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Abstract: Ghrelin is an orexigenic neuropeptide that is known for stimulating the release of growth
hormone (GH) and appetite. In addition, ghrelin has been implicated in addiction to drugs such
as nicotine. Nicotine is the principal psychoactive component in tobacco and is responsible for
the reward sensation produced by smoking. In our previous in vitro superfusion studies, it was
demonstrated that ghrelin and nicotine stimulate equally the dopamine release in the rat amygdala,
and ghrelin amplifies the nicotine-induced dopamine release in the rat striatum. However, less
attention was paid to the actions of ghrelin and nicotine in the bed nucleus of the stria terminalis
(BNST). Therefore, in the present study, nicotine and ghrelin were superfused to the BNST of male
Wistar rats, and the dopamine release from the BNST was measured in vitro. In order to determine
which receptors mediate these effects, mecamylamine, a non-selective nicotinic acetylcholine receptor
(nAchR) antagonist, and GHRP-6, a selective growth hormone secretagogue receptor (GHS-R1A)
antagonist, were also superfused to the rat BNST. Nicotine significantly increased the release of
dopamine, and this effect was significantly inhibited by mecamylamine. Ghrelin increased dopamine
release even more significantly than nicotine did, and this effect was significantly inhibited by GHRP-
6. Moreover, when administered together, ghrelin significantly amplified the nicotine-induced release
of dopamine in the BNST, and this additive effect was reversed partly by mecamylamine and partly
by GHRP-6. Therefore, the present study provides a new base of evidence for the involvement of
ghrelin in dopamine signaling implicated in nicotine addiction.
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1. Introduction

Nicotine is the principal psychoactive component in tobacco that is responsible for
the reward sensation produced by smoking [1]. Nicotine exerts its psychoactive effects
through nicotinic acetylcholine receptors (nAchRs) expressed in the central nervous system
(CNS) [2]. During smoking, nicotine gets into the blood circulation, passes the blood-brain
barrier, reaches the brain within seconds, and activates the nAchR found in the midbrain,
resulting in the release of dopamine that mediates the reward sensation produced by
smoking [3,4]. Actually, there are three major dopaminergic pathways in the brain, called
the mesolimbic, the nigrostriatal, and the tuberoinfundibular pathways [5]. The mesolimbic
pathway emerges from the ventral tegmental area (VTA) and sends projections to the
amygdala and the ventral striatum, the latter being represented by the nucleus accumbens
(NAcc) but also the prefrontal cortex [6]. The mesolimbic pathway mediates reward
sensation and affects and regulates cognitive functions such as learning and memory [2].
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The nigrostriatal pathway arises from the substantia nigra pars compacta (SNc) and projects
to the dorsal striatum, including the putamen and the nucleus caudatus (PNC) [7]. The
nigrostriatal pathway modulates posture and motor behavior and mediates the learning
of motor habits and decision-making [7,8]. The tuberoinfundibular pathway starts in the
nucleus arcuatus (NArc), also known as the infundibular nucleus, located in the tuberal
region of the hypothalamus, innervates the median eminence, and ends at the level of the
anterior pituitary [9,10]. The dopamine released from these nerve endings tonically inhibits
the secretion of prolactin in the anterior pituitary [9,10]. Nicotine stimulates the mesolimbic
and nigrostriatal dopaminergic pathways via different subtypes of nAchR, resulting in
the release of dopamine in the ventral striatum that mediates the sensation of reward but
also the release of dopamine in the dorsal striatum that promotes locomotion [11,12]. This
observation is supported by in vitro studies in which nicotine superfused to the striatum
stimulated dopamine release in rats [13,14], and this stimulatory effect was prevented by
superfusion of the non-selective nAchR antagonist mecamylamine [15,16]. The observation
is also supported by in vivo studies, since nicotine infused into the striatum increased
dopamine output and locomotor activity in freely moving rats, and these increasing effects
were reversed by infusion of mecamylamine [15,16].

Ghrelin is an orexigenic neuropeptide that is known for stimulating the release of
growth hormone (GH) and appetite [17,18]. Isolated first from the rat stomach, ghrelin
can be transported through the blood and vagal nerve to exert its effects on the brain via
the growth hormone secretagogue receptor (GHS-R). GHS-R has two isoforms, GHS-R1A
and GHS-R1B [19]: GHS-R1A plays a role in the regulation of food intake and energy
balance, but also drug addiction [20], while GHS-R1B seems to modulate the activity of
GHS-R1A [21]. There is a growing body of evidence demonstrating that ghrelin plays
an important role in the reward sensation produced by addictive drugs such as alcohol,
amphetamine, cocaine, morphine, and nicotine [4,22–26]. Ghrelin contributes to the reward
sensation, probably acting through the GHS-R1A scattered along the so-called cholinergic-
dopaminergic reward link [27–32]. The cholinergic-dopaminergic reward link consists of
the afferent cholinergic projection that starts in the laterodorsal tegmental area (LDTA) and
projects to the VTA, and the mesolimbic, mesocortical, or mesolimbicocortical dopaminergic
pathway that emerges from the VTA and sends projections to the amygdala, the ventral
striatum represented by the NAcc, and the prefrontal cortex [33]. This is demonstrated by
previous in vitro studies in which ghrelin superfused to the striatum and the amygdala
and increased dopamine release in both brain regions [34,35]. This is also demonstrated by
in vivo studies in which ghrelin injected peripherally or directly into the VTA increased
dopamine release in the NAcc, increasing locomotor activity and food consumption in
rats [36–38].

As regards the interaction between ghrelin and nicotine, previous studies focused
mainly on their actions on the typical dopaminergic areas, such as the VTA, SNc, striatum,
and amygdala, in which ghrelin and nicotine had a similar stimulatory effect on the
extracellular dopamine output [22,27–32,34,35]. For example, in our previous in vitro
superfusion studies, it was demonstrated that ghrelin and nicotine stimulate equally the
dopamine release in the rat amygdala, and ghrelin amplifies the nicotine-induced dopamine
release in the rat striatum [34,35]. However, less attention was paid to the actions of ghrelin
and nicotine in the bed nucleus of the stria terminalis (BNST) [39–42]. The BNST was first
described a century ago as a band or ridge of gray matter lying medially to the caudate
nucleus [42]. Anatomically, it is located ventral to the septum, above and below the anterior
commissure, and before the hypothalamus, and it is enclosed by the globus pallidus of
the basal ganglia on both sides. The BNST can be divided into anterior and posterior
divisions that are comprised of up to 18 subregions [43]. The anterior division includes
the anterolateral, the anteromedial, the oval, the fusiform, the juxtacapsular, the rhomboid,
the dorsomedial, the ventral, and the magnocellular nuclei [43]. The posterior division of
the BNST comprises the principal, the interfascicular, and the transverse nuclei. Despite
its small size in anatomical preparations, the BNST was postulated to have a key role in
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physiological and pathological processes, including stress, anxiety, and depression [43].
Functionally, the BNST is an important relay station in the extended amygdala circuit that
consists of the central nucleus of the amygdala (CeA), the BNST, and the shell of the NAcc
(shNAcc); the extended amygdala, including the BNST, is considered to be an interface
between reward and stress systems, in which dopamine signaling could be implicated [44]
(Figure 1).
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Figure 1. Sagittal section of the rat brain. The BNST is an important relay station in the extended
amygdala circuit that consists of the central nucleus of the amygdala (CeA), the bed nucleus of the
stria terminalis (BNST), and the shell of the nucleus accumbens (shNAcc).

Therefore, in the present study, nicotine and ghrelin were superfused to the BNST
of male Wistar rats, and the dopamine release from the BNST was measured in vitro. In
order to determine which receptors mediate these effects, mecamylamine, a non-selective
nAchR antagonist, and GHRP-6, a selective GHS-R1A antagonist, were also superfused to
the rat BNST.

2. Materials and Methods
2.1. Animals

Male Wistar rats weighing 150–250 g (N = 6) were used for each in vitro experiment.
The rats were treated in accordance with the ARRIVE guidelines, and the experiments were
carried out in accordance with the EU Directive 2010/63/EU for animal experiments. They
were housed together and kept in their home cages at a constant temperature on a standard
illumination schedule with 12 h light and 12 h dark periods (lights on at 6:00). Commercial
food and tap water were available ad libitum. After all, the rats were decapitated; however,
every effort was made to limit the number of animals used and minimize animal suffering.

2.2. Substances

The agonists used, such as nicotine and ghrelin, were provided by B. Braun Inc.,
Melsungen, Germany, and Bachem Inc., Bubendorf, Switzerland, respectively. The antago-
nists used, such as mecamylamine and GHRP-6, were purchased from Sigma-Aldrich Inc.,
St. Louis, MO, USA. The Krebs solution contained 113 mM NaCl, 4.7 mM KCl, 1.2 mM
MgSO4, 25 mM NaHCO3, 11.5 mM glucose, 1.2 mM KH2PO4, and 2.5 mM CaCl2, solutions
that were provided by Reanal Ltd., Budapest, Hungary. The tritium-labeled dopamine
([3H]DA) and the Ultima Gold scintillation fluid were ordered from Perkin-Elmer Inc.,
Waltham, MA, USA. The superfusion system itself was purchased from MDE Ltd., Heidel-
berg, Germany, and the method itself was originally described by Gaddum [45].
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2.3. Dissection

After the rats were decapitated, their brains were rapidly removed and dissected in
a Petri dish filled with an ice-cold Krebs solution. The BNST was isolated and extracted
according to a stereotaxic atlas of the rat brain [46]. The stereotaxic coordinates were
antero-posterior = +7.8 mm from the interaural line; lateral = 4 mm from the medial suture;
and dorso-ventral = −5.8 mm from the skull. After extraction, the BNST was cut into slices
of 300 µM with a McIlwain tissue chopper.

2.4. Incubation

The BNST slices obtained were incubated in 8 mL of Krebs solution, submerged in
a water bath at 37 ◦C, and gassed through a single-use needle with a mixture of 5% CO2
and 95% O2 for 30 min. During the incubation, 5 µL of [3H]DA with a concentration of
1 mCi/mL and a specific activity of 60 Ci/mmol was added to the incubation medium with
a Hamilton microliter syringe.

2.5. Superfusion

Six BNST slices were transferred to each of the cylindrical chambers of the superfusion
system and superfused with Krebs solution for 30 min. A multichannel peristaltic pump
(Gilson Minipuls 2, Gilson, Middleton, WI, USA) was used to maintain the superfusion
rate constant at 300 µL/min. After 30 min of superfusion, the BNST slices were superfused
for 32 min more, and during this time the fractions were collected in Eppendorf tubes by a
multichannel fraction collector (Gilson FC 203B, Gilson, Middleton, WI, USA).

2.6. Treatment

The BNST slices were treated with 100 µM nicotine and/or 1 µM ghrelin 20 min after
the superfusion had started and eventually pre-treated with 100 µM mecamylamine and/or
with 1 µM GHRP-6, a selective GHS-R1A antagonist, 10 min after the superfusion had
started. The doses of the agonists (nicotine and ghrelin) and antagonists (mecamylamine
and GHRP-6) were based on previous in vitro superfusion studies [34,35].

2.7. Electrical Stimulation

After 32 min of superfusion (that means that after 2 min of the time, the fractions
were collected in Eppendorf tubes), electrical stimulation was carried out. The electrical
stimulation consisted of square wave impulses with a voltage of 100 V, a pulse length of
5 ms, and a frequency of 10 Hz. The electrical impulses were delivered to each of the four
chambers for 2 min, as golden electrodes were previously attached to both halves of the
superfusion chambers and connected to an ST-02 electrical stimulator.

2.8. Homogenization

After the next 30 min of superfusion, the remaining BNST slices were removed and
solubilized in 200 mL of Krebs solution using an ultrasonic homogenizer (Branson Sonifier
250, Emerson, St. Louis, MO, USA). The homogenized slices and the collected samples
were mixed with 3 mL of Ultima Gold scintillation fluid in glass vials.

2.9. Measurement

The glass vials were transferred to a liquid scintillation spectrometer (Tri-carb 2100TR,
Packard, Conroe, TX, USA) that measured the radioactivity emitted from the vials. The
fractional [3H]DA release was calculated as a percentage of the radioactivity present in the
collected samples relative to that of the remaining slices, which were expressed in counts
per minute (CPM).

2.10. Statistical Analysis

Statistical analysis of the results was performed by repeated measures of analysis of
variance followed by Tukey’s post-hoc test for pair-wise comparison (Stata13, StataCorp,
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College Station, TX, USA). A probability level of 0.05 or less (p ≤ 0.05) was accepted as
indicating a statistically significant difference.

3. Results

Nicotine significantly increased the fractional [3H]DA release from rat BNST after
electrical stimulation (F(3,31) = 19.78; p < 0.001), an effect that was inhibited significantly
by mecamylamine (F(3,31) = 19.78; p < 0.001) (Figure 2). Ghrelin increased even more
significantly the fractional [3H]DA release from rat BNST after electrical stimulation than
nicotine did (F(3,31) = 16.58; p < 0.001), an effect that was inhibited significantly by GHRP-6
(F(3,31) = 16.58; p < 0.001) (Figure 3).
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Figure 2. The effects of nicotine and mecamylamine on the dopamine release from the BNST. Nicotine
significantly increased the fractional [3H]DA release from rat BNST after electrical stimulation, an
effect that was significantly inhibited by mecamylamine. * indicates a statistically significant difference
for agonist vs. control, whereas # indicates a statistically significant difference for agonist + antagonist
vs. agonist alone.

Biomedicines 2023, 11, x FOR PEER REVIEW 5 of 13 
 

2.10. Statistical Analysis  

Statistical analysis of the results was performed by repeated measures of analysis of 

variance followed by Tukey’s post-hoc test for pair-wise comparison (Stata13, StataCorp, 

College Station, TX, USA). A probability level of 0.05 or less (p ≤ 0.05) was accepted as 

indicating a statistically significant difference.  

3. Results 

Nicotine significantly increased the fractional [3H]DA release from rat BNST after 

electrical stimulation (F(3,31) = 19.78; p < 0.001), an effect that was inhibited significantly 

by mecamylamine (F(3,31) = 19.78; p < 0.001) (Figure 2). Ghrelin increased even more sig-

nificantly the fractional [3H]DA release from rat BNST after electrical stimulation than 

nicotine did (F(3,31) = 16.58; p < 0.001), an effect that was inhibited significantly by GHRP-

6 (F(3,31) = 16.58; p < 0.001) (Figure 3). 

 

Figure 2. The effects of nicotine and mecamylamine on the dopamine release from the BNST. Nico-

tine significantly increased the fractional [3H]DA release from rat BNST after electrical stimulation, 

an effect that was significantly inhibited by mecamylamine. * indicates a statistically significant dif-

ference for agonist vs. control, whereas # indicates a statistically significant difference for agonist + 

antagonist vs. agonist alone. 

 
Figure 3. The effects of ghrelin and GHRP-6 on the dopamine release from the BNST. Ghrelin
significantly increased the fractional [3H]DA release from rat BNST after electrical stimulation, an
effect that was significantly inhibited by GHRP-6. * indicates a statistically significant difference for
agonist vs. control, whereas # indicates a statistically significant difference for agonist + antagonist
vs. agonist alone.
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Moreover, when administered together, ghrelin significantly amplified the nicotine-
induced release of fractional [3H]DA release from rat BSNT after electrical stimulation
(F(3,31) = 13.19; p < 0.001) (Figure 4), and this additive effect was partly reversed by
mecamylamine (F(3,31) = 16.58; p < 0.001) and GHRP-6 (F(3,31) = 13.5; p < 0.05) (Figure 5).
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significantly amplified significantly the nicotine-induced fractional [3H]DA release from rat BSNT
after electrical stimulation. * indicates a statistically significant difference for agonist vs. control.
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Figure 5. The effects of nicotine, ghrelin, mecamylamine, and GHRP-6 on the dopamine release from
the BNST. The additive effect of nicotine and ghrelin on the fractional [3H]DA release from rat BSNT
after electrical stimulation was partly reversed by mecamylamine and partly by GHRP-6. * indicates a
statistically significant difference for agonist vs. control, whereas # indicates a statistically significant
difference for agonists + antagonists vs. agonists.

4. Discussion

Nicotine significantly increased the release of dopamine from the rat BNST after
electrical stimulation, and this effect was inhibited significantly by mecamylamine, a non-
selective nAchR antagonist. This finding is concordant with previous in vivo and in vitro
studies, which indicated that nicotine stimulates dopamine release in several subcortical
and cortical brain regions [47–50]. This stimulatory effect of nicotine on dopamine must be
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mediated by different nAchR subtypes expressed on the dopaminergic terminals found in
the BNST [1] and may contribute to the reward sensation produced by nicotine [5,51]. As
we mentioned before, the BNST is a heterogeneous brain region that can be divided into
anterior and posterior divisions and that can be further divided into 18 subregions [43].
Both the anterior division (that includes the anterolateral, the anteromedial, the oval, the
fusiform, the juxtacapsular, the rhomboid, the dorsomedial, the ventral, and the magnocel-
lular nuclei) and the posterior division (that comprises the principal, the interfascicular, and
the transverse nuclei) receive and send distinct cholinergic, noradrenergic, dopaminergic,
GABA-ergic, and glutamatergic projections [43]. Dopaminergic inputs that may underlie
the rewarding action of nicotine originate from the VTA and periaqueductal gray (PAG),
project primarily into the dorsolateral subdivision of the BNST, and synapse directly onto
CRF neurons [52]. However, which of the two major dopaminergic inputs (originating in
the VTA or PAG) to the BNST drives this behavior is not known [52]. There are multiple
studies demonstrating that dopamine signaling in the BNST is implicated in the sensation
of reward produced by addictive drugs, such as nicotine. Dose-dependent increases of
extracellular dopamine in the BNST were observed after the administration of artificial
drugs such as nicotine [53]. Moreover, increased release of dopamine in the BNST was
described following exposure to natural rewarding substances, such as sucrose [54,55].
Furthermore, blocking dopamine (D1) receptors in the BNST reduced ethanol and sucrose
self-administration [56]. Nevertheless, there are several studies suggesting that dopamine
signaling in the BNST may also play a role in the negative effects induced by nicotine
withdrawal [57,58]. In accordance, neurons within diverse nuclei and subnuclei of the
BNST were demonstrated to co-express a variety of neuropeptides, such as corticotropin-
releasing factor (CRF) and neuropeptide Y [59], and the dysfunction of these neuropeptides
may contribute to stress reactions, anxiety, and depression, which can be observed during
nicotine withdrawal [43].

Ghrelin increased even more significantly the release of dopamine from the rat BNST
after electrical stimulation than nicotine did, and this effect was inhibited significantly
by GHRP-6, a selective GHS-R1A antagonist. This finding is supported by in vivo stud-
ies, which reported that the administration of ghrelin induces the concomitant release
of ventral tegmental acetylcholine and accumbal dopamine, which is associated with
the locomotor hyperactivity induced by ghrelin [22,29,30,32]. The stimulatory effect of
ghrelin on dopamine and locomotion must be mediated by GHS-R1A scattered along the
cholinergic-dopaminergic reward link, which consists of the afferent cholinergic projection
that starts in the LDTA and projects to the VTA, and the mesocortical or mesolimbico-
cortical dopaminergic pathway that emerges from the VTA and, among others, sends
projections to the ventral striatum represented by the NAcc [27,28,60–62]. Activation of the
cholinergic-dopaminergic reward link by ghrelin may lead to the stimulation of dopamine
release from the dopaminergic terminals found in the BNST [1] and may induce a similar
reward sensation to that produced by nicotine [5,50]. One of the most important dopamine
inputs to the BNST arises from the VTA and projects into the dorsolateral subdivision of
the BNST [57]. However, most of the BNST neurons are GABA-ergic (~97%) and some of
them are glutamatergic (~3%) [43]. Therefore, ghrelin may activate locally the GABA-ergic
and glutamatergic neurons, which may have an impact on the dopaminergic termina-
tions within the BNST [54–56,60,63]. Generally, changes in the firing rate of dopaminergic,
GABA-ergic, and glutamatergic neurons and axons in the BNST can evoke distinct affec-
tive states and motivated behaviors that may participate in both positive and negative
reinforcement of drugs, including nicotine [64,65]. Continuously seeking the positive re-
inforcement produced by nicotine and avoiding the negative reinforcement induced by
nicotine withdrawal can result in a relapse to smoking, especially in periods of stress, and
spiral into nicotine addiction [1,65]. Specifically, the GABA-ergic and glutamatergic inputs
of the anterior BNST may emerge from several cortical and limbic brain regions, such as
the prefrontal cortex and the basolateral nucleus of the amygdala (BLA), innervate different
nuclei of the BNST, such as the oval nucleus, and project to other limbic regions, such as the
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VTA and CeA [44]. The posterior BNST receives GABA-ergic input from the lateral septum,
different nuclei of the amygdala, and glutamatergic input from the paraventricular region
of the thalamus and different regions of the hippocampus. It innervates the dorsolateral
subdivision of the BNST and sends projections to the ventral striatum, dorsal striatum,
and paraventricular nucleus (PVN) of the hypothalamus, through which it modulates the
activity of the hypothalamic-pituitary-adrenal (HPA) axis, also known as the stress axis [43].
Ghrelin is believed to activate the HPA axis directly by increasing the release of CRF at
the hypothalamic level; however, an interaction of ghrelin with CRF at the level of the
BNST cannot be excluded either [17,37]. In addition, the anterior division of the BNST
is rich in CRF receptor type 1 (CRFR1), whereas the posterior division is richer in CRF
receptor type 2 (CRFR2) [43], and a dysbalance between these receptors may contribute
to hyperactivity of the HPA axis, anxiety, and depression, which can be observed during
nicotine withdrawal [57].

Moreover, when administered together, ghrelin significantly amplified the nicotine-
induced release of dopamine from the rat BNST after electrical stimulation, and this effect
was partly reversed by mecamylamine and partly by GHRP-6 (Figure 6).
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Figure 6. Coronal section of the rat brain. Nicotine increased significantly the release of dopamine
(DA) from the rat bed nucleus of stria terminalis (BNST), ghrelin increased it even more significantly
than nicotine did, and, when administered together, ghrelin amplified significantly the nicotine-
induced release of dopamine from the rat BNST.

Our previous in vitro superfusion studies led to similar results, as ghrelin and nico-
tine stimulated equally the dopamine release in the rat amygdala, and ghrelin amplified
even more the nicotine-induced dopamine release in the rat striatum [30,31]. Despite the
different anatomical aspects and physiological functions attributed to the BNST, amygdala,
and striatum, there is a strong functional correlation between these brain regions. On the
one hand, the BNST is an important relay station for both the cholinergic-dopaminergic
reward link and the extended amygdala circuit. On the other hand, the dopaminergic
neurons of the VTA send projections to each part of the extended amygdala, including the
shNAcc, the BNST, and the CeA [10]. Thereby, besides the amygdala and the striatum,
a possible place of interaction between ghrelin and nicotine could be the BNST, and the
mechanism would be the activation of cholinergic, GABA-ergic, or glutamatergic neurons
with an impact on the dopaminergic terminations found at the level of the BNST. Both
animal experiments and human studies indicate the existence of an interaction between
ghrelin and addictive drugs such as nicotine [25,66]. Most notably, ghrelin was implicated
in reward sensation and drug-seeking behavior induced by alcohol, and the ghrelin re-
ceptor was suggested to be a possible pharmacological target in the treatment of alcohol
addiction [67–76]. Nevertheless, there is also an evident connection between ghrelin and
nicotine. For instance, higher plasma ghrelin levels were found in smokers when compared
to non-smokers [77,78]. However, the level of salivary ghrelin was found to decrease
acutely after smoking a cigarette, and plasma ghrelin also decreased after a certain period
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of abstinence from tobacco, which was considered a rebound effect after smoking [79–81].
Some authors even suggested that ghrelin levels could be used as a biomarker for increased
risk of relapse to smoking [82–85]. Consequently, they revealed that ghrelin levels have a
prognostic value that is independent of the severity of the negative effects characteristic of
nicotine withdrawal or craving [82–85]. Overall, these studies indicate a positive associa-
tion between smoking and ghrelin levels, an association that is reversed during abstinence,
particularly among those likely to remain abstinent. Based on the previous and present
studies, ghrelin may be used as a prognostic tool, and the ghrelin receptor may serve as a
pharmacological target in the treatment of nicotine addiction.

5. Conclusions

The present study provides a new base of evidence for the contribution of ghrelin to
dopamine signaling implicated in nicotine addiction. In addition, the amygdala and the
striatum, a possible place of interaction between ghrelin and nicotine could be the BNST,
and the mechanism would be the activation of cholinergic, GABA-ergic, or glutamatergic
neurons with an impact on the dopaminergic terminations found at the level of the BNST.
However, the intimate mechanism of how ghrelin interacts with nicotine remains to be
elucidated. Both animal experiments and human studies indicate the existence of an
interaction between ghrelin and addictive drugs, such as nicotine. Taken together, these
studies indicate a positive association between smoking and ghrelin level, an association
that is reversed during abstinence, particularly among those likely to remain abstinent.
Therefore, our preclinical study may have clinical implications, as it suggests that ghrelin
may be used as a prognostic tool and the ghrelin receptor may serve as a pharmacological
target in the treatment of nicotine addiction.
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