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Chapter 1

Introduction

The problems discussed in this thesis originate from topics in stochastic geometry,

particularly Random Polytope Theory. The results belong to three broad categories:

probability models in spindle convexity, estimation of the error terms of interesting

functionals, and necessary differentiability conditions for approximation to convex bod-

ies.

The dissertation begins with a brief history of Random Polytope Theory, which

includes the earlier history of Silvester’s four-point problem, Wendel’s equality, and

Rényi and Sulanke’s results on random approximations to convex bodies. In the sec-

ond chapter, a Wendel-type equality for the spindle convex case is proved. In the third

chapter, finite series expansions are proved for formulas obtained by Fodor, Kevei, and

Vı́gh [FKV14] for the expected number of vertices and missed area of uniform random

disc-polygons in smooth convex discs. In the fourth chapter, the same asymptotic for-

mulas of Fodor, Kevei, and Vı́gh [FKV14] are are proved under weaker differentiability

conditions on the container. The fifth chapter contains a list of concluding remarks and

possible research problems. Finally, two summaries of the main results contained in the

dissertation are provided. One in the English language and another one in Hungarian,

in the sixth and seventh chapters of the dissertation, respectively.

The mathematical contents of the dissertation are based on the following two joint

publications of the author:

[FMV23] F. Fodor, P. N. A. Montenegro, and V. Vı́gh, On Wendel’s equality for

intersections of balls, Aequationes Math. 97 (2023), no. 2, 439–451, DOI

10.1007/s00010-022-00912-3. MR4563622
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[FMP24] F. Fodor and N. A. Montenegro Pinzón, Series expansions for random disc-

polygons in smooth plane convex bodies, J. Appl. Probab. 61 (2024), no. 4,

Published online May 16, 2024, DOI 10.1017/jpr.2024.27.

We note that in this booklet numbering of the chapters, theorems and lemmas are

the same as in the thesis. At each statement, we indicate the page number where it

can be found in the dissertation.
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Chapter 2

On Wendel’s equality for

intersections of balls

This chapter of the dissertation is based on the paper [FMPV23].

The aim of this chapter is to investigate a problem of Wendel [Wen62], that was

originally stated for the classical convex case, in the spindle convex setting. Let n

i.i.d. points be selected from Rd according to a probability measure that is symmetric

about the origin (and does not assign positive probability to hyperplanes). What is

the probability that their (classical) convex hull Pn (which is a random polytope) does

not contain the origin?

Wendel proved that

P(o /∈ Pn) = 2−n+1

d−1∑
k=0

(
n− 1

k

)
, (2.1)

which is (surprisingly) independent of the distribution (but, of course, depends on the

number of points n and the dimension of space d).

We will use the following concept of convexity which goes back to Mayer [May35],

and possibly even longer. Let R > 0 be a positive real number and let x and y be points

in the d-dimensional space, no more than distance 2R apart.The R-spindle determined

by this pair of points is the intersection of all balls of radius R that contain x and y.

If the distance of x and y is more than 2R, then the R-spindle (segment) they

determine is the whole space, by definition. We say that a set X, with diameter less

that or equal to 2R is R-spindle convex if given a pair of points x and y in X, the

R-spindle they determine is also in X. The simplest example of an R-spindle convex

body is the ball of radius R.
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Let X ⊂ Rd be a set. If X is contained in a ball of radius R, then the (closed) R-

spindle convex hull ofX is defined as the intersection of radius R closed balls containing

X. If X is not contained in a ball of radius R, then its R-spindle convex hull is the

whole space Rd.

The spindle convex analog of Wendel’s question is as follows: Let R > 0 a real

number and let K ⊆ Rd be an o-symmetric convex body that is R-spindle convex, and

x1, . . . , xn be i.i.d uniform random points from K. We denote the R-spindle convex

hull of x1, . . . , xn by KR
n = [x1, . . . , xn]R.

What is the probability that 0 ∈ KR
n (or, equivalently, 0 /∈ KR

n )? We study the

special case when K = rBd with 0 < r ≤ 1 and assume that R = 1 (by scaling). We

wish to determine the probability

P (d, r, n) := P(o ∈ [x1, . . . , xn]1).

The main results of this chapter are stated in the following theorems:

Theorem 1 (p. 18 of the thesis, and [FMPV23]). Let K = rBd. Then

P (d, r, 2) =
ωd−1ωd

(rdκd)2

∫ r

0

∫ r

0

∫ φ(r1,r2)

0

rd−1
1 rd−1

2 sind−2 φdφdr2dr1,

where φ(r1, r2) = arcsin(r1/2) + arcsin(r2/2). In particular,

P (2, 1, 2) =

√
3

π
− 1

3
= 0.2179 . . . ,

P (3, 1, 2) =
1

64
(23 + 12

√
3π − 8π2) = 0.1459 . . . .

The symbols κd and ωd denote the volume and surface area of the d-dimensional

unit ball Bd.

Theorem 2 (p. 18 of the thesis, and [FMPV23]). Let K = rB2. Then

P (2, 1, 3) =
−84π2 − 477 + 360

√
3π

144π2
= 0.4594 . . . .

Wagner and Welzl [WW01] proved that in the classical convex version of the prob-

lem o-symmetric distributions are extremal in the sense that if the distribution is

absolutely continuous with respect to the Lebesgue measure, then the probability that

the origin is not contained in the (classical) random polytope Pn is at least (2.1). It

is natural to ask whether a similar result holds in the spindle convex version of the

problem.

4



We consider the model in which R = 1 and x1, . . . , xn are i.i.d. random points

in Rd that are distributed according to the standard normal distribution with density

function

f(x) =
1

(2π)
d
2

e−
|x|2
2 , x ∈ Rd.

We are interested in the following probability:

PN(d, 1, n) := P(o ∈ [x1, . . . , xn]1),

that is, the probability that the Gaussian random polytope [x1, . . . , xn]1 contains the

origin.

Our main result in Section 2.4 of the dissertation is that we determine PN(2, 1, 2),

see formula (2.6) on page 28, that is, the probability that the spindle spanned by two

Gaussian random points in the plane contain the origin. The fact that we obtained

different probabilities for the uniform and Gaussian distributions points out that no

analog result to that of Wagner and Welzl [WW01] holds in the spindle convexity

realm.
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Chapter 3

Series expansions for random

disc-polygons in smooth plane

convex bodies

This chapter of the dissertation is based on the paper [FMP24].

The asymptotic formulas obtained by Rényi and Sulanke [RS63,RS64] for the ex-

pected number of vertices and missed area and permitere difference of (classical) uni-

form random polygons in a plane convex body K required that the boundary of the

convex body K to be at least three times continuously differentiable with everywhere

positive curvature. Their seminal results started, in fact, the investigations of the

asymptotic properties of random polytopes, which turned out to be a very prolific

theory.

The natural question arose: what is the effect of the smoothness of the boundary

of K on these asymptotic formulas? By requiring a higher degree of differentiability,

Reitzner [Rei01,Rei04] proved finite series expansions of the quantities considered by

Rényi and Sulanke.

The aim of this chapter is to obtain a similar result in spindle convexity to the

following theorem by Reitzner [Rei04]:

Let K be a convex body in Rd with V (K) = 1 whose boundary ∂K is Ck+1
+ smooth

for some integer k ≥ 2. Then

E(V (K)− V (Kn))

= c
(d,d)
2 (K)n− 2

d+1 + c
(d,d)
3 (K)n− 3

d+1 + . . .+ c
(d,d)
k (K)n− k

d+1 +O(n− k+1
d+1 )
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as n → ∞, where the constants c
(d,d)
j (K), j = 2, . . . , k depend only on K and the

dimension d.

In fact, the original theorem of Reitzner is much more general in the sense that

it is not only about the volume but also concerns all intrinsic volumes Vi(·) as well.

This also explains the double index in the constants, since in the general case these

constants c
(i,d)
j also depend on which intrinsic volume is considered. However, we only

need the part of the theorem that is about the expectation of the missed volume.

Under the same conditions on the boundary, one can also obtain a series expansion

for the expected number of vertices E(f0(Kn))

E(f0(Kn)) = d2(K)n
d−1
d+1 + d3(K)n

d−2
d+1 + . . .+ dk(K)n

d−k+1
d+1 +O(n

d−k+2
d+1 )

as n → ∞.

Our objective is to obtain similar series expansion for the following asymptotic

formulas proved by Fodor, Kevei and Vı́gh [FKV14]:

If ∂K is C2
+ and R > max 1/κ(x) for all x ∈ ∂K, then

E(f0(KR
n )) = z1(K)n

1
3 + o

(
n

1
3

)
,

E(A(K \KR
n )) = A(K)z1(K)n− 2

3 + o
(
n− 2

3

)
,

as n → ∞, where

z1(K) = 3

√
2

3A(K)
· Γ

(
5

3

)∫
∂K

(
κ(x)− 1

R

)1/3

.dx

The symbol κ(x) is the curvature at the boundary point x and integration is with

respect to arclength.

The two formulas are connected by an Efron-type identity [BE65], which states that

E(f0(KR
n )) = n

E(A(K \KR
n−1))

A(K)
.

The main results of this chapter are stated in the following theorems:

Theorem 5 (on p. 34 of the thesis, and [FMP24]). Let k ≥ 2, and let K be a convex

disc with Ck+1
+ smooth boundary. Then for all R > maxx∈∂K 1/κ(x) it holds that

E(f0(KR
n )) = z1(K)n

1
3 + . . .+ zk−1(K)n− k−3

3 +O(n− k−2
3 )
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as n → ∞. All coefficients z1, . . . , zk can be determined explicitly. In particular,

z1(K) = 3

√
2

3A(K)
Γ

(
5

3

)∫
∂K

(
κ(x)− 1

R

) 1
3

dx,

z2(K) = 0,

z3(K) = −Γ

(
7

3

)
1

5

3

√
3A(K)

2

∫
∂K

κ′′(x)

3(κ(x)− 1
R
)
4
3

+
2R2κ2(x) + 7Rκ(x)− 1

2R2(κ(x)− 1
R
)
1
3

− 5(κ′(x))2

9(κ(x)− 1
R
)
7
3

dx.

By the spindle convex version of Efron’s identity we obtain the following corollary.

Theorem 6 (on p. 34 of the thesis, and [FMP24]). Let k ≥ 2 be an integer, and let

K be a convex disc with Ck+1
+ smooth boundary. Then for all R > maxx∈∂K 1/κ(x) it

holds that

E(A(K \KR
n )) = z′1(K)n− 2

3 + . . .+ z′k−1(K)n− k
3 +O(n− k+1

3 )

as n → ∞, where z′i(K) = A(K)zi(K) for i = 1, . . . , k.

In the case when K = B(R), that is, K is a radius R closed circular disc, the

expected number of vertices behaves fundamentally differently from the previously

discussed situation. It was proved in [FKV14] that

E(f0(B(R)Rn )) =
π2

2
+ o(1).

as n → ∞.

Applying the same method as before, we prove a finite expansion of the expected

number of vertices E(f0(B(R)Rn )) in terms of the powers of n.
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Chapter 4

The less smooth case

In Chapter 4 of the dissertation we investigate the asymptotic formulas of Fodor, Kevei

and Vı́gh [FKV14] under weaker differentiability conditions on the boundary of K.

In order to state the main result on this chapter, we need the following two defini-

tions: A convex disc K has a rolling circle if there exists a real number r0 > 0 with

the property that any x ∈ ∂K lies in some closed circular disc of radius r0 contained

in K. We say that a convex disc K slides freely in a circular disc R0B
2 of radius R0 if

for each x ∈ ∂K there exists a p ∈ R2 such that x ∈ ∂(R0B
2) + p and K ⊂ R0B

2.

On one hand, the rolling circle condition ensures that the boundary of K has a

unique outer unit normal everywhere; it has no vertices. On the other hand, the

condition that K slices freely in a circle guarantees that K is strictly convex; the

boundary contains no segment.

Both conditions ensure that ∂K is C1, but it may not be C2. Since we do not

require ∂K to be C2, we need a notion of generalized second-order differentiability and

curvature.

We say that ∂K is twice differentiable in the generalized sense if it can be approx-

imated by a quadratic function in the following sense: Let x ∈ ∂K. If K is positioned

in such a way that x = o and R is a support line of K, then in a neighborhood of the

origin o, ∂K is the graph of a convex function f defined on an open interval containing

o satisfying

f(z) =
κ(x)

2
z2 + o(z2)

as z → 0. If ∂K is differentiable in the generalized sense x, then we call κ(x) the

generalized curvature. The generalized curvature coincides with the usual curvature

if ∂K is differentiable twice in the usual sense at x. The boundary of a convex disc
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is differentiable twice almost everywhere with respect to the arc-length according to

a classical result of Alexandrov [Gru07]. For more information on generalized second-

order differentiability, we refer to the paper by Schütt and Werner [SW].

The main result of the chapter is the following theorem:

Theorem 11 (on p. 51 of the thesis). Let K be a convex disc that has a rolling circle

and slides freely in a circle of R0. Then for any R > R0, it holds that

lim
n→∞

E(f0(KR
n )) · n−1/3 = 3

√
2

3A(K)
· Γ

(
5

3

)∫
∂K

(
κ(x)− 1

R

)1/3

dx,

lim
n→∞

E(A(K \KR
n )) · n2/3 =

3

√
2A(K)2

3
Γ

(
5

3

)∫
∂K

(
κ(x)− 1

R

)1/3

dx.

The proof is based on the original argument of Fodor, Kevei and Vı́gh [FKV14]

adapted to the less smooth setting.
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[RS64] A. Rényi and R. Sulanke, Über die konvexe Hülle von n zufällig gewählten
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