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“When you compete against everyone else, no one
wants to help you. But when you compete against
yourself, everyone wants to help you.”

— Simon Sinek Foreword

Exactly 10 years ago, in September 2014, I started my university studies. In
early 2016 I was in the second year of my BSc studies when I got the oppor-
tunity to join a small .NET development team at the Department of Software
Engineering. At that time, it was fascinating to see how Ph.D. students un-
derstood different topics, taught us interesting subjects, gave us programming
tasks, etc. They were on a different level, and I wanted to achieve that. Fur-
thermore, I also saw how my boss (and my future supervisor) traveled around
the world to present his research in beautiful countries where I did not have
the opportunity to travel. Then I asked my boss how I could do the same and
everything changed.

From the bug-fixing tasks of the .NET projects, I started to shift to more
research-related tasks, then I blinked and became a Ph.D. student. Unfor-
tunately, Covid-19 took the wind out of my sails: I could present my work
in Madrid (Spain), virtually. The next conference I could stand up was in
Guangzhou (China), virtually – one bad luck after the other. I had to repo-
sition my inner motivation, why should I do this? Fortunately I already had
enough experience at that time to know that I love being involved in innova-
tive teams, especially when it’s obvious that the impact we can make will be
noticeable by the users of our products. Back to the traveling topic, Covid-19
related restrictions ended at a time and I cannot be completely dissatisfied. I
was able to visit Singapore and Vienna, those were my trips so far during the
five years of my PhD studies.

Dániel Vince, 2024
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1
Introduction

Our modern lives are driven by software. This has become so common that
we often do not even notice the programs around us; they collect and process
data and then tell us to get up and walk around for a few minutes during our
long office hours. In an ideal world, the software is perfect, and the business
logic fully covers the customer’s expectations and produces the right output
for every possible combination of inputs, so it “cannot be fooled”.

Unfortunately, we do not live in an ideal world. Software is still mostly
written by humans, and humans can make mistakes despite their best intentions.
Nowadays, the use of code snippets generated by artificial intelligence is on the
rise (e.g., GitHub Copilot1 or ChatGPT2), however, these cannot be blindly
trusted. At least not yet. We can expect that even the most carefully designed
and implemented software will contain hidden bugs that will surface sooner or
later. Most likely at the worst possible time. And then, we will notice – or
worse, remember – the software, and its failure.

Finding a bug can be the result of targeted human activity, or it can be
the result of automated testing techniques. Whatever the source, in most

1https://github.com/features/copilot
2https://chat.openai.com
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2 Introduction

cases the goal of the testing agent is to find as many bugs as possible in the
shortest amount of time. Due to the nature of this objective, when a new bug
is found, the sequence of events that can reproduce it is noisy, i.e., it contains
both relevant and irrelevant information related to reproduction. This is not
necessarily a problem from their point of view; the task has been successfully
completed: a new bug has been discovered in the system, and a reproduction
package is available that can be used to implement the fix.

From another point of view, however, it is really important to note how
much irrelevant information is included in the description of a reported bug.
Once it is reported, some lucky software engineer is given the task of fixing
it. First, the description has to be interpreted, and then the bug has to
be reproduced. After that, since the manifestation (bad output, incorrect
display, or even a complete crash) is only a symptom, the real source has to
be found so that the fix can be implemented. If most of the events required
for reproduction are irrelevant, the time required to find the root cause of the
malfunction can increase significantly. However, manually selecting the events
that are absolutely necessary for reproduction is also a time-consuming task.
There seems to be no good way for engineers to do this.

Fortunately, error-causing events (“test cases” from now) can be minimized
automatically, which was already recognized in the early 2000s. The discipline
of automatic test case reduction researches algorithms that can reduce any
kind of input to a smaller, some kind of “minimal” form, while maintaining
a well-defined condition. One of the most well-known algorithms is the min-
imizing Delta Debugging algorithm [39] (DDMIN), which tries to produce a
minimal version of its input regardless of its structure while keeping a prede-
fined property invariant. It decomposes the input into atomic units (e.g., lines
or characters for textual input) and systematically tries to remove pieces from
it.

With the spread of programs that expect structured input, more efficient
algorithms have been proposed to minimize test cases by taking structure into
account. For example, programming or markup languages have a well-defined
structure, but anything that can be defined with a context-free grammar is
suitable. Compilers (e.g., GCC and Clang) or execution engines (e.g., v8,
JerryScript, and Python) can only be exhaustively tested if the input passes
the syntactic parser. Grammars can be used to build a tree representation
of the test case, which can be reduced more efficiently while preserving the
structural boundaries. One of the most well-known grammar-based algorithms
is Hierarchical Delta Debugging [25] (HDD), which traverses the tree with a
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breadth-first search and then applies DDMIN to its levels.
Both mentioned algorithms are discussed in this work. Several functional

and non-functional properties and their improvements are detailed in the fol-
lowing thesis. Some of them result in smaller outputs, while others aim to
reduce the memory footprint or the time required by the process.

The rest of this dissertation is organized as follows: First, Chapter 2 dis-
cusses the DDMIN and HDD algorithms, their variants, and related work.
Chapter 3 provides evaluation details, the used test suites and their properties,
and the open-source projects on which the discussed optimizations are based.
Chapter 4 describes optimizations that do not affect the output itself, but help
the algorithms be more resource-efficient. A fixed-point iteration of DDMIN
is presented in Chapter 5, which aims at a more effective reduction. A greedy
parallel algorithm variant of DDMIN is presented in Chapter 6, and then a
new transformation-based reduction method inspired by HDD is presented in
Chapter 7. Finally, the results and important conclusions are summarized.
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2
Background and Related Work

2.1 Minimizing Delta Debugging

The minimizing Delta Debugging (DDMIN) algorithm [15, 39, 40] is a system-
atic iterative approach for reducing a test case while keeping an interesting
property invariant. The input of the algorithm is a set of atomic units repre-
senting parts of the test case. First, this set of units is split into two subsets of
roughly equal size, and both subsets are investigated to see whether they still
have the interesting property of the original test case. If the property is kept
in any of the subsets, then reduction was successful, and a new iteration starts
with the found subset; otherwise, the granularity is refined by doubling the
splitting. The subsets of the new partitioning are investigated again, one by
one, as well as their complements, i.e., it is checked whether keeping or remov-
ing any of the subsets leads to an interesting smaller test case. Again, if any of
the investigated test case parts keep the property in question, it will be used
as the input for the next iteration; otherwise, the granularity is increased. The
iteration continues until the granularity reaches unit level, when it is proven to
have found a so-called 1-minimal result, a local minimum where the removal
of any single unit from the test case causes the loss of the interesting property.

5



6 Background and Related Work

Let test and c✗ be given such that test(∅) = ✓ ∧ test(c✗) = ✗ hold.
The goal is to find c′

✗ = ddmin(c✗) such that c′
✗ ⊆ c✗, test(c′

✗) = ✗, and c′
✗ is 1-minimal.

The minimizing Delta Debugging algorithm ddmin(c) is

ddmin(c✗) = ddmin2(c✗, 2) where

ddmin2(c′
✗, n) =


ddmin2(∆i, 2) if ∃i ∈ {1, . . . , n} · test(∆i) = ✗ (“reduce to subset”)
ddmin2(∇i, max(n− 1, 2)) else if ∃i ∈ {1, . . . , n} · test(∇i) = ✗ (“reduce to complement”)
ddmin2(c′

✗, min(|c′
✗|, 2n)) else if n < |c′

✗| (“increase granularity”)
c′

✗ otherwise (“done”).

where ∇i = c′
✗ −∆i, c′

✗ = ∆1 ∪∆2 ∪ . . . ∪∆n, all ∆i are pairwise disjoint, and ∀∆i · |∆i| ≈ |c′
✗|/n holds.

The recursion invariant (and thus precondition) for ddmin2 is test(c′
✗) = ✗ ∧ n ≤ |c′

✗|.

Figure 2.1: The Minimizing Delta Debugging algorithm.

The algorithm has its roots in the isolation of failure-inducing code changes,
which is visible in its terminology. For the algorithm, an input is composed
of elementary changes or deltas, denoted as δi, from which the algorithm got
its name. A set of changes is also called a configuration, usually denoted by c.
The outcome of a program running on a specific configuration is determined by
a testing function, and it can be fail (also written as ✗) if the test case induced
the original failure, pass (also written as ✓) if the test succeeded or unresolved
(written as ?) if the result is indeterminate. From a practical perspective, the
unresolved outcome is treated as a pass, since the configuration definitely did
not reproduce the original failure.

The set of all changes, i.e., the initial configuration that triggers a failure is
denoted by c✗. Although the algorithm is often applied to the simplification of
program inputs where the term “change” is not an intuitive fit to the units of
a test case (e.g., to characters or lines of a text file) and the algorithm also has
use cases where the “interestingness” of a test case is not a program failure,
most authors follow the original notation for historical reasons. Figure 2.1 gives
Zeller and Hildebrandt’s latest formulation of the minimizing Delta Debugging
algorithm [40].

Since its publication, DDMIN has enjoyed the undivided attention of re-
searchers, especially since security-related fuzz testing became popular. There-
fore, several algorithm variants and general optimizations were proposed, which
are discussed in more detail in Section 2.4. However, a few ideas should be
discussed here, as the optimizations presented later in this chapter are built
upon them.
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Hodován et al. [16, 18] investigated how efficient DDMIN is and proposed
several practical improvements to it. They noticed that the “reduce to subset”
and “reduce to complement” phases are interpreted sequentially since the first
appearance of the algorithm, however, ∃i ∈ {1, . . . , n} in Figure 2.1 does not
specify how to iterate that i. They rewrote ddmin2 to use parallel loops in a
way that fully utilizes the parallelization capabilities of modern systems. Their
formalization left minor details to the implementation; however, one major
aspect is important in this study: if the parallel loops are started and one of
them triggers the failure, then the other loops are aborted, even if they have
not finished yet. This technique might cause the test results to be thrown
away, but the intention was to make the reduction as fast as possible, and this
does not violate the integrity of the 1-minimality. They also observed that the
“reduce to subset” trials are mostly greedy attempts to bite the most from the
configuration with the least amount of effort, however, this code path is not
necessary for 1-minimality. Programming languages were among their interests,
and they realized that keeping just the middle part of a test case results in a
syntactically incorrect configuration (in most cases), thus unable to reproduce
the desired behavior. Therefore, they proposed to completely omit the “reduce
to subset” case.

2.2 Hierarchical Delta Debugging
If a test case has some mandatory structure over its units, which is quite

typical for inputs to a program, DDMIN may work suboptimally. The config-
uration partitioning during the iterations may be completely unaligned with
the boundaries of the structural elements of the input, leading to incorrectly
formatted, non-reproducing, and thus, useless test cases. The goal of the Hi-
erarchical Delta Debugging (HDD) algorithm [25] is to avoid such superfluous
steps by not testing format-breaking configurations. To achieve this goal, it
works on hierarchical tree-structured input representations (e.g., on parse trees,
abstract syntax trees, or XML DOM trees) and applies the DDMIN algorithm
to the levels of the tree, progressing downward from the root to the leaves.

The pseudocode formulation of HDD as defined by Misherghi and Su [25] is
shown in Figure 2.2(a). The auxiliary routine tagNodes collects the nodes at a
given level of the tree, then DDMIN is invoked on those nodes, and finally prune
applies the result of Delta Debugging to the tree. I.e., for HDD, configurations
are sets of tree nodes at a given level, and the removal of a node causes the
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1 procedure HDD(input tree)
2 level← 0
3 nodes← tagNodes(input tree, level)
4 while nodes ̸= ∅ do
5 minconfig← DDMIN(nodes)
6 prune(input tree, level, minconfig)
7 level← level + 1
8 nodes← tagNodes(input tree, level)
9 end while

10 end procedure

(a) Hierarchical Delta Debugging.

1 procedure HDDr(root node)
2 queue← ⟨root node⟩
3 while queue ̸= ⟨⟩ do
4 current node← pop(queue)
5 nodes← tagChildren(current node)
6 minconfig← DDMIN(nodes)
7 pruneChildren(current node, minconfig)
8 append(queue, minconfig)
9 end while

10 end procedure

(b) Recursive Hierarchical Delta Debugging.

Figure 2.2: The Hierarchical Delta Debugging algorithm variants.

removal of the entire subtree rooted at that node. In a later algorithm variant,
the “pruning” of a node has been reinterpreted as its replacement with the
minimal applicable syntactically correct fragment to reduce the number of test
attempts at incorrectly formatted configurations even further [26]. If HDD
is iterated until a fixed point is reached, denoted as HDD*, it gives a 1-tree-
minimal result, i.e., if any single node is removed from the tree, the new test
case will no longer be interesting.

Several variants have been proposed since the original definition of HDD,
two of which are worth discussing here: the recursive (HDDr1) and the coarse
Hierarchical Delta Debugging algorithms (Coarse HDD). The idea behind
HDDr [24] is to pass only related parts of the tree to DDMIN to ensure that
it does not create partitions that cross the boundaries of the subtree (which
often leads to superfluous steps). Therefore, HDDr applies DDMIN not to all
nodes at a given level of the tree, but only to the sibling nodes. The intuitive
formalization of the idea is of a recursive nature, which gives the name of the
algorithm. An alternative iterative formulation also exists for HDDr, which is
shown in Figure 2.2(b). The auxiliary routines tagChildren and pruneChildren
differ from their tagNodes and prune counterparts only in the set of nodes on
which they work, i.e., on the children of a given node instead of all nodes at a
given level. HDDr has the same theoretical minimality guarantees as HDD.

1Previous works have used various notations for the recursive HDD algorithm: in some
cases, the letter ‘r’ was typeset in small capital (HDDR), while in others simply in lowercase
(HDDr). Here, for the sake of consistency with latter parts of this study, ‘r’ is used in a
superscript position.
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1 procedure CoarseHDD(input tree)
2 level← 0
3 nodes← tagNodes(input tree, level)
4 while nodes ̸= ∅ do
5 nodes← filterEmptyPhiNodes(nodes)
6 if nodes ̸= ∅ then
7 minconfig← DDMIN(nodes)
8 prune(input tree, level, minconfig)
9 end if

10 level← level + 1
11 nodes← tagNodes(input tree, level)
12 end while
13 end procedure

(a) Coarse Hierarchical Delta Debugging.

1 procedure CoarseHDDr(root node)
2 queue← ⟨root node⟩
3 while queue ̸= ⟨⟩ do
4 current node← pop(queue)
5 nodes← tagChildren(current node)
6 nodes← filterEmptyPhiNodes(nodes)
7 if nodes ̸= ∅ then
8 minconfig← DDMIN(nodes)
9 pruneChildren(current node, minconfig)

10 end if
11 append(queue, tagChildren(current node))
12 end while
13 end procedure

(b) Coarse Recursive Hierarchical Delta De-
bugging.

Figure 2.3: The Coarse Hierarchical Delta Debugging algorithm variants.

Coarse HDD [19] focuses on those parts of the tree that have an empty
minimal applicable replacement (which often occurs in parse trees built from
extended context-free grammars, utilizing quantifiers). The idea is that the
effectively complete removal of such subtrees should bring the biggest gain in
terms of test case reduction, while other parts of the tree deserve less attention.
Therefore, Coarse HDD, as shown in Figure 2.3(a), visits all levels of the tree
like the original HDD but filters out those nodes from the configuration of
DDMIN that have a non-empty replacement fragment. The auxiliary routine
filterEmptyPhiNodes performs the above-described filtering (where Phi refers to
the minimal applicable replacements, which were originally denoted by Φ [26]).
Obviously, Coarse HDD reduces test cases without guarantees for theoretical
minimality, however, in exchange for the potentially bigger results, it is expected
to yield results in fewer steps than HDD. In practice, Coarse HDD can be a
preprocessing step, then the main HDD algorithm minimizes the preprocessed
tree faster. It should be noted that there is a potential variant of HDD that
has not been defined in the literature, which is the combination of coarse
and recursive ideas, using the recursive iteration approach while focusing on
particular nodes only. Coarse HDDr is formally defined in Figure 2.3(b).
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2.3 Caching Solutions
Zeller [39] has already raised the issue that testing an arbitrary configuration
may take time. If the input to be tested is a program in a source code form,
its recompilation and re-execution could take seconds, minutes, or even hours,
and this time can be considerably reduced by smart recompilation techniques.
Even if no recompilation is needed (e.g., providing XML files to an XML
parser or JavaScript inputs to an execution engine), program execution can
take a long time. Due to the greedy nature of the discussed algorithms, it
might happen that the same configuration is tested multiple times among the
iterations. Therefore, all of them can utilize cache memory to improve their
execution time at the cost of increased memory usage. However, the concept
of caching is orthogonal to the algorithms themselves, and studies have mainly
focused on the latter.

To avoid running the same test twice, Zeller provided an outcome caching
mechanism in his reference implementation2. The cache is implemented as a
tree structure, where each node is labeled with a unit of the configuration and
an outcome that corresponds to the subconfiguration formed by the units from
the current node up to the root of the tree. If the following configurations
are in the cache: (⟨1, 2⟩ , ✗), (⟨1, 2, 3⟩ , ✓), and (⟨1, 4, 5⟩ , ✗), then they can be
represented in a tree structure as shown in Figure 2.4. If a configuration has
already been tested, there is a path from the root to the node along with
the labels, and the end of the path contains the result of the testing function
(✗, ✓, ?). When the algorithm creates a new configuration, a cache lookup is
performed first. If the lookup succeeds, the previously determined test outcome
is returned without the need for an actual (and potentially long-lasting) test
execution. Otherwise, the configuration is tested, and the outcome is inserted
into the cache. (When inserting outcomes in the cache, inner nodes may be
added to the tree that represent configurations that have not been tested yet.
These nodes are not labeled with an outcome at that point of the algorithm
but may get an outcome assigned later on. Figure 2.4 shows ⟨1, 4⟩ and ⟨1⟩ as
examples of such not yet tested configurations.)

Although the above-described configuration-based cache is sufficiently ef-
ficient with DDMIN, it may not be the best approach for HDD. Hodován et
al. formalized this problem in their study [20]: various configurations of tree
nodes at a given level may produce the same serialized output, configurations
on different levels may induce the same output; furthermore, configurations

2https://www.st.cs.uni-saarland.de/dd/DD.py



2.4 Related Work 11

(1, )

(2, ✗)

(3, ✓)

(4, )

(5, ✗)

Figure 2.4: The outcome caching approach of Delta Debugging.

of different HDD* iterations may also produce the exact same output. All
such configurations yield the same test outcome as well. If the outcome cache
is based on tree nodes of a given level, none of these recurrences would be
detected, i.e., they will result in cache misses and require repeated test at-
tempts. Motivated by these insights, they proposed to optimize HDD by using
a content-based cache, i.e., storing the serialized test case instead of the con-
figuration as a key and the test outcome as the value. Therefore, if multiple
configurations yield the same test case, this type of cache avoids the duplicated
testing steps. The content-based cache is an optimization motivated by HDD,
however, it works with DDMIN as well.

2.4 Related Work
One of the first works on automated test case reduction is minimizing Delta
Debugging by Zeller and Hildebrandt [15, 39, 40], minimizing inputs of arbi-
trary format. The authors have already recognized that the same configura-
tion may be tested at different stages of the reduction; thus, they provided a
configuration-based outcome caching solution in their reference implementa-
tion. Gharachorlu and Sumner [10] observed that after a successful “reduce
to complement” step, DDMIN revisits the previously investigated subsets, and
these steps might be inefficient in practice. Therefore, they proposed a modified
version of DDMIN, the One Pass Delta Debugging (OPDD), which skips these
steps, and showed that if certain circumstances are met, it can also achieve a
1-minimal result. Their goal was to achieve the linear time complexity; there-
fore, they identified three independent conditions that can eliminate the need
for revisiting: common dependence order, unambiguity, and deferred removal.
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Hodován and Kiss proposed to use DDMIN in a parallel way that can reduce
the time required to perform the minimization [18]. They observed that par-
allel DDMIN can yield different-sized but still 1-minimal outputs as a result
of independent parallel executions. Furthermore, they also observed that the
“reduce to subset” step is not even necessary for 1-minimality, and reordered
the “reduce to complement” steps. Kiss [23] proved that if the split factor of
DDMIN is well chosen (2 was used in Zeller’s work), then the reduction can be
sped up significantly.

Artho [1] investigated Delta Debugging in his “Iterative Delta Debugging”
study. Although the title of the study and a methodology discussed later in
this chapter are similar, the two studies are not related. It used the Delta
Debugging algorithm (not DDMIN) to find the failure-inducing changes in
version histories. He raised the issue that DD is only applicable if the version
that passes a test is known, which may not be the case for newly discovered
defects. Therefore, he proposed the iterative DD, called IDD, that successively
backports fixes to earlier defects, and one may eventually obtain a version that
is capable of executing the test in question correctly.

Most of the published works target textual inputs; however, test case reduc-
tion can be applied to other scenarios as well. Several authors have minimized
faulty event sequences originating from various sources: Scott et al. [28] min-
imized event sequences of distributed systems, Bársony [2] reduced OpenGL
API traces, and Clapp et al. [9] aimed at Android GUI events with a variant
of DDMIN. Furthermore, Brummayer and Biere [7] even used DDMIN to
minimize SMT solver formulas.

The price of DDMIN’s generality for structured inputs is a potentially
lowered performance because of format-breaking, thus incorrect test cases are
generated and evaluated during the reduction process. To avoid syntactically
broken intermediate test cases, Miserghi and Su [25] proposed using information
about the format encoded in context-free grammars, i.e., to convert test cases
into a tree representation and apply DDMIN to the tree levels. This approach,
called Hierarchical Delta Debugging, helped remove parts of the test case that
aligned with syntactic unit boundaries. As a further improvement, Miserghi [26]
proposed the concept of a syntactically correct replacement for nodes that
cannot be completely removed from the test case without causing syntax errors.
The formalization of HDD does not detail how to build the tree representation,
but its first implementation used traditional context-free grammars to parse the
input. To improve on this, Hodován et al. [17] suggested using extended context-
free grammars for building the tree, creating more balanced representations,
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which could lead to smaller results and improved performance. They have also
described various tree transformations with the same goal [19, 20].

Tree-based test case reduction does not necessarily mean subtree removal.
Bruno [8] suggested using hoisting as an alternative transformation in his frame-
work called SIMP, which was specifically designed to reduce database-related
inputs. In every reduction step, SIMP tried to replace a node with a compatible
descendant. In a follow-up work that introduced the tool, FlexMin, Morton
and Bruno [27] extended SIMP with Delta Debugging. The main algorithm
was hoisting, while DDMIN was applied only to repeated structures, such as
lists (column names) and data (string literals). Sun et al. [30] combined the
above approaches into their Perses framework. In their work, they utilized
quantifiers and normalized the parse tree producing grammars by rewriting
recursive rules to use quantified expressions, and the transformed grammar
form was referred to as Perses Normal Form (PNF). During the reduction, they
applied a worklist algorithm, in which nonterminals with more tokens were
prioritized over nodes with fewer token descendants. In every step, a node
was popped from the worklist and reduced according to its type: quantified
nodes were reduced with DDMIN while hoisting was applied on nonquanti-
fied, regular ones. Based on the ideas introduced in Perses, Gharachorlu and
Sumner [11] extended it in a new framework, named Pardis, with an improved
queue prioritization algorithm. Pardis only considered completely removable
nodes and assigned weights based on a node’s own token weight instead of its
parents. They completely eliminated the hoisting step, since they found it too
expensive from a performance perspective. Herfert et al. [14] also combined
subtree removal and hoisting in their Generalized Tree Reduction (GTR) algo-
rithm. The applicability of a particular tree transformation was learned from
an existing test corpus without analyzing a grammar.

Binkley et al. [3, 4, 5, 6, 12, 38] recognized an interesting analogy between
test case reduction and program slicing. They have realized that the concepts
of slicing can be reformulated as concepts of test case reduction. Their ap-
proach, called observation-based slicing, avoids the complexities of building
a dependency graph representation of a program and can work purely at the
syntactic level. Stepanov et al. [29] suggested a combined approach using
program slicing, HDD, and Kotlin-specific transformation in their “ReduK-
tor” prototype tool. To avoid rechecking, they hashed the AST configurations
and stored them together with the outcome. Using AST configurations for
cache lookups, either in full or in hashed form, can face the same problem as
traditional configuration-based caching, i.e., different AST configurations can
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produce the same serialized test case.



3
Evaluation Details

The following chapters present different algorithm optimizations, and we wanted
to evaluate them on real-life scenarios uniformly (i.e., with JavaScript execution
engines and C/C++ compilers that are continuously tested). In order not to
be repetitive, the common parts of the evaluation have been organized into
this separate chapter. The following information describes the used test suites,
their structure and important properties. Then, the open-source projects are
discussed in which we implemented our optimizations.

As inputs, test cases from different sources have been collected, some of
which have already been used in the literature for benchmarking reduction. The
first test suite is the Perses Test Suite1 (PTS), which contains fuzzer-generated
C sources that cause various internal compiler errors in the Clang and GCC
compilers.

The second, newly created test set is the JerryScript Reduction Test Suite2

(JRTS), which also contains fuzzer-generated (with the Fuzzinator3 tool[21])
JavaScript files that cause failures in the JerryScript lightweight JavaScript
engine. In the case of both test suites, the interesting property of the test cases

1https://github.com/uw-pluverse/perses
2https://github.com/vincedani/jrts
3https://github.com/renatahodovan/fuzzinator
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to keep during reduction is the failure that they induce. A typical test case
contains two different elements:

• input file.{c, js}: the input file to reduce, contains fuzzer generated con-
structions in the appropriate programming language,

• oracle: usually a bash script that takes an input file.{c, js}, and decides
whether it keeps the interesting property of the initial input (return or
exit with value 0) or not.

The properties of the test cases are shown in Tables 3.1 and 3.2. Size (bytes)
is the absolute size of the test case expressed in bytes, column Rows shows the
number of lines, while column Chars expresses the number of non-whitespace
characters in it. To be able to feed test cases to HDD, they have to be processed
to a tree structure. Tree Height represents the height of the parse tree built
from the input, Rules shows the number of nonterminals, and Tokens shows
the number of terminals in it. The parse tree representation of each test case
was built using the grammar available for the input format from the official
ANTLR v4 grammars repository4, and Picireny has applied the squeeze of the
linear tree components [20] and the flattening of recursive structures [19] to
the trees.

As the formats of the test cases are similarly structured and come from the
same domain of programming languages, the results of the following optimiza-
tions may not generalize to all types of test cases. However, we believe that the
results of these test suites are indicative since they contain real-world test cases
and have been used in reduction-related studies [11, 23, 30]. By comparing
their sizes, JRTS contains fewer test cases, which are also smaller in size than
PTS, threatening the unbiased presentation of the results. The relative effects
of the proposed optimizations are examined to avoid the misinterpretation of
the results, furthermore, where the results were different, we discussed them
in detail.

To evaluate the effects of the discussed optimizations, a prototype is im-
plemented for each proposal based on the open-source Picire5 and Picireny6

projects. Picire is a Python implementation of DDMIN, which supports paral-
lelization and several configuration options since it has already been used for a
few studies [18, 20, 23]. Picireny is a hierarchical test case reduction framework

4https://github.com/antlr/grammars-v4
5https://github.com/renatahodovan/picire
6https://github.com/renatahodovan/picireny

https://github.com/antlr/grammars-v4
https://github.com/renatahodovan/picire
https://github.com/renatahodovan/picireny
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Table 3.1: Properties of the Perses Test Suite

Test Size Chars Rows Tree Rules Tokens(bytes) Height

clang-22382 80,210 65,786 2,993 242 29,344 6,573
clang-22704 723,495 597,827 20,617 272 255,972 61,255
clang-23309 147,879 118,178 2,815 288 52,183 11,570
clang-23353 134,381 94,734 4,011 185 44,100 9,989
clang-25900 328,729 245,065 5,546 292 106,751 23,406
clang-26350 467,008 378,160 6,759 304 168,324 25,790
clang-26760 793,470 588,548 10,104 340 288,964 60,762
clang-27747 541,699 409,083 8,141 265 238,604 46,295
clang-31259 179,380 137,161 2,736 331 66,291 14,590
gcc-59903 217,161 166,754 3,225 298 76,531 17,322
gcc-60116 326,769 218,223 13,566 279 100,651 21,479
gcc-61383 142,054 110,643 4,824 303 46,786 9,070
gcc-61917 343,503 254,742 13,827 254 115,834 24,508
gcc-64990 554,312 439,587 6,593 342 200,107 45,000
gcc-65383 158,731 125,221 2,687 254 58,846 13,237
gcc-66186 177,924 139,087 2,713 258 65,228 14,434
gcc-66375 248,824 191,827 3,674 282 86,512 19,216
gcc-70127 540,224 400,556 7,780 293 210,039 44,942
gcc-71626 18,975 14,465 724 20 8,044 2,047

on top of Picire, also written in Python, that supports ANTLR v47 grammars
and already contains an implementation of the HDD algorithm. It has also
been used in several studies [17, 19, 20, 24].

In order to ensure that the implementation of the experiments is correct
and accurate, we conducted a code review. On selected C and JavaScript
examples, the behavior of the implementation was traced to validate that it
works as intended. Furthermore, the implementation is based on open-source
and well-maintained repositories such as the Picire and Picireny frameworks
that have been used in several studies, and ANTLR v4.

7https://github.com/antlr/antlr4

https://github.com/antlr/antlr4
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Table 3.2: Properties of the JerryScript Reduction Test Suite

Test Size Chars Rows Tree Rules Tokens(bytes) Height

jerry-3299 1,767 1,208 54 33 608 140
jerry-3361 1,953 1,520 43 28 562 163
jerry-3376 6,626 4,647 178 36 2,194 473
jerry-3408 2,681 2,100 44 28 778 228
jerry-3431 1,065 648 36 30 527 130
jerry-3433 961 652 36 24 378 82
jerry-3437 6,597 4,623 178 36 2,188 471
jerry-3479 5,201 3,998 95 25 1,326 347
jerry-3483 492 326 18 19 193 48
jerry-3506 3,760 2,735 100 28 1,278 343
jerry-3523 3,928 2,802 118 28 1,416 345
jerry-3534 1,927 1,409 53 28 641 176
jerry-3536 829 592 27 23 310 71



“It’s better to go slowly in the right direction, than
to go speeding off in the wrong direction.”

— Simon Sinek

4
Cache Optimizations

Although the content-based cache (see Section 2.3) improved the efficiency of
reduction, there is still room for improvement. General-purpose caching tech-
niques try to maximize the utilization of available (usually fixed-size) memory
by keeping the most popular entries in the cache [22]. The most widespread
algorithms for cache replacements are Least Frequently Used (LFU), Most Fre-
quently Used (MFU), and Least Recently Used (LRU) [13], but these classic
techniques do not make use of knowledge of the underlying algorithms, and
evict elements from cache that might be needed later.

Consider the following example: Given an input to reduce that contains
numbers from 1 to 5, one character each, and the interesting property to keep is
to contain the numbers 2 and 4, then we would like to reduce the text of “12345”
to the form of “24”. Table 4.1 shows the character-based reduction process of
DDMIN step by step. For the sake of simplicity, the “reduce to subset” steps
are skipped, only the “reduce to complement” steps are presented.

As discussed in Section 2.1, the basic concept of DDMIN is that if it finds a
failing configuration that results in a serialized test case of size n, then it starts
a new iteration with that to reduce it further. Hereinafter, configurations that
result in test cases larger than n would not be tested, since the new iteration
splits that configuration into smaller fragments, e.g., in the 4th step in Table 4.1,

19
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Table 4.1: Execution of minimizing Delta Debugging on a Motivational Ex-
ample

Step Content Action Outcome

1 “12” test ✓

2 “345” test ✓

3 “123” test ✓

4 “1245” test ✗

5 “145” test ✓

6 “245” test ✗

7 “2” test ✓

8 “45” test ✓

9 “24” test ✗

10 “2” cache ✓

11 “4” test ✓

the size of the serialized test case is 4 (“1245”) and that would be split further
into “145” and “245” in later steps. This observation can be written as follows,
using the notation introduced in Section 2:

cx, cy ⊆ c✗

∥.∥ : size of the serialized configuration
∃cx : test(cx) → ✗ found

∀cy : ∥cy∥ > ∥cx∥ : out of search space

(4.1)

It is known that after a failing configuration is found, its subsets would be
reduced further via DDMIN, thus theoretically there is no chance of getting
a failing outcome back from the cache. Suppose that we have a configuration
of size n, and before testing it, a cache lookup is performed. The cache may
contain smaller entries, e.g., in the 6th step in Table 4.1, where n = 3 and
the cache already contains (“12”, ✓), however, if a smaller entry (m < n)
would be in the cache with a failing outcome, then the current state could not
have occurred, since DDMIN would have split that m sized entry into even
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smaller chunks. Therefore, if a cache hit occurs, we can be sure that it was a
result of a passing test. Thus, the first proposal of this chapter, as shown in
(4.2), is to add only passing tests to the cache which may reduce the memory
footprint of the minimization algorithm. Furthermore, cache lookups might be
quicker since the queries are performed in a smaller search space. The function
insert to cache inserts an element into the cache, while serialize performs the
serialization of test cases as discussed in [20].

cx ⊆ c✗

when ∃cx : test(cx) → ✓ found
insert to cache ( serialize(cx) )

(4.2)

Another benefit of (4.1) is that if a failing test case is found, we can be
sure that no cache entry corresponding to test cases larger than the currently
found one would be queried during the remaining reduction process. Therefore,
when a new failing test case is found, the entries that store the result of test
cases that are larger than the currently investigated one can be evicted from
the cache, as shown in (4.3). This eviction process will be referred to as the
second proposal of this chapter. The function delete from cache implements
the removal of an element from the cache.

cx, cy ⊆ c✗

when ∃cx : test(cx) → ✗ found
∀cy : serialize(cy) ∈ cache ∧ ∥cy∥ > ∥cx∥ :

delete from cache ( serialize(cy) )

(4.3)

For small inputs, this proposal might be runtime overhead only; however,
the benefits might overcome the costs for “large enough” inputs. A cache
lookup is assumed to be faster than the actual test execution, but it also takes
time. If the search space of the cache is maintained properly, then the time
spent with lookups will be less than the time spent with eviction.

If the above-described proposals are applied, the cache will contain passing
tests only and will be cleared after each successful reduction step. However, the
lengths of the stored entries vary, i.e., they are larger at the beginning of the
reduction (proportional to the size of the initial failing test case) and become
smaller as the process progresses towards the 1-minimum. The third proposal
of this chapter is the following: the cache should not store the serialized content
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of the configurations, but their transformed form as shown in (4.4).

cx ⊆ c✗, M : M ∈ N
transform(cx) : 2N 7→ 2M bijection

when ∃cx : test(cx) → ✓ found
insert to cache (transform( serialize(cx) ))

(4.4)

The proposal is functional only if the transformation is bijective, i.e., each
test case has its own transformed form, each transformed element corresponds
to exactly one test case, and unpaired elements are forbidden. From a practical
perspective, the bijection is not possible, since an infinite set would have to be
mapped to a finite one. Therefore, a large enough M and a suitable transform
function must be chosen to minimize the possibility of collisions of cache keys,
e.g., an SHA-3-256 cryptographic hash function1. In contrast, if the chosen M
is too large, the desired positive effect on memory usage is lost.

Although the possibility of mapping two arbitrarily different test cases to
the same element is negligibly small (e.g., the collision resistance of an SHA-3
algorithm is 2n/2, with SHA-3-256 it is 2128), it needs to be dealt with.

cx, cy ⊆ c✗

x : serialize(cx), y : serialize(cy)
∃cx, ∃cy : x ̸= y =⇒ transform(x) = transform(y)

(4.5)

Suppose that cx from (4.5) has already been tested (test(cx) → ✓) and
inserted into the cache. Now the algorithm tries another configuration cy

(cx ̸= cy), performs a cache lookup, and finds that it has already been tested
(since transform(x) = transform(y)). This state can lead to two different
outcomes:

test(cx) = ✓ ∧ test(cy) = ✓: none of them reproduced the interesting property
and the integrity of the algorithm is not compromised,

test(cx) = ✓ ∧ test(cy) = ✗: cy would reproduce the initial ✗, but due to the
cache hit, it would never be tested.

This may lead to a suboptimal outcome, but the invariants of the algorithm
are still not violated. In theory, this may lower the effectiveness of the reduction.
The following Section discusses whether collisions happened in practice.

1https://csrc.nist.gov/projects/hash-functions/sha-3-project
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4.1 Evaluation
The experimental setup described in Chapter 3 was used to evaluate the effects
of the proposed optimizations. Beyond those settings, there are some details
that are specific to this chapter: The SHA-3-256 algorithm from the Python
hashlib module was used for the transform function in (4.4), and the pympler2

Python module was used to measure the cache size during reduction.
The C sources of PTS are an order of magnitude bigger than the JavaScript

files of JRTS both in terms of character count and in their internal represen-
tation. This also had a negative effect on the execution time of DDMIN on
tests from PTS, therefore tests from JRTS were only used for benchmarking
DDMIN. For HDD, both test suites were used. To determine the effects of the
proposals on the execution time, the experiments were repeated multiple times
and their execution times were averaged. (The output of the reduction and the
behavior of the cache were stable across the repeated experiments. The only
thing that varied slightly was the execution time.)

The workstation used to conduct the experiments was equipped with an
Intel Core i5-9400 CPU clocked at 2.9 GHz and 16 GB RAM. The machine was
running Ubuntu 20.04 with Linux kernel 5.11.0, and running the experiments
only.

4.1.1 Efficiency of the Content Cache
In order to make sure the optimization ideas presented in this chapter are
relevant, the behavior of the content cache should be examined first. Test
cases from JRTS are reduced with DDMIN to see how many times the cache
was queried and how cache hits (✓ or ✗) relate to one another. Figure 4.1(a)
shows the results: the horizontally striped (blue) bars representing the test
executions show that in the majority of cases (97% on average) the algorithm
had to test the configuration to determine its outcome. The remaining cases
are successful cache lookups: vertically striped (green) bars show cache hits
with pass outcomes, while (yellow) bars with grid patterns stand – or, would
stand – for fail outcomes returned from the cache. Note that, supporting (4.1),
no cache lookup returned a ✗ outcome. Similar observations can be made about
HDD (see Figure 4.1(b)), however, the cache is utilized better compared to
DDMIN: 79% of the configurations were tested and 21% of them had outcomes
in the cache, on average.

2https://pypi.org/project/Pympler/
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Figure 4.1: Cache hits and test executions with reduction algorithms.

We had one unexpected finding with HDD though: 9 cache lookups (0.01%
of all cases) returned a ✗ result. After manual analysis of the steps of the
algorithm on the test cases, it was found that this may happen when the
minimal replacement of a tree node is identical to its serialized form, i.e., when
it does not matter if such a node is pruned or not, the same character sequence
would be serialized from it. Therefore, contrary to (4.1), there is a chance of
retrieving a fail outcome from the cache with the HDD algorithm if minimal
replacements are used, even if that chance is really small. If Proposal 1 was
applied when using HDD, these configurations had to be tested again, thus the
required testing steps would increase by 0.01% (on the test suites used in the
experiments).

The memory consumption of the cache highly depends on the size of the
input both with DDMIN and HDD, as shown in Figure 4.2(a) and 4.2b. The
horizontal axes show the input size (in kB and MB, respectively) and the vertical
axes show the peak memory consumption (in MB and GB). Figure 4.2(a) shows
how DDMIN reduced the inputs taken from JRTS. The cache could consume
a relatively large amount of memory (up to 53 MB) even for small inputs (up
to 4.6 kB). Figure 4.2(b) shows the same information for HDD, where tests
from both JRTS and PTS are reduced. The rule of thumb is that bigger inputs
cause higher memory consumption, which generally holds for both DDMIN and
HDD (with the exception of some outliers). The peak memory consumption
could easily reach 4 GB with HDD.
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Figure 4.2: Memory consumption of the content cache.

According to these results, even though only a small percentage of the
lookups resulted in a cache hit (3% with DDMIN and 21% with HDD), the
cache consumed a high amount of memory. Thus, DDMIN-based reduction
techniques could benefit from more efficient cache utilization.

4.1.2 The Effects of Optimizations
This subsection presents experimental results on how different optimizations
affect the reduction process. For DDMIN, the effects of the optimizations are
presented incrementally. I.e., the effects of the 1st proposal are presented
against the baseline, then the effects of the combined 1st and 2nd proposals
are compared to the results of the 1st, and finally, it is shown how all three
proposals compare against the combination of the 1st and 2nd. Technically, as
described in Section 4, the proposals are considered as steps. For HDD, the
results are presented for all three proposals combined.

Proposal 1
The first proposal is to avoid adding configurations to the cache that have
failing outcomes. Figure 4.3(a) shows relative differences in the number of cache
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entries (horizontally striped blue bars), peak memory consumption (vertically
striped green bars), and runtime (yellow bars with grid pattern), where the
effects of the proposal are compared to the baseline cache implementation that
stores all outcomes in the cache. The number of entries in the cache has been
decreased by 10.51% on average, and by 18.37% in the best case (meaning that
DDMIN finds failing configurations in about every tenth attempt). Likewise,
on average, 11% less memory was needed to accomplish the reduction, with a
24.29% improvement in the best case. When investigating the execution time,
the change is not consistent: in the best case, 3.45% of the execution time
is saved (jerry-3376), but there can also be an increase, with a maximum of
4.51% (jerry-3299). The reduction is not changed beyond these characteristics,
i.e., the output is exactly the same as before applying the proposal.

Proposal 2
The second proposal is to do regular housekeeping and clear entries from the
temporary storage that are bigger than the actually found failing test case.
The first proposal is about not doing something, however, actively managing
the cache during reduction might take additional time in exchange for reduced
memory consumption. Figure 4.3(b) shows the surprising effects of this proposal
from a runtime point of view: it consistently speeded up the reduction by 9.5%
on average (and by 23.3% in the best case). The number of maximum cache
entries got reduced by 86.29% on average (by 90.16% in the best case) and
also on average, 87.63% less memory was required to finish the task. The
outcome of the reduction remained the same as before applying the proposal.
(Proposal 1 was considered as the reference in this comparison.)

Proposal 3
The third proposal is about storing a transformed version of the serialized test
case in the cache. As mentioned before, the SHA-3-256 hashing algorithm
was investigated to transform the test cases. However, using the hash is not
compatible with Proposal 2, since the size information of the stored entries is
lost. Table 4.1 presented an example algorithm execution, and the values from
the “Content” and “Outcome” columns are stored in the cache as key-value
pairs. The outcome is redundant information after Proposal 1 since only the
passing test cases are stored for further usage. Thus, the size information can
be stored as a value in place of the outcome, therefore, the key is the SHA-3-
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Figure 4.3: Effects of the first two proposals on cache memory consumption.
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256 transformed content of the test case and the value is its size (before the
transformation).

The first examined question was raised at the end of Section 4, i.e., whether
collisions happened during reduction: during the experiments with the used
test suites and algorithm implementations, no hash collision occurred at all.

Since only the form of the stored entities changed, Figure 4.4 contains
memory consumption and runtime changes only. The effect of this proposal
on runtime is similar to Proposal 1, i.e., relatively small changes could be
observed in both directions (0.39% increase on average and +1.46% maximum).
The memory consumption after applying this proposal has dropped by 65% on
average and by 91.24% in the best case.

The backing data for the experiments are shown in Table 4.2. The “Baseline”
column shows the peak memory consumption required for reducing the input (in
kilobytes). Then, the “Proposal 1”, “2”, and “3” columns show the same results
after applying each proposal incrementally, and the “Difference” column shows
the relative difference between the baseline and the last proposal (that includes
all discussed optimizations). It can be seen that after applying the proposals,
the reduction process can work with a fraction of the initial memory footprint
(reduced from 53.2 MB to 483.5 kB in the most extreme case). As a side effect,
the execution time is improved as well. Although only Proposal 2 resulted in a

jer
ry-

329
9

jer
ry-

336
1

jer
ry-

337
6

jer
ry-

340
8

jer
ry-

343
1

jer
ry-

343
3

jer
ry-

343
7

jer
ry-

347
9

jer
ry-

348
3

jer
ry-

350
6

jer
ry-

352
3

jer
ry-

353
4

jer
ry-

353
6

−80 %

−60 %

−40 %

−20 %

0 %

Figure 4.4: Effects of Proposal 3 on DDMIN compared to Proposals 1 and 2
combined.
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Table 4.2: Peak Memory Footprint of Content Cache with DDMIN

Test Baseline Proposal 1 Proposal 2 Proposal 3 Difference
(kB) (kB) (kB) (kB) (%)

jerry-3299 4,338.4 3,946.7 556.9 134.1 -96.91%
jerry-3361 1,461.5 1,332.5 211.7 79.4 -94.57%
jerry-3376 33,301.8 30,398.5 3,138.4 328.7 -99.01%
jerry-3408 4,558.0 4,142.5 378.9 112.0 -97.54%
jerry-3431 970.6 863.1 96.5 41.2 -95.75%
jerry-3433 145.8 122.3 14.5 12.9 -91.12%
jerry-3437 21,652.0 19,381.8 1,578.3 215.9 -99.00%
jerry-3479 51,993.7 49,201.1 5,392.9 472.1 -99.09%
jerry-3483 75.3 57.0 13.2 8.5 -88.74%
jerry-3506 6,470.1 5,823.0 900.6 170.7 -97.36%
jerry-3523 13,604.9 12,198.1 993.7 188.9 -98.61%
jerry-3534 2,589.7 2,323.9 250.3 88.8 -96.57%
jerry-3536 361.3 327.8 38.1 23.3 -93.55%

consistent change, the average improvement after the optimizations is 9.89%.
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Hierarchical Delta Debugging
HDD uses DDMIN as a utility to minimize the nodes of its parse tree (see Fig-
ure 2.2(a)), therefore, the combined impacts of the optimizations are discussed
(as the utility is replaced by the improved DDMIN).

When investigating experimental results from JRTS, the cache had to store
47.47% fewer entries after enabling all of the optimizations, and this required
63.19% less memory on average. Consistent trends are not present in the
reduction time, but on average 0.57% more time was needed for the reduction.
Measurements with PTS showed bigger improvements: on average, 86.34%
fewer cache entries were stored, which resulted in a 99.93% smaller memory
footprint and a 7.89% shorter runtime. As shown in Tables 3.1 and 3.2, the
characteristics of the used test suites are quite different, and it can be observed
that the baseline solution by Hodován et al. [20] does not scale well. The bigger
the input, the more resources are needed to perform the reduction. Averaging
the relative changes from both test suites, optimizations enabled reducing test
cases with an 85% smaller memory footprint in a 4.46% shorter time. The
backing data can be found in Table 4.3; the “Proposals” column shows results
after applying all three proposals.



4.1 Evaluation 31

Table 4.3: Peak Memory Footprint of Content Cache with HDD

Test Baseline (kB) Proposals (kB) Difference (%)

clang-22382 377,257.05 250.66 -99.93%
clang-22704 3,619,547.48 219.04 -99.99%
clang-23309 1,079,463.82 898.76 -99.92%
clang-23353 728,406.59 315.23 -99.96%
clang-25900 779,289.02 477.48 -99.94%
clang-26350 2,644,713.97 486.09 -99.98%
clang-26760 2,044,780.89 202.71 -99.99%
clang-27747 242,636.81 167.38 -99.93%
clang-31259 1,009,121.59 591.93 -99.94%
gcc-59903 1,461,098.60 289.84 -99.98%
gcc-60116 920,202.62 943.73 -99.90%
gcc-61383 844,987.29 428.65 -99.95%
gcc-61917 1,766,635.98 315.82 -99.98%
gcc-64990 3,900,100.63 680.55 -99.98%
gcc-65383 893,910.29 590.15 -99.93%
gcc-66186 1,030,536.05 633.49 -99.94%
gcc-66375 1,555,498.32 792.48 -99.95%
gcc-70127 3,853,617.25 374.30 -99.99%
gcc-71626 35,775.61 180.52 -99.50%

jerry-3299 61.21 15.70 -74.36%
jerry-3361 36.32 10.96 -69.82%
jerry-3376 61.56 10.64 -82.72%
jerry-3408 34.43 16.73 -51.40%
jerry-3431 8.82 5.58 -36.76%
jerry-3433 4.20 1.54 -63.38%
jerry-3437 30.16 4.29 -85.78%
jerry-3479 161.83 13.23 -91.83%
jerry-3483 10.45 7.83 -25.06%
jerry-3506 33.38 8.55 -74.37%
jerry-3523 28.30 12.68 -55.20%
jerry-3534 39.91 19.66 -50.75%
jerry-3536 45.30 18.10 -60.04%
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4.2 Conclusions
The caching solutions of DDMIN and HDD are investigated in this chapter. The
“content-based” caching technique [20] was chosen as our baseline. Based on the
experimental data and observations above, we can conclude the contributions
of this chapter:

1. The cache utilization and scaling are suboptimal: DDMIN determined the
outcome of its configurations via cache memory only in 3% of the cases,
while HDD utilized the cache better, the actual testing of 21% of the configu-
rations could be avoided. It did not scale well for either algorithm: DDMIN
consumed up to 53 MB of memory for reducing a 4 kB sized input, while
HDD required 4 GB of RAM to reduce a 0.44 MB sized test in the worst
case.

2. Three optimizations were proposed to reduce the memory footprint of caches
used in test case minimization:

(a) add only passing (✓) tests to the cache,
(b) when a new failing (✗) test case is found, evict cache entries of bigger

test cases, and
(c) instead of storing the serialized test contents, store their hashed value

(fixed-width keys instead of variable-width).

3. With the optimizations combined, DDMIN requires 96% and HDD requires
85% less memory compared to the baseline implementation. Supporting
the scalability issue, the size of the input had an effect on the results: on
JRTS (smaller tests), the average improvement was 63.19%, while on PTS
(larger inputs), it was 99.93%. Furthermore, as a side effect, the reduction
becomes faster by 9.9% with DDMIN. In our experiments, the result of the
reductions did not change after the optimizations.



“The goal is not to be perfect by the end. The goal
is to be better today.”

— Simon Sinek

5
Iterating the Minimizing Delta

Debugging Algorithm

The program in Figure 5.1 is a variant of a classic example of program slic-
ing [31]. It computes both the sum and the product of the first ten natural
numbers in a single loop. Using slicing terminology, we can say that we want
to compute the (so-called static backward) slice of this program with respect
to the criterion (19, prod), thus creating a sub-program that does not contain
statements that do not contribute to the value of prod at line 19.

This can be computed either by analyzing the control and data dependencies
of the program – which is the classic slicing way – or by following the approach
of observation-based slicing [3] that performs a systematic removal of code parts
based on trial and error, much like what DDMIN does on its input. Actually,
even DDMIN can be applied to such tasks. The two things that have to be
remembered are that in such reduction scenarios, the inputs or test cases are
also programs, and the interesting properties to keep are not program failures
(but it is still an ✗ that represents that the property is kept). So, we reformulate
the classic slicing example as a test case minimization task, where the program
in Figure 5.1 is the input (the lines being the units), and the testing function

33
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int add(int a, int b)
{

return a + b;
}
int mul(int a, int b)
{

return a * b;
}
void main ()
{

int sum = 0;
int prod = 1;
for (int i = 1; i <= 10; i++)
{

sum = add(sum , i);
prod = mul(prod , i);

}
printf ("sum: %d\n", sum );
printf ("prod: %d\n", prod );

}

Figure 5.1: Example C program that computes the sum and product of the
first ten natural numbers, and the execution of DDMIN on it while keeping 10!
on the output.

is given as

test(c) =



✓ if c is syntactically incorrect
✓ else if execution of c does not terminate
✓ else if execution of c does not print prod: 3628800
✗ otherwise.

The gray bars on the right of the program code show the progress of
DDMIN, from left to right. Every set of vertically aligned bars corresponds to
a configuration of the algorithm and shows how that configuration is split into
subsets. This example shows that DDMIN could “slice away” the lines of the
main function that did not contribute to the computation of prod. However, the
algorithm could not remove the add function, because when the configuration
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int add(int a, int b)
{

return a + b;
}
int mul(int a, int b)
{

return a * b;
}
void main ()
{

int prod = 1;
for (int i = 1; i <= 10; i++)
{

prod = mul(prod , i);
}
printf ("prod: %d\n", prod );

}

Figure 5.2: The output of DDMIN on the program of Figure 5.1, and the
re-execution of DDMIN.

contained no call to it anymore (at line 15), the granularity had already reached
line (i.e., unit) level. However, add could only be removed as a whole, not
line-by-line, as removing any single line would cause syntax errors. (This is
one of the shortcomings of DDMIN that the grammar-based reducers wanted
to fix.) So, DDMIN has produced a 1-minimal result (shown in Figure 5.2),
but it is clearly not a global minimum. What we can realize when looking
at this result is that we could re-execute DDMIN on this program with the
same testing function as the first time and we may be able to remove the
superfluous add function as well. Again, the gray bars on the right of the
program code show the progress of DDMIN, and indeed, the subsets of the
second configuration aligned well with the structure of this input and made
further reduction possible. The result of the second execution of DDMIN is
given in Figure 5.3. This is the global optimum for this example, so further
executions of DDMIN are not visualized.

Motivated by this example, we can formalize the intuition that DDMIN
could be executed multiple times. Since it cannot be told a priori how many
executions are needed for a given input, we propose to iterate DDMIN until a
fixed point is reached. We will denote the fixed-point iteration of DDMIN as
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int mul(int a, int b)
{

return a * b;
}
void main ()
{

int prod = 1;
for (int i = 1; i <= 10; i++)
{

prod = mul(prod , i);
}
printf ("prod: %d\n", prod );

}

Figure 5.3: The output of DDMIN on the program of Figure 5.2.

DDMIN* – following the notation used for HDD and HDD* [25] – and define
it as follows:

ddmin∗(c✗) =
c′✗ if c✗ = c′✗

ddmin∗(c′✗) otherwise
where c′✗ = ddmin(c✗).

Although the asterisk notation is the same for the two algorithms and even
its meaning is identical in both cases (i.e., fixed-point iteration), its purpose
is fundamentally different for HDD and DDMIN. A single execution of HDD
has no minimality guarantees, only HDD* produces 1-tree-minimal results.
However, even a single execution of DDMIN is guaranteed to give a 1-minimal
result. The purpose of iterating it further is to find an even better 1-minimum.
(Re-executing DDMIN does not guarantee better results in all cases, only if
the configuration aligns well with the structure of the input.)

5.1 Evaluation
The experimental setup described in Chapter 3 was used to evaluate the ef-
fects of the proposed optimizations. Beyond those settings, there are some
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details that are specific to this chapter: DDMIN can be impractically slow on
huge input configurations (e.g., large input at character-level granularity), but
fortunately, an extra option is available in Picire: a combined reduction pass
that may achieve smaller outputs faster. The first pass splits the input into
lines and uses them as a configuration. Line-based reduction is faster than
character-based; however, it may produce larger results, as superfluous charac-
ters might be removed from the lines with finer granularity. The second pass
then uses the output of the first, then continues the reduction at character-level
granularity to achieve smaller results. We have not found a reference to this
technique in the literature (and there is no theoretical guarantee that it will be
faster for all inputs), however, it is really useful from a practical perspective,
and therefore, we have used it in our experiments. Picire is implemented to
maximally utilize each reduction pass: the line-based reduction continues until
the fixed point is reached, then the character-based reduction does the same
thing. Seemingly, this causes extra testing steps, but the experiments show
that using this two-pass reduction is beneficial.

DDMIN may also give noticeably suboptimal results when the input has
some well-defined structure over its units, which is quite typical for inputs for
programs. During its iterations, DDMIN can separate the configuration in
a way that is completely unaligned with the structure of the input, leading
to incorrectly formatted, thus nonreproducible, and therefore, completely un-
usable intermediate test cases. Several studies have made efforts to address
this problem, one of the most well-known approaches is HDD. However, if
DDMIN* forces the reduction further with the help of the fixed-point iteration,
it raises the question of whether DDMIN* can compete with more sophisticated
techniques (e.g., HDD*) in terms of effectiveness. To examine this question,
HDD* is included in the experiments using the Picireny project.

The experiments include two-pass DDMIN, DDMIN*, and the tree-based
HDD* algorithm, therefore, a unified unit of measure must be used. Using the
above-described non-whitespace characters as the “absolute” unit helps us to
make a fair comparison between the different algorithms and their variants.

The workstation used to carry out the experiments was equipped with an
Intel® Xeon® CPU E5-2680 v4 CPU clocked at 2.4 GHz and 128 GB RAM.
The machine was running Ubuntu 22.04 with Linux kernel 5.15.0 and it was
having no other load during the experiments.
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5.1.1 Effectiveness of DDMIN*

Character-Level Granularity

First, the character-level reduction has been evaluated on JRTS; Table 5.1
presents the results of this experiment. For each test case, the first group of
values shows the properties of the inputs: the name and the size expressed in
the unit of reduction. Then, the second group is the baseline data, i.e., those
measured using the traditional DDMIN algorithm: the number of testing steps
needed to accomplish the reduction, and the size of the output. (The number
of testing steps includes actual test case evaluations only; i.e., does not include
the re-evaluation of already seen configurations.) The last group of values
contains the data collected during the executions of the fixed-point iterated
algorithm (DDMIN*) on the test cases. In addition to the absolute numbers,
we also give the changes relative to the baseline data. Plus, the number of
iterations necessary to reach the fixed point is also shown.

Table 5.1: Results with Character Granularity

Test Case DDMIN DDMIN*

Name Chars Steps Chars Iters Steps Chars

jerry-3299 1,767 4,959 542 12 13,287 +167.94% 130 -76.01%
jerry-3361 1,953 2,276 427 12 9,950 +337.17% 175 -59.02%
jerry-3376 6,626 15,008 1,216 9 31,602 +110.57% 306 -74.84%
jerry-3408 2,681 4,869 557 7 9,707 +99.36% 178 -68.04%
jerry-3431 1,065 2,228 207 6 3,120 +40.04% 58 -71.98%
jerry-3433 961 588 74 4 681 +15.82% 14 -81.08%
jerry-3437 6,597 11,764 1,017 6 15,982 +35.86% 105 -89.68%
jerry-3479 5,201 17,391 2,383 15 66,097 +280.06% 452 -81.03%
jerry-3483 492 388 42 4 516 +32.99% 17 -59.52%
jerry-3506 3,760 5,797 658 8 12,322 +112.56% 192 -70.82%
jerry-3523 3,928 8,666 832 6 15,542 +79.34% 206 -75.24%
jerry-3534 1,927 3,407 378 6 6,512 +91.14% 128 -66.14%
jerry-3536 829 1,119 163 3 1,628 +45.49% 147 -9.82%

If an input is not optimal (i.e., it could be reduced somehow), then at least
two iterations of DDMIN* are expected: whenever an iteration manages to
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reduce the configuration, there will be a next iteration that tries to continue
the reduction. If the configuration cannot be reduced further in an iteration,
the algorithm halts. The iteration counts in Table 5.1 support this expectation.
The highest number was 15 (for test case jerry-3479), and the lowest was 3
(also signaling that DDMIN* could always further reduce the result of DDMIN).
Also, when the number of iterations is exactly two (not present in Table 5.1),
that means that DDMIN* is not able to produce smaller results than DDMIN.

For all of the test cases, DDMIN* produced significantly smaller results
than DDMIN. The output configuration got smaller by a minimum of 9.82%
(in the case of jerry-3536) and by a maximum of 89.68% (for jerry-3437), and
the average improvement was 67.94%. The cost of these improvements was
an increased number of test executions, in the range of 15.82% and 337.17%,
111.41% being the average. Let us highlight the experiment of the jerry-
3479 test case, which shows some impressive results. In that case, the input
contained 5,201 characters, and DDMIN could reduce it to 2,383 characters,
which is 45.81% of the input. However, the 15 iterations of DDMIN* could
reduce it further to 433 characters, which is only 8.69% of the input size.

0 10,000 20,000 30,000 40,000 50,000 60,0000

2,000

4,000
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Figure 5.4: The process of reduction of the jerry-3479 test case with DDMIN*
using character granularity through 15 iterations: the change of configuration
size over testing steps.

Figure 5.4 presents the character-level reduction process of jerry-3479 over
15 iterations. Changes in configuration size are represented along the vertical
axis, from the input size to the end result of the last iteration. Test execu-
tions are represented along the horizontal axis, and each dashed vertical line
represents the end of an iteration. The leftmost dashed line corresponds to
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the result of the first iteration, which is also the result of DDMIN (labeled
DDMIN). The following iterations yield gradual reductions until the 15th iter-
ation cannot reduce its input further; therefore, the iteration halts (rightmost
dashed line labeled with DDMIN*). Bigger parts from the configuration could
be removed close to the beginning of each iteration (as the splitting of the
configuration is reset to 2), and then only smaller chunks could be removed as
the process progresses (flat parts of the figure). Then again, larger removals
can be observed at the beginning of each additional DDMIN* iteration, which
is responsible for the improvement. The first iteration is responsible for 26.31%
of the steps, then the second for 16.55%, and the following iterations gradually
perform fewer steps.

Line-Level Granularity

Table 5.2 presents the results of the line-level reduction of the test cases of
JRTS and PTS. In addition to the previous table structure, we present the
amount of time needed to perform these steps on the workstation used for the
experiment, and the size is also expressed as the number of non-whitespace
characters in the output.

The algorithm behavior in terms of efficiency is similar in both test suites.
Not surprisingly, DDMIN* required more testing steps than DDMIN, the aver-
age increase is 66.08%, with 519.21% being the maximum (gcc-61917 ). Com-
pared to this, the increase in wall clock time is only 28.59% with 280.25% being
the maximum (also gcc-61917 ). For most of the test cases, DDMIN* produced
smaller results than DDMIN. Since the configuration units are lines, the results
should be compared in this unit. The output configuration got smaller by a
maximum of 96.45% (clang-27747 ), and the average improvement is 48.08%.
Interestingly, two different behaviors can be observed: DDMIN* improves the
effectiveness of the reduction to a great extent on PTS (68.70%), which con-
tains 86 times larger inputs (in terms of lines) than JRTS on average. However,
the improvement is only observable in 5 of 13 cases of JRTS, and the average
improvement is only 19.53%. After a manual examination of the output files,
it turned out that where DDMIN* produced the same output as DDMIN, that
was the global optimum and could not be reduced further at line-level. For
smaller configurations (in our experiments, 18–118 units) DDMIN might give
a global optimum; however, if the input configuration was bigger (36–20,617
units), DDMIN* could be very helpful in creating smaller outputs. An overlap
can be observed between the intervals, where relatively small configurations
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could also be reduced further with DDMIN*: but eventually, the behavior of
the algorithm is test case specific, and we could not unambiguously generalize
the phenomenon.

Table 5.2: Results with Line Granularity

Test Case DDMIN DDMIN*

Steps Time (s) Lines Chars Steps Time (s) Lines Chars

jerry-3299 54 4.33 13 307 65 +20.37% 5.24 +21.02% 13 — 307 —
jerry-3361 28 3.87 4 165 29 +3.57% 3.88 +0.26% 4 — 165 —
jerry-3376 144 15.22 17 361 181 +25.69% 18.14 +19.19% 5 -70.59% 113 -68.70%
jerry-3408 22 1.74 3 165 22 — 1.81 +4.02% 3 — 165 —
jerry-3431 29 3.24 5 104 35 +20.69% 3.89 +20.06% 3 -40.00% 56 -46.15%
jerry-3433 23 3.15 2 57 23 — 3.29 +4.44% 2 — 57 —
jerry-3437 186 20.27 20 497 245 +31.72% 24.93 +22.99% 10 -50.00% 252 -49.30%
jerry-3479 148 16.72 15 515 186 +25.68% 19.30 +15.43% 10 -33.33% 364 -29.32%
jerry-3483 13 1.90 2 56 13 — 1.90 — 2 — 56 —
jerry-3506 33 4.21 3 93 34 +3.03% 4.33 +2.85% 3 — 93 —
jerry-3523 49 6.39 4 90 51 +4.08% 6.67 +4.38% 4 — 90 —
jerry-3534 85 8.95 10 223 95 +11.76% 10.17 +13.63% 4 -60.00% 121 -45.74%
jerry-3536 33 3.22 7 158 38 +15.15% 3.66 +13.66% 7 — 158 —
clang-22382 4,936 1,514.18 596 14,705 9,722 +96.96% 2,032.92 +34.26% 314 -47.32% 10,451 -28.93%
clang-22704 11,930 5,957.04 919 9,572 16,695 +39.94% 6,541.71 +9.81% 129 -85.96% 1,748 -81.74%
clang-23309 8,736 4,439.29 803 23,616 15,414 +76.44% 5,975.74 +34.61% 459 -42.84% 20,048 -15.11%
clang-23353 6,117 2,127.34 670 11,337 12,243 +100.15% 2,769.17 +30.17% 236 -64.78% 5,147 -54.60%
clang-25900 13,086 7,662.78 1,000 13,031 18,948 +44.80% 8,496.11 +10.88% 201 -79.90% 5,783 -55.62%
clang-26350 21,027 20,445.25 1,485 63,740 34,880 +65.88% 23,424.97 +14.57% 335 -77.44% 16,673 -73.84%
clang-26760 35,647 25,824.05 1,782 17,170 42,565 +19.41% 22,886.70 -11.37% 209 -88.27% 6,755 -60.66%
clang-27747 17,309 15,970.98 1,407 16,825 22,208 +28.30% 16,837.55 +5.43% 50 -96.45% 1,905 -88.68%
clang-31259 9,172 5,510.85 764 15,395 17,421 +89.94% 6,951.33 +26.14% 245 -67.93% 9,742 -36.72%
gcc-59903 8,677 7,453.63 805 15,900 14,440 +66.42% 8,504.36 +14.10% 459 -42.98% 13,823 -13.06%
gcc-61383 21,857 7,391.74 2,847 45,370 99,322 +354.42% 22,975.37 +210.82% 1,207 -57.60% 16,685 -63.22%
gcc-61917 51,876 26,518.21 6,975 92,919 321,223 +519.21% 100,834.93 +280.25% 2,251 -67.73% 27,094 -70.84%
gcc-64990 14,500 15,754.00 1,173 21,002 23,157 +59.70% 17,466.87 +10.87% 447 -61.89% 17,528 -16.54%
gcc-65383 8,536 4,106.35 715 16,034 14,093 +65.10% 4,932.27 +20.11% 273 -61.82% 11,297 -29.54%
gcc-66186 9,326 9,297.62 803 17,442 17,334 +85.87% 10,373.58 +11.57% 328 -59.15% 11,837 -32.14%
gcc-66375 11,352 11,476.84 1,062 18,363 19,958 +75.81% 13,354.05 +16.36% 327 -69.21% 11,219 -38.90%
gcc-70127 20,547 17,735.92 1,620 21,367 35,790 +74.19% 19,839.98 +11.86% 337 -79.20% 9,183 -57.02%
gcc-71626 1,437 161.77 130 4,652 1,784 +24.15% 184.27 +13.91% 18 -86.15% 611 -86.87%

Two-Pass Reduction

Not only the manual test case minimization can be time-consuming when the
input is huge, but DDMIN can also take a lot of time. Although line-level
reduction had reasonable time requirements, the character-level reduction was
completely unacceptable for practical use in the case of PTS. However, the line-
level reduction does not exploit the full potential of the algorithm, and there
is an intermediate way, which might be “fast enough” and the output is still
smaller. (E.g., Picire reduced the gcc-71626 benchmark program to 4,652 non-
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whitespace characters with DDMIN at line-level in 1,437 steps, furthermore,
at character-level, it could be reduced to 8,713 non-whitespace characters in
121,968 steps. It was using more resources and the results it gave were even
worse, which is not the best combination.) Therefore, a combined reduction
pass has been utilized that first reduces the input with line granularity, and then
reduces further with character-level granularity. The reduction time became
more acceptable using this technique as the line-level granularity.

Table 5.3 shows the results of this two-pass reduction with DDMIN and
DDMIN*. The structure is similar to Table 5.2, only the main basis of com-
parison is changed to non-whitespace characters (column “Chars”) to avoid
misinterpretation of the results. The average increase in the testing steps is
96.41%, with 615.33% being the maximum (clang-23309 ), which means that
a maximum of seven times more testing steps are needed to reduce tests from
our suite. The increase in wall clock time is 68.91% with 711.25% being the
maximum (clang-23309 ). Compared to the line-level experiment, DDMIN*
produced smaller results in 8 of 13 (+3) on JRTS, meaning the line-level global
minimum could be reduced further with finer granularity. The output got
smaller by a maximum of 88.27% (clang-27747 ), and the average improvement
was 45.76%.

Based on the two-pass reduction, it is definitely worth using DDMIN* if the
goal is to produce as small outputs as possible with the least information about
the input structure (i.e., lines and characters only) since the size of the output
halved on average. Results of Table 5.3 can be interpreted in a way that results
from Table 5.2 were given to Picire to further reduce it with character-level
DDMIN*. Comparing the results from the two tables, the average improvement
is 53.96%, but it has its price in the increased time needed to accomplish the
reduction: 15 times more wall-clock time is needed on average. (This might
sound like a lot, however, the slowest reduction in JRTS needed 6 minutes,
which can be made even more acceptable with parallel execution in a fuzzer
ecosystem.)
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Table 5.3: Results with Combined Granularity

Test Case DDMIN DDMIN*

Steps Time (s) Chars Steps Time (s) Chars

jerry-3299 1,092 81.94 143 2,209 +102.29% 165.22 +101.64% 118 -17.48%
jerry-3361 625 54.56 112 1,181 +88.96% 95.33 +74.73% 89 -20.54%
jerry-3376 1,549 137.97 201 993 -35.89% 82.94 -39.89% 89 -55.72%
jerry-3408 423 31.97 63 575 +35.93% 42.12 +31.75% 58 -7.94%
jerry-3431 456 44.45 59 358 -21.49% 32.61 -26.64% 31 -47.46%
jerry-3433 153 16.57 21 172 +12.42% 17.37 +4.83% 21 —
jerry-3437 1,837 167.81 166 1,189 -35.27% 108.42 -35.39% 107 -35.54%
jerry-3479 1,875 162.08 253 2,124 +13.28% 174.25 +7.51% 191 -24.51%
jerry-3483 40 5.30 4 42 +5.00% 5.20 -1.89% 4 —
jerry-3506 282 328.47 48 329 +16.67% 386.24 +17.59% 48 —
jerry-3523 377 35.52 63 440 +16.71% 39.69 +11.74% 63 —
jerry-3534 1,079 92.67 148 1,037 -3.89% 84.73 +-8.57% 105 -29.05%
jerry-3536 683 56.08 148 842 +23.28% 67.73 +20.77% 148 —
clang-22382 97,305 7,018 7,431 312,664 +221.32% 64,387.15 +153.26% 2,700 -63.67%
clang-22704 48,929 5,493 4,365 54,819 +12.04% 10,341.69 -19.90% 694 -84.10%
clang-23309 128,663 9,971 11,736 920,361 +615.33% 268,369.71 +711.25% 5,341 -54.49%
clang-23353 69,955 5,041 7,352 204,809 +192.77% 35,926.18 +144.34% 2,612 -64.47%
clang-25900 107,132 10,842 7,647 271,594 +153.51% 57,745.12 +66.18% 2,574 -66.34%
clang-26350 571,649 66,923 47,655 1,031,666 +80.47% 275,089.75 -11.17% 6,646 -86.05%
clang-26760 175,770 19,461 9,456 205,756 +17.06% 54,985.43 -4.77% 2,551 -73.02%
clang-27747 101,777 14,389 8,988 71,072 -30.17% 23,191.19 -42.01% 1,054 -88.27%
clang-31259 97,311 10,840 8,156 215,736 +121.70% 54,647.29 +83.45% 4,250 -47.89%
gcc-59903 108,168 11,997 10,080 601,419 +456.00% 145,742.81 +355.33% 5,803 -42.43%
gcc-61383 374,540 49,046 32,544 801,846 +114.09% 243,083.31 +34.40% 9,817 -69.83%
gcc-61917 1,025,065 174,767 65,357 1,685,350 +64.41% 576,466.30 -20.89% 11,268 -82.76%
gcc-64990 294,382 16,967 10,051 791,075 +168.72% 224,668.02 +145.05% 5,042 -49.84%
gcc-65383 106,058 9,438 7,593 438,661 +313.60% 105,516.61 +272.20% 3,805 -49.89%
gcc-66186 95,930 11,196 9,236 254,214 +165.00% 76,236.37 +124.48% 5,144 -44.30%
gcc-66375 110,042 14,186 9,680 194,366 +76.63% 51,084.57 +35.09% 4,932 -49.05%
gcc-70127 149,023 21,531 12,062 272,148 +82.62% 62,918.22 +11.66% 2,498 -79.29%
gcc-71626 17,879 1,172 1,644 8,145 -54.44% 568.14 -59.84% 252 -84.67%

5.1.2 Input-Dependent Behavior of Algorithm Variants

Figure 5.5 visualizes the raw data from Table 5.2. Each mark on the charts
represents a test case reduced with DDMIN*, and the position of the mark re-
flects how the fixed-point iteration affected the reduction compared to DDMIN.
The input configuration size is represented along the horizontal axis while the
effects of DDMIN* are represented along the vertical axis (all relative to the
size and number of testing steps of the baseline). Figure 5.5(a) corresponds to
the effectiveness, it shows that DDMIN* produced exactly the same output as
DDMIN in some cases, however, the outputs are a fraction of the baseline for
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Figure 5.5: Effect of line-level DDMIN* as a Function of the Size of the
Input.

the majority of benchmarks. Figure 5.5(b) shows the effect on the efficiency of
the reduction. DDMIN* yielded the smaller outputs slower (as expected), the
additional cost in the number of testing steps is not expensive for inputs with
configuration size less than 1000 (13.28%), and the effort is doubled for larger
inputs (109.56% on average including the outliers, and 66.08% when they are
excluded). There are only a handful of outliers where DDMIN* required much
more testing steps than the baseline, namely gcc-61383 and gcc-61917.

Figure 5.6 visualizes the raw data from Table 5.3. Its structure is similar
to Figure 5.5, the only difference is the metrics of the configuration size rep-
resented along the horizontal axis: the number of lines has been replaced by
the number of non-whitespace characters. Figure 5.6(a) shows similar results
as Figure 5.5(a), DDMIN* produces smaller outputs for the vast majority of
benchmarks, and some small inputs cannot be reduced further with fixed-point
iteration. Figure 5.6(b) shows surprising results: some inputs could be reduced
faster. The reason behind the efficiency improvement is that Picire can pro-
duce smaller results at line level in a reasonable amount of testing steps with
DDMIN*, then the character-level reduction can work further starting from
this smaller input configuration. However, the general case is that DDMIN*
requires more testing steps, furthermore, unlike the line-level reduction, the in-
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Figure 5.6: Effect of two-pass DDMIN* as a Function of the Size of the Input.

crease did not only double but quadrupled on average with two-pass reduction.
There are two different outliers where DDMIN* required many more testing
steps, namely clang-23309 and gcc-59903.

5.1.3 Relation to More Sophisticated Techniques
Seeing these promising results, the question can be raised whether DDMIN*
can compete with HDD* in terms of output size. There is no doubt that
neither DDMIN nor DDMIN* can compete with HDD* in terms of the number
of required testing steps. HDD takes the input structure into account, which
makes it highly efficient compared to structure-unaware algorithms. The answer
can be found in Table 5.4. While the output of traditional DDMIN is 720%
larger than the output of HDD* on average (in these test suites), DDMIN*
brings the results much closer. The output of DDMIN* is 139% larger than
the output of HDD*, which is not that bad for a structure-unaware technique.
However, DDMIN* is still far away from being a competitor to HDD* and
should be optimized further.

In the tables below, characters serve as an absolute measure (column
“Chars”), and it is expressed as the number of non-whitespace characters to
avoid bias from indentation or other formatting differences.



46 Iterating the Minimizing Delta Debugging Algorithm

Table 5.4: Results with HDD* and Combined Granularity DDMIN*

Test Case HDD* DDMIN*

Steps Time (s) Chars Steps Time (s) Chars

jerry-3299 171 17.80 92 2,209 +1,191.81% 165.22 +828.20% 118 +28.26%
jerry-3361 141 12.40 97 1,181 +737.59% 95.33 +668.79% 89 -8.25%
jerry-3376 116 11.71 70 993 +756.03% 82.94 +608.28% 89 +27.14%
jerry-3408 164 12.00 62 575 +250.61% 42.12 +251.00% 58 -6.45%
jerry-3431 52 5.44 31 358 +588.46% 32.61 +499.45% 31 —
jerry-3433 10 1.87 21 172 +1,620.00% 17.37 +828.88% 21 —
jerry-3437 38 5.43 42 1,189 +3,028.95% 108.42 +1,896.69% 107 +154.76%
jerry-3479 225 22.56 120 2,124 +844.00% 174.25 +672.38% 191 +59.17%
jerry-3483 67 6.29 38 42 -37.31% 5.20 -17.33% 4 -89.47%
jerry-3506 112 10.76 52 329 +193.75% 386.24 +3,489.59% 48 -7.69%
jerry-3523 109 9.72 63 440 +303.67% 39.69 +308.33% 63 —
jerry-3534 170 14.32 96 1,037 +510.00% 84.73 +491.69% 105 +9.38%
jerry-3536 146 11.95 123 842 +476.71% 67.73 +466.78% 148 +20.33%
clang-22382 14,842 4,618.19 582 312,664 +2,006.62% 64,387.15 +1,294.21% 2,700 +363.92%
clang-22704 10,530 11,665.69 168 54,819 +420.60% 10,341.69 -11.35% 694 +313.10%
clang-23309 24,594 22,821.60 3,582 920,361 +3,642.22% 268,369.71 +1,075.95% 5,341 +49.11%
clang-23353 14,585 5,739.18 374 204,809 +1,304.24% 35,926.18 +525.98% 2,612 +598.40%
clang-25900 14,737 8,753.28 1,562 271,594 +1,742.94% 57,745.12 +559.70% 2,574 +64.79%
clang-26350 16,748 21,945.57 1,613 1,031,666 +6,059.94% 275,089.75 +1,153.51% 6,646 +312.03%
clang-26760 12,925 13,059.59 586 205,756 +1,491.92% 54,985.43 +321.03% 2,551 +335.32%
clang-27747 7,164 5,147.64 419 71,072 +892.07% 23,191.19 +350.52% 1,054 +151.55%
clang-31259 18,900 19,467.98 2,174 215,736 +1,041.46% 54,647.29 +180.70% 4,250 +95.49%
gcc-59903 18,646 18,169.24 1,726 601,419 +3,125.46% 145,742.81 +702.14% 5,803 +236.21%
gcc-61383 17,279 13,640.33 1,704 801,846 +4,540.58% 243,083.31 +1,682.09% 9,817 +476.12%
gcc-61917 17,276 12,082.91 1,764 1,685,350 +9,655.44% 576,466.30 +4,670.92% 11,268 +538.78%
gcc-64990 19,258 27,572.61 2,866 791,075 +4,007.77% 224,668.02 +714.82% 5,042 +75.92%
gcc-65383 11,836 8,757.59 1,028 438,661 +3,606.16% 105,516.61 +1,104.86% 3,805 +270.14%
gcc-66186 15,649 18,205.31 2,617 254,214 +1,524.47% 76,236.37 +318.76% 5,144 +96.56%
gcc-66375 21,171 35,216.11 2,963 194,366 +818.08% 51,084.57 +45.06% 4,932 +66.45%
gcc-70127 21,562 46,974.24 1,763 272,148 +1,162.16% 62,918.22 +33.94% 2,498 +41.69%
gcc-71626 4,210 454.84 168 8,145 +93.47% 568.14 +24.91% 252 +50.00%

5.2 Conclusions

We have evaluated the fixed-point iteration of minimizing Delta Debugging
(DDMIN*) in two, slightly different settings. The test suites used are pub-
licly available and have already been used in reduction-related studies. First,
the reduction of test cases was performed with character level granularity on
JRTS; the output became smaller by 67.94% on average. Then, reduction with
line granularity was performed, and the experiments show that DDMIN* can
produce 48.08% smaller outputs on average (68.70% on Perses Test Suite and
19.53% on JerryScript Reduction Test Suite). The price of this improvement
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is the increased number of steps, which was 66.08% on average. Then, a “com-
bined”, two-pass reduction was performed where test cases were first reduced
with line granularity, then these intermediate results were reduced further with
character granularity as fine-tuning. DDMIN* overcame DDMIN with this
setting as well, and could reduce inputs further by 45.76% on average. Sur-
prisingly some inputs could be reduced faster with DDMIN* as the line-level
reduction produces results in a reasonable amount of steps, then the character-
level reduction can work further from this smaller input configuration.

If grammar is not available or maintaining it is not a beneficial option, we
would recommend using the combined, two-pass DDMIN*, since it was shown
that the fixed-point iteration results in smaller outputs in exchange for some
extra CPU cycles.

Encouraged by the promising results, we have compared the output of
DDMIN* to the output of HDD*, to see whether a structure-unaware algorithm
can compete with a “more clever” one. In terms of required testing steps, the
answer is simply no; however, in terms of size DDMIN* brought the results
much closer to each other, from 9 times larger outputs (DDMIN) to only 3
times larger ones. There is still room for improvement in those situations where
the structure information is missing or changing rapidly.

Based on the experimental data and observations above, we can conclude
the contributions of this chapter:

1. DDMIN* is most effective with character-level granularity (67.94% smaller
outputs) compared to line-level reduction (48.08% smaller outputs). How-
ever, character-level reduction can be unacceptably slow for “large” inputs
and line-level reduction leaves unnecessary parts in its output; therefore,
we used a combined approach, where DDMIN* produced 45.76% smaller
outputs. Furthermore, the two-pass reduction produced 53.96% smaller
outputs than the line-level approach in our experiments, on average.

2. DDMIN* incurs an additional cost (number of testing steps), which appears
in most cases. (Some tests from our experimental setup could be reduced
with fewer steps, but these are exceptions.) This additional cost is related to
the size of the test case, but it does not grow beyond all limits. We identified
that a maximum of seven times more testing steps are needed with DDMIN*
in the used benchmark suites. The effectiveness of the reduction shows
similar patterns: the larger the input configuration, the larger the potential
to reduce. There were some small test cases (JRTS) where DDMIN* could
not reduce the input further, however, this cannot be completely generalized.
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If the input configuration has some superfluous items, DDMIN* can reduce
it further regardless of its size.

3. Encouraged by the promising results, we have compared the output of
DDMIN* to the output of HDD*, whether a structure-unaware algorithm
can compete with a “more clever”. In terms of required testing steps, the
answer is simply no; however, DDMIN* brought the results much closer to
each other, from 9 times larger outputs (DDMIN) to only 3 times larger
ones.



“Focus on long-term success, but be willing to make
short-term adjustments to get there.”

— Simon Sinek

6
Parallel Optimizations of DDMIN*

Minimizing Delta Debugging is already more than twenty years old and still
widely used because it works on any kind of input. Many approaches have tried
to work smarter since the first appearance of DDMIN: HDD [25], Pardis [11],
ReduKtor [29], etc. could all produce smaller output faster than DDMIN, but
they typically needed some extra information about the structure of the test
case, usually a grammar. This additional requirement can act as a blocker for
some users of test case reducers: grammar may not be readily available, and
writing (or maintaining) one may not be a practical option. In such cases, the
structure-unaware nature of DDMIN is proven to be very useful.

This is why we have investigated whether it was possible to make DDMIN
itself work faster without compromising its minimality guarantees. One tech-
nique that has already been proven useful for speeding up DDMIN is par-
allelization [18]. The question we sought the answer to was whether it was
possible to make the parallel DDMIN even faster without losing the 1-minimal
property of its output.

Hodován et al. [18] noticed that the original implementation of DDMIN uses
sequential loops to realize the “reduce to subset” and “reduce to complement”
phases, however, the potential for parallelization is present in Figure 2.1, i.e.,
∃i ∈ {1, . . . , n} does not specify how to find i. Since n can be big for real

49
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inputs (and testing a configuration is considered to be an expensive part of the
algorithm), they rewrote DDMIN to use parallel loops. As testing different con-
figurations is independent, their proposal worked well in practice and achieved
75-80% less runtime in their experiments. Figure 6.1(a) shows how sequential
loops iterate through five configurations: if we assume that every test takes
the same amount of time t, then checking all of them takes 5t. However, if the
loops are implemented in a parallel way, as shown in Figure 6.1(b), checking
the configurations takes only t, which might bring a significant speedup to
reduction. For the formal definition of their parallel DDMIN formulation, the
reader is referred to [18]. Three assumptions were made regarding correctness
and effectiveness, of which the following one is relevant to this study: When a
fail is found in a parallel loop, the other active loop bodies should be aborted
even if their computation has not finished yet. This might cause computation
results to be thrown away, but it does not harm the minimality guarantees of
the algorithm.
The key contributions of this part:

• describe the stability issues of the parallel DDMIN algorithm,

• provide a stabilization approach, and

• define an algorithm variant, named GreeDDy, that can speed up the
parallel reduction.

Let j be the parallelization capabilities of the algorithm, i.e., how many
test(∆i) or test(∇i) jobs can be started concurrently (five were used in Fig-
ure 6.1). Let T be the testing window (|T | = j), i.e., j tests are executed and
j results (✓, ✗, or ?) are produced. Let F denote the set of configurations
with a fail outcome in T ; if |F | > 1 then the behavior of parallel DDMIN [18]
becomes unstable: it will choose among the interesting configurations based on
which produced its fail outcome first. Therefore, different test reductions can
yield different outcomes, which is not appropriate for carrying out reproducible
experiments. (Note that the 1-minimality of the algorithm is not harmed, since
multiple local minima might exist.)

The “reduce to subset” and “reduce to complement” phases iterate through
configurations in a forward or backward syntactic order, therefore, it is known
which configuration should be investigated first. To stabilize the algorithm, the
following changes must be made: if a fail is found in T , then no new parallel
loop bodies are started (no change), and the active test executions should be
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Figure 6.1: (a) Sequential execution of “reduce to subset”. (b) Parallel execu-
tion of “reduce to subset”.

awaited (i.e., computation results are not thrown away). If multiple fails are
found, the syntactic order must be taken into account when choosing which
one to reduce further.

When multiple fails are found in T and the algorithm chooses one of them
based on the iterator, the results from other configurations are thrown away,
even if they could have been useful. This results in superfluous test executions
on configurations that have already been tested (and failed). The following
strategy can help minimize the number of test executions: If a testing window
has multiple fails, then it is worth trying to combine those configurations that
yielded them and check whether this combination also results in a fail. If yes,
several test executions are saved in one step. If no, then select the first fail
(based on the syntactic order) and try to combine the other interesting configu-
rations one by one. This case can also save testing steps as only configurations
with a fail outcomes are retested instead of the whole testing window in the
next parallel loop iteration. Figure 6.2 formalizes our proposed optimization
using the notations already discussed.
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greeDDy(c′
✗) = greeDDy2(c′

✗, 2) where

greeDDy2(c′
✗, n) =



greeDDy2(
⋂
i∈F

Ci, max(n− |F |, 2)) if |F | > 1 ∧ test(
⋂
i∈F

Ci) = ✗ (“reduce greedily”)

greeDDy2(Ci, 2) else if ∃i ∈ F · Ci ∈ {∆1, ..., ∆n} (“reduce to subset”)

greeDDy2(Ci, max(n− 1, 2)) else if ∃i ∈ F · Ci ∈ {∇1, ...,∇n} (“reduce to complement”)
greeDDy2(c′

✗, min(|c′
✗|, 2n)) else if n < |c′

✗| (“increase granularity”)
c′

✗ otherwise (“done”).

where C is a sequence of C, such that {∇1, ...,∇n} ⊆ C ⊆ {∆1, ..., ∆n,∇1, ...,∇n},
∇i = c′

✗ −∆i, c′
✗ = ∆1 ∪∆2 ∪ . . . ∪∆n, all ∆i are pairwise disjoint, and ∀∆i · |∆i| ≈ |c′

✗|/n holds.
F is a set of indices over C such that ∀i ∈ F · test(C) = ✗ and F = ∅ ⇐⇒ ∄Ci · test(Ci) = ✗.

Figure 6.2: GreeDDy: the greedy extension of minimizing Delta Debugging.

6.1 Evaluation
The experimental setup described in Chapter 3 was used to evaluate the effects
of the proposed optimizations. Beyond those settings, there are some details
that are specific to this chapter: the resource-efficient content-based caching was
enabled (Section 4), and the testing window was chosen to be 4 (|T | = j = 4).
The fixed-point iteration variant of DDMIN (DDMIN*) was used as a baseline.
To see how our proposed extension performs on real-life test cases, we have
taken 10 GCC-related test cases from the Perses Test Suite and minimized
them with both DDMIN* and GreeDDy* (the asterisk denotes that GreeDDy
was iterated to a fixed point).

The workstation used to carry out the experiments was equipped with an
Intel® Xeon® CPU E5-2680 v4 CPU clocked at 2.4 GHz and 128 GB RAM.
The machine was running Ubuntu 22.04 with Linux kernel 5.15.0 and it was
having no other load during the experiments.

Table 6.1 presents the results of reducing the test cases with lines as the
unit of reduction. For each test case, the first group of values shows the
properties of the inputs: the name and the size expressed in non-whitespace
characters (column “Chars”). Then, the second group is the baseline data, i.e.,
those measured using DDMIN*: the size of the output, the number of testing
steps, and the runtime needed to accomplish the reduction. The last group of
values contains the data collected during the executions of the greedy variant
(GreeDDy*) on the test cases. In addition to the absolute numbers, we also
provide the changes relative to the baseline data.

For 6 of 10 test cases, GreeDDy* produced different outputs than DDMIN*;
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Table 6.1: Results with Line Granularity

Test Case DDMIN* GreeDDy*

Name Chars Chars Steps Runtime (s) Chars Steps Runtime (s)

gcc-61383 110,643 16,685 130,498 8,871.45 15,386 (-7.79%) 122,505 (-6.12%) 7,340.30 (-17.26%)
gcc-64990 439,587 17,528 48,117 15,419.29 16,871 (-3.75%) 29,532 (-38.62%) 8,540.72 (-44.61%)
gcc-65383 125,221 11,297 27,720 4,242.85 11,279 (-0.16%) 19,390 (-30.05%) 2,448.62 (-42.29%)
gcc-66186 139,087 11,837 34,337 9,902.93 11,837 (—) 21,247 (-38.12%) 5,177.49 (-47.72%)
gcc-66375 191,827 11,219 38,523 11,667.02 11,126 (-0.83%) 23,429 (-39.18%) 6,153.44 (-47.26%)
gcc-66412 209,886 7,004 43,605 4,756.91 7,004 (—) 30,313 (-30.48%) 2,800.96 (-41.12%)
gcc-66691 56,682 26,412 28,789 1,747.56 26,412 (—) 21,361 (-25.80%) 1,242.39 (-28.91%)
gcc-70127 400,556 9,183 72,079 17,752.48 8,562 (-6.76%) 54,096 (-24.95%) 10,185.00 (-42.63%)
gcc-70586 589,017 18,166 83,302 33,545.04 17,791 (-2.06%) 57,150 (-31.39%) 17,878.05 (-46.70%)
gcc-71626 14,465 611 5,725 187.62 611 (—) 3,314 (-42.11%) 112.08 (-40.26%)

Average -2.13% -30.68% -39.88%

it got a bit smaller, and the average improvement was 2.13% (including those
that produced exactly the same output as well). Supporting the motivation
behind this research, the number of started test executions and the runtime
were affected heavily. Greedily combining failed test executions required 30.68%
fewer testing steps on average (42.11% fewer tests were needed in the best case
and 6.12% of testing steps could be saved in the worst case). The runtime
shows similar traits: On average, 39.88% of the execution time could be saved
with GreeDDy*; 47.42% in the best and 17.26% in the worst cases. According
to these results, the started tests and the runtime properties of the algorithm
show promising results, and based on them, it seems worthwhile to deal with
an algorithm that is more than 20 years old.

6.2 Conclusions
Based on the experimental data and observations above, we can conclude the
contributions of this chapter:

1. Investigated the stability issues of DDMIN* and provided a stabilization
approach for it.

2. Made the parallel execution of DDMIN* even faster, exploiting the potentials
of the already-seen testing windows (named GreeDDy*).
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3. Presented our idea where multiple test executions with fail outcomes could
be merged to save further retesting, and found that GreeDDy* could save
30.68% of the testing steps of DDMIN* which resulted in 39.88% less runtime.
The output of GreeDDy* usually got smaller, however, the effects of the
algorithm on the output are negligible.



“Creativity is the art of finding a new route to a
known destination.”

— Simon Sinek

7
Extending Hierarchical Delta

Debugging with Hoisting

Although HDD and its variants perform better on structured inputs than
DDMIN, there is still room for improvement. Several improvements have
already been proposed, often by preprocessing the tree representation HDD
is working on, e.g., by hiding some tokens from HDD to reduce the number
of nodes that have to be considered, by collapsing (a.k.a. squeezing) multiple
nodes into one for the same reason [20], or by rotating recursive structures
of the tree to reduce its height [19]. However, these transformations do not
change the core structure of the tree, i.e., the test case serialized from the
preprocessed tree will still be the same as the original input. Because of this,
and because of how the HDD variants operate, an HDD-reduced test case (even
if 1-tree-minimal) may contain structural elements that a human expert would
still remove.

A simple example of this suboptimal structure-preserving behavior is shown
in Figure 7.1. The C program in Figure 7.1(a) prints the classic “Hello world!”
message, and the printing is wrapped in an if statement where the predicate
always evaluates to true. If we take this program as a test case and define

55
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the printing of the “Hello world!” message as interesting, then we can try and
minimize it. (This is an example where the interesting property of the test case
is not a program failure.) Figure 7.1(b) shows the parse tree of the program,

int main () {
if (1) {

printf ("Hello world !\n");
}

}

(a) A “Hello World” program in C.

*

externalDeclaration

functionDefinition

typeSpecifier

’int’

directDeclarator

Identifier
’main’

*

’(’ ’)’

compoundStatement

’{’ selectionStatement

’if’ ’(’ primaryExpression

Constant
’1’

’)’ statement

compoundStatement

’{’ *

expressionStatement

postfixExpression

Identifier
’printf’

*

’(’ StringLiteral
’\Hello world!\n"’

’)’

’;’

’}’

’}’

(b) Parse tree of the “Hello World” program.

Figure 7.1: An overly complicated “Hello World” program in C and its parse
tree.
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generated by a parser using a context-free grammar of the C programming
language and preprocessed for compactness (most notably, squeezing and re-
cursion flattening have been applied). Unfortunately, none of the HDD-based
algorithms presented in Section 2 can reduce this test case any further (es-
pecially if replacement with a minimal syntactically correct fragment is used
when pruning subtrees) as removing any of the nodes (or lines, or characters)
would either yield a syntactically incorrect test case or one that does not print
the message, making it uninteresting.

Theoretically, both HDD and HDDr, and also the underlying DDMIN algo-
rithm could be modified to give n-(tree-)minimal results, but that would lead
to exponential complexity, which is impractical. Thus, another approach is
proposed, called hoisting.

Recurring structures are present in the parse tree, subtrees rooted at nodes
with identical labels, denoting the derivation of the same non-terminal of the
grammar. The assumption of hoisting is that one such subtree may be replaced
with another without losing syntactic correctness, and that subtrees whose
roots are in an ancestor-descendant relationship may be good candidates for
reduction. In the tree of Figure 7.1(b), there is one pair of such subtrees,
those rooted at nodes labeled as compoundStatement. Figure 7.2(a) shows a
transformed tree where the descendant subtree is hoisted to replace all the
structures that enclosed it. When this tree is serialized into the form of a
C program (see Figure 7.2(b)), it becomes apparent that, in this case, this
transformation was indeed useful and we got a smaller and still interesting
test case. The testing function has to confirm (or reject) whether such a
transformation keeps the resulting test case interesting.

When discussing the idea of hoisting with fellow researchers, the argument
was often raised that such a transformation is only good for removing some
minor syntactic elements from the result, like a dangling semicolon or a pair of
superfluous braces, etc. The example in Figure 7.1 does not seem to contradict
such arguments. However, Figure 7.3 shows another example, a program writ-
ten in Java, that prints the rounded value of π in a localized format, provided
that the specified locale is supported, and throws an exception otherwise. As
presented, the program only supports the en locale. This program shall be
taken as a test case and the testing function shall check whether the program
exits without error with parameter en and throws an exception when invoked
with an unsupported locale (e.g., hu). If HDD is used to minimize, it will be
able to remove some parts of the program, but most of the original structure
will remain in the output. Because the exception that needs to be thrown is
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in the decSeparator method, which is called inside a call to the formatParts
method, both methods are forced to be kept in the reduced test case. The
parse tree for this program would be too big to be presented as an example, so
Figure 7.4(a) contains only the HDD-reduced Java program, which also shows
precisely what HDD can and cannot prune away.

However, if hoisting is used before HDD, it can pave the way for the latter
reduction technique by hoisting the call to decSeparator to replace the enclosing
call to formatParts, thus allowing the complete removal of the definition of
formatParts. In this example, the method calls within main are the recurring

*

externalDeclaration

functionDefinition

typeSpecifier

’int’

directDeclarator

Identifier
’main’

*

’(’ ’)’

compoundStatement

’{’ *

expressionStatement

postfixExpression

Identifier
’printf’

*

’(’ StringLiteral
’\Hello world!\n"’

’)’

’;’

’}’

(a) Parse tree minimized with hoisting applied to keep printing
the “Hello world!” message.

int main () {
printf ("Hello world !\n");

}

(b) The C program serialized from the
minimized tree.

Figure 7.2: Motivational Example for Hoisting.
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1 public class LocalizedPi {
2 private static String decSeparator ( String locale ) {
3 if ( locale . equals ("en")) {
4 return ".";
5 }
6 throw new Exception (" Unsupported locale ");
7 }
8 private static String formatParts ( String intPart , String fracPart , String

↪→ decSep ) {
9 return intPart . concat ( decSep ). concat ( fracPart );

10 }
11 public static void main( String [] args) {
12 String pi = formatParts ("3", "14", decSeparator (args [0]));
13 System .out. println (pi);
14 }
15 }

Figure 7.3: Java program that prints the rounded value of π in a locale-specific
format or throws an exception.

structures that are in ancestor-descendant relation in the tree. The result of
the combined application of the two techniques is presented in Figure 7.4(b).
formatParts could be constructed arbitrarily complex, making the theoretical
potential of hoisting considerably higher than the removal of anecdotical semi-
colons or curly braces. Hoisting cannot achieve this alone, as it “only” moves
subtrees higher up the tree, but it has to cooperate with HDD.

7.1 Transformation-based Minimization
To formalize the ideas motivated and described above, the notations and ter-
minology of minimizing Delta Debugging (as given in Section 2) were extended
to introduce transformation-based minimization. In the context of DDMIN, a
test case is always composed of a subset that contains elements of the initial
configuration. The testing function is also defined for the subsets of c✗ only.
However, the outcome of a program composed of a set of elements must be
determined, even if some of them are not part of the initial configuration. In
the case of hoisting, when an element (a node) is replaced by another element
(another node further down the hierarchy), which is part of the tree, but is
not a member of the initial set. Therefore, the definitions of DDMIN [40] are
generalized as follows.

Let D denote the set of all potential test case elements, and let δ ∈ D denote
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1 class LocalizedPi {
2 static String decSeparator ( String locale ) {
3 if ( locale . equals ("en")) {
4 return "";
5 }
6 throw new Exception (" Unsupported locale ");
7 }
8 static String formatParts ( String intPart , String fracPart , String decSep ) {
9 return decSep ;

10 }
11 public static void main( String [] args) {
12 String a = formatParts ("", "", decSeparator (args [0]));
13 }
14 }

(a) Program minimized with HDD to keep the program throwing an uncaught exception if
an unsupported locale is specified on the command line.

1 class LocalizedPi {
2 static String decSeparator ( String locale ) {
3 if ( locale . equals ("en")) {
4 return "";
5 }
6 throw new Exception (" Unsupported locale ");
7 }
8 public static void main( String [] args) {
9 String a = decSeparator (args [0]);

10 }
11 }

(b) Program minimized with with hoisting applied before
HDD

Figure 7.4: Minimization of the Java program that print the rounded value
of π (see Figure 7.3).

one element of that set, i.e., a test case element. A test case or configuration
is denoted as c ⊆ D. A testing function test : 2D → {✗, ✓, ?} shall determine
for any test case whether it produces the failure in question. The initial failing
configuration is denoted as c✗ = {δ1, . . . , δn} ⊆ D, and test(c✗) = ✗ holds.
As c✗ is a subset of a potentially larger set D, we allow for transformations
that can not only remove, but also replace elements in the configuration. The
following definitions and notations are used for transformations:

A function t : D → D is a transformation of test case elements, and
the identity transformation is idD : D → D; δ 7→ δ. The application of a
transformation to configurations is defined as t̄ : 2D → 2D; c 7→ {t(δ) : δ ∈ c}



7.2 Variants of Hoisting and HDD 61

(e.g., idD(c✗) = c✗).
And a transformation that is derived from another transformation by chang-

ing the mapping of one test case element is defined as

t[δ′ 7→ δ′′] : D → D; δ 7→

δ′′ if δ = δ′

t(δ) otherwise.

In the presented examples, the transformations that could be applied were
quite straightforward. There was only one compoundStatement and one method
call that could potentially replace their parents. In a general case, a test case
element may have multiple replacement candidates (or none at all). This is
formalized using a function τ : D → 2D that maps test case elements to their
transformed candidates.

Finally, as test cases are not necessarily subsets of the initial failing con-
figuration, minimality cannot be defined in terms of the subset relation any-
more. Thus, a ∥ · ∥ measure is expected to exist on set D. If all transfor-
mation candidates in τ are potentially reducing the size of a configuration
according to the measure ∥ · ∥, i.e., ∀δ ∈ D · ∀δ′ ∈ τ(δ) · ∥δ′∥ < ∥δ∥ holds,
then in order to minimize the test case, the replacements applied to the
elements of the initial configuration must be maximized (even transitively)
while ensuring that the so-transformed test case remains interesting. Just
like it is true for DDMIN that searching for the global optimum is impracti-
cal, so is it also true for transformation-based minimization. Therefore, the
goal is to find a local optimum, a 1-maximal transformation t✗ such that
∀δ ∈ c✗ · ∀δ′ ∈ τ(t✗(δ)) · test(t̄✗[δ 7→ δ′](c✗)) ̸= ✗ holds.

Figure 7.5 wraps up this subsection and formalizes the transformation-based
minimizing algorithm TMINτ , worded in the likeness of DDMIN.

7.2 Variants of Hoisting and HDD
The transformation-based minimizing algorithm gives a framework to formulate
hoisting as a transformation of tree nodes. More precisely, those nodes in the
tree representation of the input that can act as replacement candidates for their
ancestors must be defined. The formula in Figure 7.6, χ(n), is one possible way
to define these candidates, i.e., the hoistable descendants of a node n. χ(n) is
given in terms of two auxiliary functions, of which children(n) is trivial, giving
the direct descendants of a node, whereas compatible(n, n′) leaves some space
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Let D denote the set of all potential test case elements, and let δ ∈ D denote one element of that set.
Let test and c✗ = {δ1, . . . , δn} ⊆ D, and test(c✗) = ✗ holds.
Let τ and ∥ · ∥ be given such that ∀δ ∈ D · ∀δ′ ∈ τ(δ) · ∥δ′∥ < ∥δ∥ holds.
The goal is to find t✗ = tminτ (c✗) such that test(t̄✗(c✗)) = ✗ and t✗ is 1-maximal.
The transformation-based minimizing algorithm tminτ (c) is

tminτ (c✗) = tminτ
2 (c✗, idD) where

tminτ
2 (c✗, t′

✗) =
{

tminτ
2 (c✗, t′

✗[δ 7→ δ′]) if ∃δ ∈ c✗ · ∃δ′ ∈ τ(t′
✗(δ)) · test(t̄′

✗[δ 7→ δ′](c✗)) = ✗

t′
✗ otherwise.

The recursion invariant (and thus precondition) for tminτ
2 is test(t̄′

✗(c✗)) = ✗.

Figure 7.5: The Transformation-based Minimizing Algorithm.

for interpretation. In an extreme case, any two nodes could be considered
compatible, but that would rarely be useful. If the tree representation of the
input is built using a context-free grammar as motivated in Section 2.2, then
a natural interpretation is to regard identically-labeled nodes (i.e., subtrees of
derivations of the same non-terminal of the grammar) as compatible.

χ(n) =
⋃

n′∈children(n)
χ′(n, n′)

χ′(n, n′) =


{n′} if compatible(n, n′)⋃
n′′∈children(n′)

χ′(n, n′′) otherwise

Figure 7.6: χ(n), the potentially hoistable descendants of node n.

A basic measurement for nodes of a tree is based on the size of their subtrees,
i.e., the number assigned by the measurement to a node n equals the number
of nodes in the subtree of n. It is obvious that all transformation candidates
returned by χ(n) reduce the size of the configuration according to this measure,
as expected by the definition of TMIN.

Now, with the help of TMINχ, a hierarchical algorithm can be introduced,
called Hoist, that works its way through the tree from the root to the leaves
and uses TMINχ to find the hoisting transformations at each level. Candidates
found by TMINχ are prioritized by their distance to the ancestor, with further
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nodes getting higher priority. The pseudocode of the algorithm is presented
in Figure 7.7(a). The structure of Hoist is similar to HDD: both contain a
loop to iterate through the levels of a tree, and inside the loop, both perform
a minimization step (TMINχ vs. DDMIN) and the application of its result to
the tree (via the transform and prune auxiliary functions).

As discussed in the example of Figures 7.4 and 7.3, Hoist can achieve
reduction on its own, although it is expected to work best if used in combination
with HDD, e.g., by using Hoist as a preprocessing step. However, inspired by
the similarities between the variants of these two algorithms, they can be
combined as well. E.g., the bodies of the loops can be interlaced, performing
both the DDMIN and TMINχ-based minimization at each iteration. One
way to formulate this idea is shown in Figure 7.8, where HDD and Hoist are
interlaced in the algorithm named HDDH.

Because of the similarities between HDD variants and the Hoist algorithm,
a recursive, a coarse, and a coarse recursive variant of the hoisting algorithm
can be defined. These are given in Figures 7.7(b), 7.7(c), and 7.7(d), and
are named Hoistr, Coarse Hoist, and Coarse Hoistr, respectively. Similarly,
we can create new combined algorithms from HDDr, and Hoistr (HDDHr),
from Coarse HDD, and Coarse Hoist (Coarse HDDH) and from HDDr and
Coarse Hoist (Coarse HDDHr). These combinations are trivial following the
example of HDDH, therefore, they are not shown to avoid unnecessary repeti-
tion.
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1 procedure Hoist(input tree)
2 level← 0
3 nodes← tagNodes(input tree, level)
4 while nodes ̸= ∅ do
5 hoisting← TMINχ(nodes)
6 transform(input tree, level, hoisting)
7 level← level + 1
8 nodes← tagNodes(input tree, level)
9 end while

10 end procedure

(a) Hoisting.

1 procedure Hoistr(root node)
2 queue← ⟨root node⟩
3 while queue ̸= ⟨⟩ do
4 current node← pop(queue)
5 nodes← tagChildren(current node)
6 hoisting← TMINχ(nodes)
7 transformChildren(current node, hoisting)
8 append(queue, tagChildren(current node))
9 end while

10 end procedure

(b) Recursive Hoisting.

1 procedure CoarseHoist(input tree)
2 level← 0
3 nodes← tagNodes(input tree, level)
4 while nodes ̸= ∅ do
5 nodes← filterEmptyPhiNodes(nodes)
6 if nodes ̸= ∅ then
7 hoisting← TMINχ(nodes)
8 transform(input tree, level, hoisting)
9 end if

10 level← level + 1
11 nodes← tagNodes(input tree, level)
12 end while
13 end procedure

(c) Coarse Hoisting.

1 procedure CoarseHoistr(root node)
2 queue← ⟨root node⟩
3 while queue ̸= ⟨⟩ do
4 current node← pop(queue)
5 nodes← tagChildren(current node)
6 nodes← filterEmptyPhiNodes(nodes)
7 if nodes ̸= ∅ then
8 hoisting← TMINχ(nodes)
9 transformChildren(current node, hoisting)

10 end if
11 append(queue, tagChildren(current node))
12 end while
13 end procedure

(d) Recursive Coarse Hoisting.

Figure 7.7: Proposed Hoisting algorithm and its variants.

7.3 Evaluation
The experimental setup described in Chapter 3 was used to evaluate the effects
of the proposed algorithms. The workstation used to conduct the experiments
was equipped with an Intel Core i5-9400 CPU clocked at 2.9 GHz and 16 GB
RAM. The machine was running Ubuntu 20.04 with Linux kernel 5.11.0, and
running the experiments only.

Four experiments were conducted, one for each variant of HDD and hoisting
(original, recursive, coarse, and coarse recursive). Four different combinations
of HDD and hoisting were used as summarized in Table 7.1. The columns are
organized as follows:

• Algorithm: the fixed-point iteration of the variant without any hoisting
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1 procedure HDDH(input tree)
2 level← 0
3 nodes← tagNodes(input tree, level)
4 while nodes ̸= ∅ do
5 minconfig← DDMIN(nodes)
6 prune(input tree, level, minconfig)
7 hoisting← TMINχ(minconfig)
8 transform(input tree, level, hoisting)
9 level← level + 1

10 nodes← tagNodes(input tree, level)
11 end while
12 end procedure

Figure 7.8: The Hierarchical Delta Debugging and Hoisting algorithm.

(e.g., HDD*) acted as the baseline,

• Preprocessing: hoisting was applied as a preprocessing step to hierar-
chical delta debugging (e.g., Hoist*+HDD*),

• Interlacing: hoisting was interlaced with hierarchical delta debugging
(e.g., HDDH*), and

• Preprocessing & Interlacing: as stand-alone hoisting and the inter-
laced algorithm are not mutually exclusive, they can be used in sequence
(e.g., Hoist*+HDDH*).

Table 7.1: Hoisting and the variants of HDD

Algorithm Preprocessing Interlacing Preprocessing &
Interlacing

HDD* Hoist* + HDD* HDDH* Hoist* + HDDH*
HDDr* Hoistr* + HDDr* HDDHr* Hoistr* + HDDHr*
Coarse HDD* Coarse Hoist* + HDD* Coarse HDDH* Coarse Hoist* + HDDH*
Coarse HDDr* Coarse Hoistr* + HDDr* Coarse HDDHr* Coarse Hoistr* + HDDHr*

HDD. In the first experiment, HDD*, Hoist* + HDD*, HDDH*, and
Hoist* + HDDH* algorithms were compared (see Figures 2.2(a), 7.7(a), and 7.8).
On the Perses Test Suite, all hoisting-based algorithm combinations produced
a smaller output than the baseline in 17 of 19 cases. (For one input, gcc-70127,
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HDD* ran out of memory at the time of publication of the related article.) The
average effect on size was 37.50%, 39.04%, and 40.16%, respectively. When
comparing hoisting combinations to each other, HDDH* gave the smallest re-
sult in 8 cases, Hoist* + HDDH* produced the smallest output in 9 cases,
while there was also a tie, where HDDH* and Hoist* + HDDH* produced
(exactly) the same output. Furthermore, there was another tie when all three
approaches found the same local minimum (gcc-71626 ). On the 13 inputs of
JRTS, all algorithms worked quite similarly with respect to the output size:
there were many cases where some or all approaches gave identical results. Still,
in 10 cases, all hoisting-based approaches gave strictly smaller output than the
baseline (by 50%, 47.14%, and 50% in the best cases), while in the other cases
none of them gave worse results. On this test suite, the average improvement
of the approaches over HDD* was 12.85%, 12.63%, and 12.85%, respectively.

Regarding efficiency, hoisting could have a positive effect on the number of
overall test case evaluations, but not necessarily. HDDH* performed the mini-
mization of 18 inputs faster than the baseline HDD*, but in those approaches
where hoisting was a preprocessing step, this improvement was only visible in
14 cases. However, JRTS gave significantly different results efficiency-wise than
the Perses Test Suite. In the vast majority of cases, the application of hoisting
increased the number of testing steps performed during reduction. Hoist* +
HDD*, HDDH*, and Hoist* + HDDH* were slower than HDD* in 12, 8, and
13 of the 13 cases, respectively. The raw data for this experiment are shown in
Tables 7.3 and 7.4.

HDDr. In the second experiment, the recursive HDD variant and its com-
binations with hoisting have been investigated, i.e., HDDr*, Hoistr* + HDDr*,
HDDHr*, and Hoistr* + HDDHr* (see Figures 2.2(b) and 7.7(b)). On the
Perses Test Suite, the interlaced application of hoisting (HDDHr*) resulted in
smaller outputs than the baseline HDDr for all tests by 42.4% on average. Im-
provement was observed in 17 of 19 cases when using Hoistr*+HDDr* (41.12%
on average) and in 18 of 19 cases when using Hoistr* + HDDHr* (43.71% on
average). Reduced inputs from the JRTS also became smaller, the average
improvement was 12.17%, 15.2%, and 15.79% on average compared to the
baseline.

On the Perses Test Suite, the hoisting-extended combinations required fewer
testing steps by 9.8%, 27%, and 14.16% on average compared to the baseline
HDDr*. The analysis of efficiency shows a similar pattern to effectiveness:
HDDHr* reduced all of the inputs faster than the baseline, while this boost
was only observable in 15 of 19 cases with Hoistr* + HDDr* and 14 of 19
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cases with Hoistr* + HDDHr*. Furthermore, if the results are compared to
the traditional HDD*, Hoistr* + HDDr*, HDDHr*, and Hoistr* + HDDHr*
required 70.17%, 75.33%, and 71.6% fewer steps on average, respectively. How-
ever, when investigating efficiency on JRTS, we got somewhat different results:
HDDHr* required 8% more testing steps, while preprocessing the parse-tree
with hoisting roughly doubled the reduction effort. Data for this experiment
are shown in Tables 7.5 and 7.6.

Coarse HDD. In the third experiment, the Coarse HDD variants have
been investigated, i.e., Coarse HDD*, Coarse Hoist* + HDD*, Coarse HDDH*,
and Coarse Hoist* + HDDH* (see Figures 2.3(a) and 7.7(c)). When hoisting
acted as a preprocessing step, algorithm combinations produced smaller out-
puts than the baseline in all cases on the Perses Test Suite. The output
of the reduction became smaller by 53.06% and 53.07% than the baseline
(using Coarse Hoist* + HDD* and Coarse Hoist* + HDDH*, respectively).
Coarse HDDH* produced exactly the same output as the baseline, except in
two test cases, where the outputs were negligibly larger (by 2%). On the JRTS,
hoisting as a preprocessing step gave 15% smaller outputs compared to the
baseline, and Coarse HDDH* produced the same output as the baseline.

In Coarse HDD, the 1-minimality guarantee is sacrificed to speed up the re-
duction process. Efficiency-wise, using Coarse Hoist* + HDD* and Coarse Hoist*
+ HDDH* variants, the number of test executions has increased heavily, while
the Coarse HDDH* executed the reduction exactly the same way as the baseline
Coarse variant. It can be concluded from the experimental results that hoisting
is effective only as a preprocessing step if the main reduction algorithm is the
Coarse HDD. The backing data for this experiment are shown in Tables 7.7
and 7.8.

Coarse HDDr. In the last experiment, coarse recursive variants have been
compared, i.e., Coarse HDDr*, Coarse Hoistr* + HDDr*, Coarse HDDHr*, and
Coarse Hoistr* + HDDHr* (see Figures 2.3(b) and 7.7(d)). Tables 7.9 and 7.10
contain the results for both test suites, which show quite a few similarities to
the non-recursive Coarse variant. The reduction produced smaller test cases
by 54.37% and 53.19% than the baseline on Perses Test Suite and 11.05%
and 11.05% on JRTS (using Coarse Hoistr* + HDDr* and Coarse Hoistr* +
HDDHr*, respectively), however, Coarse HDDHr* produced larger C outputs
in three cases by 6.56%.

Figure 7.9 visualizes the raw data from Tables 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,
and 7.10. Each mark on the charts represents a test case reduced with some kind
of hoisting applied. The position of the mark reflects how hoisting affected the
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Figure 7.9: The effect of hoisting on variants of HDD.

reduction. Changes in the size of the output are represented along the horizontal
axis, while changes in the test executions are represented along the vertical
axis (all relative to the size and test step count of the baseline). Marks in the
“bottom left” quadrant (a.k.a. quadrant III) are considered the best cases: for
the corresponding test cases, hoisting had a positive effect on both the output
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size and the number of test steps as it has reduced both. Marks in the “top left”
and “bottom right” quadrants (a.k.a. quadrants II and IV) represent trade-offs:
for those test cases, hoisting either yielded smaller output slower or produced
bigger results faster. Marks in the “top right” quadrant (a.k.a. quadrant I) are
the cases where hoisting had no benefit at all as both the output size and the
number of test steps increased. Figures 7.9(a) and 7.9(b) correspond to the
results of HDD and HDDr. They show similar patterns: a significant portion
of the test cases falls into quadrant III as they could be reduced faster and
further with hoisting. Additionally, another significant portion of the test cases
falls into quadrant II, meaning that the test cases could be reduced further
with hoisting, although at the cost of more test steps. Figures 7.9(c) and 7.9(d)
corresponding to the results of Coarse HDD and Coarse HDDr show different
patterns. It is visible that hoisting had no effect on the Coarse HDDH and
Coarse HDDHr algorithm variants. Moreover, the other two algorithm variants
(i.e., when hoisting was a preprocessing step) performed exactly the same way.
For all algorithm variants and for all combinations, marks are rare in quadrants
I and IV. There are only a handful of outliers where hoisting increased the
output size.

Table 7.2 presents aggregated data from both of the used test suites, dis-
cussing the influence of the applied hoisting step. Each row has a corresponding
row in Table 7.1, with variant names replaced with values that represent the
effect of hoisting compared to the respective baseline, which is in the first
column. Table 7.2(a) shows output size differences, from which it is clear that
hoisting has a positive effect on the reduction outcome – i.e., the final out-
put becomes smaller –, 32.68% improvement with hoisting as a preprocessing
step, 14.57% when interlaced with the main reduction algorithm, and 33.65%
with the combination of these two approaches. The only exceptions are the
Coarse HDDH and Coarse HDDHr variants that increased the output slightly,
compared to the Coarse HDD and Coarse HDDr respectively.

Table 7.2(b) shows differences in the number of test executions, i.e., what
the effect of hoisting was on the efficiency of the reduction. In general, we have
to pay the price for smaller results in the increased number of test steps, which
can be quite slow depending on the software under test. When using hoisting
as a preprocessing phase, the number of necessary testing steps increased
by 69.37%, averaged over all HDD variants. When using hoisting both as
a preprocessing step and interlaced with the HDD variants, the number of
testing steps increased by 72.97%. However, interestingly, using only interlaced
hoisting required 4.48% fewer tests.
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Figure 7.10: Effect of Hoisting on HDDr* as a Function of Height of the
Parse Tree.

In the above experiments, the number of test executions has been used
as the performance metric, which is a common and objective measure. Its
alternative, i.e., measuring execution times, could lead to the misinterpretation
of the results. E.g., using a faster (or simply a differently configured) machine
could have an effect on the measurements and be considered incorrectly as an
optimization. However, the reader might still be interested in execution times
to assess the practical applicability of the presented techniques. In summary,
the time required for reductions ranged from some seconds to several hours
in the experiments. Moreover, roughly the same rate of deterioration and
improvement could be observed in execution times as in test steps. It must
also be noted that if it is accepted that the baseline HDD algorithm and its
variants are applicable in practice, then we also have to accept hoisting as
practically applicable, since it never changed the order of magnitude of the
execution time (or of the test steps) in the experiments. When the baseline
execution time was a few seconds then hoisting kept it on the seconds scale, or
when the baseline was measured in hours, then the application of hoisting also
remained on the hours scale.

Tables 3.1 and 3.2 shows the properties of the inputs used for benchmark-
ing, thus providing opportunities to investigate whether they affect hoisting.
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Table 7.2: Averaged impact of hoisting on different HDD variants

(a) Differences in Output Sizes (%)

Algorithm Preprocessing Interlacing Preprocessing &
Interlacing

HDD* -27.49% -28.31% -29.07%
HDDr* -29.36% -31.35% -32.37%
Coarse HDD* -37.62% +0.13% -37.63%
Coarse HDDr* -36.77% +0.62% -36.07%

(b) Differences in Number of Test Executions (%)

Algorithm Preprocessing Interlacing Preprocessing &
Interlacing

HDD* +43.26% -5.60% +47.21%
HDDr* +33.22% -12.78% +34.55%
Coarse HDD* +134.15% +0.13% +134.13%
Coarse HDDr* +64.55% -0.02% +73.60%

It turned out that the height of the parse tree had an effect on the efficiency of
hoisting, as shown in Figure 7.10. The chart is similar to Figure 7.9, i.e., the ver-
tical axis shows the relative difference compared to the output (Figure 7.10(a))
or the testing steps (Figure 7.10(b)) of the baseline HDDr* algorithm. But now
the horizontal axis represents the height of the parse tree built from the test
cases after squeezing and flattening [19, 20]. As discussed above, hoisting had
a positive effect on the output size aspect of the reduction in general, however,
its effect on the efficiency was inconclusive. While Figure 7.10(a) confirms the
first observation, Figure 7.10(b) gives an interesting insight into the relation
between parse tree height and hoisting efficiency. The chart reveals that if the
height of the parse tree is small (below cca. 50), hoisting increases the required
testing steps, but if the height of the parse tree is large enough (above 150
in our experiments), hoisting has a mostly positive effect on the number of
required testing steps. (Note that the figure contains results from HDDr* only,
but the same pattern could be observed for the other variants as well.)

So far, the discussion was only about relative changes compared to the
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Figure 7.11: Best-performing Hoisting Algorithms Based on Output Charac-
ters.

baseline algorithms. However, the reader might be interested in using the
best-performing variant in an absolute sense and this is what Figures 7.11
and 7.12 are intended to show. Elements on the horizontal axis correspond to
the discussed algorithm variants and the height of the bars above them show
how many times they performed best. If multiple algorithm variants produced
the same local optimum, all of them were considered the best. (Two test cases
– namely jerry-3433 and jerry-3483 – were excluded from the Figure, since all
of the 16 algorithm variants produced exactly the same output.)

Figure 7.11 shows the best-performing algorithm variants based on output
characters, i.e., which one produced the smallest output. The first, not-so-
surprising observation is that the Coarse variants are not the most effective
variants from the output size point of view. Note that hoisting has a positive
effect on the output size (see Table 7.2(a)), however, in an absolute manner
the Coarse variants fall behind the others effectiveness-wise. The left-hand
side of the chart is more promising, especially the Hoist* + HDDH* and
Hoistr* + HDDHr* algorithm variants stand out from the rest. Based on these
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Figure 7.12: Best-performing Hoisting Algorithms Based on Number of Test
Executions.

results, if a test must be reduced to the smallest possible size, the suggested
mode is using hoisting in two different phases: first as a preprocessing step and
then interlaced with the main algorithm, which could be either HDD or HDDr.

Figure 7.12 shows the same comparison based on the number of test exe-
cutions, i.e., which one finished the reduction the quickest. The Figure shows
the exact opposite view compared to the previous one: the Coarse variants
perform the reduction requiring the fewest steps (at the cost of bigger outputs).
Based on these observations, if a test must be reduced as quickly as possible, we
would suggest using the above-formalized Coarse HDDr* algorithm variant. As
the experimental results show, hoisting has no effect on this algorithm variant,
thus Coarse HDDr* and Coarse HDDHr* work exactly the same way.
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7.4 Conclusions
There are recurring structures in the parse tree of the preprocessed input that
Hierarchical Delta Debugging cannot reduce but a human engineer can easily
point out, such as conditional statements, loops, function calls inside a param-
eter list, etc. Therefore, the Transformation-based Minimization describes an
algorithmic framework that enables transformations that cannot only remove
but also replace elements in the initial configuration. We have already defined
such a transformation (hoisting), which assumes that a subtree may be replaced
by another without losing syntactic correctness if and only if the roots of the
subtrees are in an ancestor-descendant relationship.

Based on the experimental data and observations above, we can conclude
the contributions of this chapter:

1. On real-world inputs, hoisting combined with Hierarchical Delta Debugging
gives generally smaller, or at least as small outputs as HDD alone. Bigger
outputs are rare. Minimized test cases can be as small as 1⁄5 of the output
given by traditional HDD.

2. The effects of hoisting to HDD and HDDr are similar: the majority of the
test cases could be reduced further with hoisting.

3. Coarse HDD and Coarse HDDr show similar patterns to the non-coarse
variants with respect to the output size: test cases could be reduced further
with hoisting. However, hoisting had no effect on the Coarse HDDH and
Coarse HDDHr algorithm variants, furthermore, algorithms performed the
reduction exactly the same way when hoisting was a preprocessing step.

4. The effect of hoisting on the efficiency of the reduction highly depends on
the height of the input tree. If the height of the tree is small (below 50),
hoisting increases the required testing steps. However, if the height of the
tree is big enough (above 150), test cases can be reduced faster with hoisting.

7.5 Raw Data
In the tables below, size is expressed as the number of non-whitespace characters
to avoid bias from indentation or other formatting differences. In each row of
all tables, bold numbers highlight the best result(s).
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Table 7.3: Hoisting and HDD Output Sizes

Test HDD* Hoist*+HDD* HDDH* Hoist*+HDDH*

clang-22382 582 489 (-15.98%) 475 (-18.38%) 489 (-15.98%)
clang-22704 168 164 (-2.38%) 165 (-1.79%) 161 (-4.17%)
clang-23309 3,582 1,486 (-58.51%) 1,677 (-53.18%) 1,416 (-60.47%)
clang-23353 374 354 (-5.35%) 592 (+58.29%) 351 (-6.15%)
clang-25900 1,562 986 (-36.88%) 885 (-43.34%) 888 (-43.15%)
clang-26350 1,613 778 (-51.77%) 585 (-63.73%) 760 (-52.88%)
clang-26760 586 595 (+1.54%) 297 (-49.32%) 582 (-0.68%)
clang-27747 419 406 (-3.10%) 377 (-10.02%) 415 (-0.95%)
clang-31259 2,174 814 (-62.56%) 947 (-56.44%) 796 (-63.39%)
gcc-59903 1,726 1,432 (-17.03%) 620 (-64.08%) 1,298 (-24.80%)
gcc-60116 3,788 1,185 (-68.72%) 1,152 (-69.59%) 941 (-75.16%)
gcc-61383 1,701 1,041 (-38.80%) 844 (-50.38%) 874 (-48.62%)
gcc-61917 1,764 575 (-67.40%) 885 (-49.83%) 570 (-67.69%)
gcc-64990 2,844 561 (-80.27%) 1,282 (-54.92%) 551 (-80.63%)
gcc-65383 1,027 543 (-47.13%) 490 (-52.29%) 441 (-57.06%)
gcc-66186 2,614 978 (-62.59%) 977 (-62.62%) 977 (-62.62%)
gcc-66375 2,963 1,446 (-51.20%) 1,439 (-51.43%) 1,430 (-51.74%)
gcc-70127 — 992 — 915 — 947 —
gcc-71626 168 167 (-0.60%) 167 (-0.60%) 167 (-0.60%)

jerry-3299 92 89 (-3.26%) 89 (-3.26%) 89 (-3.26%)
jerry-3361 97 95 (-2.06%) 95 (-2.06%) 95 (-2.06%)
jerry-3376 70 35 (-50.00%) 37 (-47.14%) 35 (-50.00%)
jerry-3408 62 54 (-12.90%) 54 (-12.90%) 54 (-12.90%)
jerry-3431 28 27 (-3.57%) 27 (-3.57%) 27 (-3.57%)
jerry-3433 18 18 — 18 — 18 —
jerry-3437 34 18 (-47.06%) 18 (-47.06%) 18 (-47.06%)
jerry-3479 94 89 (-5.32%) 89 (-5.32%) 89 (-5.32%)
jerry-3483 38 38 — 38 — 38 —
jerry-3506 52 52 — 52 — 52 —
jerry-3523 63 48 (-23.81%) 48 (-23.81%) 48 (-23.81%)
jerry-3534 96 80 (-16.67%) 80 (-16.67%) 80 (-16.67%)
jerry-3536 123 120 (-2.44%) 120 (-2.44%) 120 (-2.44%)
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Table 7.4: Hoisting and HDD Number of Test Executions

Test HDD* Hoist*+HDD* HDDH* Hoist*+HDDH*

clang-22382 14,699 9,910 (-32.58%) 12,955 (-11.86%) 9,997 (-31.99%)
clang-22704 10,540 21,094 (+100.13%) 10,474 (-0.63%) 21,180 (+100.95%)
clang-23309 24,630 16,025 (-34.94%) 19,833 (-19.48%) 15,828 (-35.74%)
clang-23353 14,598 30,114 (+106.29%) 14,662 (+0.44%) 30,182 (+106.75%)
clang-25900 14,766 9,983 (-32.39%) 12,510 (-15.28%) 9,865 (-33.19%)
clang-26350 16,789 18,851 (+12.28%) 14,831 (-11.66%) 19,847 (+18.21%)
clang-26760 12,957 11,808 (-8.87%) 11,884 (-8.28%) 11,835 (-8.66%)
clang-27747 7,174 13,899 (+93.74%) 6,601 (-7.99%) 13,911 (+93.91%)
clang-31259 19,239 8,791 (-54.31%) 15,914 (-17.28%) 8,992 (-53.26%)
gcc-59903 18,935 12,554 (-33.70%) 18,381 (-2.93%) 12,345 (-34.80%)
gcc-60116 23,844 12,740 (-46.57%) 17,153 (-28.06%) 12,041 (-49.50%)
gcc-61383 17,286 11,802 (-31.73%) 15,350 (-11.20%) 11,984 (-30.67%)
gcc-61917 17,455 8,432 (-51.69%) 13,769 (-21.12%) 8,525 (-51.16%)
gcc-64990 19,624 10,533 (-46.33%) 17,565 (-10.49%) 10,548 (-46.25%)
gcc-65383 16,239 6,524 (-59.83%) 11,801 (-27.33%) 6,334 (-61.00%)
gcc-66186 16,181 13,771 (-14.89%) 13,930 (-13.91%) 13,762 (-14.95%)
gcc-66375 21,251 16,046 (-24.49%) 18,393 (-13.45%) 16,131 (-24.09%)
gcc-70127 — 15,699 — 18,330 — 15,974 —
gcc-71626 4,216 6,520 (+54.65%) 4,205 (-0.26%) 6,522 (+54.70%)

jerry-3299 176 228 (+29.55%) 192 (+9.09%) 251 (+42.61%)
jerry-3361 144 254 (+76.39%) 154 (+6.94%) 266 (+84.72%)
jerry-3376 119 412 (+246.22%) 109 (-8.40%) 422 (+254.62%)
jerry-3408 167 278 (+66.47%) 178 (+6.59%) 289 (+73.05%)
jerry-3431 55 185 (+236.36%) 70 (+27.27%) 192 (+249.09%)
jerry-3433 18 58 (+222.22%) 23 (+27.78%) 62 (+244.44%)
jerry-3437 49 49 — 48 (-2.04%) 56 (+14.29%)
jerry-3479 233 576 (+147.21%) 230 (-1.29%) 592 (+154.08%)
jerry-3483 69 95 (+37.68%) 71 (+2.90%) 97 (+40.58%)
jerry-3506 115 248 (+115.65%) 122 (+6.09%) 251 (+118.26%)
jerry-3523 111 416 (+274.77%) 83 (-25.23%) 421 (+279.28%)
jerry-3534 173 197 (+13.87%) 149 (-13.87%) 200 (+15.61%)
jerry-3536 150 226 (+50.67%) 182 (+21.33%) 251 (+67.33%)
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Table 7.5: Hoisting and HDDr Output Sizes

Test HDDr* Hoistr*+HDDr* HDDHr* Hoistr*+HDDHr*

clang-22382 671 490 (-26.97%) 488 (-27.27%) 488 (-27.27%)
clang-22704 187 188 (+0.53%) 154 (-17.65%) 182 (-2.67%)
clang-23309 4,338 1,709 (-60.60%) 1,567 (-63.88%) 1,460 (-66.34%)
clang-23353 607 386 (-36.41%) 567 (-6.59%) 383 (-36.90%)
clang-25900 1,651 961 (-41.79%) 867 (-47.49%) 838 (-49.24%)
clang-26350 1,651 602 (-63.54%) 599 (-63.72%) 625 (-62.14%)
clang-26760 451 363 (-19.51%) 429 (-4.88%) 296 (-34.37%)
clang-27747 442 507 (+14.71%) 416 (-5.88%) 505 (+14.25%)
clang-31259 2,136 974 (-54.40%) 844 (-60.49%) 812 (-61.99%)
gcc-59903 2,536 1,582 (-37.62%) 1,487 (-41.36%) 1,576 (-37.85%)
gcc-60116 3,355 1,739 (-48.17%) 1,500 (-55.29%) 1,464 (-56.36%)
gcc-61383 1,569 694 (-55.77%) 670 (-57.30%) 686 (-56.28%)
gcc-61917 1,904 580 (-69.54%) 575 (-69.80%) 575 (-69.80%)
gcc-64990 1,497 386 (-74.22%) 579 (-61.32%) 616 (-58.85%)
gcc-65383 1,042 545 (-47.70%) 445 (-57.29%) 427 (-59.02%)
gcc-66186 2,592 968 (-62.65%) 973 (-62.46%) 973 (-62.46%)
gcc-66375 2,805 1,380 (-50.80%) 1,369 (-51.19%) 1,364 (-51.37%)
gcc-70127 1,830 984 (-46.23%) 894 (-51.15%) 893 (-51.20%)
gcc-71626 168 167 (-0.60%) 167 (-0.60%) 167 (-0.60%)

jerry-3299 89 86 (-3.37%) 86 (-3.37%) 86 (-3.37%)
jerry-3361 97 95 (-2.06%) 95 (-2.06%) 95 (-2.06%)
jerry-3376 70 70 — 37 (-47.14%) 37 (-47.14%)
jerry-3408 62 54 (-12.90%) 54 (-12.90%) 54 (-12.90%)
jerry-3431 28 27 (-3.57%) 27 (-3.57%) 27 (-3.57%)
jerry-3433 18 18 — 18 — 18 —
jerry-3437 34 18 (-47.06%) 18 (-47.06%) 18 (-47.06%)
jerry-3479 140 86 (-38.57%) 86 (-38.57%) 86 (-38.57%)
jerry-3483 38 38 — 38 — 38 —
jerry-3506 52 48 (-7.69%) 52 — 48 (-7.69%)
jerry-3523 63 48 (-23.81%) 48 (-23.81%) 48 (-23.81%)
jerry-3534 96 80 (-16.67%) 80 (-16.67%) 80 (-16.67%)
jerry-3536 123 120 (-2.44%) 120 (-2.44%) 120 (-2.44%)
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Table 7.6: Hoisting and HDDr Number of Test Executions

Test HDDr* Hoistr*+HDDr* HDDHr* Hoistr*+HDDHr*

clang-22382 3,522 3,464 (-1.65%) 3,152 (-10.51%) 3,530 (+0.23%)
clang-22704 2,917 6,249 (+114.23%) 2,667 (-8.57%) 6,254 (+114.40%)
clang-23309 10,896 6,121 (-43.82%) 6,716 (-38.36%) 6,705 (-38.46%)
clang-23353 5,087 4,848 (-4.70%) 3,976 (-21.84%) 4,900 (-3.68%)
clang-25900 5,196 3,446 (-33.68%) 3,155 (-39.28%) 3,939 (-24.19%)
clang-26350 9,071 6,759 (-25.49%) 7,319 (-19.31%) 6,897 (-23.97%)
clang-26760 4,254 9,805 (+130.49%) 3,426 (-19.46%) 4,382 (+3.01%)
clang-27747 3,321 3,621 (+9.03%) 2,653 (-20.11%) 3,693 (+11.20%)
clang-31259 5,654 3,660 (-35.27%) 3,864 (-31.66%) 4,323 (-23.54%)
gcc-59903 8,302 6,439 (-22.44%) 5,966 (-28.14%) 6,674 (-19.61%)
gcc-60116 11,371 5,759 (-49.35%) 7,332 (-35.52%) 5,881 (-48.28%)
gcc-61383 6,229 2,949 (-52.66%) 4,190 (-32.73%) 3,038 (-51.23%)
gcc-61917 5,935 3,668 (-38.20%) 3,715 (-37.41%) 3,754 (-36.75%)
gcc-64990 5,446 2,185 (-59.88%) 3,077 (-43.50%) 3,184 (-41.54%)
gcc-65383 4,126 2,622 (-36.45%) 2,919 (-29.25%) 2,520 (-38.92%)
gcc-66186 5,281 3,685 (-30.22%) 2,969 (-43.78%) 3,143 (-40.48%)
gcc-66375 5,613 3,938 (-29.84%) 4,251 (-24.27%) 3,999 (-28.75%)
gcc-70127 5,728 4,043 (-29.42%) 4,019 (-29.84%) 3,906 (-31.81%)
gcc-71626 620 949 (+53.06%) 617 (-0.48%) 951 (+53.39%)

jerry-3299 122 174 (+42.62%) 144 (+18.03%) 197 (+61.48%)
jerry-3361 99 160 (+61.62%) 109 (+10.10%) 172 (+73.74%)
jerry-3376 90 368 (+308.89%) 89 (-1.11%) 352 (+291.11%)
jerry-3408 117 177 (+51.28%) 122 (+4.27%) 188 (+60.68%)
jerry-3431 44 110 (+150.00%) 59 (+34.09%) 117 (+165.91%)
jerry-3433 18 46 (+155.56%) 23 (+27.78%) 50 (+177.78%)
jerry-3437 49 47 (-4.08%) 48 (-2.04%) 54 (+10.20%)
jerry-3479 181 296 (+63.54%) 173 (-4.42%) 313 (+72.93%)
jerry-3483 54 75 (+38.89%) 56 (+3.70%) 77 (+42.59%)
jerry-3506 87 201 (+131.03%) 94 (+8.05%) 205 (+135.63%)
jerry-3523 73 193 (+164.38%) 68 (-6.85%) 198 (+171.23%)
jerry-3534 114 144 (+26.32%) 104 (-8.77%) 147 (+28.95%)
jerry-3536 108 172 (+59.26%) 132 (+22.22%) 197 (+82.41%)
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Table 7.7: Coarse Hoisting and HDD Output Sizes

Test Coarse Coarse Coarse Coarse
HDD* Hoist*+HDD* HDDH* Hoist*+HDDH*

clang-22382 975 643 (-34.05%) 975 — 643 (-34.05%)
clang-22704 351 318 (-9.40%) 351 — 318 (-9.40%)
clang-23309 5,556 2,312 (-58.39%) 5,556 — 2,312 (-58.39%)
clang-23353 49,114 457 (-99.07%) 49,114 — 457 (-99.07%)
clang-25900 2,472 1,331 (-46.16%) 2,472 — 1,331 (-46.16%)
clang-26350 2,936 798 (-72.82%) 2,936 — 798 (-72.82%)
clang-26760 1,235 708 (-42.67%) 1,235 — 708 (-42.67%)
clang-27747 973 626 (-35.66%) 973 — 626 (-35.66%)
clang-31259 3,086 1,079 (-65.04%) 3,086 — 1,079 (-65.04%)
gcc-59903 6,172 1,825 (-70.43%) 6,172 — 1,825 (-70.43%)
gcc-60116 4,300 1,810 (-57.91%) 4,300 — 1,810 (-57.91%)
gcc-61383 3,642 1,449 (-60.21%) 3,642 — 1,449 (-60.21%)
gcc-61917 2,912 695 (-76.13%) 2,912 — 695 (-76.13%)
gcc-64990 2,051 1,094 (-46.66%) 2,051 — 1,094 (-46.66%)
gcc-65383 1,671 768 (-54.04%) 1,733 (+3.71%) 763 (-54.34%)
gcc-66186 4,335 1,221 (-71.83%) 4,349 (+0.32%) 1,219 (-71.88%)
gcc-66375 5,057 1,848 (-63.46%) 5,057 — 1,848 (-63.46%)
gcc-70127 2,609 1,472 (-43.58%) 2,609 — 1,472 (-43.58%)
gcc-71626 178 177 (-0.56%) 178 — 177 (-0.56%)

jerry-3299 159 94 (-40.88%) 159 — 94 (-40.88%)
jerry-3361 108 95 (-12.04%) 108 — 95 (-12.04%)
jerry-3376 72 39 (-45.83%) 72 — 39 (-45.83%)
jerry-3408 74 66 (-10.81%) 74 — 66 (-10.81%)
jerry-3431 33 31 (-6.06%) 33 — 31 (-6.06%)
jerry-3433 18 18 — 18 — 18 —
jerry-3437 48 32 (-33.33%) 48 — 32 (-33.33%)
jerry-3479 165 111 (-32.73%) 165 — 111 (-32.73%)
jerry-3483 38 38 — 38 — 38 —
jerry-3506 57 57 — 57 — 57 —
jerry-3523 63 48 (-23.81%) 63 — 48 (-23.81%)
jerry-3534 69 80 (+15.94%) 69 — 80 (+15.94%)
jerry-3536 132 124 (-6.06%) 132 — 124 (-6.06%)
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Table 7.8: Coarse Hoisting and HDD Number of Test Executions

Test Coarse Coarse Coarse Coarse
HDD* Hoist*+HDD* HDDH* Hoist*+HDDH*

clang-22382 5,603 6,445 (+15.03%) 5,603 — 6,444 (+15.01%)
clang-22704 4,391 19,809 (+351.13%) 4,391 — 19,809 (+351.13%)
clang-23309 9,706 7,810 (-19.53%) 9,706 — 7,810 (-19.53%)
clang-23353 50,489 26,543 (-47.43%) 50,489 — 26,543 (-47.43%)
clang-25900 5,215 5,383 (+3.22%) 5,215 — 5,383 (+3.22%)
clang-26350 7,937 14,378 (+81.15%) 7,937 — 14,378 (+81.15%)
clang-26760 4,916 8,849 (+80.00%) 4,916 — 8,849 (+80.00%)
clang-27747 3,209 11,735 (+265.69%) 3,209 — 11,735 (+265.69%)
clang-31259 6,625 4,923 (-25.69%) 6,625 — 4,923 (-25.69%)
gcc-59903 8,679 7,238 (-16.60%) 8,679 — 7,238 (-16.60%)
gcc-60116 8,083 8,262 (+2.21%) 8,083 — 8,262 (+2.21%)
gcc-61383 7,504 8,322 (+10.90%) 7,504 — 8,322 (+10.90%)
gcc-61917 6,624 5,051 (-23.75%) 6,624 — 5,051 (-23.75%)
gcc-64990 6,706 7,161 (+6.78%) 6,547 (-2.37%) 7,218 (+7.63%)
gcc-65383 5,495 3,974 (-27.68%) 5,717 (+4.04%) 4,051 (-26.28%)
gcc-66186 6,606 10,503 (+58.99%) 6,760 (+2.33%) 10,324 (+56.28%)
gcc-66375 8,092 11,008 (+36.04%) 8,092 — 11,008 (+36.04%)
gcc-70127 8,015 11,792 (+47.12%) 8,015 — 11,792 (+47.12%)
gcc-71626 1,808 4,208 (+132.74%) 1,808 — 4,208 (+132.74%)

jerry-3299 83 135 (+62.65%) 83 — 135 (+62.65%)
jerry-3361 60 175 (+191.67%) 60 — 175 (+191.67%)
jerry-3376 62 396 (+538.71%) 62 — 396 (+538.71%)
jerry-3408 62 170 (+174.19%) 62 — 170 (+174.19%)
jerry-3431 24 148 (+516.67%) 24 — 148 (+516.67%)
jerry-3433 15 55 (+266.67%) 15 — 55 (+266.67%)
jerry-3437 29 34 (+17.24%) 29 — 34 (+17.24%)
jerry-3479 130 507 (+290.00%) 130 — 507 (+290.00%)
jerry-3483 28 54 (+92.86%) 28 — 54 (+92.86%)
jerry-3506 59 197 (+233.90%) 59 — 197 (+233.90%)
jerry-3523 42 371 (+783.33%) 42 — 371 (+783.33%)
jerry-3534 89 122 (+37.08%) 89 — 122 (+37.08%)
jerry-3536 47 121 (+157.45%) 47 — 121 (+157.45%)
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Table 7.9: Coarse Hoisting and HDDr Output Sizes

Test Coarse Coarse Coarse Coarse
HDDr* Hoistr*+HDDr* HDDHr* Hoistr*+HDDHr*

clang-22382 1,007 695 (-30.98%) 1,007 — 695 (-30.98%)
clang-22704 830 305 (-63.25%) 830 — 305 (-63.25%)
clang-23309 6,198 2,237 (-63.91%) 6,198 — 2,237 (-63.91%)
clang-23353 884 462 (-47.74%) 884 — 462 (-47.74%)
clang-25900 2,574 1,206 (-53.15%) 2,574 — 1,206 (-53.15%)
clang-26350 3,658 803 (-78.05%) 3,658 — 803 (-78.05%)
clang-26760 1,349 564 (-58.19%) 1,349 — 719 (-46.70%)
clang-27747 995 714 (-28.24%) 995 — 714 (-28.24%)
clang-31259 3,108 1,270 (-59.14%) 3,108 — 1,270 (-59.14%)
gcc-59903 4,076 2,131 (-47.72%) 4,076 — 2,131 (-47.72%)
gcc-60116 4,829 2,171 (-55.04%) 4,829 — 2,171 (-55.04%)
gcc-61383 4,045 977 (-75.85%) 4,045 — 977 (-75.85%)
gcc-61917 2,921 700 (-76.04%) 2,921 — 700 (-76.04%)
gcc-64990 2,019 1,063 (-47.35%) 2,412 (+19.47%) 1,061 (-47.45%)
gcc-65383 1,663 598 (-64.04%) 1,665 (+0.12%) 768 (-53.82%)
gcc-66186 4,304 1,226 (-71.51%) 4,308 (+0.09%) 1,264 (-70.63%)
gcc-66375 5,075 1,788 (-64.77%) 5,075 — 1,788 (-64.77%)
gcc-70127 2,661 1,395 (-47.58%) 2,661 — 1,395 (-47.58%)
gcc-71626 178 177 (-0.56%) 178 — 177 (-0.56%)

jerry-3361 96 94 (-2.08%) 96 — 94 (-2.08%)
jerry-3299 108 95 (-12.04%) 108 — 95 (-12.04%)
jerry-3376 72 72 — 72 — 72 —
jerry-3408 74 66 (-10.81%) 74 — 66 (-10.81%)
jerry-3431 33 31 (-6.06%) 33 — 31 (-6.06%)
jerry-3433 18 18 — 18 — 18 —
jerry-3437 48 32 (-33.33%) 48 — 32 (-33.33%)
jerry-3479 165 111 (-32.73%) 165 — 111 (-32.73%)
jerry-3483 38 38 — 38 — 38 —
jerry-3506 57 57 — 57 — 57 —
jerry-3523 63 48 (-23.81%) 63 — 48 (-23.81%)
jerry-3534 96 80 (-16.67%) 96 — 80 (-16.67%)
jerry-3536 132 124 (-6.06%) 132 — 124 (-6.06%)
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Table 7.10: Coarse Hoisting and HDDr Number of Test Executions

Test Coarse Coarse Coarse Coarse
HDDr* Hoistr*+HDDr* HDDHr* Hoistr*+HDDHr*

clang-22382 3,157 2,614 (-17.20%) 3,157 — 2,614 (-17.20%)
clang-22704 2,914 5,878 (+101.72%) 2,914 — 5,878 (+101.72%)
clang-23309 4,989 3,384 (-32.17%) 4,989 — 3,384 (-32.17%)
clang-23353 3,587 4,363 (+21.63%) 3,587 — 4,363 (+21.63%)
clang-25900 3,096 2,497 (-19.35%) 3,096 — 2,497 (-19.35%)
clang-26350 4,746 5,478 (+15.42%) 4,746 — 5,478 (+15.42%)
clang-26760 2,952 3,047 (+3.22%) 2,952 — 11,602 (+293.02%)
clang-27747 2,293 3,084 (+34.50%) 2,293 — 3,084 (+34.50%)
clang-31259 4,031 2,612 (-35.20%) 4,031 — 2,612 (-35.20%)
gcc-59903 5,160 4,101 (-20.52%) 5,160 — 4,101 (-20.52%)
gcc-60116 6,268 4,452 (-28.97%) 6,268 — 4,452 (-28.97%)
gcc-61383 4,652 2,224 (-52.19%) 4,652 — 2,224 (-52.19%)
gcc-61917 3,875 2,783 (-28.18%) 3,875 — 2,783 (-28.18%)
gcc-64990 4,805 2,640 (-45.06%) 4,167 (-13.28%) 2,650 (-44.85%)
gcc-65383 3,595 1,954 (-45.65%) 3,547 (-1.34%) 1,960 (-45.48%)
gcc-66186 3,715 2,288 (-38.41%) 4,237 (+14.05%) 2,264 (-39.06%)
gcc-66375 4,369 2,879 (-34.10%) 4,369 — 2,879 (-34.10%)
gcc-70127 4,236 2,835 (-33.07%) 4,236 — 2,835 (-33.07%)
gcc-71626 989 1,325 (+33.97%) 989 — 1,325 (+33.97%)

jerry-3299 67 120 (+79.10%) 67 — 120 (+79.10%)
jerry-3361 53 116 (+118.87%) 53 — 116 (+118.87%)
jerry-3376 57 335 (+487.72%) 57 — 335 (+487.72%)
jerry-3408 59 123 (+108.47%) 59 — 123 (+108.47%)
jerry-3431 20 84 (+320.00%) 20 — 84 (+320.00%)
jerry-3433 16 44 (+175.00%) 16 — 44 (+175.00%)
jerry-3437 28 31 (+10.71%) 28 — 31 (+10.71%)
jerry-3479 123 252 (+104.88%) 123 — 252 (+104.88%)
jerry-3483 29 50 (+72.41%) 29 — 50 (+72.41%)
jerry-3506 55 171 (+210.91%) 55 — 171 (+210.91%)
jerry-3523 33 161 (+387.88%) 33 — 161 (+387.88%)
jerry-3534 64 102 (+59.38%) 64 — 102 (+59.38%)
jerry-3536 44 110 (+150.00%) 44 — 110 (+150.00%)



“Working hard for something we don’t care about is
called stress; working hard for something we love is
called passion.”

— Simon Sinek

A
Summary

Software maintenance is a diverse field, and this study only focused on a small
part of it: what happens after a new bug is found but before it is reported.
When a new bug is found, the sequence of events that can reproduce it might
be noisy, containing both relevant and irrelevant information related to the
reproduction. It is better for everyone to start debugging with a clean test
case that reproduces the bug, however, manually selecting the events that
are absolutely necessary for its reproduction is also a time-consuming task.
Fortunately, test cases can be minimized automatically, and this study focused
on automatic test case reduction algorithms and their optimization possibilities.

Two discipline defining algorithms are evaluated in detail, presented their
weaknesses and proposed optimizations to them. First, the minimizing Delta
Debugging algorithm was optimized from different perspectives. When the
proposed optimizations had a potential effect on Hierarchical Delta Debugging
(as HDD uses DDMIN as its utility to remove subtrees), we evaluated the
proposals on HDD as well. Then, investigated the potential behind different
tree-transformations (other than pruning) with HDD.
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The author identifies four main findings, which are listed below:

1. Cache Optimizations: Defined, implemented, and evaluated three
cache optimizations for automatic test case reduction algorithms,

2. Iterating the Minimizing Delta Debugging Algorithm: Defined,
implemented, and evaluated the fixed-point iteration of DDMIN that
achieves smaller outputs,

3. Parallel Optimizations of DDMIN*: Defined, implemented, and eval-
uated a new parallel variant of the DDMIN algorithm that can perform
reduction faster than before,

4. Extending Hierarchical Delta Debugging with Hoisting: De-
fined, implemented, and evaluated the transformation-based minimiza-
tion framework for hierarchical reduction, and an example transformation,
the Hoisting.

Some chapters focused on making the output of the algorithms smaller
while others focused on making the reduction process more lightweight.

1. Cache Optimizations

The main purpose of using cache memory in test case reduction algorithms is
to avoid running the same test multiple times as the algorithm tries different
configuration combinations. On the other hand, the reduction should somehow
be completed, even if we run out of resources (RAM). Several techniques are
available for cache replacement, the most widespread algorithms for it are Least
Frequently Used (LFU), Most Frequently Used (MFU), and Least Recently
Used (LRU), however, these classic techniques do not make use of the knowledge
of the underlying algorithms and evict elements from the cache that might be
needed later. Therefore, the caching solutions of minimizing Delta Debugging
(DDMIN) and Hierarchical Delta Debugging (HDD) were investigated, and
based on the preliminary research, the “content-based” technique was chosen
to work on as it performed the best with both algorithms.

The contributions of this part:

1. Found that the cache utilization and scaling are suboptimal: DDMIN deter-
mined the outcome of its configurations via cache memory only in 3% of the
cases, while HDD utilized the cache better, the actual testing of 21% of the
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configurations could be avoided. It did not scale well for either algorithm:
DDMIN consumed up to 53 MB of memory for reducing a 4 kB sized input,
while HDD required 4 GB of RAM to reduce a 0.44 MB sized test in the
worst case.

2. Three optimizations were proposed to reduce the memory footprint of caches
used in test case minimization:

(a) add only passing (✓) tests to the cache,
(b) when a new failing (✗) test case is found, evict cache entries of bigger

test cases, and
(c) instead of storing the serialized test contents, store their hashed value

(fixed-width keys instead of variable-width).

3. With the optimizations combined, DDMIN requires 96% and HDD requires
85% less memory compared to the baseline implementation. Supporting
the scalability issue, the size of the input had an effect on the results: on
JRTS (smaller tests), the average improvement was 63.19%, while on PTS
(larger inputs), it was 99.93%. Furthermore, as a side effect, the reduction
becomes faster by 9.9% with DDMIN. In our experiments, the result of the
reductions did not change after the optimizations.

The results, which are based on the [37] publication are presented in Chap-
ter 4.

2. Iterating the Minimizing Delta Debugging Algorithm

If test case reducers have to work without information about the input structure,
suboptimal results may be produced. It is easy to show what DDMIN can
remove from its input and what structures cannot be handled by the algorithm.
We analyzed inputs (source code for various compilers and execution engines)
that cannot be properly reduced by DDMIN and proposed a potential solution
to the problem. We formalized the fixed-point iteration of DDMIN (denoted
as DDMIN*) and then investigated whether it improves the effectiveness of
the algorithm. We evaluated the fixed-point iteration in two slightly different
settings.

First, the reduction of test cases was performed with character level granu-
larity on a smaller test suite; the output became smaller by 68% on average.
Then, the reduction was performed with line granularity, and the experiments
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show that DDMIN* can produce 48% smaller outputs on average (69% on a
larger test suite and 19% on a smaller one). The price of this improvement is an
increase in the number of steps, which was 66% on average. A “combined”, two-
pass reduction was then performed where test cases were first reduced with line
granularity, and then these intermediate results were reduced further with char-
acter granularity for fine-tuning. DDMIN* outperformed DDMIN even with
this setting, and was able to reduce inputs by an average of 46%. Surprisingly,
some inputs could be reduced faster with DDMIN*, as the line-level reduc-
tion produces results in a reasonable amount of steps, then the character-level
reduction can work further from this smaller input configuration.

Encouraged by the promising results, we compared the output of DDMIN*
with the output of HDD* to see whether a structure-unaware algorithm could
compete with a “more clever” one. In terms of required testing steps, the answer
is simply no; however, in terms of size, DDMIN* has brought the results much
closer, from a 9 times larger output (DDMIN) to an only 3 times larger one.

The contributions of this part:
1. Formalization of the fixed-point iteration of DDMIN, denoted as DDMIN*,

2. DDMIN* is most effective with character-level granularity, however, character-
level reduction can be unacceptably slow for “large” inputs and line-level
reduction leaves unnecessary parts in its output. Therefore, we used a
combined approach, where DDMIN* produced 46% smaller outputs. Fur-
thermore, the two-pass reduction produced 54% smaller outputs than the
line-level approach in our experiments, on average.

3. DDMIN* incurs an additional cost (number of testing steps), which appears
in most cases. This additional cost is related to the size of the test case,
but it does not grow beyond all limits. The effectiveness of the reduction
shows a similar pattern: the larger the input configuration, the larger the
potential to reduce. If the input configuration has some superfluous items,
DDMIN* can reduce it further regardless of its size.

4. We have compared the output of DDMIN* with the output of HDD*, to see
if a structure-unaware algorithm can compete with a “more clever” one. In
terms of required testing steps, the answer is simply no; however, DDMIN*
brought the results much closer to each other, from a 9 times larger output
(DDMIN) to an only 3 times larger.
The results, which are based on the publications [32, 35] are presented in

Chapter 5.
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3. Parallel Optimizations of DDMIN*

The previous two parts tried to make the reduction more lightweight and
make its output smaller. In this part, we have investigated whether it was
possible to make DDMIN itself work faster without compromising its minimality
guarantees. A technique that has already been proven useful for speeding up
DDMIN is parallelization, and we have investigated whether it was possible to
make parallel DDMIN even faster without losing the 1-minimal property of its
output.

First, the stability issues of parallel DDMIN are discussed: if multiple fail-
ing configurations are found in a parallel testing window (how many tests are
checked concurrently), then the algorithm becomes unstable: it will choose
among the interesting configurations based on which produced its fail outcome
first. Different test reductions can yield different outcomes, which is not appro-
priate for carrying out reproducible experiments. The “reduce to subset” and
“reduce to complement” phases iterate through configurations in a forward or
backward syntactic order; it is known which configuration should be investi-
gated first. The following changes are made in order to stabilize the algorithm:
if a fail is found in a parallel testing window, then the active test executions
should be awaited (i.e., computation results are discarded). If multiple fails
are found, the syntactic order is considered when choosing which one to reduce
further.

When multiple fails are found and the algorithm chooses one of them
based on the iterator, the results from other configurations are discarded, even
if they could have been useful. This results in superfluous test executions
on configurations that have already been tested (and failed). The following
strategy helps to minimize the number of test executions: If a testing window
has multiple fails, then it is worth trying to combine those configurations
that yielded them and check whether this combination also results in a fail.
If yes, then multiple test executions are saved in one step. If not, select
the first fail (based on the syntactic order) and try to combine the other
interesting configurations one by one. This case can also save testing steps
as only configurations with a fail outcome are retested instead of the whole
testing window in the next parallel loop iteration.

We have presented a modified parallel DDMIN – called GreeDDy –, evalu-
ated on a subset of a publicly available dataset and found that GreeDDy* could
save 31% of the testing steps of DDMIN* which resulted in 40% less runtime.

The contributions of this part:
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1. Investigated the stability issues of DDMIN* and provided a stabilization
approach for it.

2. Made the parallel execution of DDMIN* even faster, exploiting the potentials
of the already-seen testing windows (named GreeDDy*).

3. Presented our idea where multiple test executions with fail outcomes could
be merged to save further retesting, and found that GreeDDy* could save
30.68% of the testing steps of DDMIN* which resulted in 39.88% less runtime.
The output of GreeDDy* usually got smaller, however, the effects of the
algorithm on the output are negligible.

The results, which are based on the [36] publication are presented in Chap-
ter 6.

4. Extending Hierarchical Delta Debugging with Hoisting

Although Hierarchical Delta Debugging and its variants perform better on
structured inputs than DDMIN, there is still room for improvement. Several
improvements have already been proposed, often by preprocessing the tree
representation HDD is working on, e.g., by hiding some tokens from HDD to
reduce the number of nodes that have to be considered, by collapsing multiple
nodes into one for the same reason, or by rotating recursive structures of the
tree to reduce its height. However, these transformations do not change the
core structure of the tree, the test case serialized from the preprocessed tree
will still be the same as the original input.

There are recurring structures in the parse tree of the preprocessed input
that HDD cannot reduce but a human engineer can easily point out, such
as conditional statements, loops, function calls inside a parameter list, etc.
Therefore, the Transformation-based Minimization describes an algorithmic
framework that enables transformations that can not only remove but also
replace elements in the initial configuration. We have already defined such
a transformation (hoisting), which assumes that a subtree may be replaced
by another without losing syntactic correctness if and only if the roots of the
subtrees are in an ancestor-descendant relationship.

The contributions of this part:

1. Formalization of the Transformation-based Minimization framework and an
example transformation: hoisting. The intention behind hoisting is that a
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subtree may be replaced by another without losing syntactic correctness if
the roots of the subtrees are in an ancestor-descendant relationship.

2. Evaluation of hoisting in several configurations. First, hoisting was applied
as a preprocessing step to hierarchical delta debugging (e.g., Hoist*+HDD*),
then, hoisting was interlaced with hierarchical delta debugging (e.g., HDDH*),
and as stand-alone hoisting and the interlaced algorithm are not mutually
exclusive, they can be used in sequence (e.g., Hoist*+HDDH*).

3. On real-world inputs, hoisting combined with HDD gives generally smaller,
or at least as small outputs as HDD alone. Bigger outputs are rare. Min-
imized test cases can be as small as 1⁄5 of the output given by traditional
HDD.

4. The effects of hoisting to HDD and HDDr are similar: the majority of the
test cases could be reduced further with hoisting.

5. Coarse HDD and Coarse HDDr show similar patterns to the non-coarse
variants with respect to the output size: test cases could be reduced further
with hoisting. However, hoisting had no effect on the Coarse HDDH and
Coarse HDDHr algorithm variants, furthermore, algorithms performed the
reduction exactly the same way when hoisting was a preprocessing step.

6. The effect of hoisting on the efficiency of the reduction highly depends on
the height of the input tree. If the height of the tree is small (below 50),
hoisting increases the required testing steps. However, if the height of the
tree is big enough (above 150), test cases can be reduced faster with hoisting.

The Hoist* + HDDH* and Hoistr* + HDDHr* algorithm variants produced
the smallest output among the ones tested, and the Coarse variants performed
the reduction requiring the fewest steps (at the cost of bigger outputs). The
results, which are based on the publications [33, 34] are presented in Chapter 7.

The Author’s Contributions
The author had a decisive role in the design, implementation and evaluation

of a significant proportion of the above presented findings.

1. Cache Optimizations: The author analyzed the state-of-the-part caching
solutions that have been used in reduction, then designed and implemented
three optimizations for reducing the memory footprint of the reduction.
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Table A.1: Summary of thesis topics and corresponding publications

[37] [32] [35] [36] [33] [34]

1 •
2 • •
3 •
4 • •

Then, he evaluated the effects of proposals with different reduction ap-
proaches, on multiple test suites.

2. Iterating the Minimizing Delta Debugging Algorithm: The author
designed and prototyped the fixed-point iteration of the DDMIN algorithm.

3. Parallel Optimizations of DDMIN*: The author analyzed the weak-
nesses of the parallel DDMIN, then designed, implemented and evaluated a
solution to it.

4. Extending Hierarchical Delta Debugging with Hoisting: The author
investigated the structure of the inputs (abstract syntax trees) of HDD
searching for optimization possibilities. He found that identically labeled
nodes can be replaced without loosing the syntactic correctness. Then, he
prototyped the transformation-based minimization framework, implemented
the hoisting as an example transformation, and evaluated it on publicly
available test suites.

Furthermore, the supporting replication package has been published at the
time of each publication. The author has been responsible for the redesign
and implementation of the algorithms that stand their ground in the world of
open-source. The publications related to the thesis points are the following:

[37] Dániel Vince and Ákos Kiss. Cache Optimizations for Test Case
Reduction. In Proceedings of the 22nd IEEE International Conference
on Software Quality, Reliability, and Security (QRS 2022), pages 442-453,
Guangzhou, China (Virtual), December 2022. IEEE.
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[32] Dániel Vince. Iterating the Minimizing Delta Debugging Algorithm. In
Proceedings of the 13th International Workshop on Automating Test Case
Design, Selection and Evaluation (A-TEST’22), pages 57-60, Singapore,
November 2022. ACM.

[35] Dániel Vince and Ákos Kiss. Evaluation of the fixed-point iteration
of minimizing delta debugging. In Journal of Software: Evolution and
Process, 2024. Wiley.

[36] Dániel Vince and Ákos Kiss. GreeDDy: Accelerate Parallel DDMIN.
In Proceedings of the 15th ACM International Workshop on Automating
Test Case Design, Selection and Evaluation (A-TEST ’24), pages 1-4,
Vienna, Austria, September 2024. ACM.

[33] Dániel Vince, Renáta Hodován, Daniella Bársony, and Ákos Kiss. Ex-
tending Hierarchical Delta Debugging with Hoisting. In Proceedings of
the 2nd ACM/IEEE International Conference on Automation of Software
Test (AST 2021), pages 60-69, Madrid, Spain (Virtual), May 2021. IEEE.

[34] Dániel Vince, Renáta Hodován, Daniella Bársony, and Ákos Kiss. The
effect of hoisting on variants of Hierarchical Delta Debugging. In Journal
of Software: Evolution and Process, 34(11):e2483:1-e2483:26, November
2022. Wiley.

The author notes that although the results presented in this thesis are
his major contribution, the term we is used instead of I for self-reference to
acknowledge the contributions of the co-authors of the papers that this thesis
is based on.
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B
Összefoglalás

A szoftverkarbantartás egy szerteágazó tudományág és jelen tanulmány annak
egy kis részével foglalkozik: mi történik azután, hogy egy hibát megtaláltak, de
még azelőtt, hogy bejelentenék. Amikor egy új hibát találnak, a reprodukcióhoz
szükséges eseménysorozat a releváns részek mellett zajt (irreleváns részeket)
is tartalmazhat. Mindenkinek jobb, ha egy letisztult tesztesettel kezdi meg a
hibakeresést, viszont manuálisan kiválogatni a releváns részeket egy tesztesetből
is időigényes feladat. Szerencsére a tesztesetek minimalizálása automatizálható
és a tanulmány az automatikus teszteset-redukciós algoritmusokra és azok
optimalizációs lehetőségeire fókuszált.

Két, a diszcipĺınát meghatározó algoritmus részletesen ki lett értékelve,
bemutatásra kerültek a gyengeségeik és optimalizációk a kiküszöbölésükre.
Először a minimizing Delta Debugging lett optimalizálva különböző perspekt́ı-
vából. Amikor az optimalizációnak potenciális hatása lehetett a Hierarchical
Delta Debugging algoritmusra (mivel a HDD a DDMIN-t használja a részfái
törléséhez), ott kiértékeltük az optimalizációt a HDD-n is. Majd megvizsgáltuk
a lehetőséget különböző fa-transzformációk alkalmazására (a törlésen ḱıvül) a
HDD seǵıtségével.

A szerző négy fő megállaṕıtást azonośıt, melyek a következők:
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1. Cache Optimizations: Három gyorśıtótár-optimalizálást definiált, va-
lóśıtott meg és értékelt ki az automatikus teszteset-csökkentési algorit-
musokhoz,

2. Iterating the Minimizing Delta Debugging Algorithm: Definiálta
a DDMIN fixpontos iterációját, amely kisebb kimenet eredményez,

3. Parallel Optimizations of DDMIN*: Definiálta a DDMIN algoritmus
egy új párhuzamos változatát, amely gyorsabban képes végrehajtani a
redukciót,

4. Extending Hierarchical Delta Debugging with Hoisting: Defini-
álta a transzformáció-alapú minimalizálási keretrendszert és egy példa
transzformációt, a Hoistinget.

Néhány fejezet azzal foglalkozott, hogy a redukció kimenete kisebb legyen,
még mások a redukciós folyamat könnyedebbé tételét boncolgatta.

1. Cache Optimizations

A gyorśıtótár használatának célja a teszteset redukciós algoritmusokban az,
hogy elkerüljük ugyanazon tesztesetek újrafuttatását miközben az algoritmus
különböző konfigurációs kombinációkat próbál ki. Másrészről a redukciónak
akkor is végbe kellene mennie, amikor az erőforrásokból kifogyunk (RAM
memória). Több megoldás is létezik a gyorśıtótár menedzselésére, a legelter-
jedtebb algoritmusok a Least Frequently Used (LFU), a Most Frequently Used
(MFU) és a Least Recently Used (LRU), viszont ezek a klasszikus megoldások
nem veszik figyelembe az algoritmusok sajátosságait és törölhetnek olyan el-
emeket a gyor-śıtótárból, amikre később szükség lehet. Ezért megvizsgáltuk
a minimizing Delta Debugging (DDMIN) és a Hierarchical Delta Debugging
(HDD) algoritmusok gyorśıtótár megoldásait. Az előzetes vizsgálatok alapján a
tartalom alapú megoldás lett kiválasztva további jav́ıtásra, mivel ez bizonyult
a leghatékonyabbnak mindkét algoritmus számára.

A fejezet kontribúciói:

1. Kiderült, hogy a gyorśıtótár felhasználása és a skálázódása sem optimális:
DDMIN a kipróbált konfigurációinak csupán 3%-át határozta meg gyorśıtó-
tárból, mı́g a HDD jobban teljeśıtett, a kipróbált konfigurációinak 21%-át
tudta gyorśıtótárból meghatározni. Ami még ennél is rosszabb, egyik algo-
ritmus skálázódása sem volt megfelelő: DDMIN 53MB memóriát használt
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fel egy 4kB méretű teszteset minimalizálásához, mı́g HDD-nek 4GB RAM
volt szükséges egy 0.44MB méretű tesztesethez.

2. A tartalom alapú gyorśıtótár memóriaigényének csökkentése érdekében a
következő három optimalizációt javasoltuk:

(a) csak a hibát nem reprodukáló teszteseteket adjuk hozzá a gyorśıtótár-
hoz,

(b) amikor egy reprodukáló tesztesetet talál az algoritmus, minden annál
nagyobbat töröljünk ki a gyorśıtótárból, és

(c) ahelyett, hogy a teszteset tartalmát tárolnánk, tároljuk annak egy
transzformált (hashelt) változatát (azonos hosszúságú kulcsok a változó
hosszúságúak helyett).

3. A javasolt optimalizációkkal a DDMIN 96%-kal és a HDD 85%-kal kevesebb
memóriát használt az összehasonĺıtásképpen használt implementációhoz
képest. A skálázódási problé-mát alátámasztva a bemenet mérete be-
folyásolta az eredményeket: az átlagos memóriajavulás 63% volt kisebb
teszteseteken, mı́g 99% volt nagyobbakon. Mellékhatásként a redukció
10%-kal gyorsabb lett a DDMIN-t használva. A ḱısérleteinkben a redukció
kimenete nem változott az optimalizációk hatására.

Az eredmények a 4. Fejezetben vannak bemutatva, melyek a [37] tanul-
mányra épülnek.

2. Iterating the Minimizing Delta Debugging Algorithm

Amikor a tesztesetredukáló eszközöknek anélkül kell elvégezniük a felada-
tot, hogy rendelkeznének információval a bemenetük struktúrájáról, szubop-
timális eredmények keletkezhetnek. Könnyű olyan példát konstruálni, amely
szemlélteti, hogy a DDMIN mit tud kitörölni és milyen struktúrákat nem
tud kezelni. Megvizsgáltuk azokat az eseteket, amiket a DDMIN nem tud
megfelelően redukálni (forráskód formátumú bemenetek különböző ford́ıtóprog-
ramokhoz és végrehajtómotorokhoz) és javasoltunk egy lehetséges megoldást
a problémára. Formalizáltuk a fixpont iterációját a DDMIN-nek (DDMIN*-
gal jelöltük), majd megvizsgáltuk vajon jav́ıtja-e az algoritmus hatékonyságát.
Ezután kiértékeltük a fixpont iterációt két, némileg különböző esetben.

Először a tesztesetek karakteralapú bontásban kerültek redukálásra egy
kisebb teszthalmazon, ahol a kimenet 68%-kal csökkent átlagosan. Majd so-
ralapú redukció lett vizsgálva, a ḱısérletek alapján a DDMIN* 48%-kal kisebb
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kimenetet tud előálĺıtani (69%-kal kisebbet egy nagyobb méretű teszthalma-
zon és 19%-kal kisebbet egy kisebben). A kimenet méretének csökkentése
megnövelte a szükséges lépésszámot, mely 66%-kal növekedett átlagosan. Végül
egy “kombinált”, kétfázisú redukciót vizsgáltunk, ahol a teszteseteket először
soralapon redukáltuk, majd a köztes eredmények karakteralapú redukcióval
lettek tovább csökkentve, mint egy finomhangolási lépés. A DDMIN* ebben a
ḱısérletben is felülmúlta az összehasonĺıtásképpen használt DDMIN-t és tovább
tudta redukálni a bemeneteit 46%-kal. Meglepő módon néhány teszteset re-
dukciója gyorsabban lefutott, ahogyan a soralapú redukció ésszerű idő alatt
produkált eredményeket, majd a karakteralapú redukció ezen a kisebb kon-
figuráción tudott dolgozni.

Az ı́géretes eredményeken felbuzdulva összehasonĺıtottuk a DDMIN* és a
HDD* eredmé-nyeit, hogy lássuk vajon egy struktúrát figyelmen ḱıvül hagyó
algoritmus tud-e versenyezni egy nála okosabbal. A szükséges tesztlépések
számát tekintve a válasz egyszerűen nem, viszont a DDMIN* sokkal közelebb
hozta egymáshoz a kimeneti méreteket: kilencszer nagyobb eredmények helyett
(DDMIN) csak háromszor nagyobbat csinált. Még mindig van mit jav́ıtani
azokban a helyzetekben, amikor a bemeneti struktúra hiányzik vagy gyorsan
változik.
A fejezet kontribúciói:

1. A DDMIN fixpont iterációjának formalizálása, melyet DDMIN*-gal jelöltünk.

2. A DDMIN* karakteralapú redukcióval a leghatékonyabb, viszont ez gyakor-
lati szempontból elfogadhatatlanul lassú lehet nagy tesztesetek esetében. A
soralapú redukció pedig irreleváns részeket hagy a kimenetében. Ennélfogva
egy kombinált megközeĺıtést alkalmaztunk, ahol a DDMIN* 46%-kal kisebb
kimenetet tudott előálĺıtani. Továbbá a kétfázisú redukció átlagosan 54%-
kal kisebb kimenetet eredményezett a soralapú redukcióhoz viszonýıtva a
ḱısérleteink során.

3. DDMIN* használata többletköltséggel jár, a tesztvégrehajtások száma nö-
vekszik, ami a legtöbb esetben fellelhető. Ez a többletköltség a bemenet
nagyságától is függ, viszont nem nő minden határon túl. A redukció
eredményeként előálló kimenet is hasonló tendenciát mutat: minél nagyobb
a bemeneti konfiguráció, annál nagyobb a lehetőség a redukcióra. Amen-
nyiben a bemenet tartalmaz felesleges elemeket, a DDMIN* tovább tudja
redukálni azt a mérettől függetlenül.
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4. Összehasonĺıtottuk a DDMIN* és a HDD* kimeneteit, hogy megvizsgáljuk
vajon egy struktúrát nem ismerő algoritmus versenyezhet-e egy nála okos-
abbal. A redukcióhoz szükséges tesztvégrehajtások számában nem, viszont
a DDMIN* sokkal közelebb hozta egymáshoz a kimeneti eredményeket: ki-
lencszer nagyobb eredmények helyett (DDMIN) csak háromszor nagyobbat
csinált.

Az eredmények a 5. Fejezetben vannak bemutatva, melyek a [32, 35] tanul-
mányokra épülnek.

3. Parallel Optimizations of DDMIN*

Az előző két fejezet megpróbálta a redukció folyamatát könnyedebbé és a
kimenetét kisebbé tenni. Ebben a részben megvizsgáltuk vajon lehetséges-e
magát a DDMIN-t gyorsabbá tenni anélkül, hogy az algoritmus minimalitásra
vonatkozó garanciáit elvesztenénk. Egy, már a gyakorlatban is bizonýıtott
technika a párhuzamośıtás, ezért azt vizsgáltuk, hogy gyorsabbá tudjuk-e tenni
a párhuzamos redukciót az 1-minimalitás megtartása mellett.

Először a párhuzamos DDMIN stabilitási problémáit ismertettük: amen-
nyiben több reprodukáló konfigurációt találunk egy tesztelési ablakban (azaz
hány konfiguráció van tesztelve párhuzamosan), akkor az algoritmus viselkedése
instabil lesz: azt a reprodukáló konfigurációt választja, amely időben először
adott vissza eredményt. Emiatt különböző redukciós folyamatok különböző
eredménnyel zárulhatnak, ami nem igazán megfelelő megismételhető ḱısérletek
lebonyoĺıtására. A “reduce to subset” és a “reduce to complement” fázisok
járják végig a konfigurációkat valamilyen irányban (előrefelé vagy hátrafelé),
ı́gy ismert, hogy melyik konfigurációt kellene először megvizsgálni. A következő
változtatásokat eszközöltük, hogy stabilizáljuk az algoritmust: amennyiben egy
reprodukáló tesztesetet találtunk egy tesztelési ablakban, akkor minden még
folyamatban lévő tesztvégrehajtást meg kell várni (nem hagyunk el eredménye-
ket). Amennyiben többet találtunk, akkor a bejárási irány alapján válasszuk
ki azt, amelyikkel tovább folytatjuk a redukciót.

Ha több reprodukáló tesztesetet találunk és az algoritmus választ egyet a
bejárás alapján, a többi konfiguráció eredménye el lesz dobva, még akkor is, ha
hasznosak lettek volna. Ez felesleges tesztvégrehajtásokat eredményez olyan
konfigurációkon, amik már le lettek tesztelve (és reprodukálták a hibát). A
következő stratégia seǵıt csökkenteni a tesztvégrehajtások számát: Ha egy tesz-
telési ablakban több reprodukáló konfigurációt találtunk, megéri megpróbálni
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összekombinálni őket és megnézni vajon a kombinált konfiguráció is reprodukál-
e. Ameny-nyiben igen, számos tesztvégrehajtást megspórolunk egy lépésben.
Ellenkező esetben a bejárási irány alapján válasszuk ki az elsőt és egyenként
próbáljuk összekombinálni a többivel. Még ez a megközeĺıtés is spórolhat, mivel
csak a reprodukáló konfigurációk különféle kombinációit vizsgáljuk újra és nem
egy teljes tesztelési ablakot a következő párhuzamos ciklusban.

Bemutattuk a módośıtott párhuzamos DDMIN-t (GreeDDy-nek neveztük
el) és kiértékel-tük egy publikusan elérhető adathalmaz részhalmazán. Azt
találtuk, hogy a GreeDDy a tesztvégrehajtások 31%-át meg tudja spórolni, ami
40%-kal kevesebb futásidőt jelent a DDMIN*-hoz viszonýıtva.

A fejezet kontribúciói:

1. A DDMIN* stabilitási problémáinak ismeretetése és egy stabilizálási megol-
dás bemutatása.

2. A DDMIN* párhuzamos végrehajtását gyorsabbá tétele, kihasználva a lehe-
tőségeket a már látott tesztelési ablakokban (GreeDDy).

3. Több reprodukáló teszteset összevonásával további tesztvégrehajtások spó-
rolhatók meg, és kiderült, hogy a GreeDDy* a tesztvégrehajtások 31%-
át meg tudja spórolni a DDMIN*-nek, ami 40%-al gyorsabb redukciót
eredményezett. A GreeDDy* eredményéről általánosságban elmondható,
hogy kisebb lett, viszont az algoritmus hatása a kimenetre elhanyagolható.

Az eredmények a 6. Fejezetben vannak bemutatva, melyek a [36] tanul-
mányra épülnek.

4. Extending Hierarchical Delta Debugging with Hoisting

Habár a HDD és a variánsai jobban teljeśıtenek struktúrával rendelkező teszt-
eseteken, mint a DDMIN, mindig van esély némi optimalizációra. Számos
jav́ıtás lett már publikálva, sokszor a HDD által feldolgozott fa adatszerkezetén
végeznek előfeldolgozást, pl. elrejtenek néhány csomópontot a HDD elől
ı́gy kevesebb tesztvégrehajtást eredményezve. Másik előfeldolgozás lehet a
csomópontok összeolvasztása ugyanezen okból, vagy a rekurźıv struktúrák
forgatása a fa magasságának csökkentése érdekében. Viszont, ezek a transz-
formációk nem változtatják meg a fa alapvető struktúráját, az abból előálĺıtható
teszteset ugyanaz lesz, mint az előfeldolgozás előtt.

Vannak visszatérő struktúrák HDD bemenetét képző fa adatszerkezetben,
amiket a HDD nem képes redukálni, viszont egy szakértő egyszerűen kiszúrna,
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mint pl. feltételes utaśıtások, ciklusok, függvényh́ıvások paraméterlistán belül
stb. Ezt a problémakört megoldván, a transzformáció-alapú minimalizálás
egy algoritmikus keretrendszert ı́r le, amely nem csak törlés, hanem áthelyezés
alapú transzformációkat is megenged. Egy ilyen transzformációt definiáltunk
is (amit “emelés” -nek (Hoist) neveztünk), ami azt feltételezi, hogy egy részfa
helyetteśıthető egy másikkal a szintaktikus helyesség elvesztése nélkül, ha a
két részfa gyökerei ős-leszármazott viszonyban vannak és a két gyökérelem
ugyanolyan ćımkéjű.
A fejezet kontribúciói:

1. A transzformáció-alapú minimalizálás keretrendszerének formalizálása, to-
vábbá egy példa transzformáció, az emelés. Az emelés mögötti gondolat
az, hogy egy részfa kicserélhető egy másik részfával a szintaktikai helyesség
elvesztése nélkül, ha a két részfa gyökere azonos ćımkéjű és ős-leszármazott
viszonyban vannak.

2. Az emelés kiértékelése különböző konfigurációban. Először az emelés a HDD
előfeldol-gozási lépéseként volt alkalmazva (pl. Hoist* + HDD*), majd
egymásba ágyazva a HDD-vel (pl. HDDH*) végül ez a két lépés nem zárja
ki egymást, sorozatban mindkettő elvégezhető (pl. Hoist* + HDDH*).

3. Valós adatokon az emelés kombinálva a HDD-vel általánosságban kisebb
kimenetet eredményezett, de legalább akkorát, mint amit a HDD egyedül
elérne. Nagyobb kimenetek ritkák. A redukált tesztesetek akár a tradi-
cionális HDD kimenetének egyötöde is lehetnek.

4. Az emelés hatása a HDD-re és a HDDr-re (rekurźıv HDD) hasonló: a
tesztesetek többsége tovább csökkenthető az emelés hatására.

5. A Coarse HDD és a Coarse HDDr hasonló mintázatot mutat a kimeneti
méret te-kintetében: a tesztesetek tovább csökkenthetők az emelés alka-
lmazásával. Viszont az emelésnek nincs hatása a Coarse HDDH és a Coarse
HDDHr algoritmus variánsokra, illetve, amikor az emelés előfeldolgozási
lépésként volt alkalmazva, akkor az algoritmusok viselkedése nem változott
meg.

6. Az emelés hatása a redukció hatékonyságára nagymértékben függ a fa adat-
struktúra magasságától. Amennyiben a fa kicsi (kb. 50 magas), akkor
az emelés növekményt okozott a tesztvégrehajtások számában, viszont, ha
a fa elég magas (nagyobb, mint 150), akkor a tesztesetek gyorsabban re-
dukálhatók az emelés alkalmazásával.
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A Hoist* + HDDH* és Hoistr* + HDDHr* algoritmus variánsok álĺıtották
elő a legkisebb kimenetet a teszteltek közül és a Coarse variánsok igényelték a
legkevesebb tesztvégrehajtást (cserébe nagyobb kimenetet produkáltak).

Az eredmények a 7. Fejezetben vannak bemutatva, melyek a [33, 34] tanul-
mányokra épülnek.

A szerző hozzájárulásai
A fejezetekben bemutatott optimalizációk jelentős részének tervezésében,

megvalóśıtásában és kiértékelésében a szerzőnek döntő szerepe volt.

1. Cache Optimizations: A szerző elemezte a redukcióban alkalmazott ko-
rszerű gyorśıtótárazási megoldásokat, majd három optimalizálást tervezett
és valóśıtott meg a redukció memóriafelhasználásának csökkentése érdekében.
Ezt követően kiértékelte a különböző redukciós megközeĺıtésű javaslatok
hatásait több teszthalmazon.

2. Iterating the Minimizing Delta Debugging Algorithm: A szerző
megtervezte és protot́ıpusként elkésźıtette a DDMIN algoritmus fixpontos
iterációját.

3. Parallel Optimizations of DDMIN*: A szerző elemezte a párhuzamos
DDMIN gyengeségeit, majd megtervezte, megvalóśıtotta és kiértékelte a
megoldást.

4. Extending Hierarchical Delta Debugging with Hoisting: A szerző
a HDD bemeneteinek (absztrakt szintaxisfák) szerkezetét vizsgálta, opti-
malizálási lehetőségeket keresve. Megállaṕıtotta, hogy az azonos ćımkével
ellátott csomópontok a szintaktikai helyesség elvesztése nélkül cserélhetők.
Ezután elkésźıtette a transzformáció-alapú minimalizálási keretrendszer pro-
tot́ıpusát, példatranszformációként megvalóśıtotta az emelést, majd ny-
ilvánosan elérhető tesztcsomagokon kiértékelte.

Ezenḱıvül a publikációk replikációs csomagjai minden publikációkor meg-
jelentek. A szerző feladata volt az elkészült algoritmusok nýılt forráskódú
publikációja is. A tézisponthoz kapcsolódó publikációk a következők:

[37] Dániel Vince and Ákos Kiss. Cache Optimizations for Test Case
Reduction. In Proceedings of the 22nd IEEE International Conference
on Software Quality, Reliability, and Security (QRS 2022), pages 442-453,
Guangzhou, China (Virtual), December 2022. IEEE.



Table B.1: A dolgozat témáinak összefoglalása és a kapcsolódó publikációk

[37] [32] [35] [36] [33] [34]

1 •
2 • •
3 •
4 • •

[32] Dániel Vince. Iterating the Minimizing Delta Debugging Algorithm. In
Proceedings of the 13th International Workshop on Automating Test Case
Design, Selection and Evaluation (A-TEST’22), pages 57-60, Singapore,
November 2022. ACM.

[35] Dániel Vince and Ákos Kiss. Evaluation of the fixed-point iteration
of minimizing delta debugging. In Journal of Software: Evolution and
Process, 2024. Wiley.

[36] Dániel Vince and Ákos Kiss. GreeDDy: Accelerate Parallel DDMIN.
In Proceedings of the 15th ACM International Workshop on Automating
Test Case Design, Selection and Evaluation (A-TEST ’24), pages 1-4,
Vienna, Austria, September 2024. ACM.

[33] Dániel Vince, Renáta Hodován, Daniella Bársony, and Ákos Kiss. Ex-
tending Hierarchical Delta Debugging with Hoisting. In Proceedings of
the 2nd ACM/IEEE International Conference on Automation of Software
Test (AST 2021), pages 60-69, Madrid, Spain (Virtual), May 2021. IEEE.

[34] Dániel Vince, Renáta Hodován, Daniella Bársony, and Ákos Kiss. The
effect of hoisting on variants of Hierarchical Delta Debugging. In Journal
of Software: Evolution and Process, 34(11):e2483:1-e2483:26, November
2022. Wiley.

A szerző megjegyzi, hogy bár az ebben a dolgozatban bemutatott eredmények
az ő fő hozzájárulását jelentik, a mi kifejezést használjuk az én helyett önhi-
vatkozásként, hogy elismerjük azon cikkek társszerzőinek hozzájárulását ahhoz,
melyek ezen dolgoat alapját szolgáltatják.
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Firstly, I would like to thank Dr. Ákos Kiss, my supervisor, for his professional
help and unique opinions during my PhD studies. I will not forget my colleagues
who gave valuable feedback on the manuscript: Dr. Dombi József Dániel, Zsolt
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