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1. Problem Statement  

In the agricultural landscape of Mezőhegyes, Hungary, 

accurately detecting different crop types which has almost 

similar spectral signatures and predicting crop yield at the field 

scale (e.g., wheat) is a significant challenge. As the world's 

leading producer and exporter of soybeans, the United States 

produces 115 million tons of soybeans in 2020, representing 

39.9% of the world's soybean exports (USDA/NASS, 2021). 

Even minor shifts in the production of soybeans in the United 

States can result in significant volatility in the international 

soybean market. As a result, accurate and timely forecasts to 

produce soybeans in the United States are essential to global 

food trade and security (Fritz et al., 2019). However, due to 

complex processes that influence yield formation and the 

complex effects of weather, soil conditions, vegetation and 

management practices, it is difficult to predict the soybean 

yield quickly at the county level. Traditional crop mapping and 

yield estimation methods are often lacking the precision 

needed for effective decision-making by farmers and 

agricultural stakeholders. The integration of ML techniques 

with remote sensing data, including multispectral and 

hyperspectral imaging, presents a promising approach to 

enhance the precision of crop yield predictions. Hyperspectral 

data, with its rich spectral information, can provide detailed 

insights into crop health and environmental conditions, which 

are crucial for fine-tuning ML models. The complex 

relationships between environmental factors, crop health 

indicators, and historical performance demand advanced ML 

models capable of leveraging hyperspectral data to its fullest 

potential. The Mezőhegyes study area presents unique 
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challenges, such as variable weather patterns, soil properties, 

and pesticide use, which complicate yield predictions. Thus, a 

robust ML-driven approach that effectively utilizes 

hyperspectral data is essential for improving agricultural 

productivity and supporting informed decision-making. 

Accurate yield forecasts can enhance agricultural risk 

management and assist farmers in planning optimal planting 

strategies. 

2. Research objectives and questions. 

The aim of this dissertation is to advance crop 

classification and yield prediction at the field and county level, 

methodologies through the integration of hyperspectral 

imaging data and ML techniques. Specifically, the study seeks 

to develop and evaluate sophisticated ML and DL models that 

utilize hyperspectral data to extract detailed spectral and 

spatial information about crops and their characteristics. By 

incorporating wavelet transforms, spectral and spatial attention 

mechanisms, and morphological operations and integration of 

multi-source satellite images with environmental data, the 

research aims to enhance the precision and robustness of crop 

type mapping and yield prediction models. 

The research focuses on leveraging spaceborne hyperspectral 

imaging, which provides rich spectral information, in 

conjunction with Multispectral images and environmental 

variables to improve the accuracy of crop classification and 

yield forecasts. This approach aims to address the limitations 

of traditional methods by incorporating advanced feature 

extraction techniques and integrating diverse data sources. The 

goal is to offer a more comprehensive understanding of crop 

health and environmental influences, ultimately supporting 
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better decision-making for farmers and agricultural 

stakeholders. 

The study explores how combining these advanced 

methodologies can lead to improved predictions and insights 

into crop yield dynamics, thereby contributing to more 

effective agricultural management and risk mitigation 

strategies. Considering the theoretical framework and 

objectives, following scientific questions were developed: 

1. How do the integration of wavelet transform and spectral 

attention mechanisms in a 2-D CNN framework and variations 

in spatial patch sizes and factor analysis dimensions affect the 

accuracy and efficiency of HSI classification for crop-type 

mapping compared to traditional ML and 3-D CNN 

approaches? 

 

2. How do the spatial and temporal resolutions of PlanetScope 

and Sentinel-2 imagery, along with the introduction of 

vegetation indices and environmental data, influence the 

accuracy of wheat yield estimation and prediction, and which 

vegetation indices and phenological stages are most effective 

in enhancing this accuracy? 

 

3. How effective are ML and DL models in forecasting soybean 

yields in the U.S. Corn Belt, considering geospatial and 

climatic data? 

 

4. How does the integration of 3-D–2-D CNNs with 

morphological operators and attention mechanisms improve 

the accuracy and robustness of HSI classification compared to 

traditional deep learning methods? 
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5. What impact does the fusion of hyperspectral and LiDAR data, 

incorporating environmental and morphological features, have 

on the precision of crop classification and yield prediction in 

the Mezőhegyes agricultural landscape? 

3. Data and methods 

The Materials and Methods sections of Chapters 2, 3, 

4, 5 and 6 contain specific details about the data and 

methodologies employed. The following summaries provide a 

concise overview.  

a) Hyperspectral Data: Hyperspectral data were acquired from 

the DESIS (DLR Earth Sensing Imaging Spectrometer) aboard 

the International Space Station (ISS). Two Level-2A bottom-

of-atmosphere (BOA) reflectance DESIS images from June 

were downloaded via the EOWEB Geoportal. DESIS images 

were not available publicly to the users. Therefore, scientific 

proposal was presented to the DLR by Dr. Mucsi László and 

limited amount of quota were granted. The dataset spans a 30 

km x 30 km area and offers detailed spectral data across 235 

bands. 

b) PlanetScope Data: Next generation of commercial 

PlanetScope (PS) data were collected between November 2020 

and July 2021. A total of 72 cloud-free images were ordered 

and downloaded, providing surface reflectance products across 

eight spectral bands at a spatial resolution of 3 meters. These 

images were harmonized with Sentinel-2 imagery to ensure 

radiometric consistency. It worth to be mentioned that PS 

imagery is not also free and open access as well. However, as 

result of research proposal leveraging “Education and 
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Research Program” of Planet Labs submitted by Mr. Nizom 

Farmonov, access was obtained.    

c) Sentinel-2 Data: Twenty-five Sentinel-2 (S2) Level-2A 

images, covering the same period, were obtained. These 

images offer spectral information across 13 bands with spatial 

resolutions of 10, 20, and 60 meters. 

d) MODIS Data: The Moderate Resolution Imaging 

Spectroradiometer (MODIS) provided key vegetation indices 

such as the Normalized Difference Vegetation Index (NDVI) 

and Enhanced Vegetation Index (EVI), which were critical to 

capturing crop growth dynamics. These indices were derived 

from the MOD13Q1 dataset, available at a 250 m resolution 

and a 16-day interval, complementing the higher-resolution 

data. 

In addition, high-resolution LiDAR digital terrain model 

(DTM) data were integrated into our analysis to provide 

detailed elevation and morphology information. Acquired via 

airborne radar on April 19, 2019, with a spatial resolution of 5 

cm, this data helped assess terrain influences on crop fields. 

The LiDAR data resampled using the cubic curve method in 

ERDAS IMAGINE 2020 to align with the 30 m resolution of 

DESIS imagery, enhanced the accuracy of the study. Also, to 

validate our method, we tested it on the public Houston 2013 

dataset, which includes hyperspectral and LiDAR data. This 

dataset, with 144 sub bands and 15 classification classes, 

ensured the generalizability of our approach across different 

data sources. 

Crop yield data were collected from Mezőhegyes farm during 

the growing season using a John Deere W650i combine 

harvester with a yield-mapping system. Ground truth data was 
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obtained from Mezőhegyes company. The data, recorded every 

2 seconds, were filtered to remove outliers and inaccuracies, 

such as near-zero yields from overlapping rows. The cleaned 

data, corresponding to the harvester's header size (2 m × 6 m), 

were provided by the farming company. Using QGIS v.3.16, 

the data were interpolated into raster format via inverse 

distance weighting (IDW) to match satellite image resolution. 

Data pre-processing and analysis were carried out using 

specialized software tools such as ESA SNAP 8.0 for Sentinel 

data, Python 3.9 and R program for ML model development, 

and QGIS 3.16 and ERDAS IMAGINE 2020 for geospatial 

data manipulation and visualization. 

4. Dissertation outline 

The chapters draw upon scientific articles published in 

peer-reviewed journals. Each chapter outlined below 

articulates its research objectives, with the overall conclusions 

and future outlook provided in the comprehensive conclusion 

and perspectives section. Furthermore, each individual chapter 

can be regarded as an exploration of an independent research 

query. 

Chapter 1 presents a summary of the dissertation, featuring a 

concise literature review that addresses the primary topics of 

the study. It also includes a description of the research area, 

defines the problem statement, explains the research objective, 

formulates the hypotheses, and outlines the overall structure of 

the dissertation. 

Chapter 2 outlines the methodology employed in the study 

conducted on wheat fields in Mezőhegyes, Hungary, utilizing 

remote sensing data from PS and S2 satellites alongside 
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environmental data. The study involved advanced agricultural 

practices, including seeding, weed control, and harvesting, 

with data collected using yield-mapping systems. The RFRVI 

model was used to estimate wheat yield by integrating spectral 

bands, VIs, and environmental variables such as climate and 

topography. The model demonstrated high accuracy, achieving 

R² values up to 0.81 and root mean square errors (RMSE) as 

low as 0.287 t/ha. Notably, combining PS and S2 data with 

environmental inputs enhanced yield prediction accuracy, 

especially during critical phenological stages. 

Chapter 3 details the study area, data sources, and 

methodology for crop classification in Mezőhegyes, Hungary. 

The region, characterized by fertile chernozem soil, hosts 

various crops and non-crop classes. Data were collected from 

DESIS and Sentinel-2 satellites, and field samples from 5080 

pixels were used for model training and validation. The 

methodology involved RFR and SVM algorithms, with 

comparisons to advanced deep learning models like MSRN 

and MDBRSSN. While RFR and SVM were effective, the 

wavelet attention CNN model achieved the highest accuracy, 

with an overall accuracy of 97.89% and a kappa coefficient of 

0.97, showcasing significant improvements in classification 

precision and efficiency. 

Chapter 4 represented applied machine learning models to 

forecast soybean yields across major U.S. states using satellite-

derived data. MODIS provided indices such as NDVI, EVI, 

surface reflectance, and temperature data, while yield records 

from USDA (2012-2021) were used as ground truth. Among 

the five machine learning models tested, Random Forest 

outperformed others, achieving an R² of 0.75 and RMSE of 
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0.342 t/ha. NDVI, EVI, and surface reflectance were identified 

as the most influential features for accurate yield predictions. 

Chapter 5 outlines the study area and data for the proposed 

method. Data sources include DESIS hyperspectral imagery 

and high-resolution LiDAR data. The DESIS data provides 

detailed spectral information, while LiDAR offers topographic 

precision. The proposed method integrates these data sources 

using a deep learning model with 2-D and 3-D convolutional 

layers and spatial-spectral morphological attention. Key 

techniques include PCA for dimensionality reduction, 3-D 

CNNs for spatial-spectral analysis, and dropout for 

generalization. The Adam optimizer with a learning rate of 

0.001 and a decay function of 1e-06 is used for training, 

involving 50 epochs and a batch size of 256. The model 

features ReLU activation for all layers except the output, 

which uses SoftMax. Convolutional windows of various sizes 

are tested, and PCA components range from one to ten. The 

model demonstrates superior classification performance, with 

PCA=3 and a 11×11 window size offering the best results. 

Morphological operators enhance LiDAR data, and increasing 

the structuring element size generally decreases accuracy. 

Evaluation shows the proposed method outperforms other 

techniques in Overall Accuracy (OA), Kappa, and F1-Score, 

and is robust against noise. Ablation tests reveal the impact of 

different model components on performance, highlighting 

their significance in achieving high accuracy. 

Chapter 6 describes the dissertation's main conclusions, 

implications, limitations, and suggestions. 
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5. Key findings 

By addressing the research hypotheses to achieve the 

research objective, my study has 

achieved the following key findings: 

Thesis 1. My results show that integrating wavelet transforms 

and spectral attention mechanisms into a 2-D CNN framework 

enhances hyperspectral image classification accuracy for crop 

mapping by efficiently focusing on both spatial and spectral 

features. This method achieves a high accuracy of 97.89% OA 

and κ = 0.97, while reducing noise, computational costs, and 

overfitting compared to classical ML and 3-D CNNs. 

Additionally, using medium-sized spatial patches optimizes 

classification accuracy by balancing detail and computational 

efficiency, and factor analysis further improves model 

performance by reducing spectral dimensions and minimizing 

data redundancy. These results in this thesis corresponds to the 

first publication.   

Thesis 2. Based on my investigation, combining PS imagery 

with 3-meter resolution and S2 imagery with 10-meter 

resolution both deliver accurate wheat yield estimations, with 

PS showing slightly lower RMSE (0.336 t/ha) compared to S2 

(0.325 t/ha) due to its finer spatial detail. Integrating 

Vegetation Indices (VIs) further enhances prediction accuracy, 

with MTCI being the most effective for PS and MSAVI2 for 

S2. The milk and dough stages (210–225 days) are most 

critical for accurate predictions, and including environmental 

data further improves the model's accuracy. These findings 

were reported from the second publication. 
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Thesis 3. My study found that both ML and DL models 

effectively forecast soybean yields, with the RF model 

outperforming classical ML models such as LASSO, 

XGBoost, and decision tree regression, achieving an R² of 0.77 

and an RMSE of 0.334 t/ha. The 1D-CNN deep learning model 

surpassed all, with an R² of 0.86 and an RMSE of 0.276 t/ha in 

2021. These findings highlight the value of integrating 

geospatial and climatic data for improving yield forecasts, 

especially in the U.S. Corn Belt. These thesis findings 

correspond to the third publication. 

Thesis 4. According to my research, Integration of 3D–2D 

CNNs with morphological operators and attention mechanisms 

enhances HSI classification by outperforming current DL (e.g., 

HLDC or DECL) models with 1%–3%. The 3D CNN captures 

spatial context, the 2D CNN refines spectral details, 

morphological operators highlight geometric features, and 

attention mechanisms focus on critical areas, leading to 

improved accuracy and robustness. These results were detailed 

in the fourth publication.  

Thesis 5. Following my findings, HypsLiDNet model 

demonstrated significant improvement in crop type detection 

by integrating HSI and LiDAR data with OA of 0.98% 

compared to all other competing methods. This comprehensive 

approach allows for a more precise analysis of crop 

characteristics and conditions, leading to better prediction 

accuracy in the Mezőhegyes agricultural landscape. These 

thesis outcomes were found in the fourth publication.    
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6. Implications 

The research presented in this dissertation offers 

significant implications for both the scientific community and 

practical applications in agriculture. First, by combining 

hyperspectral imaging (HSI) with LiDAR data and advanced 

deep learning techniques, the study demonstrates the potential 

for improving crop classification accuracy and yield 

prediction. This has direct implications for precision 

agriculture, offering farmers and agricultural stakeholders 

more reliable tools for monitoring crop health, optimizing 

resource use, and predicting yields. The findings also highlight 

the importance of spectral-spatial attention mechanisms and 

wavelet transforms, which could be applied to other areas of 

remote sensing, such as environmental monitoring and land-

use mapping. 

Moreover, the integration of 2D and 3D CNNs in analyzing 

hyperspectral and LiDAR data opens up new possibilities for 

handling complex datasets. The method's ability to achieve 

high accuracy with limited training data reduces the 

dependency on large, labeled datasets, which is a significant 

hurdle in machine learning. This could lead to more accessible 

and scalable applications of remote sensing technology in 

agriculture, especially in regions with limited resources for 

data collection. Furthermore, the successful fusion of multiple 

data sources (HSI, LiDAR, and environmental data) 

showcases the potential of multimodal approaches for 

enhancing decision-making in agriculture and beyond. 
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6.  Limitations, Recommendations and Future 

Research 

While this study presents an innovative approach to 

crop classification and yield prediction, several limitations 

need to be addressed. First, the generalizability of the 

HypsLiDNet model is somewhat constrained by the datasets 

used. The study focuses on specific crops in a particular 

geographic region (Mezőhegyes, Hungary), and while the 

model performed well in this context, its performance across 

different agricultural landscapes and diverse crop types 

remains uncertain. Testing on more varied datasets, especially 

in regions with different environmental conditions, is 

necessary to confirm the model's robustness. 

Another limitation lies in the computational 

requirements of the proposed method. Although the model is 

effective in terms of accuracy, it involves complex 

architectures that demand substantial computational resources, 

which may limit its practical application for users with limited 

access to high-performance computing facilities. Additionally, 

the study’s reliance on hyperspectral and LiDAR data, which 

can be costly and difficult to acquire in some regions, may 

reduce the scalability of the method, particularly in developing 

countries. 

Lastly, the model's effectiveness was tested on 

relatively small datasets. While the use of dimensionality 

reduction techniques like PCA helped improve performance, 

larger-scale datasets may present new challenges related to 

computational efficiency and model optimization. 
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For future research, several areas should be explored 

to enhance the applicability and effectiveness of the proposed 

method. First, expanding the model’s testing to include various 

crop types and agricultural regions globally would help assess 

its robustness and adaptability. This would involve acquiring 

additional datasets from different environments, possibly 

leveraging other available hyperspectral and LiDAR sources, 

to validate the model’s generalizability. 

Additionally, addressing the computational demands 

of the HypsLiDNet model is crucial for wider adoption. Future 

work could focus on optimizing the model’s architecture to 

reduce computational complexity without sacrificing accuracy. 

Exploring more efficient training techniques, such as transfer 

learning, could help make the model accessible to users with 

limited computing resources. 

Another important area for future research involves 

refining the fusion of hyperspectral and LiDAR data with other 

environmental variables. Incorporating real-time climate data 

or integrating additional sensor modalities could further 

enhance the predictive accuracy of crop yields. Moreover, 

testing the model on temporal datasets to track changes in crop 

growth over time could provide more dynamic predictions, 

helping farmers make more informed decisions throughout the 

growing season. 

Finally, future research should investigate the model’s 

application beyond agriculture. Given its ability to classify 

complex spatial-spectral data, HypsLiDNet could be applied to 

other domains, such as forestry, environmental monitoring, 

and urban planning. 
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