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Chapter 1

Introduction

We study solution sets of systems of equations over finite algebras. The study
of (systems of) equations dates back as far as 1800 BC; two archaeological finds
that hint at this are the Berlin Papyrus 6619, made by Egyptian mathematicians,
and the Plimpton 322 clay tablet, created by Babylonians. Since then systems of
equations became essential and really basic in several branches of mathematics. Some
important examples could be systems of linear equations, polynomial equations,
differential equations or in general nonlinear equations. Finding a solution to
systems of equations is usually the main goal of investigating them, however, in this
thesis we take a different approach; we investigate them from a universal algebraic
perspective.

In classical algebraic geometry, one investigates solution sets of systems of
equations over a field. These sets are called algebraic sets, as they are analogues
of algebraic varietiesﬂ. In the late 90s, several mathematicians, for example B.
Plotkin |[Plo96], O., Kharlampovich and A. Myasnikov [KM98a; KM98b| begun
studying algebraic sets over other, different algebraic structures. Thus, the field
universal algebraic geometry was born. Kharlampovich and Myasnikov for example
investigated the algebraic geometry of groups, and found a proof for Tarski’s two
conjectures from 1945 about the elementary theory of non-Abelian free groups. In
their results they proved that two non-Abelian free groups with different ranks
have the same elementary theory, and that the elementary theory of a free group is
decidable. Universal algebraic geometry has been an active area of research ever
since. Let us mention just one recent result: in 2023 E. Aichinger and B. Rossi
[AR23| proved that there are continuum many algebraic geometries over finite sets
with at least three elements. (On the two-element set there are only 25 algebraic
geometries, see Remark . In this thesis we aim to contribute to the field of
universal algebraic geometry; we investigate the solution sets (i.e., algebraic sets)
in terms of closure conditions.

Let A be a finite nonempty set and F' a set of operations on A. We allow

Note that the word wariety has a different meaning in universal algebra: a variety is an
equationally definable class of algebras, or, equivalently, a class of algebras that is closed under
homomorphic images, subalgebras and direct products.
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operations from F' in our equations, and since we can use these operations several
times, we can build composite operations. This means that every equation in
n variables can be written as f(xy,...,2,) = g(x1,...,x,), where f and g are
obtained as compositions of operations from F'. The set of all such operations is
denoted by [F], and it is called the clone generated by F' (see sections and
for the precise definitions). Elements of the clone [F] are also called term functions
of the algebraic structure A = (A; F'), and our equations are the same as equations
over A in the sense of universal algebra.

If two sets of operations generate the same clone, then they produce the same
equations, thus it is natural to investigate equations over a clone C'. For every clone
C', one can assign a clone C* (called the centralizer of C) such that if 7' C A" is
the set of all solutions of a system of equations over C', then T is closed under C*
(see Theorem . In certain special cases, such as in the case of (homogeneous)
linear equations (see Example , being closed under C* is sufficient for being
the solution set of a system of C-equations. Unfortunately, this does not hold in
general (see Example 2.1.3)). If for a given algebra A = (A; F) (or the clone C' = [F])
solution sets are characterized by being closed under the centralizer, then we will
say that A (or C) has property (See Definition [2.1.4])

In Chapter 2| we show the connection between solution sets and centralizer
clones. We also prove that an algebra (or the associated clone) has property
if and only if there is quantifier elimination for certain primitive positive formulas.
In Chapter 3| we prove that every clone of Boolean functions (thus, every two-
element algebra) has property . In Chapter [4| we investigate centralizers of
(the clone generated by the basic operations of) semilattices, distributive lattices
and arbitrary lattices, and also give an insight on the number of (essentially) n-ary
operations in these centralizer clones. We also obtain a simple proof for Kuznetsov’s
description [Kuz79| of primitive positive clones on the two-element set. In Chap-
ter [5| we describe semilattices and lattices having property In Chapter |§|
we prove that for algebras property is equivalent to the property called
polymorphism-homogeneity (or polyhomogeneity). We also investigate connections
between polymorphism-homogeneity of certain relational structures assigned to an
algebra, injectivity of the algebra in certain classes and property

1.1 Operations

Let A be an arbitrary finite set with at least two elements. By an operation on
A we mean a map f: A" — A; the positive integer n € N is called the arity of
the operation f. (We also allow nullary operations, but by definition we consider
them as n-ary operations with n > 1 that do not depend on their variables. This
is the case throughout the whole thesis, with the exception of Chapter ) The
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set of all operations on A is denoted by O4. Operations on A = {0, 1} are called
Boolean functions, and we will also use the notation 2 = Oy 1y for the set of all
Boolean functions (see Appendix for some background on Boolean functions).
For a set F C Oy4 of operations, by F™ we mean the set of n-ary members of F.
In particular, (’)XL) stands for the set of all n-ary operations on A.

We will denote tuples by boldface letters, and we will use the corresponding plain
letters with subscripts for the components of the tuples. For example, if a € A",
then a; denotes the i-th component of a, i.e., a = (aq,...,a,). In particular, if
f e (’)1(4”), then f(a) is a short form for f(ay,...,a,). If tM, ... t0™ € A" and
fe Ogm), then f(t™, ... t(™) denotes the n-tuple obtained by applying f to the
tuples t™), ..., (™ componentwise:

FOO, ) = (FEY, ), FED, ).

We say that T C A" is closed under C C Oy, if for all m € N, t_ ... t™ e T
and for all f € C™ we have f(t,... t™) e T.

1.2 Clones and relational clones

Let f € Off) and g1,...,0, € C’)XC). By the composition of f by g1, ..., 9, we mean
the operation h € (’)I(f) defined by

h(x) = f(g1, -, 90) (%) = F(91(%), .., ga(x)) for all x € A,

If a class C C O4 of operations is closed under composition and contains the
projections m; : (x1,...,x,) — z; for all 1 < i < n € N, then C is said to be a
clone (notation: C' < O,4). Notable examples include all continuous operations on
a topological space, all monotone operations on an ordered set, all polynomial
operations of a ring (or any algebraic structure), etc. (see also Example .
For an arbitrary set F' of operations on A, there is a least clone [F] containing F,
called the clone generated by F'. The elements of this clone are those operations
that can be obtained from members of F' and from projections by finitely many
compositions. For example, for any algebra A = (A; F'), the term operations of A
form a clone, which is exactly [F]. Moreover, we can obtain any clone C' in such a
way, by setting any generating set of C' to be F' (obviously C' = F also suffices).
The set of all clones on A is a lattice under inclusion; the greatest element of
this lattice is O4, and the least element is the trivial clone consisting of projections
only. There are countably infinitely many clones on the two-element set; these have
been described by Post [Pos41], hence the lattice of clones on {0,1} is called the
Post lattice. In Appendix we present the Post lattice and we define Boolean
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clones that we need in the proof of some of our results. If A is a finite set with at
least three elements, then there is a continuum of clones on A [JM59], and it is a
very difficult open problem to describe all clones on A even for |A| = 3.

A k-ary partial operation on A is a map h: dom h — A, where the domain of h
can be any set dom h C A¥. The set of all partial operations on A is denoted by Py,
and the set of all k-ary partial operations on A is denoted by 73,(4'“). A strong partial
clone is a set of partial operations that is closed under composition, contains the
projections, and contains all restrictions of its members to arbitrary subsets of their
domains. Note that if C' C O4 is a clone, then the least strong partial clone Str(C)
containing C' consists of all restrictions of elements of C', i.e., h € P4 belongs to
Str(C) if and only if h can be extended to a total operation h € C.

The set of all strong partial clones on A is also a lattice under inclusion; the
greatest element of this lattice is P4, and the least element is the trivial strong
partial clone consisting of projections and their restrictions only. However, even on
the two-element set there are continuum many strong partial clones [Fre66|, and
we can not say much more of this lattice.

An n-ary relation on A is a subset of A"; the set of all relations (of arbitrary
arities) on A is denoted by R 4. Given a set of relations R C R4, a primitive

positive formula ®(xy, ..., z,) over R is an existentially quantified conjunction:
t 4 '
=1

where p;, € RU{=} is a relation of arity r;, and each z]@ is a variable from the
set {x1,...,Tn, Y1, ., Ym} fori=1,... ¢, j=1,... 7. (Since the equality sign
can appear in the formula, we use the symbol = to denote equality of formulas,
to avoid confusion.) The relation p = {(ay,...,a,) : ®(a1,...,a,) is true} C A" is
then said to be defined by the primitive positive formula ®. The set of all primitive
positive definable relations over R is denoted by (R)3, and such sets of relations are
called relational clones. If we allow only quantifier-free primitive positive formulas,
then we obtain the weak relational clone (R)3.

1.3 Centralizer clones

We say that the operations f € (’)Xl) and g € (’)(Am) commute (notation: f L g) if

f(g(au, 12,5 Q1im)s -5 G(An1, Qo - - ,anm))

= g(f(allchQla ... 7an1)a o 7f(a1ma Aomys - - - 7anm)>
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holds for all a;; € A (1 <i <mn,1 < j <m). This can be visualized as follows: for
every n X m matrix @ = (a;;), first applying ¢ to the rows of ) and then applying
f to the resulting column vector yields the same result as first applying f to the
columns of @) and then applying g to the resulting row vector:

ayr ... Qi
AN
Apl -+ Gpm
| |
AN

Denoting by ¢) € A" (j =1,...,m) the j-th column vector of ), we can express
the commutation property more compactly:

Fae®, . e™)) = g(f(eM), ..., f(c™)). (1.3.1)

It is easy to verify that if f, g1, ..., g, all commute with an operation A, then the
composition f(g1,...,gs) also commutes with h. This implies that for any £ C Oy,
the set F*:={g€ O4| f L gforall f € F}isa clone, called the centralizer of F
(we will also say that F™* is the centralizer of the algebra (A; F')). Although there are
countably infinitely many clones on the two-element set [Pos41] and uncountably
many clones on sets with at least three elements |[JM59|, only finitely many clones
are of the form F* on a finite set [BW87|. These are the so-called primitive positive
clones; the complete list of primitive positive clones is known only for |A] < 3
[Kuz79; Dan7§].

It is useful to note that if C' = [F], then C* = F™*. This implies that in order to
compute the centralizer of a clone C| it is sufficient to determine the operations
commuting with a (preferably small) generating set of C.

Ezxample 1.3.1. Let K be a field, and let L be the clone of all operations over K
that are represented by a linear polynomial:

L:={axi+ - +arp+c| k>0,a1,...,a5,c€ K}

Since L is generated by the operations z + ¥y, ax (a € K) and the constants ¢ € K,
the centralizer L* consists of those operations f over K that commute with  + y
and azx (i.e., f is additive and homogeneous), and also commute with the constants

(i.e., f(c,...,c)=cforall c € K):

L ={ayz1+ - +axy | k>1,a1,...,a, € Kand a; + -+ + ax = 1}.
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Similarly, one can verify that Lj = L, for the clone

Lo:={ayz1+ -+ apxp | k>0,a1,...,a; € K}.

1.4 Equations and solution sets

Let us fix a clone C' < O4 and a positive integer n. By an n-ary equation over C' (C'-
equation for short) we mean an equation of the form f(z1,...,x,) = g(x1,...,2,),
where f,g € C™. We will often simply write this equation as a pair (f, g). By an
n-ary equation over an algebra A = (A; F') we mean an n-ary C-equation, where
[F] = C. A system of C-equations is a finite set of C-equations of the same arity:

g = {(f17gl>7 ey (ft7gt)}a where fzagl S C(n) (Z = ]-7 s 7t)
We define the solution set of £ as the set
Sol(€) :={a € A" fi(a) = gi(a) fori =1,... t}.

For a € A" we denote by Eq.(a) the set of C-equations satisfied by a:

Eqc(a) = {(f,9) | f.9 € C™ and f(a) = g(a)}.

Let T C A" be an arbitrary set of tuples. We denote by Eq.(7T") the set of C-
equations satisfied by T

Eqe(T) = ﬂ Eqc(a).

acT

FExample 1.4.1. Considering the “linear” clones of Example [1.3.1] L-equations are
linear equations and Lg-equations are homogeneous linear equations.

Remark 1.4.2. For any given n € N and C' < 0,4, the operators Sol and Eq. give
rise to a Galois connection between sets of n-tuples and systems of n-ary equations.
In particular, if 7" is the solution set of a system of equations (i.e., T is Galois
closed), then T' = Sol(Eq.(T")); moreover, £ = Eq(T) is the largest system of
equations with 7" = Sol(&).

1.5 The (p)Pol-Inv Galois connection

If M = (my;) € A% is an n x k matrix over the set A, then we denote the i-th
row and the j-th column of M by M;, and M,;, respectively:
Mi :(mil,...,mik) (izl,...,n),
M*j:(mlj,...,mnj) (]:1,,]{3)
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Ifh e Pz(f) is a partial operation of arity k such that the rows of M are in the
domain of h, then we can apply h to each row of M. The resulting n-tuple is the
same as the one obtained by applying A to the k columns of M componentwise:

(h(Ml*), o h(Mn*)) = h(M,1, ..., My).

We will often use the above equality without further mention.

We say that a k-ary (partial) operation h preserves the relation p C A™, denoted
as h > p, if for every matrix M € A"** such that each column of M belongs to p
(and each row of M is in the domain of h), we have h(M,,..., M) € p. If Ris a
set of relations, then we write h > R to indicate that h preserves all elements of
R. In other words, h > R holds if and only if h is a (partial) polymorphism of the
relational structure A = (A, R), i.e., h is a homomorphism from (the substructure
dom h of) A* to A. The set of all (partial) operations preserving each relation of R
is denoted by Pol R (pPol R), and the set of all relations preserved by each member
of a set F' of (partial) operations is denoted by Inv F:

Pol R = {h € 04 :h>pforevery p e R};
pPol R = {h € Pa:h pforevery p e R};
InvF:{pERA:thforeverthF}.
Note that Pol R = pPol RN Oy4.
The closed sets under the Galois connection Pol —Inv (pPol —Inv) between
(partial) operations and relations are exactly the (strong partial) clones and the

(weak) relational clones; this makes these Galois connections fundamental tools in
clone theory.

Theorem 1.5.1. [Bod+69; |Gei68| For any set of operations FF C O4 and any set
of relations R C R4, we have [F] = PolInv F' and (R)3 = Inv Pol R.

Theorem 1.5.2. [Rom81| For any set of partial operations F' C P4 and any set
of relations R C R4, we have Str(F') = pPolInv F' and (R)3 = Inv pPol R.

In the next chapter we investigate the connection between solution sets and
centralizers.



Chapter 2

Connections between solution sets
and centralizers

Looking for a characterization of solution sets by means of closure conditions,
we would like to determine operations under which solution sets of C-equations
are closed. In Section we show that solution sets are always closed under the
centralizer, and related to this fact we introduce a property called property
In Section[2.2] we show that the newly introduced property is equivalent to quantifier-
elimination of certain type of formulas.

2.1 Property (SDC)

The following theorem shows that the solution set is always closed under operations
in the centralizer C*.

Theorem 2.1.1. [TW17] For any clone C < Oy, the solution set of a system of
C-equations is closed under C*.

Proof. Let C' < O4 be a clone and let £ be a system of n-ary C-equations with
solution set T' = Sol(£) C A™. Let & € C* be an arbitrary m-ary operation, and
let t0) ... t'™ € T; we need to prove that ®(t") ... t(™) € T. Consider an

arbitrary equation f(x1,...,7,) = g(x1,...,7,) from &. Since tM, ... t(™ are
solutions of £, we have f(t¥)) = g(t\") for j = 1,..., m. This implies that
DD, .., F(E™)) = B(g(6D), ..., g(t™). (2.1.1)

Let us consider the n x m matrix ) = (tl(j )) obtained by writing the tuples t)
next to each other as column vectors. Then the left hand side of is obtained
by applying f to the columns of ) and then applying ® to the resulting row vector.
Since ® and f commute, we get the same by applying first & row-wise and then
applying f column-wise, and the result in this case is f(®(t(1),...,t™)) (cf. also

(1.3.1))). Rewriting similarly the right hand side of (2.1.1)), we can conclude that
F@@EW, . tm)) = g(@(t®, ... t)).

8
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This means that the tuple ®(t(V), ..., t(™) also satisfies the equation (f, g). This
holds for every equation of £, thus we have ®(t(1), ... t™) c T, |

FEzample 2.1.2. Let us consider once more the case of linear equations (we use the
notation of Examples [1.3.1)and [[.4.1]). A set of tuples (vectors) T' C K" is closed
under the clone L* if and only if T" is an affine subspace of K", and T is closed
under Lj = Ly if and only if T" is a subspace of K. Thus in this case T is the
solution set of a system of L-equations (Lg-equations) if and only if 7" is closed
under L* (Lg).

Theorem [2.1.1] gives a necessary condition for a set 7' C A" to be the set of all
solutions of a system of C-equations. In the case of (homogeneous) linear equations
this condition is sufficient as well (see the example above). Later (in Chapter |3) we
will prove that if A is a two-element set then for every clone C' < Oy, every set of
tuples that is closed under C* is the solution set of some system of C-equations.
However, for a three-element underlying set this is not always the case.

Ezample 2.1.3. [TW17] Let us consider the (nonassociative) binary operation
f(z,y) =x®@yon A={0,1,2} defined by the following operation table:

® 10 1
010 0
110 0
210 1

S = O N

Observe that z @ z = 0 and + ® 0 = 0 ® = 0 hold identically, hence the only
unary operations in the clone C' = [f] are g (z) = 0 and ¢; () = x. Therefore,
the only nontrivial C-equation of arity n = 1 is (go, g1), whose solution set is {0}.
Thus there are only two subsets T C A that are solution sets of (systems of) unary
C-equations, namely 7" = {0} and T' = {0, 1,2}. However, the set {0,1} is also
closed under C*. Indeed, if ® € C* is an m-ary operation and ay,...,a, € {0,1},
then, observing that a; = a; ® 2, we can compute ¢ (a) = ® (aq,...,a,) as follows:

Ba)=d(0102,....0,02) =0(a)@D(2) =f(D(a), d(2). (2.1.2)

In the second step we use that ® belongs to the centralizer of {®}, meaning that it
commutes with ®, and using the definition of commutation for the 2 by 2 matrix
a as ... Qy
2 2 ... 2
Since the range of f contains only the elements 0 and 1, we see that the right
hand side of belongs to {0,1}. We can conclude that the set {0, 1} is closed
under C*, yet it is not the solution set of any system of C-equations.

we obtain ® (a1 ®2,...,a,, ®2) = (a) ® ®(2).
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We will say that an algebra (or the clone defined by the algebra) has prop-
erty if closure under the centralizer characterizes the solution sets (here
SDC stands for “Solution sets are Definable by closure under the Centralizer”).

Definition 2.1.4. [TW20] Let A = (A; F') be an algebra with C' = [F]. We say
that A (or C') has property (SDC) if the following are equivalent for all n € N and
T C A™

(a) there exists a system £ of C-equations such that 7" = Sol(£);
(b) the set T is closed under C*.

The main goal of this thesis is investigating which algebras have property
In Chapter [3| we prove that every two-element algebra (thus every clone on the two-
element set) has property . In Chapter 5| we show that only those semilattices
have property that are semilattice reducts of distributive lattices, and
that among lattices only Boolean lattices have property . In Chapter |§|
we investigate Abelian groups, monounary algebras and three-element groupoids
in terms of property . Since the centralizer has an important role in this
property, it is only natural to also investigate the centralizer clones of known
algebras themselves. Hence, in Chapter 4] we study centralizer clones of semilattices,
distributive lattices and arbitrary lattices.

In the next section we investigate a property that turns out to be equivalent to

poperty [(SDO)]

2.2 Quantifier elimination and property (SDC)

In this section we give a connection between property and quantifier elim-
ination of certain primitive positive formulas. We also show that for systems of
equations over a clone (] if all solution sets can be described by closure under a
clone D, then D must be the centralizer of C.

For f € Oﬁ,"), we define the following relation on A, called the graph of f:

f*={(ay,...,anb) | f(ai,...,a,) = b} C A",

For FF C Oy, let F* ={f*| f € F}. It is not hard to see that for any f € OXL)
and g € (91(47”), the function f commutes with ¢ if and only if f preserves the graph
of g (or equivalently, if and only if g preserves the graph of f). Therefore, for any
F C O4 we have F* = Pol(F'*).

For FF C Oy, let F° denote the set of all relations that are solution sets of some
equation over F":
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F° = {Sol(f, ) \ neN, f,ge F™} C Ry
The following remark shows that the graph of an operation f € F' also belongs
to F°.

Remark 2.2.1. Let f € (’)ﬁf), and define f € (’)XLH) by f(xl,...,xn,mnﬂ) =
f(z1,...,2,). Then we have

Sol (f,ﬂ'nH) =
={(a1,...,an,b) € A" ’ flag, ... an,b) = Topi(ar, ., an,b)
= {(al,...,an,b) e At ‘ flay, ... a,) :b} = f°.

The following three lemmas (together with Theorem [2.1.1)) prepare the proof of

Theorem [2.2.6, which gives us an equivalent condition to property that we
will use in sections 5.1l and 5.2

Lemma 2.2.2. [TW20] For every clone C' < Oy, we have C* C C° and (C*)5 =
(C%)s.

Proof. In accordance with Remark , for all f € C' we have Sol(f, 1) =
f* € C°. Therefore C* C C°, which implies that (C*)3 C (C°)3. To prove the
reversed containment, let us consider an arbitrary relation p = Sol(f,g) € C° with
f,g € C™. Then, for any (x1,...,x,) € A", we have

(1,...,xp) €Ep <= flay,...,2n) = g(x1,...,24)
— Hyf(mla7$n):y&g(l‘haxn):y
— Jy: (x1,...,20,y) € [P & (T1,...,20,Y) € g°.

This means that p can be defined by a primitive positive formula over {f®, ¢°},
therefore p € (C*)3. Thus, we obtain C° C (C*®)3, and this implies that (C°)3 C
({(C*)3)3 = (C*)3; therefore (C*)3 = (C°)s. |

Lemma 2.2.3. [TW20| For every clone C < Oy and T C A", there is a system &
of C-equations such that T = Sol(&) if and only if T € (C°)3.

Proof. Let ® be an arbitrary quantifier-free primitive positive formula over C°. By
definition, ® is of the form

O(xq,...,2,)

(fj(zgj), .. ,zg)) = gj(z§j), e ,z,{?)),

where n,t € N, f;,9; € C7) and z%j),...,zg) € {zy,...;z,} forall j =1,... ¢t

t
]

<

We define the operations f;(z1,...,2,) = fj(zgj), . ,z,ﬁj)) and g;(z1,...,x,) =
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gj(zgj o ,zﬁj)) (by identifying variables and by adding fictitious variables) for all
j=1,... .t

Then @ is equivalent to the formula

t

U(zy,...,z,) E&(E(xl,...,xn) :gNj(q:l,...,:cn)>,

=1

and E,’g; € C™ forall j=1,...,t. Since ® and ¥ are equivalent, they define the
same set T C é”, and it is obvious that the set defined by V¥ is the solution set of
the system {(f1,41),...,(ft, g:)}. Conversely, it is clear that every solution set can
be defined by a quantifier-free primitive positive formula of the form of W. [ |

Lemma 2.2.4. [TW20] For every clone C < Oy, we have Inv (C*) = (C*)3.
Consequently, a set T'C A™ is closed under C* if and only if T € (C°)s.

Proof. Using that F* = Pol(F*) and that Inv(Pol(R)) = (R)3 (see Theorem [1.5.1)),
we have

Inv (C*) = Inv (Pol (C*)) = (C*)s.

The second statement of the lemma follows immediately from Lemma by
observing that 7" is closed under C* if and only if T € Inv(C*). [

Remark 2.2.5. By Lemma [2.2.4] in Example [2.1.3| we could also prove that the set
{0,1} is closed under C* by showing that it is definable by a primitive positive
formula over C°. This is easy to do, since the range of f is {0, 1}, hence the primitive
positive formula ®(z) = JuIv f(u,v) = m(x,u) defines exactly the set {0, 1}.

Theorem shows that in property [[SDC)| condition [(a)] implies [(b)] There-

fore, for all clones C' < (4, it suffices to investigate the implication @ —
@. As a consequence of lemmas [2.2.2] [2.2.3| and [2.2.4] we obtain the promised
equivalent reformulation of property in terms of quantifier elimination.

Theorem 2.2.6. [TW20] For every clone C < Oy, the following five conditions
are equivalent:

(i) C has property|[(SDC)}
(if) (C%)s = Inv (C7);
(iii) (C%)a = (C°)3;
) every primitive positive formula over C° is equivalent to a quantifier-free
primitive positive formula over C°;

(iv

(v) (C°)z is a relational clone.
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Proof. = By Lemma [2.2.3| T is the solution set of some system of
equations over C' if and only if T € (C°)3.

< [(iii)} This follows from (the proof of) Lemma [2.2.4]

(iii)| ) <= |(iv)} This is trivial.

(iii)| <= This follows from the fact that the relational clone generated by
(C°)z is (C°)s3. |

In the following corollary, we will see that Theorem [2.2.6] implies that C* is
the only clone that can describe solution sets over C' (if there is such a clone at
all). Thus, the abbreviation SDC can also stand for “Solution sets are Definable by
closure under any Clone”.

Corollary 2.2.7. [TW20] Let C' < Oy4 be a clone, and assume that there is a clone
D < Oy such that for allm € N and T C A™ the following equivalence holds:

T is the solution set of a system of C-equations <= T is closed under D.

Then we have D = C*.

Proof. The condition in the corollary gives us by Lemma that for all T C A",
we have T' € (C°)3 if and only if 7" € Inv (D). This means that (C°)3 = Inv (D),
thus (C°)y is a relational clone. Therefore, by Theorem , this is equivalent to
the condition Inv (C*) = (C°)3 = Inv (D). Applying the operator Pol to the last
equality we get that

C* = Pol (Inv (C*)) = Pol(Inv (D)) = D. |



Chapter 3

Solution sets over 2-element alge-
bras

In this chapter we consider exclusively Boolean equations, that is, from now on
our underlying set is A = {0,1}. In accordance with Subsection we denote the
n-tuple (1,1,...,1) by 1, and similarly the n-tuple (0,0,...,0) by O (the length
of the tuple shall be clear from the context). We will again use the notation of
the appendix; in particular, 2 = Oy 1y stands for the set of all Boolean functions

(see Figure [1.1] and Table [L.1). By proving a converse of Theorem [2.1.1] we will
establish the following characterization of solution sets of Boolean equations.

Theorem 3.0.1. [TW17] For any clone of Boolean functions C < Q and T C
{0,1}", the following two conditions are equivalent:

(i) there is a system & of C-equations such that T = Sol(&);
(ii) T is closed under C*.

Thus clones of Boolean functions (i.e., two-element algebras) always have
property . The implication |(i)| = of Theorem follows from Theo-
rem , so we only need to prove that implies . Since all Boolean clones
are known (see the appendix), we could do this one by one for every single Boolean
clone. However, many clones have the same centralizer, therefore, as the following
remark shows, it suffices to prove Theorem for a few clones (note that this
remark is valid for any set A, not just for the two-element set).

Remark 3.0.2. Let C7 < Cy < Oy and Cf = €5 = C. Assume that C; has
property , and let T' C A™ be closed under C. Then there is a system of
C-equations such that 7' = Sol(£). From C; C C it follows that £ is also a system
of Cy-equations. Thus property holds for Cy as well.

We can further reduce the number of cases by considering Boolean func-
tions up to duality. The dual of f € Q™ is the Boolean function f¢ defined
by fi(xi,...,2,) = —~f(=xy,...,72,), and the dual of a Boolean clone C is

14
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C?={f?| f € C}. Note that dualizing means just interchanging 0 and 1, hence if
property holds for C, then it is obviously valid for C'%, too.

Considering the observations above as well as the list of centralizers of Boolean
clones given in Appendix , it suffices to prove the implication — of
Theorem for the following 18 cases:

1. L* = Loy, Ly = Lo, Ly, = L, SL* = SL;

2. M* = [z], (U*M)* = [0], (ULM)* = [0,1], S* =[], SM* = QW;
3. A = Agy, Ag* = Ay, A* = Ay, Ag* = A

4. (WY = Sop, [A] = S, [0,1]* = Qo1, [0 = Qq, [z]* = Q.

We will present the proof through a sequence of 18 lemmas. These are grouped into
four subsections by the methods used in their proofs, according to the numbering
above.

Remark 3.0.3. According to Theorem [3.0.1] there are exactly as many algebraic
geometries over the 2-element set as there are primitive positive clones, that is, 25

(see Appendix [L.2)).

3.1 Linear clones

In this section we deal with the “first row” of the clones we need to investigate,
that is, we prove Theorem [3.0.1] for the following clones: Lg, Lo, L and SL.

Lemma 3.1.1. [TW17] If T C {0,1}" is closed under the clone Ly* = Lo, then
there exists a system & of Lo-equations such that T' = Sol(E).

Proof. This is a special case of Example for the two-element field. ]

Lemma 3.1.2. [TW17] If T C {0,1}" is closed under the clone Ly* = L, then
there exists a system & of Loi-equations such that T = Sol(£).

Proof. Let T C {0,1}" be closed under the clone Ly;* = L. Since T is closed under
L =[xz +y,1], it is a subspace in {0,1}", and we also have 1 € T. Therefore there
exists a system of homogeneous linear equations £ such that the set of solutions
of £ is exactly T'. It only remains to verify that £ is equivalent to a system of
Loi-equations. Recall that Loy = {1 + - + x, | n is odd}.

An equation in & is of the form x;, +x;, +---+x;,, = 0. Since 1 € T', the tuple
1 satisfies this equation, hence it follows that 2 | m. Adding z;, to both sides, we
obtain the equivalent equation x;, + - -- 4+ x;,, = x;,. Since there is an odd number
of variables on both sides, this is an Lg;-equation. |
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Lemma 3.1.3. [TW17] If T C {0,1}" is closed under the clone L* = Lq;, then
there exists a system £ of L-equations such that T = Sol(£).

Proof. This is a special case of Example for the two-element field. |

Lemma 3.1.4. [TW17] If T C {0,1}" is closed under the clone SL* = SL, then
there exists a system E of SL-equations such that T = Sol(E).

Proof. Let T' C {0,1}" be closed under the clone SL* = SL. Note that
SL=[z+y+z,x+1]={x;+---+x,+c|nisodd, and c € {0,1}}.

Since SL O Loy we see that T is an affine subspace in {0, 1}", hence there exists a
system & of linear equations such that 7' = Sol(€). Moreover, since z + 1 € SL, we
have x € T'= —x € T'. It only remains to verify that £ is equivalent to a system
of S L-equations.

An equation in £ is of the form z;, +x;, +---+z;, = c. Since x € T implies that
—x € T, it follows that 2 | m. Our equation is equivalent to x;, +- - -+ x;, = z;, +¢,
and since at both sides of the equation there is an odd number of variables, it
follows that this is an S L-equation. [

3.2 Clones with unary centralizers

In this section we deal with the “second row” of the clones we need to investigate,
that is, we prove Theorem for the following clones: M,U*M,Ust M, S and
SM.

Lemma 3.2.1. [TW17] If T C {0,1}" is closed under the clone M* = [z|, then
there ezists a system & of M -equations such that T = Sol(£).

Proof. Note that every subset of {0, 1}" is closed under [z]. For every T" C {0,1}",
we have
T=T, (3.2.1)
v¢T
where Ty, = {0, 1}" \ {v}. Therefore it suffices to show that for every v € {0,1}",
there exists an M-equation (f, g) such that Ty, = Sol({(f,9)}).
Let v € {0,1}" be an arbitrary n-tuple. Let f and g be the following functions:

f(x)—{l’ it x > v; and g(x)—{

0, otherwise,

1

0, otherwise.

, ifx>wv;

Figure shows a schematic view of the Hasse diagram of {0,1}". Grey color
indicates points where the value of the corresponding function is 1; on the remaining
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&

Figure 3.1: The functions f and g in the proof of Lemma

tuples the values are 0. It is easy to see that f, g € M and that for all v € {0,1}", we
have f(x) = g(x) if and only if x # v, therefore the set of solutions of f(x) = g(x)
is indeed T%. [ |

Lemma 3.2.2. [TW17| If T' C {0,1}" is closed under the clone (U*M)* = [0],
then there exists a system E of U M -equations such that T' = Sol(E).

Proof. A set T C {0,1}" is closed under [0] if and only if 0 € T". Thus, similarly to
the proof of Lemma [3.2.1] it suffices to show that for every v € {0,1}"\ {0} there
exists a U M-equation (f,g) such that 7, = Sol({(f,¢9)}). (We can exclude v =10
from the intersection because 0 € T'.)

Let v € {0,1}"\ {0} be an arbitrary n-tuple, and let f and g be the same
functions, as defined in the proof of Lemma We have seen that f and g are
monotone and Sol({(f,g)}) = Ty. Hence it only remains to verify that f,g € U™,
that is, there exists k € {1,2,...,n} such that for all x € {0,1}", if f(x) =
(9(x) = 1), then x; = 1. We may assume (after a permutation of coordinates) that
v is of the form (0,0,...,0,1,1,...,1). Since v # 0, at least one 1 appears in v,
ie., v, =1.If f(x) =1, then x > v, hence z,, = 1, thus f € U*. Similarly, z,, = 1
whenever g(x) =1, so g € U*. |

Lemma 3.2.3. [TW17| If T C {0,1}" is closed under the clone (Us?M)* = [0, 1],
then there exists a system E of USY M -equations such that T = Sol(E).

Proof. The proof is almost identical to those of the previous two lemmas. Here we
have 0,1 € T, hence we can assume that v ¢ {0,1}, and we only need to show
that in this case the functions f and ¢ defined in the proof of Lemma [3.2.1] are
O-preserving as well as 1-preserving. By the definition of the functions f and g, it
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is obvious that f(0) =0 and g(1) = 1. Moreover, v # 0 implies that g(0) = 0 and
v # 1 implies that f(1) = 1. Thus f,g € Ut M, as claimed. [ |

Lemma 3.2.4. [TW17] If T C {0,1}" is closed under the clone S* =[], then
there exists a system £ of S-equations such that T = Sol(E).

Proof. For every T C {0, 1}" that is closed under the clone [—], we have

T = ﬂ Tva
veT

where T, = {0,1}" \ {v,—v}. (Note that we are changing the notation of the
previous three lemmas.) Therefore it suffices to show that for every v € {0, 1}",
there exists an S-equation (f, g) such that Ty, = Sol({(f,9)}).

Let v € {0,1}"™ be an arbitrary n-tuple, and let f € S be an arbitrary n-ary
self-dual function. Define the function g by

o) — f(x), ifxé¢{v,~v}
9(x) {ﬁf(x), if x € {v,—v}.

Clearly, the set of solutions of f(x) = g(x) is indeed Ty, and it is straightforward
to verify that ¢ is self-dual. |

Lemma 3.2.5. [TW17] If T C {0,1}" is closed under the clone SM* = QM) then
there exists a system € of SM-equations such that T = Sol(E).

Proof. Using the notation of Lemma [3.2.4] we need to show that for every v €
{0,1}™\ {0,1} there exists an SM-equation (f,g) such that Ty, = Sol({(f,9)}).
(We exclude 0 and 1 since T is closed under Q) = [0, 1, =z].)

Let v € {0,1}"\ {0,1}, and let h € SM be an arbitrary n-ary self-dual
monotone function. Define the function f by

0, ifx <vorx<-v;
f(x) =<1, if x >vorx>-v;
h(x), otherwise.
Since v # 0, 1, the tuples v and —v are incomparable, hence the three cases in

the definition of f are mutually exclusive and thus f is well defined. Define the
function g by

-f(x), ifxe{v,-v}

Let H be the set of tuples x € {0,1}" that are incomparable to both v and —v.
(Note that H is closed under negation.) The colors on Figure indicate the value

o) = {f<x>, if x ¢ {v, 7w}
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Figure 3.2: The functions f and g in the proof of Lemma m

of the corresponding function as in the proof of Lemma [3.2.1] The striped area
represents the set H. From the definition of the function g it is clear that the set
of solutions of f(x) = g(x) is indeed Ty,.

It only remains to verify that f,g € SM, that is, f and g are both monotone
and self-dual. We present the details for f only; the proof for g is similar.

Let x and y be arbitrary n-tuples with x <'y. To verify that f € M, we consider
four cases:

1. If x,y € H, then f(x) = h(x) < h(y) = f(y), as h € SM.
2. If x,y ¢ H, then from the definition of the function f we have f(x) < f(y).

3. If x € Hand y ¢ H, then y is comparable to v or =v. If f(y) = 1, then
obviously f(x) < f(y). If f(y) =0, then y < v or y < —v. However, in this
case X <y implies that x is comparable to v or to —v, contradicting the
assumption x € H.

4. The case x ¢ H,y € H can be verified similarly to the previous case.

For self-duality, let x € {0,1}" be an arbitrary n-tuple; we need to show that
f(x) = = f(—x). We distinguish two cases:

1. If x ¢ H, then -x ¢ H. If f(x) = 0, then either x < v or x < —v. In the
first case, we have —-x > —v, and in the second case, we have -x > v. In
both cases, f(—x) = 1. Similarly, f(x) =1 implies that f(-x) = 0.

2. If x € H, then -x € H, therefore f(x) = h(x) = =h(—x) = = f(—x), as
heSM. u
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3.3 Clones generated by conjunction and con-
stants

In this section we deal with the “third row” of the clones we need to investigate,
that is, we prove Theorem for the following clones: A, Ay, Ay and Ag;.

Lemma 3.3.1. [TW17] If T C {0,1}" is closed under the clone A* = Ay, then
there exists a system € of A-equations such that T = Sol(£).

Proof. Note that A = [x Ay, 0, 1], and that Aoy = [z Ay]. Let T C {0, 1}" be closed
under the clone A* = Agy, and let &€ = Eq,(T"). We will show that 7" = Sol(E).
Since T' C Sol(€) is trivial, it suffices to prove that v € Sol(€) implies v € T for
all v e {0,1}".

Let v € Sol(€), and suppose first that v # 0, 1. We may assume without loss of

generality that v is of the form (1,1,...,1,0,0,...,0), where v; = --- = v = 1 and
Vgp1 =+ =0, =0 (k€ {l,...,n—1}). Let us consider the following A-equation:
TIN AT =Ty AN ANTp A\ Tpyq. (3.3.1)

It is clear that v does not satisfy (3.3.1]), thus the equation (3.3.1)) does not appear
in €. Hence, there exists an n-tuple t'Y) € T such that t(!) does not satisfy (3.3.1)),

ie, ) =... = tg) =1 and tSjl = 0. Similarly, for all m € {1,...,n — k} we may
consider the A-equation

TIN AT =21 N AT A Tpepm. (3.3.2)

Just like , the equation (3.3.2)) does not appear in &, thus there exists
t" € T such that ¢ = ... = t{™ = 1 and {7} = 0. We know that T is
closed under the clone Agy, in particular, T is closed under conjunctions. Therefore
tM .. t"% € T implies that

tH A At = (1,1,...,1,0,0,...,0)=veT.

It only remains to consider the cases v =0 and v = 1. If v = 0 satisfies £, then
let us consider the following A-equations for all i € {1,...,n}:

2= 1. (3.3.3)

Since v = 0 does not satisfy (3.3.3)), this equation does not belong to £. Thus T
contains a counterexample t@ to (3.3.3) such that ¢\”) = 0. Therefore we have

tW A At =(0,0,...,0)=veT



CHAPTER 3. SOLUTION SETS OVER 2-ELEMENT ALGEBRAS 21

If v = 1 satisfies £, then we consider the following A-equation:
Ty N Nxy, =0. (3.3.4)

Similarly as above, T' contains a counterexample to (3.3.4]), and the only such
counterexample is 1. |

Lemma 3.3.2. [TW17] If T C {0,1}" is closed under the clone Ay* = Ay, then
there exists a system &€ of Ag-equations such that T = Sol(E).

Proof. Let T" C {0,1}" be closed under the clone Ay* = Ay, and define € as
£ = BEqy,(T). If v € Sol(£) and v # 0, then the same argument as in Lemma [3.3.1]
proves that v € T'. It only remains to consider the case v = 0. Since T is closed
under the clone Ay and 0 € Ay, it follows that 0 € T'. |

Lemma 3.3.3. [TW17] If T C {0,1}" is closed under the clone Ay* = Ay, then
there exists a system & of Ai-equations such that T' = Sol(£).

Proof. Let T C {0,1}" be closed under the clone A* = A;, and define £ as
E =Eq,,(T). If ve Sol(€) and v # 1, then the same argument as in Lemma,
proves that v € T'. Since T' is closed under the clone A; and 1 € Ay, it follows that
1eT. |

Lemma 3.3.4. [TW17] If T C {0,1}" is closed under the clone Apy* = A, then
there exists a system & of No1-equations such that T = Sol(&).

Proof. Let T C {0,1}" be closed under the clone Ag;* = A, and define £ as € =
Eqy,, (7). If v € Sol(£) and v # 0,1, then the same argument as in Lemma
proves that v € T'. Since T is closed under the clone A and 0,1 € A, it follows that
0,1¢T. m

3.4 Unary clones

In this section we deal with the “last row” of the clones we need to investigate,
that is, we prove Theorem for the following clones: [z], [0], [0, 1], [=] and Q).

Lemma 3.4.1. [TWI17] If T C {0,1}" is closed under the clone [x]* = 2, then
there exists a system & of [x]|-equations such that T = Sol(E).

Proof. Let T C {0,1}" be closed under the clone [z]* = €2, and let £ = Eq,)(T).
We will show that 7" = Sol(€). Since T C Sol(€) is trivial, it suffices to prove that
v € Sol(€) implies v € T for all v € {0,1}".

Let v € Sol(€), and let T = {tM ... t(™} where m = |T|. Let us consider
the matrix Q = (tY) € {0,1}™ whose j-th column vector is t). Let r; =
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(tz(l), o ,tz(m)) be the i-th row of @, and let R = {ry,...,r,} be the set of row

vectors of (). Define the m-ary function ® by

B(x) = {UZ', if x =r;;

0, ifx¢R.
Note that ® is defined in such a way that v = ®(t™", ... t(™). However, we need
to verify that @ is a well-defined function. Assume that r; = r; and v; # v; for some
i,j € {1l,...,n}. From r; = r; it follows that 7" satisfies the [z]-equation z; = z;,

hence this equation belongs to £. On the other hand, v satisfies £, thus v; = v;,
which is a contradiction. Therefore the function ® is well defined, and obviously
® € Q. The set T is closed under the clone , hence v =®(tM ... t™)cT. W

Lemma 3.4.2. [TW17] If T C {0,1}" is closed under the clone [0]* = Qq, then
there exists a system & of [0]-equations such that T = Sol(&).

Proof. Let T'C {0,1}" be closed under the clone [0]* = Q, let & = Eqq(7T'), and
assume that v € Sol(£). Define @, r;, R and ® as in the proof of Lemma [3.4.1]
The proof of Lemma [3.4.1| shows that ® is well defined; we only need to verify that
P € Q. If 0 ¢ R, then ®(0) = 0 follows from the definition of ®. If r; = 0 for some
i, then the [0]-equation x; = 0 holds in T, thus (z;,0) € €. Therefore v satisfies
this equation as well, hence ®(0) = ®(r;) = v; = 0. This shows that ® € Q, and
then v = ®(tW, ... t(™) € T follows, as T is closed under €. [ |

Lemma 3.4.3. [TW17] If T C {0,1}" is closed under the clone [0,1]* = Qqy, then
there exists a system £ of [0, 1]-equations such that T' = Sol(&).

Proof. The proof is almost identical to that of Lemma [3.4.2) we just need to
modify the definition of ® such that ®(1) = 1 if 1 ¢ R. Taking equations of
the form x; = 0 and x; = 1 into account, we can prove that & € €y, and then
v==o@tW, ... t™) e T follows, as T is closed under Q. [ |

Lemma 3.4.4. [TW17] If T C {0,1}" is closed under the clone [-]* = S, then
there exists a system £ of [—|-equations such that T = Sol(&).

Proof. Let T'C {0,1}" be closed under the clone [-]* = S, let £ = Eq(T), and
assume that v € Sol(€). Define @, r; and R as in the proof of Lemma and
let R = {-ry,...,—r,}. Let h € S be an arbitrary m-ary self-dual function and
define the function ® € Q™ by

v;, if x =r;;
O(x) =< —w;, ifx=-r;
h(x), ifx¢ RUR.

We show that the function ® is well defined. We distinguish two cases:
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1. If r; = r; and v; # v; for some 4,j € {1,...,n}, then T satisfies the [-]-
equation x; = x;, hence this equation belongs to £. On the other hand, v
satisfies &, thus v; = v;, which is a contradiction.

2. If r;, = —r; and v; # —w; for some i,j € {1,...,n}, then T satisfies the
[—]-equation x; = —x;, hence this equation appears in £. On the other hand,
v satisfies £, thus v; = —wv;, which is a contradiction.

It only remains to verify that ® € S. Let a be an arbitrary n-tuple. Ifa ¢ RUR/,
then ®(a) = h(a) = -h(—-a) = =®(—-a), since the function h is self-dual. If a = r;
for some i € {1,...,n}, then —a = —r;, thus &(-a) = —v; = -®(a). This shows
that ® € S, and then v = ®(t™), ... t™) € T follows, as T is closed under S. W

Lemma 3.4.5. [TW17] If T C {0,1}" is closed under the clone (Q2M))* = Sy, then
there exists a system € of QW -equations such that T = Sol(&).

Proof. Let T C {0,1}" be closed under the clone (QM)* = Sy, let €& = Eqqu)(T),
and assume that v € Sol(€). Define @, r;, R and R’ as in the proof of Lemma [3.4.4]
and let us also define ® in the same way as there, but this time choosing the
function h from Sp;. We can follow the same argument as before, but we also need
to verify that ® € Qg;. If 0 ¢ RU R, then ®(0) = 0, since h € Sp;. If 0 € R, and
0 = r;, then the QMW-equation z; = 0 holds in &, thus v; = 0. Therefore, from the
definition of the function ®, we have ®(0) = 0. If 0 € R, and 0 = —r;, then the
QW_equation —x; = 0 holds in &, thus —v; = 0, hence ®(0) = 0. This proves that
d € )y, and a similar argument shows that ® € );. Therefore ® € Sy, and then
v==a@1tW, ... t™) e T follows, as T is closed under Sp;. |



Chapter 4

Centralizers of finite lattices and
semilattices

In this chapter we study operations commuting with (semi)lattice operations, and
we aim for concrete descriptions of these operations that allow us to classify (and in
some cases also count) them according to the number of their essential variables. As
a “byproduct”, we also obtain a simple proof for Kuznetsov’s description |[Kuz79|
of primitive positive clones on the two-element set.

We say that the i-th variable of f € (91(:) is essential (or that f depends on its
i-th variable) if there exist tuples a,a’ € A™ differing only in their i-th component
such that f(a) # f(a’). The number of essential variables of f is called the essential
arity of f. To simplify notation, we often assume that operations do not have
inessential variables, thus we say that f is an essentially n-ary operation on A if
fe Off) and f depends on all of its variables. In this definition we allow n to be 0,
and thus in this chapter we also consider essentially nullary operations (contrary
to other chapters).

In Section we present two different characterizations of the essentially n-ary
members of the centralizer of a finite semilattice (one of them is a slight variation
of a result of Larose [Lar95]). We use these to give a general formula for the
number of essentially n-ary operations commuting with the join operation of a
finite lattice, and we illustrate this with the example of finite chains. This is a
generalization of one of the results of [MR18], where this counting problem was
solved for the three-element chain. We study operations commuting with both the
join and the meet operation of a lattice in sections and [4.3] Since the essential
arity of operations in the centralizer is bounded for every finite lattice, here we
focus on the existence of essentially n-ary operations instead of counting them.
In Section we give an explicit description of the elements of the centralizer
of a finite distributive lattice, and then we provide two characterizations of finite
distributive lattices having an essentially n-ary operation in their centralizers. In
Section we investigate thoroughly all results of the previous section to see
which ones remain valid for nondistributive finite lattices. As a tool aiding this
investigation, we give an upper bound for the essential arity of operations in the

24
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centralizer of a finite algebra generating a congruence distributive variety (following
an idea of [CGL18; |CM18]). Finally, in Section we describe the centralizer
clones of Boolean functions. Primitive positive clones on the two-element set were
described already by Kuznetsov [Kuz79|, and later also in |[Her(08], and probably
many of the readers of this thesis have also computed these by themselves at some
point. This is not a difficult task using the Post lattice (see Figure in the
appendix), but it involves some case-by-case analysis. We offer a “painless” proof
that covers all cases by just three general theorems. Besides presenting the list of

the 25 primitive positive clones, we also give the centralizer of each Boolean clone
in Table .2

4.1 Centralizers of finite semilattices

In this section we give two different characterizations of the centralizer clone of a
join-semilattice S = (5; V). Since we are interested in counting the essentially n-ary
operations in the centralizer, we assume that S is finite, but some of our results
are also valid for infinite complete semilattices.

4.1.1 Characterizations

If S is a finite join-semilattice then it has a greatest element (denoted by 1), and if
S also has a least element (denoted by 0), then there is a meet operation on S such
that (S;V, A) is a lattice. In the latter case the centralizer clone [V]* is generated by
its unary members (i.e., endomorphisms of (S;V)) together with the join operation.
This was proved by B. Larose [Lar95[; in the following theorem we reprove this
result, and we extend it by providing a unique expression for any f € [V]* as a join
of endomorphisms, and we also determine the necessary and sufficient condition
for f to depend on all of its variables.

Theorem 4.1.1. [Lar95; [TW21| Let S = (S;V) be a finite semilattice with a
least element 0 and greatest element 1. An n-ary operation f € Og belongs to the
centralizer [V|* if and only if there exist unary operations uy,...,u, € [V]* such
that

flxe, .. zn) =ur(z1) V- - Vug(z,) and ug(0) = uz(0) = - - = u,(0).

The above expression for f is unique, and f depends on all of its variables if and
only if none of the u; are constant, i.e., u;(0) # u;(1) for alli € {1,...,n}.

Proof. The “if” part is clear: the join operation commutes with itself, hence if f
can be written as a composition of V with uy,...,u, € [V]*, then f € [V]*, as [V]*
is closed under composition.
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*

For the “only if” part let us assume that f is an n-ary operation in [V]*,
and define uy, ..., u, by ui(x) = f(z,0,...,0),...,u,(x) = f(0,...,0,2). Then
obviously u;(0) = -+ = u,(0) = f(0,...,0); furthermore, uy,...,u, € [V]*, as f
and the constant 0 operation belong to [V]|*. Since f commutes with V, applying
the definition of commutation to the n x n matrix

z7 0 0 ... O
0O 0 0 ... z,
we can conclude that
Flar,. ) = f(z1 VOV VO, L 0V VOV )

= f(x1,0,...,0)V---V f(0,...,0,2,)
=uy(z1) V- Vu,(z,).

To prove uniqueness, assume that f(xq,...,2,) = ui(z1) V- V uy(z,) and
u1(0) = uz(0) = -+ - = u,(0). Then we have

f(x1,0,...,0) = uy(x1) Vuz(0) V- - - Vuy(0) = uy(z1) Vur (0) V- - - Vuy (0) = uy(21),

as up is monotone. Thus wu; is indeed uniquely determined by f, and the above
equality also shows that if u1(0) # wu;(1), then f depends on its first variable:
£(0,0,...,0) = u1(0) # uy(1) = f(1,0,...,0). The statements about the unique-
ness of u; and about the essentiality of the ¢-th variable for ¢ = 2,...,n can be
proved in an analogous way. [

FEzample 4.1.2. Let S = ({0, 1,2,3,4}; V) be a five-element chain (regarded as a
join-semilattice), and let the unary operations u; and us be defined by

u1(0) =0, w1 (1) =1, u1(2) =1, w1(3) = 3, w1 (4) = 4;
UQ(O) = O, Ug(l) = 1, U2(2) = 2, Ug(g) = 4, U/2(4) =4.

Figure shows the values of the binary operation f(z1,z2) = ui(z1) V ug(z2).
We can see that each of the sets {(aj,a2) € S? : f(a1,a2) < b} (b=0,...,4) isa
“lower rectangle”. We will see later that for every join-semilattice S and every b € S,
the set {a € " : f(a) < b} has a similar structure for all f € [V]*; moreover, we
will characterize the operations in the centralizer in terms of these “down-sets”.

The following theorem shows that the assumption about S having a least element
cannot be dropped from Theorem [4.1.1} if a finite join-semilattice does not have a
least element, then its centralizer cannot be generated by unary operations and the
join operation.
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Figure 4.1: A binary operation in the centralizer of the chain ({0, 1,2,3,4}; V)

Theorem 4.1.3. [TW21| The centralizer [V|* of a finite semilattice S = (S;V)
is generated by its unary part and the join operation if and only if S has a least
element (i.e., if S is the join reduct of a lattice).

Proof. The “if” part follows from Theorem [£.1.1}; for the “only if” part assume that
S = (S;V) is a finite semilattice without a least element. Then there are distinct
minimal elements a,b € S. We define a binary operation f on S by

a, if (x1,22) = (a,b);
f(:Ul, 5(72) = b, lf (l’l, SL’Q) = (b, b),
a Vb, otherwise.

In order to prove that f commutes with the join operation, we need to verify the
following identity:

flxi,22) V f(y1,42) = f(o1 V oy, 22V ya). (4.1.1)

Since a is a minimal element, the only way of writing a as the join of two elements
is a = a V a. Therefore, the left hand side of is a if and only if f(xy,29) =
f(y1,y2) = a, and, by the definition of f, this holds only for z; = y; = a and
9 = yo = b. The right hand side of equals a if and only if z; V y; = a and
T2 V yo = b, and this is also equivalent to z; = y; = a and x5 = yo = b. Similarly,
both the left hand side and the right hand side of take the value b if and
only if x1 = y; = 29 = yo = b. For all other inputs, both sides of give a V b.
Thus f belongs to the centralizer [V]*, indeed.

If a binary operation can be obtained as a composition of the join operation
and endomorphisms of S, then it can be written as uj(z1) V us(z2), where u; and
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ug are endomorphisms. (The proof of this fact is a routine term induction; we leave
it to the reader.) Assume, for contradiction, that our operation f can be expressed
in this form: f(z1,x9) = ui(z1) V uz(xs). Then we have a = f(a,b) = ui(a) V uz(b),
and this implies u;(a) = ug(b) = a. On the other hand, b = f(b,b) = uy(b) V uz(b) =

u1(b) V a > a, which is a contradiction. [

Next we derive another kind of characterization of the centralizer of the clone
[V], which describes, in some sense, the “distribution” of the values of an n-ary
operation f € [V]* in S™, as illustrated by Figure . For this characterization
we will not need the assumption that S has a least element. Nevertheless, we will
consider the lattice S| obtained from S by adding a new element L to the bottom
of S. Thus let S; = SU{L}, where L is an element not contained in S, and we
define the partial order on S, so that 1 < a for all @ € S, and we keep the original
ordering on the elements of S. Note that we add a new bottom element even if S
happens to have a least element 0; in this case L is the unique lower cover of 0.

If S is a join-semilattice, then f € [V]|* if and only if f is a join-homomorphism
from S™ to S. This motivates us to consider the set Hom, (A, B) of all join-homomor-
phisms from A to B, where A and B are finite join-semilattices. We use the notation
Homb(A, B) for the set of all join-homomorphisms from A to B that preserve the
greatest element: Hom!, (A, B) := {f € Homy(A,B) : f(1) = 1}. Similarly, if A
and B have a least element, denoted by 0, then let Hom! (A, B) denote the set of
join-homomorphisms preserving the least element, and let Hom?' (A, B) be the set
of join-homomorphisms preserving both boundary elements. Note that the least
element of A; and B, is denoted by L (not by 0), therefore in this case we will
use the notation Homy!' (A, B, ) instead of Hom?' (A, B, ). For meet-semilattices
A and B, the sets Hom, (A, B), Hom) (A, B), etc. are defined analogously.

We need to introduce one more notation: for an element a in a partially ordered
set (A; <), the principal ideal and the principal filter generated by a are defined
and denoted as follows:

la={ce A:c<a}, ta={ceA:c>a}l.

Observe that in Figure [4.1] the elements labeled by numbers less than or equal
to b form a principal ideal for any b € {0,...,4}. This is a special case of the
following lemma, which states that for all f € Homy(A,B) and b € B, the set
7Yl b) ={a € A: f(a) < b} is a principal ideal whenever it is not empty.

Lemma 4.1.4. [TW21] Let A = (A; V) and B = (B; V) be finite semilattices. If
f: A — B is a homomorphism, then f~1(]b) C A is either empty or a principal
ideal for all b € B.

Proof. Assume that f~1(]b) is not empty. Join-homomorphisms are monotone,
hence it is clear that f~1({b) is an ideal, i.e., a; < ap € f~1({b) implies that
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a; € 7Y} b). Moreover, f~(]b) is closed under joins: if aj,ay € f~1(}0), then
fla1 Vaz) = fla1) V f(as) <bVb =0, hence a; V as € f~1(]b). Since A is finite,
we can take the join a =\ f~1(] b) of all elements of f~!(]b), and from the above
considerations it follows that f~!(] b) is the principal ideal generated by a. |

In the next theorem we give a canonical bijection between the sets Hom, (A, B)
and Hom ! (B, A, ), which will be the main tool for the promised characterization
of the operations in the centralizer of a finite join-semilattice. Recall that B, and
A, are lattices, and Homy (B, , A, ) denotes the set of all meet-homomorphisms
g: B, — A satisfying g(L) = L and g(1) = 1.

Theorem 4.1.5. [TW21] Let A B be finite join-semilattices, and for every f €
Homv(A B) and g € Homy' (B, A ), let us define the maps f<: B, — A, and
¢ A— B by

Fo(e) = {Xf Ty F@=Adta

Then the following two maps are mutually inverse bijections:

Homy (A, B) — Hom ' (B, AL), f+ [,
Hom;' (B, A1) — Homy (A, B), g~ ¢

Proof. First let us show that if f is a join-homomorphism from A to B, then f9is a
meet-homomorphism from B, to A . By Lemma u 4.1.4] f7H(LD) is elther empty or
a principal ideal, and in the latter case f9(b) is the greatest element of f~'(].b) by
the definition of f<. Therefore, we can reformulate the definition of f< as follows:

Va e AVbe By : f(a) <b < a < f(b). (4.1.2)

(Note that if f~1(}b) = 0, then f(a) < b does not hold for any a € A. In this
case we have f9(b) = L, and the only element a € A, satisfying a < f9(b) = L
isa= J_ thus the right hand side of (4.1.2 - ) does not hold for any a € A either.)
From we can deduce the following chain of equivalences for all a € A and
bl, by € BL.

@< fUb Aby) < fla)< b Ab
— F(@) < by and F(a) < by
< a < fYb) and a < f9(by)
= a < f5(bi) A f7(ba).

Thus we have a < f9by Aby) <= a < f9by) A f(bs) for every a € A, and this
implies that f9(by A by) = f(b1) A f(be), i.e., f< is a meet-homomorphism. To
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verify f9(1g) = 1a, we just need to observe that f~1(] 1) = f~}(B) = A, and the
greatest element of A is indeed 1,. Since f~!(] L) = @, we have f9(L) = L. This
completes the proof of the claim f< € Hom ' (B, A ).

Now assume that g: B, — A, is a meet-homomorphism such that g(1g) = 14
and g(1) = L. Then 1z € ¢g7'(Ta) for all @ € A, hence g~ (1 a) is never empty.
Therefore, the dual of Lemma shows that ¢g7!(1a) is a principal filter in B ;
moreover, (1) = L implies that 1 ¢ g~'(1a) for every a € A. This shows that the
map ¢”: A — B,a— Ag '(Ta) is well defined. One can prove, by an argument
similar to that of the previous paragraph, that ¢” is a join-homomorphism from A
to B.

It remains to prove that the maps f +— f<and g — ¢" are inverses of each other.
This follows immediately from the fact that g = f< and f = ¢ are both equivalent
to

Vae AVbe By : f(a) <b < a <g(b). (4.1.3)
for all f € Homy (A, B) and g € Hom>'(B,,A,). (Let us mention that a pair (£, g)
of maps satisfying (4.1.3)) is called a monotone Galois connection.) [

Remark 4.1.6. Let us give a categorical interpretation of Theorem [4.1.5] Let J
denote the category of finite join-semilattices (with join-homomorphisms), and let
L denote the category of finite lattices (with meet-homomorphisms that preserve
the boundary elements). Then the following two maps are mutually inverse functors,
thus J and L are isomorphic categories:

F:J—=L A=A, f=[f%
G L—-J, B—=B\{0s}, g— g

(Here B\ {Og} is the join-semilattice obtained by removing the bottom element of
the lattice B. Of course, if B is given as B = F(A) = A, then Op = L.)

Theorem can be useful if A is (much) larger than B, as in this case it
might be an easier task to determine the meet-homomorphisms from B, to A, than
describing the join-homomorphisms from A to B. This is the case when A = S"
and B = S, where S is a finite join-semilattice: as mentioned before, the n-ary
operations in [V]* are the join-homomorphisms from S™ to S, and these can be
described in terms of the 1- and L-preserving meet-homomorphisms from S, to
(S™) ., with the help of Theorem [4.1.5 We formulate this characterization in the
next corollary, and we complement it with the necessary and sufficient condition
for the operation to depend on all of its variables.

Corollary 4.1.7. [TW21] Let S = (S;V) be a finite semilattice, and let n be a
nonnegative integer. The n-ary members of [V|* are exactly the operations f of the
form

f:8" =8, x—= Ag H1x),
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where g € Hom ' (Sy, (S")1); here g is uniquely determined by f. The operation f
depends on all of its variables if and only if for each i € {1,...,n}, the range of
g contains an element of S™ whose i-th component is different from 1. If S has a
least element (i.e., if S is a lattice), then the latter condition is satisfied if and only
if the range of g contains a tuple from (S\ {1})".

Proof. An n-ary operation f € Og belongs to [V]* if and only if f is a join-
homomorphism from S™ to S. Applying Theorem with A =S" and B =S, we
see that these operations can be uniquely written as f(x) = ¢"(x) = Ag ' (1 x)
with ¢ € Hom'(B, A)).

We prove that f depends on its i-th variable if and only if the range of g contains
a tuple s) € 8™ such that the i-th component of s is not equal to 1. First assume
that f depends on the i-th variable; this means that there exist elements a,a’ € S™
differing only in their i-th component such that b := f(a) and V' := f(a’) are
different. We can assume without loss of generality that either b < b or b and V' are
incomparable. In both cases we can conclude that a € f~1(]b) and a’ ¢ f~1(].b).
By Theorem [4.1.5, we have g = f<, thus g(b) = V f(} b). Therefore, a < g(b)
and a’ £ g(b). This implies that the i-th component of the tuple s := g(b) € S™
(which certainly belongs to the range of g) is strictly less than 1.

Conversely, let us suppose that there is an element b € S such that the i-th
component of s) := g(b) is less than 1. Letting t) be the tuple obtained from s
by changing its i-th component to 1, we have s < t@. Now b € g~ (1s?) but
b g (1t®), therefore g='(1s®) # g~ (1t™). Since f = ¢”, this implies that

F(8D) =g (sP) = Ag7 (1) # Ng ' (189) = g7 (¢9) = f(6©).

Taking into account that s and t® differ only at the i-th component, we can
conclude that f does depend on its i-th variable.

If S is a lattice, then sV A --- As(™ is a tuple in the range of ¢, and all of its
components are less than 1. |

4.1.2 Counting

Using the characterizations presented in the previous subsection, we can determine
the exact number of n-ary operations in the centralizers of certain semilattices.
First we count the essentially n-ary operations commuting with the join operation
of the smallest non-lattice semilattice.

Proposition 4.1.8 ([TW21]). Let S = ({a,b,1},V) be the join-semilattice with
a Vb= 1. The number of essentially n-ary operations in the centralizer of S s
8" —6"+2-2"+ 0"
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Proof. By Corollary , we need to count the elements g € Hom*(S,, (S").)
such that the range of g contains a tuple from S*~! x {a,b} x S"~* for every i €
{1,...,n}. For an arbitrary map g: S; — (S™),, we have g € Hom,"' (S, (S").)
if and only if g(1) =1, g(L) = L and g(a) A g(b) = L; moreover, such a map is
uniquely determined by g(a) and g(b). We distinguish four cases upon these values
(we denote by f = g” the element of [V]* corresponding to g in Corollary [4.1.7)).

1. If g(a) = L = g(b), then f is constant 1, hence f is essentially n-ary if and
only if n = 0. Thus the number of essentially n-ary operations of this type
is 0", i.e., it is 1 if n = 0 and 0 if n > 0 (here it is convenient to use the
convention 0° = 1; for more justification, see [Knu92)).

2. If g(a) # L = g(b), then f depends on all of its variables if and only if
g(b) € {a,b}", thus the number of essentially n-ary operations f € [V]* of
this type is 2" (for n = 0 we get the constant a function).

3. If g(a) = L # g(b), then, similarly to the previous case, we have 2" functions
(here n = 0 corresponds to the constant b function).

4. If g(a) # L # g(b), then let s := g(a) € S™ and t := g(b) € S". Writing
these two tuples below each other, we get the 2 x n matrix (f} N f:) Now
f depends on all of its variables if and only if no column of this matrix is
(1,1)T, and there are 8" such matrices. However, some of the corresponding
maps g will violate the condition g(a) A g(b) = L: we must exclude those
matrices that contain neither (a,b)" nor (b,a)" as a column. The number of
such matrices is 6", so we obtain 8" — 6™ essentially n-ary operations f € [V]*
in this case.

Summing up the four cases, we see that the number of essentially n-ary operations
in [V]*is 8" — 6" 422" 4+ 0" |

Remark 4.1.9. Tt is easy to see that if the number of essentially n-ary operations in
a clone C'is p,,, then the number of all operations of arity n in C'is >;_, (Z) Dk
Thus, by Proposition m (and by the binomial theorem), the number of n-ary
operations in the centralizer of the join operation of the semilattice ({a,b,1},V) is

Z(Z)(g’f—6k+2-2’“+ok) =0" 7" 23" 17
k=0

Next we provide a general formula for the number of essentially n-ary operations
commuting with the join operation of a finite lattice, and then we apply it to the

case of finite chains.
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Theorem 4.1.10. [TW21] Let S = (S;V,A) be a finite lattice, and let n be a
nonnegative integer. The number of essentially n-ary operations in [V]* is

> _([Homy(S, 1b)] — 1)" = >_(|Hom, (10, S)| — 1)".

beS besS

Proof. According to Theorem [£.1.1] the essentially n-ary members of the centralizer
are in a one-to-one correspondence with the tuples (uq,...,u,) € Homy(S,S)"
such that u;(0) = --- = u,(0) and none of the u; are constant. Let b := u;(0),
then each u; maps S to 16 in such a way that the least element of S is mapped
to the least element of 10, i.e., u; € Hom?/(S,Tb) for e = 1,...,n. However, we
need to exclude the constant b function, hence the number of choices for each u;
is [Hom? (S, 1b)| — 1, and this gives the first formula. (Note that for b = 1, the
principal filter b has just one element, thus |[Hom?(S,1b)| — 1 = 0. Therefore, the
contribution of b = 1 to the sum is 0", and this could be omitted if n > 0. However,
for n = 0, we need to keep the term 0° = 1 in order to get the correct number of
nullary operations, which is clearly |S|.)

The second formula follows from the first one by applying Theorem [.1.5] to
A =Sand B =10b. If f € Hom(S,1b) and g € Hom+"((15).,S.) correspond
to each other under the bijections of Theorem , then f(0) = b if and only if
g(b) # L (i.e., g does not take the value L except for g(L) = L). Therefore, we
obtain a bijection from Hom?(S,1b) to Hom) (1b,S) by restricting f< to the set
1b for each f € Hom? (S, 1b). |

Remark 4.1.11. The second formula of the above theorem can be also derived
directly from Corollary [4.1.7 as follows. We need to count the meet-homomorphisms
g € Hom'(Sy, (S").) whose range satisfies the conditions of Corollary . Its
is a lattice and ¢ is such a meet-homomorphism, then there is a least element b € S
such that g(b) # L. Restricting g to 1b, we get a 1-preserving meet-homomorphism
from 176 to S", which can be viewed as an n-tuple (gi,...,g,) of 1-preserving
meet-homomorphisms from 1b to S. The range of ¢ contains a tuple from (S\ {1})"
if and only if g(b) € (S\ {1})", which holds if and only if none of the g; are constant
1. Therefore, there are exactly (JHom} (15,S)| — 1) such tuples (g1, ..., g»), and
this proves the second formula of Theorem [£.1.10] This argument does not work if
S is not a lattice, even though Corollary [£.1.7 holds in that case, too. The problem
is that there may be no least element b with g(b) # L; in fact, g~'(S™) is not
necessarily closed under meets. Nevertheless, as we have seen in Proposition [4.1.8]
Corollary can be used to count the essentially n-ary operations in a semilattice
even if it is not a lattice.



34 CHAPTER 4. CENTRALIZERS OF FINITE LATTICES AND SEMILATTICES

Corollary 4.1.12 (|[TW21]). The number of essentially n-ary operations commauting
with the join operation of a chain of cardinality ¢ is

ST
i=1 (=1 .
Proof. First, as an auxiliary result, let us count the join-homomorphisms from an
r-element chain A = {a; < --- < a,} to an s-element chain B = {b; < --- < b,}.
Clearly, the join-homomorphisms in this case are just the monotone maps, thus an
element of Hom, (A, B) can be given by a nondecreasing sequence f(a;) < --- <
f(a,) in B. These sequences can be viewed as r-combinations with repetitions from
the elements by, ..., b,, and the number of such combinations is (sﬂfl) = (i:l)
Now let S be a chain of cardinality ¢, and let b € S. The O-preserving join-
homomorphisms from S to 1 b are in a one-to-one correspondence with the join-
homomorphisms from S\ {0} to 1b (by restricting to S\ {0}). Note that S\ {0} is
a chain of size ¢ — 1, and if b is the ¢-th element from the top in S, then 1 b is an
1-element chain. Thus, by the considerations made in the first paragraph, we have

[Homd,(5,19)| = [Hom,(8\ {03,10)] = (7 %).

Applying Theorem completes the proof: we just need to substitute the above
formula into the first sum of Theorem [4.1.10| (replacing the summation variable b
by ). |

Remark 4.1.13. For an arbitrary poset A, the number of monotone maps from A
to an s-element chain is a polynomial in s, called the order polynomial of A. As
we have seen in the proof of the above proposition, the order polynomial of the
r-element chain is (”:71). This fact, and much more about order polynomials can
be found in [Stal2).

Remark 4.1.14. Similarly to Remark [£.1.9] we can derive from Corollary [£.1.12] that
the number of n-ary operations in the centralizer of the join (or meet) operation of
an ¢ element chain is

D e[l —2 oA & n\[[+i-2 oG e+i—2\"
22l - =2 E OIS - =27
Ezample 4.1.15. For the two-element chain (regarded as a semilattice), Corol-
lary gives the formula 1™ 4+ 0" for the number of essentially n-ary operations
(recall that 0° is defined as 1), and Remark gives 2" + 1™ for the number of all
n-ary operations in the centralizer (which are of course also easily verified without
our results). Similarly, for the three-element chain, we have 5" + 2" + 0" essentially
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n-ary operations and 6" + 3" + 1" operations of arity n in the centralizer of the
join operation; for the four-element chain we get the numbers 19" 4 9™ 4 3™ 4 0"
and 20" + 10" + 4™ + 1", etc. A formula for the number of n-ary operations in the
centralizer of the meet operation the of three-element chain appeared already in

[MR1§]:
re g Q)T

0<p<n
0<¢<n—p

This can be simplified to 6™ + 3™ + 1™ with the help of the binomial theorem.

4.2 Centralizers of finite distributive lattices

In this section . = (L;V, A) denotes a finite distributive lattice with greatest
element 1 and least element 0. The centralizer clone [V, A]* can be described by a
slight variation of Theorem [£.1.1]

Theorem 4.2.1. [TW21] Let L = (L;V,A) be a finite distributive lattice and
fe O(Ln). Then the following are equivalent:

(i) felv,Al"

(i) there exist unary operations uy,...,u, € [V,A]* such that f(xq,...,z,) =
ur (1) Ve -Vup(x,) and for alli,j € {1,...,n},i # j we have u;(1) Au;(l) =
u1(0) = - -+ = u,(0).

Furthermore, the operation f given by depends on all of its variables if and
only if none of the unary operations u; are constant.

Proof. [()] = [(iD} As in the proof of Theorem [£.1.1] we define the unary operations
Uly .Uy as up(x) = f(2,0,...,0),...,u,(z) = f(0,...,0,z). By that theorem,

for these unary operations we have f(x1,...,x,) = ui(x1) V -+ V u,(x,) and
u1(0) = -+ = u,(0) = f(0,...,0). Since f and the constant 0 operation belong
to [V, A]*, we have uy,...,u, € [V,A]*. It only remains to show that for all

i,j €{Ll,...,n}, i # j we have u;(1) Au;(1) = f(0,...,0). For notational simplicity,
let us assume that ¢« = 1 and j = 2; the proof of the general case is similar. Using
that f commutes with the operation A, with the help of the 2 x n matrix ([1) 09 8)
we can conclude that the following equality holds:

£0,...,0) = f(1A0, 0AL, OAD, ..., 0AD)
= £(1,0,0,...,0) A £(0,1,0,...,0) = uy (1) A us(1).
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(i) = [} Since v € [V]* and wi,...,u, € [V,A]*, we have f(z1,...,2,) =
ur(z1) V- Vuy(x,) € [V]*. Therefore, to complete the proof we have to show that
f commutes with A:

flzy, oo xa) A flyr, o yn) = f@r Aya, ooy 2y Ayn)-

Thus we need to prove that for all z1,...,2,,y1,...,y, we have
(ul(:vl) \VERERY, un(xn)) A (ul(yl) VeV un(yn)) =up(x1 Ay1) V- Vu(Tn Ayn).

Using the notation ¢; := u;(z;),d; :== u;(y;)(i = 1,...,n), the above equality can
be written as

(Ve Ve)AN(dy Ve Vdy) =u(mr Ayr) VeV up (T, Ayn).

Since L is distributive, we have

n

(e1Ve Ve )A(dy V- Vd,) = \/ (ci AN dj). (4.2.1)

From uy,...,u, € [V,A]* it follows that these operations are monotone, hence
u1(0) = u;(0) < ¢;,d; < u;(1) for every i; moreover, also implies that for all
1 # j, we have

Thus ¢; Ad; = u1(0) < ¢; A d; whenever i # j, so we can omit ¢; A d; from the join

on the right hand side of (4.2.1]), and using the fact that each u; commutes with A
we obtain the desired equality:

Il
<=

(r V- -Ve,)A(dy V- Vdy) (ci N dy)

s
I
—

(uilzi) A ui(ys))

I
<

s
Il
—

I
<3

(ui(i A yi))- [ |

<.
Il
MR

In the next lemma we investigate when the centralizer contains essentially n-ary
operations.
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Lemma 4.2.2. [TW21| Let L = (L; V, A) be a finite distributive lattice. Then the
following are equivalent:

(Ess) there exists an essentially n-ary operation in [V, A]*;

(Sub) there exists a sublattice of L that is isomorphic to 2™.

Proof. |(Ess)| = [(Sub)l Let f € Op be an essentially n-ary operation. Then by
Theorem we have f(x1,...,2,) = w(z1) V- Vu,(z,) and u;(1) Au;(1) =
u1(0) = -+ = u,(0) for all ¢ # j. Let us introduce the notation a; = u;(1) and
b = u;(0). Then for all i # j we have a; A a; = b and since f is essentially n-ary,
we also have a; > b. From this it is not hard to deduce using distributivity that
P{1,...,n}) = L, I — \{a; : i € I} is an embedding. (Alternatively, one can
verify with the help of Theorem 360 of [Grall] that {a4,...,a,} is an independent
set in the sublattice 1 b, hence it generates a sublattice isomorphic to P({1,...,n}).)

|(Sub)| = |(Ess): Let us suppose that there is a sublattice of L isomorphic to
27, let b be the least element and let a; (i € {1,...,n}) be the atoms of this cube.
Then we have b = a; A a; for all i # j. Let us define the operations w4, ..., u,
as u;(x;) == (z; Vb) ANa; for all i € {1,...,n}. Since L is distributive, u; is an
endomorphism of L, i.e., we have u; € [V, A]*. Note that u;(0) = b and v,;(1) = a;,
therefore we have uy(0) = -+ = u,(0) and also u;(1) A u;j(1) = u4(0) for all
i # j. By Theorem this means that the operation f € Op defined as
flzy, .. xn) = ui(x1) V- Vu,(z,) belongs to [V, A]*. Since none of the u; are
constant, Theorem [4.2.1]| also implies that f is essentially n-ary. |

Corollary 4.2.3. [TW21| For a finite distributive lattice L = (L; V, \) the following
are equivalent:

(i) every operation in [V, A]* is essentially at most unary;
(ii) L @s a chain.

Although the next lemma follows from the description of projective and injective
distributive lattices |Bal67|, we provide a short proof.

Lemma 4.2.4. [TW21| Let L = (L; V, A) be a finite distributive lattice. Then the
following are equivalent:

(Sub) there exists a sublattice of L that is isomorphic to 2";
(Quo) there exists a congruence ¥ of I such that /9 is isomorphic to 2".

Proof. Instead of 2", it will be more convenient to use the lattice K,, :== P({1,...,n}),
which is clearly isomorphic to 2". To prove [(Sub)| = |(Quo)|, assume that L has
a sublattice that is isomorphic to 2". Identifying this sublattice with K,, we
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may assume without loss of generality that K,, itself is a sublattice of L. For
any ¢ € {1,...,n}, the principal ideal generated by {1,...,n} \ {i} does not
contain {i}, hence, by the prime ideal theorem for distributive lattices, there is
a prime ideal P; of L. that does not contain {i} (see Corollary 116 in [Grall]).
Consequently, there is a homomorphism ¢;: . — 2 mapping P; to 0 and L\ P,
to 1. In particular, we have ;({i}) = 1 and ¢;({j}) = 0 for all j # . Combining
these maps we obtain a homomorphism ¢: L — 2" = — (@1 (21),...,¢n (24)).
We have ¢ ({i}) = (0,...,0,1,0,...,0), where the 1 appears in the i-th coordinate.
These elements generate 2", hence ¢ is surjective, and this proves .

For [(Quo)| = [(Sub), let us suppose that ¥ is a congruence of L such that L /¢
is isomorphic to K,,. For every I € K,,, let C; denote the congruence class of v
corresponding to [ at this isomorphism. Let a be the greatest element of Cp, and let
b; be the least element of Cy;y for alli € {1,...,n}. Then ¢; ;= aVb; belongs to Cyy,
and ¢; A ¢; belongs to Cy whenever ¢ # j. Moreover, ¢; Ac; = (aV b)) A(aVb;) > a,
hence ¢; A ¢; = a, as a is the greatest element of Cy. From this it follows using the
same argument as in the proof of Lemma that K, = L, I — V{¢;:i € I} is
an embedding. [

The previous two lemmas together give us the following characterization of the
existence of essentially n-ary operations in the centralizer of a finite distributive
lattice.

Theorem 4.2.5. [TW21]| Let L = (L;V,A) be a finite distributive lattice. Then
the following are equivalent:

(Ess) there exists an essentially n-ary operation in [V, A]*;
(Sub) there exists a sublattice of L that is isomorphic to 2";

(Quo) there ezists a congruence ¥ of L such that /9 is isomorphic to 2.

4.3 Centralizers of finite lattices

In this section our goal is to investigate whether the results proved in Section [4.2]
hold for arbitrary lattices. Let us look at Theorem first. Note that in the
proof of |(i)| = we did not use that the lattice L was distributive neither that L
was finite, and thus the proof provided there shows that this implication holds for
arbitrary bounded lattices. However, in the proof of = |(i)| we used distributivity,
and the following example shows that this implication does not hold for arbitrary
lattices.
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Figure 4.2: A nondistributive counterexample to the implication (2) = (1) of

Theorem @

Ezample 4.3.1. Let L be the lattice shown on Figure[£.2] Let us define the operations
u; and ug as

0, ifz e {0,b},

a, ifz € {a,d}, 0 ifze{0,a,b,d},
. up(z) = .

b, ifxze{ce}, c ifxze{cel}.

d, ifxze{l};

uy(z) =

It is easy to check that ker(u;) is a congruence of L, and wu; establishes an iso-
morphism from the quotient lattice L/ ker(u;) = {{0, b}, {a,d}, {c, e}, {1}} to the
sublattice {0, a, b, d}. Therefore u; is an endomorphism of L. Similarly, one can
verify that us € [V, A]*. Let f(z1,22) = ui(x1) V ug(22); we will show that f does
not belong to [A]*. Let us suppose that f commutes with A. Then applying the
definition of commutation to the 2 x 2 matrix (‘CL g), we have the following equality:

flanc,ene)= fla,c) A f(cc);

that is,
ui(a Ae) Vug(ece)= (ui(a) Vus(c)) A (ui(c) Vuy(c)).

However, the left hand side evaluates to ¢, and the value of the right hand side is e;
c=0Ve=u(0)Vua(c)=(aVe)AN(bVe)=1Ne=e

which is a contradiction.
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We have seen that the implication = of Theorem does not hold
for arbitrary lattices, but, interestingly, for finite simple lattices we have [(i)| <
. Moreover, as we shall see in the following remark, for a finite simple lattice
L = (L;V,A), every operation in [V, A]* depends on at most one variable.

Remark 4.3.2. If IL is a finite simple lattice, then = |(1)| holds even if IL is not
distributive. For one-element lattices = [(i)| holds trivially. Assume that L is a
finite simple lattice with at least two elements, uq, ..., u, are endomorphisms of
L such that u1(0) = -+ = u,(0) and u;(1) A uj(1) = uy(0) whenever i # j, and
let f(xy,...,2n) = ur(z1) V -+ V uy(z,). Simplicity of L implies that the kernel
of every u; is one of the two relations L? or {(a,a) | a € L}; therefore, every u; is
either a constant operation or an automorphism of .. We distinguish three cases
on the number of automorphisms occurring in uy(z1) V - -+ V uy,(2,).

1. If each w; is constant, then f is also constant, hence f € [V, A]*.

2. If u; and u; are automorphisms with ¢ # j, then 1 = u;(1) Au;(1) = u;(0) = 0,
which is a contradiction.

3. In the remaining cases we can assume without loss of generality that wu; is
an automorphism and wus,...,u, are all constants. Then u;(0) = 0, thus
u2<0) == un(o) =0 and f(xlv s ,I‘n) - ul(xl)'

Therefore, if holds for a finite simple lattice, then f depends on at most one
variable, and f is equivalent to an automorphism or a constant, hence f € [V, A]*.
Thus (i) < holds for finite simple lattices; moreover, every operation in [V, Al*
depends on at most one variable.

Before investigating further which results of Section hold for arbitrary finite
lattices, we need to recall some facts from universal algebra. First we define the
so-called product congruence; this definition can also be found in [BS81|.

Definition 4.3.3. [BS81] Let Ay, ..., A, be algebras of the same type and for all
ie{l,...,n} let ¥; € Con(A;). The product congruence 9 =y x --- x 9, on the
set Ay x --- x A, is defined by

(a1, ovan), (b, by)) €9 & Vi€ {1,...,n}: (a;,b;) € V;.

Next we give two lemmas about congruences of direct products in congruence
distributive varieties. The first one is a special case of Lemma 11.10 of [BS81]; the
second one is implicit in [CM18; |(CGL18], but we include the proof for the sake
of self-containedness. The variety of lattices is congruence distributive, hence we
can use them in our study of centralizers of lattices. These two lemmas will also be
helpful later in describing the centralizers of the clones over the two-element set

(see Section [4.4).



CHAPTER 4. CENTRALIZERS OF FINITE LATTICES AND SEMILATTICES 41

Lemma 4.3.4. [BS81| Let V be a congruence distributive variety, Ay, ..., A, € V
and ¥ € Con(A; X --- x A,). Then there exist ¥; € Con(A;) for alli € {1,...,n}
such that 9 =91 X --- x 1,

Lemma 4.3.5. |[CM18; CGL18| Let V be a congruence distributive variety and
A € V. Then the following are equivalent:

(i) There ezists an essentially n-ary operation f € Oy4 that is a homomorphism
from A™ to A.

(i) There exist ¥; € Con(A) such that ¥; # A% for all i € {1,...,n}, and
A/ x - x AJD, embeds into A.

Proof. = Let f: A™ — A be a homomorphism. Then by Lemma there
exist ¥1,...,9, € Con(A) such that ker(f) =, x --- x 9J,,. Since f is essentially
n-ary, we have that 1; # A% for all i € {1,...,n}. By the homomorphism theorem
we have A" /ker(f) = A"/(¥1 x -+ x¥,) = A/ x -+ x A/Y, = f(A™), and since
f(A™) is a subalgebra of A, it is clear that A/J; x --- x A/¥, is embeddable into
A.

(i) = [(Df Let ¢: A/ x -+ x A/Y,, — A be an embedding, let ¥ € Con(A™) be
the product congruence ¥ = v, x- - - X9,, and let v denote the natural homomorphism
from A™ to A™/1¥. Then we define the operation f € Ogl) as f(xy,...,x,) =
d(x1 /01, ..., 20 /00) = o(v(xy, ..., x,)). Thus f = ¢ o v is a homomorphism, and
since 9; # A? for all i, we have that f is essentially n-ary. |

The following corollary of Lemma [4.3.5] gives an upper bound for the essential
arity of operations in the centralizer of a finite algebra in a congruence distributive
variety.

Corollary 4.3.6. [TW21| Let V be a congruence distributive variety, let A € V be
a finite algebra and let C' denote the clone of term operations of A. If there is an
essentially n-ary operation in C*, then we have n < log, |A|. In other words, the
essential operations in C* are at most log, |Al-ary.

Proof. By Lemma [£.3.5] if we have an essentially n-ary operation in C*, then there
exist ¥1,...,9, € Con(A) such that A/¥; x --- x A/, is embeddable into A.

Therefore we have |A/¥; X -+ x A/d,| = |A/O|-...-|A/I,| <|A|, and since for
every i we have ¥; # A2, it follows that 2" =2-...-2 < |A/Yy]-...- |A/9,| < |A|.
Thus n = log,(2") < log,(|A|). |

Now we will focus on Theorem [4.2.5 or more precisely, we investigate which
implications between |(Ess)| [(Sub){and |(Quo)| hold for arbitrary finite lattices. Using
that the variety of lattices is congruence distributive, and also that every lattice
(except the one-element lattice) has a two-element sublattice, as a corollary of
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Lemma we can conclude that the implication [(Ess)| = [(Sub)| of Theorem [4.2.5]
also holds for arbitrary finite lattices.

However, |(Sub)| = |(Ess)| does not hold in general; partition lattices provide
counterexamples to this implication. Indeed, every finite lattice (in particular, 2")

embeds into a large enough finite partition lattice (see Theorem 413 in [Grall]), and
partition lattices are simple (see Theorem 404 in [Grall]), hence by Remark ,
holds only for n < 1.

Now we show that for arbitrary lattices neither |(Sub)| = [(Quo)| nor [(Quo)| =
holds in general. Using partition lattices again, we can give counterexamples
to|(Sub)|=|(Quo)l The lattice 2™ embeds into a large enough finite partition lattice,
and since partition lattices are simple, we have that 2" is not a homomorphic image
of a partition lattice.

To disprove [(Quo)| = [(Sub)|, let K,, = P({1,...,n}) = 2" for some n > 4, and
define a partial order on the set L := K, x{0, 1} as follows. For (a, 1), (b,j) € Ky, let
(a,i) < (b, j) iff either a < b, or @ = b and 7 < j. Note that this is the lexicographic
order on L, and this makes LL a lattice with the following lattice operations (here ||
stands for incomparability in K,,):

(a,iVj), ifa=0b, (a,iNjg), ifa=b,

. N (a,i), if a > b, . N (b,7), ifa>b,
@iVOD =1 b)), ita<h, @NBD =9 @0y, ita<b,
(aVb,0), ifalb; (anb, 1), ifalb.

Now K,, is a homomorphic image of . under the homomorphism L. — K,,, (a,i) — a.
To see that K,, does not occur as a sublattice of L, note that {1,2} is a doubly
reducible element in K,,, i.e., it can be written as a join as well as a meet of two
incomparable elements: {1,2} = {1} vV {2} = {1,2,3} A {1,2,4}. However, there
is no doubly reducible element in L, since a nontrivial join in LL is always of the
form (a,0), and a nontrivial meet is always of the form (a,1). (It is not necessary
to double each element of K,,: with a more careful argument, one can construct a
counterexample of only 2" + 1 elements.)

Note that the assumption n > 4 was essential in the construction of this
counterexample, since for n < 3, there are no doubly reducible elements in K,,. In
fact, one can prove that [(Quo)| = [(Sub)| holds for all lattices (distributive or not)
for n < 3 (see Lemma 73 in [Grall].

Summarizing the results up to this point we know that |[(Ess)| = |(Sub)| holds,
but none of the implications |(Sub)| = |(Ess)l |(Sub)| = [(Quo)| or |[(Quo)| = [(Sub)|
hold for arbitrary finite lattices. This immediately implies that [(Quo)| = |(Ess)| can
not hold in general. The lattice L. = M¥ shows that |(Ess)| = [(Quo)| does not hold,

either. It is straightforward to verify that the operation f € O(L") defined by

f((l’n, “e ,Iln), ceey (Inla Ce ,Inn)) = (IH, Ce ,ZL’n1>
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commutes with V and A and depends on all of its variables, hence holds for
L. By Lemma [4.3.4] every quotient of M3 is isomorphic to a product of quotients
of M. Since M is simple, I only has the quotients My, M2, ..., M2, and therefore
2™ does not appear as a quotient algebra of L.

It is also an interesting question to investigate whether any two of the three

statements |(Ess)], [(Sub)[and [(Quo)| (of Theorem [4.2.5)) imply the third statement in

general. First, it is easy to see that and together do not imply @Quoi,

but |(Ess)| and |(Quo)| imply since we have = [(Sub)| and [(Ess)| % [(Quo)l
We will show that [(Sub)|and [(Quo)| together imply for arbitrary finite lattices.

Let us suppose that [(Sub)| and [(Quo)| hold for a finite lattice L. Then by [[Quo)]
there is a quotient of IL that is isomorphic to 2", and since 2 is a homomorphic
image of 2™, we have that 2 is a homomorphic image of L. Let ® denote a surjective
homomorphism ®: I — 2. Then obviously ker(®) # L? and by we have that
L/ker(®) x -+ x L/ ker(®) = (]L/ ker(@))n = 2" embeds into L. Therefore, by
Lemma [4.3.5] there exists an essentially n-ary operation in Oy,.

This section gave us some insight to the appearance of n-ary operations in the
centralizer of an arbitrary finite lattice. We summarize these results in the following
proposition.

Proposition 4.3.7. [TW21] Let L = (L;V, A\) be an arbitrary finite lattice. Then
the following are true:

o For any n-ary operation f € [V, A]*, there exist unary operations uy, ..., u, €
[V, A]* such that f(xy,...,x,) = ui(z1) V -+ V u,(z,) and for all i,5 €
{1,....n}, i # j we have u;(1) Auj(l) = uy(0) = - - - = u,(0).

o If there is an essentially n-ary operation in [V, \|*, then there is a sublattice
of IL that is isomorphic to 2".

o If there is a sublattice Ly and a quotient I, of I that are both isomorphic to
2™ then there is an essentially n-ary operation in [V, A]*.

4.4 Centralizer clones over the two-element set

As promised earlier, in this section we are going to determine the centralizer of
each clone on {0, 1} in a fairly simple way. We use the Post lattice and the notation
for Boolean clones from the appendix (see Figure and Table . First let us
record two entirely obvious facts, just for reference:

Fact 4.4.1. For any clones C,Cy < Oy we have (Cy V Cy)* = CF N C5. (Here
V and A denote the join and meet operations of the clone lattice over A, i.e.,
Cl V CQ = [Cl U CQ] and Cl VAN CQ = Cl N CQ) This implies that Zf Cl < Cg then
C; < CF.
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Fact 4.4.2. By the definition of the clones €, €2 and S, for any clone C' < Oy 1)
we have

e 0 <= (C <y,
e e <= (C<Qy,
e me(* — (LS.

We will see that all centralizers over {0, 1} can be computed using three tools:
Theorem [4.1.1] Corollary [£.3.6] and Proposition below. This proposition can
be found in [Sze86|, Proposition 2.1], but, for the reader’s convenience, we include a
proof, which is very similar to the proof of Theorem [4.1.1]

Proposition 4.4.3. Let A = (A;+) be an Abelian group, and let m(z,y,z) =
x —y+z. An n-ary operation f € O4 belongs to the centralizer [m]* if and only if
there exist unary operations uy, ..., u, € [m|* such that

flz, .o xn) =u(x) + -+ up(ay,).

Proof. 1t is easy to see that the addition commutes with m, hence if f is a sum of
endomorphisms of (A;m), then f € [m]*.

Conversely, assume that f is an n-ary operation in [m]*, and define uy, ..., u,
the same way as in the proof of Theorem . 1.1} w;(z) = f(2,0,...,0),...,u,(z) =
f(0,...,0,2). Then we have uy,...,u, € [m|*, as f and the constant 0 operation
commute with m. Let us consider the (n + 1)-ary operation g(z1,...,2,,y) =
x1+ -+, — (n — 1)y. The following expression shows that g € [m|:

9Ty, T, Y) =21 — Y+ To—Yy+T3— - — Y+,

= m( ’ 'm(m(xl?yax2)7y7$3)a cee 7y7xn)-

(Actually, it is well known and also easy to verify that the elements of [m] are the
operations of the form ayzy + -+ + a,z, (n € Nya; € Z,3 a; = 1), but for the
purposes of this proof we only need the operation g above.) Since g € [m] and
f € [m]*, the operations f and g commute. Applying the definition of commutation
to the (n + 1) X n matrix

zy 0 0 ... O
0 0 0 . T
0 0 0 . 0
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we can conclude that

flz, ... xy) :f<g(x1,0,...,0,0), o g(O,...,O,xn,O))

= g(f(@1,0,...,0),..., £(0,...,0,2,), (0,...,0))
=uy(z1) + -+ up(z,) — (n—1)- f(0,...,0).

This is almost the required form of f; we only need to deal with the constant term

(n—1)- f(0,...,0). However, since m is idempotent, every constant commutes
with m, thus u),(x,) = u,(z,) — (n — 1) - £(0,...,0) belongs to [m]*. Then we can
write f as f(z1,...,2,) = w(x1) + -+ 4+ Up_1(xn_1) + u,(x,), and this completes
the proof. ]

Theorem 4.4.4. [TW21| The centralizers of the clones of Boolean functions are as
indicated in Table in the appendiz. The clones are grouped by their centralizer
clones; the first column shows the 25 primitive positive clones over the two-element
set, and the second column lists all clones having the given primitive positive clone
as their centralizer.

Proof. Let us recall that a variety V is congruence distributive if and only if it has,

for some n, a sequence of terms Jy(z,y, 2), ..., Ju(x,y, z) satisfying the following
identities:

Jo(z,y,2) =z,

In(2,y,2) = 2,

Ji(z,y,x) = x for each 0 <1i < n,

Ji(x,z,y) = Jip1(x, z,y) if i is even,

Ji(z,y,y) = Jipa(z,y,y) if ¢ is odd.

These terms J; are called Jénsson terms. If C' < Oy 1y is a clone, then the existence
of a sequence of Jonsson terms in the clone C' guarantees that the variety generated
by the algebra ({0,1}; C') is congruence distributive. By Corollary [£.3.6] this implies
that C* < Q.

The clone SM of self-dual monotone Boolean functions is generated by the
majority operation pu(x,y, z) = xy+xz +yz, which immediately gives us a sequence
of Jonsson terms with Jy(z,y,2) = =, Ji(z,y,2) = p(z,y, z) and Jo(z,y,2) = 2.
We provide a sequence of Jénsson terms in USYM in Table [4.1} the duals of these
operations are Jonsson terms in WM. Thus if C' contains at least one of the
three clones USy M, Wiy M and SM as a subclone, then C* contains only essentially
at most unary functions by Corollary [£.3.6] and then C* is easy to find using
Fact [£.4.20 This covers the first six rows of Table [L.2]
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x y zle=Jy J1 Jy J3 Jy=2z
0 0 O 0 0 0 O 0
0 0 1 0 0 0 O 1
0 1 0 0 0 0 O 0
0 1 1 0 0 0 1 1
1 0 0 1 0 0 O 0
1 0 1 1 1 1 1 1
1 1 0 1 1 0 0 0
1 1 1 1 11 1 1

Table 4.1: A sequence of Jénsson terms in the clone Ugy M.

After having determined clones with essentially unary centralizers, there are
finitely many clones left to investigate. It is easy to see that these clones appear
as joins of some of the clones [0], [1], [7], Vo1, Ao1 and Lg;. According to Fact
it suffices to determine the centralizers of these six clones. It follows immediately
from the definition of 2y, 2y and S that [0]* = Qo, [1]* =y and [-]* = S.

Theorem [4.1.1| gives us the centralizer of Vi, : every operation in Vi is of the form

uy(z1) V- -Vuy(x,), where u;(x;) = x; or u; is constant for all i = 1,...,n. Thus, we
have Vj; = [V,0,1] =V, and dually, A}, = [A,0,1] = A. Finally, Proposition [1.4.3]
shows that the centralizer of Loy = [x —y + 2] = [z + y + 2] consists of sums of

unary functions, hence L, = {x; + 2o+ -+ 2, +c|ce {0,1},neNg}=L. A

The following remark makes it easier to remember the centralizers of all Boolean
clones.

Remark 4.4.5. We can group the clones on {0, 1} by the “type” of their centralizers.
These groups give a partition of the Post lattice into five blocks:

o Coa : ={C < Oppy | UM < C or Wt M < C or SM < C};
o Cvi={V.Vo, Vi, Vin }s

o Cpi={A, Ao, A1, Ao s

o Cin:={L, Lo, L1, Lo1,SL};

¢ Coun:={C <Oy | C <D}

The “centralizing” operation C' +— C* preserves this partition: for every C' < Oy 13,
we have
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if C' € Ceq then C* € Cyy, (ie., C* < QW);

it C € Cy then C* € Cy;

if C € Cy then C* € Cp;

if C € Clin then C* € Clin;

if C' € Cyy, then C* > Sy (and thus C' € Cyq).

Figure in the appendix shows the above partition of the Post lattice (the five
blocks are indicated by different symbols) with primitive positive clones marked by
a symbol having an outline. Observe that primitive positive clones belonging to the
same block have different unary parts most of the time, the only exception being
Qo1 N QW = S5 N QW = [2]. Thus the observations above together with Fact [4.4.2
allow us to find the centralizer of any clone with ease.



Chapter 5

Solution sets over finite lattices and
semilattices

In this chapter we describe all finite lattices and semilattices with property
In Chapter |3 we used the centralizer clones to prove that every two-element algebra
has property . In theory, we might be able to use our results for centralizers
of finite lattices and semilattices — that we obtained in Chapter {4 - in a similar
fashion. However, we will take a different approach.

In Section we gave a connection between property and quantifier
elimination of certain primitive positive formulas. In this chapter we rely on this
connection in our investigation. Section contains the full description of finite
lattices with property a finite lattice has property if and only if it
is a Boolean lattice. In Section finite semilattices having property are
described as semilattice reducts of distributive lattices.

5.1 Systems of equations over finite lattices

In this, and in the following section L. = (L; A, V) denotes a finite lattice, with
meet operation A and join operation V. Furthermore, Or, denotes the least and 1y,
denotes the greatest element of L. (that is, Op, = A L and 15, =V L).

The following lemma shows that property does not hold for nondistribu-
tive lattices, i.e., solution sets of systems of equations over a nondistributive lattice
can not be characterized via closure conditions.

Theorem 5.1.1. [TW20] Let L = (L; A, V) be a finite lattice. If property
holds for C = [N\, V], then L is a distributive lattice.

Proof. Let . = (L; A, V) be a nondistributive finite lattice and C' = [A, V] < Of.

By Lemma [2.2.4] the set
T={(r,y)|uel:uhz=uAyanduVzr=uVy}C L

is closed under C*. We prove that T is not the solution set of a system of equations

over C, hence property [(SDC)| does not hold for C. Suppose that there exists a

48
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= T Y ANy zVYy
b r | — (a,b) (b,a) (a,b)
u Yy - - (a’ b) (bv a)
a Ay | — — - (a,b)
rVy | — — — —

Figure 5.1: Counterexamples showing that the equations in the proof of Theo-

rem do not belong to £.

system of C-equations £ such that T = Sol(£). Since L is not distributive, by
Birkhoff’s theorem we know that there is a sublattice of L., which is isomorphic
either to N5 or M3. Now neither of the equations

r=y (<= zANy=zVy), z=xzAy, xz=zxVy, y=xAy, y=zVy

belong to £; we prove this by presenting a counterexample for each equation. These
counterexamples are shown in Figure [5.1I] where we choose the elements a and
b as presented in the figure. (Note that an element u, chosen like on the figure,
shows that (a,b),(b,a) € T. In the table, the entry (z1,y;) in the line labeled by
the term s(z,y) and column labeled by the term #(z,y) witnesses that (xq,y) is
not a solution of s(z,y) = t(x,y).)

There are no other nontrivial 2-variable equations over C', therefore we get
that T satisfies only trivial equations, hence T' = L?. This is a contradiction, since

(Op,1p) ¢ T. |
The following lemma will help us to prove that property can only hold

for Boolean lattices. Before the lemma, for a distributive lattice IL, we define the
median of the elements x,y,z € L as

m(z,y,z) =(xAy)V(eAz)V(yAz)=(xVy A(xzVz)A(yVz2).

Lemma 5.1.2. [TW20| Let L = (L;A\,V) be a distributive lattice, and for all
x,y, z,u € L, let

p(z,y,z,u) = (@ AyY)V(ecAz)V(yAz)V(uAz)V(uAy)V(uA z).
Then for all x,y, z,u € L, we have
p(z,y,z,u) =xVyVzVu < m(z,y,z2)Vu=xzVyVz.

Proof. Let x,y, z,u € L be arbitrary elements. Let us denote m(z,y, z) simply by
m and p(z,y, z,u) by p for better readability.
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First let us suppose that p = xVyVzVu. It is easy to see that p < xVyV z always
holds (since every meet in p is less than or equal to x VyV z). Since p = xVyV 2z Vu,
we get that p <axVyVvVz<zxVyVzVu=p, hence p=2xVyV z Observe that
by the distributivity of L, p can be rewritten as p = m V (u A (x Vy V z)), and
fromp=2xVyVzVu=2xVyVz wecan see that u < xVyV z, therefore we have
p=mVu. ThusmVu=p=xVyVz

For the other direction, suppose that m Vu = z V y V z. Using that L is
distributive, we get that p=mV (uA(xVyVz))=(MmVu)AN(mV(xVyVz)),
and by the assumption this implies that p = x V y V z. Our assumption also implies
that u <z VyV z, therefore we have p=2VyV 2V u. [

Theorem 5.1.3. [TW20] Let L = (L;A,V) be a finite distributive lattice. If
property holds for C = [N, V], then L is a Boolean lattice.

Proof. Let . = (L; A, V) be a finite distributive lattice and let C' = [A, V] < Oy.
Since LL is distributive, by Birkhoff’s representation theorem, I can be embedded
into a Boolean lattice B, hence we may suppose without loss of generality that L is
already a sublattice of B. We can also assume that O, = Og and 1, = 1g, and in the
sequel we omit the subscripts and write only 0 and 1 for the boundary elements.
Let us denote the complement of an element = € B by 2. We define the dual of

p=p(z,y, z,u) (from Lemma as pl = q=q(v,y,2,u), ie.,
q(z,y,z,u) = (xVy) ANz V2)A(yVz)A(uVe)ANuVy) AV z).
Let T be the following set:
T = {(:p,y,z) e L? ’ Ju e L:p(x,y,z,u) =xVyVzVuand

q(x,y,z,u):x/\y/\z/\u}.

By Lemma , the set 7" is closed under C*. Let (x,y,z) € T be arbitrary
with an element u € L witnessing that (z,y,z) € T. From Lemma it follows
that p(z,y,z,u) = xVyVzVuif and only if mVu =z VyV z. Meeting both
sides of the latter equality by m/, we get

uAm' =mAm)VuAm)=mVu)Am'=(xVyVz)Am. (5.1.1)

By the dual of Lemma [5.1.2) we know that ¢(x,y, z,u) =z Ay A z Aw if and
only if m Au = x Ay A z. Then joining the last equality and (5.1.1]), we get that

u=uAlp=uA(m Vvm)=(uAm)V (uAm)
=({(zVyVz)Am)V(zAyAz).
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It is not hard to derive from the defining identities of Boolean algebras that
the latter formula is in fact the symmetric difference x A y A z in B. Alternatively,
using Stone’s representation theorem for Boolean algebras, we may assume that =z,
y and z are sets, and that the operations A, V, are the set-theoretic intersection,
union and complementation. Then m corresponds to the set of elements that belong
to at least two of the sets =, y and 2. Thus (zVyV z) Am' consists of those elements
that belong to exactly one of z, y and z, and ((zVyV z) Am')V (x Ay A z) contains
those elements that belong to one or three of the sets x, y and z, and this is indeed
r Ay A zin B.

We have proved that the element u witnessing that (z,y,z) € T can only be
rTAY Az

Ve,y,z € L: (v,y,2) €T < Juel:u=xAyhz < xAyAzE€EL.
(5.1.2)
It is easy to see that {0,1}* C T, and using the main theorem of [Gra64], we
get that if (f,g) € Eq(T), then f = g must hold. (In our case this theorem says
that every term function of IL is uniquely determined by its restriction to {0,1}3.)
Therefore, only trivial equations can appear in Eq(T), hence T'= L3. Then
implies that L is closed under the ternary operation x A y A z. In particular,
for any x € L we have © A 0 A 1 = 2’ € L, which means that LL is a Boolean
lattice. |

We will need the following lemmas for the proof of Theorem [5.1.7, which states
that Boolean lattices have property |(SDC)| This will complete the characterization

of lattices with property [(SDC)]

Lemma 5.1.4. [TW20] Let L = (L; A, V) be a finite distributive lattice and let
C =[N, V] < Op. Then every system of C-equations is equivalent to a system of
inequalities {p1 < qu,..., o < q}, where p; € [A\] and ¢; € [V] (i=1,...,1).

Proof. Let L. = (L; A, V) be a finite distributive lattice, let C' = [A, V] < Op, and
let

E={fi=g,-- . [i =9}

be a system of C-equations. For arbitrary a,b € L we have a = b if and only if
a < band b < a, therefore £ is equivalent to the system of inequalities

E={h<g.a<f, i <g,a<fi}

Denote the disjunctive normal forms of the left hand sides of the inequalities in &’
as DNF}, and denote the conjunctive normal forms of the right hand sides of the
inequalities in & as CNF; (j = 1,...,2t). Then & is equivalent to the system of
inequalities

{DNF, <CNF,,..., DNFy, < CNFy}.
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Each DNFj is a join of some meets, and each CNFj is a meet of some joins.
Therefore, for every j, the inequality DNF; < C'NF} holds if and only if every
meet in DN F} is less than or equal to every join in C'NFj. This means that there
exists a system of inequalities {p; < ¢1,...,p < ¢} equivalent to £, such that
pi €[N and ¢ € [V] 1 =1,...,1). |

Lemma 5.1.5. [TW20| Let B = (B, A, V,") be a Boolean algebra. Then for every
a,b,c,d,u € B, we have

(i) aNu<b <= u<d Vb

(i) b<aVu < u>d Nb;

(ili) a ANV < Vd <= aNc<bVd.
Proof. Let a,b,c,d,u € B be arbitrary elements. For the proof of , let us first
suppose that a A u < b. Joining both sides of the inequality by a’, we get

adVaNu)=(dVa)A(dVu)=1gA(dVu)=d Vu<dVb,

and from this, u < a’ vV b follows.
For the other direction, if v < a’ V b holds, then meeting both sides by a, we
get that

aNu<aA(@dVb)=(and)V(aAb) =0V (aAb)=aAb,

and from this, a A u < b follows.
The second statement is the dual of
For the proof of let us use [(i)| with v = a A ¥/, and then we get that

aNl <dVd < cA(aAb)=(cha)ANV <d.
Then usingwith u=d, we get
(cNa) ANV <d <= cNha<bVd,

which proves . [ |

Helly’s theorem from convex geometry states that if we have k (> d) convex
sets in RY, such that any d + 1 of them have a nonempty intersection, then the
intersection of all k sets is nonempty as well. The following lemma says something
similar for intervals in lattices (with d = 1).

Lemma 5.1.6. [TW20] Let L = (L;A,V) be a lattice, ¢;,d; € L (i = 1,...,k).

Then we have

k
[Cz‘,di] 7&@ < \V/Z,] € {1,,]{7} ¢ < dj.

1

(2
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Proof. Let L = (L; A, V) be a lattice, and ¢;,d; € L (i = 1,..., k). Then obviously,

k

ﬂ[ci,di] = [cl\/---\/ck,dl/\--~/\dk],

i=1
which is nonempty if and only if ¢; V--- V¢ < dy A -+ A dj, which holds if and
only if ¢; < d; for all 4,5 € {1, ..., k}. |

The last step in the characterization of finite lattices having property
is to show that Boolean lattices do indeed have property . For proving this,
we will use the equivalence of this property with the quantifier eliminability for
primitive positive formulas over C° = [A, V]° (see Theorem [2.2.6).

Theorem 5.1.7. [TW20| IfL = (L; A, V) is a finite Boolean lattice, then prop-
erty holds for C = [A, V].

Proof. Let L = (L; A, V) be a finite Boolean lattice, and let C' = [A, V]. Let us denote
the complement of an element z € L by z’. By Theorem m, property
holds for C' if and only if any primitive positive formula over C° is equivalent to
a quantifier-free primitive positive formula. Let us consider a primitive positive
formula with a single quantifier:

@(ml,...,xn)EEIu&pj(zy),...,zg)), (5.1.3)

where p; € (C°)") and zi(j) (j=1,...,t, and : = 1,...,r;) are variables from the
set {x1,...,x,,u}. We will show that ® is equivalent to a quantifier-free primitive
positive formula, and thus (by iterating this argument) every primitive positive
formula is equivalent to a quantifier-free primitive positive formula. By Lemmal5.1.4
we can rewrite ® to an equivalent formula

l
Fu &7 (pi < ),
=1

where p; € [A] and ¢; € [V] (i =1,...,1).

Let a; denote the meet of all variables from {z1,...,z,} appearing in p;, and
let b; denote the join of all variables from {z1,...,z,} appearing in ¢;. Then we
can distinguish four cases for the i-th inequality:

(0) If u does not appear in the inequality, then the inequality is of the form

(1) If u appears only on the left hand side of the inequality, then the inequality
is of the form a; A u < b;.
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(2) If u appears only on the right hand side of the inequality, then the inequality
is of the form a; < b; V u.

(3) If w appears on both sides of the inequality, then the inequality is of the form
a; N\ u < b; V u, which always holds, since a; A u < u < b; V u.

Let I; denote the following set of indices:
I; = {i | the inequality p; < ¢; belongs to case (j)}

for j = 0,1,2,3. The only cases we have to investigate are case and case |(2)
(since u does not appear in case @ and in case|(3)|there are only trivial inequalities).
By Lemma|5.1.5,

fori € I} we have a; ANu < b; < u<a,Vb < uellL,a Vb= cd;
for i € I we have a; < b;Vu < u>b Na; < u€ [a; N, 1] =: ¢, dy].

Then we have

E|uVi€]1UIQ:p¢ <gq <= ﬂ [Ci,di] %@ < VZ,] e [UI: Cigdj
iel1Ulo

by Lemma Since u does not appear in the condition above, in principle, the
quantifier has been eliminated. However, our formula still involves complements.
Therefore, we use Lemma to rewrite the formula. The only nontrivial case is
if ¢; # Op and d; # 1y, that is, ¢; = a; Ab; and d; = a); V b; (i € I, j € ). In this
case ¢; < d; if and only if a; A a; < b; V b; by Lemma [5.1.5]

Summarizing the observations above, we have

l
Ory,..,m) <= &pi<a) = Lla<h)& & (a<d)
i=1 i€l i,j€ Ul
<~ ai_bi)& & (ai/\ajgbi\/bj),
1€lp 1€lz,5€

which is equivalent to a quantifier-free primitive positive formula over [A, V]° (since
for all z,y € L, we have z < y if and only if x = z A y). [ |

We can summarize the results of this section in the following corollary of

theorems [5.1.1] [5.1.3| and [5.1.7]

Corollary 5.1.8. [TW20| A finite lattice has property if and only if it is a
Boolean lattice.

This means that for any finite lattice L. = (L; A, V), solution sets of systems of
equations over IL can be characterized via closure conditions if and only if L is a
Boolean lattice.
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= ‘ T Y TAY
= (a,0m) (a,0m)
Yy - - (OMva)

TNy | — - —

Table 5.1: Counterexamples showing that the equations in the proof of Theorem
do not belong to £.

5.2 Systems of equations over finite semilattices

Similarly to Section in this section Ml = (M; A) denotes a finite semilattice
with meet operation A and least element Oy;.

Theorem 5.2.1. [TW20]| Let M = (M;A) be a finite semilattice. If M has no
greatest element, then property |(SDC)| does not hold for C = [A].

Proof. Let M = (M; A) be a finite semilattice with no greatest element, and let
C = [A] < Oy. The set

T={(z,y) | uelizAu=zvand yAu=y} =
={(z,y) | uel:z<uandy <u} C M?

is closed under C* by Lemma Similarly to Theorem [5.1.1} we will prove
that T' is not the solution set of any system of equations over C. Suppose that
there exists a system of C-equations £ such that 7" = Sol(€). There are only three
nontrivial 2-variable equations over C"

r=vy, TNANy=z, zTANY=1y.

As in Theorem [5.1.1] we prove that none of these equations can appear in £ by
presenting counterexamples to them (see Table . Note that since M is finite and
it has no greatest element, there exist maximal elements a # b in M. We have that
only trivial equations can appear in £, thus 7' = M?. But this is a contradiction,
since (a,b) ¢ T. |

If a finite semilattice Ml = (M; A) has a greatest element, then for all (a,b) € M?,
theset H={x € M | a <z and b < z} is not empty. Since M is a finite semilattice,
it follows that A H exists for all (a,b) € M?. This means that we can define a join
operation V on M, such that L = (L; A, V) is a lattice (with L = M). Therefore,
from now on it suffices to investigate lattices (but the clone we use for the equations
is still C' = [A]).



56 CHAPTER 5. SOLUTION SETS OVER FINITE LATTICES AND SEMILATTICES

The following theorem shows that property does not hold for nondistribu-
tive lattices (regarded as semilattices), i.e., solution sets of systems of equations
over a nondistributive lattice (as a semilattice) can not be characterized via closure
conditions.

Remark 5.2.2. A meet-semilattice Ml is distributive if for any a,by,b; € M, the
inequality a > by A by implies that there exist ag,a; € M such that ag > by, a1 > by
and a = ap A a; (see Section 5.1 in Chapter II of [Grall]). From Lemma 184
of [Grall] it follows that a finite semilattice is distributive if and only if it is a
semilattice reduct of a distributive lattice.

Theorem 5.2.3. [TW20] Let L = (L; A, V) be a finite lattice. If 1L is not distributive,
then property ((SDC)| does not hold for C' = [A].

Proof. Let . = (L; A, V) be a finite lattice and let C' = [A] < Op,. Since L is not
distributive, we know that there exists a sublattice of L isomorphic to either N5 or
Ms. Let us denote these two cases as (N5) and (Ms), respectively. The figures and
tables we use in this proof can be found in Appendix [I.3] Let T be the set

T={(zr,y,2)el?|ucl:zAy=uAyanduAr=xand uAz =z}
={(z,y,2) €L’ | e L:zANy=uAyand u >z and u> z},

which is closed under C* by Lemma [2.2.4] As in Theorem [5.1.1} we will prove that
T is not the solution set of any system of equations over C.

Similarly to Theorem [5.1.1} we present counterexamples to nontrivial equations,
the only difference is that here we prove that there can be only one nontrivial
equation satisfied by 1" (see tables[1.3|and |1.4] for case (N5) and (Ms), respectively).

We choose the elements a, b and ¢ as presented in Figure for case (N5), and
in Figure for case (M3). (Note that an element u, chosen like on the figures,
shows that in case (Nj3) we have (a,c,b),(b,a,c) € T, and in case (M3) we have
(a,b,¢),(a,c,b) €T.)

So now we have that in both cases the only nontrivial equation that 7" can
satisfy is the equation y A z = x Ay A z. One can verify that this equation holds on
T:if (z,y,2) € T, then we have

TANY=uNANy>zANy = cANyANz>2yNz,

which implies that y A 2 = x A y A z. Therefore, we can conclude that the only
nontrivial equation in Eq(7T) is y A z = x Ay A z. We will prove that T is not
the solution set of any system of equations by presenting a tuple (z1,y1,21) €
Sol(Eq(T)) \ T (cf. Remark [1.4.2)). Since there exists a sublattice of L isomorphic
to N5 or Ms, there exists a tuple (1, y1, 21) as shown in Figure [1.4] which satisfies
y1 AN z1 = x1 Ayp A 21, thus (1,41, 21) € Sol(Eq(T)). However, one can easily verify
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that (x1, 1, 21) does not belong to T'. Indeed, suppose that (x1,y1,21) € T, then
there exists u € L such that u > z1, u > z; and 1 Ay; = u A y;. But then we have
u > V21 > 1 (since N5 or M3 is a sublattice), therefore 1 Ay; < u Ay, =y
gives us a contradiction. Thus, T" # Sol(Eq(T')), hence, by Remark T is not

the solution set of any system of equations over C'. |

Theorem and Theorem [5.2.3|prove that if Ml = (M; A) has property [[SDC)|

then it is the semilattice reduct of a distributive lattice L = (L; A, V). To complete
the characterization of finite semilattices with property , we prove that
the clone [A] has property whenever A is the meet operation of a finite
distributive lattice.

Theorem 5.2.4. [TW20] If L = (L;A,V) is a finite distributive lattice, then
property |(SDC)| holds for C' = [A].

Proof. Let L = (L; A, V) be a finite distributive lattice and C' = [A] < Op. Since
L is distributive, by Birkhoff’s representation theorem I can be embedded into
a Boolean lattice B, hence we may suppose without loss of generality that L is
already a sublattice of B. We can also assume that Oy, = Og and 1, = 1. Let us
denote the complement of an element x € B by .

By Theorem , property holds for C' if and only if any primitive
positive formula over C° is equivalent to a quantifier-free primitive positive formula.
Similarly to the proof of Theorem [5.1.7] it suffices to consider primitive positive
formulas with a single existential quantifier. Let

@(:El,...,:vn)EEIu&pj(zy),...,zg)), (5.2.1)

where p; € (C°)"), and zl-(j) (j=1,...,t, and ¢t =1,...,r;) are variables from the
set {1,...,x,,u}. We will show that ® is equivalent to a quantifier-free primitive
positive formula.

Since for all a,b € L we have a = b if and only if a < b and b < a, we can
rewrite ¢ to an equivalent formula

l
=1

where p;,q; € [N (i =1,...,1).

Let a; denote the meet of all variables from {z1,...,z,} appearing in p;, and
let b; denote the meet of all variables from {x1,...,z,} appearing in ¢;. Then we
can distinguish four cases for the i-th inequality:
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(0) If u does not appear in the inequality, then the inequality is of the form

(1) If u appears only on the left hand side of the inequality, then the inequality
is of the form a; A u < b;.

(2) If u appears only on the right hand side of the inequality, then the inequality
is of the form a; < b; A u, which holds if and only if a; < b; and a; < u.

(3) If u appears on both sides of the inequality, then the inequality is of the form
a; N\ u < b; A\ u, which holds if and only if a; A u < b; and a; A u < u, that is,

Let I; denote the following set of indices:
I; = {i | the inequality p; < ¢; belongs to case (j)}

for j =0,1,2,3. We investigate only cases , and , since u does not appear
in case @ Moreover; in case , we only have to deal with the inequality a; < u,
since u does not appear in the inequality a; < b;.

By Lemma |5.1.5

for i € I} we have a; Au <b; <= u<a,Vb < uellLa;V]
for i € Iy we have a; < u <= u € [a;, 1] =: [¢;, d;];
for i € I3 we have a; ANu <b; <= u<a,Vb < wellL,a, Vbl =:cd

[Cu di] ;

Then we have

ﬂ [ci,di] #0 <= Vi,je [ULUI;: ¢; <d;
i€ ULUI3
by Lemma [5.1.6] Just as in the proof of Theorem [5.1.7, we apply Lemma to
eliminate complements and joins from the formula above. The only interesting case
is if ¢; # O and d; # 1y, that is, ¢; = a; and d;j = a; V b; (i € I5,j € [; U I3). In
this case ¢; < d; if and only if a; < a; V b;, which holds if and only if a; A a; < b;
by Lemma (with v = a;).

Summarizing the observations above, we have

<I>(:z;1,...,:cn)<:>5|u&pl<ql)<:> &(iﬁbi)& & (c; < dy)

i€lgUl2 i,j€I1UIUI3
= & <b)& & (ai/\ajgbj),
ic€lgUl> i€ly,jel1Ul3

(o}

which is equivalent to a quantifier-free primitive positive formula over [A]° (since
for all x,y € L, we have z <y if and only if z = z A y). |
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We can summarize the results of this section in the following corollary of
theorems [5.2.1} [5.2.3| and [5.2.4]

Corollary 5.2.5. [TW20| A finite semilattice has property if and only if it
is distributive.

This means that for any finite semilattice M, solution sets of systems of equations
over M can be characterized (via closure conditions) if and only if M is a semilattice
reduct of a distributive lattice (see Remark [5.2.2)).



Chapter 6

Solution sets and polymorphism-
homogeneity

Various notions of homogeneity appear in several areas of mathematics, such as
model theory, group theory, combinatorics, etc. Roughly speaking, a structure A is
said to be homogeneous if certain kinds of local morphisms (i.e., morphisms defined
on “small” substructures of A) extend to endomorphisms of .A. Specifying the kind of
morphisms that are expected to be extendible, one can define many different versions
of homogeneity. We consider a variant called polymorphism-homogeneity, introduced
by C. Pech and M. Pech [PP15], that involves “multivariable” homomorphisms: we
require extendibility of homomorphisms defined on finitely generated substructures
of direct powers of A (see Section for the precise definition).

In this chapter we study polymorphism-homogeneity of finite algebraic structures
and of certain relational structures constructed from algebras. Since homomorphisms
depend on the term operations, not on the particular choice of basic operations, we
work mainly with the clone C' = Clo(A) of term operations of the algebraic structure
A= (A F) (i.e., C is the clone generated by F'). Probably the most natural way to
convert A into a relational structure is to consider the graphs of the operations of A,
ie, C*={f*| f € C}. We will prove that if the relational structure (A, C*) is po-
lymorphism-homogeneous, then the algebra A is also polymorphism-homogeneous,
but the converse is not true in general.

To construct a relational structure that is equivalent to A in terms of polymor-
phism-homogeneity, observe that the relation f® is nothing else than the solution set
of the equation f(x1,...,x,) = T,y1. If we consider more general equations where
the right hand side is not necessarily a single variable, but another (n-ary) operation
from C, then we get the relational structure C° = {Sol(f, 9) ‘ neN, f.ge C’(")}
on A (see Section 2.2). It turns out that (A, C°) is the “right” choice for a relational
counterpart of A: the algebra A is polymorphism-homogeneous if and only if the
relational structure (A, C°) is polymorphism-homogeneous. We also show that these
properties are equivalent to property as well.

The categorical notion of injectivity also asks for extensions of certain homomor-
phisms, so it is not surprising that a finite algebra A is polymorphism-homogeneous

60
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(A, C*®) is polymor- —> (A, C°) is polymor- A is polymor-

phism-homogene- phism-homogene- phism-homoge-

éﬁ ous neous

Bi; ) !

ou
A is injective in :> A is injective in A has property
HSP(A) - SPgn(A) — (SDC)

Figure 6.1: Relationships between property and several variants of polymor-
phism-homogeneity and injectivity.

if and only if it is injective in a certain class of algebras, namely in the class of finite
subpowers of A (see Section for the definitions). Perhaps it is more natural
to consider injectivity in the variety HSP A generated by A, hence we will also
investigate the relationship between this notion and polymorphism-homogeneity.

Figure shows the six properties that we are concerned with in this chapter.
In Section we prove all the implications and equivalences indicated in the
figure. It turns out that for finite algebras, four of the six conditions are equivalent,
thus we have actually three different properties marked by the three boxes. In
Section [6.3] we determine finite semilattices, lattices, Abelian groups and monounary
algebras possessing these three properties, and these examples will justify all of the
“non-implications” in Figure 6.1}

6.1 Polymorphism-homogeneity and injectivity

A first-order structure A (i.e., a set A equipped with relations and/or operations)
is said to be k-polymorphism-homogeneous, if every homomorphism h: B — A
defined on a finitely generated substructure B < A* extends to a homomorphism
h: A¥ — A. (Considering only finite structures, the assumption that B is finitely
generated can be omitted from the definition.) The case k = 1 gives the notion of
homomorphism-homogeneity introduced by P. J. Cameron and J. Nesetfil [CNOG|.
If A is k-polymorphism-homogeneous for every positive integer k, then we say
that A is polymorphism-homogeneous [PP15]. These two notions are linked by the
following result, which was proved for relational structures by C. Pech and M. Pech
[PP15] and for algebraic structures by Z. Farkasova and D. Jakubikova-Studenovska
[FJS15], but the same proof works for arbitrary first-order structures.
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Proposition 6.1.1. [PP15; [FJS15| A first-order structure A is polymorphism-ho-
mogeneous if and only if A* is homomorphism-homogeneous for all positive integers
k.

In the next proposition we recall a useful result from [PP15] that relates
polymorphism-homogeneity and quantifier elimination for finite relational structures;
we give a short proof utilizing the Galois connections between (partial) operations
and relations.

Proposition 6.1.2. [PP15] A finite relational structure has quantifier elimination
for primitive positive formulas if and only if it is polymorphism-homogeneous.
Proof. A finite relational structure A = (A, R) has quantifier elimination for
primitive positive formulas if and only if (R)s = (R)3. Using the Galois connections
Pol — Inv (clones and relational clones, see Theorem and pPol — Inv (strong
partial clones and weak relational clones, see Theorem [1.5.2)), we can reformulate
this condition in several steps to reach polymorphism-homogeneity:

(R)s = (R)3
<= InvpPol R = InvPol R
<= pPolInv pPol R = pPol Inv Pol R
<= pPol R = Str(Pol R)
— {hePs:hr> R} ={hePy:hextends to h € Oy such that h > R}
<= A is polymorphism-homogeneous. [

Let K be a class of algebras and A € K. We say that A is injective in K if
every homomorphism A: B — A extends to a homomorphism h: C — A whenever
B,C € K and B < C. Clearly, if A is injective in IC, then A is also injective in every
subclass of I that contains A. Injectivity is most often considered in the largest
relevant class IC; for example, if A is a group or a lattice, then K is usually chosen
to be the class of all groups or lattices. In this thesis we shall consider smaller
classes, namely the variety HSP A generated by A and the set of finite subpowers
SPqn A of A (the latter consists of all subalgebras of finite direct powers of A). Let
us mention that in [KN82| a group A is called relatively injective if it is injective in
the variety HSP A.

6.2 Property (SDC) and polymorphism-homo-
geneity
First let us prove the equivalences shown on the right hand side of Figure The

equivalence of property and polymorphism-homogeneity of (A, C°) follows
immediately from Proposition [6.1.2]
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Proposition 6.2.1. [TW22] If A is a finite algebra and C = Clo(A), then A has
property |(SDC)| if and only if (A, C°) is polymorphism-homogeneous.

Proof. By Theorem [2.2.6 property |(SDC)| of A is equivalent to quantifier elimina-
tion for primitive positive formulas for the relational structure (A, C°), and the latter

is equivalent to polymorphism-homogeneity of (A, C°) by Proposition m ]

In the next theorem we establish the connection between “algebraic” and
“relational” polymorphism-homogeneity. We need two technical lemmas for the
proof of this result.

Lemma 6.2.2. [TW22] Suppose that A is a finite algebra, C' = Clo(A) and h € 771(4]“)
is a k-ary partial operation on A. If dom h is a subalgebra of A*, then the following
three conditions are equivalent:

(a) h> C*;
(b) h> C°;
(¢) h is a homomorphism from domh to A.

Proof. To show that implies [(b), assume that i > C*®, and let p = Sol(f, g),
where f,g € C™); we shall prove that h > p. Let M € A™** be a matrix such that
each row of M belongs to dom h and each column of M belongs to p. Then we
have f(M.,..., M,,) € domh, as dom h is a subalgebra of A¥ and f € C. Now
let M’ € AtD*F bhe the matrix obtained by adding the row f(M., ..., M,,) to
the bottom of M. Since f(Myy, ..., My) = (f(Mi),. .., f(Mu)), every column of
M’ belongs to f*, hence applying h to each row of M’ we obtain a tuple in f°,
because h preserves f® by our assumption. This means that

h(F(Ma), ..., f(M)) = F(R(M, ..., M.y)). (6.2.1)

Using a similar argument, replacing f by g, we obtain

hg(Ma), ..., 9(Ma)) = g(h(M.a, ..., Mig)). (6.2.2)

All columns of M were assumed to be in the relation p = Sol(f, g); therefore,

Combining (6.2.1]), (6.2.2)) and (6.2.3]), we can conclude that f(h(M.,..., My)) =
g(h(M, ..., My)), hence h(M,q, ..., M.) € p, and this proves that h > p.

Next suppose that @ holds; to prove that h is an algebra homomorphism,
consider an operation f € C™ and tuples dy,...,d, € domh. Since dom h is
a subalgebra, we have f(di,...,d,) € domh. Let M € A™+)*k be the matrix



64 CHAPTER 6. SOLUTION SETS AND POLYMORPHISM-HOMOGENEITY

whose rows are di,...,d,, f(dy,...,d,). Then all columns of M belong to f*,
hence (h(d;),...,h(d,),h(f(dy,...,d,))) € f*, since h was assumed to preserve
C° (recall that C° D C*). Thus we have f(h(d;),...,h(d,)) = h(f(dy,...,d,)),
proving that h is indeed a homomorphism.

Finally, assume and let us verify @ Let f € O™, and let M € An+Dxk
be an arbitrary matrix whose rows and columns belong to domh and to f°,
respectively; in particular, the last row of M is f(My,,..., M,.). We need to
show that h(M,y,..., M) € f°*, which is equivalent to f(h(Miy),..., (M) =
h(f(Mis, ..., M,.)). The latter equality is justified by the fact that h is a homo-
morphism. [ |

Lemma 6.2.3. [TW22| Let C be a clone on a finite set A, and let h € PAk be a
k-ary partial opemtzon on A. If h preserves C°, then h can be extended to a partial
operation h € PV such that h > C° and domh = [dom h] (the subalgebra of A*
generated by domh ).

Proof. If a € [dom h], then a can be obtained from the elements of dom h by an
operation t € C'. Adding inessential variables to ¢ if necessary, we can assume that
actually all elements of dom h are used, and thus the arity of ¢ is m := |dom h/|.
Therefore, we can write a = t(dy,...,d,,), where domh = {dy,...,d,,} and
t € O™, We then define the desired extension of h at a by

h(a) = t(h(dy), ..., h(dy)). (6.2.4)

First we need to verify that h is well defined. Suppose that an element
a € [domh| can be written in more than one way in the above form: a =
ti(dy,...,dy) = ta(dy,...,dy) with t,t, € C™. Setting p = Sol(ty,ts) € C°,
and letting D € A™** be the matrix with rows di,...,d,,, every column of D
belongs to the relation p. Since h preserves p, we have h(D,q,..., D) € p, and
therefore t1(h(Dsy, ..., Dit)) = tQ(h(D*l, ..., D,;)) holds. This implies that & is
well defined, as the value of h(a) in - does not depend on the particular choice
of the operation ¢:

b(h(dr), - h(dy) = (A(D1.), .. h(Dyns))
t1(h(Ds1, - -y Di))

=to(h(Ds1, ..., D))
to(h(D1y), .. h(Dpy))
ta(h(dy), .., h(dn).

Choosing the i-th projection t(x1,...,%y) = x; in (6.2.4)), we see that h(d;) =
h(d;) for all i € {1,...,m}, thus h is an extension of h It remains to prove that %
preserves C°.
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Let f,g € C™, let p = Sol(f,g) € C°, and let M € A™* be a matrix such
that all rows of M are in dom h and each column of M belongs to the relation
p. Since M;, € domh = [dom h], we can write M;, = t;(dy,...,d,,) for suitable
operations t; € O™ for i = 1,...,n. Since M,; € p, we have f(M,;) = g(M.,;) for
j=1,...,k, or, equivalently, f(My.,..., M) = g(M.,..., M,,). Combining the
latter two observations, we get that

fltr, .o to)(dy, .o dy) = f(t(dy, .oy di)y - oy ta(dy, - o dy))
= f(Ml*, '7Mn*)
=g(Mi.,..., M,.)
=g(ti(dy, ..., dp), ..., tao(ds,...,dy))
=g(t1,...,tp)(dy, ..., dp).

Setting " = f(t1,...,t,) and ¢ = g(t1,...,t,), we can summarize the above
calculation as f’(dy,...,d,,) = ¢(dy,...,d,,), which means that the columns of
the matrix D belong to the relation p’ := Sol(f’, ¢’). The clone C is closed under
composition, thus f’, ¢ € C, hence p’ € C°. We assumed that h > C°; therefore,
we have (h(d;),...,h(d,,)) € p/, and this is equivalent to f'(h(d;),...,h(dy)) =
g'(h(dy),...,h(d,)). Expanding this last equality using the definition of f" and ¢’
together with (6.2.4), we obtain h(M,i,..., M..)) € p, which completes the proof
of h > C°:

F(P(t(dy, - d)), o Blta(dy, - di)

= f(ta(h(d), .. h(dpn)), - ta(h(dy), . h(dy)))
ft1, .. to)(h(dy), ..., h(dn))

f

(h(My,), ..., h(M,,))
= g(h(M,y, ..., My)). u
Theorem 6.2.4. [TW22] If A is a finite algebra and C' = Clo(A), then A is

polymorphism-homogeneous if and only if (A, C°) is polymorphism-homogeneous.

Proof. Assume first that A is polymorphism-homogeneous, and consider an ar-
bitrary partial polymorphism h of (A,C°), i.e., let h € 731(4]6) preserve C°. By
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Lemma [6.2.3] h can be extended to a C°-preserving partial operation h defined
on the subalgebra [dom h] < A¥. Applying Lemma to h, we see that h is an
algebra homomorphism from [dom A| to A. Since A is polymorphism-homogeneous,

ZL extends to a homomorphism h: AF — A. Using Lemma |6.2.2) again, we see that

h preserves C°, hence it is a polymorphism of the relational structure (A, C°), and
this proves that the latter is polymorphism-homogeneous.

Now suppose that (A, C°) is polymorphism-homogeneous, and let h € PXC)
be a homomorphism from a subalgebra domh < A* to A. Lemma shows
that h > C°, i.e., h is a partial polymorphism of (A, C°). Since (A, C°) is po-
lymorphism-homogeneous, h can be extended to a polymorphism h of (A, C°).
By Lemma , h: A¥ — Ais a homomorphism, and this proves that A is
polymorphism-homogeneous. [

To complete the proof of the equivalences in the box on the right hand side of
Figure [6.1] we relate injectivity and polymorphism-homogeneity.

Proposition 6.2.5. [TW22| If A is a finite algebra, then A is polymorphism-ho-
mogeneous if and only if A is injective in SPg,(A).

Proof. Assume that A is polymorphism-homogeneous, and let B, C € SPg,(A) such
that B < C. Then we have B < C < AF for some k € N; in particular, B is a
subalgebra, of A¥. Therefore, if h: B — A is a homomorphism, then h extends to a
homomorphism h: A — A by the polymorphism-homogeneity of A. A restriction
of h then gives a homomorphism form C to A that extends h, thereby proving the
injectivity of A.

Conversely, if A is injective in SPg,(A) and & € P4 is a homomorphism from
a subalgebra domh < A¥ to A, then the injectivity of A immediately yields an
extension h: AF — A of h, thus A is indeed polymorphism-homogeneous. [ |

Corollary 6.2.6. [TW22| If A is a finite algebra and C = Clo(A), then the
following conditions are equivalent:

(i) A has property '

(ii) A is polymorphism-homogeneous;
(iii) (A, C°) is polymorphism-homogeneous;
(iv) A is injective in SPg,(A).

Proof. Combine propositions [6.2.1] and [6.2.5 and Theorem [6.2.4] |
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It remains to verify the “one-way” implications in Figure[6.1] Since HSP(A) D
SPgn(A), it is trivial that if A is injective in HSP(A), then it is also injective in
SPgn(A). We end this section by proving the remaining implication; in fact, we
formulate it in a bit more explicit form, which will be useful in the next section.

Proposition 6.2.7. [TW22| If A is a finite algebra and C = Clo(A), then (A,C*)
is polymorphism-homogeneous if and only if (A, C°) is polymorphism-homogeneous
and (C*)3 = (C°)3.

Proof. According to Proposition [6.1.2] we need to prove the following equivalence:
(C%)3 = (C%)a <= (C%)s = (C°)3 and (C%)3 = (C°)3.

This follows immediately from the following chain of trivial containments, and from
the last equality, which is Lemma

(C%)a € (C%)1 € (C%)3 = (C")=. u

6.3 Characterizations in special classes of alge-
bras

We describe explicitly the finite algebras satisfying the properties considered in

the previous section in certain well known varieties: semilattices, lattices, Abelian

groups and monounary algebras, and we also take a look at three-element groupoids.

These characterizations will provide counterexamples showing that the only valid
implications among these properties are the ones shown in Figure [6.1]

6.3.1 Semilattices

If we consider finite semilattices, then it turns out that five of the six conditions of
Figure are equivalent, and these semilattices have already been determined in
the literature.

Theorem 6.3.1. If A is a finite semilattice and C' = Clo(A), then the following
conditions are equivalent:

(i) A has property[(SDO)];
(ii) A is polymorphism-homogeneous;
(iii) (A, C°) is polymorphism-homogeneous;
)

(iv) A is injective in SPg,(A);
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(v) A is injective in HSP(A);
(vi) A is the semilattice reduct of a finite distributive lattice.

Proof. We know that conditions |(i)| are equivalent (see Corollary [6.2.6), and it
was proved in Corollary that |(i)| is equivalent to . G. Bruns and H. Lakser
[BL70| and, independently, A. Horn and N. Kimura [HK71| showed that the injective
objects in the category of semilattices are the semilattice reducts of completely
distributive lattices. Therefore, if A is the semilattice reduct of a finite distributive
lattice, then A is injective in the variety of all semilattices, thus A is also injective

in HSP(A). This proves that implies and taking into account that
obviously implies , the proof is complete. [ |

The top left condition of Figure [6.1]is not equivalent to the others; in fact, there
is no nontrivial finite semilattice for which (A, C*) is polymorphism-homogeneous.

Lemma 6.3.2. [TW22]| Let A be a two-element semilattice and let C' = Clo(A).
Then the relational structure (A, C*) is not polymorphism-homogeneous.

Proof. We can assume without loss of generality that A = ({0,1}, A) with the
usual ordering 0 < 1. Let us consider the equation z Ay A z = x A y. Obviously, the
solution set S ={0,1}*\ {(1,1,0)} of this equation is defined by a quantifier-free
primitive positive formula over C°. The nontrivial 3-variable equalities that can
appear in a quantifier-free primitive positive formula over C'* are the following:

T =1, r=xNYy, r=xANz, rT=yYyANz, rT=xNANYANz,
Y=z y=xN\y, y=xNz, y=yANz, y=xNyNz,

z=ux, z=x ANy, z=xANZz, 2=yYNz, z2=xNYNz.

It is easy to check that S does not satisfy any of the equalities above; therefore, .S
cannot be defined by a quantifier-free primitive positive formula over C'*. Thus S
belongs to (C°)4 but not to (C*)3, hence (A, C*) is not polymorphism-homogenecous
by Proposition [6.2.7] |

Theorem 6.3.3. [TW22| If A is a nontrivial finite semilattice and C = Clo(A),
then the relational structure (A, C*®) is not polymorphism-homogeneous.

Proof. Let a,b € A such that a < b, and let us consider the same equation as in
the proof of Lemma Now for the solution set S of this equation we have that
SNn{a,b}® = {a,b}*\ {(b,b,a)}. The same argument as in the proof of Lemma [6.3.2]
shows that S cannot be defined by a quantifier-free primitive positive formula over
Ce. [
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6.3.2 Lattices

For finite lattices the situation is very similar to the case of semilattices: five of the
six conditions of Figure are equivalent, and the sixth one is satisfied only by
trivial lattices.

Theorem 6.3.4. If A is a finite lattice and C = Clo(A), then the following
conditions are equivalent:

(i) A has pmpertym

(ii) A is polymorphism-homogeneous;

(iii) (A, C°) is polymorphism-homogeneous;

)

)

)

(iv) A is injective in SPg,(A);

(v) A is injective in HSP(A);
i)

(v

Proof. Just as in the proof of Theorem [6.3.1] the equivalence of [(I)}{(iv)] follows
from Corollary , and the equivalence of |(i)| and is Corollary . (Let
us mention that I. Dolinka and D. Masulovié¢ [DM11] proved that a finite lattice
is homomorphism-homogeneous if and only if it is a chain or a Boolean lattice.
This together with Proposition can also be used to prove that and
are equivalent.) To complete the proof, it suffices to prove that implies .
This follows immediately from a result of R. Balbes |[Bal67]: the injective objects
in the category of distributive lattices are the complete Boolean lattices (observe
that if A is a nontrivial Boolean lattice, then HSP(A) is the variety of distributive
lattices). [

A is a finite Boolean lattice (i.e., a direct power of the two-element chain).

Lemma 6.3.5. [TW22] Let A be a two-element lattice and let C = Clo(A). Then
the relational structure (A, C*®) is not polymorphism-homogeneous.

Proof. We can assume without loss of generality that A = ({0,1}, Vv, A) with the
usual ordering 0 < 1. Let us consider the equation (x1Vxs) A(x3Ax4) = x3Axy; the
solution set S = {0,1}*\ {(0,0,1,1)} of this equation is defined by a quantifier-free
primitive positive formula over C°. If S can be defined by a quantifier-free primitive
positive formula ® over C'*, then we can assume without loss of generality that &
consists of a single equality, as S misses only one element of {0,1}* (in other words,
S is meet-irreducible in the lattice of subsets of {0,1}*). Thus S is the solution set
of an equation of the form f(xq,x2,z3,24) = u, where u € {x, x5, x3,24}. Note
that since f is generated by the lattice operations V and A, it is a monotone
function. We consider four cases corresponding to the variable w.
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1. If u = x4, then f(x1,29,23,24) = 21 holds for all (z1,xs,23,24) € S and
£(0,0,1,1) = 1. In particular, we have f(0,1,1,1) =0 < 1 = f(0,0,1,1),
contradicting the monotonicity of f.

2. If u = xy, then f(z1,x9,x3,24) = x9 holds for all (z1,x9,z3,24) € S and
£(0,0,1,1) = 1. In particular, we have f(1,0,1,1) =0 < 1 = f(0,0,1,1),
contradicting the monotonicity of f.

3. If u = x3, then f(x1,29,23,24) = x3 holds for all (xq,xs,23,24) € S and
£(0,0,1,1) = 0. In particular, we have f(0,0,1,0) =1 > 0= f(0,0,1,1),
contradicting the monotonicity of f.

4. If u = x4, then f(x1,29,23,24) = x4 holds for all (1,9, x3,24) € S and
f£(0,0,1,1) = 0. In particular, we have f(0,0,0,1) =1 > 0 = f(0,0,1,1),

contradicting the monotonicity of f.

We see that S cannot be defined by a quantifier-free primitive positive formula &
over C*, hence (C°)y # (C*)3, and thus (A, C*) is not polymorphism-homogeneous

by Proposition [6.2.7] |

Theorem 6.3.6. [TW22] If A is a nontrivial finite lattice and C' = Clo(A), then
the relational structure (A,C*) is not polymorphism-homogeneous.

Proof. Let a,b € A such that a < b, and let us consider the same equation as in
the proof of Lemma Now for the solution set S of this equation we have that
Sn{a,b}* = {a,b}*\ {(a,a,b,b)}. If S can be defined by a quantifier-free primitive
positive formula ® over C*, then at least one of the equalities in ® defines the set
{a,b}*\ {(a,a,b,b)} when restricted to the sublattice {a, b}, and this leads to a
contradiction using the same argument as in the proof of Lemma [6.3.5] [

6.3.3 Abelian groups

For Abelian groups all six conditions of Figure [6.1] are equivalent, and these groups
have already been determined, so we only need to combine some results from the
literature to prove the following theorem.

Theorem 6.3.7. If A is a finite Abelian group and C' = Clo(A), then the following
conditions are equivalent:

(i) A has property|(SDC)|;
(ii) A is homomorphism-homogeneous;

(iii) A is polymorphism-homogeneous;
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(iv) (A, C°) is polymorphism-homogeneous;
(v) (A, C*®) is polymorphism-homogeneous;
(vi) A is injective in SPg,(A);

(vii) A s injective in HSP(A);

(viil) each Sylow-subgroup of A is homocyclic, i.e., A = ZJ x -+ x Zp* where
qi,...,qx are powers of different primes and mq,...,my € N.

Proof. Conditions|(i)] [(iii)} [(iv)] and [(vi)] are equivalent by Corollary [6.2.6] It is clear
that is equivalent to since we have (C°)y = (C*)4 for groups: every equality
can be written in an equivalent form where there is only a single variable on the
right hand side. The equivalence of and follows from the description of
quasi-injective Abelian groups presented as an exercise in [Fuc70] (for finite groups
quasi-injectivity is equivalent to homomorphism-homogeneity). The class of groups
given in is closed under taking finite direct powers, so we can conclude with
the help of Proposition [6.1.1] that |(iii)| and |(viii)| are equivalent. It seems to be a
folklore fact that the injective members of the variety of Abelian groups defined by

the identity nx = 0 with n = ¢ - ... - qx are exactly the groups given by (see,
e.g., |GL82]). Therefore, implies and this completes the proof, as
trivially implies |(vi)| [

6.3.4 Monounary algebras

A monounary algebra is an algebra A = (A, f) with a single unary operation
f e (’)2). An element a € A is cyclic if there is a positive integer k such that
f¥(a) = a. (Here f*(a) stands for f(--- f(a)---) with a k-fold repetition of f, and
we also use the convention f(a) = a.) If A is finite, then for every element a € A,
there is a least nonnegative integer ht(a), called the height of a, such that f*(@(q)
is cyclic. If a € A\ f(A), i.e., a has no preimage, then we say that a is a source.
(Note that ht(a) = 0 if and only if a is cyclic; in particular, ht(a) > 1 for any source
a.)

Polymorphism-homogeneous monounary algebras were characterized by Z. Far-
kasova and D. Jakubikova-Studenovska in [FJS15| using Proposition and
the description of homomorphism-homogeneous monounary algebras obtained b
E. Jungabel and D. Masulovié¢ [JM13]. As an illustration of the results of Section
we present a simple self-contained proof, which relies on the following technical
lemma about quantifier elimination in monounary algebras.
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Lemma 6.3.8. [TW22] Let A = (A, f) be a finite monounary algebra, and let
C = Clo(A). The algebra A is polymorphism-homogeneous if and only if for each
positive integer k, there is a quantifier-free primitive positive formula Vi (x) over
C° such that

Va € A: Uyla) <= Fag € A: a= f*(ay). (6.3.1)

Proof. We use Theorem [6.2.4} we prove that the existence of ¥y is necessary and
sufficient for polymorphism-homogeneity of (A, C°). By Proposition , the
necessity is obvious; to prove sufficiency, let us consider an arbitrary primitive
positive formula ®(xy,...,2z,) over C°. We show how to eliminate one quantifier;
repeatedly applying this procedure we can eliminate all quantifiers from ®. So we
may assume without loss of generality that ® involves only one quantifier, hence it
has the following form:

O(xq,...,2,) =y &(f”(uz) = fsi(vz-)>,

where ¢, 7;, s; are nonnegative integers, and the variables u;, v; belong to the set
{z1,...,2,,y} for it = 1,... t. We define the weight of ® as

Informally speaking, w(®) shows how “deeply” y is involved in ®.

If y occurs in at least two equalities in @, then we can use (at least) one of the
following four types of substitutions to decrease the weight of the formula (we omit
trivial equalities):

Ffy) = @) & ™ (y) = fM(xg)  ~ 7 (wy) = o) & ™ (y) = (),
if k> m;

Fr@) = @) & M) = "y)  ~ ) = ) & M y) = ),
ifk>m, m>n,;

) = fAa) & ™) = My)  ~ ) = ) & Fly) = ),
it k<m, m>n;

) =rw&fmy=rw ~ "y =rry&my=ry),

itk>m, k>0, m>n.

After finitely many steps we arrive at a formula ®’ such that ®’ is equivalent to @,
and it is not possible to decrease the weight of ®" any more using the substitutions
above. This implies that the variable y appears in at most one equality in ®’. We
have one of the following three cases for @'.
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1. If y does not appear at all, then we can simply drop the quantifier dy from
P’

2. If y appears in an equality of the form f*(y) = f“(y), then there is no
“interaction” between y and the other variables. If there is an element a € A
such that f*(a) = f(a), then we can again omit the quantifier Jy and the
equality f*(y) = f*(y) from @', and the resulting quantifier-free formula is
equivalent to @' (hence also equivalent to ®). If there is no element a € A
such that f*(a) = f*(a), then ®'(zy,...,z,) is never satisfied: it defines the
empty n-ary relation. In this case the empty relation can be defined by the
quantifier-free formula f*(z;) = f*(z1), thus this formula is equivalent to ®.

3. If y appears in an equality of the form f*(y) = f*(z;), then let ®"(xy, ..., z,)
be the formula that is obtained from ®’ by deleting the quantifier 3y and the
equality f*(y) = f*(z;). Then ® is equivalent to the quantifier-free formula
Q" (xy,...,m,) & Vp(f(x;)), according to (6.3.1]). [

Theorem 6.3.9. [FJS15],[TW22] If A = (A, f) is a finite monounary algebra and
C = Clo(A), then the following conditions are equivalent:

(i) A has property [[SDC)};

(ii) A is polymorphism-homogeneous;

)
)
(iii) (A, C°) is polymorphism-homogeneous;
(iv) A is injective in SPgy(A);

)

(v) FEither A has no sources, or all sources of A have the same height: Ya,b €

AN\ f(A): ht(a) = ht(b).

Proof. Conditions @ are equivalent by Corollary , so it suffices to prove
the equivalence of and . As a preliminary observation, let us note that an
element a € A is cyclic if and only if a = f*(a), where £ is the least common
multiple of the lengths of the cycles of A.

Suppose that |(v) - )| holds, and assume first that there are no sources in A. Then
every element is cyclic, thus the formula = = can be chosen for ¥y (x) in - for
all k£ € N. Suppose now that all sources in A have the same height n > 1. If & > n,
then an arbitrary element a € A can be written as a = f*(ag) for a suitable ap € A
if and only if a is cyclic. Thus, the formula z = f*(z) can be chosen for W, (z),
whenever k > n. Similarly, if k& < n, then Jag € A: a = f¥(ao) holds if and only if
ht(a) < n — k, ie., if f"7%(a) is cyclic. Therefore, we can put f**(z) = f**(x)
for Wy (x) in this case. This proves that implies , according to Lemma m
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Conversely, assume that there exist formulas Wy (z) satisfying (6.3.1)). We can
write ¥y (z) in the following form, and we can assume without loss of generality
that r; <s; fori=1,... t:

¢
)= &(F7(@) = 14(@).

i=1

If a is a cyclic element, then ¥;(a) must hold according to (6.3.1). This implies
that 7, = s; (mod ¢) for all i € {1,...,t}.

Now suppose for contradiction that there exist sources a,b € A\ f(A) with
ht(a) < ht(b). Clearly, U;(f(b)) must be true by (6.3.1), thus we have f"(f(b)) =
fe(f(b)) for each i. This is equivalent to f7iT1(b) = f*T1(b), which implies that
frit(b) is a cyclic element (recall that r; < s;), hence we have ht(b) < r; + 1. Since
ht(a) < ht(b) — 1, we can conclude that ht(a) < r;, i.e., f7(a) is a cyclic element.
The length of every cycle is a divisor of ¢, and we know that r; = s; (mod ), thus
f"i(a) = f*(a). This means that U;(a) is true, contradicting the fact that a is a
source. |

Next we determine finite monounary algebras corresponding to the top left box

of Figure [6.1]

Theorem 6.3.10. [TW22] Let A = (A, f) be a finite monounary algebra, and let
C = Clo(A). Then the relational structure (A, C*®) is polymorphism-homogeneous
if and only if f is either bijective or constant.

Proof. 1f f is constant, then it is clear that (A, C*) is polymorphism-homoge-
neous. Assume now that f is bijective. Then the condition of Theorem [6.3.9] is
satisfied (there are no sources at all), so A is polymorphism-homogeneous, and
thus by Theorem 4] (A, C°) is polymorphism-homogeneous as well. Therefore,
by Proposition m it suffices to show that (C°)3 = (C*)3. This is clear, as any
equality of the form f*(x) = f(y) with k < £ is equivalent to x = f*~*(y), since f
is bijective (here x and y might be the same variable).

For the other direction, let us suppose that (A, C*) is polymorphism-homo-
geneous. By Proposition (A, C°) is also polymorphlsm homogeneous, and
then Theorem [6.3.9] (together with Theorem 4)) implies that either there are
no sources, or there is an integer n > 1 such that every source in A has height
n. If there are no sources in A, then every element is cyclic, and therefore f is
bijective. From now on let us suppose that A has sources with a common height n.
Proposition shows that there exists a quantifier-free primitive positive formula
O (z,y) over C* such that ®(z,y) is equivalent to f(x) = f(y). We can write ®(x,y)

in the following form:
¢
)= & (Fri(w) = vs),

=1
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where ¢, r; are nonnegative integers, and w;, v; € {z,y} for i = 1,...,t. Obviously,
®(a,a) holds for every element a € A. Let us choose a to be of height n, i.e., let
a be a source. Then f"(u;) = v; holds for u; = v; = a if and only if r; = 0, thus
®(x,y) is equivalent either to x = y or to z = x. Taking into account that ®(x,y)
is also equivalent to f(x) = f(y), we can conclude that f(z) = f(y) <= x =y or
f(x) = f(y) <= x = x. In the first case f is a bijection, and in the second case
f is constant. |

Injective objects in the category of all monounary algebras were determined
by D. Jakubikova-Studenovskd [JS98]; in the finite case these are exactly the
monounary algebras A = (A, f) where f is bijective and has a fixed point. However,
in order to complete the picture of Figure for monounary algebras, we need
to describe those monounary algebras A that are injective in the variety HSP A.
This has been done by D. Jakubikova-Studenovska and G. Czédli, but this result
appeared only in Hungarian in the masters thesis [Jeg00] of T. Jeges, a student of
G. Czédli.

Theorem 6.3.11. |Jeg00] A finite monounary algebra A = (A, f) is injective in
the variety HSP(A) if and only if all of its sources have the same height and it has
a one-element subalgebra (i.e., f has a fized point).

Let us note that comparing theorems |6.3.9} [6.3.10] and [6.3.11], one can construct
examples illustrating each one of the “non-implications” of Figure (6.1

6.3.5 Three-element groupoids

There are 19683 groupoids on the three-element set, but their number up to
isomorphism is only 3330. In the paper [BB96] Joel Berman and Stanley Burris
investigated 12 properties of three-element groupoids with the help of computers.
They further reduced the number of groupoids that needed to be investigated: they
studied the properties up to clone equivalence (also called term equivalence), which
is an equivalence relation on the groupoids induced by the preorder given by

A <B <= Clo(A) C Clo(B'), where B’ is an isomorphic copy of B.

This equivalence relation has only 411 equivalence classes. Since polymorphism-
homogeneity of an algebra A = (A, F') only depends on the clone Clo(A) generated
by F', we only need to investigate representatives of these 411 cases. We use the
same notation for the groupoids as in [BB96.

First we investigate polymorphism-homogeneity of special three-element groupoids.
We consider Abelian group(s), affine algebras, semilattices and monounary algebras
regarded as groupoids. We also formulate a conjecture about groupoids generating
a congruence distributive variety.
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Abelian group(s)

The only Abelian group on the three-element set is Zs (up to isomorphism). The
corresponding groupoid is groupoid (2124) in [BB96|, which is polymorphism-ho-
mogeneous by Theorem [6.3.7]

Affine algebras

Affine algebras are special kinds of Mal’tsev algebras that play an important role
in universal algebra. One way of defining them is the following. An n-ary operation
f € Oy is called affine with respect to an Abelian group G = (A;+, —,0), if f
commutes with the ternary operation z — y + z. An algebra is affine if and only
if there exists an Abelian group G = (A;+, —,0) such that * —y + z is a term
operation of the algebra and every basic operation of the algebra is affine with
respect to G. In this subsection we investigate affine algebras A such that the
elements of Clo(A) are polynomials of a finite vector space. For these affine algebras
we can write Clo(A) in the form of one of the following clones (see [Sze86]):

n

X(V,8) = {Zaixi—i-c ‘ ar,...,a, €K, c=s— (> a;)s’ for some s, s’ € S};

i=1 i=1

Y(V,W) = {Zaixmtc ‘ a,...,a, €KY a;=1,ce W};
i=1 1=1
where K is a finite field, V is a finite dimensional vector space over K, and W is a
subspace and S is an affine subspace (i.e., a coset with respect to a subspace) of V.
In the next theorem we show that for any finite vector space V and any subspace
W of V, the clone Y (V, W) has property [(SDC)|, that is, all of the corresponding

finite affine algebras are polymorphism-homogeneous.

Theorem 6.3.12. Let V be a finite vector space and let W be a subspace of V.
The clone Y (V, W) has property |(SDC)|.

Proof. Let C' =Y (V,W), where V is a finite dimensional vector space over the
finite field K = (K;+,-) and let W be a subspace of V. By Theorem , C has
property if and only if every primitive positive formula over C° is equivalent
to a quantifier-free primitive positive formula. Let us consider a primitive positive
formula over C° with only one quantifier. We prove that it can be eliminated, and
iterating this argument completes the proof. Since C'° consists of relations that are
defined by single equations, a primitive positive formula over C° with one quantifier
is of the form

d(x1,X2,...,X,,u) = Ju

fixy, X, 1) = g1(Xg, - X, )& - & fi (X, X, 1) = gl(Xg, - X, 1),
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where ¢ € N and f;,¢9;, € C for all i € {1,...,t}. We reformulate every equa-
tion f;(x1,...,Xp,u) = gi(x1,...,X,,u) containing u to an equation in the form
hi(X1,...,%X,) = u.

Let us consider an equation over C. This equation can be written in the form

n+1 n+1
Z&Z’Xi—l-(?: szxz—i—d,
i=1 i=1

where Z?jll a; = Z;lel b; = 1 with u = x,,1; and ¢,d € W. We of course permit
a; =0or b; =0 (for any i € {0,1,...,n+ 1}). We can write our equation in the

form
n

> (a; = bi)xi + (¢ = d) = (b1 — A1) Xpp1. (6.3.2)

i=1
Since K is a field, the element (b,41 — a,11) is either 0, or has a multiplicative
inverse. In the first case the following equation (that omits u)

> aix; + an1x1 + ¢ =3 bix; + byyixy + d,
=1 i=1

is an equation over (', and it is equivalent to our original equation. In the second
case the following equation is equivalent to (6.3.2))

n

(bngr = an) (Do (a; = bi)xi + (¢ = d)) = X1 = 1.

=1

If we reformulate the equation above, then we get

((bn+1 — an+1)_1(ai - bz)Xz) + (bn—i-l - CLn_H)_l(C - d) = Z 0- X; + 1- Xn+1 + 0.

i=1 i=1

(6.3.3)
Therefore, to prove that is also an equation over C' we only need to prove
that 37 (byi1 — @ns1) H(a; — b;) = 1 and that (b, 1 — ane1) ' (c — d) belongs to
W. Since

n+1 n+1

Zai: Zbi: 1, we have
i=1

i=1
a1 =1—Y a; and by =1-> b
i=1 i=1

But then b,11 — apy1 = X0 (a; — b;), hence the sum of the coefficients in the
left-hand side of (6.3.3)) is

(Dni1 = ang1) 'Y (i = i) = (g1 — ang1)” (bpss — anyr) = 1.
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For proving that (b,1 — a,41) " (c —d) belongs to W, observe that since W is a
subspace of K and ¢,d € W, we have (c—d) € W, and also (b, 11 —a,.1) ' (c—d) €
Ww.

Let us suppose then that every equation containing u is of the form (|6.3.3).
There are two cases. Suppose first that there is only one equation that contains u.
Then this equation can be replaced with x; = x;: for any n-tuple (x1,...,x,) it
holds that there exists u € V such that holds (defined by the left-hand side
of §33).

If there are more that one equations containing u, then we replace u everywhere
with the other side of the first equation containing u (that is, if the first equation
containing u is of the form h(xy,...,x,) = u, then we replace u in every equation
with h(xy,...,X,)). We can also delete the equation h(xy,...,x,) = u. And then
we get a system of equations equivalent to the one defining ® that omits u. [

Remark 6.3.13. Note that on the two-element set Loy = Y (Zs,{0}) and SL =
Y (Zs,7Z5), thus Theorem is essentially a generalization of lemmas and
B4

The affine three-element groupoids (up to clone equivalence) are groupoids
(2124), (2346) and (2934) (see [BB96]). We can use Theorem to investigate
these groupoids. Groupoid (2124) has already been considered, since it is (essentially)
the Abelian group Zs. The other two groupoids are also polymorphism-homogeneous
by the following corollary.

Corollary 6.3.14. The three-element affine groupoids given by

(2346) [0 12 (2934) [0 1 2
0/021 0/102
1210 1021
21102 21210

are polymorphism-homogeneous.

Proof. Notice that the basic operation of groupoid (2346) is z xy = —x — y, and
that the basic operation of groupoid (2346) is * ©® y = —z — y + 1. It is easy to see
that the clone generated by * is

Y (Z3,{0}) = {Zalxl|al,...,anezg,Zaizl,neN},
i=1
and the clone generated by © is
Y(Z3,7Z3) = {Zaml+c|al,...,an,ceZg,Zaizl,nEN}.
=1 =1

For both cases Theorem [6.3.12| can be applied. [
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Now we investigate the clones appearing in the form X (V,S). In the next
theorem we show that for any finite field V and the coset S of any subspace of V,
the clone X (V,.S) has property , that is, all of the corresponding finite affine
algebras are polymorphism-homogeneous.

Theorem 6.3.15. Let 'V be a finite vector space and let S be an affine subspace of
V. The clone X(V,S) has property|(SDC)|.

Proof. We will use a similar approach as in the proof of Theorem [6.3.12] Let
C = X(V,S), where V is a vector space over the field K = (K;+,-) and S =z+ W
for some subspace W in V and element z € V. Let us consider a primitive positive
formula over C° (with only one quantifier) of the form

d(x1,Xg,...,X,, 1) = Ju
fl(Xb cee 7Xn7u) = gl(X17 cee 7Xn7u)& o &ft<xla cee 7Xn7u) = gt(Xb cee 7Xn7u)7
where ¢t € N and f;,¢9;, € C for all i € {1,...,t}. We reformulate every equa-
tion fi(x1,...,X,,u) = g;i(X1,...,X,, n) containing u to an equation in the form
hi(Xl, e ,Xn) = u.
Let us consider an equation over C. This equation can be written in the form
n+1 n+1

Zaixi—l—c:Zbixi—l—d,

i=1 i=1

_ — n+1 / —
where ay,...,a,,b1,...,0, € K, u =x,41,c =5 — (X a;)s] and d = sy —
(St by)s, for some s;,8),82,8, € S. We of course permit a; = 0 or b; = 0

(for any i € {0,1,...,n + 1}). Then similarly to the proof of Theorem |6.3.12] if
bni1 — ant1 = 0 we can easily reformulate our equation such that it omits u, and if
bpi1 — ant1 # 0 we can reformulate the equation above as

n

Z ((bn+1 — an+1)_1(ai - bz)Xz) + (bn—i-l - CLn_H)_l(C - d) = Z 0- X; + 1- Xn+1 + 0.

i=1 i=1
(6.3.4)
We show that equation ([6.3.4]) is an equation over C. The right-hand side is an
operation belonging to C since

n n+1 n+1
u=xX, 1= 0-%+1-X1+0=> ¢ -x+ (53—(2%')53)7
i=1

i=1 i=1
where ¢y = -+ = ¢, =0, ¢,s1 = 1 and s3 € S is arbitrary.

To prove that the left-hand side also belongs to C' we need to show that
(bpy1 — Apy1) He—d) =s — (Z?:l(bnﬂ — py1) Ha; — bz)) - s for some elements
s,s’ € S. Now we have

n+1 n+1 n+1 n+1

c—d = (51— (X a)st) - (ST(Z bi)sh) = (51—52)—Z(ai—bi)'53+; bi(sy—s\),

=1 i=1
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and thus
(bn+1 - CLnJrl)il(C - d) =

n+1 n+1

(br1—ans1) " (S1=82) = Y (bns1—any1) (ai=b)-814 D (bny1—ani1) 'bi(sh—s)).

i=1 i=1
(6.3.5)
Let us take a look at the subterm in the middle of (6.3.5]):

n+1
= > (o1 — ang1) Hai = bi) -8y =
i=1

n

(bn+1 - an+1>71<bn+1 - CLn+1) ' s/l - Z(anrl - anJrl)il(ai - bl) : Sll
i=1

= Sll - Z(bn+1 - an+1>71(ai —b;) - S,l'
i=1
To complete proving that c—d is in the desired form note that since s, sq, s/, s, €
S =z+W, we have s; — 85,8, — s} € W, and thus (b1 — @ni1) t(s1 —s2) €W
and Y (b1 — @ny1) " t0i(sh, —sh) € W. (So the first and third subterms of (6.3.5)
belong to WW.) Therefore, we can choose s as the sum of these two subterms and s,
that is,

n+1

5 =81+ (bnp1 — ny1) (81— 82) + D (bng1 — ang) 'bi(sh — 8)),
=1

and s’ as 8. Then we indeed get that s,;s' € S and (b1 — ayi1) (e —d) =
s — ( 2y (b — @) Mas — b)) -

So we proved that (6.3.4)) is an equation over C. Then the same argument as in
the end of the proof of Theorem [6.3.12| can be used. [ |

Remark 6.3.16. Note that on the two-element set Ly = X(Z9,{0}) and L =
X(Zs,Zs), thus Theorem |6.3.15| is essentially a generalization of lemmas and
5. 1.0l

Semilattices

We investigate three-element semilattices with the help of Theorem There
are only two (meet) semilattices on the three-element set, namely the three-element
chain and the “V-shaped” semilattice (see Figure [6.2]). The groupoid that is
essentially the second semilattice (groupoid (80)) is not polymorphism-homogene-
ous by Theorem [6.3.1] since it is not a semilattice reduct of a distributive lattice.
The three-element chain on the other hand is polymorphism-homogeneous by

Theorem [6.3.1, The corresponding groupoid is groupoid (105).
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0 0
Figure 6.2: A schematic view of groupoids (80) and (105).

Monounary algebras

We consider all the three-element groupoids (up to clone equivalence) that have an
essentially unary basic operation. These groupoids are groupoids (1), (14), (27),
(275), (366), (2466) and (3242).

Lemma 6.3.17. The following groupoids are polymorphism-homogeneous.

(Hjo12 (@A9lo12 (20012 (275|012 (366) 0 1 2
0000 0[000 0000 0000 0000
11000 11000 11000 1111 11222
21000 21111 21222 21222 21111

(2466)| 0 1 2 (3242)[ 0 1 2

0[100 0111

1100 11222

21100 21000

Proof. By Theorem we only need to check the height of the sources of each
groupoid (regarded as a monounary algebra). Note that on the three-element set
it is impossible to have two elements with different heights, but it is also easy to
see that this holds for the groupoids above. Groupoid (1) has two sources, 1 and 2,
and their heights are ht(1) = ht(2) = 1. The other groupoids either have only one
source, or have no source at all. |

Groupoids generating a congruence distributive variety

If a groupoid generates a congruence distributive variety, then it will be called a
C D-groupoid. We have 57 C'D-groupoids out of the 411 groupoids (up to clone
equivalence). By Corollary [4.3.6] we can say the following.

Corollary 6.3.18. Let G be a three-element groupoid that generates a congruence
distributive variety. If G has an essentially k-ary partial polymorphism for some
k > 2, then G is not polymorphism-homogeneous.
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Proof. By Corollary [4.3.6], any total polymorphism of G is at most unary. Therefore,
if G has an essentially k-ary partial polymorphism for some k > 2, then this partial
polymorphism is obviously non-extendable. [

Groupoid (2407) is a special groupoid among the C'D-groupoids: it is primal,
meaning that the clone generated by its basic operation contains every operation
on the three-element set. It is not hard to see that this groupoid is polymorphism-
homogeneous; in fact, every finite primal algebra is polymorphism-homogeneous.

Lemma 6.3.19. Every finite primal algebra is polymorphism-homogeneous.

Proof. The lemma is trivial for one-element algebras. Let A = (A; F') be a finite
primal algebra with A = {0,...,n} (n > 1), and let C' = Clo(A). By Theorem[6.2.6]
the algebra is polymorphism-homogeneous if and only if it has property ; we
will prove the latter one. Since A is primal, we have that the centralizer of A only
contains the projections, and every set of n-tuples is closed under the projections
(for any n € N). Therefore, we need to prove that any set of n-tuples is a solution
set of some system of equations over C'. We will use an argument similar to the
one in the proof of Lemma [3.2.1]

Let T C A". For any v = (ay,...,a,) € A", we give an equation over C' such
that the solution set of this equation is T, = A™ \ {v}. Then the solution set of the
system of these equations is exactly 7" = Nyg¢r Tyv. Let v = (a1,...,a,) € A"\ T.
Let f € (’)I(f) be the constant 0 operation and let us define the n-ary operation g
at v as 1, and as 0 everywhere else. Since A is primal, these operations belong to
C'. Then the solution set of the equation f(z1,...,x,) = g(z1,...,z,) is exactly

T,. [ |
Corollary 6.3.20. The three-element CD-groupoid given by
(2407)| 0 1 2
0100
11020
2000

s polymorphism-homogeneous.

For the other groupoids that were not mentioned so far, a computer program
was used to find non-extendable partial polymorphisms. Using this program, we
see that 3 of the C'D-groupoids, namely groupoids (219), (222) and (239) are not
polymorphism-homogeneous. But the other 54 C'D-groupoids have neither a unary,
nor a binary non-extendable partial polymorphism. After some discussion with
Mike Behrisch, he offered to help me in my investigations; he used a SAT-solver to
see if the C'D-groupoids (all 57) have any essentially ternary partial polymorphisms.
His finding was that none of the 57 groupoids has an essentially ternary local
polymorphism. Therefore, the following conjecture is given.
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Conjecture 6.3.21. The three-element C'D-groupoids except for (219), (222) and
(239) are polymorphism-homogeneous.

The general case

For every three-element groupoid a computer program was used to find non-
extendable partial polymorphisms. The program gave us counterexamples for 291
of the 411 equivalence classes investigated (including the “V-shaped” semilattice
and the three CD-groupoids mentioned earlier). These results were proven by hand
as well, but the proofs are long and tedious, hence we omit them. We do present
however the partial polymorphisms proving that these groupoids are not polymor-
phism-homogeneous, in Appendix The operation tables for these groupoids are
shown in Appendix [I.5

Overall, our investigations show that groupoids belonging to 291 of the equiva-
lence classes are not polymorphism-homogeneous, and in this chapter we showed
that for other 12 equivalence classes we have polymorphism-homogeneity. For the
remaining 108 equivalence classes we can not say more for now.



Summary

1 Introduction

We study solution sets of systems of equations over arbitrary finite algebras. The
essence of our investigation is characterizing the solution sets with a certain type
of closure condition. Following the example of systems of linear equations, for any
algebra, we can find a set of operations such that the solution sets are always
closed under these operations. If this closure is sufficient as well (that is, every
closed set is also a solution set of some system of equations), then we will say
that the investigated algebra has property . This thesis studies algebras with
property and properties that are equivalent to property .

Let A be a finite set. An n-ary operation defined on a set A is a function from
A™ to A. The set of all operations on A is denoted by Q4. If a set of operations is
closed under composition and it contains the projections, then it is called a clone.
For an arbitrary set F' of operations on A, there is a least clone [F] containing F,
called the clone generated by F. For any algebra A = (A; F), the term operations
of A form a clone, which is exactly [F] = Clo(A). If C'is a clone, then a C-equation
is an equation of the form f(zy,...,2,) = g(z1,...,2,), where f,g € C. The
solution set of a system of C-equations £ is denoted by Sol(£). We say that an
n-ary operation f commutes with an m-ary operation g, if f is a homomorphism
from (A;g)" to (A4;g). The centralizer of a set of operations F' is the set of those
operations that commute with every operation in F' (notation: F*). The centralizer
of any set of operations is always a clone.

Let R be a set of relations. The set of all primitive positive definable relations
over R is denoted by (R)3, and such sets of relations are called relational clones. If
we allow only quantifier-free primitive positive formulas, then we obtain the weak
relational clone (R)3.

2 Connections between solution sets and central-
izers

There is a connection between solution sets of systems of equations over a clone
and the centralizer of the clone.

84
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Theorem 1. [TW17] For any clone C < Oy, the solution set of a system of
C-equations is closed under C*.

The other direction does not always hold, but when it does, we will say that
the clone (or the associated algebra (A; C')) has property |[(SDC). SDC here stands
for “Solution sets are Definable by closure under the Centralizer”.

Definition 2. [TW20] Let A = (A; F') be an algebra with C' = [F]. We say that A
(or C) has property (SDC) if the following are equivalent for all n € N and T" C A™:

(a) there exists a system &£ of C-equations such that 7' = Sol(€);
(b) the set T is closed under C*.

Let C° denote the set of those sets of tuples that are solution sets of a system
of equations containing only one equation (over C'). The main result of this chapter

is that a clone (or the associated algebra) has property [(SDC)|if and only if it has

quantifier elimination for primitive positive formulas over C°.

Theorem 3. [TW20| For every clone C < Oy, the following five conditions are
equivalent:

(i) C has property |(SDC)|;

(i) every primitive positive formula over C° is equivalent to a quantifier-free
primitive positive formula over C°;
(iii) (C°)s is a relational clone.

As a corollary we can see that the centralizer clone is the only clone that can
describe solution sets by a closure condition.

Corollary 4. [TW20| Let C' < O4 be a clone, and assume that there is a clone D
such that for alln € N and T C A", the following equivalence holds:

T is the solution set of a system of C'-equations <= T is closed under D.
Then we have D = C*.

3 Solution sets over 2-element algebras

After making some preliminary observations, we prove that every clone of Boolean
functions (or equivalently, every two-element algebra) has property [(SDC)|

Theorem 5. [TW17| For any clone of Boolean functions C < Og1y and T C
{0,1}", the following two conditions are equivalent:

(i) there is a system & of C-equations such that T'= Sol(E);
(ii) T is closed under C*.
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4 Centralizers of finite lattices and semilattices

In this chapter we focus on describing the centralizers of finite semilattices and
lattices. We also investigate the number of essentially n-ary operations, and their
occurrence in the centralizer.

Our first result describes the operations commuting with the join operation of a
semilattice S = (S;V) in terms of meet-homomorphisms from S; to S}, where S;
and S} denote the lattices obtained from S and S™ by adding an external bottom
element.

Theorem 6. [TW21| Let S = (S;V) be a finite semilattice, and let n be a non-
negative integer. The n-ary members of [V]* are exactly the operations f of the
form
f:8" =S x— ANg ' (1x),

where g : S; — S'} is a meet-homomorphism preserving the boundary elements L
and 1. Here g is uniquely determined by f, and the operation f depends on all of its
variables if and only if for each i € {1,...,n}, the range of g contains an element
of S™ whose i-th component is different from 1.

The theorem above allows us to count the essentially n-ary operations in the
centralizer [V]*. For finite chains we obtain the following explicit formula.

Corollary 7. [TW21| The number of essentially n-ary operations commuting with
the join operation of a chain of cardinality ¢ is

()]

For finite distributive lattices we can characterize the existence of an essentially
n-ary operation in the centralizer [V, A]* in terms of sublattices as well as in terms
of quotient lattices.

Proposition 8. [TW21] Let L = (L;V, A) be a finite distributive lattice. Then the
following are equivalent:

(Ess) there exists an essentially n-ary operation in [V, A]*;
(Sub) there exists a sublattice of I that is isomorphic to 2";
(Quo) there exists a quotient lattice of L that is isomorphic to 2™.

If our lattice is not distributive, then (Ess), (Sub) and (Quo) are not necessarily
equivalent; only the implications presented in the following theorem are true in
general (for all other implications we provide counterexamples).
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Theorem 9. [TW21| Let L = (L;V,A) be an arbitrary finite lattice. Then the
following are true:

o If there is an essentially n-ary operation in [V, \|*, then there is a sublattice
of L that is isomorphic to 2.

o If there is a sublattice of I isomorphic to 2" and a quotient of I isomorphic
to 2", then there is an essentially n-ary operation in [V, A]*.

With the help of the results we got in this chapter we also show that instead of
a long case-by-case analysis, we can obtain all centralizer clones on the two-element
set as the corollary of five general theorems.

5 Solution sets over finite lattices and semilat-
tices

Using Theorem [3| we characterize lattices and semilattices having property |[(SDC)|

Theorem 10. [TW20] A finite lattice has property |(SDC)| if and only if it is a
Boolean lattice.

Theorem 11. [TW20] A finite semilattice has property if and only if it is

distributive.

6 Solution sets and polymorphism-homogeneity

In this chapter we prove that an algebra has property if and only if it
is polymorphism-homogeneous. We can assign several relational structures to a
given algebra. The most natural would be the relational structure (A; C*), where
C* is the set of graphs of the operations in C'. It turns out that the structure
(A; C°) is more relevant, since its polymorphism-homogeneity is equivalent to
polymorphism-homogeneity of the algebra (this is not the case for (A; C*)).

We obtain the following equivalence between property [(SDC)| polymorphism-
homogeneity and injectivity.

Theorem 12. [TW22| If A is a finite algebra and C = Clo(A), then the following
conditions are equivalent:

(i) A has property|[(SDC)|;

(ii) A is polymorphism-homogeneous;
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(A, C*®) is polymor- —> (A, C°) is polymor- A is polymor-
phism-homogene- phism-homogene- phism-homoge-
ous neous

33 ] ]

A is injective in :> A is injective in : : A has property

HSP(A) SPgu(A) (SDC)

Figure 6.1: Relationships between property and several variants of polymor-
phism-homogeneity and injectivity.

(iii) (A, C°) is polymorphism-homogeneous;
(iv) A is injective in the class of finite subpowers of A.

On top of these four equivalent properties we also investigate polymorphism-
homogeneity of the relational structure (A; C*) and injectivity of A in the variety
HSP(A) for an arbitrary finite algebra A = (A; F) and C' = [F]. Our results for
the connections between these six properties are shown on Figure [6.1]

We already described polymorphism-homogeneous lattices and semilattices
(theorems |[10[ and . In the final part of the dissertation we characterize polymor-
phism-homogeneous algebras among Abelian groups and monounary algebras as
well, moreover, we also investigate the two remaining properties shown on the left
side of Figure [6.1] Finally, we study polymorphism-homogeneity of three-element
groupoids.
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1 Bevezetés

Tetszbleges véges algebra feletti egyenletrendszerek megoldashalmazait vizsgaljuk. A
kutatasunk lényege, hogy leirjuk a megoldashalmazokat egyfajta zartsagi feltétellel.
A linearis egyenletrendszerek példajara tetszéleges algebra esetén talalhaté egy olyan
fiiggvényhalmaz, melyre a megoldashalmazok mindig zartak kell legyenek, és amen-
nyiben ez a zartsag elégséges feltétel is (tehat minden zart halmaz megolddshalmaz

is), akkor azt mondjuk, hogy a vizsgilt algebra tulajdonsigi. A dissz-

ertaci6 az tulajdonsagu algebrékat, és az [((SDC)| tulajdonsdggal ekvivalens
tulajdonsagokat kutatja.

Legyen A véges halmaz. Az A"-bol A-ba mend fiiggvényeket n-valtozds mii-
veleteknek nevezziik. Az A-n értelmezett miiveletek halmazat O 4-val jeloljik. Ha
miveletek egy C' halmaza zart a fliggvényosszetételre és tartalmazza a projekciokat,
akkor a C' miivelethalmaz klon. Tetszéleges A halmazon értelmezett F' mivelethal-
maz esetén van egy, az F-et tartalmazé legsziikebb [F] klén, amelyet az F' altal
generdlt klénnak neveziink. Tetszoleges A = (A; F') algebra termfiiggvényei klont
alkotnak, mely nem maés, mint az [F] = Clo(A) klén. Ha C klon, akkor egy C
feletti egyenlet egy f(x1,...,x,) = g(x1,...,z,) alakd egyenlet, ahol f, g € C. Egy
C feletti £ egyenletrendszer megolddshalmazat Sol(E) jeloli. Ha f egy n-valtozos
miivelet, g pedig m-véltozos miivelet, valamint f az (A;g)" algebrabdl az (A;g)
algebraba mend homomorfizmus, akkor azt mondjuk, hogy f és g felcserélheto.
Egy F mivelethalmaz centralizatordn azon miiveletek halmazat értjiik, melyek
felcserélhetGek az Osszes F-beli miivelettel (jelolés: F™*). Tetszéleges miivelethalmaz
centralizatora klon.

Legyen R relaciok halmaza. Jelolje (R)3 az R feletti primitiv pozitiv formulaval
definidlhato relaciok halmazat, és jelolje (R)3 az R feletti kvantormentes primitiv
pozitiv formuldval definidlhaté reldciék halmazat. (El6bbi nem més, mint az R
altal generalt relacios klon.)

89
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2 Megoldashalmazok és centralizatorok kozotti
kapcsolatok

Tetszoleges klon esetén a kovetkezd kapcesolat van a klon centralizatora és a klon
feletti egyenletrendszerek megoldashalmazai kézott.

1. Tétel. [TW17| Tetszdleges C < Oy klon esetén a C feletti eqyenletrendszerek
megolddshalmazai zdrtak C*-ra.

A maésik iranyu implikdcié nem feltétlentil teljesiil. Ha azonban egy C klén
esetén teljesiil, akkor azt mondjuk, hogy a C klén (vagy a hozza tartozé (A;C')
algebra) tulajdonsagu. Itt SDC a ,,Solution sets are Definable by closure

under the Centralizer” roviditése.

2. Definicié. [TW20| Legyen A = (A; F') algebra és C' = [F]|. Azt mondjuk, hogy
A (vagy C) (SDC) tulajdonsagi, ha a kovetkezok ekvivalensek tetszéleges n € N
és T C A™ esetén:

(a) létezik olyan £ egyenletrendszer C felett, amelyre T' = Sol(£);
(b) T zart C*-ra.

Azon relaciok halmazat, melyek eléallnak egyetlen C' feletti egyenlet megoldashal-
mazaként, C°-val fogjuk jelolni. Ennek a fejezetnek a fo eredménye, hogy egy klén
(illetve a kapcsol6dd algebra) pontosan akkor [(SDC)| tulajdonsagi, ha a C° feletti

primitiv pozitiv formulak kvantoreliminalhatoak.
3. Tétel. [TW20] Minden C < Oy klonra ekvivalensek a kévetkezd dllitdsok:

(i) C tulajdonsdgi;

(ii) minden C° feletti primitiv pozitiv formula ekvivalens valamely C° feletti
kvantormentes primitiv pozitiv formuldval;

(iii) (C°)y reldcios klon.

A tétel kovetkezményeként megmutatjuk, hogy az egyetlen klon, mely zartsagi
feltételekkel leirhatja a megoldashalmazokat, a centralizator klon.

4. Kovetkezmény. [TW20| Legyen C' < O4 klon, és tegyiik fel, hogy létezik olyan
D klon, melyre minden n € N és T C A™ esetén a kivetkezd ekvivalencia teljesiil:

T megolddshalmaza valamely C' feletti eqyenletrendszernek <= T zart D-re.

Ekkor D = C*.
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3 Kételemii algebrak feletti megoldashalmazok

Néhany elozetes észrevétel segitségével igazoljuk, hogy a kételemii halmazon minden
klén (illetve minden kételemt algebra) tulajdonsagu.

5. Tétel. |[TW17] Boole-fiigguények tetszdleges C' klonja és tetszdleges T C {0,1}"
halmaz esetén ekvivalensek a kovetkezok:

(i) van olyan & egyenletrendszer C' felett, melynek T a megolddshalmaza,

(ii) T zart C*-ra.

4 Véges halok és félhalék centralizatorai

Ebben a fejezetben félhdlok és halok centralizatorait vizsgaljuk. Megnézziik azt
is, hogy hany lényegében n-valtozds miivelet van a centralizatorban, illetve ezek
el6fordulasat is kutatjuk.

Els§ eredménytink leirja egy S = (S, V) félhalo egyesités miiveletével felcserélhetd
miiveleteket, mint az S, -bol S’} -ba mend metszet-homomorfizmusokat. Itt S, és S'}
azon halokat jeloli, melyeket S-bol és S™-bol tgy kapjuk, hogy hozzajuk illesztiink
egy (1j) legkisebb elemet.

6. Tétel. [TW21| Legyen S = (S; V) véges félhald, és legyen n pozitiv egész szdm.
A [V]* centralizator n-vdltozds részében pontosan azon f miveletek vannak, melyek
a kovetkezd alakiak:

f:8" =8 x— ANg ' (1x),

ahol g : S| — S egy, a L és 1 korlatelemeket megdrzé metszet-homomorfizmus.
Itt g-t egyértelmiien meghatdrozza f, tovdbbd az f miwvelet pontosan akkor fiigg
minden vdltozéjatol, ha mindegyik i € {1,...,n} esetén g értékkészlete tartalmaz
olyan S™-beli elemet, melynek i-edik komponense kilonbézik 1-tol.

A fenti tétel segitségével meg tudjuk adni a [V]* centralizdtorban 16vé lényegében
n-valtozds miiveletek szamat. Véges lancokra a kévetkezo explicit formulat kapjuk:

7. Kovetkezmény. [TW21| Egy l-elemd ldnc (mint félhdld) centralizdtordban lévd
lényegében n-vdltozos miveletek szdma

()

Véges disztributiv halok esetén karakterizalhatjuk a centralizatorban 1évé
lényegében n-valtozds miivelet 1étezését részhalok, illetve faktorhalok segitségével.
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8. Allitas. [TW21] Legyen L = (L;V, ) véges disztributiv hdld. A kovetkezdk
ekvivalensek:

(Ess) Van n-vdltozds mivelet az [V, \]* centralizdatorban;
(Sub) L-nek van olyan részhdldja, mely izomorf a 2™ hdléval;
(Quo) L-nek van olyan faktorhdléja, mely izomorf a 2™ hdléval.

Ha a haléonk nem disztributiv, akkor az (Ess), (Sub) és (Quo) tulajdonsiagok nem
feltétlentil ekvivalensek; csak a kovetkezd tételben szereplo implikacidk teljesiilnek
altaldban (minden més implikdciéra adtunk ellenpéldat is).

9. Tétel. [TW21| Legyen L = (L;V, A\) tetszdleges véges hald. A kévetkezdk tel-
jestilnek:

o Ha van lényegében n-vdltozés mivelet az [V, \|* centralizdtorban, akkor L-nek
van olyan részhdldja, mely izomorf a 2™ hdléval.

e Ha L-nek van a 2" hdloval izomorf részhdloja és a 2™ hadloval izomorf fak-
torhdloja, akkor létezik lényegében n-vdltozés miielet az [V, N|* centralizdtor-
ban.

A fejezetben eddig kapott eredmények segitségével azt is megmutatjuk, hogy a
kételemii halmaz feletti Osszes centralizator hosszadalmas esetvizsgalat helyett 6t
altaldnos tétel kovetkezményeként is megadhato.

5 Véges halék és félhalok feletti megoldashalma-
zok

A 3| Tétel segitségével leirjuk az tulajdonsdgu félhalokat és hélokat.

10. Tétel. [TW20| Egy véges halé pontosan akkor|(SDC)| tulajdonsdgi, ha Boole-
hdlo.

11. Tétel. [TW20] Egy véges félhdlé pontosan akkor |(SDC)| tulajdonsdgi, ha
disztributiv.

6 Megoldashalmazok és polimorfizmus-homoge-
nitas

Ebben a fejezetben megmutatjuk, hogy egy algebra pontosan akkor tu-
lajdonsagi, ha polimorfizmus-homogén. Egy algebrahoz tobb relaciéstrukturat is
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(A, C*) polimorfiz- :> (A, C°) polimorfiz- : : A polimorfizmus-

mus-homogén ét mus-homogén homogén
A injektiv i A injektiv

= A algebra (SDC)

HSP(A)-ban @X: SPgn (A)-ban tulajdonsign

6.1. dbra: Az tulajdonsag és kiilonb6z6 polimorfizmus-homogenitasok és
injektivitasok kozotti kapcsolatok.

lehet térsitani. A legtermészetesebb az (A; C*®) reldciéstruktira lenne, ahol C*®
a C-beli miveletek grafjainak halmaza. Kideriil azonban, hogy relevansabb az
(A; C°) struktira, mert ennek polimorfizmus-homogenitédsa ekvivalens az algebra
polimorfizmus-homogenitasaval (mig (A; C*) esetén nem ez a helyzet).

Az aldbbi ekvivalenciat kapjuk aztulajdonség, a polimorfizmus-homogenitas
és az injektivitas kozott.

12. Tétel. [TW22] Ha A véges algebra és C' = Clo(A), akkor ekvivalensek a
kovetkezok:

(i) A tulajdonsdgi;
(ii) A polimorfizmus-homogén;
(iii) (A, C°) polimorfizmus-homogén;
(iv) A injektiv az A algebra véges részhatvanyainak osztdlydban.

A fenti négy ekvivalens tulajdonsagon feliil tetszoleges A = (A; F') algebra esetén
vizsgaljuk az (A; C*®) relaciéstruktira polimorfizmus-homogenitasit, valamint A
injektivitdsat a HSP(A) varietasban. Ezen hat tulajdonsag kozotti kapesolatokra
vonatkozé eredményeinket a [6.1] 4bra mutatja.

A félhalok és haldk korében mar leirtuk a polimorfizmus-homogéneket és
11.| Tétel). A disszertacié befejezd részében Abel-csoportok és monounér algebrak
korében is karakterizaljuk a polimorfizmus-homogén algebrakat, valamint vizsgaljuk
a[6.1] abra bal oldalan szerepld tulajdonsdgokat is. Végiil a hdromelemt grupoidok
polimorfizmus-homogenitasat kutatjuk.
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1.1 The Post lattice

The lattice of all clones on the set {0,1} is shown in Figure [1.1] Different symbols
are used according to the partition defined in Remark [4.4.5} primitive positive
clones are indicated by a symbol having an outline, while the gray circles without
an outline indicate clones that are not primitive positive. In Table we give the
definitions of the clones that are labeled on the diagram; the remaining clones can
be obtained as intersections of some of these clones.

N
SN
N

Figure 1.1: The Post lattice.
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() is the clone of all Boolean functions: 2 = Oy;.

Qo={feQ] f(0,...,0) = 0} is the clone of O-preserving functions.
Q={feQ] f(1,...,1) = 1} is the clone of 1-preserving functions.

Qo1 = Qg Ny is the clone of idempotent functions.

In general, if C' is a clone, then Cy = C N Qy, C; = C Ny, and Cy; = Cy N Ch.

QWM is the clone of all essentially at most unary functions: QM = [z, -z, 0,1].
[x] is the trivial clone containing only projections.
[0], [1] and [0, 1] are the clones generated by constant operations.

[—] is the clone generated by negation.

M={feQ|x<y= f(x) < f(y)} is the clone of monotone functions.

U*={feQm |neNy,3ke{l,....,n}: f(x) =1 = 25, =1}, and
UM =U>*NM,and UYM = U>* Ny N M.

W”:{fGQ(”)|n€NO,EIk:E{1,...,n}:f(x):O — 1z =0}, and
WM =WenNMand WM = W N Qe N M.

S={feQ|-f(—x)= f(x)} is the clone of self-dual functions.
SM = SN M = [u] where p(z,y, 2) is the majority function on {0,1}.

A={x; ANz, | neN}YU[0,1] = [A,0, 1].
A=ANQy={x1 A--- Az, |neN}UI0] = [A,0].
AM=AN ={x1 A Az, |neN}UI[l] =[A,1].
Ar=ANQy={x1 AN ANz, | neN}=][A]

V={x;V---Vaz,|neN}tul0,1] =[v,0,1].
Vo=VNQy={x1V---Vz,|neN}U[0]=]|V,0].
Vi=vnQ={xyv---Vaz, |neN}uUll] =[V,1].
Voo =VnNnQu={x1V---Vz,|neN}=][V].

L={x1+ - +z,+c|ce{0,1},ne Ny} =[xz +y,1].
Lo=LNQ={x1+ - +z, | n €Ny} =[x+

Li=Ln ={x1+--4+2,+(n+1 mod 2) | ne Ny} =[x +y+21]
Lon=LNQy ={x1+ -+, |nisodd} =[z+y+ 2.
SL:SﬂL:{x1+---+xn+c]nisoddandc€{0,1}}:[x+y+z,x+1].

Table 1.1: Definitions of some clones of Boolean functions.
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1.2 Centralizer clones of Boolean clones

P all clones C' < Oyg 1) such that C* = P

[z] | QM

0] | Qo, My, U*, U>, UM, UM (for all k € N)
1] | Qu, My, WE W WEM, W>M (for all k € N)
0, 1]] Qo1, Moy, Uk, USe, U, M, USs M, WE, WSS, WEM, WM (for all k € N)
-] S

QW | Sy, SM

Loy | L

Ly | Lo

Ly | Ly

L | Lo

SL | SL

Aoy | A

Ay | A

A | A

A A

Voo |V

Vo |V

Vi |V

V| Vi

So1 O

s |

Qo1 | [0,1]

Q| [0]

Q| [1]

Table 1.2: The centralizers of all clones of Boolean functions.
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1.3 Figures and tables for the proof of Theo-
rem (5.2.3

Figure 1.2: The elements a, b and ¢ (with an example u proving (a, ¢, b), (b,a,c) € T)
in case (Ns).

= x Y z T Ay TNz YNz TANYAz
— (a,¢e,b) (a,e,b) (a,c,b) (bya,c) (a,c,b) (a,c,b)
Y — — (a,c,b) (a,e,b) (a,c¢,b) (a,c,b)  (a,c,b)
z — — — (a,c,b) (a,c,b) (a,c,b) (a,c,b)
T Ay — — — — (a,c,b) (b,a,c) (b,a,c)
TNz — — — - — (a,c,b)  (a,c,b)
YNz — — — — — —
TANYNz | — - — — — — -

Table 1.3: Counterexamples for case (N5) showing that these equations do not
belong to Eq(T).

Figure 1.3: The elements a, b and ¢ (with an example u proving (a, b, ¢), (a,c,b) € T)
in case (Ms).
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= T Y z TAY A YNz TAYAz
— (a,b,¢) (a,b,c) (a,b,c) (a,c,b) (a,b,c) (a,b,c)
Yy - — (a,b,¢) (a,c,b) (a,b,c) (a,c,b) (a,c,b)
z — — — (a,b,c) (a,b,c) (a,b,c) (a,b,c)
T Ay — — — — (a,b,c) (a,c,b) (a,c,b)
TAz — — — — — (a,b,¢) (a,b,c)
YNz — — — — — —
TANYNZzZ | — — — — — — —

Table 1.4: Counterexamples for case (M3) showing that these equations do not
belong to Eq(T).

x,Vz
X.VZ
1 1

N

Figure 1.4: (z1,y1, 21) satisfies all equations in Eq(T), but (z1,y1,21) ¢ T.
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1.4 Some non-polymorphism-homogeneous three-
element groupoids: non-extendable partial
polymorphisms

The groupoids G (up to clone equivalence) such that

A partial operation ¢ ¢ is a non-extendable partial polymorphism of G

2), (4), (5), (6), (8), (10), (11), (12), (13), (15),

(16), (18), (22), (26), (30), (31), (32), (33), (34),

(0,0) —~0 (35), (36), (37), (38), (39), (40), (41), (42), (43),

5. [0 =1 (44), (45), (46), (48), (49), (51), (52), (53), (59),

(1,01 (61), (63), (65), (66), (67), (69). (73), (376), (377),
(1,1) > 1 (378), (379), (380), (381), (382), (384), (385), (387)

’ (388), (390), (391), (405), (407), (410), (417), (434),
(436), (437), (439), (1014), (1038), (1040), (1066)

(1

21), (24), (47), (50), (72), (75), (78), (96), (99),

119), (141), (144), (162), (165), (168), (182), (185),
218)

(
| ( )
v {2 0 (188), (201), (204), (218), (221), (235), (252), (255),
(1227), (1233)

(0,0) — 0
é: Egi;:g (60), (147)
(2,2) — 2
(79), (81), (82), (83), (85), (87), (88), (89), (90), (91),
(93), (97), (101), (111), (112), (113), (115), (117),
(0,0) =0 (120), (121), (122), (123), (124), (125), (130), (132),
J0,1) =0 (134), (136), (137), (138), (142), (143), (406), (454),
¢ (1,0) — 0 (455), (456), (457), (458), (459), (460), (462), (463),
(1.1) 1 (465), (469), (483), (484), (485), (487), (493), (494),
(495), (496), (512), (513), (514), (515), (517), (519),
(522), (1086), (1107), (1108), (1133)
(0,0) — 0
¢:3(0,2) -2 (80), (100), (102), (239), (241), (1132)
(1,0) — 1
(116), (135), (178), (194), (203), (281), (308), (316),

488), (520), (565), (758), (780), (984), (1793),
1799), (1818), (1962), (2430), (2436), (2539), (2545),
2636)

ASE
—
[\]
I
—_
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(0,0) — 0
(0,1) — 0
(0,2) — 0
¢4 (1,0)—0 (149), (175)
(1,1)—1
(2,0) — 0
(2,2) 5 2
(1,1) 2
(1,2) 1
o 2 1)1 (176), (198), (306), (320), (563), (756)
(2,2) 5 2
(0,0) — 0
(1,1) 1
¢4 (1,2) 2 (216), (284), (1708), (1837), (2088), (2472), (2558)
(2,1) 2
(2,2) 2
600 (219), (222), (2090)
1+—2
(257), (258), (259), (260), (261), (262), (263), (265),
266), (267), (268), (269), (270), (271), (272), (274),
278), (282), (677), (678), (679), (680), (682), (684),
5. {01 687), (690), (691), (693), (695), (696), (697), (698)
110 )
)
)

1281), (2460), (2461), (2462), (2463), (2464), (2467),
2476), (2478), (2479), (2480), (2483), (2486), (2487),

(

E

(704), (705), (707), (710), (712), (1271), (1277
(

(

(2493), (2739)

(273), (681), (2116)

NN = RO O
N = NN (= O = O
S N . | N N N
A R
NN NN RO == O

o~~~ o~ |~~~ —~

(283), (287), (353), (356), (359)
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(1,1)—1
J@,2) =1
o 2.1) s 1 (354)
(2,2) 2
(0,0) — 0
(0,2) s 2 (1012), (1084), (1151), (1153), (1176), (1200), (1219),
¢ (2.0) 2 (1221), (1242), (1321), (1433), (1437), (1481), (2102),
’ (2104)
(2,2) =0
(0,0) — 0
(0,2) —» 0
¢:{(1,1) 1 (2654), (2686), (2698), (2702)
(2,0) —» 0
(2,2) — 2

Table 1.5: Partial polymorphisms proving that the corresponding groupoids are
not polymorphism-homogeneous.
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1.5 Some non-polymorphism-homogeneous three-

element groupoids: operation tables

Nooo dlooda adloA—~ Ao~ — dlo—A - NloH—~ oA~ calo o
—lococoo HlooNm oo - Hooo —Hloodm oo~ Hoom —~|looa
cloo— cloo- cloocoo oo~ cloo - clooa cloocoo ol o —
—~ —~ —~ —~ —~ —~ —~ —~
Slo—~n Do~ Slo-a Ko dlo—a Glo-a Slo~a oo = -
= = o ) < <t %) )
N— N— S— N— N— SN— S— N—
alo o Nooo No—~o adlo~o No-Oo do—~0 aloN - ~Njlo o
—
e o "o mloo+ Hooo Hoo® Hoo~ HOooA —|0Oow™
cloo~ cloocoo cloon cloo - clooa clooco o|loo —~
olo oo
R —~ —~ ~—~ — —~ —~ —~
— o~ Slo—~a Clo—~a No—~a Do —~a Slo—~a Ko —~ o
=~ = A A H F Y ©
N— S~— SN— N~— N—— S~— SN— N—
dlo o VEON NoOo~ MO~ A MO TN NO—-A VO A NS AN
el e doeoca Hooa Ao~ HOOO oo N ~0 O
cloo- clooam clooco cloo- clooam clooa oo o —~
olo oo
R — —~ —~ Yy —~ Y —~
— Plo—~ N Clo~ N DBlorma Tloran Ro—a Hlo-a ©lo —~ o
ol — & = N A p < ) >
S~— S~— S~— S~— N~— S~— S~— S~—
alo o Njocoo Adloodm Ao Ao AHA N[O A+ N[O A~ Ao ™ —
—
. oo+ AnlooHd Ao Ao+ Hooc o oo —|o o —~
— —
cloo -+ cloom clooco cloo—+ clooam clooa oo o —~
olo oo
—~ —~ —~ — —~ — —
— mlo—Ha Glo—~a SGlo-a Slo—~a Do~ a qNlo—~a oo —~ o
Blo — & N ™ F < o o
N— N— SN— N— N— N— SN— N—
Nooa alooco VNP T2 NoHo No—HoOo dalo—~o aloa o
AN O O — O O o
—looco —|lo o -~ —“o o - oo ~Hlooa oo o
— o O ol o o
cloo ~ olooa clooco - clooa clooa oo o —~
olo oo —
Py Nl - N No —~ & o~ oo Slo—-a Mo —~ o
Flo —w o~ &N & & = = RS
N— S~— S~— N— N— S~— SN— N~—
o o Voo~ Moo A MO~ NSO HN Ao —~A N0 =N NOAO
e s "leeo doeoco —Hoo~ —Hlocoo —Hjoo@ 0o~ —H[ooOo
cloo - clooam clooco cloo— cloo+ clooa oo o —~
olo oo
R S —~ —~ —~ —~ ~~ Yy
—~ — | — A — D — A NS — AN o0 | — A <t | © — A OO — A — O — AN
Njo — o ~ & ) <t Y ©
S~— S~— S~— S~— S~— S~— S~— S~—
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