

5. F. Solymosi, **A. Széchenyi**: Aromatization of isoctane on Mo₂C catalysts

Catalytic Processing of Renewable Sources: Fuel, Energy, Chemicals

Athens-Crete, Greece, May 15-19. 2006, lecture

C₄ and C₈ hydrocarbons transformation on Mo₂C and Re containing catalysts

6. **A. Széchenyi**, F. Solymosi: Aromatization of n-octane on Mo₂C-containing catalysts

8th Pannonian International Symposium on Catalysis

Szeged, July 4-7. 2006, poster.

PhD Thesis

Széchenyi Aleksandar

Supervisor:

Dr. Solymosi Frigyes

Member of the Hungarian Academy of Sciencesr

Reaction Kinetics Research Group of the
Hungarian Academy of Sciences

Szeged

2007

Introduction

One of the largest challenges of these days is the development and introduction of the ecologically accepted chemical technologies. The heterogeneous catalysis has a main role in it, so the development of the new catalysts and processes is of high importance.

The upgrading of lower alkanes is an important subject of heterogeneous catalysis. One of the great challenges in this area is to transform methane into higher hydrocarbons with high conversion and selectivities, which represents one route of converting the cheap raw materials into more valuable compounds. The discovery that methane can be converted into benzene on $\text{MoO}_3/\text{ZSM-5}$ opened a new route for the utilization of methane. It turned out, however, that not the MoO_3 but Mo_2C is the key component for the activation of methane, which is formed from MoO_3 during the induction period of the reaction. In the subsequent works a great attention has been devoted to the formation, structure and reactivity of Mo_2C on ZSM-5.

Objects

In our laboratory we continued our work in two directions: elaborating the effect of Mo_2C on the aromatization of hydrocarbons, and studying the chemistry of hydrocarbon fragments, C_xH_y , the primary products of the activation of the above compounds, on $\text{Mo}_2\text{C}/\text{Mo}(100)$ in UHV by several spectroscopic methods.

As a continuation of this research program the reaction of C_4 és a C_8 hydrocarbons has been investigated on the same $\text{Mo}_2\text{C}/\text{ZSM-5}$ catalyst used in previous works. Attention is paid to the low temperature interaction of butane with the catalyst, to the effects of the composition of ZSM-5 on the catalytic performance of Mo_2C , to the influence of preparation and pretreatments of the

10. A. Széchenyi, F. Solymosi

Production of hydrogen in the decomposition of ethanol and methanol over unsupported Mo_2C catalyst
J. Phys. Chem. B 111 (2007) 9509.

Impact factor of the papers:

17,780

Conference lectures and posters related to this thesis:

1. F. Solymosi, A. Széchenyi and R. Németh

Aromatization of n-butane over supported Mo_2C catalysts
18th North American Catalysis Society Meeting
Cancun, Mexico, June 1-6. 2003, lecture.

2. F. Solymosi, P. Tolmacsov, A. Széchenyi

Reaction of propane and n-butane on Re/ZSM-5 catalyst
7th Natural Gas Conversion Symposium
Dalian, Kína, June 6-10. 2004, lecture

3. A. Széchenyi, F. Solymosi

C_4 szénhidrogének átalakulása Mo_2C tartalmú hordozós katalizátorokon
Katalízis Munkabizottság és a Felületkémia és Nanoszerkezet Munkabizottság ülése
Szeged, May 19-20. 2005, lecture

4. A. Széchenyi

Izobután és izobutén aromatizációja $\text{Mo}_2\text{C}/\text{ZSM-5}$ katalizátoron
Matematikai és Természettudományi Kuratórium, Fiatal kutatók meghalgatása
Budapest, June 10. 2005, lecture

5. **A. Széchenyi, F. Solymosi**

n-Octane aromatization on Mo₂C-containing catalysts

Appl. Catal. A 306 (2006) 149.

Impact factor: 2.630

catalysts. Detailed measurements are also performed on Mo₂C deposited on different inactive oxide supports. In order to obtain a deeper insight into the mechanism of the formation of aromatics, the reaction of unsaturated products, assuming that the starting compound in the formation of benzene, is also examined on Mo₂C-containing catalysts.

Impact factor of the papers related to this thesis

10,630

Methods

Papers not related to this thesis:

6. M. Szekeres, **A. Széchenyi**, K. Stepan, T. Haraszti, I. Dékány

Layer-by-layer self-assembly preparation of layered double hydroxide/polyelectrolyte nanofilms monitored by surface plasmon resonance spectroscopy
Coll. Poly. Sci. 283 (2005) 937.

Impact factor: 1.263

Mo₂C was prepared by the carburization of MoO₃ as was described by M.L.H. Green and coworkers. The oxide was heated under 10% v/v C₂H₆/H₂ gas mixture from 300 K to 900 K at a heating rate of 0.8 K/min. The MoO₃ supported samples were prepared by impregnating the support with a basic solution of ammonium-heptamolybdate. Supported Mo₂C catalysts have been made in the same way as the pure Mo₂C, by the carburization of MoO₃-containing supports with C₂H₆/H₂ gas mixture. All the catalysts used in the study have been characterized by XPS and FTIR measurements.

7. **A. Széchenyi, R. Barthos, F. Solymosi**

Aromatization of ethanol on Mo₂C/ZSM catalysts

Catal. Lett. 110 (2006) 85.

Impact factor: 1.772

Catalytic reaction was carried out at 1 atm of pressure in a fixed-bed, continuous flow reactor consisting of a quartz tube. Generally 0.3 g of loosely compressed catalyst sample was used. Reaction products were analyzed gas chromatographically using a Hewlett-Packard 5890 gas chromatograph with a 60 m long GS-GASPRO column, and Agilent 4890 gas chromatograph equipped with HP-PLOT Al₂O₃ 30 m long capillary column and PORAPAK Q+S packed column. The amount of coke deposited on the catalyst during the reaction was determined by temperature programmed reaction (TPR).

8. R. Barthos, **A. Széchenyi, F. Solymosi**

Decomposition and aromatization of ethanol on ZSM-based catalysts

J. Phys. Chem. B 110 (2006) 21816.

Impact factor: 4.115

9. R. Barthos, **A. Széchenyi, F. Solymosi**

The decomposition of ethanol over Mo₂C/carbon catalysts

Appl. Catal. A 327 (2007) 95.

Results

1. Deposition of Mo₂C changed the catalytic performance of the ZSM-5, and promoted the dehydrogenation and aromatization processes.
2. Reaction products determined at zero conversion on Mo₂C/ZSM-5 samples suggested that aromatics are formed in the secondary processes very likely in the reactions of olefins formed in the primary reactions.
3. Mo₂C catalyzed the dehydrogenation and aromatization of examined hydrocarbons even when it was deposited on an inactive silica support, which suggested that the oligomerization and aromatization processes of hydrocarbons might proceed on the Lewis sites of the Mo₂C/SiO₂.
4. As Mo₂C exerted much less influences on the reaction of 1-butene occurring on ZSM-5 and only slightly enhanced the formation of aromatics, it was inferred that the alkyl species, the primary product of the activation of hydrocarbons on Mo₂C, is effectively converted to a compound leading to aromatics.
5. The Re catalyzed the dehydrogenation and aromatization of n-butane even when it was deposited on an inactive silica support.
6. Unsupported Mo₂C is an active catalyst in the dehydrogenation of n-octane yielding various octenes, and also in its the aromatization at 723-873 K. The main aromatic products are o-xylene, ethylbenzene, toluene and benzene in decreasing selectivity. It is assumed that the monofunctional mechanism operates.

7. The catalytic performance of Mo₂C is considerably enhanced when it was dispersed on Al₂O₃, SiO₂ and ZSM-5. The distribution of aromatics depended on the nature of the support. On Mo₂C/Al₂O₃ C₈ aromatics were the dominant products, whereas on Mo₂C/SiO₂ and Mo₂C/ZSM-5, their hydrogenolysis occurred to yield benzene and toluene. The results are explained by the bifunctional mechanism.

Publications

Papers related to this thesis:

1. F. Solymosi, R. Németh, **A. Széchenyi**
Aromatization of n-butane over supported Mo₂C catalysts
Catal. Lett. 82 (2002) 213.

Impact factor: 1.559

2. F. Solymosi, **A. Széchenyi**
Aromatization of n-butane and 1-butene over supported Mo₂C catalyst
J.Catal. 223 (2004) 221.

Impact factor: 4.063

3. F. Solymosi, P. Tolmacsov, **A. Széchenyi**
Reactions of propane and n-butane on Re/ZSM catalyst
Stud. Surf. Sci. Catal. 147 (2004) 559.

4. F. Solymosi, **A. Széchenyi**
Aromatization of isobutane and isobutene over Mo₂C/ZSM-5 catalyst
Appl. Catal. A 278 (2004) 111.

Impact factor: 2.378