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Introduction

In this dissertation, our goal is to get a better understanding of the structure

of some lattices and some related lattices. We describe slim rectangular lattices

by permutations, and we also count these lattices. We search for minimum-sized

generating sets of the lattices of quasiorders. Also, we characterize lattices with

many congruences. While counting these congruences, we describe the structure

of the congruence lattices, too.

This dissertation is based on four of the author’s papers. These publications

are the following:

1. G. Czédli, T. Dékány, G. Gyenizse and J. Kulin: The number of slim rectan-

gular lattices. Algebra Universalis 75/1 (2016), 33–50.

2. G. Czédli and J. Kulin: A concise approach to small generating sets of lattices

of quasiorders and transitive relations. Acta Sci. Math. (Szeged) 83 (2017),

3–12.

3. J. Kulin: Quasiorder lattices are five-generated. Discussiones Mathematicae

- General Algebra and Applications 36 (1) (2016), 59–70.

4. C. Mureşan and J. Kulin: On the largest numbers of congruences of finite

lattices. Order 37 (2020), 445–460.

The number of slim rectangular lattices

Following the introductory Chapter 1, Chapter 2 is about slim rectangular

lattices and is based on [7]. An element of a lattice is join-irreducible if it has

exactly one lower cover. A finite lattice L is slim, if JiL, the set of the join-

irreducible elements of L, is included in the union of two chains of L; see Czédli and

Schmidt [10]. Note that, in the semimodular case, this concept was first introduced

by Grätzer and Knapp [14] in a different way. Slim lattices are planar, that is, they

possess planar diagrams.

2



If D1 and D2 are planar diagrams and φ : D1 → D2 is a bijective map such that

φ is a lattice isomorphism and it preserves the left-right order of (upper) covers

and that of lower covers of each element of D1, then φ is called a similarity map.

Two planar diagrams are similar if there exists a similarity map between them.

We treat similar diagrams as equal ones. That is, when we count planar diagrams,

we always do it up to similarity. By our convention, the lattice properties of a

planar lattice diagram D are those of the lattice determined by D.

Following Grätzer and Knapp [15], a semimodular diagram D is rectangular

if its left boundary chain, denoted by Cl(D), has exactly one doubly irreducible

element, lc(D), its right boundary chain, Cr(D), has exactly one doubly irreducible

element, rc(D), and these two elements, called the corners of D, are complemen-

tary, that is, lc(D) ∧ rc(D) = 0 and lc(D) ∨ rc(D) = 1. Rectangular lattices are

those that have rectangular diagrams.

Associated with a slim rectangular diagram D, the following three numerical

parameters will be of particular interest. As usual, the length of D is denoted

by lengthD. The left upper length and the right upper length of D, denoted by
lulenD and rulenD, are the length of the interval [lc(D), 1] and that of [rc(D), 1],

respectively.

A minimal non-chain region of a planar lattice diagram D is called a cell. A

four-element cell is a 4-cell. A diagram is a 4-cell diagram if all of its cells are

4-cells. It was proved in Grätzer and Knapp [14, Lemmas 4 and 5] that D is a

slim semimodular diagram iff it is a 4-cell diagram and no two distinct 4-cells

have the same bottom. Two prime intervals of a slim semimodular diagram D

are consecutive if they are opposite sides of a 4-cell. The consecutiveness of two

prime intervals in a slim semimodular lattice L does not depend on the planar

diagram chosen. Maximal sequences of consecutive prime intervals form a trajec-

tory. In other words, a trajectory is a class of the equivalence relation generated

by consecutiveness. By Czédli and Schmidt [10, Lemma 2.8], if T is a trajectory

of a slim semimodular diagram D, then T contains exactly one prime interval of

Cl(D), and the same holds for Cr(D). Going from left to right, T does not branch

out. First T goes up (possibly in zero steps), then it may turn to the lower right,
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and finally it goes down (possibly, in zero steps). In particular, at most one turn

is possible. See Figure 1 for illustration.

Figure 1: Two trajectories (the bold edges) of a slim rectangular diagram

We denote the set of (the similarity classes of) slim rectangular diagrams of

length n and that of slim semimodular diagrams of length n by the acronyms

SRectD(n) and SSmodD(n), respectively. Similarly, the set of the isomorphism

classes of slim rectangular lattices of length n, that of slim semimodular lattices of

length n are denoted by SRectL(n) and SSmodL(n).

There are several known tools for examining semimodular lattices; one of them

is describing these lattices by permutations. For a slim rectangular diagram D of

length n, let Cl(D) = {0 = c0 ≺ c1 ≺ · · · ≺ cn = 1} and Cr(D) = {0 = d0 ≺ d1 ≺
· · · ≺ dn = 1}. Following Czédli and Schmidt [11], the permutation π = πD ∈ Sn is

defined by the rule π(i) = j iff [ci−1, ci] and [dj−1, dj] belong to the same trajectory.

Czédli and Schmidt proved in [11] that the map SSmodD(n) → Sn, defined by

D 7→ πD, is a bijection.

In Chapter 2, we describe the permutations belonging to slim rectangular lat-

tices.

Definition 1. A permutation π ∈ Sn is called rectangular if it satisfies the follow-

ing three properties.

(i) For all i and j, if π−1(1) < i < j ≤ n, then π(i) < π(j).
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(ii) For all i and j, if π(1) < i < j ≤ n, then π−1(i) < π−1(j).

(iii) π(n) < π(1).

Remark 2. If π ∈ Sn is rectangular, then we have

(iv) π−1(n) < π−1(1).

So, π is rectangular iff π−1 is rectangular.

Proposition 3. A slim, semimodular, planar diagram D of length n ≥ 2 is rectan-

gular if and only if π = πD ∈ Sn is rectangular. Furthermore, if D is rectangular,

then

πD(1) = lengthD − rulenD + 1, π−1
D (1) = lengthD − lulenD + 1.

With the help of this description, we give formulas for the numbers of slim

rectangular diagrams and slim rectangular lattices.

Proposition 4. For 2 ≤ n ∈ N, the number of slim rectangular diagrams of length

n is

|SRectD(n)| =
∑

a+b≤n
a,b∈N

(
n− a− 1

b− 1

)(
n− b− 1

a− 1

)
(n− a− b)! .

Let Invl(k) = {π ∈ Sk : π = π−1} denote the set of involutions acting on

the set {1, . . . , k}. For k ∈ N, the number of involutions in Sk is |Invl(k)| =∑⌊k/2⌋
j=0

(
k

k−2j

)
· (2j − 1)!!.

Proposition 5. For 2 ≤ n ∈ N, the number of (the isomorphism classes of) slim

rectangular lattices of length n is

|SRectL(n)| = 1

2
·
(
|SRectD(n)|+

⌊n/2⌋∑
a=1

(
n− a− 1

a− 1

)
· |Invl(n− 2a)|

)
.

Based on the formulas, we are able to give asymptotic results, in which e ≈
2.71828.
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Proposition 6. The number of (the similarity classes of) slim rectangular dia-

grams of length n is asymptotically (n−2)! · e2, that is, |SRectD(n)| ∼ (n−2)! · e2.

This leads to the main result of Chapter 2.

Theorem 7. The number of (the isomorphism classes of ) slim rectangular lattices

of length n is asymptotically (n− 2)! · e2/2, that is,

lim
n→∞

|SRectL(n)|
(n− 2)! · e2/2

= 1.

Based on Propositions 4 and 5, |SSmodD(n)| and |SSmodL(n)| can easily be

determined for n ≤ 1000; Table 1 and Table 2 contain some of our results by com-

puter algebra. The numbers in Table 1 are also given in https://oeis.org/A273596

and https://oeis.org/A273988, respectively.

n 2 3 4 5 6 7 8 9
|SRectD(n)| 1 3 9 32 139 729 4 515 32 336
|SRectL(n)| 1 2 6 19 78 387 2 327 16 384

n 10 11 12
|SRectD(n)| 263 205 2 401 183 24 275 037
|SRectL(n)| 132 336 1 203 145 12 146 959

Table 1: Computational results for 2 ≤ n ≤ 12

n 200 600 1000
|SRectD(n)| 1.4568041 · 10371 2.5975960 · 101403 2.9732576 · 102562
|SRectL(n)| 7.2840205 · 10370 1.2987980 · 101403 1.4866288 · 102562
|SRectL(n)|
(n− 2)! · e2/2

0.99496227 0.99832914 0.99899847

Table 2: Computational results for n ∈ {200, 600, 1000}
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Small generating sets of lattices of quasiorders and

transitive relations

In Chapter 3, we aim to determine a minimum-sized generating set of the lattice

of quasiorders, also of the lattice of transitive relations. This chapter is based on

[8] and [16].

A quasiorder is a reflexive and transitive relation. Quasiorders on a set A form

a complete lattice Quo(A). So do the transitive relations on A; their complete

lattice is denoted by Tran(A). Similarly, Equ(A) will stand for the lattice of all

equivalences on A.

For a subset X of Equ(A), Quo(A), or Tran(A), we say that X generates the

complete lattice in question if the only complete sublattice including X is the

whole lattice itself. For k ∈ N := {1, 2, 3, . . . }, we say that a complete lattice L is

k-generated if it can be generated by a k-element subset X. If a complete lattice

is generated by a four-element subset X = {x1, x2, x3, x4} such that x1 < x2 but

both {x1, x3, x4} and {x2, x3, x4} are antichains, then we say that this lattice is

(1 + 1 + 2)-generated.

All sets in Chapter 3 are assumed to be of accessible cardinalities. A cardinal

κ is accessible if it is finite, or it is infinite and for every λ ≤ κ,

� either λ ≤ 2µ for some cardinal µ < λ,

� or there is a set I of cardinals such that λ ≤
∑

µ∈I µ, |I| < λ, and µ < λ for

all µ ∈ I.

ZFC has a model in which all cardinals are accessible, hence the scope of many of

our results includes all sets in an appropriate model of set theory.

It was known by Strietz [18] and [19], Zádori [21], and Czédli [3] that the

complete lattice Equ(A) of all equivalences is four-generated, provided the size

|A| of A is an accessible cardinal and |A| ≥ 2. Also, Equ(A) cannot be generated

by less than four elements if |A| ≥ 4. We know from Chajda and Czédli [2] and

Takách [20] that Quo(A) is six-generated as a complete lattice, provided that |A| is
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accessible. Actually, we know from Dolgos [12] for 2 ≤ |A| ≤ ℵ0 that the complete

lattice Quo(A) is five-generated.

We extend Dolgos’ result in two ways. The first one is short and states more

(about all sets A where |A| is accessible) than the second one, but it is based heavily

on Czédli’s quite involved and long constructions from [3] and [4]. This justifies the

second way: we give an easier, more understandable and self-contained construction

for a five-element generating set of Quo(A) if |A| ≤ 2ℵ0 , based on Dolgos’ work.

Theorem 8. Let A be a set with at least three elements.

(i) If |A| is an accessible cardinal, then Quo(A) is five-generated as a complete

lattice.

(ii) If ℵ0 ≤ |A| ≤ 2ℵ0, then Quo(A) is five-generated as a complete lattice.

Following this result, Czédli proved in [5] that the complete lattice Quo(A) is

four-generated for |A| = {ℵ0}∪ (N \ {1, 4, 6, 8, 10}). It is also shown in [5] that the

complete lattice Quo(A) cannot be generated by less than four elements, provided

|A| ≥ 3. Concerning transitive relations, Dolgos [12] has shown that the complete

lattice Tran(A) is eight-generated for 2 ≤ |A| ≤ ℵ0.

So our second goal in Chapter 3 is to show, in a concise but not self-contained

way, that Quo(A) is four-generated if |A| ̸= 4 and |A| is an accessible cardinal.

Furthermore, we prove that Quo(A) is (1+1+2)-generated in many (however not

all) cases. We also improve the earlier results on the generating sets of Tran(A).

Theorem 9. Let A be a non-singleton set. Then the following statements hold.

� If |A| ≠ 4 and |A| is an accessible cardinal, then the complete lattice Quo(A)

is four-generated.

� If |A| ≥ 13 and either |A| is an odd number, or |A| ≥ 56 is even, then the

complete lattice Quo(A) is (1 + 1 + 2)-generated.

� If 13 ≤ |A| ≤ ℵ0 and either |A| is an odd number, or |A| ≥ 56 is even, then

the lattice Quo(A) (not a complete one now) contains a (1+1+2)-generated

sublattice that includes all atoms of Quo(A).
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Theorem 10. If 3 ≤ |A| and |A| is an accessible cardinal, then Tran(A) is six-

generated as a complete lattice

Later, Ahmed and Czédli [1] proved that if A is a finite set such that |A| ∈
{3, 6, 11} or |A| ≥ 13, then Quo(A) is (1 + 1 + 2)-generated. So they extended

the scope of the middle part of Theorem 9 by 24 new values of |A|. At present,

there are seven finite values of |A| such that we do not know whether Quo(A) is

(1 + 1 + 2)-generated or not.

On the largest numbers of congruences of finite

lattices

Chapter 4 deals with the problem that given a natural number n, find the n-

element finite lattices with the most, second-most, third-most, etc. congruences;

also, give the diagram of the lattice of their congruences. This chapter is based on

[17].

By Czédli and Mureşan [9], the set of all the congruences of an infinite lattice

can be of any size between 2 and the cardinality of the lattice, or it can have

the same cardinality as the lattice’s subsets. But the situation is quite different

for finite lattices. To formulate our results, the following lattice operations and

notations are needed.

Let L and M be lattices. If L has a largest element 1L and M has a smallest

element 0M , then the glued sum of L and M , denoted by L ∔ M , is obtained

from L and M by identifying 1L with 0M and stacking M on top of L. If L and

M are nontrivial bounded lattices, then the horizontal sum of L and M , denoted

by L ⊞ M , is obtained from L and M by identifying their bottom elements 0L

and 0M , identifying their top elements 1L and 1M , and letting every element of

L \ {0L, 1L} be incomparable to every element of M \ {0M , 1M} in L⊞M . For any

n ∈ N, we denote the n-element chain by Cn. As usual, N5 denotes the five-element

nonmodular lattice C3 ⊞ C4.
Using these notations, Freese [13] and Czédli [6] determined the largest and
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second largest numbers of congruences. Namely, if L is a finite lattice with n

elements, then |Con(L)| ≤ 2n−1, also, |Con(L)| = 2n−1 iff L ∼= Cn. In other words,

a finite lattice can have at most as many congruences as the chain with the same

number of elements has. Furthermore, if |Con(L)| < 2n−1, then |Con(L)| ≤ 2n−2,

moreover, |Con(L)| = 2n−2 iff L ∼= Ck ∔ C2
2 ∔ Cn−k−2 for some k ∈ [1, n− 3]. That

means the second largest possible number of congruences is witnessed by a glued

sum of two chains with the four-element Boolean algebra. Following the line of

Czédli’s proof, we obtain the next result about the lattices with the third, fourth

and fifth largest possible numbers of congruences. For a better understanding, see

Figures 2–4.

Theorem 11. Let L be a finite lattice with n elements.

(i) If |Con(L)| < 2n−2, then n ≥ 5, |Con(L)| ≤ 5 · 2n−5 = 2n−3 + 2n−5, and:

|Con(L)| = 5 · 2n−5 iff L ∼= Ck ∔N5 ∔ Cn−k−3 for some k ∈ [1, n− 4].

(ii) If |Con(L)| < 5 · 2n−5, then |Con(L)| ≤ 2n−3, and: |Con(L)| = 2n−3 iff either

n ≥ 6 and L ∼= Ck ∔ (C2 ×C3)∔ Cn−k−4 for some k ∈ [1, n− 5], or n ≥ 7 and

L ∼= Ck∔C2
2∔Cm∔C2

2∔Cn−k−m−4 for some k,m ∈ N such that k+m ≤ n−5.

(iii) If |Con(L)| < 2n−3, then |Con(L)| ≤ 7 · 2n−6 = 2n−4 + 2n−5 + 2n−6, and:

|Con(L)| = 7 · 2n−6 iff n ≥ 6 and, for some k ∈ [1, n − 5], L ∼= Ck ∔ (C3 ⊞
C5)∔ Cn−k−4 or L ∼= Ck ∔ (C4 ⊞ C4)∔ Cn−k−4.

rr
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rr@

@
�
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rr

0

1
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Figure 2: For L ∼= Ck ∔N5 ∔ Cn−k−3: |Con(L)| = 5 · 2n−5
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Figure 3: For L ∼= Ck ∔ C2
2 ∔ Cm ∔ C2

2 ∔ Cn−k−m−4 and L ∼= Ck ∔ (C2 ×C3)∔ Cn−k−4:
|Con(L)| = 2n−3
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Figure 4: For L ∼= Ck ∔ (C3 ⊞ C5) ∔ Cn−k−4 and L ∼= Ck ∔ (C4 ⊞ C4) ∔ Cn−k−4:
|Con(L)| = 7 · 2n−6

Combining the earlier theorems with ours, we summarize the results on the

lattices of the congruences of a finite lattice with the most, second-most, third-

most, etc. congruences.

Corollary 12.

(i) |Con(L)| = 2n−1 iff Con(L) ∼= Cn−1
2 .

(ii) |Con(L)| = 2n−2 iff n ≥ 4 and Con(L) ∼= Cn−2
2 .

(iii) |Con(L)| = 5 · 2n−5 iff n ≥ 5 and Con(L) ∼= Cn−5
2 × (C2 ∔ C2

2).

(iv) |Con(L)| = 2n−3 iff n ≥ 6 and Con(L) ∼= Cn−3
2 .
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(v) |Con(L)| = 7 · 2n−6 iff n ≥ 6 and Con(L) ∼= Cn−6
2 × (C2

2 ∔ C2
2).

Összefoglaló (Summary in Hungarian)

E disszertációban az a célunk, hogy jobban megértsük bizonyos hálók és bi-

zonyos ḱısérőhálók szerkezetét.

A bevezető 1. fejezetet követően a 2. fejezet sovány téglalapszerű hálókkal

foglalkozik, és a [7] cikkünket dolgozza fel. A sovány téglalapszerű hálók speciális

śıkbarajzolható féligmoduláris hálók. Permutációkkal jellemezzük e hálókat, és a

permutációk seǵıtségével megadjuk az adott n hosszúságú sovány téglalapszerű

hálók számát. Azt is bebizonýıtjuk, hogy a számuk aszimptotikusan (n−2)! ·e2/2,
ahol e ≈ 2.71828.

A 3. fejezetben azt vizsgáljuk, hogy legkevesebb hány elemmel generálható a

kvázirendezések hálója, valamint a tranzit́ıv relációk hálója. Ez a fejezet a [8] és [16]

cikkeinken alapul. Egy reflex́ıv és tranzit́ıv relációt kvázirendezésnek nevezünk. Egy

A halmaz kvázirendezései, illetve tranzit́ıv relációi teljes hálót alkotnak, melyeket

Quo(A)-val, illetve Tran(A)-val jelölünk. Takách [20] cikkében bebizonýıtotta,

hogy Quo(A)-t hat elemmel lehet generálni elérhető számosságú A halmazok ese-

tén, Dolgos pedig megmutatta megszámlálható számosságú A halmazokra [12]-ben,

hogy Quo(A) öt elem által is generálható. A disszertáció 3. fejezetében először úgy

általánośıtjuk a korábbi eredményeket, hogy minden elérhető számosságú A hal-

mazra igazoljuk Quo(A) ötgeneráltságát. Ezt az eredményünket követően Czédli

néhány kivételtől eltekintve majdnem minden megszámlálható A halmazra bebi-

zonýıtotta az [5] cikkében, hogy Quo(A) négygenerált. Azt is megmutatta [5]-ben,

hogy |A| ≥ 3 esetén Quo(A) nem generálható négynél kevesebb elemmel. A 3. fe-

jezet második részében általánośıtjuk Czédli eredményét, tömör bizonýıtást adunk

arra, hogy Quo(A) négygenerált, ha |A| ≠ 4 és |A| tetszőleges elérhető számosság.

Jav́ıtunk a Tran(A) generátorhalmazairól szóló korábbi eredményeken is: Dolgos

[12]-ben Tran(A) nyolcgeneráltságát mutatta meg megszámlálható A halmazok

esetén, mi bebizonýıtjuk, hogy hat elemmel is lehet generálni a tranzit́ıv relációk

hálóját elérhető számosságú alaphalmazok esetén.

12



A 4. fejezetben azzal a problémával foglalkozunk, hogy adott n természetes

szám esetén mely n elemű véges hálóknak van a legtöbb, második legtöbb, har-

madik legtöbb, stb. kongruenciája; továbbá azzal, hogy az ilyen hálók kongru-

enciahálóinak milyen a szerkezete. Ezek az eredmények a [17] cikkünkben jelen-

tek meg. Freese [13]-ban bebizonýıtotta, hogy egy véges hálónak legfeljebb annyi

kongruenciája lehet, mint az azonos elemszámú lánc kongruenciáinak a száma.

Majd Czédli [6]-ban léırta a lehetséges második legtöbb kongruenciával rendelkező

hálókat. A disszertáció 4. fejezetében bemutatjuk az eredményeinket hálók kong-

ruenciáinak harmadik, negyedik és ötödik lehetséges legnagyobb számáról.
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[20] G. Takách: Three-generated quasiorder lattices. Discussiones Matematicae, Al-
gebra and Stochastic Methods 16 (1996), 81–98.

[21] L. Zádori: Generation of finite partition lattices. Lectures in Universal Al-
gebra, Colloquia Math. Soc. J. Bolyai 43, Proc. Conf. Szeged (1983), 573–586,
North Holland, Amsterdam—Oxford—New York (1986).

15












