regional
geological contexts. A pivotal element of such approaches involves assessing the vulnerability
of aquifers, particularly to leaching contaminant from surface to subsurface. This assessment
is crucial as it serves not only to screen and manage groundwater resources effectively but also
to facilitate the development of management plans that are specifically tailored to address the
immediate and long-term sustainability needs of the region (Denizman, 2018; S. Foster et al.,

2013). Understanding the specific vulnerabilities of aquifers is essential for crafting strategies



that adeptly balance current developmental imperatives with the imperative of future resource
sustainability. This strategic approach underscores the importance of a preventive framework
that integrates scientific insights with practical management to ensure the enduring viability of

groundwater resources (Focazio et al., 2003).

While numerous studies have focused on general groundwater quality and quantity in Southeast
Hungary, there remains a significant gap in comprehensive, method-specific vulnerability
assessments within this specific region. Previous studies, such as those by Pinke et al. (2020)
on the sensitivity of wheat and maize yields to variations in groundwater levels, Gribovszki et
al. (2017) on the impact of surface covers on groundwater uptake, and Barreto et al., (2017) on
groundwater quality and quantity assessments, have provided foundational insights. However,
these studies have not thoroughly explored the vulnerability of the aquifer system to a wide
array of potential contaminants through diverse and comparative methodological frameworks
such as DRASTIC, GOD, SI, and Fuzzy-enhanced DRASTIC. This gap highlights a critical
need for an integrated approach that not only assesses but also compares the effectiveness of
various vulnerability assessment methodologies in detailing specific susceptibilities of the

region's groundwater system.

This research endeavors to address the identified gaps by conducting a detailed and
comprehensive analysis of groundwater vulnerability in Southeast Hungary using multiple
established methods. This study is unique in its comparative analysis of the DRASTIC, Fuzzy-
enhanced DRASTIC, GOD, and SI methods, aiming to evaluate their efficacy in accurately
assessing the vulnerabilities of the local aquifer system. The findings from this research will
provide crucial information for stakeholders, policymakers, and scientists, enabling them to
better understand the specific vulnerabilities of Southeast Hungary’s aquifer. Such knowledge
is crucial for developing strategic measures that effectively balance the needs of current
agricultural and industrial activities with the long-term sustainability of groundwater resources.
This research, therefore, provides essential information that will aid in the formulation of
informed, strategic decisions aimed at protecting and managing the groundwater system more

sustainably.

The subsequent chapters will build on this background by systematically exploring and
comparing different groundwater vulnerability assessment methods. Chapter 2 will delve into
a literature review of existing groundwater vulnerability assessment methods, focusing on their

theoretical underpinnings, applications, and the role of GIS in enhancing their accuracy and
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applicability. Chapter 3 will outline the specific methodologies employed in this study,
including the novel integration of established models with advanced analytical techniques.
Chapter 4 will present the findings, discussing the implications of these assessments for
sustainable groundwater management in the region. Finally, Chapter 5 will synthesize the

insights gained, offering recommendations for policy, practice, and future research.

1.2 Importance of groundwater

Groundwater is an indispensable component of the earth's hydrological system, occupying the
pore spaces of soil and rock and fractures within rock formations beneath the earth's surface
(Srebotnjak et al., 2012). Due to its subterranean nature, groundwater is generally less
susceptible to contamination and pollution than surface water, making it a more stable and
reliable source for domestic purposes. It undergoes natural filtration processes that eliminate
bacteria and odors, thereby enhancing its quality for consumption (Pat M. Cashman and Martin
Preene, 2021). As the largest reservoir of accessible freshwater, (26%) of the global renewable
fresh water resources (FAO, 2021), groundwater's role extends beyond natural ecosystems to

fundamental economic growth in both urban and rural areas globally (Cuthbert et al., 2019).

Due to its high percentage, reduced sensitivity to pollution, and large storage capacity,
groundwater is pivotal at a socioeconomic level worldwide, providing about 50% of the
world’s drinking water and supporting 40% of industrial needs with the remainder crucial for
irrigation (Saha et al., 2024). In Hungary, where more than 90% of drinking water is sourced
from deep aquifers and riverbank filtrations, the integrity of groundwater is especially
significant (Engloner et al., 2019). However, despite its advantages, the challenge of
sustainable management looms large, compounded by the high demand and limited recharge
rates. This imbalance has led to declining water tables, deteriorating water quality, and

increased incidence of land subsidence (Ahmad et al., 2017).

In Hungary, groundwater plays an important role in supporting drinking, industrial operations,
and agricultural activities predominantly reliant on shallow aquifers. Annual consumption for
irrigation alone amounts to approximately 42 million m?, underscoring the critical dependence

on this resource (Barreto et al., 2017).

Given these pressures, understanding and protecting groundwater resources become
paramount. Aquifer vulnerability mapping emerges as a crucial strategy, enabling the

identification of zones particularly susceptible to contamination from surface pollutants. This
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process not only enhances our understanding of the aquifer dynamics but also directs attention
towards managing human activities that pose risks to these vital resources. By focusing on
these vulnerable areas, tailored management strategies can be developed to safeguard

groundwater, ensuring its sustainability for future generations.

1.3 Overview of groundwater vulnerability

Introduced in the 1960s, the concept of groundwater vulnerability was developed to highlight
the intrinsic purity often associated with groundwater. In other words, this term underscore the
resource's susceptibility to external agents and susceptible to pollution (Margat, 1968). While
widely recognized, the term 'groundwater vulnerability' lacks a formal accepted definition and
standardized assessment methodology, because the concept of vulnerability is not an absolute
property but a complex indicator (Maxe and Johansson, 1998). The formalization of this
concept in hydrological literature did not occur until the 1970s (Albinet, M. and Margat, 1970),
driven by global increases in groundwater contamination worldwide. Albinet and Margat
(1970) characterized groundwater vulnerability as the susceptibility of the water table to
surface pollutants, utilizing various parameters to assess how exposed the water table is to
surface contaminants. Subsequently, multiple definitions have emerged. For example, the
National Research Council (1993), p.1, defines it as “groundwater vulnerability is defined as
the tendency or likelihood of contaminants reaching the groundwater system after introduction
at the surface and is based on the fundamental concept that some land areas are more
vulnerable to groundwater contamination than others”. Vrba and Zaporozec (1994), p.7
describes it as "an intrinsic property of a groundwater system, depending on the sensitivity of
that system to human and/or natural impacts”. Therefore, the term aquifer vulnerability refers
to the degree to which a sub-surface system is likely to be adversely affected by any
perturbation or stress from the land surface. This notion is based on the fundamental concept
that some regions are more vulnerable to groundwater contamination compared with others
(Jiradech M., 2013). This susceptibility is influenced by the natural attenuation capacity related
to a set of physicochemical processes like filtration, biodegradation, hydrolysis, adsorption,
dilution, volatilization, and dispersion (Stigter et al., 2006). Importantly, the vulnerability of
aquifer zones to contaminants is considered a relative measure and is neither directly

quantifiable nor dimensionless concept (Richts and Vrba, 2016).

The concept of groundwater vulnerability is based on the origin-pathway-target model, as

illustrated in Figure 1, which is employed in a notable European initiative aimed at
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safeguarding aquifers. This initiative is part of a comprehensive European research program,
'COST Action 620, 2004 European Cooperation in Science and Technology' (Zwahlen, 2003).
In this model, the 'origin' of contamination corresponds to the place of infiltration of
contaminants at the land surface, while the 'target' refers to the groundwater in which its
protection is the main subject. This target could either be the groundwater surface itself or a
drinking water abstraction point (well/spring). The 'pathway' describes the route that
contaminants travel through natural media (i.e., from an unsaturated zone to a saturated zone),
from origin to target. This concept is developed to identify and prioritize areas within a basin
that are most susceptible where groundwater contamination may occur. It establishes a robust
scientific framework for the protection of groundwater resources and the management of land
use. Two primary approaches for groundwater protection can be described. The first pertains
groundwater as a 'resource', and aims to preserve the aquifer storage, whereas the second
regards groundwater as a 'source' and aims to safeguard specific abstraction points, such as
production wells and springs (Basu and Van Meter, 2014). However, the two concepts are
closely linked in terms of protecting the source, which generally also means protecting the
resource. Vulnerability maps of resources consider the groundwater surface as the target, and
the unsaturated zone is treated as the pathway. If the object of protection is the source (i.e., a
well or spring is considered the target), the pathway encompasses the horizontal flow path
within the aquifer (Goldscheider, 2005). From a quantitative perspective, assessing
vulnerability involves considering three critical factors: travel time for a contaminant from
origin to target, the attenuation process of the contaminant along its pathway, and the duration

of the presence of contamination at the target.

3rd Target: Water Supply

Origin of Pollution: Land Surface
AN AN ZZN Z\Y A\ Z\Y AN

1st Pathway: Vadose Zone

S Y ___Water Table
“".1st Target: Groundwateér Su

Q oy B30

*. Groundwater Resource

Figure 1. Conceptual framework illustrating 'Origin', 'Pathway', and 'Target' model for assessment
groundwater vulnerability with emphasis on 'resource' and 'source’ protection (Machiwal et al., 2018)
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The groundwater vulnerability is influenced by a multitude of factors, including natural
phenomena in the region, such as rainfall and aquifer recharge, anthropogenic activities (e.g.,
land use, the use of agricultural chemicals, and mining), as well as the intrinsic properties of
the aquifer system itself, such as the depth to water table, topography, net recharge, and the

natural attenuation processes of the groundwater system (Wachniew et al., 2016).

The concept of groundwater vulnerability can be differentiated into two main notions, intrinsic
and specific vulnerability. (i) Intrinsic vulnerability is used to represent the physical
characteristics of the groundwater system (e.g., inherent geological, hydrological, and
hydrogeological characteristics) that affect its susceptibility to contamination generated by
anthropogenic activities regardless of the nature of contaminants (Civita, 1994; Wachniew et
al., 2016). In the available literature, this type of analysis is the most frequently adopted
because it does not include the comprehensive data required to assess the degradation processes
that a pollutant could experience across different geological layers (Daly et al., 2002), (ii)
specific vulnerability is used to define the susceptibility of groundwater to a selected
contaminant or group of pollutants, considering the characteristics of the pollutants e.g.
biogeochemical attenuation processes, and their interaction with the intrinsic properties of the
groundwater system (Ribeiro et al., 2017). According to Vrba and Zaporozec (1994), this
classification can be intricate, given the challenges associated with tracing the origins of

pollutants.

This comprehensive understanding of groundwater vulnerability forms the foundation upon
which this thesis is built. The subsequent chapters of this study will delve deeper into the
application of various assessment methods specifically within Southeast Hungary, an area that

presents unique challenges due to its agricultural intensity and hydrogeological characteristics

1.4 Objectives of the study

The overarching goal of this research is to provide a comprehensive evaluation of groundwater
vulnerability in Southeast Hungary, utilizing and comparing multiple assessment
methodologies. The objectives are structured to critically analyze existing methods, improve
the understanding of how different methodologies can influence vulnerability assessments,
determine the most effective approach for local groundwater management strategies. The

specific objectives of the study are as follows:
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(1) Review of groundwater vulnerability assessment methods:

The objective of this component is to critically review existing approaches such as DRASTIC,
GOD, and Susceptibility Index (SI) for assessing groundwater vulnerability. This review
address the strengths and limitations of each method in the context of different hydrogeological

settings providing a groundwork for subsequent analyses and methodological enhancements.

(2) Evaluate existing groundwater vulnerability assessment methods

Assess the suitability of the traditional DRASTIC, GOD, and Susceptibility Index (SI) methods
to understand their strengths and limitations within the hydrogeological context of Southeast
Hungary. This includes examining how these methodologies account for local variations in

geology, hydrology, and human impact.

(3) Enhance the DRASTIC model using Fuzzy logic

The aim here is to enhance the traditional DRASTIC model using a Hierarchical Fuzzy
Inference System (FIS) to address uncertainties inherent in the input parameters. This
enhancement aims to provide a more accurate and nuanced assessment of groundwater

vulnerability.

(4) Conduct a comparative analysis of groundwater vulnerability assessment methods and
develop spatially explicit vulnerability maps

This objective involves a comparative analysis of the effectiveness and accuracy of the applied
methodologies—DRASTIC, GOD, SI, and the Fuzzy-enhanced DRASTIC model—by
examining their correlation with observed groundwater contamination indicators. The focus is
particularly on nitrate concentrations. In parallel, Geographic Information Systems (GIS) is
employed to generate spatially explicit vulnerability maps for each method, enabling
visualization and interpretation of the results. This combined approach supports the
identification of the most reliable methodology for the region and provides a valuable decision-

support tool for groundwater protection and land-use planning.

(5) Inform policy and management strategies

This objective involves providing scientifically backed recommendations to local and regional
policymakers and stakeholders on the adoption of appropriate groundwater management and
protection strategies based on the findings from the comparative effectiveness of the

assessment methodologies.
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(6) Contribute to the global body of knowledge on groundwater vulnerability
Contribute to the scientific literature on groundwater vulnerability by providing insights into
the application and modification of assessment methods in a specific regional context, thus

offering a pathway for future research and methodology refinement.

16



CHAPTER 2: LITERATURE REVIEW

This chapter systematically reviews the existing methods and technologies employed in
groundwater vulnerability assessment, setting the foundation for the applied methodologies
discussed later in this thesis. It begins by exploring a variety of established groundwater
vulnerability assessment methods, providing a contextual backdrop for more detailed
discussions of specific methods. This will include a critical evaluation of the DRASTIC, GOD,
and SI methods exploring their theoretical bases, limitations and practical applications, and
then discussing the integration of fuzzy logic with DRASTIC to address uncertainties inherent

in the input parameters, and the role of GIS in enhancing their accuracy and applicability.
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2.1 Groundwater vulnerability assessment methods

Groundwater serves as a crucial water source worldwide, supporting various purposes that span
from domestic to industrial applications (Shirazi et al., 2012). However, challenges such as
mismanagement, demographic growth, and the expansion of urban, agricultural, and industrial
activities have heightened the risk of contamination to this vital resource (Serra et al., 2021).
These factors, combined with the growing dependence on groundwater, underline the urgent
need to develop comprehensive groundwater management strategies for its sustainable use and
preservation (Foster et al., 2013). Assessing the vulnerability of aquifers is a pivotal approach
for preserving and optimizing water resources now and in the future (Demiroglu and Dowd,
2014). This evaluation is crucial for gaining a deeper understanding of which aquifers and
regions are most susceptible to surface pollution. Within the framework of groundwater
protection, three distinct approaches can be differentiated in evaluating groundwater
vulnerability, each with its unique methodology for addressing contamination risks (Fannakh
and Farsang, 2022; Machiwal et al., 2018). (i) The first approach focuses on the evaluation of
vulnerability only by considering the soil and the unsaturated zone factors, excluding
considerations of transport processes within the saturated zone. In this case, evaluation is
limited to the relative possibility that contamination will reach the saturated zone. (ii) The
second approach involves delineating protection zones for groundwater supply systems, where
groundwater flow and transport processes in the saturated zone are considered to a certain
extent. (iii) The third, more comprehensive approach encompasses both the soil and
unsaturated zones as well as the saturated zones, providing a holistic evaluation of groundwater
vulnerability. These approaches form the basis for a variety of groundwater vulnerability
assessment methods, which differ significantly in their complexity, computational demands,
and data requirements (National Research Council, 1993). The existing groundwater
vulnerability assessment methods can be categorized into the following three broad categories

(Fannakh and Farsang, 2022; Machiwal et al., 2018; Taghavi et al., 2022):

e Overlay and index-based methods,
e Process-based simulation methods, and

e Statistical methods.

These classifications and the specific methods under each will be discussed in detail in

subsequent subsections.
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2.1.1 Overlay and index-based methods

Overlay and index-based methods (qualitative methods), remain the most commonly
employed models for groundwater vulnerability assessment due to their simplicity and
effectiveness (Shrestha et al., 2017). These methods utilize a straightforward qualitative or
semi-quantitative framework that principally depends on geological parameters. Within each
methodology, different parameters are assigned numerical scores or ratings, which are then
aggregated to form an overall groundwater vulnerability index (Moraru and Hannigan, 2018;
Taghavi et al.,, 2023). The initial step involves identifying the soil, hydrogeological,
hydrographical, and morphological characteristics that match each zone within a vulnerable
range. Subsequently, the entire zone is evaluated and categorized based on predefined criteria
(Goyal et al., 2021). Integration with Geographic Information Systems (GIS) enhances these
methods, facilitating the overlay and indexing of maps within the spatial domain (Kaur and
Rosin, 2009). This allows for the generation of vulnerability maps of medium-to-large areas,
encompassing diverse hydrographic and morphostructural features, which makes it easier for
the users to interpret the results (Kumar et al., 2015). Numerous overlay and index-based
methods have been tailored in various countries to suit specific types of aquifers, namely,
methods for porous aquifers or methods for karst aquifers (Jenifer and Jha, 2018; Jha, M.K.,
Peiffer, 2006). The three methods, which are the subject of this research, are DRASTIC (Aller
et al., 1987), GOD (Foster, 1987), and SI (Ribeiro, L., 2000) methods used to assess aquifer
vulnerability, are the widely used GIS-based overlay and indexing methods (Ghazavi and

Ebrahimi, 2015; Ghouili et al., 2021; Machiwal et al., 2018).

Despite the simplicity aspects of overlay and index-based methods contributes to their
widespread adoption, these approaches have significant drawbacks. The major limitation is the
inherent subjectivity involved in selecting relevant parameters that influence groundwater
vulnerability and assigning appropriate weights and ratings to each parametric map, which
leads to significant uncertainties, and the lack of strong criteria for the classification of
vulnerability (Gogu and Dassargues, 2000; Machiwal et al., 2018). Often, the weight and rate
scores have been selected/modified based on the expertise and discretion of the researcher
(Gogu et al., 2003). However, validating the vulnerability maps must be a required step and
can be conducted using the water quality parameter. To reduce the risk of incorrect decisions,
the objective of groundwater value assessment should always be as rigorous as possible (Oke,
2017; Zwahlen, 2003). Another drawback is the lack of consistency across different models

when applied to a given region, highlighting the critical importance of choosing the appropriate
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method (Andreo et al., 2006; Pavlis et al., 2010). To address these inconsistencies, experts
suggest that increasing confidence in vulnerability assessments involves comparing outcomes
across various tools and corroborating these through case studies on areas, where
contamination occurred (Stigter et al., 2006). Nonetheless, as Neukum et al. (2008) note,
vulnerability levels typically expressed in qualitative terms like 'low,' 'moderate,’ or 'high,’
complicate direct comparisons of different models at the same site. For instance, (Richard et
al., 2004) compared several approaches in porous media aquifer and in a fractured rock aquifer
system and concluded that the vulnerability maps for a given hydrogeological system
considerably vary according to the type of the selected method for vulnerability assessment.
Notably, these approaches were primarily developed for unconfined aquifers and may not be

suitable for confined aquifer systems (Goyal et al., 2021; Moraru and Hannigan, 2018).

A comprehensive summary of significate overlay, and index-based methods is presented in
Table 1, which delineates each method's defining parameters, applicable aquifer types,

vulnerability types, and protection strategies.

Table 1. Summary of significant overlay and index-based methods for evaluating groundwater
vulnerability
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2.1.2

Process-based methods

Contrary to the qualitative approaches, quantitative or process-based methods, these methods

can be used to assess the vulnerability (typically, specific vulnerability) of aquifer using natural

processes that occur in the hydrogeological parameters of underlying unsaturated and saturated
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zone systems (Focazio et al., 2003). These methods involve simulation models that integrate
various physical, chemical, and biological processes to predict the transport of contaminants
on the spatial and temporal scales. Furthermore, these methods emphasize the protection of the
source and resource (Abokifa et al., 2020; Machiwal et al., 2018). The complexity of process-
based methods can vary significantly, ranging from relatively simple functional models to
complex models dependent on data requirements and the level of complexity (Schlosser et al.,
2002). Advanced models can solve equations governing flow and transport processes in the
unsaturated zone or aquifer porous media and can consider the stochastic nature of specific
system parameters. For models intended to assess intrinsic vulnerability, parameters such as
the thickness of the aquifer and site-specific hydrological regime can be used (Maxe L.,
Johansson, 1998). For instance, in process-based simulation utilizing MODFLOW, the
groundwater body is segmented into cells using a two-dimensional or three-dimensional grid.
Aquifer characteristics and all other features are then assigned to these cells, and the resulting
model is solved by executing the program (Ghouili et al., 2021). The output information, such
as groundwater velocity, hydraulic head and pollutant concentration, can be visualized in two

or three dimensions (Aliyari et al., 2019; Madhavan et al., 2023).

In the literature, some of the quantitative approaches to assessing groundwater vulnerability
include: MODFLOW (Arlen W. Harbaugh, 2005; Zhao et al., 2022), Root Zone Water Quality
Model (RZWQ)M (DeCoursey et al., 1992; L. Ma et al., 2012), HYDRUS-1D (Vogel and
Zhang, 1996), Water Assessment Tool (SWAT) (Aliyari et al., 2019; Arnold et al., 1998),
FEMWASTE (Yeh and Tripathi, 1991), HYDRUS-2D/3D (Simunek et al., 2012), Pesticide
Analytical (PE- STANS) (Enfield et al., 1982), and LEACHM (Hutson and Wagenet, 1989).
A complete description of the process-based methods and their applications can be found in

references (Machiwal et al., 2018; Taghavi et al., 2022).

The principal advantage of process-based models over overlay and index-based methods is
their quantitative evaluation of groundwater vulnerability, and their ability to accurately model
contaminant transport in spatial and temporal dimensions (Moraru and Hannigan, 2018).
Unlike most index-based methods that focus on resource protection, process-based approaches
evaluate the vulnerability of both the source and the resource founded on proven scientific laws
(Oke, 2017). Despite their superior accuracy compared to qualitative methods, process-based
models also face limitations, particularly their assumption that fractured or karst aquifers

behave as continuous porous aquifer systems, which overlooks the existence of preferential
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flow pathways (Gogu and Dassargues, 2000). This omission can lead to inaccurate transit time
distributions in the case of preferential flow (e.g., flow systems in a karst aquifer), a challenge
that has been acknowledged in the literature (Gazis and Feng, 2004; Logsdon, 2002).
Moreover, the high demand for detailed field data, which is often unavailable, limits the
reliability of these models when data must be estimated indirectly (Machiwal et al., 2018). The
requirement for high-resolution data also restricts the application of these models to relatively

small areas, such as parts of an aquifer system (Sajedi-Hosseini et al., 2018).

2.1.3 Statistical methods

The application of statistical methods in groundwater vulnerability assessment started during
the 1990s, these methods gained traction alongside GIS-based qualitative methods due to
advancements in computer technology and the enhanced availability of geo-environmental data
(Sorichetta et al., 2013). The statistical methods provide a viable means for assessing aquifer
vulnerability when groundwater quality data are linked to media data that affect groundwater
contamination (e.g., hydrogeological data, soil properties, land use, and human activities) (Jain,
2023). These methods can range from simple descriptive statistics of the concentrations of
contaminants to more complex regression analyses that incorporate the effects of several
explanatory variables (Machiwal et al., 2018). Simple descriptive statistical approaches are
commonly used to summarize point data and produce point maps that illustrate the presence
and spatial distribution of contaminants, providing the basis for more complex analyses that
explore the correlation between geological settings and point data (Mendoza & Barmen, 2006).
More rigorous statistical analyses, such as logistic regression (which intends to account for
potential explanatory variables), additional information and data are frequently included as
potential sources of contamination and factors that influence the intrinsic susceptibility of

resources (Schleyer, 1994).

According to (Machiwal et al., 2018; Taghavi et al., 2022), the most commonly used statistical
techniques in the evaluation of vulnerability are: (i) logistic regression or binary logistic
regression, which are useful methods for assessing the vulnerability of aquifers to pollution by
different contaminants, such as nitrate, chloride, and pesticides, it predicts the likelihood of a
contaminant's presence, categorizing outcomes as binary (true or false) rather than continuous
values (Lonna et al., 2012). (ii) Multiple linear regression (MLR), which is conceptually similar
to the logistic regression method. The MLR method conceptually evaluates the relationships

between a dependent factor and several independent factors and predicts the concentration of
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contamination instead of the probability of pollution (Stackelberg et al., 2012; Steichen et al.,
1988). It is useful for comparing drinking water standards. Lastly, (iii) artificial intelligence
(AI) models, such as: fuzzy logic, artificial neural networks, and neuro-fuzzy modeling, which
have been applied in the prediction of groundwater vulnerability (Dixon, 2005; Gesim &
Okazaki, 2018). Fuzzy logic and fuzzy set theory are mainly used in fuzzy input modeling,
because they account for imprecision and uncertainty and reduce information loss when
coupled with GIS-based methods (F. Wang et al., 1990); other (AI) models that are powerful
soft-computing methods and are highly limited in water resources studies (Rodriguez-Galiano
et al., 2014), such as Random Fores (Judeh et al., 2022), and Support Vector Machine (SVM)
(Elzain et al., 2022; Khan et al., 2022; Sajedi-Hosseini et al., 2018). A complete description
and a number of statistical methods used for groundwater vulnerability assessment, with
several relevant studies can be found in references (Jain, 2023; Machiwal et al., 2018; Taghavi

et al., 2022).

While statistical methods excel at identifying complex relationships between variables,
managing uncertainties, and predicting contamination probabilities, they also pose significant
challenges. The major challenge is selecting the most suitable statistical model, it is complex
to design and, once developed, the model comes with its own set of assumptions. Consequently,
their applicability is generally limited to regions with environmental conditions similar to those
where the model was originally formulated (Oke, 2017). Furthermore, they require substantial
data inputs, making them both costly and time-consuming to implement effectively (Jain, 2023;
Machiwal et al., 2018). Despite these challenges, the capacity for using statistical methods to

enhance GVA is substantial, meriting further investigation and application.

2.2 Principle of application of the DRASTIC, GOD, and SI approaches

for assessing groundwater vulnerability

2.2.1 DRASTIC method
2.2.1.1 Overview of the DRASTIC method

The DRASTIC method is a systematic approach developed in 1987 under a cooperative
agreement between the United States Environmental Protection Agency and the National Water
Well Association (Aller et al., 1987) for assessing groundwater vulnerability through an index
and rating system. This method integrates seven critical hydrogeological factors that determine
an aquifer's sensitivity to potential contaminants. These factors are depicted in Figure 2 and

described in Table 2.
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Figure 2. Thematic data layers required for mapping groundwater vulnerability using the DRASTIC,
GOD, and Susceptibility Index (SI) models: (1) Depth to water table; (2) Aquifer recharge, (3) Aquifer
media (or aquifer type); (4) Soil media; (5) Topography (slope); (6) Impact of the vadose zone; (7)
Hydraulic conductivity; and (8) Land use/land cover.

Table 2. Parameters and weights used by the index-overlay methods to calculate their vulnerability
indices (Aller et al., 1987; Foster, 1987; Ribeiro, L., 2000)

Description/relationship with weight
Parameters o1
vulnerability DRASTIC GOD SI
o A deeper water table implies longer
Depth to travel times and less chance of 5 13 0.186
water table contaminants reaching the aquifer. '
e A high recharge rate leads to a high
probability of contaminant transport
vertically to the water table and
R Recharge horizontally within the aquifer, 4 ) 0.212
increasing vulnerability to pollution.
e Refers to the saturated zone system,
serving as an aquifer. The flow
Aquifer system within the aquifer controls the
A medle} (or pollutant attenuation processes. 3 1/3 0259
Aquifer Larger granulometry and greater
type) permeability within an aquifer

contribute to the greater vulnerability
of groundwater to pollution.
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For GOD schemes, it indicates the
type of groundwater occurrence (G)

Refers to the uppermost portion of
the vadose zone which controls the
recharge rate, thereby influencing the
ability of a contaminant to transfer
vertically into the unsaturated zone.

S Soil media

Indicate the slope variability of the

land surface. A slight slope will

determine a high retention time for

surface water, a higher likelihood of 1 - 0.121
more recharge of the aquifer system,

and effects on the pollutant transport.

Topograph
y (slope)

The type of material in the vadose
zone determines the attenuation
characteristics that could have an
effect on the passage and attenuation
of the contaminant, depending on its
permeability and the attenuation
characteristics of the medium,
affecting the available time for
mitigation and the quantity of
material encountered.

e With the GOD approach, the
overlying lithological characteristics
of the unsaturated zone in terms of
lithology and porosity refer to the
overlying lithology (O).

Impact of
| the vadose
zone

5 1/3 -

e Refers to the capacity of aquifer
medium to transmit water, the rate at
Hydraulic which groundwater flows control the
C conductivit rate at which contaminating materials 3 - -
y are transmitted through the aquifer
system.

o Indicated that higher industrial and
wastewater pollution, pesticides and
LU/L Land fertilizers, a higher risk of
C use/cover contaminant materials being
transmitted into the aquifer

- - 0.222

2.2.1.2  Hypothesis

Aller et al., (1987) hypothesized that the transport of contaminants in groundwater systems is
primarily governed by the movement of groundwater itself. In this framework, a conservative

contaminant is assumed to migrate at the same velocity and in the same direction as the
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groundwater flow. This simplifying assumption allows the DRASTIC method to focus on
hydrogeological parameters that influence groundwater flow rather than contaminant-specific
properties. Whereas the study area considered has a surface area of more than 40 hectares. In
other words, it is considered the probability of contaminants released from the surface to reach
the groundwater system. It focuses on contamination from anthropogenic sources and does not
assess pollutants introduced into the shallow or deep subsurface by certain processes, such as
leakage from underground storage tanks, animal waste lagoons, or injection wells (Machiwal
etal., 2018). The DRASTIC model employs a systematic rating and weighting system designed
to predict vulnerability based on seven key hydrogeological factors. Each factor/parameter is
evaluated on a scale from 1 (the aquifer system is not sensitive to that parameter) to 10
(indicating high vulnerability of the parameter) and assigned a corresponding weight from 1 to
5 based on its significance in affecting overall groundwater vulnerability (Aller et al., 1987).
Theoretically, each parameter within the DRASTIC index acts as an independent variable,
representing specific process or condition related with the leaching process within a seven-
dimension space. The comprehensive integration of these parameters through the DRASTIC
index provides a nuanced representation of groundwater vulnerability, allowing for a spatially

differentiated assessment of intrinsic vulnerability (Rama et al., 2022).

2213 Salient applications

As previously discussed, DRASTIC is one of the widely used methods for assessing the
vulnerability of groundwater resources due to its performance and ease of applicability.
According to local needs and to improve the results of the DRASTIC method, two principal
approaches for modifying the DRASTIC method are possible:

(1) Modifying the weights and ratings on the basis of the thorough scientific analysis of data
and the combination of the risk and vulnerability maps. Sahoo et al., (2016) identified three
methods, namely, entropy information method (E-DRASTIC), fuzzy pattern recognition
method (F-DRASTIC), and single-parameter sensitivity analysis (SA-DRASTIC), and applied
them to Kanpur City, India. Furthermore, the authors changed the weights of the initial
DRASTIC parameters to obtain the corresponding vulnerability index and compared the
performance of the subjective (DRASTIC and SA-DRASTIC) and objective (E-DRASTIC and
F-DRASTIC) weighting-based methods. The authors concluded that the objective approaches
were suitable for vulnerability assessment in the study area. The effectiveness of E-DRASTIC

and F-DRASTIC is based on the modification of the weights of only those parameters that are
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essential in the vulnerability estimation process, as well as the objective methods assigning
weights to features according to their relative importance in the final vulnerability assessment.
Grey incidence analysis models have been used to evaluate the effectiveness of the modified
DRASTIC methods. To improve the reliability of the model, Jafari and Nikoo, (2019) modified
the DRASTIC model by adjusting the rating and weighting scores using Wilcoxon’s rank-sum
test and the fuzzy optimization model for groundwater risk assessment and by considering the
nitrate concentration. The results demonstrate that the correlation coefficient between the
original and improved DRASTIC models and nitrate concentration indicates that this approach
is effective in improving the accuracy of the assessment of groundwater risk (i.e., the

correlation coefficient increased significantly from 0.573 to 0.789).

(2) Altering the original DRASTIC parameters, such as subtracting parameters, or including
other parameters, such as land use and irrigation type. Under the conditions of intense
agricultural activities in Tiruchirappalli district, India, Jenifer and Jha, (2018) modified the
original DRASTIC and pesticide DRASTIC (DRASTIC-P) models by introducing two extra
parameters, namely, land use/land cover (LU/LC) and lineament density (LD), and compared
them with six modified forms of these models, namely, DRASTIC-LD, DRASTIC-LU,
DRASTIC-LDLU, DRASTIC-P-LD, DRASTIC-P-LU, and DRASTIC-P-LDLU. The results
of the vulnerability maps generated by the eight vulnerability models were verified using a
single water quality parameter (NO3™ -N, F~ and CI") individually. The performance of
DRASTIC-P-LDLU indicated that the model is the most accurate one with accuracies of 61%
and 68% for nitrate and chloride concentrations, respectively, followed by DRASTIC-LDLU
with accuracies of 59% and 61% for the same concentrations. Other comparative studies

conducted worldwide are presented in Table 3.

2.2.14  Advantages

Evidently, DRASTIC is one of the most widely known and used method for the assessment of
aquifer vulnerability (Jain, 2023). It has been applied from municipal, such as National Capital
Territory, Delhi, India (Tomer et al., 2019) to the continental scale, whereas the study
developed by Rama et al., (2022) uses a critical application of the DRASTIC method to assess
the intrinsic vulnerability of South American groundwater. The main strength of the DRASTIC
method is its flexibility; the model allows for including or eliminating parameters or factors to
adapt to different challenges, such as the conditions in the area of study and availability of data

(Fritch et al., 2000; Jenifer & Jha, 2018; Sarkar & Pal, 2021; Singh et al., 2015; Singha et al.,
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2019). This adaptability extends to modifying the weight and rate scores depending on the field
measurement data, enhancing the utility of susceptibility and risk maps when combined with
DRASTIC (Khosravi et al., 2018). Over the past decade, several scientists have modified the
original DRASTIC model by modifying the scoring ranges and relative weights and by
including or omitting certain factors. However, Hamza et al., (2015) demonstrated that all
parameters exert an equal influence on groundwater contamination, where each factor indicates
a situation where it has exerted the greatest impact regardless of the weight assigned to the

parameters.

Furthermore, the DRASTIC approach is a useful tool for assessing groundwater vulnerability,
because it is relatively low-cost and simplicity. It utilizes data that are widely available or
estimated, and its integration Geographic Information Systems (GIS) facilitates the creation of
clear, easily interpretable maps that can be seamlessly incorporated into decision-making

processes (Maxe and Johansson, 1998).

22.1.5 Limitations

The major limitations of the DRASTIC method are: (i) the reliability of the different parameters
used by the approach is dependent on data used in their realization. Typically, information
related to parameters, such as net recharge, hydraulic conductivity, water body depth,
unsaturated zone impact (Kouz et al., 2020), and the penetration of contaminants through the
vadose zone, are influenced by its lithology and determined through interpolation (Barbulescu,
2020; Cherkaoui Dekkakki H., 2006). This aspect leads to faults in the generation of parameter
values because it is only accurate in the intervals delimited by the point data (Francés et al.,
2002). Thus, the DRASTIC model can only be used as a relative assessment tool and is not
designed to provide an absolute assessment of groundwater vulnerability (Ouedraogo, 2017).
(i1) The one-dimensional DRASTIC approach may be sufficient for assessing the vulnerability
of an aquifer in porous media, where water and contaminants penetrate vertically from the soil
surface to the water table. Nevertheless, the opposite is true for karst aquifers, where water and
contaminants bypass the protective function by flowing laterally through shallow holes (Oke,
2017). (iii) A few factors are overlapping, such as aquifer media and hydraulic conductivity,
which is directly dependent on aquifer media, this can complicate independent variable analysis
(Oke, 2017). (iv) The DRASTIC method does not consider the dilution within groundwater
system, although it has a strong control on the levels of contamination, which may lead to

erroneous results (Aller et al., 1987).
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Table 3. List of comparative studies of groundwater vulnerability assessment methods across different
regions.

Authors Study Year Methods ;Fgfiefe(;f Results
used system
o The GOD model gives an underestimation of
:“ vulnerability and a low sensitivity to spatial
= o E variation in key hydrogeological features. The
§ i § 5 DRASTIC and SINTACS approaches chose
= %9 . E 83 % limitations in applications to karst aquifer systems.
.g 5 § i% é However, the methods EPIK, PI and COP,
E) %ﬁ 5 ? i developed for application to carbonate or karst
é <% é aquifers, provide cost-effective results, highly
2“ consistent with karst and hydrogeological
8 characteristics.
o By integrating the land use parameter, the results
% obtained with the SI model were more reliable
g E" = 5,2 compared to the DRASTIC model. The
j-" % . g § vulnerability maps produced were tested and
g _5 E’J g E '"q5) validated by the distribution of groundwater nitrates
.a §< 3 S in the study area. The correlation coefficient
\cgi § A o% between the SI and the nitrate concentrations was
'?;; 85%, which is higher than the 75% obtained with the
p= DRASTIC method
o~ < g The analysis of the results obtained from the
§ ‘g § @ 5'% DRASTIC and GOD approaches indicated three
;cf éoé 2 g ;g spatial distributions of vulnerability categories,
'§ E % S E ﬂé Low, Medium and High, with 85% of similarity
S g% 3 3 between the two methods for the medium
gi é = A r_é vulnerability category
_ The application of the DRASTIC, GOD and SI
s %’ § —Ué 93:3 methods shows a range of intervals divided into
§ gg S % categories corresponding to fluctuating degrees of
§h g “é § 8 § vulnerability ranging from "very low" to "extreme".
N 2 é; E 2 The validation of the mapping result was carried out
g é g 5 % using the nitrate concentrations measured in April
o4 @) A

2017. The most reliable results were obtained with
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the SI method in comparison with DRASTIC and
GOD

(Shrestha et al., 2017)

shallow groundwater aquifer of the Kathmandu

Valley, Nepal

2022

DRASTIC, GOD and SI

Porous media aquifer

The DRASTIC and SI models are similar for the
vulnerability assessment because both methods
identify about 80% of the groundwater basin area
under the highly vulnerable zone. By contrast, in the
GOD model, vulnerability assessment identify areas
with "low" and "moderate" vulnerability categories
are 24% and 76% respectively. The correlation
between the estimated risk and the measured nitrate
concentration was performed to validate the
resulting mapping. Comparing with DRASTIC and
GOD, the authors conclude that the SI method has

more reliable results

(Kirlas et al., 2022)

Nea Moudania aquifer, Chalkidiki, Greece

2022

DRASTIC, Pesticide DRASTIC, SINTACS, Nitrate SINTACS, GOD, AVI,

and SI,

Porous media aquifer

As the study area is marked by intensive agricultural
activities. The authors confirm that DRASTIC
Pesticide and SINTACS Nitrate were the more
precise and efficient methods for evaluating the
groundwater vulnerability in the study area. Using
the coefficient of correlation (R?), the authors
validated the results obtained by the seven methods
using the nitrate concentrations from 23 observation
wells. The most efficient and accurate approaches
were Pesticide DRASTIC and Nitrate SINTACS
with R2 =0.6475 and 0.6438, respectively. The two
methods have a slightly higher coefficient of
determination compared to DRASTIC and Normal
SINTACS. Besides, AVI, GOD methods were the
less reliable, with correlation coefficients of GOD
(R2 = 0.5348), AVI (R2 = 0.5045); SI method,
which incorporates the land use parameter exhibited

a greater R2 of 0.6084.
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222 GOD Method
2.2.2.1 Overview of the GOD method

The GOD method, developed by Foster, (1987), provides a straightforward and effective
framework for assessing groundwater vulnerability, particularly suited to regions with limited
data availability (Kumar et al., 2015). It evaluates the vulnerability based on three primary
parameters: Groundwater occurrence (G), Overlying lithology (O), and Depth to the
groundwater table (D). This method has been widely applied in various hydrogeological studies
around the world, proving particularly useful in preliminary assessments where detailed data
may not be readily available, thus helping to prioritize areas for more intensive study or

immediate management action (Alsharifa, 2017).

2.2.2.2  Hypothesis

The GOD method employs an empirical approach, where the vulnerability of aquifers is
defined as a function of the inaccessibility of a saturated zone, in the sense of pollutant
penetration, and the attenuation capacity of the layer above the saturated zone (Machiwal et al.,
2018). This approach assumes that the vulnerability is directly influenced by the physical
properties of the materials above the aquifer, which control how rapidly contaminants can reach
the saturated zone (Goyal et al., 2021). In the GOD scheme, each of the factors—groundwater
occurrence, overlying lithology, and depth to groundwater—are treated equally without
differential weighting, reflecting their presumed uniform impact on the vulnerability of the

aquifer (Foster, 1987; Jain, 2023; Machiwal et al., 2018).

2223 Salient applications

Although the GOD method is less popular than the DRASTIC model, it has been applied in
several specific studies (Jain, 2023; Machiwal et al., 2018). Ghazavi and Ebrahimi, (2015)
assessed the vulnerability of the Abarkooh aquifer in southeastern Yazd province, Iran, using
both the DRASTIC and GOD models. The authors used nitrate concentration as the primary
pollution parameter to validate the vulnerability maps produced by these models. The study
concluded that the DRASTIC method was more appropriate for the assessment of the potential
for contamination in the study area compared with the GOD method. The correlation
coefficient between the DRASTIC index and nitrate content was 68%, which is clearly
exceeded the 28% obtained using the GOD method. In the alluvial aquifer of the Florina basin,
Northern Greece, Kazakis and Voudouris, (2011) compared among three methods, DRASTIC,

GOD, and AVI. Nitrate concentrations in groundwater were examined to verify the results
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obtained. Their findings suggested that the GOD approach displayed a correlation higher than
those of the two other approaches, whereas the vulnerability map produced are generally
comparable with the DRASTIC and AVI methods. Sayed et al., (2023) conducted a
comprehensive groundwater vulnerability assessment using GIS-based DRASTIC and GOD
methods in the industrialized peri-urban area of Araihazar Upazila, Bangladesh. The study
highlighted that the DRASTIC model, by incorporating a broader set of hydrogeological
parameters, produced a more detailed classification of vulnerability zones. In contrast, the
GOD method, owing to its simplified and conservative framework, indicated substantially
lower vulnerability levels, classifying 58% of the area as negligible and the remainder as low.

A compilation of some comparative studies conducted worldwide can be found in Table 3.

2224  Advantages

Although the GOD method is not as widely adopted as the DRASTIC method, it remains one
of the best GIS-based overlay and indexing methods, mainly used in data-limited regions that
require a rapid assessment of the groundwater situation, which can be applied in prioritizing
management and protection efforts in vulnerable areas (Goyal et al.,, 2021; Sukmawati
Rukmana et al., 2020). The major advantage of the GOD method is that it can be applied to
any type of aquifer, except for those in karst regions. It is particularly effective in large-scale
environments characterized by significant variations in vulnerability (Gogu and Dassargues,

2000; Kumar et al., 2015; Polemio et al., 2009).

2225 Limitations

The GOD method, while effective, presents certain limitations. In regions with moderate
variations in the level of vulnerability, the GOD method can provide homogeneous
distributions of values. Thus, using this method in areas with high contrasting vulnerability is
preferable (Gogu and Dassargues, 2000). Another limitation is the neglect of the inherent
heterogeneity of underground systems, whereas the nature of the subcutaneous zone and
vertical wells are additional problems when applying this method in karst areas (Machiwal et
al., 2018; Oke, 2017). Addressing these issues, Foster, (1998) recommends adopting specific
strategies in vulnerability assessments, such as using the predominant lithology of the layers
above the aquifer; considering aquifers as unconfined in the case of doubts about the continuity
and properties of the confining beds; and using shallow aquifers to assess pollution risk, except
in the case of small-perched aquifers. Furthermore, the GOD method assumes a uniform impact

of parameters on the vulnerability of the aquifer. This assumption can lead to the
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oversimplification of complex hydrogeological variations, potentially obscuring critical local

details that are essential for accurate vulnerability assessments (Goyal et al., 2021).

2.2.3 Susceptibility Index (SI) approach
2.2.3.1 Overview

The Susceptibility Index (SI) method, developed by Ribeiro L., (2000), offers a refined
approach to groundwater vulnerability assessment, particularly focusing on vertical
contamination risks from agricultural activities. Unlike broader models, the SI method
specifically integrates land use factor alongside traditional hydrogeological parameters,
making it adept at addressing the impact of human activities on aquifer system (Ghouili et al.,
2021). Developed for medium to large-scale assessments (scales ranging from 1:50,000 to
1:200,000) (Ribeiro et al., 2017), the SI method considers five parameters (Table 1). Each
parameter is assigned a rating and weight that reflects its influence on contamination potential,
with Land use acting as a dynamic factor that adjusts the vulnerability assessment to mirror
actual land surface conditions, and the SI vulnerability index (Ivsi) is computed by linearly

combining the scores and weights of the five parameters.

2.2.3.2 Theoretical basis of the SI method

The Susceptibility Index (SI) method is founded on a theoretical framework that integrates both
hydrogeological and anthropogenic factors to assess groundwater vulnerability (Stigter et al.,
2006). Recent studies emphasize the significance of including land use as a crucial factor in
evaluating groundwater quality, highlighting its role in predicting the impact of human
activities on aquifer system (Shrestha et al., 2017; Teixeira et al., 2015). At its core, the SI
method enhances traditional vulnerability assessment by specifically considering land use

patterns alongside natural hydrogeological parameters (Oke, 2017).

Ribeiro (2000), posits that the two factors, namely, the lithology of aquifer media and soil
media exert no significant impact on the pollutant movement to the groundwater table.
Additionally, aquifer media and hydraulic conductivity are two overlapping factors. Hydraulic
conductivity is directly dependent on the characteristics of the aquifer media, complicating its
independent evaluation (Engel et al., 1996; Oke, 2017). Consequently, the SI method excludes
parameters such as soil media (S), the unsaturated zone (I), and aquifer hydraulic conductivity

(C) from its assessment criteria.
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The SI method assigns varying degrees of susceptibility based on the potential for
contaminants, such as nitrates and pesticides, to migrate vertically through the materials above
the aquifer system. Each parameter within the SI model—Depth to water table, Recharge rate,
Aquifer media, Topography—is evaluated for its potential to facilitate or hinder this vertical
movement (Ghouili et al., 2021). The inclusion of land use as a dynamic parameter allows the
adjustment of vulnerability scores to accurately reflect local conditions such as agricultural
intensity, urban development, and other land configurations that directly influence the

protective capacity of the aquifer and the risk of contamination.

2233 Salient applications

In recent years, aquifer vulnerability assessed using the SI model has many applications. For
instance, Ribeiro et al., (2017) assess the groundwater vulnerability of the Daule aquifer in
Ecuador using the Susceptibility Index (SI) method for diffuse agricultural pollution as a
specific vulnerability method. The study finding, indicate that regions with high recharge rates
and extensive agricultural activities, particularly paddy fields, are most high-vulnerability
zones. Moderately vulnerable to low-vulnerability zones correspond to less disturbed natural
areas like forests and semi-natural zones. The study proposes the implementation of a
monitoring network to validate the SI map using nitrate concentration data, emphasizing the
need for integrated groundwater management to protect water quality effectively. In the
Takelsa phreatic aquifer, North-East of Tunisia, Ghouili et al., (2021) applied the SI approach
to assess the vulnerability of groundwater. The resulting vulnerability maps were validated by
comparing areas at high risk of salinity with their relative vulnerability index. Moreover,
(Ghouili et al., 2021) demonstrated that 50% of the study area is characterized by areas of high
to very high levels of vulnerability. The main reasons for these high-vulnerability areas are the
presence of high recharge rates, sandy soils, shallow water tables, and areas with high levels
of agricultural activity in land use. Moreover, comparative studies by Kouz et al., (2020) and
Hamza and Added, (2009) have shown the SI method to yield more reliable results than the
DRASTIC model, the vulnerability classes mapped are higher with the application of the SI
approach, which supports the idea that the SI method was designed to consider the properties
of nitrates and the relationship between them and intrinsic vulnerability. By contrast, the
DRASTIC model ignores the nature of contaminants and focuses solely on hydrogeological
parameters. This integration of various spatial features through the land use parameter enhances
the method’s applicability and accuracy in vulnerability assessments. List of some comparative

studies conducted worldwide are given in Table 3.
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2.234  Advantages

The main advantage of the Susceptibility Index (SI) method, its ability to incorporate land use
changes as a parameter directly into the groundwater vulnerability assessment gives it a
distinctive edge in accurately reflecting the specific vulnerability due to human activities
(Brindha & Elango, 2015). This feature is crucial in agricultural regions where pesticide and
nitrate usage heavily influence groundwater quality (Francés et al., 2002). Additionally, the SI
model can be combined with Geographic Information Systems (GIS) and remote sensing to
develop an integrated approach, especially for heterogeneous media that consider geological,
hydrological, and geochemical data to improve the reliability of risk assessment (Anane et al.
2013; Bartzas et al. 2015). Similar to the DRASTIC and GOD methods, the SI approach was

developed to assess the vulnerability of aquifers on large and medium scales.

2.2.3.5 Limitations

In the Nabeul-Hammamet aquifer, Tunisia, Anane et al., (2013) applied this method in
combination with consistency, where contamination by nitrate has occurred. Data on
vulnerability exhibited certain limitations in assessing groundwater vulnerability. The first is
that the application of the SI model displayed an overestimation of vulnerability due to not
accounting for the dilution effect, which can significantly mitigate the level of contamination.
Moreover, (Noori et al., 2019) highlighted the difference between the most vulnerable and most
contaminated areas. The second limitation is that the SI method overlooks the recycling process
of groundwater that contributes to the accumulation of pollutants. This tendency leads to an
underestimation of vulnerability due to the failure to consider two factors, namely, soil media
and unsaturated zone (Anane et al., 2013). By not incorporating these parameters, the SI
method potentially underestimates vulnerability where these factors play a significant role in
contaminant filtration and attenuation. This oversight can lead to inadequate protection
measures for aquifers that are more susceptible than the SI method suggests, particularly in

regions where the soil media and unsaturated zones are key barriers to pollutant migration.

2.3 Integration of fuzzy logic with the DRASTIC method
2.3.1 Overview

Fuzzy Logic (FL), introduced by Zadeh (1965), is an advancement over classical set theory
that enhances the handling of imprecision by (i) extends classical set theory by removing strict
boundaries typically associated with classical sets; and (ii) by redefining set membership of an

object as a gradient from 0 (completely false) to 1 (completely true), rather than as a binary
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condition (Demicco and Klir, 2003). Membership Functions (MFs) characterize these fuzzy
sets with uncertain boundaries that facilitate smooth transitions between categories to better
manage the inherent uncertainties often found in complex systems (Grande et al., 2010). Fuzzy
Logic is particularly effective in handling the ambiguities and imprecision commonly
encountered in environmental, hydrological, and hydrogeological factors subject to uncertainty
and ambiguity (Nourani et al., 2023). Within the domain of groundwater vulnerability, fuzzy
logic refines the DRASTIC model by integrating qualitative expert insights with quantitative

data into a comprehensive evaluative framework (Nadiri et al., 2017).

The operational framework of FL in this application comprises three pivotal stages (Fig. 3): (1)
fuzzification, (ii) fuzzy inference (fuzzy rule base), and (iii) defuzzification, as described by
(Zadeh, 2015). During fuzzification, crisp input values are converted into fuzzy sets to build
the foundation of the inference system. The fuzzy inference mechanism employs a series of
logical rules that relate these inputs to outputs, primarily using operations such as AND
(minimum) and OR (maximum) to synthesize these relationships. This rule-based system
integrates the fuzzy inputs into a unified output set through an implication process, which is
then processed to deliver a singular decision outcome. The final stage, defuzzification, involves
converting the fuzzy output back into a precise scalar value, completing the transition from

fuzzy data inputs to actionable crisp outputs.
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Figure 3. Fuzzy logic system

2.3.2 Methodological enhancements

As previously discussed, while DRASTIC effectively simplifies complex hydrogeological
settings into an accessible index format and is widely adopted to evaluate vulnerability in

different parts of the world (Barbulescu, 2020; Rama et al., 2022). Nonetheless, the inherent
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subjectivity of the data availability and/or the variability in hydrogeological characteristics
across different regions require modifications to the DRASTIC model to enhance its accuracy,
as evidenced by global studies on its adaptations (Baki and Ghavami, 2023; Huan et al., 2012;
Javadi et al., 2011; Nguyen and Tat, 2024; Sener and Davraz, 2013; Thirumalaivasan et al.,
2003; Torkashvand et al., 2023).

One of the persistent challenges of the DRASTIC model lies in its reliance on fixed parameter
ratings, which often fail to capture the variability and uncertainty inherent in hydrogeological
conditions (Saranya and Saravanan, 2021). Moreover, despite the need for a comprehensive set
of input data for a thorough assessment of groundwater vulnerability, the data available for
DRASTIC are often limited or compromised by the use of substandard measurement
technologies (Taghavi et al., 2023). Fuzzy techniques are commonly used to overcomes these
limitations by introducing flexibility and adaptability into the parameter ratings process (Das
and Pal, 2020; Nadiri et al., 2017; Saranya and Saravanan, 2022). These techniques employing
pseudo-trapezoidal membership function (MF) in conjunction with Mamdani inference and
center-of-gravity defuzzification to establish linguistic definitions for DRASTIC indices.
Building on this foundation, this study introduces an adaptation called the fuzzy-enhanced
DRASTIC method, which integrates FL into the traditional DRASTIC method by employing
hierarchical fuzzy inference systems (FIS) that enable dynamic adjustments to parameter
ratings. This adaptation leverages expert knowledge and site-specific data to define fuzzy
membership functions, allowing for a more nuanced representation of each parameter's impact
on groundwater vulnerability. Unlike the static ratings of the original model, these fuzzy-
enhanced ratings are dynamic, allowing for more nuanced categorizations and continuous
transitions between vulnerability classes. The hierarchical FIS further augments this capability
by processing the DRASTIC parameters simultaneously through a rule-based framework that
captures the complex interrelationships among them. This results in a more comprehensive and
context-sensitive evaluation of groundwater vulnerability (Jesiya and Gopinath, 2019; Saranya

and Saravanan, 2021).

These methodological enhancements make the fuzzy-enhanced DRASTIC model a robust tool
for groundwater vulnerability assessment, particularly in regions with heterogeneous
hydrogeological settings or limited data availability. By refining parameter ratings and

leveraging fuzzy logic's ability to manage imprecise and ambiguous information, the enhanced
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model provides a more reliable basis for decision-making in groundwater management and

protection (Igbal et al., 2015; Saranya and Saravanan, 2021).

2.3.3 Applications and case studies

The integration of fuzzy logic techniques with the DRASTIC method has been applied in
various hydrogeological settings, demonstrating significant improvements in the accuracy and
specificity of groundwater vulnerability assessments. Afshar et al., (2007) used fuzzy logic
(FL) techniques to enhance the specificity of DRASTIC index in groundwater vulnerability
assessment. Using a pseudo-trapezoidal MF in conjunction with Mamdani inference and
center-of-gravity defuzzification, they effectively categorized each parameter into three
linguistic terms and defined eight linguistic terms for a normalized DRASTIC index, thereby
refining the model’s ability to interpret and classify groundwater vulnerability data. Similarly,
Nourani et al. (2023) advanced the DRASTIC model by integrating it with a Mamdani fuzzy
logic (MFL) approach to reduce uncertainties in groundwater vulnerability assessments. This
study applied MFL combined with data mining to address the inherent weaknesses of
traditional DRASTIC method, especially the subjective rating of parameters. In their
assessment of the Ardabil and Qorveh-Dehgolan plains, the authors found that the MFL model
yielded higher accuracy in vulnerability predictions, as indicated by improved Heidke skill
scores (HSS) and total accuracy (TA) values compared to the standard DRASTIC approach.
The study demonstrated that even with reduced parameter inputs, the MFL model could
reliably predict groundwater vulnerability, thus offering an efficient and flexible alternative for
aquifers in complex hydrogeological settings. Furthermore, Igbal et al. (2015) applied a
hierarchical fuzzy system (HFS) model to address the limitation of DRASTIC method, in
managing uncertainties inherent in hydrogeological data. The HFS model incorporates
standard DRASTIC parameters within a fuzzy logic framework. In their assessment of Ranchi
District, India, the authors found that the HFS model yielded higher accuracy in vulnerability
predictions, as indicated by stronger correlation (R* = 0.621) with observed nitrate
concentration data compared to the traditional DRASTIC model (R? = 0.481). The study
highlights the HFS model’s capacity to better represent groundwater contamination risks.
Another notable application by Saranya and Saravanan, (2021) refined groundwater
vulnerability assessment by developing a hierarchical fuzzy inference model (HFIM) and
applying it in Cuddalore District, India. The HFIM incorporated standard DRASTIC
parameters within a GIS framework, enhancing adaptability and responsiveness to data

changes. Comparison with the traditional DRASTIC model showed the HFIM's superior
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performance, classifying vulnerability into seven nuanced categories, as opposed to
DRASTIC’s five. Model validation using nitrate concentration data from 40 sampling points
revealed a stronger correlation in the HFIM (R? = 0.704) versus DRASTIC (R? = 0.60), with
the HFIM displaying a smoother transition across vulnerability categories. This approach
demonstrated that hierarchical fuzzy inference enhances vulnerability mapping precision,
providing a robust tool for sustainable groundwater management in agriculturally intensive

regions.

2.4 Role of Geographic Information Systems (GIS) in vulnerability
assessment
The advent of Geographic Information Systems (GIS) has markedly enhanced the methodology
for creating groundwater vulnerability maps. Since the development of GIS technology in the
1990s (Esri, n.d.), it has enabled the implementation of qualitative methods within its
framework and can easily perform map overlaying and indexing operations in the spatial
domain (Kaur and Rosin, 2009). Merchant, (1994) was the first that applied this technology for
DRASTIC implementation, and has since been widely adopted due to its robust capabilities in
retrieving, storing, managing, analyzing, and visualizing geospatial data (Hasan et al., 2019;
Jha and Peiffer, 2006; Koon et al., 2023; Oroji, 2018). In practice, GIS combines multiple
spatial data layers, each representing critical variables influencing groundwater vulnerability,

(e.g., soil type, aquifer media, and recharge rate) (See Fig. 4).

Each feature/layer is assigned a weight relative to the other in order of their impact on
vulnerability and integrated to produce comprehensive vulnerability maps through GIS's
sophisticated overlay and indexing techniques (Goyal et al., 2021). This process is particularly
important in the application of vulnerability assessment models like DRASTIC, GOD, and SI,
which rely heavily on the spatial distribution of parameters to calculate an accurate
vulnerability index (Machiwal et al., 2018). Moreover, numerous case studies across various
geographical regions have underscored the utility of GIS in refining the assessment process,
providing a clearer, more actionable output for groundwater management (refer to Table 1 for
examples). However, despite its effectiveness, the application of GIS is not without challenges.
The process of data entry is time-consuming and costly, requiring all data to be digitized and
accurately modeled for terrain analysis, which can be complex and technically demanding.

Additionally, constraints such as data availability, resolution, and the overall cost of GIS
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technology can restrict its use, especially in settings with limited resources (Banerjee et al.,

2023; Goyal et al., 2021).
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Recharge rate

Aquifer media (or Aquifer type) GIS

Soil media database

Topography (Slope)

Impact of the vadose zone

Hydraulic conductivity

S Land use/ Land cover

o

Aquifer vulnerability maps

Figure 4. Conceptual flowchart illustrating the integration of thematic layers within a GIS framework
to construct groundwater vulnerability maps using DRASTIC, GOD, and SI methods.
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CHAPTER 3: METHODOLOGY

This chapter presents a detailed methodology used to assess shallow groundwater vulnerability
in Southeast Hungary, starting with a description of the study area's geographical, hydrological,
and socio-economic characteristics. It examines the applied assessment methods: the
DRASTIC, GOD, Susceptibility Index (SI), and a pioneering Fuzzy-enhanced DRASTIC
models. To validate the effectiveness of each model, the chapter employs a robust statistical
validation approach using both Pearson and Spearman’s rho correlations, conducted using
SPSS (Statistical Package for the Social Sciences) software. This dual correlation approach
ensures a thorough evaluation of the models' accuracy in predicting groundwater vulnerability.
After detailing the validation process, single-parameter sensitivity analysis (SPSA) is
conducted to investigate the influence of individual parameters on the vulnerability
assessments, thereby enhancing the understanding of model sensitivity and robustness.
Additionally, the chapter outlines the data collection strategies and sources. This structured
approach ensures a comprehensive evaluation of groundwater vulnerability, aligning with the
thesis's overarching goal of providing a scientifically rigorous and practically applicable
framework for sustainable groundwater management in Southeast Hungary. To ensure
consistency and reproducibility of spatial analyses, all thematic layers, vulnerability indices,

and sensitivity analyses in this study were prepared and processed using ArcGIS 10.6.1.
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3.1 Study area description

3.1.1 Geographical characteristics

The area featured in this study located at coordinates 46°20'—47°00" N and 20°00'-21°00" E
(Fig. 5), is part of the Great Hungarian Plain (Alf61d), Hungary, within the Carpathian Basin,
East-Central Europe (19.38°-22.86° E and 46.18°—48.32° N). Covering an area of 8,690 km?,
the region is characterized by a predominantly flat, fertile plain with an average elevation of
approximately 100 meters above Baltic Sea level (MASL). The topography, generally under
2%, significantly influences surface water flow and land use, particularly agricultural practices

that dominate the region’s economy.
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Figure 5. Location of the study area

3.12 Hydrological and soil characteristics

The climate of the region is characterized as arid continental, heavily influenced by both dry
continental and mediterranean air masses, resulting in marked temperature extremes and
notably limited precipitation. Specifically, the region lies near the threshold of sub-humid
conditions (Climate - HungaroMet, n.d.). The average annual temperatures, long-term data
from 1991 to 2020 indicate that plain areas of Southeast Hungary average between 10.5 °C and

11.5 °C, with some localized zones near the southern border occasionally exceeding 11.5 °C
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(Temperature - HungaroMet, n.d.). In addition, the region is among the driest parts of Hungary,
with mean annual precipitation ranging from 500 to 550 mm (Precipitation - HungaroMet,
n.d.). The Tisza River, Hungary’s second major river (ICPDR—International Commission for
the Protection of the Danube River, 2011), bisects the study region and delineates two distinctly
different soil types: loose sandy soils and variable soils with finer texture. Along the riverbanks,
the predominant soil types are clay and clay loam, which have low permeability, resulting in
minimal infiltration. To the west of the Tisza River, the terrain is primarily sandy, interspersed
with occasional areas of sandy loam, and a smaller region to the northwest is dominated by
loam soils. The study area’s southeast section is largely composed of loam, interspersed with

patches of clay loam (European Soils Bureau Network, 2005; Farsang et al., 2017).
3.1.3 Socio-economic characteristics

The study area has a population of approximately 708,000 people, the area spans several
counties, including Csongrad-Csanad, parts of Békés, and Bacs-Kiskun Counties (Hungarian
Central Statistical Office, n.d.). Agriculture forms the economic backbone of this region, with
over 65% of the land devoted to the cultivation of maize, sunflower, wheat, onions, and fruits
(Hungarian Central Statistical Office, 2020), the first three crops are dominant on loessy areas
while fruits and vegetables are typical on sand. These crops rely heavily on groundwater for
irrigation, consuming approximately 4.9 million m? of groundwater annually (Lower Tisza
Region Water Management Directorate, n.d.). The intensive use of fertilizers and pesticides
associated with these agricultural activities significantly increases the risk of groundwater
contamination, highlighting the critical need for effective water management and

contamination mitigation strategies (Barreto et al., 2017; Pinke et al., 2020).
3.14 Environmental and pollution considerations

Given its status as one of Hungary’s most productive agricultural regions and its critical role
in national food production (Pinke et al., 2020), the selected study area exemplifies the
challenges of balancing agricultural productivity with sustainable water management. This
region is notably prone to severe, prolonged droughts, which exacerbate groundwater depletion
and significantly affect groundwater table dynamics, influencing both the quantity and quality
of groundwater (Rossi et al., 2023; Sz6ll6si-Nagy, 2022). The prevalence of agricultural
practices, particularly the extensive use of nitrogenous fertilizers, contributes to elevated nitrate
levels in groundwater, posing serious risks to water quality (Zhou et al., 2015). Therefore,
assessing the vulnerability of aquifers to contamination is crucial for enabling policymakers to

implement targeted management measures. These measures aim not only to mitigate risks of
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groundwater contamination but also to address the socio-economic demands of the region,
ensuring a balanced approach to environmental sustainability and agricultural efficiency

(Haidery et al., 2023).

3.2 Preparation of thematic layers

In this study, the assessment of groundwater vulnerability based on different combinations of
the eight parameters listed in Table 2. These parameters and their application in this study are

briefly described below, and their spatial distributions are presented in Fig. 6.
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Figure 6. Spatial distributions of parameters describing the groundwater vulnerability to
contamination in the study area: (a) depth to water table (mbgl), (b) recharge rate (Piscopo method),
(c) aquifer media, (d) soil media, (e) topography (slope%), (f) vadose zone, (g) hydraulic conductivity
(m/day), and (h) land use.

3.2.1 Depth to the water table

The depth to the water table (D) controls the leaching process and defines the distance/time
required for dissolved contaminants to move between the upper edge of the soil and upper edge
of the aquifer (Kirlas et al., 2022). Shallow aquifers with water tables near the surface are
highly vulnerable to contamination by diffusion, which can be attributed to the lower potential
for natural attenuation. The depth to the water table was measured at 383 shallow wells in
spring 2022 (Fig. 5), revealing depths ranging from 1.1 to 10.9 meters below ground level, and
the observed data were interpolated by kriging and assigned a rating of 5-10 based on its impact
on the vulnerability of the local area (Table 5), the weighting factors of the D parameter are
provided in Table 2. This spatial distribution is visually represented in Figure 6a, illustrating

the depth variations across the study area and aiding in the assessment of contamination risks.
322 Aquifer recharge rate

The aquifer recharge rate (R) refers to the annual volume of water that directly infiltrates the
shallow aquifer, and it is the main pathway for contaminant transport. Because of the
unavailability of data on recharge rates in the study area, the recharge rates were estimated by
applying the Piscopo method (Piscopo, 2001), which integrates factors for the land slope,
rainfall, and soil permeability, as shown in Eq. (1) (Asghari Moghaddam et al., 2023; Kirlas et
al., 2022; Yankey et al., 2021):

Net recharge index (Ri) = land slope factor (%) + rainfall factor (mm) + soil permeability factor

(1

Saravanan et al., (2020) demonstrated the effectiveness of this method by comparing four

different approaches to estimate the net recharge rate and assessing their suitability for
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evaluating groundwater vulnerability in the Upper Palar River basin, Tamil Nadu, India, using
the DRASTIC model. They found the Piscopo method to be very effective at calculating the

recharge rate, and it showed a good correlation with the observed NO3™ concentration.

For this study, the land slope factor (%) was determined using Advanced Spaceborne Thermal
Emission and Reflection Radiometer digital elevation model (ASTER-DEM) data in raster file
format with a spatial resolution of 5Sm % 5m. The data showed that approximately 99.9% of the
study area had a slope of less than 2%, leading to a uniform slope factor rating of 4 (Table 4).
The rainfall factor was calculated at nine precipitation stations in the study area, and it was
estimated at around 326 mm/year in 2021. Consequently, a fixed rating of 1 was assigned. The
soil permeability factor was obtained using the results of a soil survey (040 cm depth)
conducted within the study area (Farsang et al., 2017). The soil permeability was classified
according to the USDA system (1994). The soil of the study area mainly comprised clay and
clay loam along the eastern side of Tisza River (very low to low permeability), sandy loam to
sand on the western side (moderate to high permeability), and loam in the southeast and small
parts of the northwest (moderate permeability). Table 4 lists the ratings of the recharge rate,
which mainly depended on the soil permeability in this study. The aquifer recharge ratings

layer is visually mapped out in Figure 6b.

Table 4. Ratings of the recharge rate according to the Piscopo method (Piscopo, 2001)

Slope (%) Rainfall (mm/year) Soil permeability Recharge rate
Range Rating Range Rating Range Rating Range Rating
<2 4 <500 1 High 5 11-13 10

2-10 3 500 - 700 2 Mod-high 4 9-11 8
10-33 2 700 - 850 3 Moderate 3 7-9 5
>33 1 > 850 4 Slow 2 5-7 3

Very slow 1 3-5 1

3.2.3 Aquifer media

The aquifer media (4) characterizes the physical and hydraulic properties of the saturated zone,
which controls the contaminant attenuation process (Rama et al., 2022). In this study, aquifer
media were assessed by analyzing the lithological profiles from 383 wells within the study
area. This analysis identified the main components of the aquifer media including fine to
medium-grained sand, sandy clay, clay, and sandy silts. Based on their potential to attenuate
contaminants, these media types were classified into five categories. Each category was

assigned a rating ranging from 4 to 8, as detailed in Table 5. These scores reflect the varying
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degrees of permeability and contaminant filtration capacity, where higher scores indicate

materials with greater permeability that potentially allow for faster contaminant migration. The

aquifer media layer is detailed in Figure 6c¢.

Table 5. Ranges of values and ratings of the parameters used by the three index-overlay methods to
calculate their vulnerability indices (Aller et al., 1987; S. Foster, 1987; Ribeiro, L., 2000). (mbgl:

meters below ground level)

Parameters  Attributes Attribute values

Depth to Range <15 1.5-4.6 46-9.1 9.1-15.2 >15.2
groundwater ~ Rating for
table DRASTIC 10 ? 7 > 3
(mbgl*) Rating for

GOD 1.0 0.9 0.8 0.7 0.6
Aqu¥fer Types Basalt Sand & Massive Metamorphlc/
media gravel sandstone igneous
(for .
DRASTIC) Rating 9 8 6 4

Sand & Silty &

Aquifer type Types gravel clay Clay
(forGOD)  poting 0.7 0.5 0.4

Types Sand Sandy Loam Clay loam

. . loam

Soil media

Rating 9 6 5 3
Topography Range <2% 2-6 6-12 12 - 18 >18
(slope, %) Rating 10 9 5 3 1

Sand & . .

Impact of Types gravel Sandy silt Silty clay Clay
vadose zone )

Rating 8 7 6 3
Hydraulic Range >81.5 40.8-81.5 285-40.8 12.3-285 41-123 2(1)4 )
conductivity .
(m/day) Rating 10 8 6 4 2 1

Forests &
. . semi- River/ water Shrub &

Land Types Agriculture  Built-up natural bodies grassland
use/cover zones

Rating 90 70 0 0 50

3.24 Soil media

The soil media (S) refers to the upper layer of the vadose zone, which is characterized by
biological activities (e.g., microbial activity, organic matter, presence of roots) and contact with
the atmosphere. It represents the initial medium that transfers the contaminant beneath Earth’s
surface. Data on the soil media were extracted from a recent comprehensive report on soil
conditions and irrigation possibilities in the local catchment area (Farsang et al., 2017). The

soil types were mainly loam in the eastern part of the study area, and sand/sandy loam on the
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western side of Tisza River. Clay/clay loam covered about one-sixth of the study area and was
mostly distributed along the riverbanks with small patches to the south. For the purpose of
vulnerability assessment, these soil types were categorized into four classes based on their
infiltration capacities, with ratings assigned from 3 to 9. These ratings indicate the degree to
which each soil type either facilitates or restricts water and contaminant movement, with higher
values suggesting greater permeability and lower resistance to infiltration (Table 5). The spatial
distribution of these soil types is visually detailed in Figure 6d, aiding in the comprehensive

understanding of their implications for groundwater vulnerability.
325 Topography

The topography (T), or slope, represents the impact of the land surface on the leaching
mechanism. In general, the rate of runoff is controlled by the local topography, which affects
the probability of a contaminant being transported or retained on ground that it can infiltrate
(Rama et al., 2022). Consequently, the topography represents a qualitative indication of the
runoff/infiltration ratio as a function of the terrain conditions. For this assessment, topography
was derived from DEM and was converted into slopes by using the 3D Analyst tool based on
ArcGIS 10.6.1. The resulting slopes across most of the study area (approximately 99.9%) were
between 0 and 2% and reached 4% in a narrow zone toward the south, which was close to the
border with Serbia. Despite this variation, the slopes were uniformly classified into a single
category and assigned the highest vulnerability rating of 10. This categorization was based on
the understanding that even slight inclines could significantly affect runoff dynamics in flat
terrains. The rationale behind the ratings is detailed in Table 5, with the weighting factors

provided in Table 2.
3.2.6 Vadose zone

The vadose zone provides a pathway for contaminants from the land surface to reach the
capillary fringe zone. It can be used to estimate the mitigation potential of the unsaturated layer
between the soil cover and groundwater table (i.e., capillary fringe) (Jain, 2023). This zone was
determined from lithological data collected at 383 wells, as depicted in Figure 5. Based on this
data, the vadose zone was categorized into five classes: sand and gravel/sand, sand and silt with
clay, silty clay and clay. These classifications reflect varying levels of permeability and
contaminant transmission potential, with ratings assigned of 3-8 according to the
transmissibility of contaminants to the aquifer, as detailed in Table 5. The corresponding
weighting factors are listed in Table 2. Spatially, sand predominantly covers the western part

of the study area and parts of the southeast, while clay is more concentrated around the middle
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and southern parts of Szeged town. Silt and clay mixtures are found throughout the rest of the
study area, indicating a diverse range of vadose zone compositions that influence groundwater

vulnerability.
3.2.7 Hydraulic conductivity

The saturated hydraulic conductivity (K) refers to the capacity of an aquifer to transmit water
based on the horizontal hydraulic conductivity of the saturated zone (Ks) (Darcy, 1856). Under
the assumption that a contaminant mimics the mobility of groundwater (Aller et al., 1987), this
parameter represents the migration of contaminants from the point of infiltration. In this study,
hydraulic conductivity layer was estimated using the empirical Beyer equation (1964) (Eq. 2),
which calculates conductivity based on the particle size distribution of aquifer sediments, such

as the graphical standard deviation and cumulative weight percentage (Wang et al., 2017):

_ g 500) o 4 2
K = Cbxvxlog(Cu)xdlo )
where V is the kinematic viscosity, g is the acceleration due to gravity, Cb = 6 X 107*
(dimensionless), and Cu is the coefficient of uniformity (dimensionless), which is defined as

the ratio of the grain sizes at 60% passing and 10% passing (Cu = deo/d10).

The hydraulic conductivity values were spatially interpolated using kriging in ArcGIS 10.6.1.
The average hydraulic conductivity of the study area was estimated at 4.18—38.72 m/day. Based
on these values, three classes were established and assigned ratings from 1 to 6 to indicate
varying degrees of water transmission potential (Table 5). The weighting for hydraulic
conductivity, reflecting its relative importance in the vulnerability assessment, is detailed in

Table 2.
3.2.8 Land use/cover

The land use and cover significantly inform the assessment of groundwater vulnerability by
indicating the types of natural and anthropogenic activities occurring at the surface (e.g.,
agriculture, artificial development, natural areas), which profoundly impact groundwater
quality (Nguyen and Tat, 2024). In this study, land use/cover categories were broadly classified
into agriculture, rivers/water bodies, built-up areas, forests, and semi-natural areas. Each
category was meticulously assigned a vulnerability rating based on its potential impact on
groundwater contamination, as detailed in Table 5. For instance, agricultural activities,

including irrigated perimeters and permanent crops, which constitute about 66% of the study
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area, were assigned a high rating of 90 due to their significant potential to introduce
contaminants into the groundwater system. Conversely, forests and semi-natural areas, along
with water bodies, generally presumed to exert minimal contamination risk, received a minimal
rating of 0. Built-up areas, making up approximately 6% of the landscape, were rated at 75,
reflecting their moderate impact relative to agricultural zones. The weighting for LU/LC
parameter, reflecting its relative importance in the vulnerability assessment, is detailed in Table

5.

3.3 Methodologies for groundwater vulnerability assessment

Figure 7 illustrates the workflow used to evaluate the selected methodologies for groundwater
vulnerability assessment, including the standard DRASTIC, GOD, SI, and Fuzzy-enhanced
DRASTIC model. These methods are recognized for their qualitative efficiency in assessing
groundwater vulnerability that are cost-effective and time-efficient (Elmeknassi et al., 2021;
Machiwal et al., 2018). As discussed in Chapter 2, each method represents a different approach
to assessing vulnerability—ranging from the intrinsic, parameter-weighted frameworks of
DRASTIC and SI, to the simplified parametric classification of the GOD method, and finally
to the advanced Fuzzy-enhanced DRASTIC model, which addresses uncertainties associated
with conventional rating systems. The selected models rely on the spatial integration of
multiple thematic layers and the subjective assignment of weights and ratings based on
hydrogeological significance. Table 2 summarizes the parameters and their associated weights
used in each method, while Table 5 presents the ranges of the ratings applied during the
calculation of the vulnerability indices. ArcGIS Spatial Analyst was used to process and
analyze spatial data for all methods. Both inverse distance weighting (IDW) and Kriging
interpolation were tested to determine which provided the better accuracy. Kriging
demonstrated the lowest Root Mean Square Error (RMSE) was selected for the remainder of

the study, ensuring optimal accuracy in our spatial analyze.

To evaluate the predictive effectiveness of each model, the vulnerability indices generated by
the four methodologies were validated against measured concentrations of nitrate (NOs") from
46 monitoring wells across the study area. Pearson’s and Spearman’s correlation coefficients
were computed to quantify the strength and direction of the relationship between the
vulnerability scores and observed nitrate levels, thereby determining each model’s reliability
in identifying areas at risk of contamination. Additionally, this study incorporated Single-

Parameter Sensitivity Analysis (SPSA) for the DRASTIC, SI, and Fuzzy-enhanced DRASTIC
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models to identify the most influential parameters affecting the vulnerability index. SPSA
quantifies the contribution of each parameter by calculating its effective weight, which is
derived from its rated value, assigned weight, and the total vulnerability index. This analysis
enables a deeper understanding of the internal structure of each model and highlights how

spatial variability in specific parameters influences final vulnerability scores.
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Figure 7. Methodological workflow for groundwater vulnerability analysis

3.3.1 DRASTIC method

DRASTIC, a systematic approach developed by the United States Environmental Protection
Agency (Aller et al., 1987), assesses groundwater vulnerability through a rating and weighting
system. Recognized for its cost-effectiveness, simplicity, and reliance on readily available data,
DRASTIC is extensively utilized in groundwater vulnerability studies (Haidery et al., 2023).
This method involves the integration of seven critical hydrogeological factors that are
considered intrinsic to the sensitivity of an aquifer to potential contaminants from the ground
surface (Rama et al., 2022). These thematic layers or factors include: Depth to water table (D),
aquifer Recharge (R), Aquifer type (A), Soil media (S), Topography (slope) (T), Impact of the
vadose zone (I), and Hydraulic Conductivity (C) of the aquifer. The final DRASTIC
vulnerability index (Vi) for each pixel or unit grid cell within the study area is computed using
a weighted linear combination of these parameters, represented by the equation detailed in the

Table 1. Table 2 delineates both the parameters and their respective weights for computing the
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DRASTIC index. After calculating the vulnerability index (Vi), areas are identified as more
sensitive to groundwater contamination compared with others. The range of DRASTIC scores
extends from 23, indicating the least vulnerability, to 226, indicating the highest potential for
vulnerability. Corniello et al., (1997) have further categorized these scores into distinct classes

ranging from very low to very high vulnerability potential, as outlined in Table 6.

Table 6. Criteria used by the three index-overlay methods to assess their vulnerability indices

Vulnerability degree \1/:‘13 Low Moderate High Very high Reference
161 — (Corniello et al.,
DRASTIC <80 80—-120 121-160 200 > 200 1997)
Vulnerability
index

GOD 0-0.1 0.1-03 03-05 05-0.7 0.7-1 (Foster, 1987)

(Ribeiro, L.,

SI - <45 45 - 64 65 -85 > 85 2000)

3.3.2 GOD method

In this study, the GOD method is employed to assess groundwater vulnerability in Southeast
Hungary, utilizing its straightforward framework developed in England by Foster, (1987). This
method assesses groundwater vulnerability by examining three key parameters: Groundwater
occurrence (G), which categorizes the type of aquifer based on the degree of confinement; the
Overlying lithological characteristics (O), referring to the properties of the vadose zone; and
the Depth to the groundwater table (D). Each of these parameters is rated on a scale from zero
(indicating no vulnerability) to one (indicating high vulnerability), reflecting their inherent
characteristics to shield against or permit contaminant penetration. No weighting is applied to
the parameters, as they are considered to have equal influence on aquifer vulnerability. The
GOD vulnerability index (Ivcop) is then calculated by multiplying the ratings of these three
parameters, as detailed in Table 5. Iyop is then used to classify the vulnerability according to

the criteria defined in Table 6.

3.33 Susceptibility Index (SI)

In Portugal, Ribeiro, (2000) introduced the SI as a specialized approach to assess groundwater
vulnerability to vertical agricultural contamination, particularly with regard to nitrate and
pesticides, is applied within the Southeast Hungary context to address the significant impacts
of agricultural activities. The SI method considers five parameters, as detailed in Table 2, and

it is a modified version of DRASTIC. Four parameters are identical to those used in DRASTIC,
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and they are assigned ratings across a range 10 times larger than that used by DRASTIC. The
fifth parameter is the land use/cover (LU/LC), allows for integrating the impact of
anthropogenic activities in its calculation, thus transitioning the assessment from intrinsic to
specific vulnerability (Ghouili et al., 2021; Ribeiro et al., 2017). Land use is rated according to
the classification provided by Ribeiro as shown in Table 5. Then, weighting factors are
assigned to each parameter are listed in Table 2, and the SI vulnerability index (Ivsi) is
computed by linearly combining the scores and weights of the five parameters represented by
the equation detailed in the Table 1. Iysi is then used to classify the vulnerability into one of

four classes according to the criteria defined in Table 6.

3.34 Fuzzy-enhanced DRASTIC approach

In addressing the inherent limitations and uncertainties of traditional groundwater vulnerability
assessments, this study advances the integration of a hierarchical fuzzy inference system (FIS)
with the established DRASTIC model, thus creating a Fuzzy-enhanced DRASTIC model. This
approach utilizes fuzzy membership functions for each of the DRASTIC parameters—Depth
to water table (D), Net recharge (R), Aquifer media (A), Soil media (S), Topography (T),
Impact of the vadose zone (I), and Hydraulic conductivity (C)—to provide a more nuanced
representation of each parameter’s contribution to groundwater vulnerability. These functions
facilitate the handling of overlapping data ranges and the subjective nature of environmental
assessments, allowing for a more accurate and flexible evaluation. Figure 8 presents a detailed
flowchart of the proposed methodology, systematically outlining each step from data
compilation to the final vulnerability mapping. Each of these steps is further elaborated in
subsequent subsections, ensuring a comprehensive understanding of the methodology's

application.
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Figure 8. Flowchart of the Fuzzy-enhanced DRASTIC methodology for groundwater vulnerability
assessment

3.34.1 Hierarchical fuzzy inference system (FIS)

In this study, the DRASTIC model is enhanced through the integration of a hierarchical fuzzy
inference system (FIS), addressing the limitations of static parameter ratings inherent in
traditional approache. This methodology employs a multi-level fuzzy inference system,
depicted in Figure 9, that processes inputs through a series of interconnected layers. This
structured approach substantially reduces the rule base size and computational demands, the
hierarchical FIS offers a more efficient and scalable alternative to single-layer fuzzy systems,
making it particularly suitable for groundwater vulnerability assessments in data-scarce or
complex hydrogeological settings (Gesim & Okazaki, 2018; Nobre et al., 2007; Rezaei et al.,
2013; Saranya & Saravanan, 2022). The hierarchical structure organizes the DRASTIC
parameters into six fuzzy inference systems (FISs), (FIS1 through FIS6), with the output of
one level serving as the input of the next. For example, the parameters depth to the water table
(D) and recharge rate (R) are combined to establish the first level of the hierarchy. The results
of this level are then integrated with the aquifer media (A) parameter to form the second level,

and this process continues sequentially.
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In the application of this refined methodology, MATLAB R 2019 is utilized to develop the
FIS. During fuzzification parametric values are converted into linguistic variables and assigns
them trapezoidal membership functions MFs (Fig. 10), this function is chosen for its simplicity
and computational efficiency, which contribute to its reliability in capturing parameter
variability (Igbal et al., 2015). Defined by four parameters that describe its shape— a, b, ¢, and
d—the trapezoidal MF allows for nuanced representation of parameter ranges, as shown in Eq.
(3). Table 7 presents the parameters and their corresponding MFs. This table provides accurate
values across a diverse array of parameter subcategories, ensuring simplicity and convenience.
This format is appropriate for managing multiple input points effectively.

0,(x < a)or(x > d)

—. (@< x<bh
HAB =Y b < x < ©) )
d—x

d_c,(c <x <d)
Where:

e a: The starting point of the trapezoid where the membership value starts to increase

from 0.

e b: The point where the membership function reaches a value of 1, starting the flat "top"

of the trapezoid.

e c: The point where the flat "top" of the trapezoid ends, and the membership value starts

to decrease.

e d: The ending point of the trapezoid where the membership function value returns to 0.
For x < a or x > d: The membership value a(x) = 0, indicating that x is outside the trapezoid.
For a < x < b: The membership value increases linearly from 0 to 1 as x moves from a to b.

For b < x < ¢ : The membership value a(x) = 1, indicating the plateau or "top" of the trapezoid,

where x is fully in the fuzzy set.
For ¢ < x < d : The membership value decreases linearly from 1 to 0 as x moves from c to d.

The following phase entails constructing the conditional segment by establishing a rule that
links the input parameters with the outputs analyzed by the inference engine. MATLAB

supports two types of inference engines: Mamdani and Sugeno. The Mamdani inference engine

56



is selected in this study due to its superior capability to handle human inputs and its highly
interpretable results (Selvaraj et al., 2020). This engine operates on IF-THEN rules, integrating
OR/AND operators to connect the input and output parameters. The final step in this process

is translating the fuzzy output values back into precise real-world values.

The subsequent sections detail the operational hierarchy of the FIS, demonstrate the integration
of the hydrogeological parameters (from the depth to the water table to hydraulic conductivity),
ultimately assessing the vulnerability of groundwater in specific districts. This hierarchical FL
approach presents a sophisticated framework designed to enhance the accuracy and

applicability of groundwater vulnerability assessment

_______________________________________________________________

|
FIS 1
!
FIS 2
!
FIS 3
!
FIS 4
!
FIS 5
!
FIS 6 (The fuzzy groundwater vulnerability to pollution indices)

Figure 9. Structure of hierarchical FL model for prediction of groundwater vulnerability to potential
pollution

i.  FISI: Groundwater depth vs. Recharge rate

The initial component of our hierarchical FIS, FIS1, evaluates the relationship between
groundwater depth (D) and aquifer recharge (R), two critical hydrogeological parameters that
significantly influence groundwater vulnerability to contamination. In the spring of 2022,
water-table depths measured at 383 well locations (Fig. 5), were interpolated using the kriging
method in ArcGIS 10.8, revealing depths of 1.1-10.9 m below ground level (mbgl). These
values were subsequently categorized into four vulnerability ranges—low, moderate, high, and
very high. Each class corresponds to a specific Membership Function (MF), represented in

Table 7.
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In FIS1, the aquifer recharge (R) parameter is segmented into three ranges, each defined by a
distinct MF, as detailed in Table 7. This setup allows for nuanced modelling of the interaction
between depth and recharge in affecting vulnerability. For the outputs of FISI, five MFs are
designed to integrate these inputs into comprehensive vulnerability assessments. The total
number of operational rules for this layer is calculated by multiplying the four MFs for depth
to the water table by the three MFs for aquifer recharge, yielding a total of 12 rules. These rules
are comprehensively listed in Table 8, which provides a detailed framework of the operational
logic for FIS1. Example rules include:
e Rule 1: If the depth to the water table is low (L) and the aquifer recharge is low (L),
then the output for FIS1 is very low (VL).
e Rule 2: If the depth to the water table is low (L) and the aquifer recharge is moderate
(M), then the FISI classification is low (L).

e Rule 9: If the depth to the water table is high (H) and the aquifer recharge is high (H),
then the FIS1 output is very high (VH).

Table 7. Parameters and corresponding MF's

DRASTIC Parameters Fuzzy membership function
Layers Attribute values Category
Depth to groundwater <l5 Very high MF1
table (mbgl*) 1.5-4.6 High MF2
4.6-9.1 Moderate MEF3
9.1-152 Low MF4
Aquifer recharge ratings 7-9 High MF1
5-7 Moderate MEF2
3-5 Low MEF3
Aquifer media Sand & gravel Very high MF1, MF2
Massive sandstone High MF3
Metamorphic/igneous Moderate MF4, MF5
Soil media Sand Very high MF1
Sandy loam High MEF2
Loamy sand Moderate MF3
Sandy clay/clay loam/sandy clay =~ Low MF4
loam
Clay Very low MF5
Topography (slope, %) <2% Very high MF1
2-6 High MF2
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Impact of vadose zone Sand & gravel Very high MF1
Sand/Sandy silt High MEF2
Sand and silty with clay Moderate MEF3
Silty Clay Low MF4
Clay Very low MF5
Hydraulic conductivity >81.5 Very high MF1
(m/day) 40.8-81.5 High MF2
28.5-40.8 Moderate MF3
12.3-28.5 Low MF4
4.1-123 Very low MF5
* mbgl: meters below surface
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Figure 10. MFs of each parameter: (a) depth to water table, (b) aquifer recharge, (c) aquifer media,
(d) soil media, (e) topography, (f) impact of vadose zone, (g) hydraulic conductivity, and (h)

groundwater vulnerability index

ii.  FIS2: FISI vs. Aquifer media

In the construction of FIS2 within our hierarchical fuzzy inference system, the outputs from

FIS1, characterized by five membership functions (MFs)—very low (VL), low (L), moderate

(M), high (H), and very high (VH)—serve as inputs alongside the aquifer media parameter.

The aquifer media parameter is classified into four MFs: low (L), moderate (M), high (H), and

very high (VH). This arrangement results in a comprehensive rule base consisting of 20 unique
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rules, calculated as the product of the MFs from both FIS1 and aquifer media (5 % 4). These

specific rules are detailed in Table 8.

The aquifer media layer is delineated based on the lithological profiles obtained from the 383
wells within the study site (Fig.2); primary components, such as fine to medium-grained sand,
clay, and sandy silts, are identified (Fig. 6¢). These components are transformed into
quantitative fuzzy sets on a scale of 1-10, reflecting their respective influences on groundwater
vulnerability. For instance, areas with sand and gravel sediments are assigned MFs of high to
very high, whereas semi-consolidated sediments are classified as moderate. Silty clay/clayey
sediments, associated with minimal percolation potential, are categorized with low MFs. Figure
10c illustrates the MFs applied to the aquifer media, providing a visual representation of this

categorization.

Table 8. Rule bases for six FISs

FIS1
THEN FIS1 IF Aquifer recharge
AND depth to water table L M H
L VL L M
L M H
H M M VH
VH M H VH
FIS2
THEN FIS2 IF Aquifer type
AND FIS1 L M H VH
VL VL L M M
L VL L M M
L M H H
H M M VH VH
VH M H VH VH
FIS3
THEN FIS3 IF Soil media
AND FIS2 VL L M H VH
VL VL VL L M M
L VL VL L M M
L L M H H
H M M M VH VH
VH M M H VH VH
FIS4

60



THEN FIS4 IF Topography (slope)

AND FIS3 H VH
VL M M
L M M
M H
H VH VH
VH VH VH
FISS
THEN FIS5 IF Impact of vadose zone
AND FIS4 VL L M H VH
VL VL VL L M M
L VL VL L M H
L L M H H
H M M H VH VH
VH M M H VH VH
FIS6
THEN FIS6 IF Hydraulic conductivity
AND FISS VL L M
VL VL VL L
L VL VL L
M L L M
H L M H
VH M M H

VL: Very Low; L: Low; M: Moderate; H: High; VH: Very High
iii.  FIS3: FIS2 vs. Soil media

The FIS2 outputs are integrated with the soil media parameter to form the basis of FIS3. In
preparation for FIS3, the FIS2 outputs are reclassified into five classes: VL, low (L), moderate
(M), high (H), and VH. This reclassification prepares the outputs for integration with the soil
media parameter, enhancing the model's sensitivity to variations in soil type. The soil media
data, derived from a comprehensive report on soil conditions and irrigation potentials within
the study site (Farsang et al., 2017), indicate that loam predominates in the eastern sections,
while sand and sandy loam are more common on the western side of Tisza River. Clay and clay
loam soils are primarily found along the eastern side of Tisza River (Fig. 6d). These soil types
are transformed into a fuzzy set scale of 1-10, with MFs are assigned based on their
permeability and infiltration characteristics. Figure 10d depicts the MFs assigned to each soil
type, categorized into five levels corresponding to the fuzzy set classes to reflect their influence

on groundwater vulnerability: VH, high (H), moderate (M), low (L), and VL. This
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categorization forms a comprehensive rule base of 25 unique rules, calculated as the product
of the MFs from the reclassified FIS2 outputs and the soil media parameter (5 x 5). These
specific rules are thoroughly detailed in Table 8.

iv.  FIS4: FIS3 vs. Topography

In the development of FIS4 within our hierarchical FIS, the FIS3 outputs are integrated with
the topography parameter. For this analysis, the topography of the study area is extracted from
DEM data with a 5 x 5 m resolution and converted into slope percentages using the 3D Analyst
tool in ArcGIS 10.6.1. The slope across of the study region varies between 0% and 2%, which
encompasses approximately 99.9% of the area, while a narrow zone toward the southern part
near the Serbian borders exhibited slopes up to 4%. Based on these findings, two MFs—VH
and high (H)—are assigned to represent the slope classes. Figure 10e illustrates the MFs

assigned to the topography parameter.

To ensure consistency with previous stages, the FIS3 outputs are reclassified into five classes:
very low (VL), low (L), moderate (M), high (H), and very high (VH), aligning with the
integration of topography data. This integration generates a total of 10 operational rules,
detailed in Table 8, which govern the combined impact of previous hydrogeological parameters

and slope on groundwater vulnerability assessment.

v.  FIS5: FIS4 vs. impact of vadose zone

In the formulation of the fifth FIS (FISS), the FIS4 outputs are integrated with the impact of
the vadose zone parameter, enhancing the understanding of contaminant transport from the soil
surface to the aquifer. Figure 6f presents the characterization of the vadose zone within the
study area, which is determined using the lithological data collected from the 383 wells. The
vadose zone materials are then assigned MFs based on their potential influence on
contamination pathways: sand and gravel, which are highly permeable, are assigned a very
high (VH) rating; sand/sandy silt formations are rated as high (H); mixtures of sand and silty
clay are moderate (M); silty clay which typically restricts fluid movement, is rated as low (L);
and clay is categorized as very low (VL). Figure 10f displays the MFs assigned to the impact
of the vadose zone, with each type quantified on a scale of 1-10 based on its influence on

groundwater vulnerability.

FISS5, thus, operates with two input parameters, each categorized into five MFs. The operational

rules for this FIS are comprehensive and tailored to reflect the intricate interactions between
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the vadose zone’s material characteristics and the topographic features processed in FIS4.

These rules are systematically detailed in Table 8.

vi.  FIS6: FISS5 vs. hydraulic conductivity

FIS6 stands as the culmination of our hierarchical fuzzy inference system, designed to deliver
a comprehensive assessment of groundwater vulnerability to pollution. This final stage
integrates the outputs from FISS5 with the hydraulic conductivity parameter. In the study area,
hydraulic conductivity ranges from 4.18 to 38.72 m/day, as detailed in Figure 6g. These values
are segmented into three distinct classes— very low, low, and moderate—each corresponding
to a specific MF that reflects the varying conductivity level. These classifications are visually
depicted in Figure 10g, and the Figure 10h further display the MFs utilized in FIS6,
encapsulating the final input synthesis for predicting groundwater vulnerability accurately. The
operational rules for FIS6, listed in Table 8, systematically combine the hydraulic conductivity

membership functions (MFs) with the preceding FIS5 outputs.

By synthesizing these factors, FIS6 accurately predicts areas at greatest risk, providing

essential information for effective groundwater management strategies.

3.4 Methods validation and effectiveness assessment
3.4.1  Correlation Analysis

Validation of aquifer vulnerability assessment methodologies remains a significant challenge
due to the absence of a universally standard validation approach (Hasan et al., 2019; Sayed et
al., 2023). Researchers have applied different models to increase confidence in their
vulnerability maps. The most common approach used to validate vulnerability maps is to
compare the results of different tools and analyze their consistency based on the occurrence of
certain common contaminant datasets obtained onsite from wells across the study area

(Fannakh and Farsang, 2022; Machiwal et al., 2018).

In this study, nitrate (NOs") concentrations were used as the primary contaminant for
validation. Given its generally low natural presence in groundwater, elevated levels of nitrate
often signify contamination from agricultural fertilizers or wastewater, making it a reliable
indicator of anthropogenic influence (Karimzadeh Motlagh et al., 2023). A total of 46
agricultural wells were selected to assess the spatial distribution of nitrate (NOs")
concentrations across the study area (Fig. 1). The geographic coordinates of each well were

recorded using a Global Positioning System (GPS). Of the total samples, 12 water samples
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were analyzed in the laboratory of the Department of Geoinformatics, Physical and
Environmental Geography, in accordance with Hungarian Standard MSZ EN ISO 13395:1999.
The remaining 34 nitrate concentration data were obtained from the Lower Tisza Region Water
Directorate (ATIVIZIG), Szeged, through their official groundwater quality monitoring

database.

This research assesses groundwater vulnerability using the DRASTIC, GOD, SI, and Fuzzy-
enhanced DRASTIC models. To validate the effectiveness of these methodologies, a dual
correlation analysis was conducted using Pearson correlation analysis and Spearman’s rho
correlation, performed with SPSS (Statistical Package for the Social Sciences) version 19.0.
This approach is particularly suitable for environmental data, which often exhibit non-normal
distributions and may contain outliers, common in studies involving natural variables (Agossou

and Yang, 2021).

The application of Pearson's correlation factor (r) is conducted to assess the linear relationships
between the observed nitrate concentrations and the model predictions. This method assumes
that the data are normally distributed and is sensitive to outliers. This form of analysis is for
determining the strength and direction of linear correlations, thereby evaluating the predictive
accuracy of each model under linear assumptions (Panagopoulos et al., 2006). Concurrently,
Spearman’s rho correlation (p) is applied to evaluate the monotonic relationships between the
same datasets. Unlike Pearson, Spearman’s rho correlation factor is not restrained by the
general distribution form of two variables and the sample size, it allows for the assessment of
relationships where the increases or decreases are consistent but not necessarily linear (Jafari
and Nikoo, 2019). This method enhances the validation process by capturing a broader range
of potential data interactions, where data distributions can be skewed or interrupted by atypical

values.

This dual analytical approach allows for a comprehensive evaluation of each model's accuracy
in predicting groundwater vulnerability, highlighting the proportion of variance in nitrate
concentrations explained by the vulnerability indices. The integration of these statistical
techniques ensures a robust evaluation of the methods' effectiveness, reinforcing their utility in
discerning groundwater vulnerability dynamics in Southeast Hungary, offering a reliable

foundation for sustainable groundwater management strategies.
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3.4.2  Sensitivity Analysis

A comprehensive evaluation of groundwater vulnerability models necessitates a clear
understanding of how individual parameters influence assessment outcomes. This study
employs single-parameter sensitivity analysis (SPSA) to discern the criticality of parameters
within the DRASTIC, Susceptibility Index (SI), and Fuzzy-enhanced DRASTIC methods.
While the GOD method assigns equal weighting to its parameters (groundwater occurrence,
overlying lithology, and depth to groundwater), the differential impact of individual parameters

on the model's output is inherently assumed to be uniform (Foster, 1987).

The sensitivity of each parameter is quantified using a sensitivity index, which measures the
change in the vulnerability index relative to the change in the parameter values. This approach
quantitatively assesses each parameter's contribution to the model's output, identifying those
with significant impacts on the final vulnerability assessment (Singha et al., 2019; Torkashvand
et al., 2023). Specifically, the SPSA analysis compares the theoretical weight (assigned by the
model) with the effective weight (calculated based on the parameter's actual impact)
(Napolitano and Fabbri, 1996). The effective weight (W) of each parameter is computed using

the following equation:

Prx Pw

W=( )><100 (4)

Where:

o W: effective weight of the parameter,

e Pr: rating value of the parameter,

o Pw: theoretical weight of the parameter, and
e V:overall vulnerability index.

3.4.3  Determining the most suitable method

In the critical evaluation of groundwater vulnerability assessment methodologies, identifying
the most effective model is crucial for ensuring reliable and actionable insights. This study
determines the most suitable groundwater vulnerability assessment method based on a
comprehensive evaluation of predictive accuracy and correlation strength. The methods—
DRASTIC, GOD, SI, and Fuzzy-enhanced DRASTIC— are compared by analyzing their

vulnerability indices against observed nitrate (NO3 ™) concentrations from 46 wells.
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To validate the effectiveness of these methodologies, a dual analytical approach, as discussed
in subsection 3.4.1, is utilized, employing both Pearson and Spearman’s rho correlations.
Performed using SPSS software, these analyses measure the strength and direction of both
linear and monotonic relationships between the vulnerability indices and nitrate concentrations.
By synthesizing the outcomes of these correlation analyses, the study identifies which approach
consistently demonstrates the highest accuracy and strongest correlation with the observed
data. The method that exhibits the most robust correlation coefficients across both statistical
measures is considered best suited to the hydrogeological conditions of Southeast Hungary.
This systematic selection process ensures that the selected method is both statistically validated
and practically applicable, thereby providing reliable guidance for groundwater management

strategies in the region.

3.5 Data collection and sources

The compilation of secondary data for this study was collected or derived from a diverse array
of sources, including governmental agencies, private sector organizations, and individual
scholarly contributions. This broad spectrum of sources ensures a comprehensive dataset that
supports the varied hydrogeological analyses conducted in this research. Detailed in Table 9,
the data encompasses various types, resolutions, and origins, each contributing uniquely to the
study's integrity and depth of analysis.

The thematic layers for delineating the hydrogeological parameters were developed using
ArcGIS 10.6.1. This software facilitated the precise integration and spatial analysis of the
collected data, enabling the creation of detailed maps that illustrate the geographic distribution

and interrelationships of the study's key variables.
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Table 9. Data and sources utilized in this research. (mbgl: meters below ground level)

For use with the

Data type Unit Resolution Source (name of the
method)
Water table depth at Tabular data Lower Tisza Region Water o DRASTIC
383 locations Directorate of Szeged, Hungary o GOD
mbgl* (ATIVIZIG) o SI
o Fuzzy-enhanced
DRASTIC
Digital Elevation Spatial: 5m x  Department of Geoinformatics, o DRASTIC
Model of the study 5m Physical and Environmental o SI
site (for topography Geography, University of Szeged, o Fuzzy-enhanced
parameter): ) Hungary DRASTIC
ArcView/ArcInfo
Grid files
Borehole lithology Tabular data Lower Tisza Region Water o DRASTIC
Directorate of Szeged, Hungary o GOD
- (ATIVIZIG) o SI
o Fuzzy-enhanced
DRASTIC
Precipitation: point Spatial: 12 Lower Tisza Region Water o DRASTIC
data at meteorological stations for Directorate of Szeged, Hungary o SI
stations; year: 2021 mm  precipitation;  (ATIVIZIG) o Fuzzy-enhanced
temporal: DRASTIC
monthly
Land use/cover map; Spatial: 15m  ESRI land use\cover model for o SI
year: 2022 i X 15m Landsat 8 imagery
Nitrate concentration Personal work and Lower Tisza o DRASTIC
in shallow aquifer; Region Water Directorate of o GOD
year: November 2022 mg/1 Szeged, Hungary (ATIVIZIG) o SI
- April 2023 o Fuzzy-enhanced
DRASTIC
Soil Map 1:100000 (Farsang et al., 2017) o DRASTIC
o GOD
) o Fuzzy-enhanced
DRASTIC
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Chapter 4: Results and Discussion

This chapter presents the findings from the application of the four groundwater vulnerability
assessment approaches—DRASTIC, GOD, SI, and Fuzzy-enhanced DRASTIC—within the
context of Southeast Hungary. It details the vulnerability maps produced by each method,
highlighting their spatial distinctions and the underlying vulnerability levels identified across
the study area. The subsequent section rigorously evaluates the accuracy of each model by
performing dual correlation analyses, applying both Pearson and Spearman’s rho correlations
between the predicted vulnerability indices and observed nitrate concentrations. Additionally,
a comprehensive single-parameter sensitivity analysis (SPSA) is conducted to further evaluate
the influence of individual parameters on the vulnerability indices, enhancing the precision of
the methods used. By synthesizing these findings, the chapter aims to determine the most
precise and efficient method for assessing groundwater vulnerability in the context of the
region's specific hydrogeological conditions. This structured evaluation contributes to a deeper
understanding of regional aquifer susceptibilities. Therefore, enhancing the scientific

groundwork for sustainable groundwater protection.
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4.1 Results of DRASTIC groundwater vulnerability mapping

In the assessment of groundwater vulnerability using the original versions of the DRASTIC
model, a comprehensive analysis was conducted integrating seven hydrogeological parameters,
presented in Figure 6, to produce a vulnerability index map. Each parameter—depth to water
table, aquifer recharge rate, aquifer media, soil media, topography, impact of the vadose zone,
and hydraulic conductivity—was rigorously rated, and weighted according to established
guidelines to reflect its respective impact on groundwater vulnerability. The final vulnerability
index (Vi) identifies areas as more sensitive to groundwater contamination compared with
others, adopting the classification schema proposed by Corniello et al., (1997) as specified in
Table 6. A higher vulnerability index indicates a greater potential for surface contaminants to
reach the water table, highlighting areas at risk, whereas a lower index suggests regions where

groundwater is comparatively protected from surface contamination.

Figure 11 presents the vulnerability map generated by the DRASTIC method, classifies the
study area into zones of low, moderate, and high vulnerability. This classification reveals a
significant spatial variation in groundwater susceptibility, with a predominant trend of
moderate to high vulnerability, covering 5241 km? (60.32%) and 2909 km? (33.48%) of the
total study area, respectively (Table 10).

Table 10. Vulnerability assessment criteria used by the three index-overlay methods and their
attributes. (GW: Groundwater)

Vulnerability classes  Attributes Vulnerability index
Fuzzy-
DRASTIC GOD SI enhanced
DRASTIC
Index range 80-120 0.1-03 <45 0.25-04
Low Area (% of
GW* basin) 6.26 1.26 0.2 2.84
Index range 121 - 160 03-0.5 45-64 04-0.6
0,
Moderate Area (% of GW 6032 53 2.4 33.18
basin)
Index range 161 - 200 0.5-0.7 65 - 85 0.6 - 0.75
1 0,
High Area (% of GW 33.48 45.74 77.38 63.91
basin)

These areas typically feature shallow water table, presence of sandy sediment composition, low
slope, and high recharge rates, all of which contribute to increased vulnerability. Conversely,
the low vulnerability regions, constituting about 544 km? or 6.26% of the study area, are
primarily located on the eastern side of the Tisza River. These areas are characterized by a

higher clay content, which provides a natural barrier against the vertical movement of
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contaminants due to its lower permeability. This protective characteristic significantly reduces

the susceptibility of groundwater to surface contamination in these regions.
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Figure 11. Spatial distribution of groundwater vulnerability in Southeast Hungary as delineated by
the standard DRASTIC method.

4.2 Results of GOD vulnerability model

In the assessment of groundwater vulnerability within Southeast Hungary, the GOD model was
applied. This method simplifies vulnerability assessment by employing a parametric class
system where each of the three parameters—Groundwater occurrence (G), Overlying lithology
(O), and Depth to groundwater (D)—contributes equally, with no differential weighting
applied, as explained in chapters 2 and 3. Using ArcGIS 10.6.1, the GOD vulnerability index
map was computed by multiplying the maps for each parameter, subsequently classifying the

final results according to the criteria defined in Table 6.

Figure 12 presents these results, displaying the area segmented into three vulnerability
classes—Ilow, moderate, and high. The majority of the area, covering 4606 km? or 53%, is
categorized under the moderate vulnerability class, while 2909 km? or 45.74% is classified as
high vulnerability (Table 10). This variation according to the GOD model is mainly due to the

two layers representing overlying strata and depth to groundwater table, because the
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groundwater confinement layer does not vary temporarily. Areas classified under the low
vulnerability category, covering about 109 km? or approximately 1.26% of the study area, are
characterized by high clay content, which offers greater protection against contaminant
penetration. This spatial distribution underscores the model's capacity to differentiate regions
based on intrinsic geologic and hydrologic conditions, albeit with a broad generalized scope
ideal for large-scale assessments of aquifer vulnerability. The same conclusion was drawn by

Kazakis and Voudouris, (2011); Ghazavi and Ebrahimi, (2015) and Mfonka, et al, (2018).
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Figure 12. Intrinsic groundwater vulnerability of Southeast Hungary according to GOD method.
4.3 Results of SI groundwater vulnerability mapping

The susceptibility index (SI) method is applied within the Southeast Hungary context to address
the significant impacts of agricultural activities. This approach specifically integrates land use
factor alongside traditional hydrogeological parameters to address the significant impact of
agricultural activities on the aquifer system. This integrative approach enriches the
understanding of human activities' influence on groundwater vulnerability (Ghouili et al.,
2021). The five layers/parameters of the SI method, presented in Figure 6—depth to
groundwater table; aquifer recharge; aquifer media; topographic slope of the land; and land

use/cover—were aggregated together applying the weights as depicted in Table 2, to produce
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a vulnerability index map. Then vulnerability classes for SI method were defined as per the

criteria set forth in Table 6.

Figure 13 illustrates the vulnerability map derived from the SI method, the overall picture is
clearly distinct from the two vulnerability maps obtained by DRASTIC and GOD models. SI
method identifies over 77% of the study area, approximately 6725 km?, as highly vulnerable,
with the discrepancies between methods occurring primarily in irrigated zones and areas with
diverse annual crops. This difference attributed to the fact that SI incorporates land use as a
crucial factor, which is not considered by the other two methods. The moderate vulnerability
regions, which cover about 1948 km? or 22.42% of the study area, predominantly appear in the
western parts, which are characterized by sandy soils, very different from the DRASTIC and
GOD vulnerability assessment. These areas are mostly composed of forests and semi-natural
zones which are considered non-polluted areas (see Table 5), and the fact that SI method does
not consider soil and vadose zone media factors in its assessment. The analysis found a
negligible proportion of the area (0.2%) to fall under 'low' vulnerability area. This classification
correlates with deeper water tables, lower recharge rates, and the presence of forested and semi-

natural areas.
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Figure 13. Groundwater vulnerability mapping using the Susceptibility Index (SI) method.
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These results are consistent with other studies that have highlighted the importance of
integrating land use with intrinsic vulnerability assessments in agricultural regions to improve
contamination risk predictions (Anane et al., 2013; Ghouili et al., 2021; Noori et al., 2019;
Ribeiro et al., 2017; Stigter et al., 2006).

4.4 Results of fuzzy-enhanced DRASTIC groundwater vulnerability
mapping
The application of the Fuzzy-enhanced DRASTIC model in this study significantly refined the
assessment of groundwater vulnerability in Southeast Hungary. This approach addresses the
limitations of traditional DRASTIC method, particularly the static nature of parameter ratings
and uncertainties in hydrogeological data. The hierarchical fuzzy inference system (FIS)
dynamically adjusted the ratings of the seven DRASTIC parameters—depth to water table,
aquifer recharge, aquifer media, soil media, topography (slope), vadose zone impact, and
hydraulic conductivity—using trapezoidal membership functions to capture the nuanced
interactions between these factors. The final output of this system, FIS6, was defuzzified and
transformed into a comprehensive vulnerability index, which was subsequently mapped and
classified across the study area. This classification delineates the region into three vulnerability
categories—low, moderate, and high—through quantile classification, effectively
differentiating zones based on their susceptibility to contamination. The model outputs indicate
that the fuzzy groundwater vulnerability index (FGWVI) range from 0.25 to 0.75. To better
represent natural groupings within the data, the index was reclassified into three categories:

low, moderate, and high, using the Jenks natural breaks method (Table 10).

The resulting map, as depicted in Figure 14, shows that approximately 5561 km? or 64% of the
study area has high vulnerability, indicating a substantial potential for surface contaminants to
penetrate the water table. These high-vulnerability zones are predominantly located in the
western part of the study area, characterized by shallow water tables. These zones also feature
high recharge rates and consist mainly of sandy sediments, which collectively enhance the risk
of contaminant infiltration. Additionally, patches in the southeast part of the study area display
high vulnerability due to the presence of sand and sandy loam soils. In contrast, regions along
and to the east of the Tisza River were identified as moderately vulnerable, covering about
2883 km? or 33.2% of the area. These zones are characterized by clay loam and silty clay soils,
which possess low permeability and substantially reduce infiltration rates. The relatively low

recharge rate in these areas diminishes the likelihood of contaminant infiltration, resulting in
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the moderate vulnerability classification. Only a small fraction (2.8%) of the area exhibits low
vulnerability, indicating robust natural barriers. This classification correlates with high clay

content and low recharge rates.
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Figure 14. Interpolated groundwater vulnerability generated through the Fuzzy-enhanced DRASTIC
model.

4.5 Validation of methodologies using nitrate (NOs~) concentrations

Groundwater nitrate (NOs~) concentration is commonly used in many studies as a key indicator
of anthropogenic impact on aquifers. Given its low natural presence in groundwater, elevated
concentrations are typically indicative of contamination from agricultural fertilizers or
wastewater, making it a reliable marker of anthropogenic impact and agricultural activities
(Halder et al., 2023; Krishna et al., 2015). In this study, NOs~ concentration was selected as the
primary indicator pollutant to validate the predictive accuracy of four groundwater
vulnerability models: DRASTIC, GOD, SI, and the Fuzzy-enhanced DRASTIC. Its spatial
distribution—NOs~ concentration—across the study area provides a basis for evaluating which
of the applied approaches offers a more precise delineation of vulnerable zones. The analysis
incorporated nitrate concentration data from 46 agricultural wells (Fig. 5), collected during the

period November 2022 to April 2023, with concentrations ranging from less than 1 mg/I to
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25.3 mg/l. According to Hungary's national groundwater quality standards, as established by
Regulation 6/2009 (IV.14), the environmental limit for nitrate concentrations in shallow
groundwater is 50 mg/L. The measured values in this study, while below this threshold, indicate

varying degrees of anthropogenic influence.

To assess the predictive accuracy of the vulnerability models, two correlation coefficients—
Pearson’s and Spearman’s rank correlation—were calculated, examining the relationship
between observed nitrate concentrations and the vulnerability indices predicted by each model.
The results of these analyses are summarized in Table 11 and the plots illustrated in Fig. 15.
Based on Pearson’s correlation coefficient, the degree of relationship between GOD and nitrate
concentration across the study region exhibited a positive linear correlation, with an r value of
0.592, indicating a moderate linear relationship with nitrate concentrations. The DRASTIC and
Fuzzy-enhanced DRASTIC approaches have showed a moderately strong positive linear
correlation, with Pearson’s r values increasing from 0.601 to 0.69, respectively. This
improvement suggests that the Fuzzy-enhanced DRASTIC model provides a more accurate
estimation of pollution risk zones compared to the GOD and original DRASTIC models. The
SI method demonstrated the highest correlation (r = 0.751), indicating a stronger and more
significant linear relationship with observed nitrate data. This higher correlation attributed to
the inclusion of land use/cover (LU/LC) as a parameter in the SI model, which is a key factor

in areas dominated by agricultural activities.

Spearman’s rank coefficients, which are less sensitive to non-normal data distributions and
outliers, further supported these findings. The correlation between nitrate concentrations and
the GOD model was p = 0.583, while the DRASTIC and Fuzzy-enhanced DRASTIC
approaches demonstrated stronger correlations with p values of 0.602 and 0.675, respectively.
These results align with findings from previous studies (Agossou and Yang, 2021; Ghazavi &
Ebrahimi, 2015; Huan et al., 2012). The SI method showed the strongest correlation again
outperformed the others (p = 0.812), demonstrating its robustness in capturing the consistent,
yet non-linear relationships between the vulnerability indices and nitrate concentrations. This
robust performance can be attributed to the inclusion of the additive parameter LU/LC, which
accounts for land use and actual pollution sources, thereby providing a more precise definition
of vulnerable areas. These findings are consistent with other studies that have highlighted the
importance of integrating land use with intrinsic vulnerability assessments in agricultural

regions to improve contamination risk predictions (Anane et al., 2013; Ghouili et al., 2021;
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Noori et al., 2019; Ribeiro et al., 2017). Notably, the groundwater vulnerability map generated
using the ST approach identified over 77% of the study area as highly vulnerable. A comparison
of the SI-based pollution risk map with the land use/cover map revealed that the majority of
high-risk zones are concentrated in agricultural and built-up areas, potentially serving as major

sources of pollution.

Table 11. Correlation analysis between groundwater vulnerability indices and nitrate levels

Vulnerability map DRASTIC GOD SI Fuzzy-enhanced DRASTIC
Pearson correlation coefficient 0.601* 0.592* 0.751* 0.692*
Spearman rank coefficient 0.602%* 0.583* 0.812%* 0.675*

* Correlation is significant at the 0.01 level
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Figure 15. Linear regression plots between groundwater vulnerability indices and NOs~
concentration (mg/l)

4.6 Single parameter sensitivity analysis
The single parameter sensitivity analysis (SPSA) was conducted to evaluate the relative
influence of individual parameters on groundwater vulnerability assessment results for

Southeast Hungary, as generated by the DRASTIC, Susceptibility Index (SI), and Fuzzy-
enhanced DRASTIC models. This analysis assesses the robustness of the applied methods,
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examines the sensitivity of the results, and ensures the coherence of the analytical findings, by
comparing theoretical parameter weights, which is pre-assigned in the model structure, with
their effective weights (Allouche et al., 2017; Kirlas et al., 2022). The effective weight of each
parameter was calculated based on its relative contribution to the final vulnerability index. The
Table 12 displays the findings of the single parameter sensitivity analysis for the DRASTIC,
Fuzzy-enhanced DRASTIC, and SI methods, revealing a variation between each parameter’s

effective weight and theoretical weight.

For the DRASTIC model, the depth to water table (D) and impact of vadose zone (I) emerged
as the most influential parameters, with effective weights of 29.56% and 21.08%, respectively,
compared to their theoretical weights of 21.7%. This highlights their dominant role in
groundwater vulnerability assessment. These findings align with previous studies (Hamed et
al., 2024; Krishna et al., 2015; Panahi et al., 2017; Phok et al., 2021), that also highlight the
importance of these parameters in groundwater vulnerability assessments. The high standard
deviation (SD = 5.64) for the impact of vadose zone indicates that this parameter vary
significantly across locations, emphasizing its spatial sensitivity. This is followed by aquifer
recharge parameter, although with a slightly lower effective weight (15.41% instead of 17.4%),
though still playing a notable role in defining vulnerability patterns, and this value is consistent
with findings from other research (Kirlas et al., 2022; Neshat & Pradhan, 2017). The influence
of aquifer media (A) and soil media (S) is relatively similar, with effective weights close to
their theoretical values. However, aquifer media exhibited the second highest standard
deviation (SD = 4.2%), indicating significant spatial variability. This suggests that lithological
differences across the study area strongly impact groundwater vulnerability. Additionally, the
Topography (T) parameter demonstrated higher effective weights (7.16%) compared to its
theoretical weight (4.3%), with a low standard deviation (SD = 1.12%), reflecting the
homogeneous flat terrain of Southeast Hungary. Conversely, hydraulic conductivity (C)
showed a considerably lower effective weight (5.91%) compared to its theoretical weight

(13%), indicating its limited influence on vulnerability in this context.

Similarly, the Fuzzy-enhanced DRASTIC model, maintained the same dominant parameters
with depth to water table (D) (26.71%) and impact of vadose zone (I) (23.42%) exhibiting the
highest effective weights. However, unlike the conventional DRASTIC model, where aquifer
recharge (R) was the third most influential parameter, the Fuzzy-enhanced approach assigned

a higher effective weight to aquifer media (A) (15.21%). This shift reflects the enhanced ability
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of fuzzy logic to better capture the spatial variability of lithological characteristics on
groundwater vulnerability. Aquifer media factor exhibits greater spatial heterogeneity than the
recharge rate factor, the fuzzy system prioritizes its varying influence across the study area,
leading to a more adaptive and realistic representation of hydrogeological conditions (Fannakh
et al., 2025; Khan et al., 2022). Additionally, recharge rate factor interacts early in the
hierarchical FIS structure with depth to water table parameter, its influence is partially
integrated at an earlier stage, whereas aquifer media enters later, retaining a stronger
independent effect (Igbal et al., 2015; Saranya and Saravanan, 2021). Another key difference
from the conventional DRASTIC model is the slight reduction in standard deviations (SD) for
most parameters. This reduction in SD suggests that fuzzy logic minimized abrupt transitions
in rating assignments, refining the spatial representation of parameter sensitivity, rather than
rigid categorical classifications of parameters rating (Gesim & Okazaki, 2018; Nobre et al.,
2007; Rezaei et al., 2013). The Topography (T) parameter also demonstrated higher effective
weights (6.34%) compared to its theoretical weight (4.3%), reinforcing the homogeneous flat
terrain of Southeast Hungary. Conversely, hydraulic conductivity (C) showed a considerably
lower effective weight (5.08%) compared to its theoretical weight (13%). This further
emphasizes the limited influence of hydraulic conductivity on groundwater vulnerability in this

context.

For the Susceptibility Index (SI) model, depth to water table (D), aquifer media (A), and land
use/cover (LU/LC) emerged as the most critical parameters, with mean effective weights of
22.15%, 24.19% and 22.87%, respectively, confirming that both hydrogeological and
anthropogenic factors contribute significantly to groundwater vulnerability (Anane et al., 2013;
Ghouili et al., 2021). Notably, LU/LC exhibited the highest variability (SD = 7.76), indicating
that land use practices significantly affect groundwater vulnerability in some areas while
having a lesser effect in others. Additionally, topography (T) in the SI model exhibited a
slightly higher effective weight (14.02%) than its theoretical weight (12%), reinforcing the
findings from DRASTIC and Fuzzy-enhanced DRASTIC, highlighting the importance of the

slope in the groundwater vulnerability assessment of the Southeast Hungary.

Overall, the SPSA results highlight the importance of depth to water table (D), impact of vadose
zone (I), aquifer recharge (R), and aquifer media (A) as the primary contributors to
groundwater vulnerability across all models, with land use/cover (LU/LC) emerging as a

critical factor in the SI model. The discrepancies between theoretical and effective weights
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highlight the limitations of uniform parameter weighting, as seen in the GOD method, and
emphasize the value of sensitivity analysis in refining vulnerability models for more accurate

predictions.

Table 12. Statistical summary of single-parameter sensitivity analysis for DRASTIC, SI, and Fuzzy-
Enhanced DRASTIC Models

; ; o
DRASTIC parameters Theoretical Theoretical Effective weight (%)
b weight weight (%) Mean Min Max Star}dqrd
Deviation
Depth to water table (D) 5 21,7 29,56 19,77 42,01 3,36
Aquifer recharge (R) 4 17,4 15,41 8,82 21,47 3,44
Aquifer media (A) 3 13 13,41 8,39 19,2 42
Soil media (S) 2 8,7 8,3 4,41 12,08 2,89
Topography (T) 1 4,3 7,16 5,34 9,9 1,04
Impact of vadose zone (I) 5 21,7 21,08 11,81 32,25 5,64
Hydraulic conductivity (C) 3 13 5,91 2,55 15,06 2,42
; ; o
Fuzzy-enhanced DRASTIC  Theoretical ~ Theoretical Effective weight (%)
parameters weight weight (%) Mean Min Max Star}dqrd
Deviation
Depth to water table (D) 5 21,7 26,71 12,66 40,06 3,06
Aquifer recharge (R) 4 17,4 14,58 7,62 19,78 2,68
Aquifer media (A) 3 13 15,21 6,89 21,31 3,73
Soil media (S) 2 8,7 7,92 4,89 13,15 2,38
Topography (T) 1 4,3 6,34 3,63 8,7 1,12
Impact of vadose zone (I) 5 21,7 23,42 12,55 34,41 4,85
Hydraulic conductivity (C) 3 13 5,08 1,86 14,4 2,23
; ; o
SI parameters Theoretical Theoretical Effective weight (%)
b weight weight (%) Mean Min Max Star}dqrd
Deviation
Depth to water table (D) 0,186 18,6 22,15 15,72 31,83 3,17
Aquifer recharge (R) 0,212 21,2 16,75 8,58 27,65 3,21
Aquifer media (A) 0,259 26 24,19 14,81 29,85 4,95
Topography (T) 0,121 12 14,02 11,98 23,95 1,16
Land use/cover (LU/LC) 0,222 22,2 22,87 6,49 32,31 7,76
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4.7 Comparative analysis of methodologies

This study represents one of the first comprehensive efforts to evaluate shallow aquifer
vulnerability in Southeast Hungary using four groundwater vulnerability assessment
approaches: DRASTIC, GOD, SI, and the Fuzzy-enhanced DRASTIC model. Assessing
aquifer vulnerability is a critical step in protecting groundwater resources and guiding land use
(LU) planning based on scientific evidence (Halder et al., 2023). Given the hydrogeological
complexity and anthropogenic pressures in the region, selecting the most appropriate
assessment method remains a challenge, as different models vary in structure, parameter
weighting, and sensitivity to local conditions. These challenges are further compounded by the
need to balance intrinsic vulnerability factors (e.g., depth to water table, recharge rates, and
aquifer media) with external influences such as land use (LU) and contamination sources. To
address this, the study applied three widely used GIS-based index-overlay methods—
DRASTIC, GOD, and SI—alongside an advanced Fuzzy-enhanced DRASTIC approach, to
evaluate their effectiveness at assessing the vulnerability of aquifer in Southeast Hungary to
leaching of contaminants from the land surface. Each method integrates key groundwater
system attributes, listed in Table 2 and illustrated in Figure 2, which influence the overall
vulnerability index (Moraru and Hannigan, 2018; Taghavi et al., 2023). To ensure a robust
comparison, this study employs a multifaceted validation approach, integrating both
vulnerability map outputs and validation results using nitrate (NOs~) concentrations, ensuring
that the findings capture both theoretical and field-based perspectives. Additionally, this study
incorporated single parameter sensitivity analysis (SPSA) to evaluate the relative influence of
each parameter across the methodologies, providing quantitative insights into model

performance and parameter impact on vulnerability assessments.

A fundamental distinction between these methodologies lies in how thematic layers are
integrated and weighted in groundwater vulnerability assessments. The DRASTIC and SI
models use predefined weighting systems, where the relative weights of depth to water table
and aquifer recharge are comparable in both methods (22% and 17% in DRASTIC; 19% and
21% in SI). However, aquifer media carries twice the weight in SI (26%) compared to
DRASTIC (13%), while hydraulic conductivity is excluded in SI but holds equal weight as
aquifer media in DRASTIC. Topography plays a more significant role in SI (12%) than in
DRASTIC (4%), while soil media and vadose zone media, which are critical in DRASTIC, are
omitted in SI. Instead, SI incorporates land use (LU) with a 22% weight, reflecting its
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significant influence on contamination risk assessments. Consequently, the SI approach
provides a relative evaluation of the groundwater vulnerability, focusing on areas where
contaminants are likely to migrate vertically to the aquifer system. In fact, this approach does
not identify the flow path that the contaminants will follow within the hydrogeological system.
In contrast, while DRASTIC involve in integrates seven intrinsic thematic layers it excludes
land use/cover, a factor that significantly influences groundwater susceptibility to pollution.
The GOD method employs a parametric class system without weighting, treating all parameters
equally. This simplifies its structure but fails to account for the varying influence of different
hydrogeological factors, potentially overestimating or underestimating vulnerability in specific
conditions. The Fuzzy-enhanced DRASTIC model retains the original DRASTIC weighting
factors to preserve the model’s original structure and ensure comparability with previous
studies, while introducing fuzzy logic adjustments to handle the inherent variability and
uncertainty in parameter ratings, and refine parameter interactions, allowing for greater
adaptability in parameter influence based on local hydrogeological conditions. This hybrid
approach combines the strengths of the DRASTIC framework with the flexibility of fuzzy
logic, providing a more refined vulnerability index without altering the fundamental principles

of the original method.

The comparative analysis of the applied methodologies is grounded on both nitrate (NOs")
validation results and findings from single parameter sensitivity analysis (SPSA), which
quantify the influence of individual parameters on vulnerability assessments. All four methods
classified the study area into low-, moderate-, and high-vulnerability zones, with a predominant
trend of moderate to high vulnerability. In many areas, this tendency seems to be driven by
shallow water table, presence of sandy sediments, a high recharge rate and the predominance
of high agricultural activity areas in land use. The areas of high vulnerability highlighted by
Shrestha et al., (2017) and Kouz et al., (2020) on the basis of the application of the DRASTIC,
GOD and SI methods in comparable geomorphic settings (i.e. shallow aquifers with a
lithological nature consisting of sand and silt, and high recharge rate) increase their
susceptibility to contamination. However, the extent and distribution of high-vulnerability
areas varied significantly between models, driven by differences in parameter influence

observed in the SPSA results.

The DRASTIC model assigned the highest vulnerability to areas with a shallow water table,

permeable vadose zone, and high recharge rates, consistent with its high effective weights for
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depth to water table (29.56%), impact of vadose zone (21.08%), and aquifer recharge (15.41%).
The Fuzzy-enhanced DRASTIC model demonstrated improved spatial accuracy of
vulnerability zones, reducing abrupt classification transitions by applying adaptive rating
adjustments through fuzzy logic. One of the key strengths of the hierarchical FIS is its ability
to handle the imprecision inherent in environmental data. Traditional DRASTIC method
assigns fixed ratings to parameters, which may not reflect real-world variations. By contrast,
the fuzzy-enhanced DRASTIC model applies fuzzy membership functions to each parameter,
allowing for gradual transitions between vulnerability classes, this flexibility has improved the
model’s accuracy, particularly in distinguishing between moderate and high vulnerability
zones. Notably, aquifer media factor (15.21%) became the third most influential parameter in
Fuzzy-enhanced DRASTIC, replacing recharge (R), which dominated the conventional
DRASTIC model. This shift suggests that fuzzy logic captures lithological variability more
effectively, reducing the dominance of fixed recharge rates. In contrast, the GOD method
identifies a greater extent of highly vulnerable zones compared to the DRASTIC approach.
This discrepancy is likely attributable to the GOD method's more generalized framework and
its underlying assumption that groundwater vulnerability is only influenced by three
parameters. This difference aligns with findings reported by Kazakis and Voudouris, (2011) in
their study of the alluvial aquifer in the Florina Basin, Greece, where the GOD model produced
a broader high-vulnerability classification compared to DRASTIC method. The SI model is
clearly distinct from the three vulnerability maps. SI approach identifies over 77% of the study
area, as highly vulnerable, primarily occurring in irrigated zones and areas with diverse annual
crops. This difference attributed to the fact that SI incorporates land use patterns, which is
absent in the other methods. Furthermore, the DRASTIC and GOD methods focus exclusively
on assessing intrinsic vulnerability and do not incorporate pollution risk. As defined by Foster,
(1987), pollution risk arises from the interplay between aquifer vulnerability and the magnitude
of pollutant loading, a factor not addressed by these approaches. The SPSA results confirm that
depth to water table (D), aquifer media (A), and land use/cover (LU/LC) emerged as the most
influential parameters in SI, with mean effective weights of 22.15%, 24.19% and 22.87%,

respectively.

Validation of the vulnerability maps was conducted by correlating vulnerability indices with
nitrate (NOs~) concentrations from 46 monitoring wells. Both Pearson’s and Spearman’s
correlation coefficients were computed to quantify the relationships between vulnerability

indices and nitrate measurements. The GOD method exhibited the weakest correlations
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(Pearson’s r = 0.592; Spearman’s p = 0.583), reflecting its limitations in capturing detailed
vulnerability nuances needed in complex hydrogeological settings. The DRASTIC method
demonstrated moderate predictive accuracy, with Pearson’s and Spearman’s correlation
coefficients of 0.601 and 0.602, respectively, while its Fuzzy-enhanced counterpart
demonstrated slightly improved accuracy (Pearson’s r = 0.69; Spearman’s p = 0.675).
However, the exclusion of LU in both DRASTIC approaches limited their effectiveness in
agriculturally dominated regions. In contrast, the SI method outperformed the other
approaches, achieving the strongest correlations with nitrate concentrations (Pearson’s r =
0.751; Spearman’s p = 0.812). This superior performance is attributed to the inclusion of LU
as a parameter, which directly accounts for the impact of agricultural activities on
contamination risk, confirming its ability to capture complex interactions between
hydrogeological factors and agricultural land use underscores its effectiveness in regions where
nitrate contamination is primarily driven by agricultural activities. The SPSA results explain
these validation outcomes, as the SI model's high effective weights for aquifer media and land
use allowed it to better capture nitrate contamination trends. In contrast, the DRASTIC models’
and GOD approach exclusion of land use limited their ability to predict contamination in

agricultural regions.

These findings highlight the importance of integrating anthropogenic factors, such as land use,
and advanced techniques, such as fuzzy logic, into groundwater vulnerability assessments. The
results suggest that the SI method is particularly well-suited for regions with intensive
agricultural activities, such as Southeast Hungary. While the Fuzzy-enhanced DRASTIC
model offers a valuable alternative for areas with complex hydrogeological settings. Overall,
the comparative analysis highlights the need for tailored vulnerability assessments that account
for both intrinsic hydrogeological factors and anthropogenic influences, providing
policymakers with reliable tools for protecting groundwater resources in agriculturally

dominated regions.

To enhance the clarity and readability of the comparative analysis, a summary table was
prepared to synthesize the key aspects of the four applied methods: DRASTIC, GOD, SI, and
the Fuzzy-enhanced DRASTIC. The table integrates validation outcomes (correlation
coefficients with nitrate concentrations), identifies the most influential parameters based on
SPSA, and outlines each method’s major strengths and limitations, together with their relative

data and computational requirements. This consolidated overview provides a concise
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comparative framework, facilitating a clearer understanding of the trade-offs between

methodological simplicity, predictive accuracy, and practical applicability in the context of

Southeast Hungary.

Table 13. Comparative summary of the applied groundwater vulnerability assessment methods
(DRASTIC, GOD, SI, and Fuzzy-enhanced DRASTIC) in Southeast Hungary.
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Chapter 5: Conclusions and Recommendations

Chapter 5 synthesizes the key findings, implications, and recommendations derived from the
comparative evaluation of four groundwater vulnerability assessment methodologies—
DRASTIC, GOD, SI, and Fuzzy-enhanced DRASTIC—applied to the environmental and
hydrogeological conditions of Southeast Hungary. The chapter begins by summarizing the key
findings, including the results of the vulnerability assessments, the comparative analysis of the
methods, and the insights from the single parameter sensitivity analysis (SPSA). Emphasis is
placed on the superior performance of the SI method in regions with intensive agricultural
activities and the improved accuracy of the Fuzzy-enhanced DRASTIC model in capturing
spatial variability and refining vulnerability classifications. It then explores the theoretical and
practical implications of these findings for effective groundwater management.
Recommendations for future research are presented, focusing on methodological refinements,
data integration, and the development of hybrid models. The chapter also acknowledges the
limitations of the study, and proposes strategies to overcome these challenges in future work.
Finally, policy recommendations are provided to guide sustainable groundwater management
in Southeast Hungary, with an emphasis on stakeholder engagement and the implementation

of vulnerability-based land use regulations.
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5.1 Key Findings

The detailed systematic study conducted in this research evaluated the effectiveness of four
groundwater vulnerability assessment methodologies—DRASTIC, GOD, SI, and the Fuzzy-
enhanced DRASTIC—applied within the specific hydrogeological and land-use context of
Southeast Hungary. The objective was to determine the most suitable approach for assessing
groundwater vulnerability in a region characterized by intensive agricultural activities and
heterogeneous hydrogeological conditions. Nitrate (NOs") concentrations in groundwater were
used as the primary metric for validating each method's effectiveness. Additionally, a single-
parameter sensitivity analysis (SPSA) was conducted to assess the influence of individual
parameters on the vulnerability indices, providing deeper insights into the robustness and
reliability of each method. The results provide valuable insights into the performance,
limitations, and applicability of these methods within the regions. The key findings of the study

are summarized as follows:

e The generated vulnerability maps indicate that approximately 95% of the region is at
moderate to high risk of contamination. This trend is primarily driven by factors such
as low slope, shallow water table, presence of sandy sediments, a high recharge rate
and the predominance of intensive agricultural practices in land use. These factors
collectively enhance the susceptibility of groundwater to contamination from surface
pollutants.

e The DRASTIC method, a widely used index-overlay approach, identified 33% of the
study area as highly vulnerable, demonstrating a moderate positive correlation with
nitrate concentrations (Pearson’s r = 0.601; Spearman’s p = 0.602). While its
comprehensive integration of seven hydrogeological parameters makes it a robust tool
for intrinsic vulnerability assessment, its reliance on static ratings and exclusion of land
use (LU) data reduces its accuracy in highly agricultural regions, where anthropogenic
influences significantly impact contamination risks.

e The Fuzzy-enhanced DRASTIC model demonstrated improved predictive accuracy,
classifying 64% of the study area as highly vulnerable and yielding a stronger
correlation with nitrate concentrations (Pearson’s r = 0.69; Spearman’s p = 0.675). By
incorporating fuzzy logic to refine parameter ratings and minimize abrupt classification
transitions, this model enhanced sensitivity to hydrogeological variability while

preserving the structured framework of DRASTIC. Notably, the shift in parameter
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influence observed in the SPSA results, particularly the increased role of aquifer media,
highlights fuzzy logic’s ability to better capture lithological variability.

e The GOD method identified 45% of the study area as highly vulnerable but exhibited
the weakest correlation with nitrate concentrations (Pearson’s r = 0.592; Spearman’s p
= 0.583). This is primarily due to its simplistic, unweighted classification framework,
which considers only groundwater confinement, overlying lithology, and depth to water
table. The absence of hydrogeological complexity and land use considerations reduces
its capacity to accurately reflect real-world contamination dynamics.

e In contrast, the SI method outperformed all other approaches, classifying 77% of the
study area as highly vulnerable and achieving the strongest correlation with nitrate
concentrations (Pearson’s r = 0.751; Spearman’s p = 0.812). This superior performance
is attributed to the incorporation of land use patterns alongside hydrogeological factors,
which significantly enhanced its ability to predict contamination risks associated with
agricultural pollutants. The SPSA results further confirm the dominant influence of land
use (22.87%), aquifer media (24.19%), and depth to water table (22.15%) in the SI
model, underscoring the importance of incorporating anthropogenic variables in
vulnerability assessments.

e These findings emphasize the importance of integrating anthropogenic factors (e.g.,
land use) and advanced modeling techniques (e.g., fuzzy logic) into groundwater
vulnerability assessments to improve predictive accuracy. The study highlights that
traditional models, such as DRASTIC and GOD, may not fully capture contamination
risks in agricultural landscapes, whereas SI and Fuzzy-enhanced DRASTIC offer more
context-sensitive vulnerability assessments.

e The generated vulnerability maps of Southeast Hungary represent a valuable decision-
support tool for policymakers and water resource managers to achieve sustainable land-
use planning, groundwater protection zoning, and the development of targeted
monitoring programs. These maps can guide the balanced use of territory and reduce
anthropogenic pressure in areas naturally prone to groundwater contamination, thereby
supporting long-term groundwater protection and resource sustainability within the

region.

5.2 Theoretical and practical implications

This research represents one of the first comprehensive evaluations of shallow aquifer

vulnerability in Southeast Hungary, through the application of four groundwater vulnerability
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assessment approaches—DRASTIC, GOD, SI, and the Fuzzy-enhanced DRASTIC model. The
study makes significant theoretical contributions to the field of groundwater vulnerability
assessment by demonstrating the necessity of integrating anthropogenic factors (e.g., land use)
and advanced modeling techniques (e.g., fuzzy logic) to improve predictive accuracy. The
findings reinforce that the SI method, which incorporates land use alongside traditional
hydrogeological parameters, outperforms other methods in predicting contamination risk in
agricultural regions, achieving the strongest correlation with nitrate concentrations (Pearson’s
r=0.751; Spearman’s p = 0.812). This superior performance demonstrates the importance of
considering human-induced pressures on groundwater systems, as land use plays a pivotal role

in controlling contaminant transport and aquifer recharge patterns.

Similarly, the Fuzzy-enhanced DRASTIC model effectively addresses the limitations of static
parameter ratings inherent in traditional DRASTIC approach, providing a more adaptive and
spatially accurate representation of groundwater vulnerability. The model's ability to gradually
transition parameter influences rather than relying on fixed rating classes has led to a notable
increase in high-vulnerability zones identified compared to the conventional DRASTIC
method. This enhancement is reflected in its improved correlation with nitrate concentrations
(Pearson’s r = 0.69; Spearman’s p = 0.675). The integration of hierarchical fuzzy inference
systems (FIS) refined parameter interactions, particularly reducing rating subjectivity and
improving sensitivity to lithological variability. These methodological advancements highlight
the value of incorporating flexible, data-adaptive frameworks within intrinsic vulnerability
assessments, enhancing their ability to capture nuanced variations in groundwater

susceptibility even in the absence of explicit contamination source data.

On a practical level, the findings offer valuable tools for effective groundwater management in
Southeast Hungary. The vulnerability maps generated by the study serve as a scientific basis
for understanding shallow aquifer vulnerability in the region for identifying and prioritizing
areas at high risk of contamination, enabling local authorities to implement targeted monitoring
programs and the implementation of measures to mitigate the impact of agricultural practices.
The results emphasize the necessity of spatially explicit management approaches that align
land use planning with groundwater vulnerability zones. This is particularly relevant for
agricultural land use regulations, where vulnerability maps can support sustainable irrigation
practices and pollutant control measures. Furthermore, this study emphasizes the importance

of stakeholder engagement, demonstrating how scientific outputs, such as vulnerability maps,
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can serve as effective communication tools for raising awareness about groundwater
contamination risks and promote collaborative efforts to protect water resources. By integrating
these findings into water resource management policies, regulatory frameworks can
incorporate adaptive measures that balance economic development with groundwater
protection goals. Overall, this research not only advances scientific understanding of
groundwater vulnerability assessment methodologies but also provides actionable insights for
evidence-based groundwater protection strategies, ensuring long-term sustainability of water

resources in Southeast Hungary and comparable regions worldwide.

5.3 Limitations of the study

Despite the robust methodological framework and comprehensive evaluation conducted in this
study, certain limitations must be acknowledged. These limitations relate primarily to data
availability and resolution, methodological constraints, the generalizability of results, fuzzy

logic subjectivity, and policy implementation challenges.

Given the relatively large size of the study area (~8700 km?), the unavailability of densely
distributed values for the various thematic layers was the main barrier to generating a high-
resolution vulnerability maps. Coarser spatial datasets can lead to generalization errors,
particularly in heterogeneous hydrogeological environments. While GIS-based interpolation
techniques were used to address spatial gaps, the accuracy of vulnerability maps is inherently
dependent on the resolution of input data. Furthermore, the spatial resolution of validation data
must be acknowledged. Although nitrate (NO3 ) measurements from 46 monitoring wells
provided a reasonable basis for model validation, this sampling density may not fully capture

the spatial variability in contamination levels, particularly in a heterogeneous aquifer system.

The study applied index-overlay models (DRASTIC, GOD, and SI), which rely on predefined
weighting schemes. While these models are widely used for groundwater vulnerability
assessment, they are subject to inherent subjectivity in parameter weighting and ratings. The
DRASTIC and SI models assign fixed weights to hydrogeological parameters, which may not
fully account for spatial variations in parameter influence. Additionally, the GOD model does
not employ parameter weighting, potentially leading to oversimplification in certain areas

where hydrogeological factors exert varying levels of control over groundwater vulnerability.

The Fuzzy-enhanced DRASTIC model was introduced to address the limitations of static

parameter ratings. However, the design of fuzzy membership functions remains a subjective
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process, as it depends on expert judgment and predefined rules, which can introduce potential
biases. Additionally, the computational complexity of hierarchical fuzzy inference systems
(FIS) present practical challenges for real-time applications and require significant
computational resources compared to simpler index-based models. Future research could
explore machine learning-driven fuzzy logic optimizations to enhance automation and reduce

subjective dependencies.

While the methodologies applied in this study are widely used in groundwater vulnerability
assessment, the findings are specific to Southeast Hungary and may require modifications when
applied to other regions. The hydrogeological conditions, land use practices, and pollution
sources in the study area are unique, influencing the relative importance of individual
parameters in vulnerability assessments. For instance, the dominance of agricultural activities
in Southeast Hungary increased the predictive strength of the SI method, but this may not hold
true in other regions where contamination sources differ. Additionally, while the integration of
fuzzy logic demonstrated improvements in spatial accuracy, its applicability should be
validated in diverse hydrogeological settings. Future studies should test the adaptability of this

method across different environmental conditions to enhance their generalizability.

Although this study provides scientific insights into groundwater vulnerability, the translation
of findings into policy and management decisions presents challenges. The successful
implementation of vulnerability-based groundwater protection strategies requires collaboration
between researchers, policymakers, and local stakeholders. However, integrating scientific
assessments into regulatory frameworks is often hindered by institutional barriers, lack of

enforcement mechanisms, and competing land-use priorities.

5.4 Recommendations for future research

Building upon the findings and limitations identified in this study, several areas for future
research can be explored to enhance the accuracy, applicability, and policy relevance of

groundwater vulnerability assessments.

e Future studies should explore the integration of high-resolution remote sensing data for
land use, soil properties, and recharge rate estimation to reduce spatial generalization
errors and improve model precision in heterogeneous hydrogeological settings.
Additionally, expanding the spatial and temporal resolution of validation datasets—

particularly for groundwater nitrate (NOs~) concentrations—would enhance model
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validation robustness by capturing seasonal and long-term contamination trends. The
use of multi-year groundwater quality data would further allow for trend analysis,
improving the predictive capability of vulnerability models over time.

Future research should focus on refining vulnerability models by integrating machine
learning (ML) techniques, such as artificial neural networks (ANNSs), support vector
machines (SVMs), or random forest (RF) algorithms. These approaches would allow
for data-driven parameter weighting optimizations, reducing the reliance on predefined
expert-based assignments.

Conducting longitudinal studies on groundwater vulnerability would help capture
temporal variations in aquifer susceptibility and assess how climate change and
evolving land-use patterns impact groundwater contamination risks. Future research
should explore hydro-climatic modeling approaches to analyze the effects of shifting
precipitation patterns, extreme weather events, and prolonged droughts on groundwater
recharge and contamination susceptibility.

While the Fuzzy-enhanced DRASTIC model demonstrated improved predictive
accuracy, its applicability should be tested across different hydrogeological and
climatic conditions. Conducting comparative assessments in regions with varying
lithologies, and pollution sources would refine the adaptability of the methodology and
improve its predictive robustness in different environmental contexts.

While this study focused on intrinsic vulnerability assessments, future research should
incorporate numerical groundwater flow and contaminant transport simulations to
enhance risk prediction accuracy. Models such as MODFLOW and MT3DMS could
provide critical insights into pollutant dispersion pathways, travel times, and
groundwater flow dynamics, allowing for more precise assessments of contamination
risks. This would enable decision-makers to not only identify areas prone to
contamination but also understand how pollutants migrate through the aquifer system

over time, leading to more effective groundwater protection strategies.

5.5 Policy recommendations

The findings of this study underscore the urgent need for science-based policy interventions to

safeguard groundwater resources in Southeast Hungary. Given the region's high vulnerability

contamination, particularly from agricultural activities, the following policy

recommendations are proposed to enhance groundwater management, strengthen regulatory

enforcement, and promote stakeholder engagement:
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Policymakers should integrate vulnerability-based land wuse planning into
environmental policies, ensuring that high-risk areas identified in vulnerability maps
are designated as protected zones. In such areas, restrictions on intensive agricultural
activities, industrial waste disposal, and urban expansion should be enforced to
minimize contamination risks. Additionally, establishing mandatory groundwater
monitoring programs with higher spatial and temporal resolution is essential for
tracking nitrate concentrations and other pollutants over time. The implementation of
real-time monitoring systems, coupled with open-access groundwater databases, would
enhance transparency and data-driven decision-making among researchers,
policymakers, and environmental agencies.

Given the strong correlation between land use practices and groundwater vulnerability,
sustainable agricultural policies should be prioritized. Government should encourage
precision agriculture techniques, such as controlled fertilizer application, optimized
irrigation strategies, and crop rotation, to reduce excessive nitrogen leaching into
aquifer. Furthermore, raising awareness among agricultural stakeholders through
educational campaigns and training programs will further promote sustainable land and
water management practices.

Environmental Impact Assessments (EIAs) should be mandatory for all new
development projects in areas identified as high-vulnerability zones, ensuring that
groundwater contamination risks are systematically evaluated before project approval.
Furthermore, regulatory agencies should periodically review and update environmental
guidelines to reflect emerging groundwater risks associated with urbanization,
industrialization, and climate change.

Effective groundwater management also requires multi-stakeholder collaboration and
community engagement. The Lower Tisza Water Management Directorate
(ATIVIZIG) should establish a regional groundwater governance structure by bringing
together scientists, policymakers, local authorities, and community representatives to
develop integrated water management strategies. Additionally, public participation in
groundwater monitoring programs, including citizen science initiatives and
community-led water quality assessments, would foster greater accountability and
collective responsibility for groundwater protection.

Finally, continued research and technological advancements should be encouraged to

support innovative groundwater protection strategies. Investment in smart groundwater
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monitoring systems, artificial recharge methods, and Al-driven contamination
prediction models would enhance long-term resilience in groundwater management.
Moreover, fostering cross-disciplinary collaborations between hydrologists, geospatial
analysts, and policymakers will ensure that scientific findings are effectively translated
into policy frameworks. By implementing these policy recommendations, decision-
makers can proactively mitigate contamination risks, ensure long-term groundwater

sustainability, and support the region’s broader environmental and economic goals.
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Abstract

Groundwater represents a critical resource in Southeast Hungary, serving as a critical supply
for drinking water, industry, and especially agriculture. This region’s flat, fertile landscape
supports intensive farming — Over 65% of the area is devoted to intensive crop cultivation,
including maize, sunflower, and wheat — leading to heavy use of fertilisers and pesticides.
These agricultural practices, coupled with the region’s susceptibility to severe and prolonged
droughts, pose significant risks to both groundwater quantity and quality. Consequently, the
aquifer of Southeast Hungary face persistent threats of contamination and over-exploitation.
While prior studies in Southeast Hungary have addressed groundwater quality and quantity
concerns, a comprehensive vulnerability assessment comparing multiple methodological
approaches was lacking. This research addresses this knowledge gap by conducting a
comprehensive evaluation of groundwater vulnerability — the susceptibility of groundwater to
contamination from surface activities — in Southeast Hungary through a comparative analysis
of multiple assessment approaches—DRASTIC, GOD, the Susceptibility Index (SI), and a
Fuzzy-enhanced DRASTIC model. The overarching aim of the research is to determine the
most effective model for mapping and understanding groundwater vulnerability in Southeast
Hungary and to generate scientifically tools that support sustainable water management, land

use planning, and policy development.

The study begins with an in-depth review of established methodologies for assessing
groundwater vulnerability, with a focus on their theoretical underpinnings, spatial modeling
techniques, and limitations when applied to real-world conditions. These insights informed the
selection of three standard index-overlay models—DRASTIC, GOD, and SI—as well as the
development of a fuzzy logic-based enhancement of the DRASTIC model. The standard
DRASTIC method integrates seven intrinsic hydrogeological factors—Depth to water table,
Recharge rate, Aquifer media, Soil media, Topography, Impact of the vadose zone, and
Hydraulic conductivity—each assigned a fixed weight based on expert judgement. The
DRASTIC Index is computed by combining these weighted ratings, producing a spatially
explicit vulnerability map. The GOD model simplifies vulnerability assessment by focusing on
only three parameters: Groundwater occurrence (confined/unconfined), Overlying lithology,
and Depth to water table. It assumes equal weighting of these parameters, offering ease of
application at the expense of adaptability. In contrast, the SI method introduces land use/land
cover as a key parameter, thereby extending the traditional concept of intrinsic vulnerability

toward a more risk-based approach. The SI method uses five parameters—Depth, Recharge,

112



Aquifer media, Topography, and Land use/cover—weighted and aggregated to reflect both
hydrogeological and anthropogenic drivers of vulnerability. To address limitations associated
with fixed parameter ratings, a Fuzzy-enhanced DRASTIC model was developed using a
Hierarchical Fuzzy Inference System (FIS). While retaining the original DRASTIC parameters
and weights to ensure methodological comparability, the fuzzy system replaced discrete
parameter ratings with continuous fuzzy membership functions, thereby allowing for more
continuous transitions in the vulnerability index. Each of the four methods was applied across
the same study area using thematic GIS layers, including interpolated surfaces for each
parameter. The resulting maps were validated using nitrate (NOs~) concentrations from 46
groundwater wells, sampled between November 2022 and April 2023. Pearson’s and
Spearman’s correlation coefficients were used to quantify the relationship between model
outputs and observed nitrate levels. Additionally, a Single-Parameter Sensitivity Analysis
(SPSA) was also conducted for the DRASTIC, SI, and fuzzy-DRASTIC models to determine
the relative influence of each parameter based on its effective weight in the final vulnerability

index.

The results demonstrated significant spatial variability in vulnerability across Southeast
Hungary, with a predominant trend of moderate to high vulnerability. In many areas, this
tendency seems to be driven by shallow water table, presence of sandy sediments, a high
recharge rate and the predominance of high agricultural activity areas in land use. However,
the extent and distribution of high-vulnerability areas varied significantly between models,
driven by differences in parameter influence observed in the SPSA results. The conventional
DRASTIC model classified approximately 33% of the region as highly vulnerable and
achieved moderately strong correlation with nitrate data (Pearson’s r = 0.601; Spearman’s p =
0.602), confirming its utility as a baseline method while also revealing its limitations in
predictive precision. The simpler GOD method identified ~45% as high vulnerability but
yielded the weakest correlation with observed contamination (Pearson’s r = 0.592; Spearman’s
p = 0.583), reflecting its limited parameter scope. In contrast, methodologies integrating
anthropogenic factors and advanced modeling achieved higher predictive accuracy. The SI
method, which incorporates land-use alongside intrinsic parameters, outperformed all others
by delineating about 77% of the area as highly vulnerable and attaining the strongest correlation
with groundwater nitrate levels (Pearson’s r = 0.751; Spearman’s p = 0.812). Similarly, the
fuzzy-enhanced DRASTIC model classified ~64% of the area as highly vulnerable and

improved the predictive correlation (Pearson’s r = 0.690; Spearman’s p = 0.675), due to its
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refined parameter ratings that better capture hydrogeological variability. These findings
underscore the advantages of integrating land-use data and fuzzy logic adjustments into
groundwater vulnerability assessments to improve predictive accuracy, as the traditional
models, such DRASTIC and GOD, may not fully capture contamination risks in intensive

agricultural landscapes and complex hydrogeological settings.

The SPSA findings further provided insights into parameter influence across models. In the
conventional DRASTIC method, the most influential parameters were depth to water table
(29.56% effective weight) and impact of the vadose zone (21.08%), while aquifer recharge
emerged as the third most important. In contrast, the fuzzy-enhanced DRASTIC model
maintained depth and vadose zone as dominant parameters (26.71% and 23.42%, respectively)
but elevated the importance of aquifer media (15.21%) above recharge rate, highlighting the
fuzzy system’s enhanced capacity to capture lithological heterogeneity. Standard deviations
across parameters were slightly reduced in the fuzzy model, indicating a more balanced
representation of parameter influence. For the SI model, aquifer media, depth to water, table
and land use/cover were the most critical parameters (each contributing roughly 22—24% to the
vulnerability index). These findings reinforce the argument that land use must be considered
alongside intrinsic hydrogeological properties in regions facing agricultural pressures. While
the GOD model inherently employs a parametric class system without weighting, treating all
parameters equally. This simplifies its structure but fails to account for the varying influence
of different hydrogeological factors, potentially overestimating or underestimating
vulnerability in specific conditions. Across all approaches, parameters related to vadose zone
media, aquifer media, and water table depth emerged as critical factors, and the inclusion of
anthropogenic variable (land use) in the SI method significantly improved its predictive
capability, the superior performance of the SI method suggests it as the effective tool for
assessing groundwater vulnerability within Southeast Hungary, while the fuzzy logic approach
offers a promising enhancement for index-based models in capturing gradational changes in

vulnerability.

Through its comparative analysis and introduction of a fuzzy logic enhancement, this PhD
research contributes to the broader understanding of groundwater vulnerability assessment both
in theory and practice. It demonstrates the importance of tailoring vulnerability assessments to
regional conditions, integrating both intrinsic and anthropogenic factors, and employing

adaptive models capable of representing spatial complexity. For Southeast Hungary, the
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research outcomes have important practical implications for sustainable water resource
management within the region. The resulting vulnerability maps serve as valuable decision-
support tools for land-use planning, groundwater protection zoning, and the design of targeted
monitoring programs. By identifying zones of high contamination risk, local authorities and
stakeholders can prioritize interventions and balance land-use practices to protect vulnerable
areas. The thesis recommends incorporating these vulnerability assessment findings into policy
and planning, including stakeholder engagement and the implementation of vulnerability-based
land-use regulations, to guide long-term groundwater protection in Southeast Hungary. Lastly,
the study highlighted and shed light on some areas that need future studies. These include (1)
the integration of high-resolution remote sensing data to improve the spatial representation of
land use, soil properties, and recharge estimations, thereby reducing generalisation errors in
heterogeneous hydrogeological settings. Expanding both the spatial and temporal resolution of
nitrate concentration data would also enhance validation robustness and support long-term
trend analysis, (2) future research should focus on integrating machine learning techniques—
such as artificial neural networks, support vector machines, or random forest algorithms. These
approaches would allow for data-driven parameter weighting optimizations, reducing the
reliance on predefined expert-based assignments, (3), longitudinal investigations studies to
capture temporal dynamics in groundwater vulnerability under shifting land use and climatic
conditions, (4) incorporating numerical simulations of groundwater flow and contaminant
transport, such as MODFLOW and MT3DMS, would enable more accurate modelling of
pollutant pathways and travel times, thereby supporting more targeted and effective

groundwater protection strategies.
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