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Introduction
In an increasingly interconnected world, software systems have become the backbone of modern
society, profoundly impacting every aspect of our daily lives, from mobile applications to complex
systems that manage our transportation and healthcare. This proliferation of software solutions,
coupled with an exponential growth in screentime, particularly during the COVID-19 pandemic,
has significantly transformed how we live, work, and communicate, bringing convenience and
efficiency [20]. However, this rapid integration has also turned these systems into prime targets
for cyberattacks, with the surge in vulnerabilities leading to an alarming increase in data breaches
and security incidents. The International Business Machines Corporation (IBM) X-Force Threat
Intelligence Index in 2020 reported that around 8.5 billion records were compromised in 2019,
marking a more than 200 percent increase from the previous year [29]. These incidents often
stem from software development oversights and inadequate security protocols, highlighting the
urgent need for developers to prioritize security and for organizations to continuously monitor and
update their systems to mitigate threats, especially as critical infrastructure becomes increasingly
reliant on digital technologies [28].

Recognizing the escalating vulnerabilities in software systems, the cybersecurity community
has moved towards a security-first approach in both software development and deployment, mov-
ing beyond traditional reliance on manual interventions like code reviews and penetration testing.
While these conventional methods have their uses, they demand significant time and resources
and may miss finer issues. In response, automated software analysis techniques emerged to
complement manual efforts. Static analysis, which inspects code without running it to iden-
tify vulnerabilities through predefined patterns, and dynamic analysis, which monitors software
behavior in real-time to spot anomalies, together with traditional reviews, represent a effective
strategy for enhancing software security.

Even though automated methods like static and dynamic analysis represent a significant
advance beyond manual reviews, they encounter scalability and adaptability challenges in the
face of software vulnerabilities’ evolving nature. The pattern-based solutions these techniques
utilize can quickly become outdated with new vulnerabilities’ emergence. Furthermore, the
vast amount of code in modern software systems renders manual and pattern-based automated
analyses increasingly impractical.

The integration of machine learning (ML) into Information Technology, particularly in soft-
ware security, marks a pivotal advancement by offering solutions that adapt and learn from data,
surpassing traditional pattern-based analyses. ML algorithms’ capacity to learn from historical
vulnerabilities and incidents to predict and detect new threats is a significant leap forward. My
contribution includes the creation of the DeepWaterFramework, a tool designed to automate es-
sential ML pipeline processes like execution, hyperparameter optimization, and evaluation across
distributed systems [14]. This framework has played a crucial role in our research, facilitating the
development and comparison of various ML approaches to software security, demonstrating ML’s
potential in enhancing automated analysis and the development of more proactive and robust
security measures.

Further exploration into machine learning’s application in software security reveals its effec-
tiveness in understanding and representing the complex patterns within software systems, such
as through source code embedding. This technique, crucial for ML applications, converts code
into numerical representations that capture semantic relationships. By employing algorithms like
Doc2Vec to analyze these representations, ML models can proactively predict vulnerabilities, al-
lowing for early intervention. Our research has specifically applied Doc2Vec to Java source code,
producing numerical vectors that reveal semantic patterns and predict potential bugs, showcas-
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ing ML’s capacity to improve vulnerability detection and contribute to the development of safer
software systems [6].

Acknowledging the growing trend of software vulnerabilities highlights the importance of
early detection approach, especially at commit time—when code is ready for sharing but not
yet fully integrated. The Just-In-Time (JIT) vulnerability prediction strategy emphasizes the
need for timely and proactive security assessments. A key part of JIT prediction is effectively
representing code changes through commit representations, analyzing the changes made during
commits. Despite challenges due to a lack of datasets for vulnerability-contributing commits, our
research introduces a method to generate such datasets from existing fixing commit datasets [4].
By enhancing the SZZ algorithm with a relevance-based filtering process, we’ve created a dataset
focused on Java vulnerabilities, aiding in the development of JIT vulnerability detection methods
and facilitating their evaluation.

In our studies on JIT vulnerability prediction, we identified a gap in methods that incorpo-
rate the structural information of source code, often encapsulated in forms like Abstract Syntax
Trees (ASTs). We introduced the Code Change Tree (CCT) structure, leveraging ASTs to create
a change tree that captures the structural differences at the AST level between the pre- and
post-commit states. Our approach was evaluated using machine learning models, with Doc2Vec
transforming tree structures into vectors [3]. To provide a more precise evaluation, in a compar-
ative study against CC2Vec and DeepJIT, we analyzed their performance in JIT vulnerability
prediction, their false positive rates, and the granularity of their predictions [5]. While CCT
provides customizable granularity, it demonstrated lower performance compared to CC2Vec and
DeepJIT, which showed stronger results in commit-level predictions, offering insights into the
trade-offs between granularity and predictive accuracy in different commit representation meth-
ods.

The thesis consists of four thesis points. In this booklet, we summarize the results of each
thesis point.

№ [6] [4] [3] [5]
I. ♦

II. ♦

III. ♦

IV. ♦

Table 1: Thesis contributions and supporting publications

I. Bug Prediction Using Source Code Embedding Based on
Doc2Vec

While crucial for ensuring software quality, detecting bugs remains a challenging task due to
the limitations of existing static code analysis tools. These tools often lack robustness due to
their reliance on predefined patterns. Machine learning offers a promising alternative by learning
patterns from vast amounts of data, potentially improving bug prediction. However, a critical
aspect of any machine learning approach is how it represents its input data. In the context
of software analysis, these features come directly from the source code itself, taking various
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forms like code metrics, sequences of functions or classes, and even entire programs. These
representations can differ in structure (tokens, statements, functions, etc.) and the form used
(text, abstract syntax tree, etc.). Given the importance of code representation in this field, this
thesis point explores the effectiveness of using features derived from the Abstract Syntax Tree
(AST) compared to solely relying on code metrics for bug prediction.

More precisely, we propose a bug prediction method using code embedding based on Doc2Vec [21],
a powerful tool for learning distributed document representations. Doc2Vec extends the well-
known Word2Vec algorithm, which learns word embeddings by considering the surrounding words
in a text corpus. Doc2Vec builds upon this concept by also learning a document vector, which
captures the semantic meaning of an entire document. In the context of this work, we treat
classes (including enumerations and interfaces) as the fundamental unit, generating sequences
of tokens from them. These class sequences are then treated as documents within a Doc2Vec
model, with individual tokens acting as words within the document. Doc2Vec generates a fixed-
size vector representation for each class, which can then be used as features for bug prediction
tasks.

Our experimentation involves utilizing different Doc2Vec parameterizations. The generated
vectors are then used for bug prediction in two ways:

• Standalone Features: The vectors are directly used as input features for machine learning
models.

• Combined Features: The vectors are combined with traditional code metrics to form a
comprehensive feature set.

To capture the structural information of the source code, we leverage the Abstract Syntax
Tree (AST) as an intermediate representation. We traverse the AST in depth-first order, adding
the type of each encountered node (e.g., class definition, variable usage) to a sequence. To account
for scope changes within the code, we introduce a constant value to the sequence whenever a
step back occurs in the tree traversal. This helps differentiate code blocks within distinct scopes
(e.g., if statements).

Our decision to employ Doc2Vec stems from two key considerations. Firstly, we can con-
ceptually view classes as "paragraphs" and their code elements as "words." Secondly, Doc2Vec
outputs fixed-length vectors, simplifying their integration with various machine learning models.
To evaluate this approach we used the Unified Bug Dataset [13], an extensive compilation of Java
code bugs, to assess the efficiency of employing Doc2Vec for code embedding in bug prediction.
This dataset contains various sources, providing a collection of bugs associated with different lev-
els of source code. It focuses on classes, interfaces, and enumerations, encompassing the analysis
of 48,719 entities, with 8,242 identified as faulty.

To update and augment our code metrics, we utilized the OpenStaticAnalyzer toolset [8],
incorporating established software metrics such as Lines of Code (LOC), Number of Methods
(NM), and more. Also, the Deep Water Framework (DWF) [14] played a crucial role in our ex-
perimental endeavors, which included experimenting with different Doc2Vec parameterizations
and various machine learning models. Our model array featured traditional algorithms such as
Random Forest, Decision Trees, K-Nearest Neighbour (KNN), Support Vector Machines (SVM),
Naive Bayes, Linear Classifier, Logistic Regression, alongside two neural network architectures:
Standard Deep Neural Network (SDNNC) and Custom Deep Neural Network (CDNNC). We also
employed a 10-fold cross-validation and implemented preprocessing strategies like data binariza-
tion, standardization, and upsampling.
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Table 2: Comparison of different machine learning methods with the same embedding (values
are F-scores)

Model name Embedding Code metrics Combined
Bayes 0.301 0.325 0.325
Linear 0.298 0.401 0.418
Logistic 0.311 0.412 0.430
Tree 0.374 0.475 0.461
Random Forest 0.423 0.515 0.522
CDNNC 0.451 0.474 0.502
SDNNC 0.467 0.520 0.533
KNN 0.463 0.502 0.524

Based on the results shown in Table 2, our findings indicate that although Doc2Vec embed-
dings perform comparably to traditional code metrics, the latter slightly outperform in general.
No single Doc2Vec setting emerged as universally optimal across all machine learning models,
underscoring the need for customized parameter tuning. When combining Doc2Vec embeddings
with code metrics, the results consistently improved, suggesting that the embeddings add valu-
able semantic information missing from code metrics alone. This synergy between source code
embeddings and code metrics not only enhances bug prediction accuracy but also confirms that
Doc2Vec provides important insights into the data.

The replication package with the dataset generated for bug prediction is available: http:
//doi.org/10.5281/zenodo.4724941

The Author’s Contributions
The author took part in defining the source code embedding methodology. He performed the
model training and hyperparameter tuning. He designed the model evaluation scheme. The au-
thor performed dimension reduction on some source code examples to showcase the embedding’s
effectiveness. He ran the static analysis tool on the database entries to generate the source code
metrics.

♦ Tamás Aladics, Judit Jász, Rudolf Ferenc. Bug Prediction Using Source Code Embed-
ding Based on Doc2Vec. Computational Science and Its Applications 21st International
Conference (ICCSA 2021), Cagliari, Italy, September 13-16, 2021, Proceedings, Part VII,
volume 12955 of Lecture Notes in Computer Science, pages 382–397. Springer, 2021.
https://link.springer.com/chapter/10.1007/978-3-030-87007-2_27

II. A Vulnerability Introducing Commit Dataset for Java:
an Improved SZZ Based Approach

Software vulnerabilities pose a significant and growing threat to software security. Machine
learning techniques are increasingly being applied to software engineering tasks, such as qual-
ity assurance, to address these challenges. The success of these techniques heavily depends
on the availability of suitable datasets for training and evaluation. While datasets containing
vulnerability-fixing commits (VFC) can be found, datasets focusing on the commits that intro-
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duced the vulnerabilities (VIC) are far less common. This scarcity limits research on critical
tasks such as just-in-time vulnerability detection and localization [7, 12, 22].

Existing vulnerability-fixing datasets often build upon publicly disclosed vulnerability databases
like the Common Vulnerabilities and Exposures (CVE) [1] and the National Vulnerability Database
(NVD) [10]. These resources typically include details about the vulnerability and may also offer
links to the relevant fixing patches. Despite the availability of VFC datasets, pinpointing the
corresponding commits that originally introduced these vulnerabilities remains a complex chal-
lenge. Current attempts to automate this process often involve heuristics and may not be easily
scalable.

To address this problem, we propose a two-phase methodology for systematically generating
VIC datasets from readily available VFC datasets:

• Phase 1: Initial Candidate Identification At the core of our approach lies a refined
variant of the SZZ algorithm, known as SZZ Unleashed [11]. SZZ-based algorithms excel at
tracing lines in a vulnerability-fixing commit (VFC) back through the repository’s history to
pinpoint commits that potentially introduced the flawed code. By applying SZZ Unleashed
to VFCs in existing datasets, we obtain an initial set of candidate VICs.

• Phase 2: Filtering and Relevance Scoring Due to the inherent breadth of SZZ-like
algorithms, their raw output often includes false positives and lacks a clear ranking of the
candidate VICs’ relevance. To mitigate these issues, we implement a filtering phase that
assigns a ‘relevance score‘ to each candidate VIC. This score quantifies the degree to which
the VIC’s changes correlate with the modifications performed in the corresponding VFC,
providing a metric for prioritization.

The ‘relevance score‘ calculation is a pivotal component of our method. For each candidate
VIC, we iterate over its modified files, seeking corresponding files in the associated VFC. If a
match is found, we compute a ‘contribution score‘ that blends two factors:

• File Similarity: We measure the similarity between the corresponding files in the VIC and
VFC, such as the proportion of identical lines, excluding whitespace for robustness.

• Base Score: We estimate the relative importance of the file within the VFC’s modifications
by calculating the ratio of changed lines in that file to the total number of changes made in
the VFC. This way, files with more involvement in the fix are assigned higher ‘base scores‘.

The final ‘relevance score‘ for a VIC is the sum of ‘contribution scores‘ for all its files that
have counterparts in the VFC. This score provides a nuanced indicator of the VIC’s potential
for being a true vulnerability-introducing commit.

To showcase the practicality of our method, we developed the tools BugIntroducerMiner and
FilterBugIntroducer. These tools were used to extract a novel Java vulnerability-introducing
commit (VIC) dataset from the project-KB database. This dataset, containing 564 VFC entries
with at most two but at least one VIC assigned to each, offers valuable resources for security
research. Notably, our method significantly refines the raw SZZ output, reducing the range of
VIC entries per VFC from 1-700 to a more manageable number. During the generation process,
over 110,000 files from 198 open-source projects were considered.

The dataset and assisting tools are available: https://doi.org/10.5281/zenodo.5785239

5

https://doi.org/10.5281/zenodo.5785239


The Author’s Contributions
The author took part in exploring and reviewing the related work. He participated in designing
the methodology. He recognized the need for the second, filtering phase. The author defined
the relevance score. The author participated in investigating the available SZZ implementations
and setting the needed environment up. He was the developer of the tool that generates the
vulnerability-introducing dataset. He took part in evaluating and interpreting the results.

♦ Tamás Aladics, Péter Hegedűs, Rudolf Ferenc. A Vulnerability Introducing Commit
Dataset for Java: An Improved SZZ based Approach. In Proceedings of the 17th Interna-
tional Conference on Software Technologies - ICSOFT, pages 68–78. INSTICC, SciTePress,
2022.
https://www.scitepress.org/Link.aspx?doi=10.5220/0011275200003266

III. An AST-based Code Change Representation and its
Performance in Just-in-time Vulnerability Prediction

The escalating number of software vulnerabilities presents a critical challenge for software secu-
rity. The rapid increase in vulnerabilities, highlighted by a 50% rise in open-source vulnerabilities
in 2020 alone [19], underscores the urgency of this issue. Just-in-time (JIT) vulnerability pre-
diction aims to address this challenge by detecting vulnerabilities as soon as they are introduced
into the codebase. This proactive approach offers the potential to minimize security risks and
reduce the costs associated with later remediation.

Traditional vulnerability prediction models (VPMs) often rely on static analysis tools and soft-
ware metrics. However, these techniques can be limited by scalability issues, high false-positive
rates, and difficulty in adapting to new vulnerability patterns [18][9][25]. Machine learning (ML)
presents a promising alternative, but its success depends heavily on the quality and representa-
tion of the data used for training. A fundamental challenge in JIT vulnerability prediction lies in
effectively representing the differences between pre-commit and post-commit code states. Recent
research suggests that existing metrics and textual features may not fully capture the nuances
of these changes [23]. This motivates the need for novel code change representation techniques
that can better inform machine learning models for vulnerability prediction.

In this thesis point, we present a novel approach for representing source code changes called
Code Change Tree (CCT). CCTs are designed to effectively represent source code changes for
just-in-time (JIT) vulnerability prediction, and their construction involves several steps. First,
Abstract Syntax Trees (ASTs) are generated for both the before-change (Spre) and after-change
(Spost) code states. Each AST is then transformed into a set of unique root-to-leaf paths, outlining
the code’s hierarchical structure. Next, root-paths from Spre that are identical to those in Spost

are discarded, retaining the changes made. The remaining, non-identical root-paths form the
Code Change Tree, effectively representing the structural alterations.

A crucial aspect of CCTs is the node identification used within ASTs. This scheme considers
node type, value, and contextual information (position within the AST) to enable meaningful
comparisons even across different ASTs. Additionally, CCTs are flexible in terms of granularity
– they can potentially represent changes at various levels (statement, method, class, etc.) since
the method works with any AST-possessing code element.

To integrate CCT representations (and similarly, simple AST representations) with machine
learning models, we employ Doc2Vec embedding. A Doc2Vec model is trained on a large corpus
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Table 3: Results of different source code embedding approaches (F1-score)

Random Guesser 20%
Adaboost CDNNC Forest KNN Logistic SDNNC Tree Average

Metrics 37% 32% 38% 38% 19% 29% 37% 33%
Simple 41% 40% 42% 47% 30% 44% 40% 41%
Change Tree 41% 44% 43% 43% 38% 44% 42% 42%

of Java methods to learn Java-specific semantics. This model then transforms the flattened CCTs
(and flattened ASTs in the simpler method) into fixed-length vectors, making them suitable for
machine learning input.

In summary, we explore three code change representation methods:

• Metric-Based: Software metrics are calculated for functions involved in the change and
concatenated for Spre and Spost.

• Simple Code Change: ASTs are generated for Spre and Spost, then flattened into token
sequences and concatenated.

• Code Change Tree (CCT): Root-to-leaf paths are extracted from each AST. Changes in
Spre relative to Spost are identified via root-path differences, forming the Code Change Tree.
We employ a specific node identification scheme for cross-AST comparisons.

For evaluation, we utilize our previously generated SZZ-based vulnerability-introducing com-
mit (VIC) dataset [4]. This dataset was derived from the project-KB VFC database through
SZZ candidate identification followed by relevance score based filtering.

Our experiments demonstrate the strengths of Code Change Trees (CCTs) as a method for
representing code changes. The advantage of AST based representation forms over metrics based
is evident as there is at least 8% increase in average F1-score. This finding further supports that
AST based representations capture (most likely structural) information uncaught by metrics.
A not that substantial, but still noticeable difference can be seen between the two AST based
approaches, as Code Change Tree performs better by nearly 2% (Table 3). This underscores the
importance of capturing structural changes – a key strength of CCTs that extends beyond the
information provided by metrics or simple AST flattening.

Furthermore, CCTs significantly reduced the average size of code change representations
compared to the Simple Code Change method. On our dataset of 59,340 functions, CCTs had
an average node count of 51 compared to 174 nodes for the Simple Change representation – a
reduction of over 70%. This highlights CCTs’ ability to isolate the most crucial aspects of a
change, benefiting downstream machine learning tasks. We believe this efficiency stems from
CCTs’ focus on changes, discarding unchanged code paths that are irrelevant to the change.

The combination of improved accuracy and compact representation makes CCTs a promising
choice for vulnerability detection. Their ability to focus on the core elements of a code change
could significantly enhance the speed and reliability of just-in-time vulnerability prediction sys-
tems.

The Author’s Contributions
The author took part in the related literature’s review. The designing of the methodology was
also mainly the author’s work. He defined and implemented the other code representations. The
author set up and run the models’ training and hyperparameter tuning environment (DeepWa-
terFramework). He participated in evaluating and interpreting the results.
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♦ Tamás Aladics, Péter Hegedűs, and Rudolf Ferenc. An AST-based Code Change Rep-
resentation and its Performance in Just-in-time Vulnerability Prediction. Software Tech-
nologies, pages 169–186, Cham, 2023. Springer Nature Switzerland.
https://link.springer.com/chapter/10.1007/978-3-031-37231-5_8

IV. Assessment of Commit Representations for Just-in-
time Vulnerability Prediction

The increasing complexity and interconnectedness of software systems lead to a rise in soft-
ware vulnerabilities, posing a significant threat. This trend is evident in Tenable’s 2021 report,
which highlights a substantial increase in reported CVEs [2]. To mitigate these vulnerabilities,
early identification during the development process is crucial. Just-in-time (JIT) vulnerability
prediction at the time of code commits offers a timely solution [16].

Commits contain valuable information for vulnerability analysis, including bug fixes, feature
additions, code refactoring, and metadata. However, manual analysis of these commits is a
daunting and error-prone task, especially in large-scale projects [25]. Machine learning approaches
offer a promising alternative for automatic vulnerable commit identification [17].

A critical aspect of these approaches is commit representation – capturing commit information
in a way suitable for machine learning algorithms. Representations often rely on commit messages
[30], code changes (patches) [24], or a combination of both [15, 16]. Some even incorporate code
metrics to supplement commit metadata [26].

Source code representations can take various forms, including raw text, intermediate repre-
sentations (e.g., ASTs), or derived code metrics. Granularity is also key – affecting representation
usability – and can range from the entire commit down to individual lines. This thesis point
aims to provide an comparative study of these factors in commit representation by comparing
three distinct approaches: CC2Vec, DeepJIT, and a Code Change Tree-based representation:

• DeepJIT [16] analyzes code changes by processing commit messages and corresponding
code using convolutional neural networks (CNNs). It embeds raw textual data into arrays
and employs two dedicated CNNs to extract relevant features – one for commit messages
and another for code changes. The resulting vectors are aggregated to produce a final
representation for the commit.

• CC2Vec [15] learns vector representations of code changes in patches. It uses a hierarchical
attention network (HAN) to construct vector representations of removed and added code
within a given patch. Comparison functions produce features representing the relationship
between removed and added code, which are subsequently concatenated to form the final
vector representation for the code change in a patch.

• Code Change Tree (CCT) [4] is a novel structure introduced in thesis point III, designed
to represent differences between two states of source code at a structural level, utilizing
Abstract Syntax Trees (ASTs).

We employed two datasets for this study. The first is a Project-KB derived dataset [27]
containing vulnerability entries associated with CVE identifiers, which we showed in thesis point
III. The second dataset, Defectors, required only minor refinements. Both datasets share a similar
structure – commit SHA, repository identifier, filepath, and vulnerability labels – facilitating
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Table 4: The performance measured by various metrics for each model, averaged over a tenfold
cross-validation process for ProjectKB and evaluated on the test set for the Defectors dataset.

Dataset Model Accuracy F1 F0.5 F2 Precision Recall

ProjectKB

DeepJIT 0.74 0.47 0.41 0.56 0.38 0.64
CC2Vec 0.59 0.37 0.3 0.51 0.32 0.64

CCT + RF 0.7 0.33 0.3 0.37 0.29 0.4
Baseline 0.65 0.22 0.22 0.22 0.22 0.22
DeepJIT 0.71 0.35 0.27 0.47 0.24 0.63
CC2Vec 0.75 0.39 0.31 0.50 0.28 0.63

CCT + LSTM 0.66 0.3 0.23 0.42 0.20 0.58Defectors

Baseline 0.78 0.13 0.13 0.13 0.13 0.13

vulnerability analysis. To assess model performance on these imbalanced datasets, we used
various metrics including accuracy, precision, recall, and F-scores (F1, F2, F0.5).

Due to the architectural differences of these models, specific preprocessing was necessary to
tailor the inputs appropriately. We used the implementations by the authors for DeepJIT 1 and
CC2Vec 2 where possible, while for the CCT model, we implemented the following steps:

• Project-KB dataset: We extracted altered functions for method-level analysis. Constructed
CCTs were flattened and embedded using Doc2Vec. A random forest model was trained
and evaluated on these vectors to determine method-level vulnerability. A commit was
labeled as vulnerable if any changed method in it was predicted as vulnerable.

• Defectors dataset: Due to size, the method-mining process was computationally too expen-
sive. For this reason, we opted for a high-level granularity and trained word embeddings
for flattened trees. These were fed into a bidirectional LSTM layer followed by a dense
layer with a sigmoid activation function to yield vulnerability probability.

Our experimental findings can be seen in Table 4. Our results indicate that commit repre-
sentations can be helpful for just-in-time (JIT) vulnerability prediction, but their effectiveness
varies depending on the specific use case. While all the investigated models (DeepJIT, CC2Vec,
and CCT) outperform the simple baseline classifier, the degree of improvement depends on the
relative importance of false positives and false negatives, which we measure by using different
F-scores: F2 score is a good indicator in cases where false negatives are costly, and similarly F0.5 is
a good indicator when false positives are focused. Based on the corresponding F0.5 and F2 scores
in Table 4. When the priority is minimizing false negatives (high recall), these representations
show significant promise. However, for use cases where minimizing false positives is crucial (high
precision), their performance is less impressive.

The CCT-based model, despite having slightly lower overall performance, stands out when a
more localized vulnerability prediction is needed. Due to its customizable granularity, it offers the
flexibility to pinpoint vulnerable methods within code changes. This makes it a valuable option
in scenarios where precision is prioritized and a finer-grained vulnerability analysis is desired.

1https://github.com/soarsmu/DeepJIT
2https://github.com/CC2Vec/CC2Vec
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The Author’s Contributions
The author performed the literature review and selected the candidate models. He also col-
lected and filtered the candidate datasets that was used in the evaluation. The methodology
was designed incorporating contributions from the author. He implemented and tailored the
Code Change Tree model for both Defectors and Project-KB datasets. He set up and ran the
independent models (DeepJIT and CC2Vec) based on their official repositories. The author took
part in interpreting and presenting the results.

♦ Tamás Aladics, Péter Hegedűs, and Rudolf Ferenc. A Comparative Study of Commit
Representations for JIT Vulnerability Prediction. Computers 13, no. 1: 22.
https://doi.org/10.3390/computers13010022

Summary
In this thesis, we covered four topics regarding improving software quality and security using
machine learning approaches. The covered topics include the introduction of a source code em-
bedding method for Java, describing a novel way of generating vulnerability introducing datasets,
discussing source code change embeddings and proposing a new approach, and finally, giving in-
sight to the just-in-time scene of vulnerability detection through a comparative study.

First, we designed a source code embedding algorithm that is aimed to store the structural
information of source code by leveraging it’s Abstract Syntax Tree (AST). For a source code
entry, we flattened the corresponding AST by traversing it in a depth-first manner, and trained
a Doc2Vec model to get a fixed length vector. To validate this approach’s effectiveness on the
defect prediction task, we compared several machine learning models on a dataset of defective
and defect-free source code.

Going forward, as we delved deeper into the subject of software defect prediction we noticed
the scarcity of vulnerability introducing datasets - datasets with it’s entries being commits that
contributed to a vulnerability. To remedy this issue, we proposed a novel way of generating
vulnerability introducing commit datasets from vulnerability fixing datasets by employing a two-
phase method. In the first phase we generate a number of candidate commits, and in the second
we perform a relevance-score based filtering to reduce the number of false positives. Using this
method we created and shared a new dataset that we used in our other works.

In commit representation, we aimed to provide an approach to capture the differences between
two states of source code, focusing on structural information. To this end, we designed Code
Change Tree, a specific structure that retains only the changes between to ASTs. This approach
is applied on the method level and compared to a source code metric based and a simple code
change approach. The former is based on metrics calculated by static analysis tools and the
latter is based on the entire pre and post commit states’ ASTs - as opposed to Code Change
Trees, which contain only the changes. For this comparison we used the dataset generated in
our previous work and came to the conclusion that Code Change Trees effectively improve the
performance over the contending two methods.

Finally, in JIT vulnerability models, we gave insight to the current state of commit-time vul-
nerability prediction. In our work, we studied three distinct approaches: CC2Vec, a hierarchical
attention network, DeepJIT, a deep neural network based on convolutional layers and finally
Code Change Trees. We compared these methods on two datasets: the modest sized dataset for
Java that we introduced in prior work and a larger, recently published dataset for Python called
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Defectors. Our results show that while the CC2Vec and DeepJIT work with greater predictive
efficiency, Code Change Tree is more flexible and can be applied for more localized predictions
(such and file or method level).
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