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Introduction

The thesis discusses human population surveys within the framework of finite population samples
and presents approaches to improve the quality of estimates. It makes contributions to the fields of
mathematical statistics and survey methodology by summarizing the mathematical foundations of
human population surveys and proposing new methods for handling the two most pressing aspects:
uncertainty in the sample composition and uncertainty in the measurement. The thesis presents
theoretical approaches, an evaluation of a specific survey experiment, and simulations.

Survey statistics is an applied field of mathematical statistics, where data are obtained from
questionnaire (survey) data collections. Within the field of survey statistics, human population
surveys are data collections where the observed units are individuals. Sample surveys from human
populations play a crucial role in providing a large portion of quantitative data about our economy
and society. National statistical agencies frequently release estimates for various indicators, includ-
ing unemployment rates, poverty rates, crop production, retail sales, and median family income.
Although some statistics may be derived from complete enumerations (censuses), the majority are
derived from samples taken from the relevant population [1]. In recent times, there has been a
decrease in the precision of survey estimates. This is particularly evident in election forecasts, as
they are one of the rare instances where the previously estimated population parameter becomes
known. The prominent role of human population surveys and the quality concerns of data have
made the statistical evaluation and development of survey-type data collections increasingly rel-
evant. The thesis is a pioneering one as it aims to summarize the mathematical foundations of
human population surveys and propose new approaches to improve the quality of estimates derived
from human samples and responses. The thesis presents both theoretical and empirical findings of
the author.

The thesis first outlines the background of human population surveys. We introduce the
history of the field and highlight how this method developed within mathematical statistics, as
well as show the relevance and magnitude of sample surveys. This thesis also outlines the current
challenges of human population surveys and presents the main motivation to analyze uncertainties
in sample composition and measurement.

We introduce the mathematical foundations with the relevant sampling methods and we show
how sample survey theory can be dealt with within general statistical theory. Since in human
population surveys, the observed units are individuals, the experiment results in errors and biases
that are difficult to manage. Quality control in survey sampling, in general, is presented based
on the total survey error (TSE) framework. Errors and biases are also categorized based on
mathematical and non-mathematical factors.

We present a new allocation mechanism to handle errors in sample composition. The mech-
anism takes into account the expected response rates (ERRs). The relative performance of the
ERR allocation is assessed by comparing the variances in the resulting estimates. Asymptotic
variances are calculated using the δ-method and then initially compared by assuming correctly
specified response rates. Variance comparison is made in terms of misspecified response rates and
the results of an extensive evaluation using various combinations of specific population parameters
are presented.

We also introduce a new scheme that investigates nonresponse and measurement uncertainties
through replication surveys. We present how the general concept of assessing errors and biases can
be reconsidered when comparing results with previous surveys. Our approach defines uncertain-
ties regarding sample composition and measurement and decomposes total differences in theory
as well as based on a case study. The main results are that the total uncertainty can be decom-
posed exclusively into nonresponse and measurement uncertainties. Measurement uncertainty is
more relevant than nonresponse uncertainty. The respondents are generally inconsistent in their
responses at the individual level, which implies uncertainties in the measurements.

Backgrounds

In the context of questionnaire surveys, individuals, or households are observed, which introduce
human elements into the experiment. This means that the outcome of the experiment is not solely
determined by the sampling procedure, but also influenced by factors such as whether the selected
individuals are actually contacted, their willingness to respond to the survey, and to provide certain
information, as well as the accuracy of the information they provide. These factors introduce both
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random errors and specific biases in the estimation of population parameters, and the combination
of these errors and biases has an impact on the precision of the collected data.

One of these errors is unit-nonresponse, which refers to the discrepancy between the sample and
the set of respondents, which is successfully observed [2]. It arises when individuals either cannot
be contacted or choose not to participate in the survey, thus it can be related to the response rate.
There is a consensus among survey researchers [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 3] that response
rates are declining (i.e. nonresponse rates are increasing). Nonresponse can seriously distort the
results and even lead to incorrect conclusions. Previous field experiences and the analysis of current
survey meta-data indicate that the overall increase in survey nonresponse does not equally apply
to different population subgroups [13, 15]. It has been found that single-person households, renters
and individuals outside of the labour force are less likely to participate in surveys than members
of other social groups [16, 13].

Measurement error is another highly relevant source of errors, which refers to the discrepancy
between the ideal measurement and the actual responses obtained [2]. Measurement errors are even
present in censuses, where theoretically the entire population is measured. It encompasses various
factors, including interviewer effects, systematic errors, and random errors [17]. Measurement error
occurs when the recorded or observed value deviates from the true value of the variable [18]. Several
factors contribute to this disparity, such as the unclear or misleading phrasing of the questions and
the context of the preceding questions [19]. Other important factors include changes in the mental
state of the respondent, inconsistencies in their answers, social desirability, and the concealment of
the true answer. For example, respondents may provide an answer that aligns with the perceived
norm rather than their actual opinion due to socially desirable behavior or yea-saying [20].

Results

First, the thesis proposes a new sampling allocation method to handle unit-nonresponse. This
new method allocates sample sizes in stratified sampling designs based on expected response rates
(ERRs). To be able to determine the exact proportions during the allocation procedure, estimates
regarding response rates from previous surveys are needed. In the case of unit-nonresponse, the
contact data (or survey meta-data) are typically not available publicly, but survey organizations
can use their own historical data.

Generally, the proportional-to-stratum size (PS) allocation method [21] is used, thus the ERRs
allocation is assessed relative to the PS allocation procedure.

In the case of PS allocation, let N denote the population size and let Nh (h = 1, 2, . . . ,H), be
the sizes of the strata relevant to the stratified sampling procedure, with N = N1 + ... + NH . In
a stratified random sample, a simple random sample of nh elements is taken from each stratum h
(h = 1, 2, ...,H), with a total sample size of n elements.

When the survey aims to collect m responses, the response rate which characterizes the pop-
ulation needs to be taken into account in deciding about the attempted sample size. Of course,
such decisions should be made based on the true response rate, but it is rarely known. Thus, the
ERR, say r, is used which is based on former experience. Then, a total of n = m/r observations
are allocated.

In the case of allocation proportional to size (PS), let nPSh (h = 1, 2, ...,H) denote the sub-
sample size within stratum h. The sampling fraction nPSh /Nh is specified to be the same for each
stratum and thus

nPSh =
1

r

Nh
N
m h=1,...,H , (1)

which implies that the overall sampling fraction n/N is the same as the fraction taken from each
stratum. The total allocated sample size is then as follows:

nPS = m

H∑
h=1

Nh
N

1

r
=
m

r
(2)

In the case of ERR allocation, let nERRh (h = 1, 2, ...,H) denote the allocated subsample
size within stratum h. Let rh (h = 1, 2, ...,H) denote the stratum-specific ERRs, which are also
assumed to be population parameters. Clearly,

3



r =

H∑
h=1

rhNh
N

.

In ERR allocation, the allocated sample size in each stratum nERRh is specified using, instead of
the population level ERR, the stratum-specific ERRs. The allocated sample size in each stratum
is

nERRh =
1

rh

Nh
N
m h=1,...,H. (3)

Consequently, the total allocated sample size is

nERR = m

H∑
h=1

Nh
N

1

rh
. (4)

Theorem 1 (Variance of the estimates). Let the population size be N , and let the population
be divided into H strata of respective sizes of Nh, (h = 1, ..,H). Let m be the intended total
sample size, r the ERR in the entire population and rh the respective ERRs in the strata. The true
population proportion of those possessing the characteristics of interest is denoted by qh, which is
the parameter to be estimated in each stratum h. Finally, let ph be the true response rate in stratum
h. Then, the asymptotic variances of the estimates obtained from samples based on PS and ERRs
allocations, with post-stratification applied, are as follows.

V PS(q̂) =
1

Nm

H∑
h=1

Nhqh(1− qh)
r

ph
(5)

V ERR(q̂) =
1

Nm

H∑
h=1

Nhqh(1− qh)
rh
ph

(6)

Theorem 2 (Relationships among the variances). Let V̂ PS(q̂) be the total variance of the estimates
based on a sample drawn via the PS allocation given in (5), and let V̂ ERR(q̂) be the total variance
of the estimates based on a sample drawn by the allocation based on different ERRs, as given in
(6). If the observed response rates are equal to the ERRs, then,

V̂ ERR(q̂) ≤ V̂ PS(q̂) (7)

We compared the ERRs and PS allocation methods under misspecification that is, when the true
response rates differ from the ERRs used in the sample allocation (ph 6= rh). The variances
were compared for all combinations of parameter values with a fixed number of strata, H = 3.
Specifically, all possible combinations of the following parameter values were considered: all possible
combinations of the values

{
0.1, 0.3, 0.5, 0.7, 0.9

}
for the true response rates

{
p1, p2, p3

}
and for

the ERRs
{
r1, r2, r3

}
. The parameter to be estimated in every stratum h (h = 1, 2, 3) was given

values between 0 and 1, with an increment of 0.05. The size of the population N = 107,the sizes of
the strata N1 = 2∗106, N2 = 3∗106, N3 = 5∗106, and the desired total sample size m = 1000 were
fixed. With the different choices, a total of 15.625.000 different sets of parameters were defined.

Figure 1 shows the comparison of the variances of the estimates obtained using ERRs and PS
allocations. The comparison is given in terms of the total absolute misspecification of the response
rates,

∑H
h=1 |rh−ph| (x-axis) and of the total absolute distance of the ERRs

{
r1, r2, r3

}
from their

weighted average,
∑H
h=1 |rh − r| (y-axis).
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Figure 1: Comparison of the variances in the estimates obtained using ERR and PS allocations, in terms of the
total absolute misspecification of the response rates (x-axis:

∑H
h=1 |rh − ph|) and the total absolute distance of the

ERRs from one weighted average (y-axis:
∑H

h=1 |rh − r|).
Source: Own figure.

The results regarding the new allocation mechanism are as follows:

• The magnitude of the misspecification of the response rates appeared to have a greater impact
on the relative performances of the two allocation procedures.

• When the total absolute misspecfication was less than 0.3, the ERR allocation almost always
performed better.

• Meanwhile, the total absolute distance of the ERRs from their weighted average appears to
have had a small and non-systematic effect.

• When the total absolute misspecification of the response rates was lower than 0.3, the ERR
allocation yielded mostly smaller variances.

• Meanwhile, in the range of 0.3− 0.4, the two allocations performed equally well.

• Most notably, an equal precision can be expected in the extreme areas of the plot.

• When the difference between the total absolute deviations of the expected rates and the
ERRs was less than approximately half of the latter, the ERR allocation always performed
better, irrespective of whether or not the individual response rates were correctly predicted.

Second, the thesis introduce a new scheme for assessing survey uncertainties with a special focus
on measurement problems. Our approach models the precision of the values found in a survey
compared to a potential replication of the survey. We define nonresponse uncertainty (NU) and
measurement uncertainty (MU), which refer to the sources of difference between two replications
of surveys and can be linked to nonresponse and measurement error in the total survey error
framework. Unlike general methods that assess the reliability and validity of a given question,
this new scheme assesses the uncertainties of the survey as a whole. Instead of an illusion of a
true population parameter, our method addresses the issue of survey quality through replication
surveys.

In this chapter, we formally show the decomposition of the total difference of the answers from
two replications of a survey. We consider the cases of continuous variables by decomposing the
mean, and correlation coefficient, and discrete variables by decomposing the relative frequency of
the ith category, and χ2-test statistics for independence. In the following, we present NU and MU
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in the joint attempted sample of potential first and second replications of a survey. The following
notations are used for different groups of answers (Figure 2): set A denotes the answers of the
total completed sample of the first replication of a survey, set B concerns the answers of the total
completed sample of the second replication of a survey, set C denotes the answers of the group of
those who responded only to the first replication of a survey, and set D denotes the answers of
those who responded only to the second replication of a survey. Sets E and F refer to answers
from those, who responded to both replications. Set E concerns the answers of the first survey,
and set F concerns the answers of the second survey.

Figure 2: Different groups of answers in replication surveys

Source: Own figure.

NU depends on whether individuals who respond to the first replication of a survey give different
answers from those who respond to the second replication of a survey, and thus NU captures
the uncertainty of the base of responders/non-responders. Since there are respondents who did
not participate in either replication of a survey and are therefore not included in this analysis, a
particular kind of NU is studied: only in relation to the two replications of the survey. MU is the
difference between the answers of the two replications of a survey from the same respondents. MU
is defined both at the individual/respondent level and at the sample level. If MU occurs, there
is an observation gap between the answers obtained in the first replication of a survey and the
answers obtained in the second replication of a survey. Theorems 3 - 6 includes the decompositions
of the mean, correlation coefficient, relative frequency of the ith category of a discrete variable,
and χ2-test statistics for independence between two discrete variables.

Theorem 3 (Decomposition of the total difference of the mean). Let X denote a variable measured
in both replications and X̄A, X̄B , X̄C , X̄D, X̄E , X̄F be the mean of X in sets A − F respectively.
Let mA,mB ,mC ,mD,mE, and mF denote the sample sizes for each set, respectively. The decom-
position of the difference of X̄ between the first and second replications of a survey can be written
as the weighted average of the differences between sets C and D and the weighted average of the
differences between sets E and F. The decomposition of the difference is:

X̄A − X̄B =
mC +mD

mA +mB

(
X̄C − X̄D

)
+
mE +mF

mA +mB

(
X̄E − X̄F

)
, (8)

where X̄C − X̄D is the NU and X̄E − X̄F is the MU.
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Theorem 4 (Decomposition of the total difference of the correlation coefficient). Let X and Y
denote two variables measured in both replications and let r(X,Y )A, r(X,Y )B , r(X,Y )C , r(X,Y )D,
r(X,Y )E , r(X,Y )F be the correlation coefficients of X and Y in sets A–F , respectively. The
decomposition of the difference of r(X,Y ) between the first and the second replications is obtained
as the weighted average of the Fisher’s z-scores [22] of the differences between set C and set D and
the difference between sets E and F . The Fisher’s z-transformed correlation coefficients are denoted
by r′(X,Y )A, r′(X,Y )B, r′(X,Y )C , r′(X,Y )D, r′(X,Y )E, r′(X,Y )F in sets A–F , respectively.
Following the standard Fisher’s z-score method in Alexander (1990), the decomposition of the
difference is:

r(X,Y )A − r(X,Y )B =
mC +mD

mA +mB
(r′(X,Y )C − r′(X,Y )D)

+
mE +mF

mA +mB
(r′(X,Y )E − r′(X,Y )F ) , (9)

where r′(X,Y )C − r′(X,Y )D is the NU and r′(X,Y )E − r′(X,Y )F is the MU.

Theorem 5 (Decomposition of the total difference in the relative frequency of the ith category).
Let giA, giB denote the relative frequencies in the two replications and let νiA, νiB , νiC , νiD, νiE ,
νiF , the number of cases of category i. The decomposition of the difference in the relative frequency
of a given category between the first and second replications is obtained as the weighted average of
the differences between set C and set D and the difference between sets E and F. The decomposition
of the difference is:

giA − giB =
mC +mD

mA +mB

(
νiC
mC
− νiD
mD

)
+
mE +mF

mA +mB

(
νiE
mE
− νiF
mF

)
, (10)

where
(
νiC
mC
− νiD

mD

)
is the NU and

(
νiE
mE
− νiF

mF

)
is the MU.

Theorem 6 (Decomposition of the total difference in the χ2-test statistics for the independence).
Let X and Y denote two variables measured in both replications, let r denote the number of response
categories of variable X and let ν denote the number of response categories of variable Y . The
observed frequencies of each cell (ij) in sets A−F are denoted with OijA , OijB , OijC , OijD , OijE ,
OijF , respectively and the expected frequencies of each ij cell are denoted with EijA , EijB , EijC ,
EijD , EijE , EijF for all sets respectively. If identical marginal distributions are assumed for X and
Y , between sets C and E and sets D and F, the decomposition of the difference is:

χ2
A − χ2

B =

r∑
i=1

ν∑
j=1

([
1

EijC

(
O2
ijC − 2OijC

)
− 1

EijD

(
O2
ijD − 2OijD

)]
+[

1

EijC

(
O2
ijE − 2OijE

)
− 1

EijD

(
O2
ijF − 2OijF

)]
+[

1

EijC
(2OijCOijE )− 1

EijD
(2OijDOijF )

]
+[

1

EijE

(
O2
ijC − 2OijC

)
− 1

EijF

(
O2
ijD − 2OijD

)]
+[

1

EijE

(
O2
ijE − 2OijE

)
− 1

EijF

(
O2
ijF − 2OijF

)]
+[

1

EijE
(2OijCOijE )− 1

EijF
(2OijDOijF )

])
(11)

If identical marginal distributions are not assumed, the expected frequencies of set C + E and set
D+F cannot be given as a sum of the expected frequencies of the separate sets, but can be written

as EijC + EijE −
(
Oi·C
mC
− Oi·C+Oi·E

mC+mE

)
and EijD + EijF −

(
Oi·D
mD
− Oi·D+Oi·F

mD+mF

)
. In this case, the

decomposition of the difference of the χ2 test statistics becomes more complex, which will not be
discussed further in this chapter.
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It can be seen, that the total difference between the responses obtained in two replications of
a survey can be decomposed exclusively into NU and MU in the case of continuous variables
regarding the mean, and correlation coefficients, in the case of discrete variables regarding relative
frequency and the χ2-test statistics for independence. This means that if a survey is repeated, the
total difference is due to a change in the respondent base and to the different answers of those who
respond to both surveys.

The uncertainties are defined by comparing the answers of the first replication of the ESS
and the second replication of the ESS. In the following, we present NU and MU in the common
attempted sample of the first and second replications of the ESS (n = 3, 000). Figure 3 presents
the different sub-sets and their sample sizes in the replication of the ESS. Following the notations
presented previously the sets are as follows: set A denotes the answers of the total completed
sample of the first replication of the ESS, set B concerns the answers of the total completed
sample of the second replication of the ESS, set C denotes the answers of the group of those who
responded only to the first replication of the ESS, and set D denotes the answers of those who
responded only to the second replication of the ESS. Sets E and F refer to answers from those,
who responded to both replications. Set E concerns the answers of the first replication of the ESS,
and set F concerns the answers of the second replication of the ESS. Compared to Figure 2, Figure
3 is supplemented with the unsuccessful addresses in both replications of the ESS.

Figure 3: Different groups of answers and sample sizes in the replications of the ESS

Note: The columns on either side of the figure represent the two replications of the ESS in the same structure in which
the different groups of answers of replication surveys in general are presented in Figure 2

The thesis presents the comparison of four selected variables: level of education of the respondent,
level of education of the respondent’s mother, general trust, and religiousness At the sample level,
we find that between sets A and B and between C and D there are minor differences.

In the following, the difference is presented at the individual level. Even if there was a
short time between the two replications of the ESS, it is hard to exclude the real changes in the
answers. Out of the four variables under consideration, there are two factual variables for which the
probability of a real change is very low: the level of education and the mother’s level of education.
Since 20 months of time passed between the two replications of the survey, it is unlikely that a
respondent’s or the mother’s highest level of education would increase by one category (a category
covers an average of 4 years). Moreover, it is logically impossible for respondents or their mothers
to have a lower level of education a year and a half later.

Figure 4 presents the differences between the first and second answers relative to the answers
from the first replication of the ESS. If there were a real change in answers, the distributions of the
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difference would be skewed towards the high values (positive changes in the answers). It can be
seen that for each variable the distributions of the difference are symmetric. The figure also shows
that reporting of the unlikely or logically impossible changes in answers to education questions is
common not only for the full sample but also for the sub-sample of respondents over 45 years of
age (yellow charts), for whom a change in the highest level of education, and mother’s highest level
of education is even less likely due to advancing age. This underlines the fact that, although a
real change cannot be completely excluded, it can rather be said that the difference is mainly due
to MU. This uncertainty measured for factual variables is assumed to be present as large or even
larger volumes in the case of the attitude variables. The figure also shows that for each variable,
the mean of the difference (µ) is around 0.

Figure 4: Difference between first and second answers (set E − set F)

Source: Own figure.

In the case of general trust and religiousness, the RTM phenomena is presented from a different
perspective (Figure 5 and Figure 6). In the case of general trust, the mean is 4.54 and the mode
is value 5. In observing the RTM phenomenon the mean as the reference point to which the
observations may regress toward is considered to be 5. In Figure 5, the values on the x-axis
represents the first answers’ absolute difference from the mean value (0 represents value 5 as
answer) and the values on the y-axis represents the second answers’ absolute difference from the
mean value (0 represents value 5 as answer). The size of the bubbles represent the proportion of
the given pattern. It can be seen, that in the case of answers with a greater difference relative to
the mean value (values 3, 4, 5 on the x-axis) there is a higher share of those regression back towrd
the mean in the case of their second answers. In the case of religiousness, the mean is 4.02 and the
mode is value 0. This distribution is skewed to the right, which make the picture concerning RTM
more complex. However, in observing the RTM phenomenon the mean as the reference point to
which the observations may regress toward is considered to be 4. In Figure 6, the values on the
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Figure 5: General trust: Responses relative to the mean values

Source: Own figure.

x-axis represents the first answers’ absolute difference from the mean value (0 represents value 4 as
answer) and the values on the y-axis represents the second answers’ absolute difference from the
mean value (0 represents value 4 as answer). The size of the bubbles represent the proportion of
the given pattern. It can be seen, that in the case of answers with a greater difference relative to
the mean value (values 4, 5, 6 on the x-axis) there is a higher share of those regression back towrd
the mean in the case of their second answers.

Figure 6: How religiousness you are? - Responses relative to the mean values

Source: Own figure.

The results regarding the new scheme for survey assessment are as follows:

• The total difference between two survey replications is the sum of NU and MU; therefore,
the total difference was the combination of uncertainty about the respondent bases and
uncertainty about the answers obtained.
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• We found that for the univariate analysis, NU was negligible but relevant for the multivariate
analysis.

• For MU, we compared the answers of those who responded to both surveys. The second
finding of the study was that although the first and second answers generally resulted in the
same distribution, on an individual basis, respondents appeared to be inconsistent with their
answers.

• This phenomenon was explained with RTM, which occurs because values are observed with
random errors.

• The third finding of the study was that, in multivariate analysis, both NU and MU are
relevant, but their joint impact cause minor differences at the total sample level.

Összefoglalás

A matematikai statisztika általános elmélete végtelen alapsokaságot feltételez. Ezzel szemben a sur-
vey statisztika a véges sokaságból történő mintavétel alapjaira épül. A lakossági survey-ek esetében
a mintavétel egységei emberek, ami humán tényezőket von be a ḱısérletbe. Az emberi természet és
viselkedés nehézségeket okoz a lakossági mintavétel matematikai elméletének megvalóśıtásában,
és különböző módon befolyásolja az adatok minőségét. A survey adatok minősége az elmúlt
évtizedben egyértelműen romlott, ami indokolja a jelenlegi módszertanok újraértékelését.

A dolgozat azzal járul hozzá a meglévő szakirodalomhoz, hogy újszerű megközeĺıtéseket javasol
a becslések minőségének jav́ıtására. A dolgozat a következő emberi tényezőkből eredő hiábak kezeli:
(1) amikor a mintába került egyének úgy döntenek, visszautaśıtják a válaszadást, azaz a meg-
figyelést, ami bizonytalanságot eredményez a minta összetételét illetően, és (2) amikor az emberek
inkonzistensen válaszolnak az egyes kérdésekre, ami bizonytalanságot eredményez a mérésben.

A minta összetételét illetően a dolgozat egy új minta-allokációs módszert vezet be, amely
figyelembe veszi a várható válaszadási arányokat (ERRs). Az új módszer értékeléséhez a fő elméleti
eszközt a δ-módszerrel végzett aszimptotikus számı́tások jelentik. Egy rétegzett mintavételi design
esetében az ERR-allokáció alacsonyabb szórást eredményez, mint a hagyományos allokációs módszer,
nem csak akkor, ha a válaszadási arányok helyesen vannak megadva, hanem a feltételek egy széles
skálája mentén is. Az új mintavételi módszert szimulációkkal is szemléltetjük, amelyekben a
konkrét populációs paraméterek különböző kombinációit használjuk.

A mérések bizonytalanságát illetően az értekezés egy új, az ismételt mérések logikájára épülő
szempontrendszert mutat be. Ez a szempontrendszer abban tér el a klasszikus logikától, hogy
a valódi populációs érték helyett a survey mérések eredményét ahhoz viszonýıtja, hogy milyen
eredményt kapnánk akkor, ha az adott mérést teljes egészében megismételnénk. Eredményeink
szerint szerint két mérés különbsége felbontható a részvételből származó bizonytalanság (non-
response uncertainty, NU) és a válaszok bizonytalanságának (measurement uncertainty, MU)
összegére. Az új szemléletet egy esettanulmány, a European Social Survey (ESS) megismétlése
alapján is bemutattuk. Azt találtuk, hogy az MU, a válaszadók szintjén rendḱıvül fontos, mert
a válaszadók inkonzisztensnek tűnnek a válaszakban. Ezt az inkonzisztenciát a regression to the
mean (RTM) jelenségeként mutatjuk be. Az eredmények azt mutatják, hogy ez a jelenség ordinális
skálájú változók esetében is releváns.

A dolgozat számos olyan eredményt is közölt, amely indokolttá teszi a téma további kutatását.
A szerző további tervei között szerepel: a megismételt survey keretrendszer vizsgálata kettőnél
több ismétlés esetére, illetve a mérési bizonytalanság vizsgálata válaszok sorozatán; többváltozós
modellek éṕıtése a mérési hibák elemzésére és ennek alapján új adatkorrekciós (utólagos rétegzési)
eljárások fejlesztése; az adatgyűjtési mód bevonása a vizsgálatokba (leginkább a személyes, a tele-
fonos és az online adatgyűjtések figyelembe vétele); valamint a bizonytalanságok modellezése az
entrópia fogalmával.
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