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1. Introduction 

1.1. Management of melanoma malignum in patient care       

              Melanoma malignum (MM) is one of the most aggressive skin cancer with high 

metastatic potential, heterogeneous nature and is responsible for 80% of skin cancer-related 

deaths 1–3. Melina Arnold et al. showed that whether 2020 rates persist, approximately 96 000 

deaths (a 68% increase) and 510 000 new cases (a roughly 50% increase) will be estimated by 

2040 4. Due to the unpredictable characteristics of disease course, it is a major clinical problem 

for the health care system accompanied by high treatment costs 5. 

Among other skin cancer types, MM is the less frequent, however it is more aggressive and 

deadlier 5,6 than other skin tumors. The tumor derives from melanocytes which are specialized 

dendritic cells with neural crest origin. Melanocytes can be located in the epidermis of the 

skin, on mucosal surfaces, in the choroidal layer of the eye or in the meninges 5,7. (The main 

focus of this thesis is cutaneous melanoma malignum.) The main function of melanocytes is 

the production of melanin by melanosome formation to protect the human skin from UV 

(ultraviolet) radiation 8–10. Both genetic (e.g., familial dysplastic mole syndrome, mutations in 

MC1R, BAP1, TERT, MITF, PTEN, TP53, cKIT) and environmental factors (e.g., UV 

radiation) play pivotal role in the development of malignant melanoma.  

In the management of melanoma, early diagnosis plays a crucial role. The initial step is the 

clinical detection of the suspicious lesion with using dermatoscopy11 (Figure 1). 

Subsequently, surgical removal of the aforementioned skin lesion is undertaken, followed by 

a histology examination to determine the diagnosis (Figure 1).  
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Figure 1 displays the main steps of management of melanoma patients including the detection of suspicious 

lesion by dermatoscopy (1), diagnosis of melanoma by histopathology (2), and the application of the adequate 

therapy (e.g., targeted therapy and immunotherapy) (3). The images of dermoscopy and histology were collected 

in the Department of Dermatology and Allergology, University of Szeged. (ICI – immune checkpoint inhibitors, 

OM 112x, scale bar 100 μm) 

According to the European consensus-based interdisciplinary guideline for melanoma, 

histopathology validation differentiates 4 main primary melanoma subtypes: nodular, 

superficially spreading, acral lentiginous and lentiginous melanoma maligna11. Beyond the 

main types, additional subtypes such as desmoplastic, mucosal, uveal, spitzoid, amelanotic 

melanoma have been identified11,12. Different histopathology features provide additional 

information about the tumor morphology such as the Clark level (reflecting level of 

invasion)11, the Breslow level (indicating vertical tumor thickness)11, type of the melanoma 

cells (e.g., epithelioid, spindle-shaped cells etc.)13, pagetoid spreading especially in SSM13, 

ulceration 11, regression (e.g., host tissue response)11, mitotic rate (number of mitosis/mm2)11, 

the detection of tumor-infiltrating lymphocytes, or microsatellite metastases (e.g., satellite, in-

transit or micro-metastases)11 (Figure 2). 

 



10 

 

 

 

Figure 2 shows a representative H&E image of a nodular melanoma with histopathology features indicative of 

tumor spreading. Image (A) presents spindle-shaped cells, common feature in nodular melanoma13. Image (B) 

displays the intradermal tumor nests indicative of vertical growth, and image (C) depicts tumor-infiltrating 

lymphocytes correspond to immune response. The H&E image was obtained in the Department of Dermatology 

and Allergology, University of Szeged. (OM 112x, scale bar from 50 μm to 2000μm) 

In the routine diagnostics, additional immunohistochemistry staining provides more 

information to detect the melanoma cells (e.g., S100B (S100 calcium binding protein B), 

HMB45 (Human Melanoma Black – 45), Ki-67 protein (marker of proliferation Ki-67), 

SOX10 (SRY-box transcription factor 10), Melan-A (melanoma antigen recognized by T cells, 

also known as MART-1 antigen), and in special cases BRAFV600E (for mutated Braf 

kinase)14. Prior to the initiation of melanoma therapy, it is essential to detect both locoregional 

and distant metastases, and consequently to determine the clinical staging of the patient based 

on the current melanoma staging guideline: The American Joint Committee on Cancer eighth 

edition (AJCC8) 15. 

Regarding the therapy options, the application of kinase and immune checkpoint inhibitors have 

revolutionized the management of melanoma in the last 10 years. Several studies demonstrated 

the effectiveness of both targeted and immunotherapies, indicating an increase in the survival 

rate for patients receiving these therapies11(Figure 1). The main two therapy options have 

different molecular mechanisms for the antitumor activity. The FDA-approved targeted 

therapies (e.g., dabrafenib, trametinib, vemurafenib, cobimetinib, encorafenib, binimetinib), 
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administered based on the BRAF mutation status, inhibit cell proliferation by blocking the 

increased activation of Braf and Mek kinases. The FDA-approved immunotherapies such as 

inhibitors of CTLA-4 (cytotoxic T-lymphocyte associated protein 4, e.g., ipilimumab), LAG-3 

(lymphocyte-activation gene 3, e.g., relatlimab), PD-1 (programmed cell death protein 1, e.g., 

nivolumab, pembrolizumab) and PD-L1 (programmed cell death ligand 1, e.g., atezolizumab) 

are recommended for all individuals with unresectable metastatic melanoma irrespective from 

tumor BRAF mutation status11. The immune checkpoint inhibitors hinder the connection 

between lymphocytes and tumor cells by blocking the T cell surface proteins and it facilitates 

the activation of lymphocytes to eliminate the tumor cells5,16. These mechanisms have also an 

effect on melanoma microenvironment2. Beside the effectiveness of these biological treatments, 

the rapid development of therapy resistance and toxicity (e.g., immune-related adverse effects 

(irAE)) is a prevalent problem during the administration of these therapies.  

1.2. Role of prognostic and predictive biomarkers 

              When discussing biomarkers, it's important to highlight the increasing significance of 

proteins. In diseases and cancers, proteins play a central role in predicting outcomes. For 

instance, higher expression of autoantibodies can indicate disease activity in autoimmune 

diseases17, while certain proteins (e.g., C-reactive protein) can point to an inflammation in the 

body18. Proteins such as prostate-specific antigen help detecting small, low-grade, localized 

prostate cancers19, and high level of thyroglobulin levels can predict the recurrence of thyroid 

tumors after thyroid gland removal20. Therefore, proteins can serve as a basis for prognostic 

and predictive approaches.  

In the case of melanoma malignum, the high tumor mutational burden (TMB) 21–23 involves 

numerous pathways and proteins in tumor formation. In the last decade, promising results have 

emerged from analyzing various biomarkers for disease progression. These include the blood 

level of lactate dehydrogenase (LDH)23,24, mutations in genes (e.g., MITFlow/high, 

CDKN2A)23,25, influence of immune cells (e.g., high density of CD3+/CD8+ T lymphocytes, 

CD20+ B cells 23,26,27), as well as ulceration and mitotic rate. However, they lack 

standardization and accuracy in predicting outcomes. At present, the determination of Breslow 

level and the status of sentinel lymph nodes form the basis for the current melanoma staging15, 

but there is a need for more accurate and comprehensive prognostic biomarkers at the molecular 

level.  
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In the histopathology of melanoma, biomarkers can be categorized based on their functions, 

including prognostic biomarkers for predicting the disease progression, and predictive 

biomarkers for anticipating therapy response14. The BRAF mutation is a major predictive target, 

present in about half of melanocytic lesions and typically occurring early in tumor development. 

In 80-90% of the cases, BRAF mutations are in the V600 position when valine substitute to 

glutamate resulting in the V600E mutation. Other mutations are also known like V600K, 

V600R and V600D. BRAF mutations occur in sun-exposed locations of the skin5, and has a 

pivotal role in treatment choice. Currently, the gold standard method for the mutation detection 

is DNA-based PCR (polymerase chain reaction) analysis28. During the polymerase chain 

reaction analysis, the targeted gene is amplified to ascertain whether the mutation is in the 

sample28. The DNA-based techniques are time-consuming, expensive, and require comparison 

with histology findings to avoid cross-contamination29. Technical factors like melanin's 

inhibitory effect and low tumor content can lead to false results30–32. Protein-based 

immunohistochemistry (IHC) staining is an emerging alternative for detecting BRAF 

mutations. Although the protein-based immunohistochemistry (IHC) staining is not yet part of 

the routine diagnostics, it is cost-effective and suitable for healthcare settings33. It utilizes the 

VE1 clone antibody which is specific for BRAFV600E mutated protein. For the staining 

method, one layer from the formalin-fixed paraffin embedded (FFPE) tumor sample is 

sufficient34. Twenty percent of tumor content is adequate to detect the abnormal protein35. It 

was also demonstrated that the protein is well-preserved during IHC staining process, unlike 

PCR analysis36. Furthermore, demonstrating the presence of mutated proteins during IHC 

diagnostic method is beneficial for therapy choice, as targeted therapy works by inhibiting the 

BRAF kinase proteins. In addition, immunohistochemistry staining of BRAF mutated protein 

is a predictive tool not only for melanoma but also for colorectal cancer and thyroid cancer37. 

This thesis will present the results of the comparison of the two methods with complementary 

analyses. 

Concerning therapy response, melanoma is recognized as immunogenic, exhibiting higher 

immune cell infiltration compared to other tumor types. Due to the tumor mutation burden38–40, 

there is an increased likelihood of producing mutant proteins, which can serve as neoantigens, 

thereby enhancing immunogenicity21,23,41. In contrast, almost half of melanoma patients either 

do not respond to immune therapy or progress due to resistance5,42. Currently the mechanisms 

behind therapy resistance is not fully understood. Studies on the proteomic and histopathology 

characteristics of melanoma samples have aimed to enhance the prediction of immunotherapy 
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response. For instance, it is known that tumor-infiltrating lymphocytes (TIL) are crucial for 

immunotherapy response 5,27,43–45. In addition, macrophages can adopt either anti-tumor (M1) 

or pro-tumor (M2) roles depending on TME signals, potentially impacting the progression and 

later the treatment outcomes5,46. Based on the function of tumor-infiltrating lymphocytes, a new 

FDA approved cellular therapy named Lifileucel® (Amtagvi) has recently been introduced with 

promising outcomes. This therapy promotes the TILs of the tumor of the patient to booster 

immune activity against tumor cells47. Current publications indicate that the combination of 

PD-L1 cell type expression with tissue localization can have clinical significance48. However, 

relying on a single marker to predict treatment response has limitations5. There remains an 

unmet need for identifying biomarkers that distinguish responders from non-responders to 

immune checkpoint inhibitor therapy. 

Regarding prognostic approaches, under the umbrella of artificial intelligence (AI) in digital 

pathology, several studies have attempted to find features indicative of progression of 

melanoma 49,50. Wan et al. developed a machine-learning algorithm with 36 clinicopathologic 

features to predict the recurrence risk51. They highlight the predictive attributes of mitotic rate 

and Breslow tumor thickness51. Moreover, Kulkarni et al. utilized deep learning convolutional 

neural networks (CNN) to predict disease-specific survival from 263 melanoma H&E slides52. 

Furthermore, a novel computational method, the Estimate Systems Immune Response score 

(EaSIeR)53, has emerged which predicts immunotherapy response in cancer patients by 

analyzing tumor microenvironment signatures and 14 transcriptome-based immune response 

indicators53. Our research group utilized this approach to identify proteins distinguishing 

responders from non-responders. Six proteins (ITGAX, SAMSN1, TNFAIP2, CD163, 

MTSSS2, and PSMB5) from an immunotherapy-treated cohort were correlated with therapy 

response. These proteins were validated in two untreated cohorts. In addition, among these 

proteins, three (ITGAX, TNFAIP2, and SAMSN1) were associated with patient survival at both 

protein and transcript levels in an independent immunotherapy-treated cohort. These 6 proteins 

were linked to different pathways of the tumor microenvironment. For instance, ITGAX is a 

cell adhesion molecule involved in integrin binding54; SAMSN1 plays role in regulating B cell 

activation55; TNFAIP2 is a cancer-related gene, pivotal in inflammation56,57; CD163 is an acute 

phase-regulated receptor crucial for shielding tissues from oxidative damage caused by free 

hemoglobin58; and MTSS2 contributes to plasma membrane dynamics59,60. The results highlight 

that AI is an emerging approach in the prediction of immunotherapy. However, beside the 

results so far, AI still faces limitations and numerous challenges49. 
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Moving forward to other approaches, tissue samples such as FFPE samples emerges as a 

cornerstone in tissue-based biomarker research. For histopathology evaluation, FFPE sections 

serves to deepen our knowledge of the tumor morphology and the tumor microenvironment as 

well as their connections. Combining histopathology with different OMICS platform analyses 

(genomics, transcriptomics, proteomics)61, FFPE samples may become a key element in 

extending knowledge of tumor molecular fingerprints.  In 2021, our research group in a wide 

international cooperation, pioneered the publication of a comprehensive proteomic fingerprint 

and morphological analysis of 500 melanoma samples through complex OMIC approaches62. 

Additionally, another study performed a comprehensive proteogenomic comparison with a 

specific focus on possible driver-, and therapy-associated genes in melanoma63. These 

advancements underscore the vast possibilities that proteomics analysis offers for predictive 

and prognostic biomarker research, with potential implementation in patient care through 

combined histopathology evaluation. 

In this thesis, we will present our results using innovative approaches such as quantitative 

proteomics and digital pathology with AI-driven imaging to aim spatial proteomics. Our 

advancements in biomarker research provide a deeper understanding of the molecular features 

of melanoma, holding promise for more personalized treatment approaches and ultimately 

improving patient outcomes. 

.  
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2. Aims  

Our research group is dedicated to uncover proteins from paraffin-archived melanoma samples 

for predictive and prognostic purposes with novel methodologies. In the scope of this discovery 

project, our goals are the following (Figure 3):  

 To compare the use of PCR technique and IHC staining on BRAF mutation detection 

in routine diagnostics. 

 For predictive purposes, we conduct a comprehensive proteomic analysis on FFPE 

melanoma samples to unveil potential proteins predicting therapy outcomes. 

 For prognostic purposes, we introduce an AI-powered digital pathology approach 

alongside an in-depth quantitative proteomics analysis of 12 early-stage primary 

melanomas to detect potential proteins predicting progression.  

 

 

Figure 3 summarizes the different approaches and objectives of our melanoma biomarker research, with 

personalized medicine at the core. Our studies aimed to identify biomarkers with predictive and prognostic 

purposes in routine diagnostics (1) and in proteomic research (2,3) for melanoma using spatial proteomics, 

including the combination of digital pathology with AI-driven imaging (2), immunohistochemistry (IHC) (1), and 

quantitative proteomics (2,3). 
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3. Materials and Methods 

             Based on the BRAF detection study, the predictive biomarker study (paper I) and the 

prognostic biomarker study (paper II), here I summarize the materials and methods of these 

studies. 

3.1. Workflow of the studies involved in the thesis 

3.1.1. The workflow of the BRAF detection study 

       In the initial step of our BRAF detection study, we collected 94 formalin-fixed paraffin-

embedded melanoma samples along with their clinical data (Figure 4, 1), including PCR data 

of BRAF mutations (Figure 4, 2). These samples were then stained with VE1 antibody for 

BRAF mutation (Figure 4, 2). Samples that were PCR-negative for BRAF mutations but 

showed focal positive staining were submitted for next-generation sequencing (Figure 4, 3). 

Samples that were PCR-negative for BRAF mutations but showed diffuse positive staining with 

intratumoral heterogeneity were sent for quantitative PCR (Figure 4, 3). The methodology steps 

are detailed in 3.2 to 3.8 paragraphs. 

 

Figure 4 shows the workflow of the BRAF detection study. It captures the different approaches utilized for 

BRAF mutation detection in the study (1-3). /Diff.-diffuse, pos. – positive, IT -intratumoral/ 
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3.1.2. The workflow of the predictive biomarker study (paper I) 

       This study encompassed 90 formalin-fixed paraffin-embedded melanoma samples 

collected retrospectively during oncology care and follow-up64. Detailed clinical information 

was collected for each sample. These archived melanoma samples were then subjected to 

histopathology analysis to obtain histopathology description from the samples. Moreover, the 

melanoma samples were sent for proteomic analysis using high-resolution mass spectrometry64 

(Figure 5). The methodology steps are detailed in 3.2 to 3.8 paragraphs. 

 

 

Figure 5 illustrates the general workflow of our predictive biomarker study, presenting the timeline of melanoma 

disease progression from tumor diagnosis to the development of distant metastases. It also outlines the main steps 

for obtaining data from archived formalin-fixed paraffin-embedded melanoma samples, including proteomic 

analysis64.  
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3.1.3. The workflow of the prognostic biomarker study (paper II) 

       The study involves six early-stage formalin-fixed paraffin-embedded melanoma samples 

with recurrence, and six without recurrence. Initially, the formalin-fixed paraffin-embedded 

melanoma samples were sectioned and H&E stained for histopathological investigation 

combined, with topographic image analysis based on artificial intelligence (AI). With the help 

of data-rich imaging, deep-learning, and machine-learning models, a digital pathology profile 

was set up to automatically identify and annotate tumor and stromal areas. The sections with 

annotated regions were subjected to laser capture microdissection (LCM) to isolate and collect 

tumor and stromal cells for quantitative proteomics. A recently implemented sample 

preparation workflow (see detailed in paragraph 3.6 in Materials and Methods61,65)  was used 

to achieve deep proteome profiling of all 24 samples with mass-spectrometry66. Finally, 

bioinformatics analysis and biological interpretation of the proteomic data were conducted 

(Figure 6). 

 

Figure 6 summarizes the main steps of our prognostic biomarker study. This includes the collection of early-stage 

formalin-fixed paraffin-embedded melanoma samples, the process of the laser capture microdissection with AI-

driven imaging, proteomic analysis and statistical analysis of the samples66. /LC/MS - liquid chromatography–

mass spectrometry/ 
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3.2. Patient cohorts 

            In the BRAF detection study, a total of 94 melanoma samples were collected 

retrospectively from 94 patients in the Department of Dermatology and Allergology of the 

University of Szeged. The inclusion criteria for this study involved patients whose melanoma 

samples had been archived in formalin-fixed paraffin-embedded (FFPE) tissue blocks and had 

undergone BRAF mutation analysis using PCR detection and BRAF immunohistochemistry 

staining. The samples were collected with clinical information including gender, age at primary 

melanoma, clinical staging, survival data, therapy received, melanoma subtypes, histological 

parameters of the tumor (Table 1). 

 

Table 1 shows the clinical and histopathologic parameters of the samples included in the BRAF detection study. 

*Patients received more than a single therapy.  /N-number, Prim – primary, Met – metastasis, SD – standard 

error, ALM- acrolentiginous melanoma, LMM-lentigo maligna melanoma, NM-nodular melanoma, SSM- 

superficial spreading melanoma, lymph. – lymph node metastasis, cut. – cutaneous metastasis, INF – interferon 

therapy, ECT – electrochemotherapy, RadioT – radiotherapy, ChemoT – chemotherapy, NA – no data available, 

AJCC8 – The 8th edition of American Joint Committee on Cancer Staging System/ 

Prim 91 IA 1

Met 3 IB 4

IIA 7

Mean 62.7 yrs IIB 10

SD ± 5.65 IIA/IIB 1

IIC 8

Male 60 IIIA 6

Female 34 IIIB 7

IIIC 37

SSM 12 IIID 3

SSM with vertical growth 32 IV 9

NM 30 NA 1

Malignant blue nevus 1

LMM 1 < 1.00 5

ALM 10 1.01-2.00 13

ALM with vertical growth 1 2.01-4.00 29

Epitheloid melanoma 2 4.01 < 42

Melanoma residuum 1 no data 2

NA 1

No therapy Targeted therapy Immunotherapy Other therapy (INF, ECT, RadioT, ChemoT) 

24 17 43 35

Breslow level (mm) of primary melanoma

Received therapy (N)*

Ulceration (N)  of primary melanoma

yes

no

no data

57

32

2

Primary melanoma type (N)

Clinical and histopathologic characteristics of the samples

Tumor type (N) Clinical staging based on AJCC8 (N)

Age at primary

Sex (N)
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The predictive biomarker study, refers to paper I, included 52 patients with primary and 25 

patients with metastatic melanoma collected from the Department of Dermatology and 

Allergology at the University of Szeged, analyzing 53 primary and 37 metastatic melanoma 

samples. The patients were selected retrospectively from 2005 to 2020, with primary melanoma 

or metastasis archived in formalin-fixed paraffin-embedded tissue blocks. All primary tumors 

resulted in loco-regional and/or disseminated disease. The histopathological slides were 

prepared from formalin-fixed, paraffin-embedded (FFPE) blocks, collecting a total of 90 

samples with clinical information, including gender, age at primary tumor (in 3 cases the age at 

primary was not available), age at metastasis, age at collection date, localization of primary 

tumor and metastases, long-term follow up data of the patients: disease-free survival (DFS), 

progression-free survival (PFS), overall survival (OS) (in 3 cases the DFS, PFS and OS were 

not available), AJCC8 clinical staging, histological parameters of the primary tumor, mutational 

status, therapies received. Disease-free survival (DFS), progression-free survival (PFS), and 

overall-survival (OS) were calculated based on the date of clinical diagnosis of the primary 

melanoma to the date of first metastasis, progression, and death or last follow-up, respectively 

(Table 2). Detailed clinical, histopathologic data and the survival analyses are available in the 

publication by Szadai L. et al.64. 

 

Table 2 displays the clinicopathologic data of the patient cohort of paper I. The table displays the clinicopathologic 

parameters of the patients and their selected primary melanomas and metastases included in the metastatic patient 

cohort. /SSM-superficial spreading melanoma, LMM-lentigo maligna melanoma, NM-nodular melanoma, ALM-

acrolentiginous melanoma, St. – status, AJCC8 – The 8th edition of American Joint Committee on Cancer Staging 

System, yrs - years, NA – no available data./. *Data were not available in three cases. 

The prognostic biomarker study, refers to paper II, incorporated twelve patients with cutaneous 

primary melanoma after presenting with their lesion to the Department of Dermatology and 

Allergology at the University of Szeged between 2006 and 2017. The FFPE blocks of primary 

melanoma samples were collected retrospectively. Clinicopathological data including age, 

Number of the patients

Primary tumors 53 SSM with vertical growth 15

Locoregional lymphatic metastases 24 SSM 5

NM 27

ALM 3

St. I.          7 patients ALM with vertical growth 1

St. II.         24 patients ALM with SSM 1

St. III.        31 patients 17 months 0-45 months LMM 1

St. IV.        14 patients

NA          1 patient 42 months 3 - 81 months Immunotherapy 22

Age at primary* Targeted therapy 15

   mean             range 51 months 6 - 96 months

   64 yrs        54-74 yrs

No therapy 18

Tumor samples (n =90)

Therapies of the patients (N)

Other therapies (irradiation, ETC, 

chemotherapy, INF therapy)

Overall survival*

Type of primary tumors (N)

Progression-free survival*

Clinical stage (AJCC8) Cutaneous metastases 13

Disease-free survival*

59

77
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gender, clinical stage, histopathological subtype, histological parameters of the primary tumor, 

and survival parameters (DFS, PFS, and OS) are detailed in Szadai et. al. 66. The calculation of 

DFS, PFS, and OS were delineated above. The primary tumor samples were categorized into 

two groups: one from patients who experienced disease recurrence within 5 years after the 

initial diagnosis (Group B, n=6), and the other from those patients without metastatic events 

within that same 5-year period (Group A, n=6). All these tumor samples were from the early 

stages of the disease, specifically classified as AJCC8 IA-IIA at diagnosis. For both groups, 

survival parameters were calculated from the date of primary melanoma diagnosis to the date 

of the last follow-up (Table 3).  

 

Table 3 represents the clinical and histopathological features within recurrent and non-recurrent groups of primary 

melanomas. Median and standard deviation (SD) are represented for continuous variables, and number of patients 

(n) are shown for categorical variables. 1DFS: disease-free survival, 2PFS: progression-free survival, 3OS: overall 

survival, 4SSM: superficial spreading melanoma. /m- months, mm- millimeter/ 

3.3. Molecular analysis in the BRAF detection study 

3.3.1. Routine polymerase chain reaction (PCR) with Sanger Sequencing 

       The FFPE samples underwent analysis for BRAF V600 mutations using the DNA-based 

Sanger Sequencing technique. DNA isolation was carried out from the FFPE samples of both 

primary melanomas and metastases at the Department of Pathology, University of Szeged. Prior 

Non-recurrent Recurrent

(Group A, n=6) (Group B, n=6)

Patients Variable Median ± SD Median ± SD

Age
Age at primary 

diagnosis (years)
68 ± 8.7 61 ± 16

DFS (m)
1 89 ± 18 49 ± 13

PFS (m)
2 89 ± 18 60 ± 10

OS (m)
3 89 ± 18 61 ± 22

Breslow level
Breslow level 

(mm)
0.23 ± 0.1 1.21 ± 0.4

Patients Variable Patient (n) /Total (n) Patient (n) /Total (n)

Male 6/6 2/6

Female 0/6 4/6

IA 6/6 2/6

IB 0/6 3/6

IIA 0/6 1/6

Type SSM
4 6/6 6/6

II 6/6 1/6

III 0/6 5/6

Regression
Presence of 

regression areas
6/6 3/6

Ulceration - 0/6 3/6

Gender

Clinical stage (AJCC8)

Clark level

CLINICOPATHOLOGICAL 

PARAMETERS

Survival
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to the DNA-based analysis, the assessment of the ratio between melanoma and reactive/healthy 

cells was performed, and samples with a minimum 80% melanoma cells were eligible for the 

analysis. During the PCR process, the hotspots of the BRAF gene mutation were amplified, and 

the resulting gene products were sequenced. Besides testing mutations of the BRAF gene 

(V600E, V600K, V600R, K601E mutations), cKIT gene was also successfully amplified and 

detected.  

3.3.2. Next generation sequencing (NGS) – DNA extraction, library construction, 

data processing, variant calling 

      From the stained slides, the target regions for the molecular genetic investigation were 

selected by a pathologist. Genomic DNA was extracted from the 9 FFPE tissue samples using 

the MagCore® Super nucleic acid isolation robot, Genomic DNA FFPE One-Step Kit (RBC 

Bioscience Corp., Taiwan). The elution volume was 60 ul. Subsequently, BRAF exon 15, 

potentially harboring the V600E mutation, was amplified by PCR from the purified FFPE DNA. 

The PCR amplification was carried out in a reaction volume of 30 ul using 5 pmol of each 

primer (region of interest: 7:140753268-7:140753365), the sequences of the oligos, used in the 

first PCR are the following: forward primer 5’-

GCGACGCACACAGCACGCGCAGNNNNNNNNNNNNAATACGTCGATTGCCATCAG

TGGAAAAATAGCCTCAA-3’, reverse primer 5’-

GGCAACCGCCGTGTTGGAGGCCNNNNNNNNNNNNTGCTTTGTACGTAGCTCATG

AAGACCTCACAGT-3’, 1x Q5 Reaction Buffer, 0.6 U Q5 High-Fidelity DNA Polymerase 

(New England Biolabs, Ipswich, MA, USA), 200 μM of each deoxynucleotide, 10.6 ul 

AccuGene water (AG; Lonza, Basel, Switzerland) and 10 ul isolated DNA of each FFPE 

samples. A positive control was established using a serial dilution of previously identified 

BRAF mutant formalin-fixed paraffin-embedded (FFPE) samples, while AG served as a 

negative control. Thermal cycler conditions were as follows: 98 degrees Celsius for 45 sec, 45 

cycles of 15 sec at 98 degrees Celsius and finally, 45 sec at 62 degrees Celsius. Amplification 

quality control was conducted by running the reactions on a 3% agarose gel. 

The amplicons underwent purification using the KAPA Pure Bead (Roche, Basel, Switzerland) 

with a volume ratio of 0.8 between beads and PCR products. The purified products were eluted 

in 16 ul AG. Indexing PCR was performed in 20 ul using 1 pmol of each primer (containing 

Nextera XT Sequencing Adapters), 1x Q5 Reaction Buffer, 0.4 U Q5 High-Fidelity DNA 

Polymerase (New England Biolabs, Ipswich, MA, USA), 200 μM of each deoxynucleo-tide, 

4.5 ul AG and 8 ul amplicon. The temperature profile consisted of an initial step at 98 degrees 
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Celsius for 1 min, followed by 15 cycles of 15 sec at 98 degrees Celsius and 50 sec at 63 degrees 

Celsius. Nextera XT sequencing adapters were extended with the sequence and the seven 

intermediate nucleotides. Additionally, to enhance diversity in the amplicon library, each i5 

sequencing adapter was used as a pool of four primers in which a ‘N’ (0-3) spacer was added 

between the Ilumina sequencing primer and sequence.  

DNA quality and correct sizing were monitored through nested PCR using 5’-6-FAM-labeled 

primers for a fragment analysis on the 3500 Genetic Analyzer (Applied Biosystem Foster City, 

CA, USA). The dual-indexed library products underwent purification in the same manner as 

the products of the first PCR round, and they were purified in 12 μl AG as well. Quantification 

of the sequencing libraries were performed using the Qubit quantification method (Invitrogen, 

Carlsbad, CA) with the Qubit dsDNA High-Sensitivity Assay Kit (Life Technologies, Carlsbad, 

CA). Subsequently, after pooling at equimolar ratios, the DNA library was sequenced on an 

Ilumina NextSeq 550 System using the NestSeq 500 High-Output Kit v2.5.  

The data processing and variant calling followed the methodology outlined by Priskin et al.67. 

The first filter level was determined by low Q values, allowing a maximum of 30 bases below 

Q28 in both R1 and R2 directions for a read pair, resulting in 0.5-1% of the reads filtered out. 

In the second filter level 33-50% of the reads were filtered out, because only the perfectly 

aligned read pairs were accepted, facilitated by our primer design, resulting in a product shorter 

than base pairs 68. Finally, in the third filter level, we eliminated primers from the ends of the 

readings using the Smith – Waterman algorithm based on the primer list, allowing a 3-base 

Hamming distance, particularly significant for overlapping primer pairs. The last filter level 

used the UMI tools69 and UMI sequences at end to cluster all reads with the same UMI, 

removing all read clusters that had more than one read. Mutation selection criteria included 

coverage of >10000 and a frequency of mutated alleles >1.5% for target reads. Clinical 

significance was annotated using SnpSift on the dbSNP and Clinvar variant database. The NGS 

was carried out in the Biologic Research Centre in Szeged. 

3.3.3. Real-time polymerase chain reaction (qPCR) - qPCR quantification of the 

patient samples 

      For each quantification, the tumor part of 4 µm thin samples was selected based on 

evaluation of a pathologist and utilized for further isolation. DNA isolation was performed 

using the ReilaPrep FFPE qDNA Minimprep kit (#A2352 Promega, USA), following the 

manufacturer's instructions. BRAF V600E and V600D mutated alleles were identified using 

qRT-PCR detection with the gb ONCO BRAF (V600E) CE-IVD kit (3241-024, Generi 
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Biotech, Czech Republic). Ct values were measured and analyzed on the Applied Biosystems 

QuantStudio 5 platform (Thermo Fisher Scientific, USA). The cycler temperature profile and 

running mode were adjusted as specified in the detection kit. Mutation statuses were calculated 

and determined using the batch-compatible evaluation table (EC_SOMMUT ver 1.4) provided 

by the manufacturer. The qPCR was performed in the Department of Pathology, University of 

Szeged. 

3.4. Immunohistochemistry validation  

            In the BRAF detection, predictive (paper I) and prognostic biomarker studies (paper 

II), retrospectively collected samples were obtained through excision or biopsy of primary 

melanoma or metastatic organs, following routine formalin-fixed and paraffin-embedded 

(FFPE) methodology for archival purposes. In the BRAF detection and the predictive biomarker 

study (paper I), the FFPE tissues were underwent stepwise sectioning with a conventional 

microtome, adjusted to a slice thickness of 4 micrometers. In the prognostic biomarker study 

(paper II), the examined formalin-fixed paraffin-embedded tumor samples incorporated a 

range of thickness from thin, low risk (< 1 mm, pT1a) – characteristic of the no recurrence 

subgroup, to medium thick, medium risk (1–1.6 mm, pT1b-pT2b) – characteristic of the 

recurrence subgroup. The cohort of primary melanomas (n=12) (paper II) preserved as FFPE 

tumor blocks underwent a sectioning and staining procedure, with a slice thickness adjusted to 

6 µm using a conventional microtome for sectioning. The tissue sections were placed on glass 

slides and stained with hematoxylin, eosin (H&E) in paper I and II, and additionally with 

BRAF V600E (VE1) mouse primary monoclonal antibody (Clone VE1, Spring-bio, Pleasanton, 

CA, USA) in the BRAF detection study. The monoclonal antibody staining was performed by 

Leica Bond Max (Leica Biosystems, Newcastle upon Tyne, UK). Dewaxing steps included high 

pH 9.0, EDTA based antigen retrievel for 25 min., incubation with the BRAF V600E (VE1) 

antibody (1:100) for 60 min., then the polymer peroxidase or alkaline phosphatase 

immunodetection with either fast red chromogen or specific horseradish peroxidase (HRP) 

based detection with DAB chromogen for 30 min and finally hematoxylin-nuclear 

counterstaining (Figure 7). For negative controls, primary antibody was substituted with the 

antibody diluent buffer containing 1% goat normal serum. Following staining, 

immunoreactions were scanned in an automated Pannoramic slide scanner (3D Histech Ltd., 

Budapest, Hungary) in the BRAF detection, predictive (paper I), and prognostic (paper II) 

biomarker studies.  
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For BRAF detection study, histopathologists, blinded to the PCR results, evaluated the stained 

slides. The immunostained slides were labeled as follows: diffuse positive (Figure 7 D, E), 

diffuse positive with intratumoral heterogeneity (Figure 7, C), focal (> 5%) positive protein 

expression (Figure 7, B), and diffuse negative or very weak staining, when there was no 

mutated protein expression (Figure 7, A).  

 

Figure 7 captures the different BRAF immunohistochemistry staining patterns with different scores using VE1 

antibody clone. The upmost panel shows the mechanisms behind the IHC reaction staining including primary 

antibody-antigen binding (1-2), secondary antibody binding (2-3), the appearance of enzyme-based color reaction 

(4). It represents the four different staining patterns. (Either using alkaline phosphatase detection with Fastred 

(A, B, C, D) or HRP-based DAB (brown)staining (E). (OM 112x, scale bar from 50 μm to 200 μm) 

The immunohistochemistry staining and analysis were conducted in the Department of 

Dermatology and Allergology in the University of Szeged. 

3.5. Digital pathology and laser capture microdissection in paper II 

            For digital pathology and integrative image analysis, we utilized Biological Image 

Analysis software (BIAS, v. 1.1.1, Single-Cell Technologies)70,71 to process a two-dimensional 

image file. The images were segmented using deep learning (DL) models, and a supervised 

machine learning algorithm (multilayer perceptron, MLP) was trained on H&E-stained FFPE 

tissue scans for annotating and differentiating tumor and stromal content in investigated primary 

melanomas (Figure 8, A-C). The steps of the integrative image analysis by BIAS encompassed 
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image pre-processing, deep-learning-based image segmentation, feature extraction, and 

machine-learning approaches for tissue part categorization. For segmentation the superpixels 

method was utilized with SLICO algorithm, and features were extracted from the segmented 

cells with a region size of 40 pixels, ellipse orientation, Haralick texture, and intensity 

adjustment. The multilayer perceptron method (MLP), a supervised learning approach with 

artificial neural network (ANN), was used for ML-based classification, employing 

backpropagation for training and K-fold cross-validation for accuracy assessment70,71. A 

detailed description of all the steps of digital pathology including the annotation method and 

accuracy assessment using deep-learning (DL) and machine learning method (ML) is in the 

publication by Szadai L. et al. 66. 

          The BIAS software interfaces with a laser microdissection microscope, making it a 

valuable tool for automating the isolation and collection of tumor-specific areas. The annotated 

H&E-stained tissue sections from 12 patient samples were prepared for automated laser capture 

microdissection to isolate tumor cells and surrounding stromal regions using a Zeiss PALM 

MicroBeam system with laser catapult (Zeiss, Germany) (Figure 8, D). The system, equipped 

with wide-field optics with a 10x objective lens ensured high cutting precision and control over 

contour collection, allowing for a laser cut energy range of 70- 74 and PALMRobo version 4.6 

software (P.A.L.M. Microlaser Technologies GmbH, Bernried, Germany). Approximately 

10,000 cells per sample (i.e., tumor: 11083 ± 5241 cells, stroma: 10152 ± 5508 cells) were 

collected for subsequent proteome analysis, taking into account the total area collected and the 

slide thickness. 
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Figure 8 shows the steps of digital pathology analysis and laser capture microdissection (LMD). (A-C) Integrative 

image analysis performed by BIAS software using deep learning (DP) and machine learning (ML) approaches to 

automatically identify tumor and stroma areas. (A) Image style transfer learning was applied to FFPE tissue images 

to distinguish tumor and stroma areas. (B) Segmentation of FFPE tissue images based on DP analysis. (C) 

Algorithm training utilizing ML analysis. (D) Laser capture microdissection (LMD) and proteome analysis of 

tumor (T) and stroma (S) regions from primary melanomas with or without recurrence66. 

3.6. Proteomic analysis covering sample preparation, mass-spectrometry-based 

analysis, data analysis in paper I and II 

            In paper I, the sample preparation including deparaffinization, protein extraction, 

protein digestion, LC/MS-MS (liquid chromatography with tandem mass spectrometry) 

analysis and database searching were conducted based on the protocols of Velasquez, E. et al. 

(2021)61 and Kuras, M et al. (2021)72. In the mass spectrometer settings, all the proteomic 

analysis was used in a data-dependent acquisition mode (DDA). The proteomic data was 

searched against the UniProt human database (as of May 26, 2020) and two spectral libraries 

were utilized, including the Proteome tools HCD 28 PD and NIST Human Orbitrap HCD, using 

the Proteome Discoverer 2.4 software from Thermo Scientific. To correct for batch effect, a 

continuous batch correction method implemented in the proBatch R package (v. 1.6.0)73 was 

utilized. Mass spectrometry analysis detected and quantified 7881 protein groups across all 

datasets. In paper II, microdissected tissue samples were processed for proteomic analysis 

based on the protocol of Velasquez, E. et al. (2021) 61 and Pirhonen, J. et al. (2022)65, employing 

a variable window data-independent acquisition (DIA) method for mass spectrometry (MS) 
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data acquisition. The DIA-NN (neural network) software was conducted to perform a protein 

database search on the DIA runs in direct mode, utilizing the human reference database from 

the UniProt repository (2022). Protein identification and quantification were conducted using a 

label-free approach with an FDR (false discovery rate) of 1%, resulting in detection of 7484 

proteins. The data underwent processing using the Perseus platform74 and the abundance values 

were log2 transformed and then subtracted by the median of all identified proteins in the sample 

as well as in paper I. For partial least squares-discriminant analysis (PLS-DA), 5401 proteins, 

corresponding to 70% of valid values in the entire cohort, were utilized, and imputation was 

performed on the remaining missing data in paper II. The detailed description of all steps of 

proteomic analysis of paper I and II can be found in the publication by Szadai L. et al. 64,66. 

3.7. Code availability 

            For paper I, the scripts used for proteomic data normalization, batch effect correction 

and statistics are available at https://github.com/bszeitz/MM_pilot  (accessed on 10 July, 2024). 

The summary of the statistical analyses on proteomic data including Cox regression analysis 

results for immunotherapy subgroup provided in Supplementary Document S1 of paper I.  For 

paper I, proteomic data generated in the study were deposited in PRIDE consortium. Project 

accession is PXD028930, username is reviewer_pxd028930@ebi.ac.uk, and password is 

TaHGkBGm. 

3.8. Statistical analysis 

            In the BRAF detection study, non-parametric statistical analysis (Pearson Chi2 test with 

cross tabulation) was performed using IBM SPSS statistics software version 27 (SPSS Inc., 

Chicago, IL, USA)75 to compare the results of PCR, IHC, and staining markers. P value less 

than 0.05 was considered statistically significant.  

After the database searching, all proteomic data post-processing steps and subsequent statistical 

tests in paper I were performed in R v. 4.0.4 using RStudio v. 1.4.1106 (RStudio, Boston 

Massachusetts, USA)76. Visualizations were made using ggplot2 v.3.3.377, ggbiplot v.0.5578, 

cowplot v.1.1.179, gridExtra v.2.380 and ComplexHeatmap v.2.6.281. Survival analysis 

identified potential predictors of long or short progression-free survival after the patients 

received immunotherapy using Cox regression models (alpha was set to 0.05 and nominal p-

values less than 0.05 were considered as significant), and protein networks were constructed 

using STRING (v.11.5)82. Samples were then stratified based on tumor type (Primary or 

Metastasis). Cytoscape (v.3.8.2)83 was performed for overrepresentation analysis of GO 

https://github.com/bszeitz/MM_pilot
mailto:reviewer_pxd028930@ebi.ac.uk
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biological processes84 and KEGG pathways 85. The processes with FDR values below 0.05 were 

visualized and interpreted for biological significance.  

In paper II, significantly dysregulated proteins were identified if the FDR was 5%, employing 

the Two-stage step-up (Benjamini, Krieger, and Yekutieli) method incorporated in the software. 

Graph Pad Prism 9 (Graph Pad Prism Software Inc. version 9.0.0, San Diego, California, 

USA)86 was also used for determining the dysregulated proteins between the groups. Gene Set 

Enrichment Analysis (GSEA)87 was carried out on the complete dataset after normalization and 

standardization, utilizing HALLMARK88 and REACTOME89 Version 2022 gene set databases 

in the analysis in Figure 12. Throughout the thesis, Figure 1-8 and Figure 10-12 were created 

with Bio Render 2021 software (Bio Render, Toronto, ON, Canada)90. Figure 9 was created 

using Graph Pad Prism 9 (Graph Pad Prism Software Inc. version 9.0.0, San Diego, California, 

USA)86. Table 1-4 were created with Microsoft Excel. (Microsoft 365, Microsoft Corporation, 

Redmond, Washington, USA). 

3.9. Ethical approval 

            The three studies were conducted according to the guidelines and regulations from the 

Swedish biobanking laws and from the Declarations of Helsinki, and approved by the 

Hungarian Ministry of Human Resources, Deputy State Secretary for National Chief Medical 

Officer, Department of Health Administration. The protocol code is MEL-PROTEO-001, the 

approval number is 4463-6/2018/EÜIG and the date of approval is 12 March 2018. The 

approval numbers for the most recent modifications are 2852-5/2023/EÜIG (10th February, 

2023) and 2852-10/2023/EÜIG (12th July, 2023). 

4. Results 

       Based on the BRAF detection study, the predictive biomarker study (paper I) and the 

prognostic biomarker study (paper II), here I summarize the results of these studies. 

4.1. Results of the BRAF detection study  

4.1.1. Comparison of IHC findings with PCR results 

                  In the management of advanced melanomas, it is pivotal to select an eligible therapy 

with high efficiency. Therefore, the initial step should involve recognizing detailed 

characteristics of the melanoma, such as the BRAF mutation status, which forms the basis for 

targeted therapy. In this study, we aimed to compare two diagnostic methodologies, a genome 
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and a protein based approach, to find the most appropriate tool in BRAF mutation detection 

(Figure 9).  

In this cohort, Sanger sequencing was performed on 94 samples to detect BRAF and cKIT 

mutations, revealing BRAFV600 mutations in 43 samples. BRAFV600E mutation was 

observed in 32 cases, while BRAF V600R in 2 cases, V600K in 8 samples, and K601E was 

identified in only one melanoma. BRAFV600E mutation expression was predominantly 

detected in superficial spreading and nodular melanomas, while a single acrolentiginous 

melanoma sample exhibited cKIT mutation. All the 94 immunohistochemistry slides from 

FFPE samples underwent staining using the VE1 antibody. For IHC staining, alkaline-

phosphatase reaction with fast red chromogen in 66 cases, while horseradish peroxidase based 

detection with DAB chromogen (brown) was applied in 28 cases. The VE1 clone, is specific 

for BRAFV600E mutated protein, did not detect other V600 mutations. Therefore, 11 cases 

with BRAFV600K, R and K601 mutations were excluded both from the immunohistochemistry 

results and from the specificity, sensitivity values. Based on the various VE1 antibody staining 

patterns, we classified the samples into four groups: roughly one-third of IHC staining cases 

displayed diffuse negative or very weak staining for the BRAF V600E mutated protein. Thirty-

two cases exhibited diffuse positive staining, 8 showed diffuse positive staining with 

intratumoral heterogeneity, and 11 displayed focal positive staining (Figure 9).  

 

 

Figure 9 represents the comparison of the results of BRAFV600E mutation using PCR and the intensity of 

BRAFV600E VE1 antibody via immunohistochemistry (IHC) staining in a box-plot (above) and summarizes the 
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data in a table (below). Other V600 mutations were disregarded from the comparison. /pos. –positive, neg.-

negative, IT het. – intratumoral heterogeneity, N – number/ 

A comparison between PCR and IHC methods revealed significant discordance (Pearson Chi2 

test, p <0.05). It means that among the PCR-negative cases, IHC revealed five cases with diffuse 

positivity, three samples with diffuse positivity and intratumoral heterogeneity, and 11 samples 

with focal positivity staining patterns (see Figure 9). In terms of IHC sensitivity, all melanoma 

cases diagnosed positive for BRAF V600E via PCR demonstrated varying degrees of positive 

IHC results. Notably, none of the PCR-positive cases exhibited focal positive IHC expression. 

In our comparative analysis, BRAFV600E detection via IHC demonstrated 100% sensitivity 

alongside 63% specificity, with positive and negative predictive values of 63% and 100%, 

respectively. Sensitivity indicated the percentage of cases in which PCR-detected BRAF 

mutations were correctly identified by IHC. Specificity indicated the percentage of cases where 

PCR negative mutation results were accurately not identified by IHC as BRAF-positive 

staining. 

4.1.2. Results of molecular analysis of BRAF positive cases validated by IHC 

               Immunohistochemistry revealed focal expression of the V600E mutated protein in 11 

samples, in which the PCR sequencing did not detect any mutations in these melanoma samples. 

In our validation study, nine cases out of the aforementioned 11 samples underwent next 

generation sequencing (NGS) analysis to explore potential mutations in the BRAF contributing 

to the focal expression pattern. Prior to the analysis, tumor and stroma were distinguished and 

marked, and the entire tumor section was examined, including the focal positive areas. Only 

one sample out of nine revealed the BRAF D594N aberration (rs397516896; c.1780G>A), with 

a variant frequency of 1.90%. In the remaining eight cases, the NGS did not demonstrate any 

BRAF mutations in the region of interest (see Table 4 and Materials and Methods). 
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Table 4 provides a detailed comparison of the results of IHC staining, PCR, NGS, and qPCR. For NGS, one 

mutation was identified, similar to qPCR. In qPCR, three cases were below the threshold range.  / Sanger seq. – 

Sanger sequencing, WT- wild type, IT – intratumoral, pos. – positive, neg. – negative, LOD - limit of detection/ 

In accordance with immunostaining, we observed diffuse positivity in five cases and diffuse 

positivity with intratumoral heterogeinity in three cases, wherein PCR did not detect any 

mutations at DNA level. Therefore, to investigate this discrepancy, we conducted real-time 

polymerase chain reaction (qPCR). Among the eight cases, only one harbored the BRAFV600E 

mutation, while three cases remain within the borderline range (Table 4). These samples were 

confirmed as negative based on the protocol outlined in the Materials and Methods section. 

4.2. Results of the predictive biomarker study (paper I)  

4.2.1. Proteomic analysis unveils proteins and pathways indicating survival 

outcome in the immunotherapy treated patient group 

              In the predictive biomarker study (paper I), we have conducted an extensive 

proteomic analysis on 90 FFPE melanoma samples from 77 mainly advanced melanoma 

patients. This analysis aimed to represent the potential molecular changes between samples, 

and identify proteins predictive of immunotherapy response (Figure 10). 

Our study aimed to answer the following question: Can proteomics unveil new potential 

biomarkers or dysregulated pathways predictive of therapy response? A total of 90 samples 

from 77 patients underwent analysis based on their clinical and global proteomic expression 

data. Mass spectrometry analysis quantified 7881 protein groups across all datasets64. Patients 

were categorized based on their primary treatment, including immunotherapy. The 

immunotherapy patient group comprised 24 samples from 22 patients. These samples were 
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treatment-naive, allowing observation of their protein expression profiles prior to therapy 

initiation. To identify potential predictors, multiple Cox regression models were constructed 

using progression-free survival (PFS), protein expression data, stratified by sample type, i.e., 

primary or metastasis. The analysis revealed 401 proteins significantly correlated with survival 

in the immunotherapy patient group (Multiple Cox regression p-value < 0.05). These 

significant proteins were visualized in heatmap (Figure 10, A). 

 

 

 

Figure 10 displays the heatmap and the network of protein–protein interactions of the up- and downregulated 

proteins in patients received immunotherapy. (A) Heatmap illustrates the expression patterns of pathways and 

proteins in the therapy response subgroups (blue color indicates downregulation in protein expression, red color 

represents upregulation in protein expression). (B) presents the network of protein-protein interactions in patients 

with favorable therapy response (the yellow color represents the extracellular matrix components, while the red 

color signifies the components from the immune system, pink circle shows the highlighted proteins mentioned 

in the text) (C) displays the network of protein-protein interactions in patients with worse immunotherapy 

outcome (proteins involved in RNA processing are highlighted in green, while members of the VEGFA-VEGFR2 

pathway are shown in purple)64. 
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The functional analysis of proteins (Gene Ontology (GO) terms, KEGG pathways, Reactome, 

Wikipathways) revealed distinct activated pathways for patients with different progression-free 

survival (PFS) durations. In the subgroup with shorter PFS after immunotherapy, significantly 

upregulated proteins were associated with cellular and metabolic processes, including the 

VEGFA-VEGFR2 pathway (Figure 10, C) (KEGG pathway database: FDR < 0.05). 

Additionally, in connection with the VEGFA-VEGFR2 pathway, downregulation of the nitric 

oxide synthase 3 (NOS3) expression was observed in patients with longer PFS following 

immunotherapy treatment (Cox regression test p < 0.05) (Figure 10, C). 

Similarly, upregulation of proteins involved in RNA splicing mechanisms was detected in 

patients receiving immunotherapy who exhibited a lack of tumor response (i.e., started to 

progress after a few months). Notably, proteins from the splicing processes such as SNRPB2, 

SNRNP70, and SNRPA1 were significantly upregulated (GO Biological Process, FDR < 0.05) 

(Figure 10, C) in this immunotherapy subgroup. 

We also discovered proteins that are potential predictors of improved response to 

immunotherapy (Figure 10, B). Within this protein subgroup, signatures induced by stroma 

and components of the immune system were notably overrepresented. Among the proteins and 

pathways significantly upregulated (KEGG pathways, GO biological processes, FDR < 0.05) 

in the subgroup with a better response to immunotherapy were those involved in functions such 

as complement cascade, B-cell differentiation, neutrophil degranulation (e.g., PNP (Purine 

nucleoside phosphorylase), Ferritin heavy chain 1 (FTH1)), immunoregulation (e.g., ADAM 

metallopeptidase domain 17 (ADAM17)), ECM-receptor interaction (e.g., AGRN (Agrin) 

protein), integrin cell surface interactions and cell adhesion (e.g., ICAM2 protein, COL4A2 and 

COL6A2 proteins) (KEGG pathways, GO biological processes, FDR < 0.05) (Figure 10, B).  

 

4.3. Results of the prognostic biomarker study (paper II) 

4.3.1. The clinicopathologic features of the utilized melanoma samples  

             In this study, we performed an in-depth analysis of 12 early-stage primary melanoma 

samples (AJCC8 IA-IIA at diagnosis) to investigate molecular and histopathological markers 

associated with disease recurrence within a 5-year period after diagnosis. The samples were 

divided into two groups: those with recurrence (n = 6) and those without recurrence (n = 6). 

Our histopathological assessment revealed a clear correlation between tumor thickness 

(Breslow and Clark levels) and recurrence. Additionally, tumors from both groups represented 

various features characterized by SSM with distinct cellular proliferation, vascular 
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development, and immune cell infiltration. However, these parameters alone were not 

conclusive markers of high recurrence risk. Our analysis of clinical data indicated that Breslow 

level (Mann–Whitney U test: p = 0.0022) and clinical stages (IA–IIA) (Fisher exact test: p = 

0.0606) influenced recurrence.  

4.3.2. From digital pathology to laser capture microdissection 

              Artificial intelligence-based digital pathology (AI-DP) is redefining the idea of general 

clinical pathology by enhancing quantitative accuracy and facilitating data categorization 

through spatial algorithms. In this study, H&E-stained scanning images were employed to train 

AI-based digital pathology (AI-DP) with the BIAS v.1.1.1 (Single-Cell Technologies), 

integrating deep learning and machine learning algorithms, to enhance the accuracy of 

identifying tumor and stroma cells in early-stage primary melanomas from histological images. 

In this study, ten distinct images were utilized for training and optimizing the pipeline. 

Reparameterization was applied during the training process to improve detection accuracy. The 

implemented workflow successfully recognized tumor and stroma regions, along with normal 

epidermis, dermis, glands, and connective tissues (Figure 11). The algorithmic pipeline was 

trained to achieve an overall segmentation accuracy of approximately 80% (Recurrence: 81.7 

± 6.3%, no recurrence 78.0 ± 3.6%), corroborated by certified pathologists. Importantly, this 

AI-driven methodology demonstrated equal effectiveness in distinguishing normal tissue from 

stromal and tumor regions across both recurrent and non-recurrent primary melanomas (Figure 

11). Subsequently, these samples were subjected to laser microdissection for the isolation of 

tumor and stroma components, which were subsequently prepared for quantitative proteomics.  
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Figure 11 displays a representative tumor-stroma prediction using the AI-DP approach for non-recurrent and 

recurrent melanomas. A) AI-prediction of tumor (Dark yellow) and stroma (Light yellow) areas in a non-recurrent 

primary melanoma tissue. B) AI accuracy (%) prediction for non-recurrent melanoma samples. C) AI-prediction 

of tumor (Dark pink) and stroma (Light green) areas in a recurrent primary melanoma tissue. D) AI accuracy (%) 

prediction for recurrent melanoma samples. E) Comparison between manual annotation of normal tissue areas 

and tumor-stroma areas with hematoxylin-eosin staining and AI-prediction in a non-recurrent melanoma. F) 

Comparison between manual annotation of normal tissue area and tumor-stroma area with hematoxylin-eosin 

straining and AI-prediction in a recurrent melanoma. G) General AI accuracy (%) prediction for the entire cohort. 

Error bars represent relative standard deviation (RSD %) among the samples present in the group.66 /Data: OA- 

Overall, T-Tumor, S-Stroma, NT-I Normal tissue I (normal epidermis and glands), NT-II Normal tissue II 

(dermis and connective tissue), BG-Tissue background. / 

4.3.3. Distinct proteomic signatures in tumor and in stroma among different 

recurrence status groups 

             A comprehensive proteome profiling was achieved utilizing HR-DIA-MS (high 

resolution data-independent acquisition mass spectrometry) with identifying over 7000 proteins 

across all samples. Hierarchical clustering and PLS-DA analysis unveiled clear proteomic 

differences between tumor and stromal compartments across different recurrence status groups 

(Figure 12). While there was some overlap in the ellipses representing 95% confidence 

intervals regarding recurrence status, the proteomic analysis of stromal components showed 
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better differentiation between recurrence status groups compared to tumor regions (Figure 12, 

B). 

 

Figure 12 represents proteome profiling of tumor cells and stromal regions from recurrent and non-recurrent 

primary melanomas. A) Samples are hierarchically clustered based on their proteomic abundance profiles. The bar 

chart illustrates the number of proteins identified in each sample. B) PLS-DA utilizes proteomic data from the 

sample cohort. Proteins included had a minimum of 70% valid values across the entire cohort, the remaining 

missing data were imputed. C) Gene Set Enrichment Analysis (GSEA) comparing tumor and stromal regions in 

the recurrent and non-recurrent groups. The bar chart represents the normalized enrichment score for the most 

divergent significantly dysregulated functional annotations between recurrent and non-recurrent groups. Positive 

scores indicate upregulated while negative scores indicate downregulated in tumor cells compared to the 

microenvironment. The analysis on recurrent primary melanomas is represented by red bars while green bars 

correspond to the analysis on non-recurrent melanomas. 66. /F-female, M-male, No. – number, NES – normalized 

enrichment score/  

Building upon the initial unsupervised analysis, we stratified the sample cohort into four 

categories based on sample origin and patient recurrence status: tumor/recurrence, tumor/no 

recurrence, stroma/recurrence, and stroma/no recurrence. As expected, ANOVA revealed that 

the comparisons between tumor and stromal components accounted for the majority of 
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significant differences. Between tumor and stroma samples, 2021 and 1773 proteins were 

significantly dysregulated in the no recurrence and recurrence groups, respectively. Among the 

recurrence status groups, we detected 166 dysregulated proteins in tumor samples and 261 

dysregulated proteins in stromal samples (FDR, q-value < 0.05). To delve into the functional 

molecular signature that could potentially contribute to melanoma recurrence and progression, 

we analyzed both the dysregulated proteins and the entire proteome. Proteomic disparities 

between recurrent and non-recurrent melanoma cells were examined using Gene Set 

Enrichment Analysis (GSEA). Results indicated a strong link between melanoma recurrence 

and mitochondrial activity. Recurrent melanoma tumor cells showed increased expression of 

mitochondrial translation machinery and key metabolic pathways like oxidative 

phosphorylation (OXPHOS) and the TCA cycle, crucial for mitochondrial homeostasis (FDR, 

q-value < 0.05). From these pathways, the level of the mitochondrial ADP (adenosine 

diphosphate)/ATP (adenosine triphosphate) translocases (ANT1, ANT2, ANT3), adhesion 

molecule (MCAM, also known as CD146) and the heterogeneous nuclear ribonucleoprotein A1 

(HNRNPA1) was significantly higher in melanoma cells from the recurrence group (FDR, q-

value < 0.05). These cells also exhibited heightened activity in pathways associated with 

cellular proliferation, protein synthesis, DNA repair, and replication (FDR, q-value < 0.05). 

Additionally, the downregulated proteins in recurrent melanoma cells were primarily involved 

in extracellular matrix organization, collagen formation, and immune responses, including the 

complement and coagulation cascades (FDR, q-value < 0.05). 

In contrast, non-recurrent melanoma tumor cells demonstrated enrichment in pathways linked 

to immune response and extracellular matrix, including extracellular matrix organization, 

collagen formation, coagulation, complement cascade and mitophagy representing initial 

immune system responses (FDR, q-value < 0.05). Additionally, pathways associated with 

adaptive immunity, including cytokine signaling, B and T-cell receptor signaling, and antigen 

presentation, were also upregulated in this group (FDR, q-value < 0.05). Stromal components 

of recurrent primary melanomas exhibited enrichment in pathways like epithelial-mesenchymal 

transition and PD-1 signaling, and showed significant downregulation of immune response 

pathways, including extracellular matrix organization and immune cell receptor signaling 

compared to the stromal component in the non-recurrent group (FDR, q-value < 0.05). 

Conversely, the microenvironment in non-recurrent melanomas displayed more abundant 

features such as interleukin-related signaling pathways, collagen degradation, and complement 

mechanisms, compared to recurrent cases (FDR, q-value < 0.05). Moreover, intriguingly, we 
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found significant enrichment in mitochondrial translational in both tumor cells and stromal cells 

of recurrent melanomas compared to non-recurrent melanomas (FDR, q-value < 0.05). 

 

4.4. Limitations 

            Acknowledging the limitations of our metastatic cohort in the predictive biomarker 

study (paper I), such as sample heterogeneity due to different histology types and clinical 

parameters, we note that tumor content varied from a few percent to 90%, potentially 

impacting therapy response mechanisms related to stromal cells. The upregulation of EC 

components in some samples suggests the influence of tumor content differences on proteomic 

profiles. Regarding the BRAF detection study, in the case of validation of focal positive cases 

via next-generation sequencing, due to technical difficulties, only 9 out of 11 cases were 

analyzed by next-generation sequencing. Concerning the prognostic biomarker study (paper 

II), the restricted sample size of the study emphasizes its limitations. Furthermore, the samples 

used for validation were also employed in training the digital pathology with AI driven 

imaging algorithms. 

5. Discussion  

       In this thesis, three main studies were summarized focusing on identifying biomarkers with 

prognostic and predictive approaches via IHC, quantitative proteomics and digital pathology 

with AI-driven imaging.  

Regarding the predictive targets of melanoma in routine diagnostics, the detection of BRAF 

mutation is a crucial step in selecting appropriate therapies for advanced melanoma patients. 

Therefore, the timing and the adequate method for the BRAF mutation is essential. New 

initiatives are underway for BRAF mutation detection in melanoma care. While DNA-based 

PCR is the gold standard, immunohistochemistry staining is increasingly recognized for its 

practicality and cost-effectiveness28–30.The BRAF detection study presented the comparison of 

DNA-based PCR and the protein-based IHC diagnostic methodologies for detecting BRAF 

mutations in melanoma. The IHC staining of BRAFV600E on FFPE slides provides valuable 

and additional information about the characteristics of the tumor and protein expression 

patterns. For instance, multiple studies have emphasized the importance of strong, diffuse 

staining of the VE1 clone, suggesting its utility as an indicator of BRAF-positive melanomas 

for targeted therapy selection29. In tumor histopathology, it's also vital to recognize intratumoral 

and intertumoral heterogeneity, as evident in our IHC categorization (diffuse negative, diffuse 
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positive, diffuse positive with intratumoral heterogeinity and focal positive cases)91–95. For 

instance, primary and metastatic tumors may exhibit different BRAF mutation patterns due to 

intertumoral heterogeneity91. Therefore, multiple diagnostic methods are needed, as relying on 

a biopsy with a false-negative BRAF status might exclude patients who could have therapy 

response to targeted treatments91. Furthermore, the various staining patterns pointed out the fact 

that in cases of predominantly BRAFV600E melanoma, it's essential to also consider the 

presence of wild-type BRAF minor subclones, as these mutations could contribute to therapy 

resistance96.  

We demonstrated that despite the high sensitivity of IHC in detecting BRAF V600E mutated 

proteins, it showed that even automated immunohistochemistry may suffers limitations in 

specificity, potentially due to false positive results. According to the literature, these results 

could come from different BRAF point mutations or antibody cross-reactions28. Therefore, 

these significant mismatched results (Pearson Chi2 test, p < 0.05) were further validated by 

NGS and qPCR techniques in our study. Further detailed qPCR sequencing revealed one case 

of BRAFV600E positivity initially diagnosed as PCR negative. This case was identified among 

the diffuse positive cases showing varying degrees of intratumoral heterogeneity detected by 

IHC. This result suggests a potential dilution artifact in the mutated DNA, highlighting a 

limitation of the PCR method. Next-generation sequencing analysis was conducted on the focal 

positive cases. Remarkably, the thorough DNA sequencing revealed a genetic-level mutation, 

specifically the BRAF D594N aberration, only in one sample. NGS conducted on FFPE slides 

may lead to DNA degradation due to formalin fixation, potentially causing false NGS results. 

Variant allele frequencies >1.5% in hotspot regions are deemed acceptable if reproducible. A 

minimum of 200 cells is required for NGS analysis to detect 1.5% mutant DNA copies, 

considering possible allele dropout. The detection of BRAF mutation in one case by a precise 

method (NGS)97, highlights the need for detailed DNA-based PCR analysis in equivocal or 

focal BRAF IHC staining cases. The results from both NGS and qPCR emphasize the 

importance of employing diverse methods to detect BRAF mutations. This underscores the idea 

that depending solely on one technique for analyzing a tumor with high mutation rate might not 

be ideal, and promotes the combined usage of the PCR and IHC techniques. 

Moving forward to proteomics, we were able to detect biomarkers with prognostic and 

predictive values from archived formalin-fixed paraffin-embedded melanoma samples. In the 

predictive biomarker study (paper I), through proteomic analysis, distinct molecular signatures 

associated with immunotherapy response were uncovered. Regarding the immunotherapy 



41 

 

 

subgroup with worse response, proteins of the VEGFA-VEGFR2 pathway were upregulated. 

Activation of the VEGFA-VEGFR2 pathway is linked to endothelial cell growth, 

vasculogenesis, and metastatic potential of the tumor, suggesting a prognostic signature for 

locoregional lymphatic metastasis98. In a study that did not explore immunotherapy 

connections, it was demonstrated that while PD-1 expression correlates with higher survival 

rates, VEGFA expression is associated with a worse prognosis in lymph node metastasis99. 

Recently, VEGFA blockers have been utilized in anticancer therapies, such as in the case of 

lung cancer100 treatment, or anti-angiogenic drugs like humanized anti-VEGF monoclonal 

antibody, bevacizumab (Avastin), which is a first-line treatment in metastatic colorectal cancer, 

and has already been approved by the FDA101. These findings support the potential role of 

VEGFA blockers in melanoma treatment. Noteworthy, NOS3, in connection to the VEGFA-

VEGFR2 pathway, showed downregulation in patients with longer progression-free survival in 

the immunotherapy subgroup, and it is known that the production of NOS3 (NO) promotes 

VEGF-induced angiogenesis102, tumor progression, and proliferation103. Furthermore, proteins 

in pathways of RNA splicing also showed an upregulation pattern in the immunotherapy 

subgroup with worse response. It is confirmed that abnormal splicing mechanisms have been 

associated with tumor progression104. These disordered splicing mechanisms could lead to the 

loss of cell surface antigens, which are pivotal in melanoma and immune cell interplay, 

potentially contributing to immunotherapy resistance104. Several studies have explored small 

molecules that hinder splicing mechanisms, yet the efficacy and safety of these methods remain 

under investigation105,106. Nonetheless, the identification of anti-spliceosome drugs may offer 

potential therapeutic strategies to overcome immunotherapy resistance. In the immunotherapy 

subgroup with better response, proteins from the ECM and the immune system were 

significantly upregulated. From the immune system, specifically neutrophil degranulation 

pathways showed an overexpression pattern. This result was consistent with the literature since 

an in-depth plasma proteomics study by Babačić et al. indicated that increased neutrophil 

degranulation with elevated neutrophil-to-lymphocyte ratio, observed during anti-PD-1L 

therapy, was associated with longer overall survival107. Moreover, proteins connected to 

neutrophil degranulation (PNP, FTH1) and immunoregulation (ADAM17) showed 

upregulation in this patient subgroup with potential to treatment targets. For instance, purine 

nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine 

nucleosides108, and however contrary to our findings, but some studies suggest that PNP 

inhibitors as a promising agent could contribute to melanoma treatment109,110. Additionally, 

ferritin heavy chain 1 (FTH1) is a crucial protein for iron homeostasis111. It has been 
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demonstrated that FTH1 levels are significantly associated with the infiltration of tumor-

associated macrophages and play a pivotal role in regulating tumor immunity in solid 

cancers112, potentially affecting immunosuppression in melanoma113. Furthermore, ADAM 

metallopeptidase domain 17 (ADAM17), is involved in shedding certain cell membrane 

proteins and regulating various signaling pathways, particularly in immunoregulation114. For 

instance, it is known that the ADAM-mediated shedding of LAG3 from the cell surface is 

crucial for effective anti-tumor immune mechanisms115. It was also published that there was a 

positive association with tumorigenic CD163 macrophages and expressed ADAM17 level114. 

It was also reported that the ADAM17/EGFR/AKT/GSK3β axis plays an important role in 

regulating melanoma cell migration, proliferation, and sensitivity to chemotherapeutic 

drugs114,116, providing new insights into the role of ADAM17 in melanoma treatment. 

Besides the immune response, the function of extracellular organization in the tumor 

microenvironment is noteworthy. Various studies have underscored the interplay between ECM 

proteins and the immune system in melanoma. For example, Fejza et al. found an association 

between ECM proteins and the efficacy of PD-1 treatments117. Interestingly, in our study, ECM 

proteins, particularly those involved in cell adhesion components (e.g., ICAM2 protein, 

COL4A2, COL6A2), were upregulated and correlated with longer survival rates and better 

responses to immunotherapy. In contrast, the ECM also serves as a foundation for the pre-

metastatic niche, a potential target for anti-cancer therapies. Recent research has outlined 

mechanisms crucial for preventing the development of metastatic environments118, including 

the targeting of EC vesicles such as CXCR2 and CXCR4 inhibitors118. These findings highlight 

proteins and pathways that can be ideal target during immunotherapy in melanoma. 

For the more detailed understanding of the stroma, in the third study (paper II) we identified 

prognostic proteins with novel approaches such as digital pathology with AI-based imaging and 

quantitative proteomics from formalin-fixed paraffin-embedded early-stage melanoma 

samples. This study highlights the critical role of tumor-microenvironment interactions in 

primary melanoma development and recurrence119. Histopathological assessment revealed 

varied characteristics across risk categories. In line with other studies, Breslow and Clark levels 

were indicative for high recurrence risk51. Moreover, our application of AI-based digital 

pathology (AI-DP) utilizing BIAS software and deep learning models to analyze H&E-stained 

scanning images has revolutionized conventional clinical pathology by improving quantitative 

precision70. This method effectively distinguished tumor and stroma regions with an 

approximate accuracy of 80%, showcasing the capability for automated selection and retrieval 
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of tumor-relevant areas. Despite promising results, the small sample size of the study limits 

broader conclusions. Larger cohorts are needed, especially for AI-based digital pathology in 

early-stage melanomas.  

From the comparison of the proteomic results of the isolated tumor and stroma, we have found 

critical mechanisms involved in tumor growth and progression, such as cellular translation 

machinery, DNA repair and replication, which were upregulated in recurrent tumor regions 

compared to their stromal regions. Notably, tumor cells from patients with recurrent melanomas 

showed a more pronounced enrichment in proliferation pathways, particularly mitochondrial 

translation, when contrasted with non-recurrent tumor regions, highlighting the significance of 

mitochondrial function in cancer progression120. Moreover, the overexpression of 

mitochondrial metabolic pathways, including oxidative phosphorylation and the TCA cycle, in 

tumor cells from patients with recurrent melanomas indicates a high demand for energy 

production, crucial for sustaining tumor cell proliferation by maintaining mitochondrial 

dynamics and homeostasis. Concurrently, the upregulation of specific proteins such as the 

mitochondrial ADP (adenosine diphosphate)/ATP (adenosine triphosphate) translocases 

ANT1, ANT2, and ANT3 indicates increased ATP flux to meet cellular energy demands and 

drive disease recurrence121. Additionally, MCAM (as also known as CD146) promotes 

angiogenesis and hematogenous metastatic spreading122, while HNRNPA1 regulates pyruvate 

kinase isoforms, contributing to metabolic reprogramming in melanoma cells123. These proteins 

from the recurrence group signifies a more aggressive phenotype and an increased risk of 

disease recurrence. Consistent with these findings, it was also published that critical 

mitochondrial processes, including oxidative phosphorylation and mitochondrial translation 

machinery, are significantly enriched in BRAF V600E samples, driving melanoma 

progression124. Furthermore, the higher activity of pathways like epithelial-mesenchymal 

transition and PD-1 signaling in the stromal component of recurrent melanomas underscores 

the pivotal role of the tumor microenvironment in modulating the immune response and fueling 

tumor progression and potential recurrence125–127. The overexpression of PD-L1 in stromal 

cells, coupled with its interaction with the PD-1 receptor on adaptive immune cells, can initiate 

a signaling cascade that suppresses immune surveillance. This mechanism has significant 

therapeutic implications, such as the use of PD-L1 and PD-1 inhibitors in these early-stage 

melanomas. Conversely, tumor cells from non-recurrent melanomas show an abundance of 

immune system response-related pathways, suggesting robust immune reactions that could 

potentially prevent disease recurrence. These findings align with previous studies emphasizing 
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the importance of mitochondrial function and immune response-related pathways in melanoma 

progression and recurrence120,125,128,129. Moreover, in respect to therapeutic approaches, Gil et 

al. found that antibiotics, especially Doxycycline, Tigecycline and Azithromycin, reversibly 

targeting the mitochondrial 30S-50S subunits of bacteria, and interestingly they were able to 

show in vitro that these three drugs could inhibit the proliferation of melanoma cell lines in a 

dose-dependent manner130. Interestingly, several publications highlight the role of metformin 

in inhibiting the mitochondrial function131,132. Metformin is one of the most commonly used 

anti-diabetic drug, and it has been shown to reversibly inhibit mitochondrial complex I, 

reducing mitochondrial oxidative phosphorylation and ATP consumption131,133–137. By 

regulating the mammalian target of rapamycin complex 1 (mTORC1), it eventually inhibits the 

proliferation of tumor cells131,133–136,138. Additionally, metformin has been shown to cause the 

phosphorylation of programmed death ligand 1 (PD-L1), leading to its degradation and 

subsequently facilitating the T-lymphocyte-mediated tumor cell death137,139,140. It also reduces 

the activity of immunosuppressive cells (e.g., M2-like tumor-associated macrophages, 

regulatory T cells) in an AMPK-dependent manner132,141. Studies have also demonstrated that 

metformin can inhibit melanoma cell growth142–144. However, ongoing clinical trials continue 

to investigate metformin's anticancer role141. Beside metformin, another biguanide antidiabetic 

agent and mitochondrial complex I inhibitor, phenformin, is currently in clinical trials 

(NCT03026517) in combination with BRAF and MEK inhibitors for treating BRAF mutated 

melanomas124,145,146.  

Regarding the observation of the non-recurrent melanomas, tumor cells exhibit increased 

enrichment in pathways associated with extracellular matrix organization, collagen formation, 

coagulation, complement cascade, and mitophagy suggests a potential protective role against 

tumor recurrence. Particularly, mitophagy serves as a multifaceted defense mechanism in this 

context. During early tumorigenesis, it operates as a tumor suppressor by mitigating damage147. 

Moreover, by shielding against mitochondrial DNA mutations induced by ROS production, 

mitophagy may also diminish the occurrence of mtDNA mutations that contribute to cancer 

progression147. Consequently, the heightened enrichment of mitophagy in non-recurrent 

melanomas may indicate a more robust defense mechanism against tumor development. The 

increased enrichment of interleukin-related signaling pathways, collagen degradation, and the 

complement in the stromal cells of non-recurrent melanomas could potentially confer protection 

against tumor recurrence by enhancing immune responses against the tumor.  



45 

 

 

The relatively reduced abundance of proteins related to extracellular matrix organization, and 

immune response, including the complement and coagulation cascades in the recurrence group 

suggests a potential mechanism by which melanoma cells evade immune surveillance and 

progress. Prior studies have underscored the dysregulation of immune system-related pathways 

and immune cell infiltration in the tumor microenvironment, linking it with cancer progression 

and poor prognosis126,127,148,149. Conversely, the enrichment of mitochondrial translation, 

associated with melanoma development and progression150, within the stromal cells of recurrent 

melanomas is intriguing, suggesting a potential transfer of the cancer cell phenotype to the 

microenvironment. In summary, our research reveals a unique molecular signature originating 

from both tumor and stromal cells of early-stage primary melanomas. These signatures could 

potentially predict the high risk of melanoma recurrence within a five-year timeframe.  

To conclude our studies, these findings underscore the significance of proteins as predictive 

and prognostic targets identified from archived FFPE samples through IHC, quantitative 

proteomics and digital pathology with AI-driven imaging. These biomarkers offer insights into 

the molecular mechanisms underlying tumor cell-microenvironment interplay, therapy 

response variability in melanoma patients, and providing avenues for groundbreaking insights 

that could transform our understanding of melanoma's progression paving the way for 

personalized treatment strategies. 
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6. Summary, novel findings of the experimental work 

            In our discovery studies, we compared DNA-based PCR and protein-based IHC 

techniques to assess BRAF expression. Additionally, we applied new methodologies, including 

quantitative proteomics and AI-powered digital pathology, to identify predictive and prognostic 

proteins from formalin-fixed paraffin-embedded melanoma samples. 

 Despite the rapid and cost-effective nature of IHC, significant discrepancies between 

BRAFV600E mutation detection by PCR and via IHC techniques highlighted the 

importance of the combined use of PCR and IHC, especially in cases of inhomogeneous 

and focal positive BRAF cases. 

 At the first time, we were able to identify predictive proteins with deep proteomic 

sequencing from formalin-fixed paraffin-archived melanoma samples. The VEGFA-

VEGFR2 pathway and RNA splicing pathways were connected to short progression-

free survival, while increased activity of proteins and pathways from immune cells and 

extracellular matrix were associated with long progression-free survival in melanoma 

patients after the application of immunotherapy. 

 For the first time, our findings revealed prognostic mechanisms from laser capture 

microdissected, formalin-fixed paraffin-embedded early-stage melanoma samples using 

quantitative proteomics and digital pathology with AI-driven imaging. 

 We observed that upregulation of mitochondrial translation and cellular proliferation 

pathways, coupled with downregulation of immune response pathways, play pivotal 

roles in early-stage melanoma progression both in tumor and stromal cells. 

In conclusion, diverse protein expression patterns observed across patient subgroups in our 

results suggest that immunohistochemistry, quantitative proteomics and digital pathology with 

AI-powered imaging, as aspects of spatial proteomics, are emerging, crucial technical 

components supporting therapy selection and precision medicine.  
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