

Theses of the PhD thesis

An exploration of modern domain specific

software architectures

Ulvi Shakikhanli

Supervisor

Vilmos Bilicki, PhD, Associate Professor

Doctoral School of Computer Science

University of Szeged

Department of Software Engineering

2024

1

1 Introduction

This PhD thesis examines two main repository structure types and the relationship

between them and parameters of project like development productivity, software

team collaboration, development period and developer team size. To get general

results a special database containing more than 50 000 mono and multi repository

projects was created. The main goal of this study accretion the connection between

repository structure and project development process and see how it affects the

overall development procedure. Since it is a narrow area of software development,

we created our own unique algorithms for the identification and collection of Mono

and Multi repository projects from the GitHub platform. Besides this, a new machine

learning approach for the estimation of development productivity and a new

mathematical way for calculating software team collaboration were created.

2 Background

The focus of Chapter 2 is to present several key terms that this dissertation frequently

utilized. These include repository structures, version control systems, branching

strategies, GitHub platform, and Multi repository management tools. The upcoming

chapters of the dissertation will discuss all these technologies in much more detail.

3 Mono and Multi repository structures

Chapter 3 of the thesis focuses on the first stage of our research on mono and multi

repository structures. Until now there have been only a few research and academic

studies that analyse properties of Mono/Multi repository structures [6 - 9]. However,

most of these analyses were done either on a local scale hence lacked objectivity or

from a narrow perspective which didn’t have any general ideas or understanding. In

this study I solved both issues by choosing my research project from GitHub, which

is the biggest project repository of all time. According to the current data, GitHub

hosts more than 420 million repositories by today’s estimates. Due to this huge

number of repositories, we chose it as a source for our projects. The GitHub platform

2

provides GitHub API which can be helpful for collecting information about

repositories but unfortunately this API doesn’t provide any information about the

structure type of repository. Because of this, we decided to develop our own

algorithm and approach for the identification and collection of Mono/Multi

repository projects got from GitHub platform.

3.1 Identification of frontend and backend repositories.

The procedure for the identification of multi repository projects is much more

complicated than Mono repository projects. The main reason for this is the structure

of the multi repository itself. Since these types of projects contain several

repositories, it means that first we must locate this project and find which

repositories belong to its frontend and backend sections. We developed a Machine

learning model for this purpose [5]. This model was trained on the file structures of

previously identified frontend and backend repositories. After several tests and trials,

it became clear that using the Decision Tree algorithm was the best approach for this

purpose. Creating a model takes time because of the long process of retrieving the

file structure from several repositories but in the end, we were able to identify

frontend and backend repositories with a 90% plus accuracy which is a great

achievement.

3.2 Identification of multi repository projects.

After implementing a new approach for the identification of frontend and backend

repositories, the main issue was to find potential users who had multi repository

projects in their GitHub account. This issue was solved by using a search feature of

the GitHub API. An example of a search query was used here. This query was

designed to find frontend repositories and it increases our chances to find projects

with a multi repository structure.

https://api.GitHub.com/search/repositories?q=frontend+language:typescript+create

d:2023-01-01..2023-06-30

Above we said that there were more than 420 million projects, which made

search operations impossible, but this query gave us a total of 1286 repositories.

Obviously analysing fewer than 1300 repositories is a much easier and better

https://api.github.com/search/repositories?q=fullstack+language:java+created:2023-01-01..2023-06-30
https://api.github.com/search/repositories?q=fullstack+language:java+created:2023-01-01..2023-06-30

3

approach than employing same random search strategy. After finding the repositories

which could potentially have a Multi repository structure, the next step was to

identify which frontend and backend repositories belonged to the same project. We

used a heuristic approach that considers the name, definition, readme files and other

explanatory parameters of repositories. This method was applied with the help of the

K nearest neighbour method, and we got an accuracy of 89% in our tests [1]. With

the help of this algorithm, it was possible to collect multi repository projects from

the GitHub platform automatically. However, there are also some drawbacks of this

approach that others should be aware of before using it. As we mentioned before, the

final stage for matching the frontend and backend repositories of Multi repository

projects is based on the information by repository owners themselves. In some cases,

repository owners may write bad definitions for their repositories, and this can lead

on algorithm to draw the wrong conclusions. Also working with GitHub Api itself

can have its own difficulties [10]. In spite of this, our approach provides a unique

way to identify and collect multi repository projects, and this may be extremely

useful for researchers in this area.

3.3 Identification of mono repository projects.

The identification process for mono repository projects is like the Multi repository.

Here once again we use the file structure of the project to define Mono repository

projects. As is known, due to their structure mono repository projects contain most

of the essential parts of a project in one repository or directory. Again, we construct

a special query to narrow our search field. After obtaining a certain number of

potential Mono repository projects, we start to analyse their file structure las we did

in the previous case. But here we are looking for some special folder names like

Frontend, Backend, UI, API, Client, Server, UI, Front, and Back. The list of folder

names can be modified according to the type of research requested. For the sake of

clarity, the whole procedure can be described in the following steps:

1. Compile a list of potential Mono repository projects and their respective users.

2. Analyse all the repositories belonging to the identified GitHub users.

3. If the analysed projects meet the stipulated criteria for validity, append their names

to the temporary database.

4. Retrieve all the requisite project data in JSON format and archive it in the

database.

4

3.4 Identification of multi repository management tools.

There are several notable differences between mono and multi repository projects

and one of them is the management process of projects. Due to their complex

structure, multi repository projects demand additional tools to control the workflow.

Collectively these tools are called multi repository management tools (MRMT) and

there have been several studies on them. There are several popular MRMTs like [11-

13]. Some of them have a huge share like the GitHub platform itself and hence these

tools have been thoroughly analysed by researchers. We developed a heuristic

approach to identify other MRMTs. For this purpose, we collected a list of

configuration files where each represents a certain tool and this way other

researchers can easily identify which tool has been used for the management of any

given multi repository project.

4 Branching strategies in Mono and Multi repository projects

Three main branching strategies called GitFlow, GitHub Flow and Trunk-based

were analysed in this study. The main reason for choosing these three is their

popularity among the developers, which has also been proven via our own analyses

of thousands of projects. The method that we developed for identification work is

based on the structure of these branching strategies themselves [3]. In other words,

we use the count of branches and their characteristics. Once again for the sake of

clarity, it is presented in the following steps:

1. Remove all the branches created automatically by bots or MRMTs.

2. Record the total count of the branches and their names for identification.

3. If a project has only one branch which shares names like main, master and

product. then this project uses a Trunk-based approach.

4. If a project has more than one branch and some of them are called dev,

development, etc, then this project most probably uses the GitFlow approach.

5. If a project has more than one branch but it doesn’t have, any development

branches and it has several bug fix or error fix branches, then this project most

probably uses the GitHub Flow branching strategy.

5

 It should be added that this approach assumes that all the branches have been

named correctly and developers apply their branches according to the main rules of

the branching strategy.

Figure 4.1 Popularity of the three main branching strategies over the years.

5 Productivity of software development

This chapter presents our findings on the productivity of software development. The

main issue was the calculation of productivity itself and we analysed several

different approaches for this purpose [14 - 17]. In the end the method which

described in [18] was chosen as it seemed the most suitable. The main reason for

choosing this method is:

• It calculates the productivity based on the activity of developers, which is

more complex and general approach than that employed by other researchers.

• The database used by this method is like our own database.

We calculated the productivity for all the projects in our database and divided it into

three groups; namely High, Low and None. We noticed that there was a correlation

between this productivity value and other parameters of projects like repository

structure, branching strategy, and development period [4]. Because of this, we

6

devised a new Machine Learning approach to calculate productivity without doing

any mathematical calculations used by above approach.

The model was trained based on the following features of repositories: Commit

count, developer team size, project size, issue count, event count and pull request

count. etc. More features from our database could be used, but it is known that in

certain cases using too many features can create noisy data [19]. The results of our

tests can be seen in the table below.

Model Accuracy Precision Recall F1 Score

Logistic Regression 0.9003 0.8125 0.9019 0.8533

Decision Tree 0.6802 0.4952 0.6705 0.5765

Random Forest 0.9344 0.8410 0.9274 0.8948

Support Vector Machine 0.6397 0.4732 0.6221 0.5255

Table 5. The results of ML testing.

5.1 Prediction of Software Development Period.

The other Machine learning approach we proposed is for the calculation of the

software development process. There are some approaches available that can be used

to calculate the development period [20 - 24].

 As mentioned earlier, statistical connection was found between the

development period and productivity of software development process, so we used

this and other several connections to create a model for estimating the development

time for a project. This method calculates the development period in months and

uses the following parameters for it: Productivity, Branching Strategy (Trunk-Based,

GitFlow, GitHub Flow), Number of Contributors, Branches, Pull Requests, and

Issues. The model's performance was evaluated using three key metrics; namely

Mean Absolute Error (MAE), Mean Squared Error (MSE), and the coefficient of

determination (R-squared). The results were as follows: Mean Absolute Error

(MAE): 3.40 months, Mean Squared Error (MSE): 52.42 months², R-squared (R²):

0.441.

 These results have a low level of error, with the model predicting the

development time, with an error of approximately 3.40 months. The R² value was

7

medium, indicating that the model significantly explains the variability in the

development periods of the projects.

6 Collaboration of Software Developer Team

This last chapter focuses on the collaboration of the software developer team during

the development process and the connection between this collaboration and above-

mentioned parameters of the project like repository structure, branching strategy and

productivity.

 One of the novelties of this chapter is its new approach for calculating

software team collaboration with a mathematical formulation. We analysed several

approaches used for the calculation [25 - 28]. It became evident that most of the

approaches focus on the calculation of the overall workload of each developer. On

procedure in contrast calculates the number of commits, pull requests, etc. Taking

this into account, we devised a similar but more objective approach with a good

mathematical basis.

 Each contributor of the GitHub repository has a value which is called

contribution, and this value is represented by an integer number. This number

represents the overall contribution of a developer, and it may be needed for the

calculation of his workload during the development process. We did a mathematical

calculation to find the percentage share of each developer’s work and this way we

placed projects into the following categories: Very high collaboration, High

collaboration, Medium collaboration, and Low collaboration.

6.1 Predictive Modeling for Developer Team Sizing.

One of the novelties here is the creation of an advice system to the most suitable

number of developers for a given project. We created these systems based on the

results which we got from a previous study. Our methodology employed a robust

quantitative analysis, exploiting an extensive dataset of GitHub projects. In our

analysis, we first pre-processed the data to find the projects that met our criteria for

'high performing'. This categorisation was multi-faceted; projects must not only have

a high count of stars and forks (top 25th percentile) but must also be tagged with

'High' and ‘Very High’ productivity. This subset of projects was used in our advice

8

system. Later the projects were placed into groups defined using several parameters.

For the testing of our approach, we used three parameters called Programming

language, Branching Strategy and Development period.

Figure 6.1 Heatmap of the average team size for TypeScript projects.

7 Contributions of the thesis

In the first thesis group, the contributions are related to the publications

“Comparison between mono and multi repository structures”, “Machine learning

model for identification of frontend and backend repositories in GitHub” and “Multi

Repository Management tools”. A detailed discussion can be found in Chapter 3.

 I/1. A new definition for Mono and Multi repository projects was proposed

 that incorporates both of their characteristics and structures.

I/2. Creating a new ML method for the identification of frontend and backend

 repositories on the GitHub platform. This method is especially useful for

 quick identification of both types of repositories.

9

I/3. A new algorithm for the identification of Mono and multi repository projects

 was proposed. This unique approach for the identification and collection of

 projects belonging to both repository structures can be used for all types of

 projects, and it is possible to adopt it to other projects as well.

I/4. A heuristic approach for the identification of different multi repository

 management tools was applied. Developers and researchers can use this

 approach to assist their work and research.

In the second thesis group, the contributions are related to the publication

“Optimizing Branching Strategies in Mono and Multi repository Environments: A

Comprehensive Analysis”. Detailed discussion can be found in Chapter 4.

 II/1. We proposed a heuristic approach for the identification of branching

 strategies used by the project during the development phase. Branching

 strategies are essential parts of the project management process and this way

 they can be identified much faster than any other approach.

 II/2. Conducting research and an analysis into the connection between branching

 strategies, repository structure and productivity.

In the third thesis group, the contributions are related to the publication “Analyzing

Branching Strategies for Project Productivity: Identifying the Preferred Approach”.

Detailed discussion can be found in Chapter 5.

 III/1. A new machine learning method was proposed for the assessment of

 productivity of the software development process. This approach is based

 on the correlation between productivity and several parameters of the

 project and development process.

 III/2. A machine learning method was proposed for the estimation of the

 development period.

10

In the fourth thesis group, the contributions are related to the publication “Repository

Structures: Impact on Collaboration and Productivity”. Detailed discussion can be

found in Chapter 6.

 IV/1. Use of a mathematical method for the calculation of the software team

 collaboration rate.

 IV/2. A special advice system was created for the estimating the number of

 developers required for a project based on the given parameters.

Table 2 summarizes the relation between the thesis points and the corresponding

publications.

Publications
Thesis point

I/1, I/3 I/2 I/4 II III IV

[1] *

[2] *

[3] *

[4] *

[5] *

[6] *

Table 2. Correspondence between the thesis points and my publications.

11

The author’s publications on the subject of the thesis

Journal Publications

[1] U. Shakikhanli, V. Bilicki, Comparison between mono and multi repository

structures. Pollack Periodica, vol. 17, no. 3, pp. 7-12, 2022.

[2] U. Shakikhanli, V. Bilicki, Multi Repository Management tools. The journal

of CIEES, vol. 2, no. 2, pp. 13-18, 2022.

[3] U. Shakikhanli, V. Bilicki, Optimizing Branching Strategies in Mono-and

Multi-Repository Environments: A Comprehensive Analysis. Computer

Assisted Methods in Engineering and Science, vol. 31, no. 1, pp. 81-111, 2024.

[4] U. Shakikhanli, V. Bilicki, Analyzing Branching Strategies for Project

Productivity: Identifying the Preferred Approach. Journal of Electrical

Systems, 2024.

[5] U. Shakikhanli, V. Bilicki, Repository Structures: Impact on Collaboration

and Productivity. Pollack Periodica, 2024.

Full papers in conference proceedings

[6] U. Shakikhanli, V. Bilicki, Machine learning model for identification of

frontend and backend repositories in GitHub. Multidisciplinary Science

Journal, vol. 5, 2023.

Other references

[7] Monorepo, Manyrepo, Metarepo. Burke Libbey 2019. [Online] Available:

https://notes.burke.libbey.me/metarepo/ (Last accessed 6 April 2024).

[8] Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin Sadowski, Edward K.

Smith, Collin Winter, “Advantages and Disadvantages of a Monolithic

Repository: A Case Study at Google”, 2018 ACM/IEEE 40th International

12

Conference on Software Engineering: Software Engineering in Practice, May

27-June 3, 2018, Gothenburg, Sweden.

[9] Liu, Yi, Taghi M. Khoshgoftaar, and Naeem Seliya. "Evolutionary

optimization of software quality modeling with multiple repositories." IEEE

Transactions on Software Engineering 36.6 (2010): 852-864.

[10] Weber, Jens H., Anita Katahoire, and Morgan Price. "Uncovering variability

models for software ecosystems from multi-repository structures."

Proceedings of the 9th International Workshop on Variability Modeling of

Software-Intensive Systems. 2015.

[11] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel

M. German, Daniela Damian, “The promises and perils of mining GitHub”,

MSR 2014: Proceedings of the 11th Working Conference on Mining Software

Repositories, May 2014 Pages 92–101.

[12] GitHub. http://www.GitHub.com/ . Accessed March 16, 2024.

[13] Mercurial. https://www.mercurial-scm.org . Accessed March 16, 2024.

[14] Slintel.

https://www.slintel.com/tech/source-code-management/GitHub-market-

share. Accessed March 16, 2024.

[15] A. MacCormack, C. Kemerer, M. Cusumano, and B. Crandall, “Trade-Offs

between Productivity and Quality in Selecting Software Development

Practices,” IEEE Software, pp. 78-79, Sept./Oct. 2003.

[16] Kitchenham, Barbara, and Emilia Mendes. "Software productivity

measurement using multiple size measures." IEEE Transactions on Software

Engineering 30.12 (2004): 1023-1035.

[17] Helie, Jean, Ian Wright, and Albert Ziegler. "Measuring software

development productivity: A machine learning approach." Proceedings of the

Conference on Machine Learning for Programming Workshop, Affiliated

with FLoC, Oxford, UK. 2018.

[18] Zou, Weiqin, et al. "Branch use in practice: A large-scale empirical study of

2,923 projects on GitHub." 2019 IEEE 19th International Conference on

Software Quality, Reliability and Security (QRS). IEEE, 2019.

[19] Choudhary, Samridhi Shree, et al. "Modeling coordination and productivity

in open-source GitHub projects." School of Computer Science, Carnegie

Mellon University (2018).

13

[20] García, Salvador, et al. "Dealing with noisy data." Data preprocessing in data

mining (2015): 107-145.

[21] Idri, Ali, Fatima azzahra Amazal, and Alain Abran. "Analogy-based software

development effort estimation: A systematic mapping and review."

Information and Software Technology 58 (2015): 206-230.

[22] Shepperd, Martin, and Chris Schofield. "Estimating software project effort

using analogies." IEEE Transactions on software engineering 23.11 (1997):

736-743.

[23] Khoshgoftaar, Taghi M., and Naeem Seliya. "Analogy-based practical

classification rules for software quality estimation." Empirical Software

Engineering 8 (2003): 325-350.

[24] Amazal, Fatima Azzahra, Ali Idri, and Alain Abran. "Software development

effort estimation using classical and fuzzy analogy: a cross-validation

comparative study." International Journal of Computational Intelligence and

Applications 13.03 (2014): 1450013.

[25] Usman, Muhammad, et al. "Effort estimation in agile software development:

a systematic literature review." Proceedings of the 10th international

conference on predictive models in software engineering. 2014.

[26] Saadat, Samaneh, et al. "Analyzing the productivity of GitHub teams based

on formation phase activity." 2020 IEEE/WIC/ACM International Joint

Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT).

IEEE, 2020.

[27] Constantino, Kattiana, et al. "Perceptions of open‐source software developers

on collaborations: An interview and survey study." Journal of Software:

Evolution and Process 35.5 (2023): e2393.

[28] Constantino, Kattiana, et al. "Understanding collaborative software

development: An interview study." Proceedings of the 15th international

conference on global software engineering. 2020.

[29] Scholtes, Ingo, Pavlin Mavrodiev, and Frank Schweitzer. "From Aristotle to

Ringelmann: a large-scale analysis of team productivity and coordination in

Open-Source Software projects." Empirical Software Engineering 21.2

(2016): 642-683.

14

8 Összefoglaló

A doktori értekezés témája a két fő repository-struktúra típus, illetve ezek

kapcsolatának vizsgálata a szoftverfejlesztési projektek olyan paramétereivel, mint

a fejlesztői produktivitás, a szoftverfejlesztői csapaton belüli kollaboráció mértéke,

a fejlesztési időszak időtartama, a fejlesztőcsapat mérete stb. Az eredmények kellő

generalizációs mértékének elérése érdekében egy speciális projekt adatbázis jött

létre, amely több mint 50 000 mono és multi repository projektet tartalmaz. A

disszertáció fő célja annak bemutatása, hogy milyen kapcsolat van a repository

struktúra és a fejlesztés folyamata között, és ha léteznek ilyen kapcsolatok, hogyan

befolyásolhatják a fejlesztési folyamat egészét. Mivel a szoftverfejlesztés szűken

kevésbé területéről van szó, saját egyedi algoritmusokat hoztunk létre a Mono és

Multi repository projektek azonosítására és begyűjtésére a GitHub platformról. Ezen

kívül egy új gépi tanulási megközelítést dolgoztam ki a fejlesztési folyamat

produktivitásának becslésére, valamint egy matematikai módszert a fejlesztői

csapatok együttműködési mértékének kiszámítására.

	f553056f24cf7f13d9c119250f9790d9d8c38d690df315eb870236d4d840bf97.pdf
	c90f7669117bc1809efd056d1bd0d7b7840ddc1294506df0c0bea5274e04d0e1.pdf

