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Júlia Kulin

Supervisors:
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Chapter 1

Introduction

This dissertation is built around four of the author’s papers. In these papers,

we count specific objects of lattice theory, answering the following questions. What

is the number of (the isomorphism classes of) slim rectangular lattices of a given

length? How many elements does a minimum-sized generating set of a given qua-

siorder lattice have? How many congruences can a finite lattice have? The answer

to the first question gave us an integer sequence not added previously to The

On-Line Encyclopedia of Integer Sequences, OEIS for short. We were the first to

publish it there; see A273988 at https://oeis.org/A273988. As in general, the mo-

tivation to enumerate mathematical objects (lattices, generating elements, lattice

congruences in our case) is two-fold. First, research of this kind can, sometimes,

contribute to a better insight into the objects we count. Second, the numbers we

obtain can occur (now or possibly in the future) in the OEIS. If so, then the nu-

merical coincidence can be accidental but it can also be a sign of a previously not

known relation between distinct mathematical topics. For example, in a related

paper, Czédli, Dékány, Ozsvárt, Szakács and Udvari [34, Proposition 3.4] (so not

in one of the author’s papers), the number of some lattices with a given parameter

n turned out to be the n-th Catalan number. At the time of writing, the search

for “Catalan number” in the OEIS returns 3356 results. Several of these research

results are in connection with mathematical structures. It remains a task for the

future whether the lattices enumerated in Czédli et al. [34] have some contentful
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CHAPTER 1. INTRODUCTION

connection with the just-mentioned mathematical structures. When the numbers

of our sequence A273988 appear in the OEIS more than once, they might offer

analogous tasks to deal with.

In the second chapter, we present our result about slim rectangular lattices

from the paper [33]. Slim rectangular lattices are special planar semimodular lat-

tices introduced by Grätzer and Knapp in [62]. After describing these lattices by

permutations, we determine the number of these lattices of a given length n. Be-

sides giving formulas, which are effective up to about n = 1000, we also prove that

the number of these lattices of a given length n is asymptotically (n − 2)! · e2/2,
where e is Euler’s famous number, e ≈ 2.71828.

In Chapter 3, we aim at finding the sizes of minimum-sized generating sets of

some well-known lattices, which consist of some relations. For every set A occurring

in the description of Chapter 2, unless it is explicitly stated otherwise, we assume

that A satisfies the condition that

there is no inaccessible cardinal λ such that λ ≤ |A|. (1.0.1)

In connection with this (possibly strange) condition, one of Kuratowski’s results

is worth mentioning here. Namely, Kuratowski [73] has proved the following:

If ZFC is consistent, which is generally believed, then ZFC augmented

with the axiom that “there is no inaccessible cardinal at all” is also

consistent. In other words: in ZFC, we cannot prove the existence of

inaccessible cardinal numbers, simply because in the so-called Kura-

towski’s model of ZFC, there is no inaccessible cardinal.

(1.0.2)

Being in the Bolyai Institute, we point out that (1.0.2) shows some similarity with

János Bolyai’s famous result (proved also by Nikolai Lobachevsky, independently);

indeed, the “existence of inaccessible cardinals” in the (appropriately reformulated

version of) (1.0.2) corresponds to “the failure of Euclid’s fifth postulate” in Bolyai’s

result.

By Strietz [83] and [84], Zádori [87], and Czédli [7], the complete lattice Equ(A)

of all equivalences on a set A is four-generated, provided that A satisfies (1.0.1).
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CHAPTER 1. INTRODUCTION

Also, Equ(A) cannot be generated by less than four elements if |A| ≥ 4; here we

do not have to assume (1.0.1). A quasiorder (relation), also known as a preorder,

is a reflexive and transitive relation. The quasiorders on a set A form the complete

lattice Quo(A) with respect to set inclusion. Results of Chajda and Czédli [4],

Takách [85], and Dolgos [48] show that both the lattice Quo(A) of all quasiorders

on a set A satisfying (1.0.1) and, for |A| ≤ ℵ0, the lattice Tran(A) of all transitive

relations on A have small generating sets.

In Chapter 3, based on our papers [72] and [37], we improve these results about

the lattices of quasiorders and those of transitive relations by allowing larger sets

A, but not larger than what (1.0.1) allows, and/or finding smaller generating sets.

First, generalizing the 1996 result of Chajda and Czédli, and the 2015 result of

Dolgos, we prove that (1.0.1) implies that the lattice of quasiorders on A is five-

generated, as a complete lattice. Then, based on complicated earlier constructions,

we derive some new results in a concise but not self-contained way. These results

include showing that Quo(A) is four-generated if |A| ≠ 4, furthermore it is (1+1+

2)-generated in many (however not all) cases; of course, (1.0.1) is assumed; in fact,

we do not know any idea how to attack the case when A fails to satisfy (1.0.1).

Although (1.0.1) would mean no restriction at all if we worked in Kuratowski’s

model of ZFC, we admit that set theory usually assumes the opposite of (1.0.1).

In Chapter 4, for a fixed natural number n, we investigate the largest possible

values of the numbers of congruences of n-element lattices; this section is taken

from our paper [77]. Motivated by a result of Freese and continuing Czédli [21],

we determine the third, fourth and fifth largest numbers of congruences of an

n-element lattice. Furthermore, we determine the structures of those n-element

lattices that witness these numbers.
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Chapter 2

The number of slim rectangular

lattices

This chapter is based on [33]. Compared to [33], which appeared in 2016, the

introductory part of the chapter has changed a lot. The rest of the section is

practically unchanged.

2.1 Outline and related results

The key definitions are given in Section 2.2. Some concepts in this historical

mini-survey will not be defined with full details; their role is only to give a vague

idea about motivations and earlier results.

Unless otherwise stated, all lattices occurring in this chapter are finite.

A lattice L is semimodular if for every x, y, z ∈ L such that x ⪯ y, we have

that x ∨ z ⪯ y ∨ z. Slim rectangular lattices and, in particular, slim patch lattices

are of particular importance, because each planar semimodular lattice can be ob-

tained from them easily; see Grätzer and Knapp [61], Czédli and Schmidt [46],

and Grätzer [55]. (We say more about their importance later in the section.) The

present chapter describes slim rectangular lattices by permutations. Using this

description, we are going to enumerate slim rectangular lattices and slim patch

lattices of a given length n. Also, we enumerate their planar diagrams in a rea-
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CHAPTER 2. THE NUMBER OF SLIM RECTANGULAR LATTICES

sonable sense. We give precise, however, involved formulas and asymptotic ones.

By means of computer algebra, the precise formulas lead to concrete numbers for

n ≤ 1000.

The rest of this section gives a brief historical overview of planar semimodular

lattices, including slim rectangular and slim patch lattices. Section 2.2 recalls the

main concepts and some tools we need from the theory of planar semimodular lat-

tices. In Section 2.3, we describe slim rectangular lattices by certain permutations,

and we prove several auxiliary statements that could be of separate interest. We

count these lattices of a given height n and their diagrams in Section 2.4, and we

give these numbers asymptotically for n → ∞ in Section 2.5. Finally, Section 2.6

contains some concrete numerical values.

The concept of slim semimodular lattices and that of rectangular lattices ap-

peared first in Grätzer and Knapp’s pioneering papers [61] and [62]. These lattices

are planar1. So far, the just-mentioned two papers have been followed by more

than four dozen others devoted to planar semimodular lattices; see the

Appendix in Czédli’s paper https://arxiv.org/abs/2107.10202v1

for the 2021 list; for the up-to-date and longer list, see

http://www.math.u-szeged.hu/˜czedli/m/listak/publ-psml.pdf

(2.1.1)

(Note that the paper occurring in the first line of (2.1.1) is the extended arXiv

version of [28]; only this extended version contains the list in question.)

Next, we briefly discuss the role of planar semimodular lattices in lattice theory

and related mathematical fields. By a classical (1942) result of N. Funayama and

T. Nakayama, the congruence lattice Con(L) of a lattice L is necessarily distribu-

tive. For the finite case, the converse was first published by Grätzer and Schmidt

[68]: for any finite distributive lattice K, there exists a finite lattice L such that

K ∼= Con(L). Following the terminology of Grätzer [57], we will reference this result

as the Basic Representation Theorem. Note that in his monograph [57], Grätzer

1They are planar by their original definition given in Grätzer and Knapp [61]. Later, we
will go by Czédli and Schmidt’s setting, [43], where the concept of slimness is extended to all
finite lattices including the non-semimodular ones, and planarity is a consequence of this general
notion of slimness.
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CHAPTER 2. THE NUMBER OF SLIM RECTANGULAR LATTICES

declares the Basic Representation Theorem in [68] as a rediscovery of an unpub-

lished result of R. P. Dilworth. Later, some authors, mainly Grätzer and Schmidt,

improved the Basic Representation Theorem by tailoring extra conditions to L

and/or simultaneously representing two finite distributive lattices together with

a function between them by means of lattice congruences; discussing such results

would be very far from our targets. What is important in our aspect is that the

Basic Representation Theorem remains true if we say “finite planar semimodular

lattice L” instead of a “finite lattice L” in it; this was proved by Grätzer, Lakser,

and Schmidt [65].

The first motivation for studying planar semimodular lattices is due to G.

Grätzer and it is in connection with the Basic Representation Theorem: Can we

put further restrictions on the finite lattice L (in addition to being planar and

semimodular)? And if we put certain further restrictions on L, then what further

properties will Con(L) have? So the first motivation is in connection with the

congruence lattices of some special planar semimodular lattices. Indeed, 23 out of

the 56 items on the list mentioned in (2.1.1) contain “congruence” in their titles.

For brevity, we will refer to the first motivation as “understanding the congruence

lattices” (of slim semimodular lattices).

The second motivation is that some special planar semimodular lattices, which

we will call slim semimodular lattices, appeared to be the right tools in generalizing

the classical Jordan–Hölder theorem for groups, see Czédli and Schmidt [43] and

Grätzer and Nation [66]. That is, slim semimodular lattices have been applied in

group theory.

The third motivation is that the purely lattice theoretic topic of slim semimod-

ular lattices has lead to several papers in geometry; see the survey part of one of

these papers, Czédli and Kurusa [38]; this paper is also on the list mentioned in

(2.1.1).

The fourth motivation is somewhat weaker than the preceding three but it is

still worth mentioning. At some cases, even though slim semimodular lattices are

not applied at other fields of mathematics, they still have some connections with

these fields: model theory and category theory; the titles of Czédli [27] and Czédli
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CHAPTER 2. THE NUMBER OF SLIM RECTANGULAR LATTICES

and Molkhasi [39] speak for themselves.

Based on the four motivations mentioned above, the class of planar semimod-

ular lattices, that of slim planar semimodular lattices, and two other subclasses to

be discussed later are natural classes of structures to study. Note at this point the

just-mentioned classes contain only finite lattices, since any planar lattice is finite

by definition.

To prove results about planar semimodular lattices and to apply these lattices

outside lattice theory (see the second and third motivation), one should understand

their structures. There are several approaches that offer insight into these lattices.

First of all, each planar semimodular lattice L has its slimming, which we ob-

tain by removing the “inner doubly irreducible elements” of the cover-preserving

M3-sublattices of L. Here “inner” is understood in the geometric sense with re-

spect to a fixed planar diagram of L. Thus, this concept and some other con-

cepts that come later depend on a planar diagram of L rather than on L itself.

In most of the cases, the choice of the diagram is irrelevant, at least up to left-

right symmetry. Hence, we usually drop that “a fixed planar diagram of”. Accord-

ing to Grätzer and Knapp [61], a planar semimodular lattice is slim if it is its

own slimming. (Latter, we will define slimness in another but—in the presence of

semimodularity—equivalent way.) We know from Grätzer and Knapp [61] that, to

understand planar semimodular lattices, it suffices to describe the slim semimodu-

lar ones. This explains the importance of slim planar semimodular lattices among

planar semimodular lattices.

Another important subclass of planar semimodular lattices is formed by rec-

tangular lattices ; see Grätzer and Knapp [62]. Slim rectangular lattices are also

important. First, because we can obtain the slim semimodular lattices from slim

rectangular ones; actually, we can do this in two ways. Namely, to obtain a slim

semimodular lattice L, either we start with a “large” slim rectangular lattice L′

and we can obtain L from L′ in a particular way as a sublattice, see Czédli and

Schmidt [44, Lemma 21], or we can glue “small slim rectangular lattices” (in fact,

some rather special slim rectangular lattices called slim patch lattices) together,

see Czédli and Schmidt [46]. As the construction and the concept on which it relies
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CHAPTER 2. THE NUMBER OF SLIM RECTANGULAR LATTICES

are quite involved in [46], it is worth noting that the patch lattices are exactly the

Hall–Dilworth-gluing irreducible lattices in the class of the at least four-element

planar semimodular lattices; see Czédli and Schmidt [46, Theorem 3.4].

In view of the paragraph above, the problem of understanding planar semi-

modular lattices has been reduced to the task of understanding slim semimodular

and slim rectangular lattices. Partly, this task is reduced to understanding slim

patch lattices, too. The tools for this task fall into two categories.

The tools in the first category yield a slim rectangular lattice L step-by-step,

inductively. These steps either remove some special bundles of elements, see Czédli

and Grätzer [35], or (and more importantly) the steps add special bundles of new

elements, see Czédli and Schmidt [44, Lemma 22] and, for a more useful tool, Czédli

[13, Theorem 3.7]. (In both cases, the bundles are called forks.) This step-by-step

approach has often been useful in proving properties of slim rectangular or slim

semimodular lattices.

The second category consists of two known tools that describe slim semimod-

ular lattices by matrices or by permutations in an explicit way; see Czédli [11]

and Czédli and Schmidt [45], respectively. The idea of using permutations for this

purpose goes back to Abels [1].

This section uses permutations, the most advanced tool in the “explicit” cate-

gory to describe slim semimodular lattices. We have not investigated whether the

other explicit tool, the description by matrices, could be useful for our purpose,

but note that matrices were used in another paper that enumerated some slim

semimodular lattices; see Czédli, Ozsvárt, and Udvari [42]. (The title of this paper

shows that, in addition to those two mentioned earlier, [42] is also a paper showing

that slim semimodular lattices are applicable in group theory.) The advantage of

permutations over matrices is that there is a considerable knowledge about the

“Combinatorics of Permutations” (this is the title of the monograph of Bóna [3]).

The second and the third out of the four motivations, that is, the applicability in

group theory and geometry, might look more interesting than the first motivation,

understanding the congruence lattices (of slim semimodular lattices). To dispel

this feeling and to strengthen the reputation of the first motivation, we mention
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CHAPTER 2. THE NUMBER OF SLIM RECTANGULAR LATTICES

that the tools outlined above were developed for the sake of understanding the

congruence lattices of slim semimodular lattices. For example, Grätzer and Knapp

[62] introduced slim rectangular lattices simply because:

� slim rectangular lattices are easier to describe than slim semimodular lattices;

� however, to describe the congruence lattice of slim semimodular lattices, it

suffices to deal with the congruence lattices of slim rectangular lattices.

Indeed, it is implicit in Grätzer and Knapp [62] (and it is explicitly mentioned,

say, in the Abstract of Czédli [26]), that the congruence lattices of slim semi-

modular lattices are, up to isomorphism, the same as the congruence lattices of

slim rectangular lattices, provided that we disregard lattices with less than four

elements.

The enumeration of slim semimodular lattices and their planar diarams start-

ed in Czédli, Ozsvárt and Udvari [42], and continued in Czédli, Dékány, Ozsvárt,

Szakács and Udvari [34], and Czédli [16]. There are several earlier papers on count-

ing other particular lattices; for example, see Erné, Heitzig and Reinhold [49] and

[70], and Pawar and Waphare [78].

2.2 Preliminaries

Here, we overview some concepts and facts we need in the present chapter. For

a more complex overview (but only up to 2014), the reader might be interested in

Grätzer [54] and Czédli and Grätzer [36]. An element of a lattice is join-irreducible

if it has exactly one lower cover. A finite lattice L is slim, if JiL, the set of the

join-irreducible elements of L, is included in the union of two chains of L; see

Czédli and Schmidt [43]. Note that, in the semimodular case, this concept was

first introduced by Grätzer and Knapp [61] in a different way. We know from

Czédli and Schmidt [43] that slim lattices are planar, that is, they possess planar

diagrams. Remember that all lattices, and thus all diagrams, in this chapter are

assumed to be finite. If D1 and D2 are planar diagrams and φ : D1 → D2 is a

bijective map such that φ is a lattice isomorphism and it preserves the left-right
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CHAPTER 2. THE NUMBER OF SLIM RECTANGULAR LATTICES

order of (upper) covers and that of lower covers of each element of D1, then φ is

called a similarity map. Two planar diagrams are similar if there exists a similarity

map between them. We treat similar diagrams as equal ones. Therefore, when we

count planar diagrams, we always do it up to similarity. Adjectives typically used

for lattices, like semimodularity, will also be used for their planar diagrams; in this

case the diagram is automatically a planar lattice diagram.

A minimal non-chain region of a planar lattice diagram D is called a cell. A

four-element cell is a 4-cell. 4-cells are covering squares, that is, cover-preserving

four-element Boolean sublattices. A diagram is a 4-cell diagram if all of its cells are

4-cells. The following statement was proved in Grätzer and Knapp [61, Lemmas 4

and 5]; see also Czédli and Schmidt [44, Proposition 1] for the present form.

Lemma 2.2.1. If D is a slim semimodular diagram, then it is a 4-cell diagram,

and no two distinct 4-cells have the same bottom. Conversely, if D is a 4-cell lattice

diagram in which no two distinct 4-cells have the same bottom, then D is a slim

semimodular diagram.

Following Grätzer and Knapp [62], a semimodular diagram D is rectangular

if its left boundary chain, denoted by Cl(D), has exactly one doubly irreducible

element, lc(D), its right boundary chain, Cr(D), has exactly one doubly irreducible

element, rc(D), and these two elements, called the corners of D, are complemen-

tary, that is, lc(D)∧ rc(D) = 0 and lc(D)∨ rc(D) = 1. It was noticed by Schmidt,

see Czédli and Grätzer [36, Exercise 1.58], that a slim semimodular lattice L is

rectangular iff JiL is a union of two chains such that no element in the first chain

is comparable with some element of the second chain. Associated with a slim rec-

tangular diagram D, the following three numerical parameters will be of particular

interest.

Notation 2.2.2. As usual, the length of D is denoted by lengthD. The left upper

length and the right upper length of D, denoted by lulenD and rulenD, are the

length of the interval [lc(D), 1] and that of [rc(D), 1], respectively; see Figure 2.1

for illustration.
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CHAPTER 2. THE NUMBER OF SLIM RECTANGULAR LATTICES

Figure 2.1: A rectangular diagram with lengthD = 8, lulenD = 2, and rulenD = 3.

A rectangular diagram D is a patch diagram if lc(D) and rc(D) are coatoms.

Equivalently, if lulenD = rulenD = 1. A patch lattice is a lattice that has a patch

diagram.

Two prime intervals of a slim semimodular diagram D are consecutive if they

are opposite sides of a 4-cell. By Czédli and Schmidt [43, Lemma 2.3], covering

squares and 4-cells in a slim semimodular diagram are the same, whence the previ-

ous sentence can be rephrased as follows: two prime intervals of a slim semimodular

diagram D are consecutive if they are opposite sides of a covering square. There-

fore, the consecutiveness of two prime intervals in slim semimodular lattice L does

not depend on the planar diagram chosen. Maximal sequences of consecutive prime

intervals form a trajectory, see Czédli and Schmidt [43]. In other words, a trajec-

tory is a class of the equivalence relation generated by consecutiveness. In [43,

Lemma 2.8], the following statement was derived from (the present) Lemma 2.2.1.

Lemma 2.2.3. If T is a trajectory of a slim semimodular diagram D, then T

contains exactly one prime interval of Cl(D), and the same holds for Cr(D). Going

from left to right, T does not branch out. First T goes up (possibly in zero steps),

then it may turn to the lower right, and finally it goes down (possibly, in zero

steps). In particular, at most one turn is possible.

Notation 2.2.4. We denote the set of (the similarity classes of) slim rectangular

13



CHAPTER 2. THE NUMBER OF SLIM RECTANGULAR LATTICES

diagrams of length n and that of slim semimodular diagrams of length n by the

acronyms SRectD(n) and SSmodD(n), respectively. Similarly, the set of the iso-

morphism classes of slim rectangular lattices of length n, that of slim semimodular

lattices of length n, and that of slim patch lattices of length n are denoted by

SRectL(n), SSmodL(n), and SPatchL(n).

For a given n ∈ {1, 2, . . . } = N, these five sets above are finite, since we do not

make a distinction between similar diagrams or between isomorphic lattices.

Jordan–Hölder permutations associated with semimodular lattices appeared

first in Abels [1] and Stanley [82]. Here, following Czédli and Schmidt [45], we define

them by means of trajectories. For a slim rectangular diagram D, let n = lengthD,

and let
Cl(D) = {0 = c0 ≺ c1 ≺ · · · ≺ cn = 1},

Cr(D) = {0 = d0 ≺ d1 ≺ · · · ≺ dn = 1}.
(2.2.1)

The set of all {1, . . . , n} → {1, . . . , n} permutation is denoted by Sn. The (Jordan–

Hölder) permutation π = πD ∈ Sn is defined by the rule π(i) = j iff [ci−1, ci] and

[dj−1, dj] belong to the same trajectory. The following statement was proved in

Czédli and Schmidt [45].

Lemma 2.2.5. The map SSmodD(n) → Sn, defined by D 7→ πD, is a bijection.

In what follows in this chapter, since this lemma above is obvious for n = 1 and

since the length of a slim rectangular lattice is at least 2, we always assume that n

denotes an integer greater than 1. Combining Lemma 2.2.5 with [45, Lemma 4.6]

and the definition of πD, we obtain that

Lemma 2.2.6. Let D1 and D2 be slim rectangular diagrams. They determine the

same lattice iff πD1 ∈ {πD2 , π
−1
D2
}.

Planar lattice diagrams have several properties that are easy to believe but

not so easy to prove. What we need from them is given by the following lemma,

taken from Kelly and Rival [71, Lemmas 1.2 and 1.5, Propositions 1.6 and 1.7, and

Theorem 2.5].

Lemma 2.2.7. Let D be a planar lattice diagram, and let a, b ∈ D.

14



CHAPTER 2. THE NUMBER OF SLIM RECTANGULAR LATTICES

(i) If a ≤ b and a and b are on different sides of a maximal chain C, then there

exists an x ∈ C such that a ≤ x ≤ b.

(ii) A closed interval of D is a planar subdiagram.

(iii) If |D| ≥ 3, then D contains a doubly irreducible element distinct from 0 and

1 on its left boundary.

(iv) If a ∥ b, then either a is on the left of all maximal chains through b, or b

is on the left of all maximal chains through a. The same holds with “right”

instead of “left”.

Based on Lemma 2.2.7(iv), if a ∥ b and a is on the left of some (equivalently,

all) maximal chains through b, then we say that a is on the left of b; analogous

terminology is used if “left” is replaced by “right”.

2.3 Description by permutations

For convenience, we introduce the following concept; it is visualized by Fig-

ure 2.2, and our terminology will be explained by Proposition 2.3.3.

Definition 2.3.1. A permutation π ∈ Sn is called rectangular if it satisfies the

following three properties.

(i) For all i and j, if π−1(1) < i < j ≤ n, then π(i) < π(j).

(ii) For all i and j, if π(1) < i < j ≤ n, then π−1(i) < π−1(j).

(iii) π(n) < π(1).

Clearly, π−1(1) < i and π(1) < i above can be replaced by π−1(1) ≤ i and

π(1) ≤ i, respectively. In Figure 2.2, where n = 16, a permutation π is given as

a bipartite graph; however, not all the 16 edges are drawn. The rectangularity of

π means that neither the edges denoted by (i) nor those denoted by (ii) intersect,

but the two thick solid edges do. (According to Remark 2.3.2 below, the two thick

dotted edges also intersect.)
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CHAPTER 2. THE NUMBER OF SLIM RECTANGULAR LATTICES

Figure 2.2: The rectangularity of a permutation

Remark 2.3.2. If π ∈ Sn is rectangular, then we have

(iv) π−1(n) < π−1(1).

So, π is rectangular iff π−1 is rectangular.

Proof of Remark 2.3.2. Assume that π ∈ Sn satisfies (i)–(iii). Since π and π−1 are

injective, (iii) implies that

1 < π(1), π(n) < n, 1 < π−1(1), π−1(n) < n. (2.3.1)

Suppose, for a contradiction, that (iv) fails. Then n ≥ 2, and we have that π−1(1) <

π−1(n). By the last inequality of (2.3.1), (i) applies for the pair ⟨i, j⟩ = ⟨π−1(n), n⟩,
and we obtain that n = π(π−1(n)) < π(n), a contradiction.

Now, we are in the position to formulate the main result of this section.

Proposition 2.3.3. A slim, semimodular, planar diagram D of length n ≥ 2

is rectangular if and only if π = πD ∈ Sn is rectangular. Furthermore, if D is

rectangular, then

πD(1) = lengthD − rulenD + 1, π−1
D (1) = lengthD − lulenD + 1.

This proposition trivially implies the following statement.

16
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Corollary 2.3.4. A slim, semimodular, planar diagram D of length n is a patch

diagram if and only if πD(1) = n = π−1
D (1). Therefore, the number of these dia-

grams is (n− 2)! .

Combining Proposition 2.3.3 and Corollary 2.3.4 with Lemmas 2.2.5 and 2.2.6,

we obtain a new description of slim rectangular (or patch) diagrams and lattices

by permutations. This description is effective, because Czédli and Schmidt [45,

Proposition 2.7 and Theorem 3.3] tell us how to construct D from πD; however,

we do not need these long details here.

The rest of this section is devoted to the proof of Proposition 2.3.3. The fol-

lowing definition is taken from Grätzer and Quackenbush [67].

Definition 2.3.5. An element x of a lattice L is called a narrows if L = ↓x ∪ ↑x.
If, in addition, x /∈ {0, 1}, then x is a proper narrows. The set of narrows of L is

denoted by Nar(L). A lattice L is called (glued sum) indecomposable if |L| ≥ 3 and

Nar(L) = {0, 1}.

We know from Czédli and Schmidt [45, after (1.2)] that the set Nar(D) of nar-

rows of D is Cl(D)∩Cr(D). Note that, by definitions, a glued sum indecomposable

diagram is of length at least 2.

Obviously, Lemma 2.2.1 implies the following statement.

Corollary 2.3.6. If D is a (glued sum) indecomposable, slim, semimodular di-

agram, then for each c ∈ Cl(D) \ {0, 1}, there exists a unique c′ such that {c ∧
c′, c, c′, c ∨ c′} is a 4-cell.

Lemma 2.3.7. If D is an indecomposable, slim, semimodular diagram, a ≺ b, and

a, b ∈ Cl(D), then exactly one of the following two possibilities holds.

(i) a is meet-reducible and b is join-irreducible. (In this case, we say that [a, b]

is an up-edge.)

(ii) a is meet-irreducible and b is join-reducible. (In this case, we say that [a, b]

is an down-edge.)

17
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Proof. SinceD is indecomposable, the trajectory starting at [a, b] is not a singleton.

In other words, [a, b] is a left edge of a 4-cell S. This implies that a is meet-reducible

or b is join-reducible. Hence, Czédli and Schmidt [44, Lemma 4], which says that

each of these two cases excludes the other one, completes the proof.

The name “down-edge” is motivated by the following lemma.

Lemma 2.3.8. Let D be a slim semimodular diagram of length n, and assume

that 1 ≤ i < j ≤ n.

(i) If D is glued sum indecomposable and, with the notation given in (2.2.1),

[ci−1, ci] is a down-edge, then πD(i) < πD(j) and πD(i) < i.

(ii) If ci is a narrows, then πD(i) < πD(j).

Figure 2.3: Illustrating the proof of Lemma 2.3.8

Proof. (i): Assume that D is indecomposable. Denote πD by π. Let Ti be the

trajectory that contains [ci−1, ci]; see Figure 2.3, where Ti consists of the thick

edges. Note that Ti consists of at least two edges, because D is indecomposable.

Since [ci−1, ci] is a down-edge, Ti launches to the lower right, and keeps going to

this direction without any turn by Lemma 2.2.3. Hence, the top elements of the

edges of Ti, which are the black-filled elements in the figure, form a descending,

nontrivial chain. This implies that dπ(i) < ci, and we conclude that π(i) < i.

18
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Suppose, for a contradiction, that π(i) > π(j). This implies that cj−1 ≥ ci >

dπ(i) > dπ(j). Hence, [cj−1, cj] and [dπ(j)−1, dπ(j)] are two comparable prime intervals

of the same trajectory. This is a contradiction, since a trajectory cannot have

comparable prime intervals by Czédli [12, Lemma 3.3]. This proves (i).

(ii): Assume that ci is a narrows. Clearly, for every 4-cell S, either we have that

S ∩ (↓ci \ {ci}) = ∅, or S ∩ (↑ci \ {ci}) = ∅. Hence, no trajectory can cross ci, and

part (ii) follows immediately.

Next, we generalize some parts of Grätzer and Knapp [62, Lemmas 3 and 4].

By Lemma 2.2.7(iii), the element c in the following lemma exists.

Lemma 2.3.9. Let D be a glued sum indecomposable, planar lattice diagram. If c

is the least doubly irreducible element on the left boundary of D, then the ideal ↓c
is a chain.

Proof. Let Cl(D) ∩ ↓c = {0 = c0 ≺ c1 ≺ · · · ≺ ck = c}. It suffices to prove that

{c1, . . . , ck} ⊆ JiD.

Suppose, for a contradiction, that there is an i ∈ {1, . . . , k} such that ci is join-

reducible. Let i be minimal with respect to this property. The ideal ↓ci is a planar

subdiagram by Lemma 2.2.7(ii). Let U = Cr(↓ci). Take the largest j ∈ {0, . . . , i−1}
such that cj ∈ U ; this j exists, since c0 = 0 ∈ U . Note that j ≤ i − 2, since ci is

join-reducible. By Lemma 2.2.7(ii), D′ := [cj, ci] is a planar subdiagram. Clearly,

|D′| ≥ 3, Cl(D
′) = {cj, cj+1, . . . , ci}, and Cr(D

′) = U∩ [cj, ci]. By Lemma 2.2.7(iii),

there is an s ∈ {j + 1, . . . , i − 1} such that cs is doubly irreducible in D′. By the

choice of k, the element cs is not doubly irreducible in D. The minimality of

i yields that cs is meet-reducible in D. By Czédli and Schmidt [44, Lemma 4],

mentioned already in the proof of Lemma 2.3.7, the join-reducibility of ci implies

that s ̸= i − 1. Hence, s ≤ i − 2. The element cs has a cover v ∈ D, distinct

from cs+1. Since cs is meet-irreducible in D′, we have that v /∈ D′. We have that

height v = s + 1 < i = height ci, whence ci ≰ v. We also have that v ≰ ci, since

v /∈ D′ = [cj, ci]. Thus, ci ∥ v. We conclude from Lemma 2.2.7(iv) that ci is on the

left of v. That is, v is on the right of all maximal chains through ci. In particular,
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if we extend Cr(D
′) to a maximal chain V of D, then v is strictly on the right

of V . On the other hand, cs, which belongs to Cl(D
′) \ Cr(D

′), is strictly on the

left of Cr(D
′), whence it is strictly on the left of V . Thus, cs and v are strictly on

different sizes of V while cs ≺ v. This contradicts Lemma 2.2.7(i).

Lemma 2.3.10. Let D be a glued sum indecomposable, slim semimodular diagram

of length n. If, with notation (2.2.1), ck is the least doubly irreducible element of

D on the left boundary chain, then πD(k + 1) = 1.

Proof. Clearly, k ≥ 1. We prove the lemma by induction on k.

First, assume that k = 1. Since D is indecomposable, 0 /∈ MiD. By Czédli and

Schmidt [44, Lemma 2],

each element of a slim lattice has at most two covers. (2.3.2)

Hence, there are exactly two atoms, and ck = c1 is one of them. This clearly implies

that πD(k + 1) = πD(2) = 1.

Next, assume that k > 1, and the lemma holds for smaller values. Let u = c′k

by Corollary 2.3.6. Since ck has only one cover, and this cover belongs to Cl(D),

we have that ck ∨ u = ck+1. Similarly, ck ∧ u = ck−1. Hence,

S = {ck−1, ck, u, ck+1} is a 4-cell. (2.3.3)

This 4-cell (or Lemma 2.3.7) shows that ck−1 is meet-reducible; see Figure 2.1 for an

illustration. Let D′ = D\{ck}; it consists of the empty-filled elements in the figure.

Clearly, ck−1 ∈ Cl(D
′). By (2.3.2), ck−1 ∈ MiD′. We also have that ck−1 ∈ JiD′,

because ck−1 ∈ JiD by Lemma 2.3.9. Thus, ck−1 is a doubly irreducible element

in D′.

Suppose, for a contradiction, that there exists an i < k − 1 such that ci is

doubly irreducible in D′. Obviously, it is join-irreducible in D. By the choice of k,

ci is meet-reducible in D. However, its covers are of height i+1, which is less than

k = height ck. Hence, these covers belong to D′, contradicting the assumption that

ci is doubly irreducible in D′. This proves that ck−1 is the least doubly irreducible

element of D′ that belongs to Cl(D
′).
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Let T ′ be the trajectory of D′ such that T ′ contains [ck−1, u]. Obviously, or

by Czédli [12, Lemma 3.1], the trajectory of D that contains [ck, ck+1] is T :=

T ′∪{[ck, ck+1]}. Note that the element of height k in Cl(D
′) is u. By the induction

hypothesis, πD′(k) = 1. This means that [d0, d1] ∈ T ′. Thus, [d0, d1] ∈ T , proving

that πD(k + 1) = 1.

Proof of Proposition 2.3.3. By definitions, SRectD(n) ⊆ SSmodD(n). Therefore,

by Lemma 2.2.5, it suffices to prove that, for D ∈ SSmodD(n), the diagram D is

rectangular iff so is the permutation πD.

To prove the “only if” part of Proposition 2.3.3, assume that D ∈ SRectD(n).

Let k ∈ {1, . . . , n − 1} denote the height of lc(D), that is, lc(D) = ck. By the

rectangularity of D, ck is the only doubly irreducible element that belongs to the

left boundary chain. Thus, Lemma 2.3.10 yields that

π(k + 1) = 1, that is, k + 1 = π−1(1). (2.3.4)

Next, to verify condition 2.3.1(i), assume that π−1(1) < i < j ≤ n. That is, we

assume that k + 1 < i < j ≤ n. Since lc(D) = ck < ci and ck is the only doubly

irreducible element on the left boundary chain, the element ci is join-reducible by

Grätzer and Knapp [62, Lemma 3]. Hence, [ci−1, ci] is a down-edge by Lemma 2.3.7.

Thus, Lemma 2.3.8(i) yields that π(i) < π(j), proving that π satisfies 2.3.1(i).

Next, let t be the height of rc(D). Again by [62, Lemma 3], dj is join-reducible

for all t < j ≤ n. Hence, for these j, no trajectory can arrive at [dj−1, dj] from

the upper left. On the other hand, cn−1 is meet-irreducible and 1 = cn is join-

reducible by [62, Lemma 3]. Hence, [cn−1, cn] is a down-edge, and the trajectory

Tn containing this edge goes downwards by Lemma 2.2.3. Hence, Tn arrives at

the right boundary chain from the upper left. Consequently, it cannot arrive at

[dj−1, dj] if t < j, and we conclude that π(n) ≤ t. If we interchange ⟨left, π, k⟩
and ⟨right, π−1, t⟩ in the argument proving (2.3.4), we obtain that π(1) = t + 1.

Consequently, 2.3.1(iii) holds.

Similarly, interchanging ⟨left, π⟩ and ⟨right, π−1⟩ in the proof of 2.3.1(i), we

obtain that 2.3.1(ii) holds. Therefore, if D is rectangular, then so is πD.
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Next, to prove the “if” part of Proposition 2.3.3, assume that D ∈ SSmodD(n)

but D /∈ SRectD(n). We have to prove that π = πD is not rectangular.

First, we assume that D has a nontrivial narrows v. Since v ∈ Cl(D) ∩ Cr(D),

it is of the form v = cs = ds for some s ∈ {1, . . . , n − 1}. Let T ′
1 denote the

trajectory of the subdiagram ↓v that begins with the prime interval [c0, c1] of the

left boundary chain. It reaches the right boundary of ↓v at some [di−1, di], where

i ≤ s. Clearly, T ′
1 is also a trajectory of D, and so π(1) = i ≤ s. The dual argument

shows that π(n) ≥ s. (Note, however, that the concept of slim rectangular lattices

is not selfdual.) Hence, 2.3.1(iii) fails and π is not rectangular.

Next, we can assume that D is glued sum indecomposable. Since n ≥ 2, we

conclude that 0 is meet-reducible and 1 is join-reducible. By Lemma 2.2.7(iii), each

of Cl(D) and Cr(D) has at least one doubly irreducible element. Since D is not

rectangular, we obtain from Grätzer and Knapp [62, Lemma 6] that at least one

of Cl(D) and Cr(D) has at least two doubly irreducible elements. Note that if we

reflect D to a vertical axis, then π turns into π−1. Thus, since the rectangularity of

π is equivalent to that of π−1 by Remark 2.3.2, we can assume that, with notation

(2.2.1), there are 1 ≤ i < j < n such that ci and cj are the smallest and the largest

doubly irreducible elements that belong to Cl(D), respectively. We have that

π−1(1) = i+ 1 (2.3.5)

by Lemma 2.3.10. To prove that π is not rectangular, we intend to show that

2.3.1(i) fails.

First of all, we show that i+1 < j. Suppose, for a contradiction, that j = i+1.

Then [ci, cj] is a prime interval. Let T denote the trajectory that begins with

[ci, cj]. Since ci is meet-irreducible, T cannot make its first step to the upper right.

Similarly, it cannot make the first step to the lower right since cj is join-irreducibly.

Thus, T makes no first step, and it consists only of [ci, cj]. By Lemma 2.2.3,

{ci, cj} ∈ Cr(D). Hence, ci and cj are nontrivial narrows of D, contradicting our

assumption. This proves that i+ 1 < j.

Next, let c′j be as in Lemma 2.3.6, that is, cj = lc(S) and c′j = rc(S) for a

unique 4-cell S. Since cj is doubly irreducible, the subdiagram D′ = D \ {cj} is a

slim semimodular lattice diagram by Lemma 2.2.1. Similarly to (2.3.3), we have
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that {cj−1 = cj ∧ c′j, cj, c
′
j, cj+1 = cj ∨ c′j} is a 4-cell. Let Tj+1 and Tj denote the

trajectories of D beginning with [cj, cj+1] and with [cj−1, cj], respectively. Also, let

T ′
j+1 and T ′

j be the trajectories of D′ through [cj−1, c
′
j] and [c′j, cj+1], respectively.

Clearly,

Tj = T ′
j ∪ {[cj−1, cj]} and Tj+1 = T ′

j+1 ∪ {[cj, cj+1]}. (2.3.6)

By Lemma 2.3.7, the double irreducibility of cj in D yields that [cj−1, cj] is an up-

edge and [cj, cj+1] is a down-edge. Hence, by Lemma 2.2.3, Tj+1 goes down, without

any turn. This, together with (2.3.6), yields that T ′
j+1 is also a “down-going”

trajectory of D′. Thus, either D′ is indecomposable and [cj−1, c
′
j] is a down-edge,

or c′j is a narrows ofD
′. In both cases, Lemma 2.3.8 implies that πD′(j) < πD′(j+1).

This inequality and (2.3.6) imply that

πD(j + 1) = πD′(j) < πD′(j + 1) = πD(j).

This, together with (2.3.5) and i+ 1 < j, shows that 2.3.1(i) fails.

2.4 Enumeration

For a rectangular permutation π ∈ Sn, we let

lulenπ = n+ 1− π−1(1) and rulenπ = n+ 1− π(1).

By Proposition 2.3.3, lulen πD = lulenD and rulenπD = rulenD hold for all D ∈
SRectD(n). For 2 ≤ n ∈ N and a, b ∈ N, we let

RPerm(n) = {π ∈ Sn : π is rectangular} and

RPerm(n; a, b) = {π ∈ RPerm(n) : lulen π = a and rulenπ = b}.

It follows from Definition 2.3.1 that RPerm(n; a, b) ̸= ∅ iff a+ b ≤ n.

Lemma 2.4.1. For a, b, n ∈ N with a+ b ≤ n,

|RPerm(n; a, b)| =
(
n− a− 1

b− 1

)(
n− b− 1

a− 1

)
(n− a− b)! . (2.4.1)
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Proof. For π ∈ RPerm(n; a, b), we have π−1(1) = n−
(
n+1−π−1(1)

)
+1 = n−a+1

and, similarly, π(1) = n−b+1. Since π(n) < π(1) and π−1(n) < π−1(1) by 2.3.1(iii)

and 2.3.2(iv), conditions 2.3.1(i) and 2.3.1(ii) can be rephrased as follows:

π(n− a+ 1) = 1 < π(n− a+ 2) < · · · < π(n) < n− b+ 1, and (2.4.2)

π−1(n− b+ 1) = 1 < π−1(n− b+ 2) < · · · < π−1(n) < n− a+ 1. (2.4.3)

Conversely, if π ∈ Sn satisfies (2.4.2) and (2.4.3), then π ∈ RPerm(n; a, b). The

first and the second binomial coefficients in (2.4.1) show how many ways conditions

(2.4.3) and (2.4.2) can be fulfilled, respectively. These conditions take care of the

images of a + b elements in {1, . . . , n}. Hence, there are (n − a − b)! possibilities

for the rest of elements.

From Lemmas 2.2.5 and 2.4.1 and Proposition 2.3.3, we immediately obtain

that

|SRectD(n)| =
∑

a+b≤n
a,b∈N

|RPerm(n; a, b)|. (2.4.4)

Consequently, the following statement holds.

Proposition 2.4.2. For 2 ≤ n ∈ N, the number of slim rectangular diagrams of

length n is

|SRectD(n)| =
∑

a+b≤n
a,b∈N

(
n− a− 1

b− 1

)(
n− b− 1

a− 1

)
(n− a− b)! .

The following lemma belongs to the folklore; see the first sentence in the proof

of Proposition 7.13 in Bóna [3, page 256], or see Czédli, Ozsvárt and Udvari [42,

Lemma 6.1]. As usual, (2t− 1)!! denotes 1 · 3 · 5 · · · · · (2t− 1) = (2t)!/(2t · t!). Note
that (−1)!! = 1 by definition. An involution is a permutation π such that π−1 = π.

Let Invl(k) = {π ∈ Sk : π = π−1} denote the set of involutions acting on the set

{1, . . . , k}.

Lemma 2.4.3. For k ∈ N, the number of involutions in Sk is

|Invl(k)| =
⌊k/2⌋∑
j=0

(
k

k − 2j

)
· (2j − 1)!! .
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Now, after that |SRectD(n)| has been determined by Proposition 2.4.2 and we

also have Lemma 2.4.3, we formulate the following statement.

Proposition 2.4.4. For 2 ≤ n ∈ N, the number of (the isomorphism classes of)

slim rectangular lattices of length n is

|SRectL(n)| = 1

2
·
(
|SRectD(n)|+

⌊n/2⌋∑
a=1

(
n− a− 1

a− 1

)
· |Invl(n− 2a)|

)
. (2.4.5)

Proof. By Lemmas 2.2.5 and 2.2.6, two distinct slim rectangular diagrams, D1 and

D2, determine the same rectangular lattice iff πD1 = (πD2)
−1. Hence, if we count

every involution twice and any other permutation once, then we count each lattice

in question twice, that is,

2 · |SRectL(n)| = |RPerm(n) \ Invl(n)|+ 2 · |RPerm(n) ∩ Invl(n)|

= |RPerm(n)|+ |RPerm(n) ∩ Invl(n)|

= |SRectD(n)|+ |RPerm(n) ∩ Invl(n)|.

(2.4.6)

Therefore, to obtain (2.4.5), it suffices to prove that

|RPerm(n) ∩ Invl(n)| =
⌊n/2⌋∑
a=1

(
n− a− 1

a− 1

)
· |Invl(n− 2a)|. (2.4.7)

The argument we need is similar to the one used in the proof of Lemma 2.4.1. If

π = π−1, then a = b ≤ n/2. Hence, an involution π is in RPerm(n) iff it satisfies

(2.4.2) with b = a. There are
(
n−a−1
a−1

)
ways to select the values π(n − a + 2) <

· · · < π(n) from {2, . . . , n − a}. Since π is an involution, each of these selections

determines the action of π on the 2a-element set

{1 = π(n− a+ 1) < π(n− a+ 2) < · · · < π(n)

< π(1) = π−1(1) = n− a+ 1 < n− a+ 2 < · · · < n}.

Clearly, π acts as an involution on the n − 2a remaining elements. Hence, there

are |Invl(n− 2a)| ways to continue the above-mentioned selection to an involution

on the whole set {1, . . . , n}. Finally, 2a = a+ b ≤ n gives that a ≤ ⌊n/2⌋, and we

conclude (2.4.7).
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The situation for slim patch lattices is much easier.

Proposition 2.4.5. For 2 ≤ n ∈ N, the number of (the isomorphism classes of)

slim patch lattices of length n is |SPatchL(n)| =
(
(n− 2)! + |Invl(n− 2)|

)
/2.

Proof. A permutation π from Corollary 2.3.4 is an involution iff so is its restric-

tion to {2, . . . , n − 2}. Hence, using the idea of (2.4.6) with “patch” instead of

“rectangular”, we can obviously conclude our statement from Lemma 2.2.5 and

Corollary 2.3.4 .

2.5 Asymptotic results

For functions f, g : N → {x ∈ R : x > 0}, we say that f is asymptotically g,

denoted by f(n) ∼ g(n), if limn→∞
(
f(n)/g(n)

)
= 1. In this section, a and b always

denote positive integers. Hence, we will not indicate a, b ∈ N in range specifications.

As usual, e denotes
∑∞

k=0(k!)
−1 ≈ 2.7182818285.

Proposition 2.5.1. The number of slim rectangular diagrams of length n is asymp-

totically (n− 2)! · e2, that is, |SRectD(n)| ∼ (n− 2)! · e2.

Proof. Based on (2.4.1), we can compute as follows.

|RPerm(n; a, b)| =
(
n− a− 1

b− 1

)(
n− b− 1

a− 1

)
(n− a− b)!

=
(n− a− 1) · · · (n− a− b+ 1)

(b− 1)!
· (n− b− 1) · · · (n− a− b+ 1)

(a− 1)!

× (n− a− b)!

=
(n− a− 1) · · · (n− a− b+ 1)

(b− 1)!
· (n− 2)!

(a− 1)! (n− 2) · · · (n− b)

=
(n− 2)!

(a− 1)! (b− 1)!
· n− a− 1

n− 2
· n− a− 2

n− 3
· · · n− a− b+ 1

n− b
. (2.5.1)

Denote by q(n, a, b) the product of the last b − 1 factors in (2.5.1), that is, the

product of all but the first factor. In particular, q(n, a, 1) = 1. Hence,

|RPerm(n; a, b)| = q(n, a, b) · (n− 2)!

(a− 1)! (b− 1)!
. (2.5.2)
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Since 1 ≤ a, q(n, a, b) is the product of factors not greater than 1. Hence,

q(n, a, b) ≤ 1 and |RPerm(n; a, b)| ≤ (n− 2)! ((a− 1)! (b− 1)!)−1. Combining this

estimate with (2.5.2) and using (2.4.4), we obtain that

|SRectD(n)| (2.4.4)
=

∑
a+b≤n

|RPerm(n; a, b)| ≤
∑

a+b≤n

(n− 2)!

(a− 1)! (b− 1)!

≤ (n− 2)! ·
∞∑
a=1

1

(a− 1)!
·

∞∑
b=1

1

(b− 1)!
= (n− 2)! · e2.

(2.5.3)

Next, let ε be an arbitrary (small) positive real number. Since

⌊n/2⌋∑
a=1

1

(a− 1)!
·
⌊n/2⌋∑
b=1

1

(b− 1)!
≤

∑
a+b≤n

1

(a− 1)! (b− 1)!
,

there exists an r1 ∈ N such that

(1− ε)e2 ≤
∑

a+b≤n

1

(a− 1)! (b− 1)!
for all n ≥ r1. (2.5.4)

Since each of the b− 1 factors of q(n, a, b) tends to 1 as n → ∞ while a and b are

fixed, and since there are finitely many pairs (a, b) ∈ {1, . . . , r1}2, there exists an

r2 ∈ N such that

1− ε ≤ q(n, a, b) for all a ≤ r1, b ≤ r1 and n ≥ r2. (2.5.5)

By the previous achievements as indicated below, if n is an arbitrary integer greater

than r = max{r1, r2}, then

|SRectD(n)| (2.4.4)
=

∑
a+b≤n

|RPerm(n; a, b)|

(2.5.2)
= (n− 2)!

∑
a+b≤n

q(n, a, b)

(a− 1)! (b− 1)!
≥ (n− 2)!

∑
a+b≤r1

q(n, a, b)

(a− 1)! (b− 1)!

(2.5.5)

≥ (n− 2)!
∑

a+b≤r1

1− ε

(a− 1)! (b− 1)!

(2.5.4)

≥ (n− 2)! · (1− ε)2e2.

This and (2.5.3) imply Proposition 2.5.1, since (1− ε)2 → 1 as ε → 0.

Now, we are in the position to formulate and prove our main result.
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Theorem 2.5.2. The number of (the isomorphism classes of ) slim rectangular

lattices of length n is asymptotically (n− 2)! · e2/2, that is,

lim
n→∞

|SRectL(n)|
(n− 2)! · e2/2

= 1.

Proof. If we divide (2.4.5) by (n− 2)! · e2/2, then the theorem follows from Propo-

sition 2.5.1, provided we can show that

lim
n→∞

f(n)

(n− 2)!
= 0, where f(n) =

⌊n/2⌋∑
a=1

(
n− a− 1

a− 1

)
· |Invl(n− 2a)|. (2.5.6)

Hence, it suffices to deal with (2.5.6). In order to prove it, recall from Chowla,

Herstein and Moore [5, Theorem 8] that

|Invl(k)| ∼ 1
4
√
4e

· (k/e)k/2 · e
√
k. (2.5.7)

Since
√
k ≤ k/2 for k ≥ 4, (2.5.7) implies that

|Invl(k)| ≤ kk/2, for all sufficiently large k ∈ N. (2.5.8)

Stirling’s formula, k! ∼
√
2πk · (k/e)k, implies that

(k/e)k ≤ k! ≤ (k/e)k+1 , for all sufficiently large k ∈ N. (2.5.9)

Denote n − 2 by m, and assume that m is sufficiently large. Besides (2.5.8) and

(2.5.9), the following obvious estimates are also needed below. Since the sum of

the
(
m
i

)
is 2m, we have that

(
n−a−1
a−1

)
≤ 2m. Since |Invl(k)| is clearly an increasing

function of k, we obtain that |Invl(n−2a)| ≤ |Invl(m)|. Clearly, m ·2m ≤ 2m ·2m =

4m and ⌊n/2⌋ ≤ m. Let us compute:

f(n)

(n− 2)!
=

⌊n/2⌋∑
a=1

(
n− a− 1

a− 1

)
· |Invl(n− 2a)|

(n− 2)!
≤

m∑
a=1

2m
|Invl(m)|

m!

= m · 2m · |Invl(m)|
m!

(2.5.8, 2.5.9)

≤ m · 2m · mm/2

(m/e)m
(2.5.10)

≤ 4m · (
√
m)m

(m/e)m
=

1(√m

4e

)m
→ 0, as n → ∞. (2.5.11)

This completes the proof.
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Remember that SSmodD(n) and SSmodL(n) denote the set of slim semimod-

ular diagrams of length n and that of slim semimodular lattices of length n, re-

spectively. In Czédli, Ozsvárt and Udvari [42, Proposition 7.1], it was proved that

|SSmodL(n)| ∼ n!/2. This result, (n− 1)/n ∼ 1, Lemma 2.2.5 and Theorem 2.5.2

immediately yield the following statement.

Corollary 2.5.3.

|SRectD(n)|
|SSmodD(n)|

∼ (e/n)2 and
|SRectL(n)|
|SSmodL(n)|

∼ (e/n)2.

Next, we give the asymptotic number of slim patch lattices.

Proposition 2.5.4. The number |SPatchL(n)| of (the isomorphism classes of )

slim patch lattices of length n is asymptotically (n− 2)!/2.

Proof. That |Invl(n− 2)|/((n− 2)!) = |Invl(m)|/(m!) → 0 as n → ∞ follows from

(2.5.10) and (2.5.11). This and Proposition 2.4.5 imply the statement.

2.6 Results by computer algebra

Based on Propositions 2.4.2 and 2.4.4, |SSmodD(n)| and |SSmodL(n)| can eas-

ily be determined for n ≤ 1000. Appropriate programs (Maple 5) are available from

the website of the first author of [33]. The numbers in the first two rows of Table 2.1

are also given in https://oeis.org/A273596 and https://oeis.org/A273988, respec-

tively. For much more extensive lists, see https://oeis.org/A273596/b273596.txt

and https://oeis.org/A273988/b273988.txt. Our computer algebraic calculations

show that |1−|SPatchL(n)|/((n−2)!/2)| and |1/2−|SRectL(n)|/|SRectD(n)|| are
smaller than 10−40 for n ∈ {64, . . . , 100, 200, 600, 1000}. This fact and Table 2.2

indicate (but do not prove) that the convergence in Proposition 2.5.4 is much faster

than that in Proposition 2.5.1 and Theorem 2.5.2.
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n 2 3 4 5 6 7 8 9
|SRectD(n)| 1 3 9 32 139 729 4 515 32 336
|SRectL(n)| 1 2 6 19 78 387 2 327 16 384
|SPatchL(n)| 1 1 2 5 17 73 398 2 636

n 10 11 12
|SRectD(n)| 263 205 2 401 183 24 275 037
|SRectL(n)| 132 336 1 203 145 12 146 959
|SPatchL(n)| 20 542 182 750 1 819 148

Table 2.1: Computational results for 2 ≤ n ≤ 12

n 200 600 1000
|SRectD(n)| 1.4568041 · 10371 2.5975960 · 101403 2.9732576 · 102562
|SRectL(n)| 7.2840205 · 10370 1.2987980 · 101403 1.4866288 · 102562
|SPatchL(n)| 9.9077622 · 10369 1.7606738 · 101402 2.0139503 · 102561
|SRectL(n)|
(n− 2)! · e2/2

0.99496227 0.99832914 0.99899847

Table 2.2: Computational results for n ∈ {200, 600, 1000}
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Chapter 3

Small generating sets of lattices

of quasiorders and transitive

relations

3.1 Basic concepts and historical overview

Quasiorders, also known as preorders, on a set A form a complete lattice

Quo(A). So do the transitive relations on A; their complete lattice is denoted

by Tran(A). Similarly, Equ(A) will stand for the lattice of all equivalences on A.

The natural involution, which maps a relation ρ to its inverse, ρ∗ := ρ−1 = {(x, y) :
(y, x) ∈ ρ}, is an automorphism of each of the three lattices mentioned above. If,

besides arbitrary joins and meets, the involution is an operation of the structure,

then we speak of the complete involution lattices Quo(A) and Tran(A). However,

it would not be worth considering the involution on Equ(A), because it is the

identity map.

As usual, ∆A stands for the diagonal relation {(x, x) | x ∈ A} on the set A.
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For a ̸= b ∈ A, let

⟨a, b⟩e := {(a, b), (b, a)} ∪∆A ∈ Equ(A),

⟨a, b⟩ := {(a, b)} ∪∆A ∈ Quo(A), and

{(a, b)}tr := {(a, b)} ∈ Tran(A);

they are the smallest equivalence, the smallest quasiorder, and the smallest tran-

sitive relation, respectively, containing the ordered pair (a, b). While {(a, b)}tr is

always an atom of Tran(A) and all atoms of Tran(A) are of this form, ⟨a, b⟩e is an
atom of Equ(A) iff ⟨a, b⟩ is an atom of Quo(A) iff a ̸= b, and all atoms of Equ(A)

and Quo(A) are of this form. Typically, we use the notation ⟨a, b⟩ only for a ̸= b.

Unless otherwise stated, generation is understood in the complete sense. That

is, for a subset X of Equ(A), Quo(A), or Tran(A), we say that X generates the

complete (involution) lattice in question if the only complete sublattice (closed

with respect to involution) including X is the whole lattice itself. For k ∈ N :=

{1, 2, 3, . . . }, we say that a complete lattice L is k-generated if it can be generated

by a k-element subset X; k-generated complete involution lattices are understood

similarly. Since the involution commutes with infinitary joins and meets, we obtain

easily that

if a complete involution lattice L is k-generated and

|L| ≥ 2k, then the complete lattice we obtain from L

by disregarding the involution is 2k-generated.

(3.1.1)

Note that when dealing with finite sets A or finite lattices, then the adjectives

“complete” and “infinitary” are superfluous; this trivial fact will not be repeated

all the time later.

If a complete lattice is generated by a four-element subset X = {x1, x2, x3, x4}
such that x1 < x2 but both {x1, x3, x4} and {x2, x3, x4} are antichains, then we

say that this lattice is (1 + 1 + 2)-generated.

Next, we introduce the concept of accessible cardinals. Shortly saying, a car-

dinal κ is accessible if there is no inaccessible cardinal λ such that λ ≤ κ. (So

the adjective “accessible” in this chapter is not the opposite of “inaccessible”.)

Instead of recalling the concept of inaccessible cardinals from, say, the monograph
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of Levy [74], we define accessible cardinals directly. A cardinal κ is accessible if it

is finite, or it is infinite and for every λ ≤ κ,

� either λ ≤ 2µ for some cardinal µ < λ,

� or there is a set I = I(λ) of cardinals such that λ ≤
∑

µ∈I µ, |I| < λ, and

µ < λ for all µ ∈ I.

In this chapter, all sets will be assumed to be of accessible cardinalities. As we

mentioned in (1.0.2), it impossible to prove in ZFC that there are other cardinals.

For more about other (that is, inaccessible) cardinals, the reader can resort to

standard textbooks on set theory, for example, to Levy [74, pages 138–141].

3.2 The history of motivating results

3.2.1 Related results from the twentieth century

In 1975 and 1977, Strietz [83] and [84] proved that for a finite set A with at

least 3 elements, the lattice Equ(A) of all equivalences on a set A, the equivalence

lattice of A for short, is four-generated. (If |A| ≤ 2, then |Equ(A)| < 4, so this

is not an interesting case.) Furthermore, these two papers prove also that, for

10 ≤ [A| ∈ N, Equ(A) is (1+1+2)-generated and, for 3 ≤ |A| ∈ N, Equ(A) is not
three-generated.

In 1983, Zádori [87] gave a new proof of Strietz’s above-mentioned results; in

fact, he proved a stronger statement instead of the second result by showing that

Equ(A) is (1 + 1 + 2)-generated for 7 ≤ [A| ∈ N. His proofs are visual, and they

are simpler and more powerful than Strietz’s ones. It is Zádori’s idea that many

of the subsequent proofs in this topic develop further.

To formulate the next result in the chronological order, define the cardinal

number ℶn for n ∈ N0 = {0, 1, 2, . . . } by induction: ℶ0 := ℵ0 and ℶn+1 := 2ℶn . In

their 1996 paper, Chajda and Czédli [4] proved that if A is a set with at least two

elements such that |A| ≤ ℶn for some n ∈ N0, then Quo(A) is three-generated as

a complete involution lattice, and so it is six-generated as a complete lattice by
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(3.1.1). Their result was soon generalized by Takách [85], appeared in 1996; this

paper replaces the assumption “|A| ≤ ℶn for some n ∈ N0” with the much less

restrictive assumption that “|A| is an accessible cardinal”. The year 1996 brought

some progress for the equivalence lattices, too: Czédli [7] proved that Equ(A) is

four-generated, provided that 3 ≤ |A| is an accessible cardinal. In the same year,

Czédli [8] proved that if B is a countably infinite set, then Equ(B) has a four-

generated sublattice S such that S contains all atoms of Equ(B); here “generated”

has its usual meaning based on the binary join and the binary meet. Finally, in

his 1999 paper, Czédli [9] proved that if A is a set with accessible cardinality and

7 ≤ |A|, then Equ(A) is (1 + 1 + 2)-generated.

3.2.2 Results from 2015–2016

The first results in the twenty-first century were proved by Dolgos [48], an M.Sc.

student of that time supervised by Miklós Maróti. Subsequent results came so soon

that, exceptionally, we give the precise dates of the relevant papers. These dates

are taken from the “Submitted” or “Received” lines from the published papers

and from the “declaration page” (last page) of Dolgos [48].

Dolgos [48], submitted on May 16, 2015, proved that for a set A with 2 ≤
|A| ≤ ℵ0, the quasiorder lattice Quo(A) is five-generated while the lattice Tran(A)

of transitive relations of A is eight-generated.

We proved in [72], submitted on October 29, 2015, that if A is a set with at least

two elements such that |A| is an accessible cardinal, then Quo(A) is five-generated

as a complete lattice; see Theorem 3.3.1 later. This result improves both Takách’s

“six-generated” from 1996 and Dolgos’s “≤ ℵ0”.

Czédli [19], submitted on November 6, 2015, observed that in some cases, even

the number 5 can be reduced. Namely, he proved that if

|A| ∈ {n ∈ N : n ≥ 11} ∪ {2, 3, 5, 7, 9,ℵ0}, (3.2.1)

then Quo(A) has a four-generated sublattice (in the ordinary, non-complete sense)

that contains all atoms of Quo(A). Therefore, (3.2.1) implies that Quo(A) is four-

generated as a complete lattice. Moreover, it is implicit in Czédli [19] that whenever
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|A| ≥ 3 and S is a 3-generated sublattice of Quo(A) in the complete sense, then

S cannot contain all atoms of Quo(A) and, in particular, S cannot be Quo(A).

Finally, in our joint paper [37], submitted on October 4, 2016, we managed to

combine the merits of [72] and Czédli [19] by proving that Quo(A) is four-generated

as a complete lattice for all non-singleton sets A with accessible cardinalities ex-

cept for |A| = 4. [37] contained some other results on Quo(A), too; see Theorem

3.4.9 later. Furthermore, [37] improved Dolgos’s result on Tran(A) by reducing the

number of generators by 2 and allowing that A is of an accessible cardinality not

just at most ℵ0; see Lemma 3.4.10.

The most recent related results will be surveyed later, in Section 3.5.

3.2.3 The aim of (this) Chapter 3

We are going to present the results and the proofs published in [72] and [37].

This target needs some explanation, as we know from Subsection 3.2.2 that [37]

supersedes [72] in several aspects.

According to its title, [37] gives a concise approach. In this case, conciseness

means that [37] is far from being self-contained. Although the proofs given in [37]

are short, sometimes very short, these proofs rely on nontrivial earlier constructions

mentioned in Subsection 3.2.1. To give self-contained proofs of the theorems of [37],

one should add several additional pages to each of these proofs; about dozen pages

to a proof dealing with all accessible cardinals.

As opposed to [37], [72] is a self-contained and single-authored paper. A state-

ment of [72], which is Lemma 3.3.2 here, was needed in [37]. These facts explain

that, in addition to [37], [72] is also included in the dissertation.

3.3 Quasiorder lattices are five-generated

Apart from introductory features and the fact that now Lemma 3.3.2 is an

explicit statement rather than an implicit one hidden in a proof, (this) Section 3.3

is almost the same as [72]. We are going to prove the following theorem.
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Theorem 3.3.1. Let A be a set with at least three elements.

(i) If |A| is an accessible cardinal, then Quo(A) is five-generated as a complete

lattice.

(ii) If ℵ0 ≤ |A| ≤ 2ℵ0, then Quo(A) is five-generated as a complete lattice.

Of course, part (ii) is a particular case of part (i). While the proof of (i) relies

heavily on Czédli [7], which is a long paper, the proof of (ii) is self-contained.

Even (ii) strengthens the corresponding result of Dolgos [48]. Developing the proof

of (ii) to a self-contained proof of (i) would probably be possible, but this is not

targeted.

First of all, we prove the following lemma; it will be needed also in (the next)

Section 3.4. Following the traditions of lattice theory, ⊂ stands for proper set

inclusion, that is, X ⊂ Y ⇐⇒ (X ⊆ Y and X ̸= Y ).

Lemma 3.3.2. If 3 ≤ |A| and L is a complete sublattice of Quo(A) such that

Equ(A) ⊂ L, then L = Quo(A).

Proof. For the sake of contradiction, suppose that L ̸= Quo(A). We know that

ϱ =
∨
{⟨x, y⟩ : (x, y) ∈ ϱ} for every ϱ ∈ Quo(A). Hence, if L contained all the

atoms of Quo(A), that is, all ⟨x, y⟩ with x ̸= y ∈ A, then L would equal Quo(A)

and this would be the required contradiction to complete the proof.

Observe that, for any p, q, x ∈ A such that |{p, q, x}| = 3,

⟨p, x⟩ = ⟨p, x⟩e ∧ (⟨p, q⟩ ∨ ⟨q, x⟩e) and

⟨x, q⟩ = ⟨x, q⟩e ∧ (⟨x, p⟩e ∨ ⟨p, q⟩).

Thus, since all equivalences belong to L, we obtain that, for pairwise distinct

p, q, x ∈ A,

⟨p, q⟩ ∈ L =⇒
(
⟨p, x⟩ ∈ L and ⟨x, q⟩ ∈ L

)
. (3.3.1)

Next, we show the following rule, in which a and b denote distinct elements of

A.
If ⟨a, b⟩ ∈ L and c ∈ A \ {a, b}, then ⟨x, y⟩ ∈ L

for all x, y ∈ {a, b, c} such that x ̸= y.
(3.3.2)
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Indeed, (3.3.1) applied to ⟨a, b⟩ ∈ L yields that ⟨a, c⟩, ⟨c, b⟩ ∈ L. This allows us to

apply (3.3.1) to ⟨a, c⟩ ∈ L and ⟨c, b⟩ ∈ L to obtain that ⟨b, c⟩ ∈ L and ⟨c, a⟩ ∈ L,

respectively. Finally, (3.3.1) applied to ⟨b, c⟩ implies that ⟨b, a⟩ ∈ L, proving (3.3.2).

Pick a ρ ∈ L\Equ(A). As ρ is not symmetric, there is a pair (a, b) ∈ ρ such that

(b, a) /∈ ρ. Since ⟨a, b⟩e ∈ Equ(A) ⊆ L, we obtain that ⟨a, b⟩ = ρ ∧ ⟨a, b⟩e ∈ L. Let

⟨p, q⟩ be an arbitrary atom of Quo(A). There are two cases. First, if {p, q}∩{a, b} ≠

∅, then (3.3.2) immediately implies that ⟨p, q⟩ ∈ L. (Here we exploit that |A| ≥ 3.)

Second, assume that {p, q} ∩ {a, b} = ∅. Letting c := q, (3.3.2) implies that

⟨a, q⟩ ∈ L. From now on, b and q play the same role. Thus, we can assume that

q = b, whereby ⟨p, q⟩ ∈ L follows by the first case. We have shown that L contains

all atoms of Quo(A), as required.

Proof of part (i) of Theorem 3.3.1. We know from Czédli [7] that Equ(A) is gen-

erated by a four-element set X as a complete lattice. Pick a quasiorder ρ ∈
Quo(A)\Equ(A). By Lemma 3.3.2, Quo(A) is generated by its five-element subset

X ∪ {ρ} as a complete lattice.

Next, we give a self-contained proof for part (ii).

Proof of part (ii) of Theorem 3.3.1. Let A0 = {a0, b0, a1, b1, a2, b2, . . . }. The sub-

sets {a0, a1, a2, . . . } and {b0, b1, b2, . . . } are called rows, the a-row and the b-row,

respectively. For a technical reason, which will be clear soon, we denote a3i+10 and

b3i+11 by ei and e′i, respectively; these elements will be black-filled in our figures. In

Figure 3.1, ei and e′i are connected by a dotted edge whose role will be explained in

due time. Furthermore, sometimes we even use the notation (e−1, e
′
−1) for (a7, b8)

in our computations.

We are going to define five quasiorders on A0, denoted by α0
0, α

0
1, α

0
2, β

0, and

β0
∗ ; in fact, the first three will be equivalences. (The upper subscripts 0 refer to

the fact that they are defined on A0; later we will also introduce α0, α1, α2, β, and

β∗, which will be defined on a larger set A.) Besides (or instead of) their formal

definition below, the reader is advised to understand them from Figure 3.1. For

37



CHAPTER 3. GENERATING THE LATTICES OF QUASIORDERS

i ∈ {0, 1, 2}, we define α0
i by the corresponding partition{

{a3k+i : k ∈ Z}
}
∪
{
{a3k+i+1, a3k+i+2} : k ∈ Z

}
∪{

{b3k+i+1 : k ∈ Z}
}
∪
{
{b3k+i+1+1, b3k+i+1+2} : k ∈ Z

}
.

(3.3.3)

Also, let

β0 = ⟨a0, a2⟩ ∨ ⟨b0, b2⟩ ∨ ⟨a4, b5⟩ ∨ ⟨b8, a7⟩

and, finally, let

β0
∗ = (β0)−1.

For δ ∈ {α0
0, α

0
1, α

0
2, β

0} and x, y ∈ A0, we have (x, y) ∈ δ iff the vertices x and y

can be connected by a δ-colored directed path in Figure 3.1; this is the meaning of

the figure. (Almost all edges but (a0, a2), (b0, b2), (a4, b5) and (b8, a7) are directed

in both ways.) Since β0
∗ is the inverse of β0, the β0

∗-colored edges are not indicated.

At present, the dotted edges belong neither to β0, nor to β0
∗ ; however, some of

these edges (directed upwards or downwards) will be added to β0 or β0
∗ at a later

stage of the construction.

Figure 3.1: Quasiorders on A0

Later we will need κ ≤ 2ℵ0 copies of A0. Note that Dolgos [48] used only the

upper row of a single copy of A0. When we work in a single row, we often follow

his arguments.
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Figure 3.2: A0 in a concise form

Figure 3.3: A part of β ∈ Quo(A) if H =
{
∅, {2, 3}, {2, 4, 5}

}
Starting from the ℵ0-sized graph A0, we are going to define a more involved

graph. (Note at this point that our graphs and their vertex sets are usually denoted

in the same way.) Let κ be an arbitrary cardinal such that ℵ0 ≤ κ ≤ 2ℵ0 . Let

I = {2, 3, 4, . . . }, and take a subset H of P(I) such that |H| = κ. For simplicity,

assume that ∅ ∈ H. Next, for U ∈ H, we modify the graph A0 to obtain a

colored graph A0(U) with vertex set {a0(U), b0(U), a1(U), b1(U), a2(U), b2(U), . . . }
as follows. When it is not confusing, we drop the parameter U and simply write

a0, b0, a1, b1, . . . . In particular, ei(U) and e′i(U) are denoted by ei and e′i in our

figures. However, A0(U) is given in the figures and it refers to all these elements. Of

course, we assume that A0(U)∩A0(V ) = ∅ whenever U ̸= V ∈ H. Now, to obtain

A0(U) from A0, we replace the dotted edges with “real” edges (e′i, ei) for i ∈ U

and (ei, e
′
i) for i ∈ I \ U . For U ∈ H, the set A0(U) is called a box. In Figure 3.3,

boxes are grey. For example, the lower grey box in our figure is A0({2, 4, 5}).
Now, we are in the position to define a new colored graph, A, as follows. Its

vertex set is the union of the disjoint sets A0(U), that is, A = {A0(U) : U ∈ H}.
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Besides that all the previous edges are preserved, we add the β-colored directed

edges (e0(∅), e0(U)) and (e1(U), e1(∅)) for all U ∈ H. In this way, we obtain our

new graph, A; see Figure 3.3 for the particular case H =
{
∅, {2, 3}, {2, 4, 5}

}
.

As before, for δ ∈ {α0, α1, α2, β}, we let (x, y) ∈ δ iff the vertices x and y can

be connected by a δ-colored directed path in the graph A. In this way, we have

defined four quasiorders, α0, α1, α2, and β on A; the fifth one is β∗ := β−1. Notice

that if δ, ε ∈ {α0, α1, α2, β, β∗} and δ ̸= ε, then δ∧ ε = ∆A. Notice also that all the

αi are row-preserving ; this means that whenever (x, y) ∈ αi for some i ∈ {0, 1, 2},
then there is a unique U ∈ H such that either x, y ∈ {a0(U), a1(U), . . . }, or
x, y ∈ {b0(U), b1(U), . . . }. For an equivalence ϱ on A and x ∈ A, the ϱ-block

{y ∈ A : (x, y) ∈ ϱ} will be denoted by x/ϱ.

Now, let L denote the smallest complete sublattice of Quo(A) such that {α0, α1,

α2, β, β∗} ⊆ L; our task is to show that L = Quo(A). As it was pointed out at

the beginning of the previous proof, it suffices to show that L contains all atoms

⟨x, y⟩, where x ̸= y ∈ A.

For U ∈ H and distinct x, y ∈ A(U), we introduce the notation

⟨x, y⟩H :=
∨
V ∈H

⟨x(V ), y(V )⟩.

Let us emphasize that this notation is only permitted if x and y belong to the

same copy of A0, that is, to the same grey box in Figure 3.3.

We claim that

⟨a3, a2⟩H = (α0 ∨ β) ∧ α1 ∈ L. (3.3.4)

To show the “⊇” inclusion, assume that x ̸= y and (x, y) ∈ (α0 ∨ β) ∧ α1. Then

(x, y) ∈ α1 and there is a shortest path P from x to y in the graph whose edges

are colored with α0 and β. Since α1 is row-preserving, x and y belong to the same

row. Suppose, for a contradiction, that this row is {b0(U), b1(U), . . . }. If P goes

entirely within this row, then it is clear by definitions, or by our figures, that

either (x, y) ∈ α0 ∪ β, or (x, y) = (b0(U), b3(U)). In both cases, (x, y) /∈ α1, which

is a contradiction. On the other hand, if P leaves this b-row, then it arrives at

some ei(V ) in the next step, where V ∈ H and i ∈ {−1, 2, 3, 4, . . . }. But the only

new vertex we can go from ei(V ) via an (α0 ∪ β)-colored path is the neighboring
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vertex to the right of ei(V ). Then, in the next step of the path, we must turn

back. This contradicts the minimality of P . Therefore, x and y belong to an a-

row, {a0(U), a1(U), . . . }. Observe that our path P lies entirely in the same a-row.

Really, if not, then P contains a β-colored edge (ei(U), e′i(U)), (e0(∅), e0(U)) or

(e1(U), e1(∅)). However, all ei(U) and all e′i(U) belong to distinct two-element α0-

classes. All of these α0-classes have the property that either at most one β-colored

edge’s endpoint belongs to the class or if two β-colored edge’s endpoints are in the

class, then these edges are directed in the same way. Hence, P can not leave this

latter row, which is a contradiction. Thus, P lies in the a-row containing x and y.

Since α0 ∧ α1 = ∆A = α1 ∧ β, both colors, α0 and β, occur in our path P . Since

P is the shortest path and the a-row of x and y contains only one β-colored edge,

P contains exactly one β-colored edge, (a0(U), a2(U)). Therefore, x ∈ a0(U)/α0

and y ∈ a2(U)/α0. Using (3.3.3), we have that x ∈ {a3k(U) : k ∈ Z} and y ∈
{a1(U), a2(U)}. Thus, taking (x, y) ∈ α1 into account, (x, y) = (a3(U), a2(U)) ∈
⟨a3, a2⟩H . This proves the “⊇” inclusion in (3.3.4); the reverse inclusion is obvious.

This proves (3.3.4).

Next, we assert that

⟨a0, a2⟩H = (⟨a3, a2⟩H ∨ α0) ∧ β ∈ L. (3.3.5)

To see this, let (x, y) ∈ (⟨a3, a2⟩H ∨ α0) ∧ β such that x ̸= y. Since both ⟨a3, a2⟩H
and α0 are row-preserving, x and y belong to the same row. In the shortest path

connecting x and y, both of the colors α0 and ⟨a3, a2⟩H occur, because the intersec-

tions of these colors with β is ∆A. The presence of ⟨a3, a2⟩H yields that we are in

an a-row, say, in A0(U). Since the restriction of β to this a-row is ⟨a0(U), a2(U)⟩,
we obtain that (x, y) = (a0(U), a2(U)) ∈ ⟨a0, a2⟩H . This proves the “⊇” inclusion

in (3.3.5), while the converse inclusion is evident.

Next, we show that

⟨b0, b1⟩H = (α2 ∨ β) ∧ α1 ∈ L. (3.3.6)

Assume that (x, y) ∈ (α2∨β)∧α1 and x ̸= y. Again, since α1 is row-preserving and

α2∧α1 = ∆A = β∧α1, x and y are in the same row and the shortest (α2∪β)-path
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P connecting them contains both colors, α2 and β. As in the argument verifying

(3.3.4), exactly one edge of this path is β-colored and P does not leave the row of x

and y. Suppose, for a contradiction, that we are in an a-row. It follows easily from

definitions that either (x, y) ∈ α2∪β, or x ∈ {a0, a1} and y ∈ {a3k+2 : k ∈ N0}, but
this contradicts (x, y) ∈ α1. Hence, x and y are in a b-row. So the only β-colored

edge in P is (b0(U), b2(U)). After its β-colored edge, P consists of at most one

edge. This gives that y ∈ {b1(U), b2(U)}. There can be arbitrary many α2-colored

edges before the only β-colored one, but we have that x ∈ {b3k : k ∈ N0}. Taking
(x, y) ∈ α1 into account, we conclude that (x, y) = (b0(U), b1(U)) ∈ ⟨b0, b1⟩H , as
required. The converse inclusion is obvious, so we have proved (3.3.6).

Similarly to (3.3.5), we obtain the following containment easily:

⟨b0, b2⟩H = (⟨b0, b1⟩H ∨ α2) ∧ β ∈ L. (3.3.7)

Since the involutory automorphism L → L, defined by ϱ 7→ ϱ−1, maps β to β∗, it

follows that L is closed with respect to this automorphism, that is, for all x, y ∈ A,

U ∈ H, and u, v ∈ A0(U),

⟨x, y⟩ ∈ L ⇐⇒ ⟨y, x⟩ ∈ L and ⟨u, v⟩H ∈ L ⇐⇒ ⟨v, u⟩H ∈ L. (3.3.8)

Combining (3.3.5) and (3.3.7) with (3.3.8), we obtain that ⟨a2, a0⟩H ∈ L and

⟨b2, b0⟩H ∈ L. For a subset X of Quo(A), the smallest complete sublattice including

X will be denoted by [X]. Our next task is to show that, for all k ∈ N0,

⟨ak, ak+1⟩H ∈
[
⟨ak, ak+2⟩H , α0, α1, α2

]
. (3.3.9)

Observe that, for every U ∈ H, there exists a unique i ∈ {0, 1, 2} such that the

pair (ak+1(U), ak+2(U)) is in αi, and this i depends only on k but not on U . As it

is clear from definitions, for all s, t, j ∈ N0 and i ∈ {0, 1, 2},

(as, at) ∈ αi ⇐⇒ (as+j, at+j) ∈ αi+j, (3.3.10)

where the addition in the subscript of α is understood modulo 3. This allows us

to assume that i above is 0, that is, (ak+1(U), ak+2(U)) ∈ α0 for all U ∈ H. This

means that k ≡ 3 (mod 3).
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To prove (3.3.9), it suffices to show that

⟨ak, ak+1⟩H = (α0 ∨ ⟨ak, ak+2⟩H) ∧ α2. (3.3.11)

The “⊆ ” inclusion is obvious. To verify the reverse inclusion, assume that (x, y) ∈
(α0∨⟨ak, ak+2⟩H)∧α2. Since α2 is row-preserving, there is a U ∈ H such that x and

y are in the same row of A0(U). Using that α0∧α2 = ∆A, every (α0∪⟨ak, ak+2⟩H)-
path P from x to y must contain an ⟨ak, ak+2⟩H-colored edge. So, since α0 is

also row-preserving, both x and y are in the a-row of A0(U). Let P above be a

shortest path, then it contains an ⟨ak, ak+2⟩H-colored edge only once. Thinking of

the segments of P after this edge, it follows that y ∈ {ak+1(U), ak+2(U)}, while
the segment before this edge yields that x ∈ {ai(U) : i ≡ 0 (mod 3)}. Now the

definition of α2 gives that (x, y) = (ak(U), ak+1(U)) ∈ ⟨ak, ak+1⟩H , proving (3.3.9).

Since ⟨ak+1, ak+2⟩H = (α2 ∨ ⟨ak, ak+2⟩H) ∧ α0 follows basically in the same way

as (3.3.11), we obtain that

⟨ak+1, ak+2⟩H ∈
[
⟨ak, ak+2⟩H , α0, α1, α2

]
. (3.3.12)

Similarly, we obtain ⟨ak+2, ak+3⟩H =
(
α0 ∨ ⟨ak+2, ak⟩H

)
∧ α1, whence

⟨ak+2, ak+3⟩H ∈
[
⟨ak+2, ak⟩H , α0, α1, α2

]
. (3.3.13)

Using the rule

(bs+1, bt+1) ∈ αi ⇐⇒ (as, at) ∈ αi, (3.3.14)

one concludes easily from (3.3.9), (3.3.12), and (3.3.13) that

⟨bk, bk+1⟩H ∈
[
⟨bk, bk+2⟩H , α0, α1, α2

]
,

⟨bk+1, bk+2⟩H ∈
[
⟨bk, bk+2⟩H , α0, α1, α2

]
, and

⟨bk+2, bk+3⟩H ∈
[
⟨bk+2, bk⟩H , α0, α1, α2

]
.

(3.3.15)

If we combine the generators occurring in (3.3.9), (3.3.12), and (3.3.13), then we

obtain a larger subset of Quo(A) that is closed with respect to the involutory

automorphism ϱmentioned right after (3.3.7). Therefore, (3.3.9), (3.3.12), (3.3.13),
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and (3.3.15) yield that{
⟨ak+1, ak⟩H , ⟨ak+2, ak+1⟩H , ⟨ak+3, ak+2⟩H , ⟨ak, ak+1⟩H ,

⟨ak+1, ak+2⟩H , ⟨ak+2, ak+3⟩H , ⟨bk+1, bk⟩H , ⟨bk+2, bk+1⟩H ,

⟨bk+3, bk+2⟩H , ⟨bk, bk+1⟩H , ⟨bk+1, bk+2⟩H , ⟨bk+2, bk+3⟩H
}

⊆
[
⟨ak, ak+2⟩H , ⟨ak+2, ak⟩H , ⟨bk, bk+2⟩H ,

⟨bk+2, bk⟩H , α0, α1, α2

]
=: L̂.

(3.3.16)

Here L̂ denotes the sublattice on the right of “⊆”. We say that two sequences,

(x = p0, p1, . . . , pk = y) and (x = q0, q1, . . . , qn = y), are internally disjoint se-

quences from x to y if {p1, . . . , pk−1}∩ {q1, . . . , qn−1} = ∅. The following lemma is

straightforward.

Lemma 3.3.3. If (x = p0, p1, . . . , pk = y) and (x = q0, q1, . . . , qn = y) are inter-

nally disjoint sequences from x to y, then

(⟨p0, p1⟩ ∨ · · · ∨ ⟨pk−1, pk⟩) ∧ (⟨q0, q1⟩ ∨ · · · ∨ ⟨qn−1, qn⟩) = ⟨x, y⟩.

We claim that {
⟨ak+1, ak+3⟩H , ⟨bk+1, bk+3⟩H

}
⊆ L̂.

To see this, consider any U ∈ H and the equivalence αi with (ak(U), ak+3(U)) ∈ αi.

As usual, (3.3.10) allows us to assume that i = 0, and ⟨ak, ak+3⟩H = (⟨ak, ak+2⟩H ∨
⟨ak+2, ak+3⟩H) ∧ α0 follows easily. So, according to (3.3.13),

⟨ak, ak+3⟩H ∈ L̂. (3.3.17)

For every U ∈ H, Lemma 3.3.3 yields that

⟨ak+1(U),ak+3(U)⟩

= (⟨ak+1(U), ak(U)⟩ ∨ ⟨ak(U), ak+3(U)⟩)

∧ (⟨ak+1(U), ak+2(U)⟩ ∨ ⟨ak+2(U), ak+3(U)⟩).

(3.3.18)
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Since all the atoms occurring in (3.3.18) are row-preserving, we conclude that

⟨ak+1, ak+3⟩H =

(⟨ak+1, ak⟩H ∨ ⟨ak, ak+3⟩H)∧(⟨ak+1, ak+2⟩H ∨ ⟨ak+2, ak+3⟩H).

Hence, using (3.3.16) and (3.3.17) and (3.3.14), which says that the a-rows and

b-rows play similar roles, we obtain that{
⟨ak+1, ak+3⟩H , ⟨bk+1, bk+3⟩H

}
⊆ L̂. (3.3.19)

Combining L̂ ⊆ L, (3.3.5), (3.3.7), (3.3.8), (3.3.16), and (3.3.19), we obtain that,

for all i, j ∈ N0,

|i− j| ∈ {1, 2} =⇒
{
⟨ai, aj⟩H , ⟨bi, bj⟩H

}
⊆ L. (3.3.20)

Next, let |i−j| > 2. In the computation below, (3.3.8) allows us to assume, without

loss of generality, that i < j. If j − i is even, then

(ai, ai+2, ai+4, . . . , aj−2, aj) and

(ai, ai+1, ai+3, ai+5, . . . , aj−5, aj−3, aj−1, aj)

are internally disjoint sequences from ai to aj in A0. So, Lemma 3.3.3 and (3.3.20)

give that

⟨ai, aj⟩H and ⟨bi, bj⟩H belong to L

in this case. The same holds for j − i being odd, because then

(ai, ai+1, ai+3, . . . , aj−2, aj) and (ai, ai+2, ai+4, aj−3, aj−1, aj)

are internally disjoint. Therefore,

if x, y ∈ A are in the same row, then ⟨x, y⟩H ∈ L. (3.3.21)

As a first step to go beyond the limits of a single row, we claim that

⟨a5, b6⟩H =
(
⟨a5, a4⟩H ∨ β ∨ ⟨b5, b6⟩H

)
∧
(
⟨a5, a7⟩H ∨ β∗ ∨ ⟨b8, b6⟩H

)
,

⟨a6, b7⟩H =
(
⟨a6, a4⟩H ∨ β ∨ ⟨b5, b7⟩H

)
∧
(
⟨a6, a7⟩H ∨ β∗ ∨ ⟨b8, b7⟩H

)
.

(3.3.22)
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We only deal with the first equality, because the second one is analogous. We say

that a β- or β∗-colored edge is far on the right if both of its endpoints belong to

the set:

{ei(U), e′i(U) | i ∈ N0, U ∈ H}.

Observe that

⟨a5, a4⟩H ∨ β ∨ ⟨b5, b6⟩H =
⋃
U∈H

{(a0(U), a2(U)), (b0(U), b2(U)),

(a4(U), b5(U)), (b8(U), a7(U)), (a5(U), a4(U)),

(b5(U), b6(U)), (a5(U), b5(U)), (a4(U), b6(U)),

(a5(U), b6(U))} ∪ {some edges far on the right}.

(3.3.23)

Similarly,

⟨a5, a7⟩H ∨ β∗ ∨ ⟨b8, b6⟩H =
⋃
U∈H

{(a2(U), a0(U)), (b2(U), b0(U)),

(b5(U), a4(U)), (a7(U), b8(U)), (a5(U), a7(U)),

(b8(U), b6(U)), (a5(U), b8(U)), (a7(U), b6(U)),

(a5(U), b6(U))} ∪ {some edges far on the right}.

(3.3.24)

By our construction, no edge far on the right occurs both in (3.3.23) and (3.3.24).

Thus, we obtain (3.3.22).

Now, we are in the position to fully extend the validity of (3.3.21) as follows:

if x, y ∈ A are in the same A0(U), then ⟨x, y⟩H ∈ L. (3.3.25)

To see this, let U ∈ H and x, y ∈ A0(U) such that x ̸= y. Apart from x–y

symmetry, (3.3.21) allows us to assume that x = ai(U) and y = bj(U). Since we

obtain

⟨x, y⟩H =
(
⟨x, a5⟩H ∨ ⟨a5, b6⟩H ∨ ⟨b6, y⟩H

)
∧
(
⟨x, a6⟩H ∨ ⟨a6, b7⟩H ∨ ⟨b7, y⟩H

)
from Lemma 3.3.3, (3.3.25) follows.

Next, we turn our attention to atoms. As a first step, we will show that, for

every U ∈ H,

⟨a1(U), b1(U)⟩ ∈ L.
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To see this, we claim that

⟨a1(U), b1(U)⟩ = ⟨a1, b1⟩H∧∧
i∈U

(⟨a1, e′i⟩H ∨ β ∨ ⟨ei, b1⟩H)∧
i∈I\U

(⟨a1, e′i⟩H ∨ β∗ ∨ ⟨ei, b1⟩H) .

(3.3.26)

The ”⊆” inclusion is evident. To see the reverse inclusion, let V ∈ H, V ̸= U . This

means there is a j ∈ I such that j ∈ V \U or j ∈ U \V . Because of symmetry, we

can assume that j ∈ U and j /∈ V . This means that ⟨a1, e′j⟩H ∨β∨⟨ej, b1⟩H is a part

of the right side of (3.3.26). It is clear that (a1(U), b1(U)) ∈ ⟨a1, e′j⟩H ∨β∨⟨ej, b1⟩H .
However, (a1(V ), b1(V )) /∈ ⟨a1, e′j⟩H ∨ β ∨ ⟨ej, b1⟩H , because ⟨a1, e′j⟩H and ⟨ej, b1⟩H
are box-preserving, a1(V ) and b1(V ) are the only elements of their β-blocks and,

since j /∈ V , (e′j(V ), ej(V )) /∈ β. Hence, (3.3.26) holds.

Next, we claim that if U ∈ H and {w, x, y, z} ⊆ A0 such that |{w, x, y, z}| = 4,

then

⟨w(U), z(U)⟩ ∈ L =⇒ ⟨x(U), y(U)⟩ ∈ L. (3.3.27)

Since each quasiorder occurring in the right-hand side of

⟨x(U), y(U)⟩ = ⟨x, y⟩H ∧
(
⟨x,w⟩H ∨ ⟨w(U), z(U)⟩ ∨ ⟨z, y⟩H

)
(3.3.28)

is box-preserving, (3.3.28) holds and implies (3.3.27). Starting from (3.3.26) and

applying (3.3.28) once or twice, we obtain that

if U ∈ H and x, y ∈ A0(U) with x ̸= y, then ⟨x, y⟩ ∈ L.

Next, we leave a single box similarly as we left a single row around (3.3.22)–

(3.3.25). This justifies to give less details. First we obtain that, for U ̸= V ∈ H,

⟨a5(U), a5(V )⟩ =(
⟨a5(U), e0(U)⟩ ∨ β∗ ∨ ⟨e0(∅), e1(∅)⟩ ∨ β∗ ∨ ⟨e1(V ), a5(V )⟩

)
∧(

⟨a5(U), e1(U)⟩ ∨ β ∨ ⟨e1(∅), e0(∅)⟩ ∨ β ∨ ⟨e0(V ), a5(V )⟩
)

is in L. Note that the second occurrence of β∗ and that of β could be omitted;

they only serve a better understanding. Similarly, ⟨a6(U), a6(V )⟩ ∈ L. Hence,

Lemma 3.3.3 yields easily that for all x ̸= y ∈ A, ⟨x, y⟩ ∈ L. This proves part (ii)

of Theorem 3.3.1.
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3.4 A concise approach to small generating sets

of lattices of quasiorders and transitive

relations

Definition 3.4.1. By a Zádori configuration of rank n ∈ N, we mean an edge-

colored graph Fn = {a0, a1, . . . , an, b0, . . . , bn−1} with α-colored horizontal edges

(ai−1, ai) and (bj−1, bj) for i ∈ {1, . . . , n} and j ∈ {1, . . . , n− 1}, β-colored vertical

edges (ai, bi) for i ∈ {0, . . . , n − 1}, and γ-colored slanted edges (of slope 45◦)

(ai−1, bi) for i ∈ {1, . . . , n}; these edges are solid edges in our figures. For example,

F6 is given in Figure 3.4 but we have to disregard the dotted edges. We do not

make a notational distinction between the graph and its vertex set, Fn. The colors

α, β, and γ are also members of Equ(Fn); we let (a, b) ∈ α if there is an α-colored

path from a to b in the graph, and we define the equivalences β, γ ∈ Equ(Fn)

analogously.

The following lemma is due to Zádori [87]. Note that this lemma is implicit in

[87], and it was used, implicitly, in Czédli [7], [8], [9], and [19]. The lattice operations

join and meet are also denoted by + and · (or concatenation), respectively.

Lemma 3.4.2 (Zádori [87]). If n ∈ N and A is the base set of the Zádori config-

uration Fn, then Equ(A) is generated by {α, β, γ, ⟨a0, b0⟩e, ⟨an, bn−1⟩e}.

We already used part 3.4.1 of the following straightforward lemma in the previ-

ous section, with different notations, see Lemma 3.3.3. This lemma was also used,

explicitly or implicitly, in several earlier papers; see Chajda and Czédli [4, second

display on page 423], Czédli [7, last display on page 55], [8, circle principle on page

12], [9, first display on page 451], and [19, Lemma 2.1], Takách [85, page 90], and

Zádori [87, second display on page 583].

Lemma 3.4.3. For an arbitrary set A and j, k ∈ N, if {u, v}, {x1, . . . , xj−1}, and
{y1, . . . , yk−1} are pairwise disjoint subsets of A, u = x0 = y0, and v = xj = yk,
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then

⟨u, v⟩ =
( j∑

i=1

⟨xi−1, xi⟩
)
·
( k∑

i=1

⟨yi−1, yi⟩
)
, (3.4.1)

and ⟨u, v⟩e =
( j∑

i=1

⟨xi−1, xi⟩e
)
·
( k∑

i=1

⟨yi−1, yi⟩e
)
. (3.4.2)

Lemma 3.4.4. Assume that |A| ≥ 3 and that α1, . . . , αk ∈ Quo(A) are anti-

symmetric (in other words, they are orderings) and {α1, . . . , αk} generates the

complete involution lattice Quo(A). Then {α1 \ ∆A, . . . , αk \ ∆A} is a generat-

ing set of the complete involution lattice Tran(A). The same holds if we consider

Quo(A) and Tran(A) as complete lattices (without involution).

Proof. Let Rel(A) stand for the complete involution lattice of all binary relations

over A. The meet in this lattice is the usual intersection, the involution is the

map ρ 7→ ρ∗ := ρ−1, but the join is defined in the following way: for ρi ∈ Rel(A)

and (x, y) ∈ A2, we have (x, y) ∈
∨
{ρi : i ∈ I} iff there is an n ∈ N, there

exists a finite sequence x = z0, z1, . . . , zn = y of elements of A, and there are

i1, . . . , in ∈ I such that (zj−1, zj) ∈ ρij for all j ∈ {1, . . . , n}. Note that Tran(A)

and Quo(A) are complete involution sublattices of Rel(A). For a relation ρ, denote

ρ \∆A by ρ−. Instead of ⟨β1, . . . , βk⟩ ∈ Rel(A)k and ⟨β−
1 , . . . , β

−
k ⟩, we write β⃗ and

β⃗−, respectively. We need k-ary |A|-complete involution lattice terms, which are

defined in the usual way by transfinite induction, see, for example, [6]; these terms

are built from at most |A|-ary joins and meets and the involution operation ∗. For

such a term t, t−(β⃗) and t−(β⃗−) will stand for (t(β⃗))− and (t(β⃗−))−. Then, for

every k-ary |A|-complete involution lattice term t, we have that

for every β⃗ ∈ Rel(A)k, t−(β⃗) = t−(β⃗−). (3.4.3)

If the rank of t is 0, then t is a variable and (3.4.3) holds obviously. If (3.4.3)

holds for a term t, then it also holds for t∗, because ∗ is a lattice automorphism.
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Next, assume that t =
∧
{ti : i ∈ I} and (3.4.3) holds for all the ti. Then

t−(β⃗) = t(β⃗) \∆A =
(⋂

{ti(β⃗) : i ∈ I}
)
\∆A =

⋂
{ti(β⃗) \∆A : i ∈ I}

=
⋂

{t−i (β⃗) : i ∈ I} =
⋂

{t−i (β⃗−) : i ∈ I}

=
⋂

{ti(β⃗−) \∆A : i ∈ I} =
(⋂

{ti(β⃗−) : i ∈ I}
)
\∆A

= t(β⃗−) \∆A = t−(β⃗−),

whereby (3.4.3) holds for t.

Next, assume that t =
∨
{ti : i ∈ I}. In order to show the validity of (3.4.3)

for t, assume first that (x, y) ∈ t−(β⃗). Then x ̸= y and (x, y) ∈ t(β⃗). So there is

a shortest finite sequence x = z0, z1, . . . , zn = y of elements of A and there are

i1, . . . , in ∈ I such that (zj−1, zj) ∈ tij(β⃗) for all j ∈ {1, . . . , n}. Since x ̸= y and

we use a shortest sequence, n ∈ N is at least 1 and zj−1 ̸= zj for j ∈ {1, . . . , n}.
Thus, (zj−1, zj) ∈ t−ij(β⃗), whereby the induction hypothesis gives that (zj−1, zj) ∈
t−ij(β⃗

−) ⊆ tij(β⃗
−). Therefore, (x, y) ∈ ti1(β⃗

−) ∨ · · · ∨ tin(β⃗
−) ⊆

∨
{ti(β⃗−) : i ∈

I} = t(β⃗−). But x ̸= y, whence (x, y) ∈ t−(β⃗−). This proves that t−(β⃗) ⊆ t−(β⃗−).

Conversely, since the lattice operations and the involution are monotone, t(β⃗−) ⊆
t(β⃗). Subtracting ∆A, we obtain that t−(β⃗−) ⊆ t−(β⃗). This proves (3.4.3).

Armed with (3.4.3), let a ̸= b ∈ A. Since {α1, . . . , αk} generates the complete

involution lattice Quo(A), there is a k-ary |A|-complete involution lattice term t

such that ⟨a, b⟩ = t(α⃗). Subtracting ∆A from both sides, we obtain that {(a, b)}tr =

⟨a, b⟩ \∆A = t(α⃗) \∆A = t−(α⃗). Thus, by (3.4.3), {(a, b)}tr = t−(α⃗−). This means

that for all a ̸= b ∈ A, the complete involution sublattice L generated by α⃗− in

Rel(A) contains {(a, b)}tr. But L is also what α⃗− generates in Tran(A). Thus, what

we need to prove is that L = Tran(A). For a ̸= b, {(a, b)}tr ∈ L. Based on this

containment, for each c ∈ A, we can pick x, y ∈ A such that |{x, y, c}| = 3; then

{(c, c)}tr = ({(c, x)}tr ∨ {(x, c)}tr) ∧ ({(c, y)}tr ∨ {(y, c)}tr) ∈ L. (3.4.4)

Finally, for an arbitrary ρ ∈ Tran(A), we obtain from ρ =
∨
{{(a, b)}tr : (a, b) ∈ ρ}

that ρ ∈ L. Consequently, L = Tran(A) is generated by α⃗− as required.

The main result of this section, Theorem 3.4.9, relies on the following three

lemmas.
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Lemma 3.4.5. For a set A such that 13 ≤ |A| < ℵ0 and |A| is odd, Quo(A) is

(1 + 1 + 2)-generated.

Proof. Take Fn for 6 ≤ n ∈ N from Lemma 3.4.2, see Figure 3.4.

Figure 3.4: F6 with dotted δ-edges, twice

Define

δ = ⟨a0, an⟩e + ⟨b0, bn−1⟩e + ⟨a2, a4⟩ ∈ Quo(A); (3.4.5)

the join above is denoted by plus and it is taken in Quo(A). Note that (3.4.5)

makes sense since, say, ⟨a0, an⟩e ∈ Equ(A) ⊆ Quo(A). In the figure, δ is visualized

by the dotted lines. Let L := [α, . . . , δ] ≤ Quo(A). The (δ + δ−1 + γ)-block of a2

is {b1, a2, b3, a4}, see the black-filled elements on the left, whereby it follows easily

that ⟨a0, b0⟩e = β(γ + δ). Similarly, the (δ + δ−1 + β)-block of a2 consists of the

black-filled elements on the right, and we conclude that ⟨an, bn−1⟩e = γ(β+ δ). By

Lemma 3.4.2, Equ(A) ⊆ L. Actually, Equ(A) ⊂ L, since δ ∈ L \ Equ(A). Thus,

the statement follows from Lemma 3.3.2.

Let us agree that every infinite cardinal is even.

Lemma 3.4.6. For 56 ≤ |A| ≤ ℵ0, if |A| is even, then the complete lattice Quo(A)

is (1 + 1 + 2)-generated.

Proof. For 13 < t ∈ N, define the graph F13⊕Ft in the same way (but with a new

notation) as in Czédli [8]; see Figure 3.5 for t = 16.

Note that, for example, (b09, a
1
11) is a γ-colored edge, no matter how large t

is. Let A := F13 ⊕ Ft. The dotted lines stand for δ again; note that because

of (a02, a
0
4) ∈ δ but (a04, a

0
2) /∈ δ, δ /∈ Equ(A). Let L := [α, . . . , δ] ≤ Quo(A).

Clearly, |A| = 2 · 13 + 1 + 2t + 1 ranges in {56, 58, 60, . . . } ⊂ N. For ℵ0, we let
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Figure 3.5: F13 ⊕ F16

A := F13 ⊕ F14 ⊕ F15 ⊕ . . . as in [8]. Since the δ-edge (a02, a
0
4) does not disturb

anything in the proof given in [8], Equ(A) ⊆ L. This inclusion, δ ∈ L \ Equ(A),

and Lemma 3.3.2 yield the lemma.

Next, we formulate the “large accessible” counterpart of Lemma 3.4.6.

Lemma 3.4.7. If ℵ0 ≤ |A| is accessible, then Quo(A) is (1 + 1 + 2)-generated.

Proof. Instead of F29 in Czédli [9, Figure 1], start with F34. Instead of the five

switches of F29, designate six switches in F34, but use only five of them exactly in

the same way as in [9]. Follow the construction of [9] with F34 instead of F29 and,

of course, not using the sixth switch. This change does not disturb the argument,

and we obtain a (1+1+2)-generating set of the complete lattice Equ(A); the only

difference is that very many unused switches remain by the end of the construction.

Now, we pick one of the unused switches and turn it to, say, the upper half of

[9, Figure 4] but in a slightly modified form: instead of the non-oriented dotted arc

(for δ), now we use an oriented arc. Since this arc changes neither β(γ + δ), nor

γ(β+δ), δ /∈ Equ(A), we still have that Equ(A) ⊆ [α, . . . , δ]. This fact, δ /∈ Equ(A)

and Lemma 3.3.2 complete the proof.

The following lemma adds 6, 8, and 10 to the scope of the main result of Czédli

[19]; unfortunately, the case |A| = 4 remains unsettled. Furthermore, it simplifies

the approach of [19] for finite sets A with |A| being even.

52



CHAPTER 3. GENERATING THE LATTICES OF QUASIORDERS

Lemma 3.4.8. For 6 ≤ |A| ∈ N even, the (complete) lattice Quo(A) is four-

generated.

Proof. For n ∈ {6, 8, 10, 12, . . . }, in accordance with our previous constructs and

notation, take the one-point extension A := Fn ⊞ {x} of Fn; see Figure 3.6 for

n ∈ {6, 8, 10}.

Figure 3.6: Fn ⊞ {x} for n ∈ {2, 3, 4}

Let L := [α, . . . , δ]. Also, let A′ := A \ {x}, and let Quo′(A) := {µ ∈ Quo(A) :

the (µ + µ−1)-block of x is {x}}. For ε ∈ Quo(A), let ε′ := ε(α + δ) ∈ Quo′(A).

By Czédli [19] and Quo′(A) ∼= Quo(A′), Quo′(A) ⊆ L. Clearly, we have that

⟨a0, x⟩e = β(⟨a0, an⟩e + γ) and ⟨an, x⟩e = γ(⟨a0, an⟩e + β) belong to L. Hence,

Lemma 3.4.3 gives that Equ(A) ⊆ L. Thus, Lemma 3.3.2 applies.

Now, the conclusion of this section is summarized in the following theorem.

Theorem 3.4.9. Let A be a non-singleton set. Then the following statements hold.

� If |A| ≠ 4 and |A| is an accessible cardinal, then the complete lattice Quo(A)

is four-generated.

� If |A| ≥ 13 and either |A| is an odd number, or |A| ≥ 56 is even, then the

complete lattice Quo(A) is (1 + 1 + 2)-generated.

� If 13 ≤ |A| ≤ ℵ0 and either |A| is an odd number, or |A| ≥ 56 is even, then

the lattice Quo(A) (not a complete one now) contains a (1+1+2)-generated

sublattice that includes all atoms of Quo(A).
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Lemma 3.4.10. If 3 ≤ |A| and |A| is an accessible cardinal, then the complete

lattice Tran(A) is six-generated.

Proof. By Czédli [7], there are α1, . . . , α4 ∈ Equ(A) such that {α1, . . . , α4} gen-

erates Equ(A) as a complete lattice. Let ρ be a strict linear order on A; for ex-

ample, it can be a well-ordering. In order to see that the complete sublattice

L := [α1, . . . , α4, ρ, ρ
−1] is actually Tran(A); it suffices to show that L contains

all the atoms of Tran(A). Take an atom; it is of the form {(a, b)}tr. First, assume

that a ̸= b. Then either ρ, or ρ−1 contains the pair (a, b). Hence, {(a, b)}tr is either

⟨a, b⟩e∧ρ, or ⟨a, b⟩e∧ρ−1. In both cases, since ⟨a, b⟩e ∈ Equ(A) = [α1, . . . , α4] ⊆ L,

we obtain that {(a, b)}tr ∈ L. Second, assume that a = b; that is, we need to

deal with {(a, a)}tr. The assumption 3 ≤ |A| allows us to pick x, y ∈ A such that

|{a, x, y}| = 3. Using (3.4.4) with a in place of c, we obtain that {(a, a)}tr ∈ L, as

required.

Lemma 3.4.11. If 3 ≤ |A| and |A| is an accessible cardinal, then the complete

involution lattice Tran(A) is three-generated.

Proof. Observe that the three generators constructed in Takách [85] are orderings.

Thus, Lemma 3.4.4 applies.

Note that this proof is more complicated than the proof of Lemma 3.4.10,

because this proof uses Lemma 3.4.4. Note also that (3.1.1) and Lemma 3.4.11

imply Lemma 3.4.10. Now, based on Lemmas 3.4.10 and 3.4.11, we are in the

position to conclude this section and chapter with the following theorem.

Theorem 3.4.12. If A is a set such that 3 ≤ |A| and |A| is an accessible cardinal,

then Tran(A) is six-generated as a complete lattice, and it is three-generated as a

complete involution lattice.

3.5 A mini-survey of recent related results

In Zádori [87], the problem of whether Equ(A) is (1+1+2)-generated for |A| ∈
{5, 6} remained open. Czédli and Oluoch [41] solved this problem. Ahmed and
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Czédli [2] proved that if A is a finite set such that |A| ∈ {3, 6, 11} or |A| ≥ 13, then

Quo(A) is (1 + 1 + 2)-generated. By allowing 24 new values of |A|, this statement

generalized the middle part of Theorem 3.4.9. This paper uses Lemma 3.3.2, which

is [2, Lemma 2.4] in it. Czédli [25] and Czédli and Oluoch [41] prove that many

direct products (in particular, direct powers) of finite equivalence lattices are four-

generated. For example, Czédli [25] implies that if |A| = 100 and k ≤ 1034, then

Equ(A)k is (1+1+2)-generated. Czédli [25] and [31] point out that a large lattice

with small generating set could be applied in cryptography. Finite Boolean lattices

and, more generally, finite direct powers of small distributive lattices are large and

we know from Czédli [30], [31], and [32] that these lattices can be generated by

few elements. So are “large” principal filters F of Quo(A) by Czédli [29], in which

“large” is appropriately defined.
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Chapter 4

On the largest numbers of

congruences of finite lattices

4.1 Introduction

This chapter is the same as our joint paper [77]. The problem of the existence

of lattices with certain values for the cardinalities of their sets of congruences,

filters, and ideals was raised in Mureşan [75, 76]. In Czédli and Mureşan [40], it

was proved that the set of all the congruences of an infinite lattice can be of any

size between 2 and the cardinality of the lattice, or it can have the same cardinality

as the lattice’s subsets. Thus, under the Generalized Continuum Hypothesis, the

set of all the congruences of an infinite lattice can be of any size between 2 and

the cardinality of the lattice’s subsets. This does not hold for finite lattices, due

to the limited number of configurations.

It has been proved in Freese [50] and Czédli [21] that a finite lattice can have at

most as many congruences as the chain with the same cardinality, and in Czédli [21]

that the second largest possible number of congruences is that of a glued sum of

two (not necessarily nonsingleton) chains with the four-element Boolean algebra,

and, moreover, that these are the only possible structures of finite lattices wit-

nessing those numbers of congruences; in Czédli [23], the same problem has been

investigated for semilattices, and the title of Czédli [24] speaks for itself.
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In our main result of this chapter, Theorem 4.3.7, we determine the third, fourth

and fifth largest possible numbers of congruences of a finite lattice, along with the

structures of the finite lattices with these numbers of congruences, which also

show the structures of their congruence lattices. The study of the representation

of lattices in the form of congruence lattices of lattices goes back to Dilworth and

was milestoned by Grätzer and Schmidt [68], Wehrung [86], Růžička [80], Grätzer

and Knapp [62], and Ploščica [79], and surveyed in Grätzer [57] and Schmidt [81].

A lot of the results have been proved on the representation problem of two or more

lattices and certain maps among them by (complete) congruences; for example, see

Grätzer and Schmidt [69], Grätzer and Lakser [63], Czédli [10, 18]. Even the posets

and monotone maps among them have been characterized by principal congruences

of lattices; for example, see Grätzer [56, 58, 59, 60], Grätzer and Lakser [64], and

Czédli [14, 15, 17, 20, 22]. Finally, the above-mentioned trends, focusing on the

sizes of congruence lattices, on the structures formed by congruences, and on maps

among these structures, have recently met in Czédli and Mureşan [40], enriching

the first two trends and even related to the third one.

Regarding the determination of all possible numbers of congruences of an n-

element lattice, we do not know whether, for an appropriately large finite number

n of elements and an appropriately large natural number kn, we can find n-element

lattices with any number of congruences between 2 and the knth largest possible

number of congruences of an n-element lattice. But in the older version of the

paper this chapter is based on, available at arXiv:1801.05282v2, we have obtained

some results on the smallest numbers of congruences of n-element lattices and we

have laid down some ideas for bridging the gap between these and an appropriately

chosen knth largest possible number of congruences.

4.2 Definitions, notations and immediate

properties

As usual, ∪̇ will be the disjoint union of sets. For any set M , we denote

the bounded lattice of all partitions on M by Part(M). Just like in the previ-
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ous chapter, Equ(M) stands for the lattice of all equivalences on M , and ∆M =

{(x, x) : x ∈ M}; also, ∇M = M2 as usual. We denote the canonical lattice

isomorphism Part(M) → Equ(M) by eq; for any finite partition {M1, . . . ,Mk},
eq({M1, . . . ,Mk}) will simply be denoted by eq(M1, . . . ,Mk).

All lattices will be nonempty and they will be designated by their underlying

sets. Let L and M be lattices, L is said to be trivial iff |L| = 1, L′ stands for the

dual of L, and if L and M are isomorphic, then we denote it by L ∼= M .

The congruences, filters and ideals of L also form lattices, denoted by Con(L),

Filt(L) and Id(L), respectively. Of course, Con(L) = Con(L′). Following [21],

we use the notation con(a, b) for the principal congruence of L generated by the

ordered pair (a, b). If L is a bounded lattice, then Con01(L) stands for the set of

the congruences of L where the classes of 0 and 1 are singletons: Con01(L) = {θ ∈
Con(L) : 0/θ = {0}, 1/θ = {1}}. As an immediate consequence of Con(L) being

a complete sublattice of Equ(L) (see [53, Corollary 2, page 51]), Con01(L) is a

complete sublattice of Con(L) (see also [51, Lemma 2]).

For a, b ∈ L arbitrary, [a)L and (a]L will be the principal filter and principal

ideal of L generated by a, respectively, and we denote the interval [a)L ∩ (b]L by

[a, b]L. If L is the lattice of the natural numbers with the natural order, then the

index L will be eliminated from the previous notations. Recall that [a, b]L is called

a prime interval iff a ≺ b, that is a < b and [a, b]L = {a, b}. We will call [a, b]L

a contractible edge (in brief, c-edge) iff it is a prime interval such that a is meet-

irreducible and b is join-irreducible in L, so that b is the only successor of a and

a is the only predecessor of b in L. If L has a smallest element, then At(L) will

denote the set of the atoms of L.

We denote the glued sum and the horizontal sum by ∔ and ⊞, respectively,

whose constructions we briefly recall here; see [76, 51] for their rigorous definitions,

but note that, in these papers, the operation ∔ described below is denoted by ⊕
and called ordinal sum; see also the examples in the following diagrams.

If L has a largest element 1L and M has a smallest element 0M , then the glued

sum of L and M is the lattice L∔M whose underlying set is the quotient set of

the equivalence of L∪̇M which collapses only 1L and 0M , and L∔M is obtained

58



CHAPTER 4. THE LARGEST NUMBERS OF CONGRUENCES

from L and M by identifying 1L with 0M and stacking M on top of L. Also, for any

α ∈ Con(L) and any β ∈ Con(M), the equivalence generated by α ∪ β is denoted

by α∔β, namely α∔β = eq((L/α\{1L/α})∪ (M/β \{0M/β})∪{1L/α∪0M/β}),
whose classes are the union of 1L/α and 0M/β = 1L/β, along with all the other

classes of α and all the other classes of β. Clearly, Con(L ∔ M) = {α ∔ β :

α ∈ Con(L), β ∈ Con(M)} ∼= Con(L) × Con(M), and the glued sum of bounded

lattices, also of congruences of those lattices, is associative.

If L and M are nontrivial bounded lattices, then the horizontal sum of L and

M is the nontrivial bounded lattice L ⊞ M whose underlying set is the quotient

set of the equivalence of L∪̇M which collapses only 0L with 0M and 1L with 1M ,

and L ⊞ M is obtained from L and M by identifying their bottom elements 0L

and 0M , identifying their top elements 1L and 1M , and letting every element of

L \ {0L, 1L} be incomparable to every element of M \ {0M , 1M} in L ⊞M . Also,

for any α ∈ Equ(L) and any β ∈ Equ(M), α ⊞ β stands for the equivalence on

L ⊞ M generated by α ∪ β, so that, if α ̸= ∇L and β ̸= ∇M , then α ⊞ β =

eq((L/α \ {0/α, 1/α}) ∪ (M/β \ {0/β, 1/β}) ∪ {0/α ∪ 0/β, 1/α ∪ 1/β}), where
0 = 0L = 0M and 1 = 1L = 1M in L⊞M , whose classes are the union of 0/α and

0/β and the union of 1/α and 1/β, along with all the other classes of α and all the

other classes of β. Clearly, the horizontal sum of nontrivial bounded lattices, also

of proper equivalences on those lattices, is both associative and commutative.

For any n ∈ N, we denote the n-element chain by Cn. Clearly, if L is a nontrivial

bounded lattice, then L⊞C2 = L. Note that C3⊞C3⊞C3 is the five-element modular

nondistributive lattice M3, while C3 ⊞ C4 is the five-element nonmodular lattice

N5.

Now let us make some quick calculations in order to prove that the following

lattices occurring in the proof of Theorem4.3.7 have the congruence lattices shown

below them:
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Con(C3 ⊞ C5) ∼= Con(C4 ⊞ C4) ∼=
Con(C3 ⊞ (C2 ∔ C2
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2 ∔ C2
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Con(C2
2 ⊞ C4) ∼=

Con(C3 ⊞ (C2
2 ∔ C2)) ∼= C3

rr
rr

Con(C4 ⊞ (C2
2 ∔ C2)) ∼=

Con(C3 ⊞ (C2
2 ∔ C3)) ∼= C4

For this, assume that L and M are bounded lattices and the length of each

of them is at least three. Since L and M are sublattices of L ⊞ M , for every

θ ∈ Con(L ⊞ M), we have θ ∩ L2 ∈ Con(L), θ ∩ M2 ∈ Con(M), and, clearly,

θ = (θ ∩ L2) ⊞ (θ ∩ M2). However, if α ∈ Con(L) and β ∈ Con(M), then the

equivalence α⊞β on L⊞M is not always a congruence of this lattice; it is routine

to prove (see also [76, 51]) that, whenever α and β are proper congruences of L

and M , respectively, then the proper equivalence α⊞ β is a congruence of L⊞M

iff either the α- or the β-classes of 0 and 1 are singletons or α ⊞ β is a two-class

congruence obtained from two-class congruences of the form α = eq({0}, L \ {0})
and β = eq({1},M \ {1}), which, by the convexity of any congruence class, means

that 0 is meet-irreducible in L and 1 is join-irreducible inM . Just note, for instance,

that, if α ⊞ β ∈ Con(L ⊞M) and 0/α is not a singleton, then 0/β is a singleton

and 1/β = M \ {0}. Therefore:
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� Con01(L ⊞ M) = {α ⊞ β | α ∈ Con01(L), β ∈ Con01(M)} ∼= Con01(L) ×
Con01(M),

� Con(L⊞M) = Con01(L⊞M)∪Con2cls(L⊞M)∪{∇L⊞M}, where Con2cls(L⊞

M) is the set of the two-class congruences of L⊞M ,

� Con2cls(L ⊞M) ⊆ {eq(L \ {0},M \ {1}), eq(L \ {1},M \ {0})} and, out of

these two two-class equivalences: eq(L \ {0},M \ {1}) ∈ Con(L ⊞ M) iff

0 is meet-irreducible in L and 1 is join-irreducible in M , while, similarly,

eq(L \ {1},M \ {0}) ∈ Con(L ⊞ M) iff 1 is join-irreducible in L and 0 is

meet-irreducible in M .

Hence, noting that each of the equivalences eq(L \ {0},M \ {1}) and eq(L \
{1},M \ {0}) includes all members of Con01(L⊞M), we get that Con(L⊞M) is

isomorphic to the glued sum (Con01(L)×Con01(M))∔ T , where T is C2, C3 or C2
2 ,

depending on whether the number of two-class congruences of L⊞M is zero, one

or two, respectively (see also [76]).

Noting that the four-element Boolean algebra is 0-regular and thus, for any

bounded lattice K, Con01(C2
2 ∔ K ∔ C2) = {∆C2

2
∔ θ ∔ ∆C2 : θ ∈ Con(K)} ∼=

Con01(C2 ∔K ∔ C2) = {∆C2 ∔ θ ∔∆C2 : θ ∈ Con(K)} ∼= Con(K), we obtain the

congruence lattices displayed above.

4.3 The theorems

Let n ∈ N and L be an arbitrary lattice with |L| = n. By [21], the largest and

the second largest possible numbers of congruences of L, along with the structures

of the n-element lattices L with these numbers of congruences, are represented in

the first row of the figure below. In this section, we will show that the third, fourth

and fifth largest possible numbers of congruences of L, along with the structures of

the n-element lattices L with these numbers of congruences, are as in the second

row of the figure below:
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|Con(L)| = 7 · 2n−6

|Con(L)| = 2n−3

Our observations on the smallest possible numbers of congruences of an n-

element lattice suggest that, in order to fill the gap between these and the largest

possible numbers of congruences of finite lattices, it might be useful to represent

the numbers of congruences in base 2; this is why, in our main result below, we

also indicate the numbers of congruences in base 2, apart from the fact that it

helps to clarify the ordering of these numbers.

Lemma 4.3.1 ([21, 52, 57]). If L is nontrivial, then:

(i) ∅ ̸= At(Con(L)) ⊆ {con(a, b) : a, b ∈ L, a ≺ b};

(ii) for any θ ∈ At(Con(L)), |Con(L/θ)| ≥ |Con(L)|/2;

(iii) for any a, b ∈ L such that a ≺ b: [a, b]L is a c-edge iff {a, b} is the only

nonsingleton block of con(a, b) iff |L/con(a, b)| = |L| − 1;
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(iv) for any a, b ∈ L such that a ≺ b and |L/con(a, b)| = |L| − 2, we have the

following situation or its dual (meaning the dual of the following for the case

when b is join-reducible): a is meet-reducible, a ≺ c for some c ∈ L \ {b}
such that b ≺ b ∨ c, c ≺ b ∨ c, [a, b ∨ c]L = {a, b, c, b ∨ c} ∼= C2

2 and the only

nonsingleton blocks of con(a, b) are {a, b} and {c, b ∨ c}.

Remark 4.3.2. Let a, b ∈ L with a ̸= b. Also, let θ ∈ Con(L). If a ≺ b and

a/θ ̸= b/θ, then, clearly, a/θ ≺ b/θ. If a/θ ≺ b/θ, then there exists no u ∈
[a, b]L \ (a/θ∪ b/θ), because otherwise we would have a/θ < u/θ < b/θ. Let us also

note that a/θ ≤ b/θ iff a ∨ b ∈ b/θ iff a ∧ b ∈ a/θ iff a ≤ x for some x ∈ b/θ iff

w ≤ b for some w ∈ a/θ.

By Lemma 4.3.1(iii), if [a, b]L is a c-edge, then con(a, b) collapses a single pair

of elements, thus, clearly, con(a, b) ∈ At(Con(L)). Since a/con(a, b) = b/con(a, b),

we have |L/con(a, b)| ≤ |L| − 1, hence the second equivalence in Lemma 4.3.1(iii)

is clear.

By Lemma 4.3.1(iii), if |L/con(a, b)| < |L| − 1, as in Lemma 4.3.1(iv), then

[a, b]L is not a c-edge, hence a is meet-reducible, so a has a successor different

from b, or b is join-reducible, so b has a predecessor different from a. With the

notations in Lemma 4.3.1(iv), if |L| − |L/con(a, b)| = 2 and, for instance, a is

meet-reducible, then, simply, the fact that (a, b), (c, b∨c) = (a∨c, b∨c) ∈ con(a, b)

implies that L/con(a, b) = {{a, b}, {c, b ∨ c}} ∪ {{x} : x ∈ L \ {a, b, c, b ∨ c}},
with a/con(a, b) ̸= x/con(a, b) ̸= c/con(a, b) for all x ∈ L \ {a, b, c, b ∨ c} and

a/con(a, b) ̸= c/con(a, b), which, along with the fact that a ≺ c, as above, proves

that a/con(a, b) ≺ c/con(a, b) = (b ∨ c)/con(a, b).

Lemma 4.3.3. For any a, b ∈ L such that a ≺ b and |L| − |L/con(a, b)| = 3, we

have the following situations or their duals (when b is join-reducible, as in Lemma

4.3.1(iv)): a is meet-reducible, so that a ≺ c for some c ∈ L \ {b}, and one of the

following is fulfilled:

(i) b ≺ b∨ c, c ≺ b∨ c, [a, b∨ c]L = {a, b, c, b∨ c} ∼= C2
2 and the only nonsingleton

block of con(a, b) is {a, b, c, b ∨ c};
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(ii) b ≺ b ∨ c, c ≺ b ∨ c and, for some d ∈ L \ {a, b, c, b ∨ c}, d ≺ a, [d, b ∨ c]L =

{d, a, b, c, b ∨ c} ∼= C2 ∔ C2
2 and the only nonsingleton blocks of con(a, b) are

{d, a, b} and {c, b ∨ c};

(iii) c ≺ b ∨ c and, for some d ∈ L \ {a, b, c, b ∨ c}, b ≺ d ≺ b ∨ c, [a, b ∨ c]L =

{a, b, c, d, b∨c} ∼= N5 and the only nonsingleton blocks of con(a, b) are {a, b, d}
and {c, b ∨ c};

(iv) b ≺ b ∨ c, c ≺ b ∨ c and, for some d ∈ L \ {a, b, c, b ∨ c}, b ∨ c ≺ d,

[a, d]L = {a, b, c, b ∨ c, d} ∼= C2
2 ∔ C2 and the only nonsingleton blocks of

con(a, b) are {a, b} and {c, b ∨ c, d};

(v) b ≺ b ∨ c and, for some d ∈ L \ {a, b, c, b ∨ c}, c ≺ d ≺ b ∨ c, the only

nonsingleton blocks of con(a, b) are {a, b} and {c, d, b ∨ c}, and [a, b ∨ c]L =

{a, b, c, d, b ∨ c} ∼= N5;

(vi) b ≺ b ∨ c, c ≺ b ∨ c, [a, b ∨ c]L = {a, b, c, b ∨ c} ∼= C2
2 and, for some d, e ∈

L \ {a, b, c, b ∨ c} such that d ≺ e, the only nonsingleton blocks of con(a, b)

are {a, b}, {c, b ∨ c} and {d, e}.

Proof. Let θ = con(a, b). We have a ≺ b and |L/θ| = |L| − 3 = n − 3, hence

[a, b]L is not a c-edge, according to Lemma 4.3.1(iii), thus a is meet-reducible or b

is join-reducible. We analyze the case when a is meet-reducible, that is a ≺ c for

some c ∈ L \ {b}; the case when b is join-reducible is dual to this one. We depict

the different situations that can appear in the following diagrams:
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If a/θ = b/θ = c/θ, thus (b∨ c)/θ = a/θ, then, since a/θ is a convex sublattice

of L and |L| − |L/θ| = 3, we have a/θ = {a, b, c, b ∨ c} = [a, b ∨ c]L ∼= C2
2 , that is

b ≺ b∨ c and c ≺ b∨ c, and L/θ = {{a, b, c, b∨ c}}∪{{x} : x ∈ L\{a, b, c, b∨ c}};
this is case (i) in the statement of the present lemma.

If a/θ ̸= c/θ, then, since a ≺ c, it follows that a/θ ≺ c/θ = (b∨c)/θ by Remark

4.3.2. Since |L|− |L/θ| = 3 > 2, we get that there exists d ∈ L \ {a, b, c, b∨ c} such

that {d} ⊊ d/θ. The fact that |L| − |L/θ| = 3 shows that there are three possible

situations:

� d ∈ a/θ, in which case a/θ = {a, b, d}, c/θ = {c, b∨ c} and x/θ = {x} for all

x ∈ L \ {a, b, c, b ∨ c, d};

� d ∈ c/θ, in which case a/θ = {a, b}, c/θ = {c, b ∨ c, d} and x/θ = {x} for all

x ∈ L \ {a, b, c, b ∨ c, d};

� d /∈ a/θ ∪ c/θ, in which case a/θ = {a, b}, c/θ = {c, b ∨ c}, d/θ = {d, e} for

some e ∈ L\{a, b, c, b∨ c, d} and x/θ = {x} for all x ∈ L\{a, b, c, b∨ c, d, e}.

If d ∈ a/θ, then a/θ is a three-element lattice, thus a/θ = {a, b, d} ∼= C3, that
is d < a < b or a < b < d since a ≺ b. The convexity of a/θ ensures us that, if

d < a < b, then a/θ = [d, b]L, so d ≺ a, hence {d, a, b, c, b∨c} ∼= C2∔C2
2 ; this is case

(ii) in the statement of the present lemma. If a < b < d, then c ≱ b < d ≤ d ∨ c ∈
(a ∨ c)/θ = c/θ = {c, b ∨ c}, thus b < d ≤ d ∨ c = b ∨ c ̸= d, that is b < d < b ∨ c.

Therefore {a, b, c, d, b ∨ c} ∼= N5, and, since d/θ ≺ (b ∨ c)/θ and any x ∈ L with

d < x < b ∨ c would be such that x /∈ d/θ ∪ (b ∨ c)/θ, Remark 4.3.2 shows that

d ≺ b ∨ c; this is case (iii).

If d ∈ c/θ, then c/θ = {c, b ∨ c, d} ∼= C3, that is d < c < b ∨ c or c < d <

b ∨ c or c < b ∨ c < d. If c < b ∨ c < d, then {a, b, c, b ∨ c, d} ∼= C2
2 ∔ C2 and

{c, b ∨ c, d} = c/θ = [c, d]L, thus b ∨ c ≺ d; this is case (iv). If c < d < b ∨ c, then

{a, b, c, d, b∨ c} ∼= N5 and {c, d, b∨ c} = c/θ = [c, b∨ c]L, that is c ≺ d ≺ b∨ c; this

is case (v). Finally, if d < c < b ∨ c, then {a, b} = a/θ = (a ∧ c)/θ = (a ∧ d)/θ,

hence b > a ≥ a ∧ d ∈ {a, b}, thus a ∧ d = a ̸= d, so we obtain a < d < c, which

contradicts the fact that a ≺ c.

65



CHAPTER 4. THE LARGEST NUMBERS OF CONGRUENCES

The remaining possibility is that d/θ = e/θ for some e ∈ L \ {a, b, c, b ∨ c, d},
that is c/θ = {c, b∨ c} ∼= C2 and d/θ = {d, e} ∼= C2, thus c ≺ b∨ c and either d ≺ e

or e ≺ d; this is case (vi).

Remark 4.3.4. As pointed out by the anonymous referee of our paper [77], cases

(ii) and (iv) in the previous lemma cannot occur, and they can be excluded by

using [52, Lemma 229] to prove that. If con(a, b) collapses the elements from the

nonsingleton blocks indicated in those cases, then it collapses more elements, that

is |L/ con(a, b)| ≤ |L| − 4, which contradicts the hypothesis of Lemma 4.3.3.

For the purpose of keeping self-containedness, while avoiding the lengthy pro-

jectivity arguments of [52, Lemma 229], we have kept these cases in the previous

lemma, since they will be easily eliminated in the proof of Theorem 4.3.7 below.

For the Hasse diagrams of the lattices in the following theorems, see the figure

at the beginning of this section.

Remark 4.3.5. Since the lattices with at most four elements are C1, C2, C3, C4
and C2

2 , we notice that: if |Con(L)| < 2n−1, then n ≥ 4, while, if |Con(L)| < 2n−2,

then n ≥ 5.

Theorem 4.3.6. (i) [50, 21] |Con(L)| ≤ 2n−1 and: |Con(L)| = 2n−1 iff L ∼= Cn.

(ii) [21] If |Con(L)| < 2n−1, then |Con(L)| ≤ 2n−2 and: |Con(L)| = 2n−2 iff

L ∼= Ck ∔ C2
2 ∔ Cn−k−2 for some k ∈ [1, n− 3].

Following the line of the proof from [21] of Theorem 4.3.6, now we prove:

Theorem 4.3.7. Let L be a finite lattice with n elements.

(i) If |Con(L)| < 2n−2, then n ≥ 5, |Con(L)| ≤ 5 · 2n−5 = 2n−3 + 2n−5, and:

|Con(L)| = 5 · 2n−5 iff L ∼= Ck ∔N5 ∔ Cn−k−3 for some k ∈ [1, n− 4].

(ii) If |Con(L)| < 5 · 2n−5, then |Con(L)| ≤ 2n−3, and: |Con(L)| = 2n−3 iff either

n ≥ 6 and L ∼= Ck ∔ (C2 ×C3)∔ Cn−k−4 for some k ∈ [1, n− 5], or n ≥ 7 and

L ∼= Ck∔C2
2∔Cm∔C2

2∔Cn−k−m−4 for some k,m ∈ N such that k+m ≤ n−5.
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(iii) If |Con(L)| < 2n−3, then |Con(L)| ≤ 7 · 2n−6 = 2n−4 + 2n−5 + 2n−6, and:

|Con(L)| = 7 · 2n−6 iff n ≥ 6 and, for some k ∈ [1, n − 5], L ∼= Ck ∔ (C3 ⊞
C5)∔ Cn−k−4 or L ∼= Ck ∔ (C4 ⊞ C4)∔ Cn−k−4.

Proof. Assume that |Con(L)| < 2n−2 < 2n−1, that is n ≥ 5 by Remark 4.3.5. We

will prove the statements of the theorem by induction on n ∈ N, n ≥ 5, identifying

the lattices up to isomorphism.

The five-element lattices are: M3, N5, C2 ∔ C2
2 , C2

2 ∔ C2 and C5, whose numbers

of congruences are: 2, 5, 8, 8 and 24 = 16, respectively. The five-element lattices

with strictly less than 25−2 = 8 congruences are M3 and N5, out of which N5
∼=

C1 ∔N5 ∔ C5−1−3 is of the form in (i) and has 5 = 5 · 25−5 congruences, while M3

has 2 < 4 = 25−3 congruences. From this fact and Remark 4.3.5, it follows that, if

|Con(L)| = 2n−3, then n ≥ 6.

The six-element lattices are:M4 = M3⊞C3, C4⊞C2
2 , (C2

2∔C2)⊞C3, (C2∔C2
2)⊞C3,

M3 ∔ C2, C2 ∔M3, C3 ⊞ C5, C4 ⊞ C4, C2 × C3, N5 ∔ C2, C2 ∔N5, C2
2 ∔ C3, C3 ∔ C2

2 ,

C2 ∔ C2
2 ∔ C2 and C6, whose numbers of congruences are: 2, 3, 3, 3, 4, 4, 7, 7, 8, 10,

10, 16, 16, 16 = 26−2 and 32 = 26−1, respectively. So, the third largest number of

congruences of a six-element lattice is 10 = 5 · 26−5, the fourth largest is 8 = 26−3

and the fifth largest is 7 = 7 · 26−6. As above, we notice that N5 ∔ C2 and C2 ∔N5

are of the form in (i), C2 × C3 is of the first form in (ii) and C3 ⊞ C5 and C4 ⊞ C4
are of the forms in (iii).

It is easy to construct, as above, the 7-element lattices, and see that the ones

with strictly less than 27−2 = 32 congruences are: the ones having 20 = 5 · 27−5

congruences, namely N5 ∔ C3, C3 ∔N5 and C2 ∔N5 ∔ C2, all of the form in (i); the

ones having 16 = 27−3 congruences, namely (C2×C3)∔C2 and C2∔ (C2×C3), which
are of the first form in (ii), as well as C2

2 ∔ C2
2 , which is of the second form in (ii);

the ones having 14 = 7 · 27−6 congruences, namely (C3 ⊞ C5)∔ C2, C2 ∔ (C3 ⊞ C5),
(C4 ⊞ C4) ∔ C2 and C2 ∔ (C4 ⊞ C4), all of the forms in (iii); and the ones having

strictly less than 14 congruences.

Now assume that n ≥ 8 and the statements of the theorem hold for all lattices of

cardinality at most n−1. Note that, in the rest of this proof, whenever |Con(L)| =
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5 · 2n−5, L is of the form in (i), whenever |Con(L)| = 2n−3, L is of one of the forms

in (ii) and, whenever |Con(L)| = 7 · 2n−6, L is of one of the forms in (iii).

Let θ ∈ At(Con(L)). By Lemma 4.3.1(i), at least one such θ exists, and θ =

con(a, b) for some a, b ∈ L with a ≺ b. Then a/θ = b/θ, that is |L/θ| ≤ n − 1,

hence |Con(L/θ)| ≤ 2n−2 by Theorem 4.3.6(i). By Lemma 4.3.1(ii), |Con(L/θ)| ≥
|Con(L)|/2.

(i) By the hypothesis of the theorem, |Con(L)| < 2n−2. Assume by absurdum

that |Con(L)| > 5 ·2n−5, so that |Con(L/θ)| > 5 ·2n−6 > 4 ·2n−6 = 2n−4 = 2(n−3)−1,

thus |L/θ| > n− 3 by Theorem 4.3.6(i), hence |L/θ| ∈ {n− 1, n− 2}.
Case (i).1: Assume that |L/θ| = n− 1, that is, according to Lemma 4.3.1(iii),

L/θ = {{a, b}} ∪ {{x} : x ∈ L \ {a, b}} and [a, b]L is a c-edge, thus b is the

unique successor of a and a is the unique predecessor of b. Since |Con(L/θ)| >
5 · 2n−6 = 5 · 2(n−1)−5, Theorem 4.3.6 and the induction hypothesis ensure us that

|Con(L/θ)| ∈ {2n−2, 2n−3}.
Subcase (i).1.1 : Assume that |Con(L/θ)| = 2n−2 = 2(n−1)−1, that is {{a, b}} ∪

{{x} : x ∈ L \ {a, b}} = L/θ ∼= Cn−1 by Theorem 4.3.6(i), and thus, for any

x, y ∈ L \ {a, b}, either x/θ ≤ a/θ or a/θ = b/θ ≤ x/θ, and either x/θ ≤ y/θ or

y/θ ≤ x/θ, that is, by the form of the classes of θ and Remark 4.3.2, either x ≤ a

or b ≤ x, and either x ≤ y or y ≤ x, therefore L ∼= Cn. But then |Con(L)| = 2n−1,

which contradicts the hypothesis of the present theorem that |Con(L)| < 2n−2.

Subcase (i).1.2 : Assume that |Con(L/θ)| = 2n−3 = 2(n−1)−2, that is, according

to Theorem 4.3.6(ii), L/θ ∼= Ck ∔ C2
2 ∔ Cn−k−3

∼= Ck ∔ (C3 ⊞ C3)∔ Cn−k−3 for some

k ∈ [1, n − 4]. If we denote the elements of L/θ as in the first diagram below,

with x, y, z, u ∈ L, and we also consider the facts that |L| − |L/θ| = 1, b is the

unique successor of a and a is the unique predecessor of b, a/θ = b/θ = {a, b} and

v/θ = {v} for all v ∈ L \ {a, b}, then we notice that L is in one of the following

situations, represented in the three diagrams of L after that of L/θ:

� if a/θ = b/θ ≤ x/θ, then b ≤ x and L ∼= C2 ∔ L/θ ∼= Ck+1 ∔ C2
2 ∔ Cn−k−3,

while, if a/θ = b/θ ≥ u/θ, then a ≥ u and L ∼= L/θ∔ C2 ∼= Ck ∔ C2
2 ∔ Cn−k−2,

but in these situations |Con(L)| = 2n−2, which contradicts the hypothesis of

the theorem that |Con(L)| < 2n−2;
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� if x/θ < a/θ = b/θ < u/θ, then x < a < b < u, hence {a, b}∩{y, z} ≠ ∅, that

is L ∼= Ck ∔ (C3 ⊞ C4)∔ Cn−k−3
∼= Ck ∔N5 ∔ Cn−k−3, thus |Con(L)| = 2k−1 · 5 ·

2n−k−4 = 5 ·2n−5, which contradicts the assumption that |Con(L)| > 5 ·2n−5.

L/θ :
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...
rr@@ ��

r rrr
...
rr

x/θ

y/θ z/θ

u/θ

0/θ

1/θ

�� @@

L when
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r rrr
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L when
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L when
x/θ < a/θ < u/θ :
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rr@@ �

r rr
...
rr

x

u

0

1

�� @rrab

Case (i).2: Now assume that |L/θ| = n − 2, which means that we are in the

situation from Lemma 4.3.1(iv), and assume, for instance, that a is meet-reducible,

that is a ≺ c for some c ∈ L \ {b}, and we have b ≺ b ∨ c and c ≺ b ∨ c, that is

a/θ = {a, b} ≺ {c, b∨c} = c/θ by Remark 4.3.2, [a, b∨c]L = {a, b, c, b∨c} ∼= C2
2 , and

x/θ = {x} for all x ∈ L\{a, b, c, b∨c}; the dual case is analogous to this one. Since

|Con(L/θ)| > 5 · 2n−6 > 4 · 2n−6 = 2n−4 = 2(n−2)−2, Theorem 4.3.6 ensures us that

|Con(L/θ)| = 2(n−2)−1 = 2n−3 and {{a, b}, {c, b ∨ c}} ∪ {{x} : x ∈ L \ {a, b, c, b ∨
c}} = L/θ ∼= Cn−2. So L/θ is a chain, thus, for all x, y ∈ L \ {a, b, c, b∨ c}, we have
either x/θ ≤ a/θ ≺ c/θ or a/θ ≺ c/θ = (b ∨ c)/θ ≤ x/θ, and either x/θ ≤ y/θ or

y/θ ≤ x/θ, hence, by the form of the classes of θ and Remark 4.3.2, we have either

x ≤ a or b ∨ c ≤ x, and either x ≤ y or y ≤ x, that is L ∼= Ck ∔ C2
2 ∔ Cn−k−2 for

some k ∈ [1, n− 3], with {a, b, c, b ∨ c} being the sublattice of L isomorphic to C2
2 ;

but then |Con(L)| = 2n−2, which contradicts the hypothesis of the theorem that

|Con(L)| < 2n−2.

Therefore, indeed, |Con(L)| ≤ 5 · 2n−5. Now assume that |Con(L)| = 5 · 2n−5,

that is |Con(L/θ)| ≥ 5·2n−6 > 4·2n−6 = 2n−4, thus, as above, |L/θ| ∈ {n−1, n−2}.
By Case (i).1, the equality |Con(L)| = 5 · 2n−5 shows that, if |L/θ| = n− 1, then,

for some k ∈ [1, n − 4], L/θ ∼= Ck ∔ C2
2 ∔ Cn−k−3 and L ∼= Ck ∔ N5 ∔ Cn−k−3. By

Case (i).2, we cannot have |L/θ| = n− 2.

(ii) Assume that |Con(L)| < 5 ·2n−5, and assume by absurdum that |Con(L)| >
2n−3, that is |Con(L/θ)| > 2n−4 = 2(n−3)−1, hence |L/θ| > n − 3 by Theorem
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4.3.6(i), thus |L/θ| ∈ {n − 1, n − 2}. By Cases (i).1 and (i).2 above, in both of

these situations we obtain that |Con(L)| ≥ 5 · 2n−5, contradicting the current

assumption that |Con(L)| < 5 · 2n−5. Therefore |Con(L)| ≤ 2n−3.

Now assume that |Con(L)| = 2n−3, that is |Con(L/θ)| ≥ 2n−4 = 2(n−3)−1, hence

|L/θ| ≥ n− 3 by Theorem 4.3.6(i), thus |L/θ| ∈ {n− 1, n− 2, n− 3}.
Case (ii).1: Assume that |L/θ| = n − 1. Then, since |Con(L/θ)| ≥ 2n−4 =

2(n−1)−3, Theorem 4.3.6 and the induction hypothesis ensure us that |Con(L/θ)| ∈
{2n−2, 2n−3, 5·2n−6, 2n−4}. By Case (i).1, we cannot have |Con(L/θ)| ∈ {2n−2, 2n−3}.

Subcase (ii).1.1: Assume that |Con(L/θ)| = 5 · 2n−6, which, by the induction

hypothesis, means that L/θ ∼= Ck ∔N5 ∔ Cn−k−4 for some k ∈ [1, n− 5], thus L is

in one of the following situations, that we separate as above, where the elements

of L/θ are denoted as in the diagram below, with x, y, z, t, u ∈ L:

� if a/θ = b/θ ≤ x/θ, then a ≺ b ≤ x and L ∼= C2∔L/θ ∼= Ck+1∔N5∔ Cn−k−4,

while, if a/θ = b/θ ≥ u/θ, then u ≤ a ≺ b and L ∼= L/θ ∔ C2 ∼= Ck ∔N5 ∔

Cn−k−3, hence |Con(L)| = 2 · |Con(L/θ)| = 5 · 2n−5;

� if x/θ < a/θ = b/θ < u/θ, then x < a ≺ b < u and: either {a, b}∩{z, t} ≠ ∅,

in which case a, b, z, t are pairwise comparable, because otherwise a would be

meet-reducible or b would be join-reducible, thus L ∼= Ck∔(C3⊞C5)∔Cn−k−4,

or y ∈ {a, b}, thus L ∼= Ck ∔ (C4 ⊞ C4) ∔ Cn−k−4, hence |Con(L)| = 2k−1 ·
(22 + 3) · 2n−k−5 = 7 · 2n−6, which contradicts the current assumption that

|Con(L)| = 2n−3.

L/θ in
Subcase (ii).1.1:

rr
...
rr@@ �

r rr
...
rr

x/θ

y/θ z/θ
t/θ

u/θ

0/θ

1/θ

�� @rr

The following subcases can be treated exactly as above. For brevity, we only

indicate the shapes of the lattices in the remaining part of the proof.
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Subcase (ii).1.2: Assume that |Con(L/θ)| = 2n−4 = 2(n−1)−3, which, by the

induction hypothesis, means that either L/θ ∼= Cr ∔ (C2 × C3) ∔ Cn−r−5 for some

r ∈ [1, n− 6], or L/θ ∼= Ck ∔ C2
2 ∔ Cm∔ C2

2 ∔ Cn−k−m−5 for some k,m ∈ N such that

k +m ≤ n− 6, so that L is in one of the following situations:

� L ∼= Cr+1 ∔ (C2 × C3) ∔ Cn−r−5 or L ∼= Cr ∔ (C2 × C3) ∔ Cn−r−4 or L ∼=
Ck+1∔C2

2 ∔Cm∔C2
2 ∔Cn−k−m−5 or L/θ ∼= Ck ∔C2

2 ∔Cm+1∔C2
2 ∔Cn−k−m−5 or

L/θ ∼= Ck ∔C2
2 ∔Cm∔C2

2 ∔Cn−k−m−4, thus |Con(L)| = 2 · |Con(L/θ)| = 2n−3;

� L ∼= Ck∔N5∔Cm∔C2
2∔Cn−k−m−5 or L ∼= Ck∔C2

2∔Cm∔N5∔Cn−k−m−5, in which

case |Con(L)| = 5·22·2k−1+m−1+n−k−m−6 = 5·2n−6 < 7·2n−6 < 8·2n−6 = 2n−3,

contradicting the current assumption that |Con(L)| = 2n−3;

� L ∼= Cr ∔ G ∔ Cn−r−5 or L ∼= Cr ∔ G′ ∔ Cn−r−5 or L ∼= Cr ∔ H ∔ Cn−r−5 or

L ∼= Cr ∔ H ′ ∔ Cn−r−5 or L ∼= Cr ∔ K ∔ Cn−r−5 or L ∼= Cr ∔ K ′ ∔ Cn−r−5,

where G, H and K are the following glueings of a pentagon with a four-

element Boolean algebra and G′, H ′ and K ′ are the duals of G, H and

K, respectively, hence |Con(L)| = 9 · 2r−1+n−r−6 = 9 · 2n−7 < 14 · 2n−7 =

7 · 2n−6 < 2n−3, contradicting the current assumption that |Con(L)| = 2n−3,

since |Con(G)| = |Con(H)| = |Con(K)| = 9, which is simple to verify, and

thus |Con(G′)| = |Con(H ′)| = |Con(K ′)| = 9 as well; in the diagrams below,

we are indicating the positions of a and b in these copies of G, H, K, G′,

H ′ and K ′ from L, which, along with the shapes of these lattices, are easy

to derive from the fact that, by the hypothesis of Case (ii).1, con(a, b) only

collapses a and b:
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Case (ii).2: Assume that |L/θ| = n − 2. Then, since |Con(L/θ)| ≥ 2n−4 =

2(n−2)−2, Theorem 4.3.6 ensures us that |Con(L/θ)| ∈ {2n−3, 2n−4}. By Case (i).2,

we cannot have |Con(L/θ)| = 2n−3, thus |Con(L/θ)| = 2n−4, hence L/θ ∼= Ck ∔
C2
2 ∔ Cn−k−4 for some k ∈ [1, n− 5], according to Theorem 4.3.6(ii). We are in the

situation from Lemma 4.3.1(iv), hence a is meet-reducible or b is join-reducible.

We will assume that a is meet-reducible, that is a ≺ c for some c ∈ L \ {b},
and we will apply Lemma 4.3.1(iv) and Remark 4.3.2; the case when b is join-

reducible shall follow by duality. Since {a, b} = a/θ ≺ c/θ = {c, b ∨ c} and, for all

x ∈ L \ (a/θ ∪ c/θ) = L \ {a, b, c, b ∨ c}, x/θ = {x} and x /∈ [a, b ∨ c]L, L has one

of the following forms:

� L ∼= Cs∔ C2
2 ∔ Ct∔ C2

2 ∔ Cn−s−t−4 for some s, t ∈ N such that s+ t ≤ n− 5; in

this case, one of the two copies of C2
2 from L is {a, b, c, b∨c}, k ∈ {s, s+t+2},

and, indeed, |Con(L)| = 2n−3;

� L ∼= Ck ∔ (C2 × C3)∔ Cn−k−4, in which case, indeed, |Con(L)| = 2n−3, and a,

b, c, b∨ c belong to the copy of C2×C3 from L, in which they are situated as

in one of the following first two diagrams, since θ = con(a, b) only collapses

a, b and c, b ∨ c;

� L ∼= Ck ∔ (C3 ⊞ (C2
2 ∔ C2)) ∔ Cn−k−4 or L ∼= Ck ∔ (C3 ⊞ (C2 ∔ C2

2)) ∔ Cn−k−4,

in which a, b, c and b ∨ c would be positioned in the copy of C3 ⊞ (C2
2 ∔ C2),

respectively C3 ⊞ (C2 ∔ C2
2), as in the third and fourth diagrams below, but

then |Con(L)| = 3 · 2k−1+n−k−5 = 3 · 2n−6 < 7 · 2n−6 < 8 · 2n−6 = 2n−3, which

contradicts the current hypothesis that |Con(L)| = 2n−3.
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Case (ii).3: Assume that |L/θ| = n − 3. Then, since | Con(L/θ)| ≥ 2n−4 =

2(n−3)−1, by Theorem 4.3.6(i), it follows that | Con(L/θ)| = 2n−4, so that L/θ ∼=
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Cn−3. We are in the case from Lemma 4.3.3; assume that a is meet-reducible, that

is a ≺ c for some c ∈ L \ {b}; the case when b is join-reducible follows by duality.

In the situation from Lemma 4.3.3(i), since L/θ is a chain, it follows that, for

any x, y ∈ L\{a, b, c, b∨ c}, {x} = x/θ < a/θ = {a, b, c, b∨ c} or a/θ = (b∨ c)/θ <

x/θ, and x/θ ≤ y/θ = {y} or y/θ ≤ x/θ, so x ≤ y or y ≤ x, and x < z for every

z ∈ {a, b, c, b∨c} or z < x for every z ∈ {a, b, c, b∨c}. Therefore L ∼= Ck∔C2
2∔Cn−k−2

for some k ∈ [1, n− 3], thus |Con(L)| = 2n−2, which contradicts the hypothesis of

the present theorem that |Con(L)| < 2n−2.

In the same way, in the situations (ii) and (iv) from Lemma 4.3.3, we obtain

that L ∼= Ck ∔ C2
2 ∔ Cn−k−2 for some k ∈ [1, n − 3], thus |Con(L)| = 2n−2, which

contradicts both the hypothesis of the theorem that |Con(L)| < 2n−2 and the fact

that θ = con(a, b). Similarly, in the situations (iii) and (v) from Lemma 4.3.3, we

get that L ∼= Ck ∔N5 ∔ Cn−k−3 for some k ∈ [1, n− 4], hence |Con(L)| = 5 · 2n−5,

which contradicts the current assumption that |Con(L)| = 2n−3.

Now assume we are in the situation from Lemma 4.3.3(vi), with d and e as in

the statement of the lemma. Since L/θ is a chain, without loss of generality, we

may assume that d/θ < a/θ ≺ c/θ, because the other case is dual to this one. So, in

L/θ, we will have {d, e} < {a, b} ≺ {c, b∨ c} and, for all x ∈ L \ {a, b, c, b∨ c, d, e}:
either x/θ < a/θ ≺ c/θ or a/θ ≺ c/θ = (b ∨ c)/θ < x/θ, and either x/θ ≤ d/θ

or d/θ = e/θ < x/θ, therefore, since x/θ = {x}, Remark 4.3.2 ensures us that we

have either x < a or b ∨ c < x, and either x < d or e < x.

If we had e < a, then L ∼= Ck ∔ C2
2 ∔ Cn−k−2 for some k ∈ [3, n − 3], be-

cause d, e, a, b, c, b∨ c would be positioned in L as in the first diagram below, thus

|Con(L)| = 2n−2, which contradicts the hypothesis of the theorem that |Con(L)| <
2n−2, as well as the fact that θ = con(a, b). We have {d, e} = d/θ < a/θ = {a, b}.
Since a/θ and d/θ = e/θ are convex, we cannot have e > a. Hence e and a are

incomparable, d < a and e < b. So d ≤ a ∧ e ≤ e, thus a ∧ e ∈ d/θ = {d, e} by the

convexity of d/θ, hence a∧ e = d since e ̸< a by the above. Analogously, a∨ e = b.

Hence {d, e, a, b, c, b ∨ c} ∼= C2 × C3.
Recall that d ≺ e, a ≺ b ≺ b ∨ c, a ≺ c ≺ b ∨ c and [a, b ∨ c]L = {a, b, c, b ∨ c}.

Assume by absurdum that [d, b]L ̸= {d, e, a, b}, that is x ∈ [d, b]L for some x ∈
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L \ {d, e, a, b, c, b ∨ c} = L \ (d/θ ∪ a/θ ∪ c/θ). If x is comparable to neither e,

nor a, then {d, e, x, a, b} ∼= M3, thus (a, d) ∈ con(a, b) = θ, which contradicts

the fact that a/θ ̸= d/θ. If x is comparable to a, then d < x < a, while, if x is

comparable to e, then e < x < b, since d < x < b, d ≺ e and a ≺ b; in each

of these cases, {d, e, x, a, b} ∼= N5, so x ∈ a/con(a, b) = a/θ in the first of these

two cases, and x ∈ d/con(a, b) = d/θ in the second, and each of these situations

contradicts the fact that x /∈ d/θ∪a/θ∪c/θ. Therefore [d, b]L = {d, e, a, b} and thus

[d, b∨c]L = {d, e, a, b, c, b∨c} ∼= C2×C3, so d, e, a, b, c, b∨c are positioned in L as in

the second diagram below, and, since L/θ is a chain, for all x ∈ L\{d, e, a, b, c, b∨c},
we have {x} = x/θ < d/θ ≺ a/θ ≺ c/θ or d/θ ≺ a/θ ≺ c/θ < x/θ, thus x < d or

b∨c < x by Remark 4.3.2. Hence L ∼= Ck∔(C2×C3)∔Cn−k−4 for some k ∈ [1, n−5],

which, indeed, has |Con(L)| = 2n−3.
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(iii) Assume that |Con(L)| < 2n−3 and assume by absurdum that |Con(L)| >
7 · 2n−6, so |Con(L/θ)| > 7 · 2n−7 > 5 · 2n−7 > 4 · 2n−7 = 2n−5 = 2(n−4)−1 by Lemma

4.3.1(ii), hence |L/θ| > n−4 by Theorem 4.3.6(i), thus |L/θ| ∈ {n−1, n−2, n−3}.
Case (iii).1: Assume that |L/θ| = n − 1. Since |Con(L/θ)| > 7 · 2n−7 = 7 ·

2(n−1)−6, by Theorem 4.3.6 and the induction hypothesis, we get that |Con(L/θ)| ∈
{2n−2, 2n−3, 5 · 2n−6, 2n−4}. By Case (i).1, |Con(L/θ)| /∈ {2n−2, 2n−3}. By Subcase

(ii).1.1, since |Con(L)| > 7 · 2n−6, it follows that |Con(L/θ)| ≠ 5 · 2n−6. Finally, by

Subcase (ii).1.2, since 2n−3 > |Con(L/θ)| > 7 · 2n−7, it follows that |Con(L/θ)| ̸=
2n−4.

Case (iii).2: Assume that |L/θ| = n − 2. Since |Con(L/θ)| > 7 · 2n−7 > 5 ·
2n−7, by Theorem 4.3.6 and the induction hypothesis, it follows that |Con(L/θ)| ∈
{2n−3, 2n−4}. By Case (i).2, |Con(L/θ)| ≠ 2n−3. By Case (ii).2, |Con(L/θ)| ≠ 2n−4.

Case (iii).3: Assume that |L/θ| = n − 3. Since |Con(L/θ)| > 7 · 2n−7 >

4 · 2n−7 = 2n−5 = 2(n−3)−2, by Theorem 4.3.6, it follows that |Con(L/θ)| = 2n−4 =
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2(n−3)−1 and hence L/θ ∼= Cn−3. By Case (ii).3, it follows that we cannot have

2n−3 > |Con(L)| > 7 · 2n−6.

Therefore |Con(L)| ≤ 7 · 2n−6.

Now assume that |Con(L)| = 7 · 2n−6, so |Con(L/θ)| ≥ 7 · 2n−7 > 5 · 2n−7 >

4 · 2n−7 = 2n−5 = 2(n−4)−1 by Lemma 4.3.1(ii), hence |L/θ| > n − 4 by Theorem

4.3.6(i), thus |L/θ| ∈ {n− 1, n− 2, n− 3}.
Case 1: Assume that |L/θ| = n− 1. Since |Con(L/θ)| ≥ 7 · 2n−7 = 7 · 2(n−1)−6,

by Theorem 4.3.6 and the induction hypothesis, it follows that |Con(L/θ)| ∈
{2n−2, 2n−3, 5 · 2n−6, 2n−4, 7 · 2n−7}. By Case (i).1, |Con(L/θ)| /∈ {2n−2, 2n−3}.

Subcase 1.1: Assume that |Con(L/θ)| = 5 ·2n−6. Since we also have |Con(L)| =
7 · 2n−6, by Subcase (i).1.1, it follows that, for some k ∈ [1, n − 3], L/θ ∼= Ck ∔
N5 ∔ Cn−k−4

∼= Ck ∔ (C3 ⊞ C4)∔ Cn−k−4 and either L ∼= Ck ∔ (C3 ⊞ C5)∔ Cn−k−4 or

L ∼= Ck ∔ (C4 ⊞ C4)∔ Cn−k−4.

Subcase 1.2: Assume that |Con(L/θ)| = 7·2n−7, so, by the induction hypothesis,

for some k ∈ [1, n−6], L/θ ∼= Ck∔(C3⊞C5)∔Cn−k−5 or L/θ ∼= Ck∔(C4⊞C4)∔Cn−k−5,

thus, since [a, b]L is a c-edge in this Case 1, we have one of the following situations:

� L ∼= Ck+1 ∔ (C3 ⊞ C5) ∔ Cn−k−5 or L ∼= Ck ∔ (C3 ⊞ C5) ∔ Cn−k−4 or L ∼=
Ck+1 ∔ (C4 ⊞ C4)∔ Cn−k−5 or L ∼= Ck ∔ (C4 ⊞ C4)∔ Cn−k−4;

� L ∼= Ck ∔ (C3 ⊞ C6) ∔ Cn−k−5 or L ∼= Ck ∔ (C4 ⊞ C5) ∔ Cn−k−5, but in these

cases Con(L) ∼= Cn−7
2 × (C3

2 ∔ C2
2), thus |Con(L)| = 2n−7 · (23 + 3) = 11 ·

2n−7 < 14 · 2n−7 = 7 · 2n−6, which contradicts the current assumption that

|Con(L)| = 7 · 2n−6.

Case 2: Assume that |L/θ| = n−2. Then, by Lemma 4.3.1(iv), we can assume

that a is meet-reducible, that is a ≺ c for some c ∈ L \ {b}, since the other case is
dual to this one. Since |Con(L/θ)| ≥ 7 · 2n−7 > 5 · 2n−7 = 5 · 2(n−2)−5, by Theorem

4.3.6 and the induction hypothesis, it follows that |Con(L/θ)| ∈ {2n−3, 2n−4, 5 ·
2n−7}. By Case (i).2, |Con(L/θ)| ≠ 2n−3. By Case (ii).2, since |Con(L)| = 7 · 2n−6,

it follows that |Con(L/θ)| ̸= 2n−4. Hence |Con(L/θ)| = 5 · 2n−7, thus, by the

induction hypothesis, for some k ∈ [1, n− 6], L/θ ∼= Ck ∔N5 ∔ Cn−k−5, hence L is

in one of the following situations, as shown by Lemma 4.3.1(iv):
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� either k ≥ 4 and, for some r, s ∈ N such that r + s = k, L ∼= Cr ∔ C2
2 ∔ Cs ∔

N5∔Cn−k−5, or n ≥ k+9 and, for some r, s ∈ N such that r+ s = n− k− 5,

L ∼= Ck ∔N5 ∔ Cr ∔ C2
2 ∔ Cs, but in these cases Con(L) ∼= Cn−6

2 × (C2 ∔ C2
2),

so |Con(L)| = 5 · 22 · 2n−8 = 5 · 2n−6 < 7 · 2n−6, which contradicts the current

assumption that |Con(L)| = 7 · 2n−6;

� L ∼= Ck∔ ((C2
2 ∔C2)⊞C4)∔Cn−k−5 or L ∼= Ck∔ ((C2∔C2

2)⊞C4)∔Cn−k−5, with

the positions of a, b, c and b ∨ c in the copy of (C2
2 ∔ C2) ⊞ C4, respectively

(C2∔C2
2)⊞C4 from L as depicted in the first two diagrams below, but in these

cases Con(L) ∼= C4×Cn−7
2 , so |Con(L)| = 2n−5 = 2·2n−6 < 7·2n−6, which gives

us another contradiction to the current assumption that |Con(L)| = 7 · 2n−6;

� L ∼= Ck ∔ (C3 ⊞ (C2 ∔ C2
2 ∔ C2)) ∔ Cn−k−5, with the positions of a, b, c and

b ∨ c in the copy of C3 ⊞ (C2 ∔ C2
2 ∔ C2) from L as depicted in the third

diagram below, but in this case Con(L) ∼= (C2
2 ∔ C2

2) × Cn−7
2 , so |Con(L)| =

7 · 2n−7 < 7 · 2n−6, and, again, we obtain a contradiction to the assumption

that |Con(L)| = 7 · 2n−6;

� L ∼= Ck∔ (C3⊞ (C2
2 ∔C3))∔Cn−k−5 or L ∼= Ck∔ (C3⊞ (C3∔C2

2))∔Cn−k−5, with

the positions of a, b, c and b ∨ c in the copy of C3 ⊞ (C2
2 ∔ C3), respectively

C3⊞(C3∔C2
2) from L as depicted in the last two diagrams below, but in these

cases Con(L) ∼= Cn−7
2 × C4, thus |Con(L)| = 4 · 2n−7 = 2n−5 < 14 · 2n−7 =

7 · 2n−6, which gives us another contradiction to |Con(L)| = 7 · 2n−6.
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Case 3: Assume that |L/θ| = n− 3. Since |Con(L/θ)| ≥ 7 · 2n−7 > 4 · 2n−7 =

2n−5 = 2(n−3)−2, Theorem 4.3.6 ensures us that |Con(L/θ)| = 2n−4 = 2(n−3)−1, thus
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L/θ ∼= Cn−3. But Case (iii).3 shows us that, in this case, |Con(L)| ≠ 7 · 2n−6, so we

have a contradiction to the current assumption that |Con(L)| = 7 · 2n−6.

Corollary 4.3.8.

(i) |Con(L)| = 2n−1 iff Con(L) ∼= Cn−1
2 .

(ii) |Con(L)| = 2n−2 iff n ≥ 4 and Con(L) ∼= Cn−2
2 .

(iii) |Con(L)| = 5 · 2n−5 iff n ≥ 5 and Con(L) ∼= Cn−5
2 × (C2 ∔ C2

2).

(iv) |Con(L)| = 2n−3 iff n ≥ 6 and Con(L) ∼= Cn−3
2 .

(v) |Con(L)| = 7 · 2n−6 iff n ≥ 6 and Con(L) ∼= Cn−6
2 × (C2

2 ∔ C2
2).

Proof. The converse implications are trivial, and the direct implications follow

from Theorems 4.3.6 and 4.3.7.
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Summary

In this dissertation, our goal was to get a better understanding of the structure

of some lattices and some related lattices. We described slim rectangular lattices by

permutations, and we also counted these lattices. We searched for minimum-sized

generating sets of the lattices of quasiorders. Also, we characterized lattices with

many congruences. While counting these congruences, we described the structure

of the congruence lattices, too.

Following the introductory Chapter 1, Chapter 2 is about slim rectangular

lattices and is based on [33]. An element of a lattice is join-irreducible if it has

exactly one lower cover. A finite lattice L is slim, if JiL, the set of the join-

irreducible elements of L, is included in the union of two chains of L. Slim lattices

are planar, that is, they possess planar diagrams. By our convention, the lattice

properties of a planar lattice diagram D are those of the lattice determined by

D. A semimodular (lattice) diagram D is rectangular if both its left boundary

chain, denoted by Cl(D), and its right boundary chain, Cr(D), have exactly one

doubly irreducible element, and these two elements, called the corners of D, are

complementary. Rectangular lattices are those that have rectangular diagrams.

A minimal non-chain region of a planar lattice diagram D is called a cell. A

four-element cell is a 4-cell. A diagram is a 4-cell diagram if all of its cells are

4-cells. It was proved in Grätzer and Knapp [61, Lemmas 4 and 5] that D is a

slim semimodular diagram iff it is a 4-cell diagram and no two distinct 4-cells

have the same bottom. Two prime intervals of a slim semimodular diagram D

are consecutive if they are opposite sides of a 4-cell. The consecutiveness of two

prime intervals in a slim semimodular lattice L does not depend on the planar
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diagram chosen. Maximal sequences of consecutive prime intervals form a trajec-

tory. In other words, a trajectory is a class of the equivalence relation generated

by consecutiveness. By Czédli and Schmidt [43, Lemma 2.8], if T is a trajectory

of a slim semimodular diagram D, then T contains exactly one prime interval of

Cl(D), and the same holds for Cr(D). Going from left to right, T does not branch

out. First T goes up (possibly in zero steps), then it may turn to the lower right,

and finally it goes down (possibly, in zero steps).

We denote the set of the similarity classes of slim rectangular diagrams of length

n and that of slim semimodular diagrams of length n by the acronyms SRectD(n)

and SSmodD(n), respectively. Similarly, the set of the isomorphism classes of slim

rectangular lattices of length n, that of slim semimodular lattices of length n are

denoted by SRectL(n) and SSmodL(n).

There are several known tools for examining semimodular lattices; one of them

is describing these lattices by permutations. For a slim rectangular diagram D of

length n, let Cl(D) = {0 = c0 ≺ c1 ≺ · · · ≺ cn = 1} and Cr(D) = {0 = d0 ≺ d1 ≺
· · · ≺ dn = 1}. Following Czédli and Schmidt [45], the permutation π = πD ∈ Sn is

defined by the rule π(i) = j iff [ci−1, ci] and [dj−1, dj] belong to the same trajectory.

Czédli and Schmidt proved in [45] that the map SSmodD(n) → Sn, defined by

D 7→ πD, is a bijection.

In Chapter 2, we described the permutations belonging to slim rectangular

lattices.

Definition 2.3.1. A permutation π ∈ Sn is called rectangular if it satisfies the

following three properties.

(i) For all i and j, if π−1(1) < i < j ≤ n, then π(i) < π(j).

(ii) For all i and j, if π(1) < i < j ≤ n, then π−1(i) < π−1(j).

(iii) π(n) < π(1).

Proposition 2.3.3. A slim, semimodular, planar diagram D of length n ≥ 2 is

rectangular if and only if π = πD ∈ Sn is rectangular.
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With the help of this description, we gave formulas for the numbers of slim

rectangular diagrams and slim rectangular lattices.

Proposition 2.4.2. For 2 ≤ n ∈ N, the number of (the similarity classes of) slim

rectangular diagrams of length n is

|SRectD(n)| =
∑

a+b≤n
a,b∈N

(
n− a− 1

b− 1

)(
n− b− 1

a− 1

)
(n− a− b)! .

Let Invl(k) = {π ∈ Sk : π = π−1} denote the set of involutions acting on

the set {1, . . . , k}. For k ∈ N, the number of involutions in Sk is |Invl(k)| =∑⌊k/2⌋
j=0

(
k

k−2j

)
· (2j − 1)!!.

Proposition 2.4.4. For 2 ≤ n ∈ N, the number of (the isomorphism classes of)

slim rectangular lattices of length n is

|SRectL(n)| = 1

2
·
(
|SRectD(n)|+

⌊n/2⌋∑
a=1

(
n− a− 1

a− 1

)
· |Invl(n− 2a)|

)
.

Based on the formulas, we were able to give asymptotic results, in which e ≈
2.71828.

Proposition 2.5.1. The number of (the similarity classes of) slim rectangular

diagrams of length n is asymptotically (n−2)!·e2, that is, |SRectD(n)| ∼ (n−2)!·e2.

This led to the main result of Chapter 2.

Theorem 2.5.2. The number of (the isomorphism classes of ) slim rectangular

lattices of length n is asymptotically (n− 2)! · e2/2, that is,

lim
n→∞

|SRectL(n)|
(n− 2)! · e2/2

= 1.

In Chapter 3, we aimed to determine a minimum-sized generating set of the

lattice of quasiorders, also of the lattice of transitive relations. This chapter was

based on [37] and [72].

A quasiorder is a reflexive and transitive relation. Quasiorders on a set A form

a complete lattice Quo(A). So do the transitive relations on A; their complete
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lattice is denoted by Tran(A). Similarly, Equ(A) will stand for the lattice of all

equivalences on A.

For a subset X of Equ(A), Quo(A), or Tran(A), we say that X generates the

complete lattice in question if the only complete sublattice including X is the

whole lattice itself. For k ∈ N := {1, 2, 3, . . . }, we say that a complete lattice L is

k-generated if it can be generated by a k-element subset X. If a complete lattice

is generated by a four-element subset X = {x1, x2, x3, x4} such that x1 < x2 but

both {x1, x3, x4} and {x2, x3, x4} are antichains, then we say that this lattice is

(1 + 1 + 2)-generated.

All sets in this chapter were assumed to be of accessible cardinalities. A cardinal

κ is accessible if it is finite, or it is infinite and for every λ ≤ κ,

� either λ ≤ 2µ for some cardinal µ < λ,

� or there is a set I of cardinals such that λ ≤
∑

µ∈I µ, |I| < λ, and µ < λ for

all µ ∈ I.

ZFC has a model in which all cardinals are accessible, hence the scope of many of

our results includes all sets in an appropriate model of set theory.

It was known by Strietz [83] and [84], Zádori [87], and Czédli [7] that the

complete lattice Equ(A) of all equivalences is four-generated, provided the size

|A| of A is an accessible cardinal and |A| ≥ 2. Also, Equ(A) cannot be generated

by less than four elements if |A| ≥ 4. We know from Chajda and Czédli [4] and

Takách [85] that Quo(A) is six-generated as a complete lattice, provided that |A| is
accessible. Actually, we know from Dolgos [48] for 2 ≤ |A| ≤ ℵ0 that the complete

lattice Quo(A) is five-generated.

We extended Dolgos’ result in two ways. The first one is short and states

more (about all sets A where |A| is accessible) than the second one, but it is

based heavily on Czédli’s quite involved and long constructions from [7] and [9].

This justifies the second way: we gave an easier, more understandable and self-

contained construction for a five-element generating set of Quo(A) if |A| ≤ 2ℵ0 ,

based on Dolgos’ work.

Theorem 3.3.1. Let A be a set with at least three elements.
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(i) If |A| is an accessible cardinal, then Quo(A) is five-generated as a complete

lattice.

(ii) If ℵ0 ≤ |A| ≤ 2ℵ0, then Quo(A) is five-generated as a complete lattice.

Following this result, Czédli proved in [19] that the complete lattice Quo(A) is

four-generated for |A| = {ℵ0}∪(N\{1, 4, 6, 8, 10}). It is also shown in [19] that the

complete lattice Quo(A) cannot be generated by less than four elements, provided

|A| ≥ 3. Concerning transitive relations, Dolgos [48] has shown that the complete

lattice Tran(A) is eight-generated for 2 ≤ |A| ≤ ℵ0.

So our second goal in Chapter 3 was to show, in a concise but not self-contained

way, that Quo(A) is four-generated if |A| ̸= 4 and |A| is an accessible cardinal.

Furthermore, we proved that Quo(A) is (1+1+2)-generated in many (however not

all) cases. We also improved the earlier results on the generating sets of Tran(A).

Theorem 3.4.9. Let A be a non-singleton set. Then the following statements hold.

� If |A| ≠ 4 and |A| is an accessible cardinal, then the complete lattice Quo(A)

is four-generated.

� If |A| ≥ 13 and either |A| is an odd number, or |A| ≥ 56 is even, then the

complete lattice Quo(A) is (1 + 1 + 2)-generated.

� If 13 ≤ |A| ≤ ℵ0 and either |A| is an odd number, or |A| ≥ 56 is even, then

the lattice Quo(A) (not a complete one now) contains a (1+1+2)-generated

sublattice that includes all atoms of Quo(A).

Theorem 3.4.12. If 3 ≤ |A| and |A| is an accessible cardinal, then Tran(A) is

six-generated as a complete lattice

Chapter 4 deals with the problem that given a natural number n, find the n-

element finite lattices with the most, second-most, third-most, etc. congruences;

also, give the diagram of the lattice of their congruences. This chapter is based on

[77].

82



SUMMARY

By Czédli and Mureşan [40], the set of all the congruences of an infinite lattice

can be of any size between 2 and the cardinality of the lattice, or it can have

the same cardinality as the lattice’s subsets. But the situation is quite different

for finite lattices. To formulate our results, the following lattice operations and

notations are needed.

Let L and M be lattices. If L has a largest element 1L and M has a smallest

element 0M , then the glued sum of L and M , denoted by L ∔ M , is obtained

from L and M by identifying 1L with 0M and stacking M on top of L. If L and

M are nontrivial bounded lattices, then the horizontal sum of L and M , denoted

by L ⊞ M , is obtained from L and M by identifying their bottom elements 0L

and 0M , identifying their top elements 1L and 1M , and letting every element of

L \ {0L, 1L} be incomparable to every element of M \ {0M , 1M} in L⊞M . For any

n ∈ N, we denote the n-element chain by Cn. As usual, N5 denotes the five-element

nonmodular lattice C3 ⊞ C4.
Using these notations, Freese [50] and Czédli [21] determined the largest and

second largest numbers of congruences. Namely, if L is a finite lattice with n

elements, then |Con(L)| ≤ 2n−1, also, |Con(L)| = 2n−1 iff L ∼= Cn. In other words,

a finite lattice can have at most as many congruences as the chain with the same

number of elements has. Furthermore, if |Con(L)| < 2n−1, then |Con(L)| ≤ 2n−2,

moreover, |Con(L)| = 2n−2 iff L ∼= Ck ∔ C2
2 ∔ Cn−k−2 for some k ∈ [1, n − 3].

That means the second largest possible number of congruences is witnessed by a

glued sum of two chains with the four-element Boolean algebra. Following the line

of Czédli’s proof, we obtained the next result about the lattices with the third,

fourth and fifth largest possible numbers of congruences.

Theorem 4.3.7. Let L be a finite lattice with n elements.

(i) If |Con(L)| < 2n−2, then n ≥ 5, |Con(L)| ≤ 5 · 2n−5 = 2n−3 + 2n−5, and:

|Con(L)| = 5 · 2n−5 iff L ∼= Ck ∔N5 ∔ Cn−k−3 for some k ∈ [1, n− 4].

(ii) If |Con(L)| < 5 · 2n−5, then |Con(L)| ≤ 2n−3, and: |Con(L)| = 2n−3 iff either

n ≥ 6 and L ∼= Ck ∔ (C2 ×C3)∔ Cn−k−4 for some k ∈ [1, n− 5], or n ≥ 7 and

L ∼= Ck∔C2
2∔Cm∔C2

2∔Cn−k−m−4 for some k,m ∈ N such that k+m ≤ n−5.
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(iii) If |Con(L)| < 2n−3, then |Con(L)| ≤ 7 · 2n−6 = 2n−4 + 2n−5 + 2n−6, and:

|Con(L)| = 7 · 2n−6 iff n ≥ 6 and, for some k ∈ [1, n − 5], L ∼= Ck ∔ (C3 ⊞
C5)∔ Cn−k−4 or L ∼= Ck ∔ (C4 ⊞ C4)∔ Cn−k−4.

Combining the earlier theorems with ours, we summarized the results on the

lattices of the congruences of a finite lattice with the most, second-most, third-

most, etc. congruences.

Corollary 4.3.8.

(i) |Con(L)| = 2n−1 iff Con(L) ∼= Cn−1
2 .

(ii) |Con(L)| = 2n−2 iff n ≥ 4 and Con(L) ∼= Cn−2
2 .

(iii) |Con(L)| = 5 · 2n−5 iff n ≥ 5 and Con(L) ∼= Cn−5
2 × (C2 ∔ C2

2).

(iv) |Con(L)| = 2n−3 iff n ≥ 6 and Con(L) ∼= Cn−3
2 .

(v) |Con(L)| = 7 · 2n−6 iff n ≥ 6 and Con(L) ∼= Cn−6
2 × (C2

2 ∔ C2
2).

This dissertation is based on four of the author’s papers. These publications are

the following:

1. G. Czédli, T. Dékány, G. Gyenizse and J. Kulin: The number of slim rectan-

gular lattices. Algebra Universalis 75/1 (2016), 33–50.

2. G. Czédli and J. Kulin: A concise approach to small generating sets of lattices

of quasiorders and transitive relations. Acta Sci. Math. (Szeged) 83 (2017),

3–12.

3. J. Kulin: Quasiorder lattices are five-generated. Discussiones Mathematicae

- General Algebra and Applications 36 (1) (2016), 59–70.

4. C. Mureşan and J. Kulin: On the largest numbers of congruences of finite

lattices. Order 37 (2020), 445–460.
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Another publication of the author not used in this dissertation:

� T. Dékány, G. Gyenizse and J. Kulin: Permutations assigned to slim rectan-

gular lattices. Acta Sci. Math. (Szeged) 82 (2016), 19–28.
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Összefoglaló (Summary in

Hungarian)

E disszertációban az volt a célunk, hogy jobban megértsük bizonyos hálók

és bizonyos ḱısérőhálók szerkezetét. A sovány téglalapszerű hálókat permutációk

seǵıtségével jellemeztük, és megadtuk e hálók számát. A kvázirendezések hálóinak

minimális elemszámú generálóhalmazait kerestük. Továbbá jellemeztük a
”
sok”

kongruenciával rendelkező hálókat, valamint megadtuk a kongruenciák számának

néhány lehetséges legnagyobb értékét és a jellemzett hálók kongruenciahálóit is.

A bevezető 1. fejezetet követően a 2. fejezet sovány téglalapszerű hálókkal

foglalkozik, és a [34] cikkünket dolgozza fel. Egy háló valamely elemét egyeśıtés-

irreducibilisnek nevezzük, ha pontosan egy elemet fed. Egy L véges háló sovány, ha

az egyeśıtés-irreducibilis elemek JiL halmaza lefedhető két lánccal. A sovány hálók

śıkbarajzolhatóak, azaz van olyan diagramjuk, amely śıkgráf. Amikor azt mondjuk,

hogy egy D śıkba rajzolt hálódiagram rendelkezik a Φ hálótulajdonsággal, azt úgy

értjük, hogy a D által meghatározott háló rendelkezik a Φ tulajdonsággal. Egy D

féligmoduláris hálódiagram téglalapszerű, ha a bal határlánca, amelyet Cl(D) jelöl,

és a jobb határlánca, amelyet Cr(D) jelöl, pontosan egy-egy duplán irreducibilis

elemet tartalmaz, és ez a két elem, melyeket D sarkainak h́ıvunk, egymás komple-

mentuma. A téglalapszerű diagrammal rendelkező hálókat nevezzük téglalapszerű

hálóknak.

Egy śıkba rajzolt D hálódiagram minimális, nem lánc tartományait celláknak

h́ıvjuk, a négyelemű cellákat pedig 4-celláknak. Egy diagram 4-cella diagram, ha

az összes cellája 4-cella. Grätzer és Knapp [61, Lemma 4 és 5] bizonýıtotta, hogy
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D akkor és csak akkor sovány féligmoduláris diagram, ha 4-cella diagram, és két

különböző 4-cellájának nem lehet ugyanaz az alsó eleme. Egy D sovány téglalap-

szerű diagram két pŕımintervalluma egymásutáni, ha egy 4-cella szemközti oldalai.

Az, hogy egy L sovány féligmoduláris hálóban két pŕımintervallum egymásutáni-e,

nem függ a diagram śıkba rajzolásától. Egymásutáni pŕımintervallumok maximális

sorozata trajektóriát alkot. Másképp fogalmazva, az egymásutániság által generált

ekvivalenciareláció osztályait trajektóriáknak nevezzük. Czédli és Schmidt [43,

Lemma 2.8] munkája alapján tudjuk, hogy egy sovány téglalapszerű D diagram

bármely T trajektóriája Cl(D)-nek pontosan egy pŕımintervallumát tartalmazza,

és ugyanez elmondható Cr(D)-re is. A T trajektória balról jobbra tart, nem ágazik

ketté. Először felfelé halad (lehetséges, hogy nulla lépésben), majd lefelé fordulhat,

és végül lefelé halad (lehetséges, hogy nulla lépésben).

Az n hosszúságú sovány téglalapszerű diagramok hasonlóság-osztályainak hal-

mazát SRectD(n)-nel jelöljük, az n hosszúságú sovány féligmoduláris diagramok

hasonlóság-osztályainak halmazát pedig SSmodD(n)-nel. Hasonlóan, az n hosszú-

ságú sovány téglalapszerű hálók izomorfia-osztályainak halmazát SRectL(n) jelöli,

az n hosszúságú sovány féligmoduláris hálók izomorfia-osztályainak halmazát pedig

SSmodL(n).

Féligmoduláris hálók tanulmányozásához több ismert eszköz is a rendelkezé-

sünkre áll, ezek egyike e hálók permutációkkal történő léırása. Egy n hosszúságú

sovány téglalapszerű D diagram esetén legyen Cl(D) = {0 = c0 ≺ c1 ≺ · · · ≺ cn =

1} és Cr(D) = {0 = d0 ≺ d1 ≺ · · · ≺ dn = 1}. A Czédli és Schmidt [45] által léırt

feléṕıtést követve a π = πD ∈ Sn permutációt a következő szabállyal definiáljuk:

π(i) = j, ha [ci−1, ci] és [dj−1, dj] ugyanahhoz a trajektóriához tartozik. Czédli

és Schmidt bebizonýıtotta [45]-ben, hogy a D 7→ πD hozzárendeléssel definiált

SSmodD(n) → Sn leképezés bijekció.

A disszertáció 2. fejezetében léırtuk a sovány téglalapszerű hálókhoz tartozó

permutációkat.

2.3.1. Defińıció. Egy π ∈ Sn permutációt téglalapszerűnek nevezünk, ha ren-

delkezik a következő három tulajdonsággal.

(i) Minden i és j esetén, ha π−1(1) < i < j ≤ n, akkor π(i) < π(j).
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(ii) Minden i és j esetén, ha π(1) < i < j ≤ n, akkor π−1(i) < π−1(j).

(iii) π(n) < π(1).

2.3.3. Álĺıtás. Egy sovány, féligmoduláris, śıkba rajzolt, n (≥ 2) hosszúságú D

diagram akkor és csak akkor téglalapszerű, ha a π = πD ∈ Sn permutáció téglalap-

szerű.

Ennek a jellemzésnek a seǵıtségével formulákat tudtunk adni a sovány négy-

szögletes diagramok és a sovány négyszögletes hálók számára.

2.4.2. Álĺıtás. Az n (≥ 2) hosszúságú sovány téglalapszerű diagramok (hasonló-

ság-osztályainak) száma

|SRectD(n)| =
∑

a+b≤n
a,b∈N

(
n− a− 1

b− 1

)(
n− b− 1

a− 1

)
(n− a− b)! .

Legyen Invl(k) = {π ∈ Sk : π = π−1} az Sk-beli involúciók halmaza. Ismert,

hogy az Sk-beli involúciók száma |Invl(k)| =
∑⌊k/2⌋

j=0

(
k

k−2j

)
· (2j − 1)!! (tetszőleges

k ∈ N esetén).

2.4.4. Álĺıtás. Az n (≥ 2) hosszúságú sovány téglalapszerű hálók (izomorfia-

osztályainak) száma

|SRectL(n)| = 1

2
·
(
|SRectD(n)|+

⌊n/2⌋∑
a=1

(
n− a− 1

a− 1

)
· |Invl(n− 2a)|

)
.

A formulák alapján aszimptotikus eredményeink is születtek, ezekben e az

Euler-féle számot jelöli (e ≈ 2.71828).

2.5.1. Álĺıtás. Az n hosszúságú sovány téglalapszerű diagramok (hasonlóság-osz-

tályainak) száma aszimptotikusan (n− 2)! · e2, vagyis |SRectD(n)| ∼ (n− 2)! · e2.

A disszertáció 2. fejezetének fő eredménye a következő.
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2.5.2. Tétel. Az n hosszúságú sovány téglalapszerű hálók (izomorfia-osztályainak)

száma aszimptotikusan (n− 2)! · e2/2, azaz

lim
n→∞

|SRectL(n)|
(n− 2)! · e2/2

= 1.

A 3. fejezetben a célunk az volt, hogy meghatározzuk, legkevesebb hány elem-

mel generálható a kvázirendezések hálója, valamint a tranzit́ıv relációk hálója. Ez

a fejezet a [37] és [72] cikkeinken alapul.

Egy reflex́ıv és tranzit́ıv relációt kvázirendezésnek nevezünk. Egy A halmaz

kvázirendezései teljes hálót alkotnak, melyet Quo(A)-val jelölünk. Az A halmaz

tranzit́ıv relációi szintén teljes hálót alkotnak, ezt a hálót Tran(A) jelöli. Ha-

sonlóan, Equ(A)-val jelöljük az A ekvivalenciarelációi által alkotott teljes hálót.

Az Equ(A), Quo(A), illetve Tran(A) háló egy X részhalmaza esetén azt mond-

juk, hogy X generálja az adott teljes hálót, ha az egyetlen teljes, X-et tartalmazó

részháló maga az egész háló. Egy L teljes hálót k generáltnak nevezünk valamely

k ∈ N := {1, 2, 3, . . . } egész számra, ha a hálót generálja egy k elemű részhalmaza.

Ha egy teljes hálót generál olyan négyelemű X = {x1, x2, x3, x4} részhalmaza, ahol

x1 < x2, viszont {x1, x3, x4} és {x2, x3, x4} is antilánc, akkor azt mondjuk, hogy

ez a háló (1 + 1 + 2)-generált.

Az ebben a fejezetben előforduló összes halmazról feltettük, hogy elérhető

számosságú. Egy κ számosság elérhető, ha vagy véges, vagy pedig végtelen, és

bármely λ ≤ κ számosság esetén

� vagy λ ≤ 2µ valamely µ < λ számosságra,

� vagy létezik számosságok olyan I halmaza, amelyre λ ≤
∑

µ∈I µ, |I| < λ és

µ < λ minden µ ∈ I esetén.

A halmazelmélet ZFC axiómarendszerének létezik olyan modellje, amelyben min-

den számosság elérhető, tehát több eredményünk érvényes minden halmazra a

halmazelmélet egy megfelelő modelljében.

Strietz [83] és [84], Zádori [87] és Czédli [7] eredményei alapján tudjuk, hogy

az ekvivalenciarelációk Equ(A) teljes hálója négygenerált, feltéve, hogy |A| egy
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elérhető számosság és |A| ≥ 2. Továbbá Equ(A) nem generálható kevesebb, mint

négy elemmel, ha |A| ≥ 4. Chajda és Czédli [4] és Takách [85] megmutatta,

hogy Quo(A) mint teljes háló hatgenerált, ha A elérhető számosságú. Dolgos [48]

munkájából tudjuk, hogy 2 ≤ |A| ≤ ℵ0 esetén a Quo(A) teljes háló ötgenerált.

Dolgos eredményét kétféle módon általánośıtottuk. Az első módszer rövid és a

másodiknál többet ad (négygeneráltságot elérhető |A| esetére), de nagyban támasz-

kodik Czédli [7], [9] bonyolultan és hosszan bizonýıtott eredményeire. Ez indokolja

második módszerünket, amellyel Dolgos módszerét továbbfejlesztve külső hivatko-

zás nélkül bizonýıtottuk Quo(A) ötgeneráltságát |A| ≤ 2ℵ0 esetén.

3.3.1. Tétel. Legyen A legalább háromelemű halmaz.

(i) Ha |A| elérhető számosság, akkor Quo(A) mint teljes háló ötgenerált.

(ii) Ha ℵ0 ≤ |A| ≤ 2ℵ0, akkor Quo(A) mint teljes háló ötgenerált.

Ezt az eredményünket követően Czédli bebizonýıtotta a [19] cikkében, hogy a

Quo(A) teljes háló négygenerált abban az esetben, ha |A| = {ℵ0} ∪ (N \ {1, 4, 6, 8,
10}). Azt is megmutatta [19]-ben, hogy a Quo(A) teljes háló nem generálható

négynél kevesebb elemmel, feltéve, hogy |A| ≥ 3. A tranzit́ıv relációkat tekintve

Dolgos [48] megmutatta, hogy a Tran(A) teljes háló nyolcgenerált 2 ≤ |A| ≤ ℵ0

esetén.

Tehát ezután a második célunk a 3. fejezetben az volt, hogy tömör bizonýıtást

adjunk arra, hogy Quo(A) négygenerált, ha |A| ≠ 4 és |A| elérhető számosság; ezen

tömör bizonýıtásunk viszont számos korábbi eredményre éṕıtkezik. Továbbá több

esetben is igazoltuk (bár nem az összesben), hogy Quo(A) (1 + 1 + 2)-generált.

Jav́ıtottunk a Tran(A) generátorhalmazairól szóló korábbi eredményeken is.

3.4.9. Tétel. Legyen A legalább kételemű halmaz. Ekkor teljesülnek a következők.

� Ha |A| ≠ 4 és |A| elérhető számosság, akkor a Quo(A) teljes háló négygene-

rált.

� Ha |A| ≥ 13, valamint vagy |A| páratlan, vagy |A| ≥ 56 páros, akkor a

Quo(A) teljes háló (1 + 1 + 2)-generált.
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� Ha 13 ≤ |A| ≤ ℵ0 és vagy |A| páratlan, vagy |A| ≥ 56 páros, akkor a

Quo(A) hálónak van olyan (itt most nem teljes értelemben) (1 + 1 + 2)-

generált részhálója, amely Quo(A) összes atomját tartalmazza.

3.4.12. Tétel. Ha 3 ≤ |A| és |A| elérhető számosság, akkor Tran(A) mint teljes

háló hatgenerált.

A 4. fejezetben azzal a problémával foglalkoztunk, hogy adott n természetes

szám esetén mely n elemű véges hálóknak van a legtöbb, második legtöbb, har-

madik legtöbb, stb. kongruenciája; továbbá azzal, hogy az ilyen hálók kongruen-

ciahálóinak milyen a szerkezete. Ezek az eredmények a [77] cikkünkben jelentek

meg.

Czédli és Mureşan [40] munkája alapján végtelen hálók kongruenciáinak szá-

mossága tetszőleges értéket felvehet 2 és a háló számossága között, vagy a kongru-

enciák számossága megegyezhet a háló részhalmazainak számosságával. De véges

hálók esetén egészen más a helyzet. Az eredményeink ismertetéséhez a következő

hálóműveletekre és jelölésekre van szükség.

Legyen L és M háló. Ha L-nek van legnagyobb eleme, amelyet 1L jelöl, és M -

nek van legkisebb eleme, 0M , akkor L és M ragasztott összege, amelyet L∔M -mel

jelölünk, az a háló, amelyet úgy kapunk L-ből és M -ből, hogy 1L-et azonośıtjuk

0M -mel, és M -et L
”
tetejére ragasztjuk”. Ha L és M nemtriviális korlátos hálók,

akkor L és M v́ızszintes összege, amelyet L⊞M -mel jelölünk, az a háló, amelyet

úgy kapunk L-ből és M -ből, hogy azonośıtjuk egymással a 0L és 0M legkisebb

elemeiket, azonośıtjuk egymással az 1L és 1M legnagyobb elemeiket, és L\{0L, 1L}
egyik eleme sem lesz összehasonĺıtható M \ {0M , 1M} egyik elemével sem L⊞M -

ben. Tetszőleges n ∈ N esetén az n-elemű láncot Cn-nel jelöljük. Szokás szerint N5

jelöli az ötelemű nem moduláris C3 ⊞ C4 hálót.

Freese [50] és Czédli [21] meghatározta a kongruenciák lehetséges legnagyobb

és második legnagyobb számát, eredményeiket a következőképpen fogalmazhatjuk

meg az előző jelöléseket használva. Ha L véges n elemű háló, akkor |Con(L)| ≤
2n−1, valamint |Con(L)| = 2n−1 akkor és csak akkor, ha L ∼= Cn. Más szóval egy

véges hálónak legfeljebb annyi kongruenciája lehet, mint az azonos elemszámú lánc
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kongruenciáinak a száma. Továbbá, ha |Con(L)| < 2n−1, akkor |Con(L)| ≤ 2n−2,

valamint |Con(L)| = 2n−2 akkor és csak akkor, ha L ∼= Ck ∔ C2
2 ∔ Cn−k−2 valamely

k ∈ [1, n− 3] esetén. Azaz a lehetséges második legtöbb kongruenciával pontosan

azok a hálók rendelkeznek, amelyek két lánc és a négyelemű Boole-algebra ra-

gasztott összegei. A Czédli által adott bizonýıtást követve, a következő eredményt

kaptuk hálók kongruenciáinak harmadik, negyedik és ötödik lehetséges legnagyobb

számáról.

4.3.7. Tétel. Legyen L véges n elemű háló.

(i) Ha |Con(L)| < 2n−2, akkor n ≥ 5, |Con(L)| ≤ 5 · 2n−5 = 2n−3 + 2n−5, és

|Con(L)| = 5 · 2n−5 akkor és csak akkor, ha L ∼= Ck ∔N5 ∔ Cn−k−3 valamely

k ∈ [1, n− 4] esetén.

(ii) Ha |Con(L)| < 5 · 2n−5, akkor |Con(L)| ≤ 2n−3, és |Con(L)| = 2n−3 akkor és

csak akkor, ha vagy n ≥ 6 és L ∼= Ck∔(C2×C3)∔Cn−k−4 valamely k ∈ [1, n−5]

esetén, vagy n ≥ 7 és L ∼= Ck ∔ C2
2 ∔ Cm ∔ C2

2 ∔ Cn−k−m−4 valamely k,m ∈ N
esetén, ahol k +m ≤ n− 5.

(iii) Ha |Con(L)| < 2n−3, akkor |Con(L)| ≤ 7 · 2n−6 = 2n−4 + 2n−5 + 2n−6, és

|Con(L)| = 7·2n−6 akkor és csak akkor, ha n ≥ 6, és L ∼= Ck∔(C3⊞C5)∔Cn−k−4

vagy L ∼= Ck ∔ (C4 ⊞ C4)∔ Cn−k−4 valamely k ∈ [1, n− 5]-re.

A korábbi eredményeket és a sajátjainkat összegezve adódik a legtöbb, második

legtöbb, harmadik legtöbb, stb. kongruenciával rendelkező véges hálók kongruen-

ciahálóinak alábbi jellemzése.

4.3.8. Következmény.

(i) |Con(L)| = 2n−1 akkor és csak akkor, ha Con(L) ∼= Cn−1
2 .

(ii) |Con(L)| = 2n−2 akkor és csak akkor, ha n ≥ 4 és Con(L) ∼= Cn−2
2 .

(iii) |Con(L)| = 5·2n−5 akkor és csak akkor, ha n ≥ 5 és Con(L) ∼= Cn−5
2 ×(C2∔C2

2).

(iv) |Con(L)| = 2n−3 akkor és csak akkor, ha n ≥ 6 és Con(L) ∼= Cn−3
2 .
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(v) |Con(L)| = 7 · 2n−6 akkor és csak akkor, ha n ≥ 6 és Con(L) ∼= Cn−6
2 × (C2

2 ∔

C2
2).
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