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1. Forewords

The aim of this research is, first, to develop deterministic and stochastic
models to simulate the spread of infectious diseases. Second, inspired by
COVID-19, we aim to explore how immunity, shaped by pathogen evolution,
influences the dynamics of outbreaks.

The motivation behind this research comes from the limitations of clas-
sical epidemiological models in capturing the complexities observed during
real-world outbreaks. The COVID-19 pandemic, in particular, highlighted
the dynamic nature of disease transmission, influenced by emerging variants,
evolving contact patterns across time and space, and changing immunity
within the population.

We begin with an overview of the fundamental SIR epidemiological
model, followed by a discussion of its key features, such as equilibrium points
which are essential for analyzing the model’s behavior.

Then, we propose two epidemiological models of disease transmission
dynamics that accounts for the emergence of new strains through virus
mutations, inspired by the COVID-19 pandemic. We analyze how time
varying social distancing measures and differing assumptions about cross-
immunity affect disease prevalence and strain dynamics. Our findings high-
light that while a sequential pattern of strain replacement occurs when im-
munity is only against earlier strains, more complex dynamics, such as the
co-circulation of multiple strains, emerge when immunity is strain-specific.
These results are compared with genomic patterns observed during the
COVID-19 pandemic.

Next, we explore the application of the SIR model within network struc-
tures. We emphasize the need for stochastic modeling to capture the com-
plexities of disease transmission, particularly in the context of COVID-19.
By analyzing the dynamics of virus spread across different networks, we
investigate how network features influence disease propagation. We also ex-
amine the effects of viral mutations and immunity on transmission patterns,
and evaluate the effectiveness of social distancing strategies in controlling
outbreaks.

Finally, we address the challenge of predicting viral evolution by devel-
oping a novel model by considering a trade-off between immunity evasion
and transmissibility. The model identifies that highly transmissible strains
tend to evolve toward immune evasion, while less contagious strains shift
toward increased transmissibility. By assuming a linear trade-off, we derive
a non-linear difference equation to describe long-term evolutionary patterns.
Our analysis provides criteria for evolutionary convergence, identifies cycli-



cal patterns in strain evolution, and reveals conditions under which viral
evolution becomes chaotic.

2. Introduction

A simple SIR model with demography is obtained by the following sys-
tem, where each equation describes the rate of change of the compartments
over time [1]:

$(t) = —BSWI(E) + - uS(@),
I(t) = BS@)I(t) — yI(t) — pl (), (1)
R(t) = 7I(t) — pR(2).

The generation of susceptible individuals in this model is given by re-
cruitment rate g > 0, which also equals the per capita death rate. They
become infected at rate 5S(t)I(t), and infected individuals recover at rate
~I(t).

The basic reproduction number is defined as Rg = % The disease-free
equilibrium is given by (S*, I*, R*) = (1,0,0). If Ry > 1, the model admits
a biologically meaningful endemic steady state that is asymptotically stable:
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3. Epidemic patterns of emerging variants with dynamical social
distancing

Motivated by the emergence of new variants during the COVID-19 pan-
demic, we propose two scenarios that arise under different assumptions re-
garding cross-immunity.

3.1. First Scenario: One-Way Cross-Immunity Towards FEarlier
Variants

In this scenario, individuals who have recovered from strain j (j =
1,2,...,n) are fully immune to any strain ¢ where i < j, but they have
no immunity to subsequent strains.

In the early stage of the epidemic, no social distancing measures are
in place (0 = 1). Subsequently, when the infected population reaches a
threshold of L/~ (corresponding to a daily incidence of L), we implement
social distancing measures to stabilize the infected population at this fixed



n
level, > I; = L/~. As the number of infections from the initial strain
j=1
diminishes due to recoveries, the newly emerged strains will sequentially
replace the previous ones in dominance (left hand side of Fig. 3.1).
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Figure 3.1: Infected population of each strain of Scenario 1 (left) and Scenario 2 (right).
N =105 L =1500,v=0.25 ="75x10"".

We also highlight the impact of the daily number of allowable new infec-
tions on the implementation of social distancing measures over time: a higher
number of newly infected individuals per day corresponds to a higher o(¢),
indicating milder interventions for social distancing. As a dominant strain
wanes, we can relax the measures to some extent. However, as new strains
emerge and gain prominence, stricter measures become necessary once again,
leading to an oscillatory pattern in the intensity of interventions (Fig. 3.2,
left).

A natural question arises: do newer strains exhibit the same dominance
period as earlier ones? We illustrate that allowing more new individuals to
be infected by a strain results in a shorter duration of dominance and quicker
fade-out of that strain. Under this scenario, each subsequent strain exhibits
a shorter period of dominance compared to the previous ones. Conversely,
a higher allowed incidence corresponds to shorter dominance periods and a
faster emergence of novel strains (Fig. 3.2, right).
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Figure 3.2: Left: Relation between social distancing parameter, o(t), and L for ten strains
of the first scenario. Right: Relation between new infections per day (L(¢)) and duration
of persistence in the population.

3.2. Second Scenario: Absence of Cross-Immunity

Now, we consider a scenario where protection upon recovery from one
strain provides immunity only against that particular strain. In this scenario,
individuals who have recovered from a specific strain remain susceptible to
both old and new strains.

In this case, unlike in Scenario 1, recovered individuals are not immune
to old variants. Consequently, the behavior of the infected populations is
not as regular as those under the first scenario (right hand side of Fig. 3.1).

For each strain, the infections settle around the value L/yn over time.
In other words, for large ¢, we have: I;(t) ~ Ln fori=1,2,...,n.

This phenomenon can be intuitively explained as follows: In the first
scenario, susceptibility is limited to the new strains only, meaning recovered
individuals cannot be infected with old strains, and there is no mutation
from new strains to previous ones. Consequently, the earlier strains cannot
compete with newer ones and converge to zero, while the new ones rise to
L/~.

However, in Scenario 2, each strain infects all recovered individuals, who
have recovered from both new and old strains (except from the very same
strain), equalizing their potential pools. Moreover, the total number of in-
fected individuals is constrained to L/7, which is now distributed among n
equally competitive strains.

We also compare our model results with reported data on SARS-CoV-2
variants in the Netherlands during 2021-2022. The emergence and dom-
inance of first few variants such as Alpha and Delta, closely mirrors the
patterns under the Scenario 1 of our model. Notably, the durations of dom-
inance for these variants exhibit striking similarities between the model and



the empirical data. However, starting from June 2022, a significant shift
occurs, with the Omicron lineage accounting for the majority of SARS-CoV-
2 variants. Within the Omicron lineage, sub-variants such as BA.5 remain
prevalent, while newer sub-variants like BQ.1 are on the rise.

4. Modeling Disease Transmission in Networked Structures

Although traditional well-mixed models offer a foundational understand-
ing of disease spread dynamics, they overlook the detailed progression of an
epidemic through the diverse social and geographical settings of actual pop-
ulations. Such a shortfall may result in inaccurate predictions regarding the
initial outbreak and subsequent spread phases of an epidemic.

To comprehend the spread of infectious diseases within different popula-
tions, it is pivotal to explore the structure of networks that represent these
populations. Two fundamental types of random networks, Scale-Free net-
works (SF) and Random Spatial Geometric networks (RSG), offer contrast-
ing perspectives on network topology and its impact on disease dynamics.

4.1. Case Study: Tracking Infectious Diseases Across Networks

We investigate the spread of infectious diseases by comparing the two
described scenarios in Sec. 3, involving the mutation and immunity of viral
strains, and analyze the transmission dynamics across two different network
structures. The primary aim is to understand how these scenarios and net-
work topologies collectively influence the patterns of disease spread and the
effectiveness of interventions such as social distancing.

In both scenarios, a population of N individuals is represented as nodes
in a randomly connected graph. Viral strains are organized in a circular
network, where each strain can mutate to adjacent ones, with the last strain
looping back to the first. This structure shapes mutation dynamics.

In the first scenario (similar to the earlier second case), mutations occur
bidirectionally, i.e. strain i can mutate to ¢ + 1 or ¢ — 1, allowing contin-
uous strain circulation. With no cross-immunity, reinfections persist, and
infections from adjacent strains converge over time (Fig. 4.1 (a)).

In the second scenario (similar to the earlier first case), mutations proceed
unidirectionally, it means each strain mutates only to the next, with the last
strain k& mutating to 1. This leads to a sequential immune buildup and
eventual strain extinction due to a shrinking susceptible pool (Fig. 4.1 (b)).

Due to the RSG network’s spatial structure, where nearby nodes are more
likely to be connected, it exhibits a more uniform degree distribution and
lacks highly connected hubs. In contrast, the SF network, formed through
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Figure 4.1: Comparison of epidemic spread dynamics across SF and RSG networks (left
and right panels, respectively) for two scenarios. Simulations were conducted using the
Gillespie algorithm with N = 400 nodes and 100 iterations. Both networks have the same
number of edges, but the absence of hubs in the RSG network constrains transmission to
local neighborhoods, slowing the spread. (a) Scenario 1: Strains can mutate to adjacent
variants, and recovery does not grant immunity to other strains. SF networks show rapid
transmission due to hubs, while the RSG network exhibits slower, more localized spread.
(b) Scenario 2: Strains mutate sequentially, and recovery confers immunity only to pre-
vious strains. Despite equal connectivity, the RSG network again slows the epidemic due
to spatial structure, while SF networks facilitate broader spread through hubs.



preferential attachment, creates hubs that accelerate disease spread. Despite
having the same number of edges, transmission in the RSG network is slower,
as the absence of hubs limits rapid propagation. Instead, infections spread
gradually, constrained by local connectivity and spatial proximity.

4.2. Control Strategy for Disease Spread: Global Social Distancing

We aim to control the spread of disease using a global social distancing
strategy. This strategy is activated when the virus prevalence exceeds a
predetermined threshold. At this point, all individuals reduce their contacts,
regardless of infection status. In the network model, this is implemented by
randomly removing a fraction og of all connections.

Social distancing allows us to explore varying intervention intensities. We
examine three levels: no distancing (og = 0), moderate distancing (og =
0.4), and high distancing (o = 0.7).

In the second scenario (sequential mutation with one-way cross-
immunity), global social distancing moderately reduces infection levels.
However, the effectiveness is constrained by the declining pool of suscep-
tible individuals, limiting the virus’s spread. In contrast, the first scenario
(dynamic mutation without cross-immunity) shows a more pronounced re-
sponse, with social distancing nearly halving the infected population. The
lack of cross-immunity increases the effectiveness of social distancing by lim-
iting opportunities for reinfection with new strains.

We also observe a clear gradient in infection levels with increasing social
distancing intensity. Higher levels of social distancing lead to progressively
lower infected populations. This result underscores the importance of inter-
vention measures in controlling disease spread.

The effectiveness of social distancing varies depending on the network
structure. In scale-free networks, where transmission hubs are more promi-
nent, high-intensity social distancing is especially effective. In random spa-
tial graphs, moderate distancing suffices to achieve significant reductions in
infection levels.

Finally, the timing of intervention is crucial. Implementing social distanc-
ing when only 2.5% of the population is infected, rather than waiting until
5% or 10%, accelerates outbreak control and significantly reduces infection
rates.



5. Evolution into chaos — implications of the trade-off between
transmissibility and immune evasion

A major concern with emerging COVID-19 variants has been their abil-
ity to evade immunity and the implications for future waves. While previous
biological studies have suggested a potential trade-off between immune eva-
sion and transmissibility, our work presents the first mathematical analysis
supporting this idea.

5.1. Direction of the viral evolution: higher transmissibility or im-
mune evasion?

We consider the SIR Model (1) and introduce invader strains, denoted
by the index v, while the system attains its endemic steady state. We aim
to discern whether the emergence of this invader strain is attributable to its
capacity to evade immunity or its enhanced transmissibility.

These newly emerging strains differ from the resident strain in two dis-
tinct ways:

e Immune Evasion: Invader strains have the capability to evade immu-
nity and infect individuals who have recovered from the resident strain
(R). To quantify this, we introduce the parameter p € [0, 1] which rep-
resents the fraction of recovered individuals from the resident strain
that can be infected by the new strain.

e Transmissibility: Invader strains may exhibit either heightened or di-
minished contagiousness relative to the resident strain. This is de-
lineated by the parameter 5, = 8 + f(p), where f(p) represents the
trade-off function between transmissibility and immune evasion. This
trade-off function operates under the following assumptions:

(H1) f is continuously differentiable on [0, 1];
(H2) f'(p) <0, for p € [0, 1];
(H3) f(0) >0 and f(1) <O.

The early dynamics associated with the invader strain, represented by
linearization at the endemic equilibrium, and characterized by the transmis-
sion rate f3,, can be expressed as follows:

jv(t) = /BWS*Iv(t) + 6va*Iv(t) - FYIU(t) - ,LLL,(LL). (3)



Therefore, the invasion reproduction number for the invader strains when
the resident strain is in its endemic steady state, is

B+ f@)S* +pRY) _ B+ f) [(kt7)  p(B=(n+7))

R =
v+ p Y+ p 5 B +)

, (4)

which denotes the number of secondary infections produced by an individual
infected with the invasive variant over the course of their infectious period,
within a population where resident strains have achieved equilibrium [3].

The subsequent theorem states that when ( is small, the invasion re-
production number is a monotone decreasing function of p, indicating the
emergence of a new strain with a higher transmission rate. Conversely, in
case of high transmission rate 3, circumventing the immune system is the
most advantageous evolutionary strategy for the invader strain.

Theorem 1. Let f satisfy (H1)-(H3). We assume the resident strain of
model (1) is in its endemic steady state, as given by (2). Then, there exists
sufficiently small 6 > 0 such that if B € (u+ 7, +v+0), then the invasion
reproduction number R(p) decreases on [0, 1], and it attains its mazximum at
p=0 and B, = B+ f(0). For large values of 3, R is an increasing function
of p on [0,1], hence the maximum of R(p) occurs atp =1 and B, = B+ f(1).

Now, we direct our attention towards identifying and closely examining
the most invasive strain, i.e. the strain with the maximal invasion fitness.
Therefore, we focus on answering the question of how this strain can maxi-
mize its reproduction number in presence of the resident strain.

To facilitate the mathematical analysis throughout the remainder of this
research, we employ a linear trade-off f with transmission advantage param-
eter a, and cost parameter b representing the expense of immunity evasion:
f(p) = a—bp, where 0 < a < b.

The maximum point of R(p) is given by

0, B < B
max a -+ 2 23 P
pr(B) = ﬁ;; - %, b1 §~5 < B2 (5)
17 B >52a
where
5 =ity —a Vet ta)? (et o)’

2 2y



and

- pty—a+2b /2ty +a—2b)2+ dby(u+ )2
B2 = 5 + 2 .

This new fittest strain is characterized by a novel transmission rate denoted
as By = B+ a — bp™®, and from this point on, it takes the place of the
resident strain in the system.

By iterating this procedure, we obtain a sequence of transmission rates
driven by the difference equation

Bn-i—l = g(Bn)a 50 >+ (6)

where g : (7 + 1, 00) = (v + p1,00),

B+a, if B < B
2 ~ ~
9(8) = { 5 + mis iy AL < B < B (7)
B+a_b7 1f6>,82

We, then, demonstrate a variety of behaviors, from stability, through
periodicity, to chaos.

5.2. Global Convergence

Through the mathematical framework presented below, Theorem 2, we
investigate the conditions under which transmissibility is stabilized, implying
that over the long term, emerging variants will have approximately the same
transmission rate. We illustrate this by providing explicit conditions under
which the emergence of forthcoming strains, characterized by the sequence
of transmission rates {5, }, converges to the fixed point.

Theorem 2. The unique fixed point 5* of the difference equation (6) is
(i) locally asymptotically stable (LAS) if

37(v+u—a)2}_

b>a>v+pn or b>max{a,
A(y + p)?

(ii) locally unstable if a < b < % and a < 7y + p;
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(#ii) globally asymptotically stable (GAS) (i.e. LAS and globally attractive)
if

Mw+u—ay3ﬂ—¥+ﬂv+m%}'

b>a>y+u 07"b>max{a, ,
A(y + p)? 16(y + p)?

Fig. 5.1 illustrates the bifurcation diagram of the function g(5) with b
serving as the bifurcation parameter. This diagram reveals how varying the
parameter b leads to changes in solutions of the difference equation (6), rep-
resenting the sequence of transmission rates of emerging fittest strains. The
pink and orange lines mark the critical points of b for local and global stabil-
ity, respectively (under the condition a < 7 + p). Surpassing the threshold
of local stability given by Theorem 2(i), solutions demonstrate convergence
towards the fixed point. This means, over a sufficiently long period, all
prevailing strains will practically have the same transmission rate.
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Figure 5.1: Bifurcation diagram for the difference equation (6). The diagram captures
the diverse behaviors—chaotic, periodic, and convergent—across a range of values for
b. On the left side of the “LAS Condition™line, the fixed point is unstable and on the
right side of the “GAS Condition™line, the fixed point is globally asymptotically stable
(Theorem 2(iii)). All trajectories are confined within the interval [8—, 8+] (Theorem 3).
The system was iterated for n = 1000 steps from ten initial values for each b in between
0.02 and 0.21 with step-size 0.0005, and the last 50 iterations are displayed in the plot.
Here, = 3.5-107%, 4 = 0.2, and a = 0.02.
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5.8. Attracting Interval

In the upcoming theorem, we identify an interval into which all solutions
of the difference equation (6) enter and do not leave thereafter. This implies
that, over an extended period, the transmission rates of the new strains
remain within this specified interval.

Theorem 3. Let B4 > sup g((v+ u, B*]) and v+ p < B < inf g([B8*, B1]).
Then g([ﬁ,,ﬁJr]) C [B-, B+], and every solution of (6) enters [5—, B+] with-
out leaving it again.

5.4. Periodic Solutions and Complexr Dynamics

Now, we demonstrate that, in cases where the fixed point is locally un-
stable, there is at least one two-periodic solution. These findings indicate
that, despite multiple iterations and the emergence of numerous subsequent
strains, only two transmission rates are repeated alternately in the system
over the long term. In addition, within Theorem 5, we demonstrate that
the difference equation (6), under specific conditions, exhibits chaotic be-
havior. This implies that the system’s dynamics is unpredictable, making
it challenging to forecast whether the emergence of the next strain will be
attributed to a heightened transmission rate or its capability to evade the
immune system.

Theorem 4. [fa <b< % and a < v+, then, there exists at least

one two-periodic solution of the difference equation (6) different from [*.

Theorem 5. Let 0 < a < b. If g(f1+a) < f1—a or fo+b—a < g(Ba+a—D)
holds, then the difference equation (6) is chaotic in the sense of Li and Yorke

[2], i.e.

1. for every positive integer k there is a periodic point in (y+pu, 00) having
period k;

2. there is an uncountable set S C (v + p,00) with no periodic points
which satisfies the following conditions:

(i) for every p,q € S with p # q,

limsup [g"(p) —g"(¢)] >0 and  liminf|g"(p) — g"(q)| = 0;

n—ro0
(ii) for every p € S and periodic point q € (77 + ,00),

limsup |g" (p) — g™ (q)| > 0.

n—oo
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Corollary 6. If either Bg - Bl <a< g ora-+ Bg — ,5’1 <bh< 3—2“ 1s satisfied,
then the difference equation (6) is chaotic in the sense of Li and Yorke.

Fig. 5.2 illustrates four distinct regions, each representing a different dy-
namical behavior of the equation (6). The blue and yellow regions denote the
domains where the fixed point is globally and locally asymptotically stable,
respectively, whereas the green region highlights areas of instability where
2-periodic orbits emerge, as delineated in Theorems 2 and 4. The gray region
(obtained in Theorem 5 (gray) and Corollary 6 (light gray region)) reflects
the chaotic aspects of the difference equation (6), within which predicting
the behavior of subsequent strains becomes challenging.

0.20;

LAS

GAS

Locally Unstable & Periodic
Chaotic Behavior

« 0.10]

0.05]

0.00 =28 DN

0.00 0.05 0.10 0.15 0.20
b

Figure 5.2: The figure delineates four distinct regions, each corresponding to a unique
dynamical behavior of the system as defined by the difference equation (6). The regions
colored in blue and yellow represent domains where the fixed point exhibits global and
local asymptotic stability, respectively. The green regions are zones of instability, as given
in Theorem 2. The area depicted in gray encapsulates chaotic dynamics of (6). Here
~v=02and p=3.5-10"5.
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