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I. Introduction and aim

One of the main tasks of the heterogeneous catalytic research is to 

find new, more effective catalysts.

The catalytic properties of Mo2C are similar to platinum metals, for 

this reason it is suitable to substitute them. Both catalysts are used for 

activate C-H bonds and produce -CxHy species. Mo2C is a “softer” catalyst 

and enhances the lifetime of formed -CxHy species, providing an opportunity 

to stabilize these species by coupling or dehydrogenation. In the same 

reaction conditions the cracking of C-C bond occurs more likely on 

platinum metals than on Mo2C containing catalysts. On the other hand 

Mo2C is more resistant against catalytic poisons (like sulfur), and its price is 

lower than that of platinum metals.

We studied the dehydrogenation and aromatization processes of 

ethane and propane on Mo2C containing catalysts. Besides methane, these 

two hydrocarbons occur in large quantities in the natural gas, but ethane and 

propane formed in a noticeable amount in the chemical industry, for 

example in the oil refinery. Transformation of these hydrocarbons to more 

valuable compound is a very important task for the industry. Benzene, 

toluene and xylenes produced by aromatization of ethane and propane are 

very important starting materials for the organic chemical industry. The 

dehydrogenation of ethane and propane results in the formation of ethylene 

and propylene, and the polymerization of the later products is one of the 

basic processes in the plastics industry. Propylene is also useful for 

producing branched hydrocarbons with higher carbon number to improve 

the octane number of gasoline. The products of both the aromatization and 

the dehydrogenation are counted on comprehensive use in the industry, and 

the starting materials of these reactions are available in great quantities and 
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at relatively low cost. At the same time the catalytic features of supported 

Mo2C were not studied in these reactions, this explains our efforts in the 

characterization of these systems. 

In the second part of our work we performed experiments in 

ultrahigh vacuum condition to study another catalytic problem, the surface 

chemistry of isocyanic acid and icocyanate species on Pd(100) single crystal 

surface. 

The catalytic conversion of harmful gases arising from exhaust 

system of the vehicle is widely studied problem. The main processes are the 

reduction of nitrogen oxides (mainly nitrogen monoxide) to nitrogen, and 

the total oxidation of hydrocarbons and carbon monoxide (produced in the 

incomplete oxidation in the engine) to water and carbon dioxide. Oxygen 

atoms necessary for the CO oxidation to CO2 come from O2 cleavage or 

from NO reduction. The latter reaction is especially remarkable, because the 

oxygen atoms created by reduction of NO directly oxidize the CO molecule 

without other components (for example oxygen gas) or other reaction steps, 

while harmless nitrogen forms from the nitrogen monoxide. For this reason, 

the NO + CO reaction has been extensively studied in the past. The 

intermediate formed during the reaction is isocyanate, and investigation of 

this species is necessary to discover the reaction mechanism.

II. Experimental methods

Hexagonal Mo2C was prepared by temperature programmed 

reaction of MoO3 and a gas mixture containing 20 vol% methane and 

80 vol% hydrogen.
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Supported Mo2C catalyst was prepared by the carburation of 

calcined MoO3/SiO2 or MoO3/ZSM-5 in the catalytic reactor. MoO3/SiO2

and MoO3/ZSM-5 catalysts were prepared by impregnating silica (Cab-O-

Sil, surface area: 200 m2/g) or H-ZSM-5 (Si/Al = 55) with a basic solution 

of ammonium heptamolybdate to yield a nominal 2 wt% of MoO3. 

Catalytic reaction was carried out at 1 atm of pressure in a fixed-

bed, continuous-flow reactor consisting of a quartz tube. In most cases the 

flow rate was 12 ml/min. The carrier gas was Ar. The ethane or propane 

content was 12,5 %, which was kept constant in all experiments. Generally 

0,5 g of loosely compressed catalyst sample was used. Reaction products 

were analyzed gas chromatographically with a Hewlett–Packard 5890 

Series II gas chromatograph and a Porapak QS column using both the 

thermal conductivity and flame ionization detectors. The selectivity values

of product formation represent the fraction of ethane or propane that has 

been converted into specific products taking into account the number of 

carbon atoms in the molecules. The supplementary method used was 

temperature-programmed desorption (TPD) with a heating rate of 5 K/min.

Infrared spectra were recorded with a Biorad Fourier transform IR 

spectrometer (FTS 155), the resolution was 4 cm-1. Catalysts were 

characterized by XPS (Kratos XSAM 800) measurements.

In the second part we used ultrahigh vacuum (UHV) system and 

reflection absorption infrared spectroscopy (RAIRS) to explore the surface 

chemistry of isocyanic acid and icocyanate species on Pd(100) single crystal 

surface. RAIRS experiments were completed with temperature-programmed 

desorption (TPD) measurements, in the course of which the desorbed 

species were detected by mass spectrometer (MS). Auger electron 

spectroscopy (AES) was applied to control the surface purity. 
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The experiments were performed in a two-level UHV system with a 

base pressure of 5x10-10 mbar. The lower part of the chamber had facilities 

for Auger electron spectroscopy (AES, Physical Electronics) to control the 

surface purity and temperature-programmed desorption (TPD), in the course 

of which the desorbed species were detected by mass spectrometer (MS, 

Balzers Prisma QMS 200). The upper part was equipped with a single-beam 

Fourier transform IR (FTIR) spectrometer (Mattson Unicam, Research 

Series), which was used for reflection absorption infrared spectroscopic

(RAIRS) measurements. All IR spectra were averaged over 512-1024 scans 

using an MCT detector cooled by liquid nitrogen at 4 cm-1 resolution. 

The palladium single crystal was cleaned by cycles of argon ion 

bombardment at room temperature and at 650 K (ion current: 11 μA, ion 

energy: 1,5 keV) and a short annealing to 1200 K. The gases used in the 

experiments were of 99,99 % purity. The preparation of HNCO involves the 

dropwise addition of a saturated aqueous solution of potassium cyanate 

(KOCN, BDH Chemicals, 98 % purity) to concentrated phosphoric acid 

(Baker, 85 % by weight in water) under vacuum. The HNCO vapor 

produced in this reaction was condensed at 190 K cooled by a dry 

ice/acetone bath under dynamic vacuum conditions. This product was twice 

statically vacuum distilled from 240 to 190 K to remove impurities. The 

purity of HNCO has been checked by MS. The HNCO was stored at LN2

temperature.
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III. New scientific achievements

1. The oxidative dehydrogenation of ethane on Mo2C/SiO2 catalyst

1.1. The unsupported Mo2C and the SiO2 support exhibited a very low 

catalytic activity for the oxidative dehydrogenation of ethane by carbon-

dioxide. Deposition of Mo2C on SiO2 caused a dramatic change in the 

catalytic performance and produced an effective catalyst. The reaction 

started about 800 K. 

1.2. The non oxidative dehydrogenation of ethane exhibited a similar 

catalytic activity on Mo2C/SiO2 but the presence of CO2 changed the 

products’ distribution: the main product was ethylene and the formation 

rate of aromatic product strongly diminished, thus the selectivity of 

ethylene significantly increased. At 873 K the conversion of ethane was 

14 % and the selectivity of ethylene was 89 %.

1.3. The cracking of ethane also occurred on Mo2C/SiO2 catalyst and 

produced methane. The presence of CO2 had no direct effect to this 

reaction. At the earliest minutes of the reaction the formation rate of 

methane decreased rapidly, which was connected to the rapid decrease 

of the number of strongly acidic catalytic sites sufficient to cracking. 

We assumed that these sites were blocked by surface carbon.

1.4. The conversion of ethane had two main parallel reactions: the oxidative 

dehydrogenation and the cracking. The change of experimental 

conditions had oppositely effect to these reactions. Rise of the 

temperature or increase the contact time were favorable to the cracking, 

but the lower temperature or shorter contact time were advantageous for 

dehydrogenation.
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5. Surface chemistry of HNCO and NCO on Pd(100) single crystal

5.1. We found that HNCO adsorbed molecularly on Pd(100) surface at 

100 K. With the rise of the temperature above 120 – 140 K HNCO 

dissociated forming hydrogen and adsorbed NCO species. NCO species 

was very unstable on a clean surface and totally decomposed to 

adsorbed CO and N atoms at 280 – 300 K.

5.2. Strong interaction was observed between adsorbed NCO molecules, and 

this interaction became weaker with the decrease of the surface 

coverage. Formed and added CO had no influence to the bond strength 

of adsorbed NCO.

5.3. The spectral property of CO produced by NCO decomposition and CO 

adsorbed on Pd(100) was different, due to the different surface 

geometry of carbon-monoxide. We assumed that the NCO and CO, and 

the NCO and O occupy different surface sites.

5.4. Preadsorbed oxygen promotes the dissociation of HNCO and resulted in 

about 50 % more adsorbed NCO. Preadsorbed oxygen also enhances 

the stability of NCO: its decomposition occurred only between 380 and 

420 K. The oxygen also lowered the rate of decomposition up to 340 K.

Preadsorbed or gas phase hydrogen had no effect on the stability of 

surface NCO.
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2. Dehydrogenation of propane on Mo2C and Mo2C/SiO2 catalysts

2.1. In the course of TPD measurement performed after propane adsorption 

at 298 K we found that propane didn’t interact with SiO2 support. We 

detected weakly bonded propane desorption from the unsupported 

Mo2C surface. At higher temperature a small amount of propylene was 

also detected. In case of Mo2C/SiO2 catalyst physisorbed propane and at 

higher temperature strongly bonded ethylene and propylene desorbed 

from the sample. Our result was verified by IR measurements studied 

by our colleagues.

2.2. On unsupported Mo2C catalyst the main process at 873 K was the 

dehydrogenation of propane to propylene. The conversion of propane 

was 7 % and the selectivity of propylene was 44 %. The cracking of 

propane also occurred: the selectivity of ethylene and methane was 

33 % and 21 %. We didn’t found any sign of aromatization processes.

2.3. The conversion of propylene on pure Mo2C led to the formation of 

totally new products. We found C4 and C6 hydrocarbons and small 

amount of benzene. From this we concluded that the smaller 

hydrocarbons produced from the cracking of propane, not from the 

propylene created by the propane dehydrogenation. The 

dehydrogenation and the cracking of propane are two parallel processes.

2.4. The Mo2C/SiO2 catalyst was effective in the dehydrogenation of 

propane. At 873 K the conversion of propane was 31 %. The main 

process was the dehydrogenation of propane to propylene with high 

selectivity (38 %). Cracking of propane also occurred, the selectivity of 

ethylene and methane was 13 and 16 %. We also found aromatization 

processes. The total selectivity of benzene and toluene was 23 %. With 

the decrease of the temperature the dehydrogenation process gone to the 
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foreground, and the cracking and aromatization processes were 

diminished on Mo2C/SiO2 catalyst. Thus the selectivity of propylene 

increased with the decrease of temperature. At 813 K it was more than 

80 %.

3. Dehydrogenation of propane on ZSM-5 and Mo2C/ZSM-5 catalysts

3.1. We found that propane interacts strongly with H-ZSM-5 and 

Mo2C/ZSM-5 catalysts. In the course of TPD measurement after 

propane adsorption at 298 K we found weakly bonded propane 

desorption from both catalysts at low temperature. At higher 

temperature ethylene, methane and propylene were detected from the 

strongly bonded surface species. Our TPD results were proved by IR 

measurements in separate studies.

3.2. The H-ZSM-5 support was an active catalyst in the conversion of 

propane, and the deposition of Mo2C on it did not change the activity 

remarkably, but the products’ distribution was very different. Due to the 

dehydrogenation effect of Mo2C the selectivity of aromatic products

increased, the selectivity of the cracking products, however, decreased.

3.3. We assumed that during the carburation of MoO3/ZSM-5 the most 

active acidic sites of the catalyst reacted with the hydrocarbon content 

of the gas mixture, and the produced carbon decreased the activity of 

these centers. The other possibility effect is that the formed Mo2C 

islands covered these centers, and decrease their acidic properties. The 

activity of remained acidic sites is enough to aromatization, but it is too 

week for the cracking reaction detected on pure support.
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4. Oxidative dehydrogenation of propane on Mo2C/SiO2 catalyst

4.1. It has been found that silica supported Mo2C is an effective and 

selective catalyst for propane oxidative dehydrogenation by carbon-

dioxide. The activity of the Mo2C/SiO2 catalyst lowered in the presence 

of CO2. At 873 K the propane conversion was 31 % without CO2 and 

reduced to 6 % in the presence of CO2. The products’ distribution,

however, greatly altered. Due to the presence of CO2 the main process 

was the dehydrogenation of propane, and the selectivity of propylene

increased to 82 % from 38 %. Very little amount of aromatic products 

formed.

4.2. We assumed that CO2 opened a new reaction route to the conversion of 

propane. The first step in the oxidative dehydrogenation process is the 

partial oxidation of Mo2C with CO2 and the formation of Mo 

oxycarbide. Propane adsorbs on the Mo2C surface and reacts with the 

active oxygen attached to Mo to produce propylene and water. Due to 

this reaction mechanism the active oxygen left the system as water, and 

the adsorption of another CO2 molecule was necessary to recover the 

activity of the catalytic site, to rebuild the Mo oxycarbide form. Our 

conception was strengthened by separate XPS measurements. 

4.3. Reduction of contact time had no effect to the products’ distribution. 

This indicates that the dehydrogenation reaction was independent from 

the cracking reaction. With the rise of the temperature the 

dehydrogenation of propane fell into the background and the cracking 

became the main process. The selectivity of ethylene and methane 

increased while the selectivity of propylene decreased.


