
The Role of Software Testing and
Machine Learning in Automated

Program Repair

Summary of the PhD Thesis Points

[1] Textual Similarity Techniques in Code Level Traceability

[2] Machine Learning in Automated Program Repair

[3] Automated Assessment of Automatically Generated Patches

Viktor Csuvik

Supervisor:

Dr. László Vidács

Doctoral School of Computer Science
Department of Software Engineering

Faculty of Science and Informatics
University of Szeged

Szeged
2024

Introduction

To discover the link between human thinking and me-
chanical computers was already a concern of philoso-
phers and mathematicians in the 17th and 18th cen-
turies. Questions related to Artificial Intelligence (AI)
only emerged later, describing a hardware or software
that allows a machine to mimic human intelligence. Ma-
chine Learning (ML) develops and applies algorithms
that can learn from experience and improve over time
without being explicitly programmed. Thus, it is a tech-
nique to imitate human intelligence. The PhD disserta-
tion presents some ML applications in the hope of help-
ing the software development process to produce bet-
ter quality systems. In a narrower context, the field of
Automated Program Repair (APR) is explored, with a
particular focus on the role of tests.

Software testing constitutes a major aspect in the as-
surance of the quality of a software. Besides simply indi-
cating faults in it, tests are also essential for other areas
in software engineering, like APR. AP aims to automat-
ically fix defects in computer programs. It has the po-
tential to significantly improve software reliability and
reduce the cost and time associated with manual de-
bugging and repair [24]. The skeleton of most APR ap-
proaches are similar [11], and they mainly consist of the
steps depicted on Figure 1. The thesis is divided into
three main chapters, each aligning with one of the three
main points.

1

Fault localization

Patch generation

Patch validation

Correct? Potentially
fixed program

Buggy program

Test cases
Yes

No

</>

</>
THESIS I THESIS II

THESIS III

Figure 1: General APR approach.

The first theses group explores textual methods for
identifying classes suitable for unit testing. It discusses
the importance and recent advancements in test-to-code
traceability techniques, emphasizing the use of textual
methods.

The second part discusses using Deep Learning (DL)
techniques to improve bug fixing in Fault Localization
(FL) and APR. The chapter introduces methods for sta-
ble AI training, datasets for learning-based APR training,
and tools for generating patches automatically.

The last theses group explores solutions for the Patch
Correctness Check (PCC) problem, which involves ver-
ifying the correctness of automatically generated fixes.
It introduces a similarity-based approach and a classifi-
cation method using cutting-edge techniques.

This summary organized as follows. In the next three
chapters each theses is briefly presented. The contribu-
tion of the author is described at the end of each sec-
tion. Next, the dissertation is concluded together with
the mapping between the thesis points and publications.
A Hungarian summary can be found in the last section.

2

1 TEXTUAL SIMILARITY TECHNIQUES

IN CODE LEVEL TRACEABILITY

Test-to-code traceability means finding the links between
test cases and production code. More precisely for a test
case we want to find certain parts of the code which it
was meant to test [26]. In this theses group textual sim-
ilarity techniques are introduced to recover traceability
links between code artifacts. Figure 2 provides an il-
lustration of the proposed approach. A software sys-
tem written in Java programming language is consid-
ered, which contains both test classes and production
code and the aim is to recover the relationship between
them. ML models are trained on the source code of the
observed systems. Similarity is measured between tests
and code classes, from which a ranked list is constructed.
This list is then fine-tuned using previously extracted call
graph information. Additionally to the three ML models
and five representations, the first theses group presents
experiments employing the ensembleN approach, where
the optimal N value is sought using NC-based and man-
ual traceability links. The basic idea is that test and
code classes are similar in some sense and that addi-
tional structural information will filter out the errors of
the previous steps.

Five code representations are introduced: IDENT, SRC,
AST, LEAF and SIMPLE. These form the input of an ML
algorithm that computes the similarity between distinct

3

Source codeJava

?

SRC AST

Textual
preprocessing

Ranked List of
Similar Classes

public class SomeClass {

 public boolean doSomeStuff() {

 //an example production code

 ...

 }

}

public void otherTestMethod() {

 // another example test

method

 assertFalse(x == y);

}

public void someTestMethod() {

 // an example test method

 assertTrue(z == w);

}

?

?

Test cases Prod. code

Extraction of different representations

QUERY !CORPUS

Doc2Vec

1 0
1 1

LSI

TF-IDF
Term

is 2

a 1

Term count

Measuring similarities

Related classes
1.
2.
3.

+

Text mining

Call Graph information +
Naming Conventions

Figure 2: A high-level overview of Theses I.

items. Abstract Syntax Tree were utilized to form a se-
quence of tokens from the structured source code. The
five representations under evaluation were constructed
according to the most widely used representations in
other research experiments [25].

The evaluation encompassed six traceability link ex-
traction methods assessed with five code representations.
Among these, IDENT, leveraging ASTs, emerged as the
most effective in the majority of cases during the nam-
ing convention-based evaluation. We refined Doc2Vec’s
ranked similarity list with the recommendation of the
other approaches. With this experiment we have suc-
cessfully improved the performance of it for every project,
therefore introducing a successful mixed approach. How-

4

ever, the SRC representation exhibited greater precision
when compared to a limited amount of manual data.
The inclusion of call information retrieved via regular
expressions significantly bolstered results when employed
as a filtering technique for Doc2Vec. Although LSI and
TF-IDF also demonstrated promise for the same purpose,
the fusion of Doc2Vec and call information yielded supe-
rior results. While well-defined and consistently adhered
to naming conventions have the potential to yield highly
precise traceability links, their application remains con-
strained. Automatic recovery of naming conventions stands
to benefit substantially from the integration of other text-
based techniques, fostering a versatile semantic approach
that can be effectively employed alongside other main-
stream methods.

1.1 The Author’s Contributions

In the first thesis group, the author implemented the
Doc2vec and TF-IDF methods for recovering traceabil-
ity links. Additionally, he implemented the text-based
recovery technique that retrieved call graph information
from static code. The definition of the used source code
representations and metric visualizations was also part
of the author’s work. He also took part in the evalua-
tion and explanation of various other results, as well as
in the planning and writing of all the published papers.
Detailed discussion can be found in Chapter 3 of the dis-
sertation.

5

2 MACHINE LEARNING IN AUTOMATED

PROGRAM REPAIR

In recent years, there has been growing interest in us-
ing ML techniques for APR [21]. These techniques have
shown promise in generating high-quality repair patches
for a variety of programming languages and domains [22].
However, APR is a challenging task due to the complex-
ity and variability of software systems with many open
challenges. The current theses group applies ML on sev-
eral subtasks in the APR domain, Figure 3 depicts a com-
prehensive overview of it.

The first section dives into more details about Fault
Localization. The main focus in this chapter is on the
relationship between traditional and DL algorithms. By
conducting a large-scale training, the stability of DL-based
FL methods are investigated. As can be seen on the fig-
ure, the FL part of the process takes the coverage infor-
mation from test execution and outputs a list of most
suspicious statements that needs to be repaired. The
classical Generate&Validate patch generation approaches
then try to modify these faulty statements to fix the whole
program. On the other hand, DL approaches usually re-
frain from FL (assuming perfect knowledge) and only
focus on the generation of repair candidates.

Next, a data collection approach is described, since
modern data-intensive APR applications need a lot of
training data. As JavaScript lacks such curated dataset,

6

the evaluation of the proposed APR methods is difficult.
The section introduces the FixJS dataset, describes its
properties and structure. The proposed dataset is avail-
able on GitHub and have a DOI to make it easily citable.
It contains roughly two million bug-fixing commits from
GitHub. From these commits, the modified functions
were extracted (the state before and after the bug fix
happened). These functions are then tokenized and ab-
stracted, resulting in three different source code repre-
sentations. FixJS can be used to train and evaluate a
deep learning model that predicts correct fixes without
any further processing steps.

Patch generation

Potentially fixed
program

Dataset of bug fixes
Fault localization

Test cases

Software artifact
</>

</>

</>

</>

NO FAILING
TEST

DEPLOYMENT

TESTING FAILS

0 0 0 0 0

1 1 1 0 1

1 1 1 0 1

COVERAGE INFO

TRADITIONAL FLDEEP LEARNING FL

List of most suspicious statements
1.
2.
3.

GENETIC ALGORITHMDEEP LEARNING

Patch validation

1 0 0

0 1 0

0 0 1

cv1

cv2

cvm

=
𝐷𝑠𝑡𝑎𝑟 =

𝑐𝑒𝑓
∗

𝑐𝑛𝑓 + 𝑐𝑒𝑝

𝑂𝑐ℎ𝑖𝑎𝑖 =

𝑐𝑒𝑓

(𝑐𝑒𝑓+ 𝑐𝑛𝑓)(𝑐𝑒𝑓+ 𝑐𝑒𝑝)

</>

BUGGY / FIXED PROGRAMS

DEVELOPER FIX

TEST RE-EXECUTIONEXACT MATCH

Human written patch

Generated patch

PATCH

VALIDATION SUCCESSFUL
VALIDATION FAILS

Figure 3: A comprehensive overview of Theses II.

7

The last chapter focuses on the generation of patches
both with traditional and data-driven approaches. An
adaptation of the seminal APR tool GenProg is intro-
duced. Also, to bypass the cumbersome process of de-
signing, training, and evaluating a new model, an ap-
proach is proposed that fixes buggy programs automati-
cally using ChatGPT, simply relying on this Large Lan-
guage Model. On Figure 3 we can see that there is
a fundamental difference of the two: while learning-
based APR approaches are evaluated against the devel-
oper fix, traditional tools evaluate the generated patch
by re-executing the test cases. The former one is obvi-
ously more strict, but has three main flaws: (1) it needs a
sufficient database to train and evaluate on, (2) does not
consider semantically identical patches and (3) overlook
the fact that a developer patch can be flawed. On the
other hand, classifying a patch by test execution is both
more time-consuming and more susceptible to overfit-
ting - where only test cases are successfully executed,
but the real bug is not fixed. This phenomena is detailed
in the next theses group.

The findings of the theses group are manyfold. First,
in Fault Localization, it was found that the output of
the same model varies greatly due to the effect of ran-
dom factors during training phase. In the dataset cre-
ation process the characteristics of FixJS has been intro-
duced and its relevance in the field of APR have been
described. Patch generation is described in detail in the
thesis group. First, GenProgJS is described, which is

8

based on a genetic algorithm and targets buggy pro-
grams written in JavaScript. According to the first exper-
iments GenProgJS found plausible repairs for 31 bugs in
6 Node.js projects, which is a comparable result to the
related work done on other languages. The capabilities
of ChatGPT were also investigated on how it performs
when tasked with fixing buggy code. 200 buggy codes
were sampled from APR datasets, consisting of 100 Java
and 100 JavaScript samples. The best prompt for Java
generated correct answers in 19% of cases, while for
JavaScript, the same prompt yielded a performance of
only 4%. In total, 44 distinct bugs were repaired in Java
and 24 in JavaScript out of the overall 200 samples and
1000 repair trials.

2.1 The Author’s Contributions

In the second thesis group, the author coordinated the
experimentations on diverse network architectures on
DL-based FL and implemented the bucketing approach.
He also adapted churn metric and took part in the design
and writing of the published paper. The FixJS bench-
mark creation and ChatGPT experiments were entirely
the work of the author. In the GenProgJS tool, the au-
thor implemented the base genetic algorithm, and the
interface for test case evaluation and operator calls. He
also executed the experiments, coordinated the analysis
and took a big part in the explanation of results. Detailed
discussion can be found in Chapter 4 of the dissertation.

9

3 AUTOMATED ASSESSMENT OF AU-
TOMATICALLY GENERATED PATCHES

A notable obstacle encountered in test-suite-based re-
pair is the potential to create a patch that enables the
entire test suite to pass, yet remains incorrect. This phe-
nomenon is commonly referred to as the overfitting patch
problem [23] and the goal of Patch Correctness Check
is to determine the actual correctness of a patch, with-
out additional manual effort. The generation of overfit-
ting patches leads to the generation of program repair
patches with limited utility, thereby substantially affect-
ing the practical applicability of program repair. It also
makes developers less confident in APR tools, thus re-
ducing their widespread use.

In the third theses group two approaches are exe-
cuted and evaluated, this can be observed on Figure 4.
First, it is investigated whether similarity is an appro-
priate approach to tackle with the PCC problem. To
do so, similarity between generated plausible patches
and the original code is measured. The intuition behind
similarity-based approach is that more similar patches
deem to be more simple and thus not overfitting ”alien
codes” (left side of Figure 4). The source code simi-
larities are measured using document/sentence embed-
dings, specifically with two state of the art techniques
borrowed from the NLP domain: Doc2vec and Bert.

10

ORIGINAL PROGRAM

DEVELOPER FIX

APR PATCH #2

APR PATCH #1

APR PATCH #3

X

Y

Z

f1 f2 … fl

. .

f1 f2 … fl

Correct /

Overfitting

Figure 4: The general outline of Theses III.

Next, PCC is considered as a classification problem.
Code features are borrowed from previous works achiev-
ing state-of-the-art results: hand-crafted and static fea-
tures together with embedding vectors and similarity met-
rics. On this set, a feature selection process is performed,
which resulted in a 43-dimensional feature vector (right
side of Figure 4). The selected features served as the ba-
sis for model selection, in which ML models are trained,
evaluated and optimized.

Based on the results, similarity-based approach may
be useful when a high number of plausible patches are
present, but we found that plain source code embed-
dings fail to capture nuanced code semantics, thus a
more sophisticated technique is needed to correctly val-
idate patches. It is expected that a more complex lan-

11

guage understanding model may be advantageous in de-
ciding whether a patch is correct or not. On the other
hand, with classifiers one can filter out overfitting patches
with a high degree of confidence. Initially, the feature set
has been reduced, indicating the limited informational
contribution of most original features. Subsequently, we
conducted training and evaluation of nine ML models
to discern the optimal performer. Our findings suggest
better performance of the models on average when uti-
lizing the selected feature set in comparison to the entire
feature set or other subsets. The best performing mod-
els, achieved average F1 scores of 0.8-0.77. Employ-
ing a more complex neural architecture that integrates
learned embeddings with other features enabled us to
mitigate the variability in training, reducing the absolute
fluctuation in the F1 score from 30% to 16%.

3.1 The Author’s Contributions

In the third thesis group, the author laid the groundwork
for the similarity-based PCC technique and implemented
the base algorithm. He took part in the manual annota-
tion of the generated patches. The author coordinated
the implementation of the ML-based classifiers and con-
ducted benchmark creation / gathering of all required
metrics. He also planned the experiment guidelines and
took a big role in the evaluation and explanation of the
results and their implications. Detailed discussion can
be found in Chapter 5 of the dissertation.

12

Summary

The first part of the dissertation, provides insight into
a traceability problem: to connect test cases with code
classes solely base on textual methods. The thesis ex-
amines several prevalent methods, such as naming con-
ventions and LSI, and introduces the use of Doc2Vec. It
experimented with different source code representations
and found that IDENT, a simple representation, yielded
better results for traceability. Doc2Vec-based similar-
ity outperformed other methods. Combining Doc2Vec
with recommendations from other approaches further
improved performance, establishing a successful mixed
approach for matching tests with production code. It
is evident that a combination of methods yields optimal
results in this field, and textual analysis is expected to
remain important in future work.

The second theses group started with a discussion on
Fault Localization using Deep Learning techniques. The
findings of the study can be generalized to the whole
Software Engineering and Artificial Intelligence domain:
scientific work using Machine Learning should concen-
trate more on reproducibility and stability aside from
publishing great results. Next, a data mining approach
has been presented, and the FixJS dataset. It can be
used for APR research: just as in the subsequent parts
where patches are generated both by DL and traditional
approaches. Results show that in practical application
Generate&Validate APR approaches still play a promi-

13

nent role, with DL-based tools outperforming them in
some cases. An important and difficult task for future
research will be to combine the strengths of the two ar-
eas and avoid the weaknesses. The dissertation presents
a thorough examination of the effectiveness of genetic
operators and showcased instances of potential patches
discovered by both of the algorithms.

The last part tackled with the PCC problem - that
is, given an automatically generated patch, one should
decide whether it is a real fix to the bug, or an over-
fit to the test oracle. The chapter elaborates on how
our work contributed to the field, by defining similarity-
based patch filtering and evaluating classification on state-
of-the-art features sets. In the realm of APR, patch val-
idation remains relatively uncharted yet promising. Fil-
tering out erroneous patches is crucial for enhancing
confidence in automatic tools. This chapter explores ex-
periments employing both similarity-based patch filter-
ing and feature-based classification methods. Results
show that while the current solutions still have some
flaws, by selecting proper features and classifiers, one
can filter out overfitting patches with a high degree of
confidence. The research findings emphasize two key
points. Firstly, constructing effective PCC classifiers de-
mands meticulous consideration of feature selection and
model construction. While handcrafted features remain
essential, embeddings can also offer valuable insights.
Secondly, ML approaches should prioritize model sta-
bility, as it significantly impacts the reliability and im-

14

portance of the results obtained - a similar observation
made in previous section.

The methodologies, experiments, and findings pre-
sented in the thesis have been extensively discussed in
several of the author’s prior works, nine of which are
referenced here. Their relevance to the specific thesis
points of the thesis is presented in Table 1.

Table 1: Correspondence between the thesis points and
publications.

Publications
No. [16] [17] [20] [19] [12] [18] [15] [13] [14]

I. • • •

II. • • •

III. • • •

Acknowledgement

The research presented was supported in part by the
ÚNKP-SZTE New National Excellence Program and the
national project TKP2021-NVA-09, financed under the
TKP2021-NVA funding scheme of the Ministry for Cul-
ture and Innovation from the source of the National Re-
search, Development and Innovation Fund, and by the
European Union project RRF-2.3.1-21-2022-00004 within
the framework of the Artificial Intelligence National Lab-
oratory.

15

4 Összefoglalás

A doktori disszertáció három fő témát tárgyal, amelyek
mindegyike valamelyest kapcsolódik egymáshoz. Egy
szoftvertermék minősége nagyban függ a fejlesztői szo-
kásoktól és gyakorlatoktól. Az értekezésből látható a
tesztesetek fontossága - kezdve a megnevezésüktől a hi-
balokalizációban és az automatikus programjav́ıtásban
betöltött szerepükben.

A disszertáció első része betekintést nyújt egy ny-
omonkövethetőségi problémába: a tesztesetek összekap-
csolásába kódosztályokkal, kizárólag szöveges módsze-
rek felhasználásával. A dolgozat számos jól ismert mód-
szert vizsgál, mint például a névkonvenciókat, az LSI-
t, és bemutat egy új alternat́ıvát is: a Doc2Vec-et. Kü-
lönböző forráskód reprezentációk kerültek bemutatásra,
és azt láthattuk, hogy az egyszerű IDENT reprezentáció
jobb eredményeket adott a nyomonkövethetőség tekin-
tetében a többi szöveges reprezentációtól. A Doc2Vec-
alapú hasonlóság felülmúlta a többi módszert. A Doc2Vec
más megközeĺıtésekből származó hasonlósági listákkal
való kombinálása tovább jav́ıtotta a teljeśıtményt. Lát-
hattuk, hogy a szöveges technikák rugalmas megköze-
ĺıtést biztośıtanak, valamint ezek kombinációja jav́ıtja a
teljeśıtményt, ı́gy a szövegelemzés várhatóan továbbra is
fontos marad a jövőbeni munkákban.

A következő tézispont a mélytanulás alapú hibaloka-
lizáció tárgyalásával kezdődik. A fejezet megállaṕıtásai
általánośıthatók az egész szoftverfejlesztés és mestersé-

16

ges intelligencia területre: a gépi tanulást használó tudo-
mányos munkáknak a nagyszerű eredmények publikálása
mellett jobban kellene koncentrálnia a reprodukálható-
ságra és a stabilitásra. Ezután egy adat kinyerési meg-
közeĺıtés került bemutatásra, és a FixJS adathalmaz. A
következő fejezetben patchek mind mélytanulással, mind
hagyományos megközeĺıtésekkel generálódnak. Ezek az
eredmények azt mutatják, hogy a gyakorlati alkalma-
zásban a hagyományos genetikus megközeĺıtések még
mindig kiemelkedő szerepet játszanak, a mélytanuló esz-
közök csak egyes esetekben múlják felül azokat. A jövő-
beli kutatások fontos és nehéz feladata lesz e két terület
erősségeinek ötvözése a gyengeségek elkerülésével. A
disszertáció alaposan megvizsgálja a genetikus operáto-
rok hatékonyságát, és bemutatja a mindkét algoritmus
által generált potenciálisan jav́ıtó patch-eket.

A harmadik rész az automatikus patch értékelés prob-
lémával foglalkozik - vagyis egy automatikusan generált
jav́ıtás esetén el kell dönteni, hogy az a hiba valódi jav́ı-
tását jelenti-e, vagy csupán túlillesztés történt a tesztekre.
A tézispontban bemutatásra kerül munkánk hogyan járul
hozzá a területhez - a hasonlóság-alapú patch szűrés de-
finiálásával és az osztályozók kiértékelésével a legkor-
szerűbb jellemzőkészleteken. A hibás jav́ıtások kiszűrése
kulcsfontosságú az ilyen automatikus eszközökbe vetett
bizalom növeléséhez. Az eredmények alapján, a jelen-
legi megközeĺıtések még korán sem tökéletesek, a meg-
felelő jellemzők és osztályozók kiválasztásával nagy meg-
b́ızhatósággal ki lehet szűrni a túlillesztett jav́ıtásokat.

17

References

[11] Fatmah Yousef Assiri and James M. Bieman. Fault
localization for automated program repair: effec-
tiveness, performance, repair correctness. Software
Quality Journal, 25(1):171–199, mar 2017.

[12] Viktor Csuvik., Tibor Gyimóthy., and László Vidács.
Can chatgpt fix my code? In Proceedings of the 18th
International Conference on Software Technologies
- ICSOFT, pages 478–485. INSTICC, SciTePress,
2023.

[13] Viktor Csuvik, Dániel Horváth, Márk Lajkó, and
László Vidács. Exploring plausible patches us-
ing source code embeddings in javascript. 2021
IEEE/ACM International Workshop on Automated
Program Repair (APR), pages 11–18, 2021.

[14] Viktor Csuvik, Daniel Horvath, and Laszlo Vidacs.
Feature extraction, learning and selection in sup-
port of patch correctness assessment. In Proceed-
ings of the 19th International Conference on Soft-
ware Technologies - ICSOFT, 2024.

[15] Viktor Csuvik, Deniel Horvath, Ferenc Horvath,
and Laszlo Vidacs. Utilizing Source Code Embed-
dings to Identify Correct Patches. In 2020 IEEE
2nd International Workshop on Intelligent Bug Fix-
ing (IBF), pages 18–25. IEEE, 2020.

18

[16] Viktor Csuvik, András Kicsi, and László Vidács.
Evaluation of Textual Similarity Techniques in
Code Level Traceability. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioin-
formatics), volume 11622 LNCS, pages 529–543.
Springer Verlag, 2019.

[17] Viktor Csuvik, András Kicsi, and László Vidács.
Source code level word embeddings in aiding se-
mantic test-to-code traceability. In 10th Interna-
tional Workshop at the 41st International Confer-
ence on Software Engineering (ICSE) – SST 2019.
IEEE, 2019.

[18] Viktor Csuvik, Aszmann Roland, Beszédes Árpád,
Horváth Ferenc, and Gyimóthy Tibor. On the sta-
bility and applicability of deep learning in fault lo-
calization. In 2024 IEEE International Conference
on Software Analysis, Evolution and Reengineering
(SANER), 2024.

[19] Viktor Csuvik and László Vidács. Fixjs: A dataset of
bug-fixing javascript commits. In 2022 IEEE/ACM
19th International Conference on Mining Software
Repositories (MSR), pages 712–716, 2022.

[20] András Kicsi, Viktor Csuvik, and László Vidács.
Large scale evaluation of natural language pro-
cessing based test-to-code traceability approaches.
IEEE Access, 9:79089–79104, 2021.

19

[21] Fan Long and Martin Rinard. Automatic patch gen-
eration by learning correct code. Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages - POPL 2016,
pages 298–312, 2016.

[22] Martin Monperrus. The Living Review on Auto-
mated Program Repair. Technical report, dec 2020.

[23] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu,
Yihao Qin, Deqing Zou, Xiaoguang Mao, and Hai
Jin. Automated patch correctness assessment: how
far are we? In Proceedings of the 35th IEEE/ACM In-
ternational Conference on Automated Software En-
gineering, ASE ’20, page 968–980, New York, NY,
USA, 2021. Association for Computing Machinery.

[24] Westley Weimer, ThanhVu Nguyen, Claire
Le Goues, and Stephanie Forrest. Automati-
cally finding patches using genetic programming.
In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, page 364–374,
USA, 2009. IEEE Computer Society.

[25] Martin White, Michele Tufano, Christopher Ven-
dome, and Denys Poshyvanyk. Deep learning code
fragments for code clone detection. Proceedings
of the 31st IEEE/ACM International Conference on
Automated Software Engineering - ASE 2016, pages
87–98, 2016.

20

[26] Greg Wilson, D. A. Aruliah, C. Titus Brown,
Neil P. Chue Hong, Matt Davis, Richard T. Guy,
Steven H.D. Haddock, Kathryn D. Huff, Ian M.
Mitchell, Mark D. Plumbley, Ben Waugh, Ethan P.
White, and Paul Wilson. Best Practices for Scien-
tific Computing. PLoS Biology, 12(1):e1001745,
jan 2014.

21

Nyilatkozat

Csuvik Viktor “The Role of Software Testing and Machine
Learning in Automated Program Repair” ćımű PhD dissz-
ertációjában a következő eredményekben fejezetenként
Csuvik Viktor hozzájárulása volt a meghatározó:

1. Szöveges Hasonlósági Technikák a Kódszintű
Nyomonkövethetőségben

(Textual Similarity Techniques in Code Level Traceabil-
ity)

[1] Doc2Vec és TF-IDF szemantikai hasonlósági méré-
sek implementációja a tesztek és kódosztályok, va-
lamint kód-metódusok között. SRC, IDENT és AST
kód reprezentációkat előálĺıtó Java csomag terve-
zése, implementációja és futtatása, melyeken a mo-
dellek futottak. Modell eredmények kiértékelésé-
nek futtatása, kinyert metrikák vizualizációja és táb-
lázatba foglalása.

– Fejezetek: 1.3.1, 1.3.2, 1.4 és 1.6

– Viktor Csuvik, András Kicsi, and László Vidács.
Evaluation of Textual Similarity Techniques in
Code Level Traceability. In Lecture Notes in
Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) - LNCS, Springer, 529–543,
2019.

– Viktor Csuvik, András Kicsi, and László Vidács.
Source code level word embeddings in aiding
semantic test-to-code traceability. In 10th In-
ternational Workshop at the 41st International
Conference on Software Engineering (ICSE) –
SST, IEEE, 29-33, 2019.

[2] LEAF és SIMPLE forráskód reprezentációkat előál-
ĺıtó Java csomag implementálása és futtatása. A
Doc2Vec, TF-IDF és Ensemble módszerek ajánlórend-
szerként való felhasználása, kiértékelése és mag-
yarázata. Futtatások kivitelezése, táblázatok adat-
tal veló feltöltése, összefüggések magyarázata. Hı́-
vási gráf (CG) információt előálĺıtó forráskód im-
plementációja, ezen információ kombinálása a sze-
mantikai módszerekkel.

– Fejezetek: 1.3.4, 1.3.5, 1.3.6, 1.6 és 1.7.1

– András Kicsi, Viktor Csuvik and László Vidács.
Large scale evaluation of natural language pro-
cessing based test-to-code traceability
approaches. IEEE Access, Volume(9), 79089-
79104, 2021.

[3] Ensemble megközeĺıtés megtervezése, implementá-

lása és kiértékelése. Hasonlósági listák nagyságá-
nak értékelése és ḱısérletek végrehajtása.

– Fejezetek: 1.3.4 és 1.6

– Viktor Csuvik, András Kicsi, and László Vidács.
Evaluation of Textual Similarity Techniques in
Code Level Traceability. In Lecture Notes in
Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) - LNCS, Springer, 529–543,
2019.

– András Kicsi, Viktor Csuvik and László Vidács.
Large scale evaluation of natural language pro-
cessing based test-to-code traceability
approaches. IEEE Access, Volume(9), 79089-
79104, 2021.

2. Gépi Tanulás az Automatikus Programjav́ıtás
Területén

(Machine Learning in Automated Program Repair)

[1] Mélytanuló modell működésének magyarázata a hi-
balokalizációs eljárás során, neuronháló tańıtását

jav́ıtó ḱısérletek vezetése. Churn metrika adaptá-
lása az FL eljárásra, eredmények értelmezése és
magyarázata.

– Fejezetek: 2.3 és 2.4.1

– Viktor Csuvik, Roland Aszmann, Árpád
Beszédes, Ferenc Horváth, and Tibor Gyimóthy
On the stability and applicability of deep learn-
ing in fault localization. In 2024 IEEE Interna-
tional Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), IEEE, 2024.

[2] FixJS adatbázis kinyerését végrehajtó szkript ter-
vezése, implementációja és futtatása. Kinyert ada-
tok elemzése, kézi ellenőrzése és csoportośıtása.

– Fejezetek: 2.5

– Viktor Csuvik, and László Vidács. Fixjs: A
dataset of bug-fixing javascript commits. In
2022 IEEE/ACM 19th International Conference
on Mining Software Repositories (MSR), ACM,
712–716, 2022.

[3] ChatGPT felhasználása az automatikus program-
jav́ıtás területén, promptok tervezése, adathalmaz
gyűjtése és eredmények manuális kinyerése. Új

jav́ıtások kiértékelése, ezek magyarázata, értékelése
és konklúziók levonása.

– Fejezetek: 2.6

– Viktor Csuvik, Tibor Gyimóthy, and László
Vidács. Can chatgpt fix my code?. In Pro-
ceedings of the 18th International Conference
on Software Technologies - ICSOFT, SciTePress,
478-485 2023.

[4] Genetikus algoritmus és rendszer architektúra ter-
vezése, implementációja és léırása. Operátorok és
tesztek futtatásának integrációja a genetikus algo-
ritmusba. A rendszer futtatása, eredmények gyűj-
tése és adminisztrációja. A ḱısérletek koordinációja,
az eredmények és összefüggések magyarázata.

– Fejezetek: 2.7.1, 2.7.2 és 2.7.3 (”Repaired
bugs”, ”Repairing on script language” és ”Multi-
line repairs” részek)

3. Automatikusan Generált Jav́ıtások Spontán
Értékelése

(Automated Assessment of Automatically Generated
Patches)

[1] Hasonlóság-alapú kiértékelések megtervezése és a
Doc2Vec modell implementációja. Adatgyűjtés, fel-
dolgozás és rendszerezés. Kinyert hasonlóságok
értelmezése, küszöb ḱısérletek. Az eredmények ér-
telmezése, összefüggések magyarázata.

– Fejezetek: 3.3.1 és 3.5.1

– Viktor Csuvik, Dániel Horváth, Ferenc Horváth,
and László Vidács. Utilizing Source Code Em-
beddings to Identify Correct Patches. In IEEE
2nd International Workshop on Intelligent Bug
Fixing (IBF), IEEE, 18–25, 2020.

[2] GenprogJS által generált jav́ıtások gyűjtése és rend-
szerezése. Fejlesztői kiértékelések vitás eseteinek
eldöntése. Metrikák mérése, ezek értelmezése és
megjeleńıtése.

– Fejezetek: 3.3.1, 3.4.1 és 3.6.1

– Viktor Csuvik, Dániel Horváth, Márk Lajkó,
and László Vidács. Exploring plausible patches
using source code embeddings in javascript.
In IEEE/ACM International Workshop on Au-
tomated Program Repair (APR), IEEE, 11–18,
2021.

[3] Adagyűjtés és rendszerezés, melyen az osztályozók
tanulni tudnak. Új kapcsolódó munkák kutatása.

Futtatások végrehajtása, melynek eredményei a be-
ágyazások és metrikák. Ḱısérletek koordinálása és
technikák ismertetése. A különböző technikák er-
edményeinek összehasonĺıtása, ezen eredmények
értelmezése és magyarázata.

– Fejezetek: 3.3.2, 3.3.3, 3.5.2 és 3.6.2

– Viktor Csuvik, Dániel Horváth, and László
Vidács. Feature extraction, learning and se-
lection in support of patch correctness assess-
ment. In Proceedings of the 19th International
Conference on Software Technologies - ICSOFT,
SciTePress, 2024.

Ezek az eredmények Csuvik Viktor PhD disszertációján

kívül más tudományos fokozat megszerzésére nem

használhatók fel.

Szeged, 2024.06.07.

Csuvik Viktor

jelölt

Dr. Vidács László

témavezető

Az Informatika Doktori Iskola vezetője kijelenti, hogy

jelen nyilatkozatot minden társszerzőhöz eljuttatta, és

azzal szemben egyetlen társszerző sem emelt kifogást.

Szeged,

Dr. Jelasity Márk

Informatikai Doktori

Iskola vezetője

	push0 g 0 Gpop 1 [rgb]0.24,0.7,0.44push0 g 0 Gpoptowidthheightdepth Textual Similarity Techniques in Code Level Traceability
	The Author’s Contributions

	push0 g 0 Gpop 2 [rgb]0.24,0.7,0.44push0 g 0 Gpoptowidthheightdepth Machine Learning in Automated Program Repair
	The Author’s Contributions

	push0 g 0 Gpop 3 [rgb]0.24,0.7,0.44push0 g 0 Gpoptowidthheightdepth Automated Assessment of Automatically Generated Patches
	The Author’s Contributions

	Összefoglalás

