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Abstract

Most statistical theory assumes that the underlying population is infinite. On the
contrary, survey sampling theory is built on a foundation of sampling from a finite
population. Additionally, in the case of human population samples, the finite popu-
lation consists of individuals, involving human factors into the experiment. Human
nature and behavior cause difficulties in implementing the mathematical theory of
survey sampling and influence the quality of the data in various ways. The quality of
the survey data has clearly eroded in the last decade, which motivates re-assessment
of the current methodology. The thesis contributes to the existing literature by sum-
marizing the mathematical foundation of human population samples with a focus
on data quality. It proposes novel approaches to improve the quality of estimates on
aspects (1) when sampled individuals decide not to be observed, which results in un-
certainty about the sample composition, and (2) when they answer inconsistently,
which leads to uncertainty in the measurement. Regarding sample composition,
the thesis introduces a new sample allocation method that takes into account ex-
pected response rates (ERRs). For the evaluation of the new method, the main
theoretical tool is asymptotic calculations using the δ-method. Within a stratified
sample design, ERR allocation leads to lower variances than a traditional allocation
method, not only when response rates are correctly specified but under a wide range
of conditions. The new sampling method is illustrated with simulations using vari-
ous combinations of specific population parameters. The thesis also presents a new
perspective on the evaluation of survey quality through replication surveys, which
is an alternative to the conventional assumption of underlying fixed true population
values. Our finding is that the uncertainty of the measurement is highly relevant be-
cause respondents are generally inconsistent in their answers. The inconsistency of
the answer is presented as an example of regression to the mean (RTM). Although
RTM is well known for multivariate normal distributions, the results show that
this phenomenon is also relevant in the case of ordinal-scale variables. The general
conclusions indicate that the decline in the quality of the survey can be primarily
attributed to the uncertainty in the measurement, rather than the uncertainty in
the composition of the sample.
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Chapter 1

Introduction

The thesis discusses human population surveys within the framework of finite pop-
ulation samples and presents approaches to improve the quality of estimates. It
makes contributions to the fields of mathematical statistics and survey methodo-
logy by summarizing the mathematical foundations of human population surveys
and proposing new methods for handling the two most pressing aspects: uncer-
tainty in the sample composition and uncertainty in the measurement. The thesis
presents theoretical approaches, an evaluation of a specific survey experiment, and
simulations.

Survey statistics is an applied field of mathematical statistics, where data are
obtained from questionnaire (survey) data collections. Within the field of survey
statistics, human population surveys are data collections where the observed units
are individuals. Sample surveys from human populations play a crucial role in
providing a large portion of quantitative data about our economy and society. Na-
tional statistical agencies frequently release estimates for various indicators, includ-
ing unemployment rates, poverty rates, crop production, retail sales, and median
family income. Although some statistics may be derived from complete enumer-
ations (censuses), the majority are derived from samples taken from the relevant
population [1]. In recent times, there has been a decrease in the precision of sur-
vey estimates. This is particularly evident in election forecasts, as they are one of
the rare instances where the previously estimated population parameter becomes
known. The prominent role of human population surveys and the quality concerns
of data have made the statistical evaluation and development of survey-type data
collections increasingly relevant. The thesis is a pioneering one as it aims to sum-
marize the mathematical foundations of human population surveys and propose
new approaches to improve the quality of estimates derived from human samples
and responses. The thesis presents both theoretical and empirical findings of the
author.

Chapter 2 presents the background of human population surveys. We introduce
the history of the field and highlight how this method developed within mathematical
statistics, as well as show the relevance and magnitude of sample surveys. This
chapter outlines the current challenges of human population surveys and presents the
main motivation to analyze uncertainties in sample composition and measurement.

In Chapter 3 the concept of human population surveys is presented. We in-
troduce the mathematical foundations with the relevant sampling methods and we
introduce how sample survey theory can be dealt with within general statistical
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theory. Since in human population surveys, the observed units are individuals, the
experiment results in errors and biases that are difficult to manage. Quality con-
trol in survey sampling, in general, is presented based on the Total Survey Error
framework. Errors and biases are also categorized based on mathematical and non-
mathematical factors.

Chapter 4 focuses on a new allocation mechanism to handle errors in sample com-
position. The mechanism takes into account the expected response rates (ERRs).
The relative performance of the ERR allocation is assessed by comparing the vari-
ances in the resulting estimates. Asymptotic variances are calculated using the δ
method and then initially compared by assuming correctly specified response rates.
Here, the assumed response rates are subject to random fluctuations, which are
then corrected using post-stratification. Variance comparison is made in terms of
misspecified response rates and the results of an extensive evaluation using various
combinations of specific population parameters are presented.

In Chapter 5 we introduce a new scheme that investigates nonresponse and
measurement uncertainties through replication surveys. We present how the general
concept of assessing errors and biases can be reconsidered when comparing results
with previous surveys. Our approach defines uncertainties regarding sample compos-
ition and measurement and decomposes total differences in theory as well as based
on a case study. The main results are that the total uncertainty can be decomposed
exclusively into nonresponse and measurement uncertainties. Measurement uncer-
tainty is more relevant than nonresponse uncertainty. The respondents are generally
inconsistent in their responses at the individual level, which implies uncertainties in
the measurements.

In Chapter 6 the results and the potential directions for future studies are sum-
marized.
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Chapter 2

Background

2.1 History and relevance

This chapter provides an overview of the most relevant milestones in the history
of survey sampling and the debates that have shaped its position in mathematical
statistics. We also present the current magnitude and relevance of human population
surveys.

The aims of survey statistics are the same as those of classical statistics: to
design experiments and analyze the data from them; to estimate unknown quant-
ities from measurements; to test hypotheses; to model random processes and to
predict future trends [1]. By definition, the term ”survey” covers any activity that
collects or acquires statistical data: included are censuses, sample surveys, the collec-
tion of data from administrative records, and derived statistical activities ([2], page
7). Complete enumerations (censuses) serve generally as reference points; sample
surveys are most often the basis for survey statistics, where the units of observation
are persons, households, or organizations. A sample survey is a survey carried out
using a sampling method, that is, in which a portion only, not the entire population,
is surveyed [3]. The theoretical basis of survey statistics is provided by theorems of
mathematical statistics at the level of sampling, data collection, data adjustments,
estimation, inference, and analysis. Survey statistics can therefore be considered an
applied field of mathematical statistics [4].

Survey sampling theory is a major part of the development of statistics, al-
though its use was only accepted in the 1920s [5]. This theory has sparked many
debates in mathematical statistics and highlighted the importance of the evaluation
of techniques. Sampling theory has been the subject of multiple approaches, includ-
ing design-based, model-based, model-assisted, predictive, and Bayesian. A variety
of authors have suggested a timeline of breakthroughs in survey theory that reflect
the major debates within its evolution ([6, 7, 8, 9, 5]. We present five milestones in
the history of survey theory based on the examples of Särndal ([10]) and Tillé ([5]).

The first milestone is the first sample-based experiment: in 1783, Pierre Simon
de Laplace presented a method to calculate the population size from birth records
based only on a random sample of regions. He proposed taking a sample of regions
and calculating the ratio of inhabitants to births and then multiplying it by the
total number of births. Laplace even suggested estimating the potential error by
referencing the central limit theorem [5]. Even though no questionnaire (survey)
was used in the experiment of Laplace, it is considered the first estimation method
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based on a sample of the human population. In 1895, Anders Nicolai Kiær, the
Director of the Central Statistical Office of Norway, conducted the first sample sur-
vey using questionnaires, which can be considered the second milestone. He chose a
sample of cities and municipalities and then within each of these he selected certain
individuals based on the first letter of their surnames. He employed a two-stage
design, but the selection of the units was not random. Kiær advocated for the use of
partial data if it was created using a ”representative method” [5]. Kiær’s notion of
representativeness is associated with the quota method, which results in a regulated
sample structure based on particular demographic criteria, but it does not qualify as
a random sample. His address was followed by a passionate discussion and the start
of a statistical discourse on survey techniques [5]. Thirty years after Kiær’s survey,
and as the result of a series of debates (with Cochran, Royall, Hajek, Neyman, and
Godambe) the idea of sampling was officially accepted and the validity of random
methods was demonstrated through a rigorous mathematical argument in the In-
ternational Statistical Institute (ISI) Congress in Rome in 1925 (third milestone).
This acceptance of the use of partial data, and especially the recommendation to use
random designs, resulted in a rapid mathematization of the theory. Jerzy Neyman
was instrumental in developing a large portion of the foundations of the probabilistic
theory of sampling for simple, stratified, and cluster designs. He also determined
the optimal allocation of a stratified design. His work can be considered the fourth
milestone in the history of survey sampling, leading to its formation as a coher-
ent mathematical theory. The professional discourse on how sample survey theory
should be incorporated into general statistical theory began in the 1950s [10] and
can be considered the fifth milestone. The discourse was then developed as fol-
lows: Let a finite population consist of N individuals which are labelled by integers
i = 1, . . . , N . Each individual i has a variate value xi (i = 1, . . . , N) associated with
it [11]. The variate values xi (i = 1, . . . , N) are unknown. Hence, the estimation of
the population mean is

x̄N =
N∑
1

xi/N,

let s, represents a subset of n individuals selected through a random sampling pro-
cedure (e.g. simple random sampling) without replacement. The observed values of
the variates, denoted as xi, are recorded for each individual i within the sample s.
The sample mean, is then calculated.

x̄s =
∑
i∈s

xi/n,

and this can be considered the unbiased estimator of the population mean. The
main statement in this debate was that this is true if the individual labels i are
”ignored” [11]. However, in order to perform statistical random sampling, it is
necessary to assign labels to the individuals in the population. This requirement of
having individual labels means that unbiased estimation is generally not possible,
especially when dealing with a survey population that consists of a fixed number of
individuals [11].

Based on this contradiction two positions have emerged: (1) general statistical
theory should be extended with survey sampling theory with a new model and cor-
responding formal criteria, or (2) survey sampling theory should be interpreted in
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a specific way with which it fits into general statistical theory [10]. This debate
continued throughout the ’70s and ’80s. Nowadays, survey sampling is mainly dealt
along the lines of (2), with no formal guidelines on the subject.

Survey statistics are widely used in the social, political, economic, and medical sci-
ences, and the results are usually put into practice. Only a small number of decisions
in these fields are based on complete enumerations or administrative data. The ma-
jority of these decisions are based on the outcomes of sample surveys conducted
at the national, European, and global levels. Survey research is produced by the
National Statistical Institutes, academic research networks, and political or market
actors. The Eurostat organization brings together the National Statistical Institutes
of the European Union. It is responsible for coordinating statistical activities across
the Union. According to Eurostat, the National Statistical Institutes conduct an
average of 200 surveys annually at the national level [12]. The manifold applica-
tions of survey data at the European level are evident: Eurostat, the OECD, and
the World Bank all collect, organize, and publish survey data which serves as the
foundation for the most relevant international economic and social indicators (e.g.
GDP, GINI) in Europe.

In Hungary, the entire population of roughly 9 million people is only surveyed
in the form of a census every 10 years. In addition, however, it conducts on average
150 independent survey data collections with a total of 1.2 million questionnaires
per year [13]. On average, 60% of these surveys are annual or less frequent, while
the rest are more frequent (biannual or monthly; [13]). Academic research networks
such as European Social Survey (ESS), International Social Survey Program (ISSP),
European Value Survey (EVS), World Value Survey (WVS), and Survey on Income
and Living Conditions (EU-SILC) provide the basis for numerous political and so-
cial measures, and thus for international comparisons. Another relevant segment of
sample surveys is research on market and public opinion. Although most of these
are conducted at the national level, there are also many examples of international
or cross-country data collection. ESOMAR, the European Society for Opinion and
Marketing Research, provides regular updates on the market and the opinion re-
search industry, both in Europe and around the world [14]. The ESOMAR report
for 2020 has concluded that, despite the global economy’s 3.3% decrease in real
GDP, the market research and public opinion polling industry was able to sustain
its prior output, estimated to be worth nearly $90 billion worldwide [14]. Market
research is used to guide business decisions that can have an impact on quality of
life, while opinion polls are used mainly in politics. Political campaigns and in some
cases policy makers rely on the results of public opinion polls. Although there is a
lack of comprehensive data regarding the exact size of the political polling industry,
it is evident that this sector is expanding. While in 2000, 29 polling agencies were
active in the US, this number increased to 69 by 2022 [15]. Another example is that
the number of British polls published exploded from appr. 150 polls in 2010 to appr.
500 polls in 2015 [16].

The foundations of survey statistics are based on mathematical statistics, which is
shaped by influential figures in the field of mathematical statistics, who emphasize
its significance and position within the discipline. Human population surveys are
not only relevant within the field of mathematical statistics: they are carried out in
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huge quantities and have a crucial role in informing decisions that affect economic
and political change and our daily lives. Thus, evaluations and a revision of the
methodology are crucial.

2.2 Current challenges

This chapter aims to outline the existing challenges related to the quality of human
population surveys and highlights the motivation behind the particular focus of this
thesis.

In the context of questionnaire surveys, individuals, or households are observed,
which introduce human elements into the experiment. This means that the outcome
of the experiment is not solely determined by the sampling procedure, but also
influenced by factors such as whether the selected individuals are actually contacted,
their willingness to respond to the survey, and to provide certain information, as
well as the accuracy of the information they provide. These factors introduce both
random errors and specific biases in the estimation of population parameters, and
the combination of these errors and biases has an impact on the precision of the
collected data.

In recent times, there has been a decrease in the accuracy of survey estimates.
This is especially clear in election forecasts, as they are one of the few cases where
the population parameter that was previously estimated becomes known. There
are reputable cases of failed election forecasts wordwide, just to highlight a few
most recent examples: the 2002 Hungarian parliamentary election, the ”Brexit”
referendum in 2016 in Great Britain, and presidental elections in 2016 and 2020
in the United States (US). In the US, the American Association of Public Opinion
Research (AAPOR) regularly evaluates opinion polls in each presidential election
year and maintains a task force to examine the performance of opinion polls. The
most recent assessment found that the 2020 polls featured polling error of an unusual
magnitude: It was the highest in 40 years for the national popular vote (Figure 2.1;
[17]).

Figure 2.1: Polling error over time in the US National Presidential Polls

Source: Own editing based on AAPOR 2020 report pp.15.
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Regarding the factors that can explain the polling error, AAPOR concluded that
at least some of the polling error in 2020 was linked to discrepancies in sample
composition. This was caused by unit-nonresponse [17].

Unit-nonresponse refers to the discrepancy between the sample and the set of
respondents, which is successfully observed [18]. It arises when individuals either
cannot be contacted or choose not to participate in the survey, thus it can be related
to the response rate. There is a consensus among survey researchers ([19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 19]) that response rates are declining (i.e. nonresponse
rates are increasing). Based on surveys conducted by the US Census Bureau, the
extent of this decline is of a significant magnitude: the initial response rate during
the 1990s was at 85%, however, by 2015 the nonresponse rate had reached nearly
35% [29].

In the ESS data collection a similar pattern can be observed. Figures 2.2 and
2.3 represent the response rate trends of nearly 40 European countries participating
in the ESS survey. The countries are divided into two groups: Figure 2.2 includes
countries with an average initial response rate in the first round (2002), and Figure
2.3 includes countries with an initial response rate higher than the average in the
first round (2002)1. It is evident that a significant downward trend can be observed
for most countries.

Figure 2.2: Trends in response rates in the ESS between 2002-2020 in the group of countries with
average initial response rate in ESS1.

Source: The data presented in the figure represents a collection of technical details about the ESS from various
countries that was gathered by the author.

1Data from countries with an initial response rate lower than the average are not presented,
because those countries had problems with their data collection process and typically also missed
some rounds later.
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Figure 2.3: Trends in response rates in the ESS between 2002-2020 in the group of countries with
a higher than average initial response rate in ESS1.

Source: The data presented in the figure represents a collection of technical details about the ESS from various
countries that was gathered by the author.

Looking specifically at Hungary, nonresponse rates have also been increasing
over the past 20 years: in 1996, 16% of the selected households refused to answer
an optional survey block during the microcensus [31]; by 2016, another survey con-
ducted by the Hungarian Central Statistical Office had a response rate of only 59%
[32]. In the most recent methodological study in 2019 a response rate of 40% has
been observed [33].

Unit-nonresponse is not random and appears to be linked to certain socio-
demographic characteristics of sample elements. Research has indicated that labor-
force participation, life stage, socioeconomic status, health, and gender may all play
a role [34, 35]. Goyder [36] found that it is more difficult to contact individuals
who are single, employed, living in an apartment in a large city, or of a higher so-
cioeconomic status, while it is easier to contact the elderly or larger families. This is
corroborated by Campanelli and colleagues [37]. Groves [18] suggests that families
with young children and elderly members are more likely to be present in the home,
making them easier to contact. Additionally, the size of the household may also be a
factor in contactability; the more people in the household, the more likely it is that
someone will be available to answer the phone or the door [38]. Additionally, Tucker
and Lepkowski [39] observed that the rise in female labor-market involvement could
have a negative impact on the ability to make contact [40].

Unit-nonresponse therefore affects the quality of the estimates through the compos-
ition of the sample. In addition to this source of discrepancies, there is another
important factor which can be linked to the inaccuracy of estimates: the validity of
the answers to a given question.

Measurement error is the discrepancy between the ideal measurement and the ac-
tual responses obtained [18]. Measurement errors are even present in censuses, where
theoretically the entire population is measured. It encompasses various factors, in-
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cluding interviewer effects, systematic errors, and random errors [41]. Measurement
error occurs when the recorded or observed value deviates from the true value of
the variable [42]. Several factors contribute to this disparity, such as the unclear
or misleading phrasing of the questions and the context of the preceding questions
[43]. Other important factors include changes in the mental state of the respondent,
inconsistencies in their answers, social desirability, and the concealment of the true
answer2. For example, respondents may provide an answer that aligns with the
perceived norm rather than their actual opinion due to socially desirable behavior
or yea-saying [44].

A simple model indicating the relationship between observed and latent variables
of interest can be found in Figure 2.4. We investigate the relationship between two
latent variables (two opinions in the population), denoted with f1 and f2 in Figure
2.4. In the case of human population surveys, we estimate the relationship based on
answers to survey questions, denoted by y1 and y2 in Figure 2.4. The relationship
between f1 and y1 and between f2 and y2 will not be perfect due to measurement
errors (e1 and e2). The standardized effect of the variable of interest fi on yi is called
the quality coefficient (qi). The two correlations will be identical only when both
measures have a perfect quality (equal to 1), meaning that there are no measurement
errors. Unfortunately, this scenario is highly unlikely to happen [45].

Figure 2.4: The relationship between observed and latent variables of interest

Source: Saris & Revilla (2016): Correction for Measurement Errors in Survey Research: Necessary and Possible
pp. 1008.

Alwin ([42]) suggested that around 50% of the variance in the observed survey vari-
ables may stem from inaccuracies. This underscores a notable discrepancy between
the intended variable under study and the variable actually reflected in the survey
question [45].

In summary, the precision of survey estimates is affected by sample composition and
measurement.

2In the special case of political opinion polling these phenomena are referred to as: ”late swing”,
when voters change their minds between when they were polled and the time they cast their
vote; ”shy voters” are people not telling the truth; ”social desirability” is when supporters of
controversial parties or opinions are most likely to conceal their views [16]. But the special case of
political opinion polling is not discussed further in the thesis.
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As the response rate decreases, conducting survey research becomes more diffi-
cult, requiring a larger number of individuals to be contacted to obtain the desired
sample size. Consequently, data collection becomes slower and more expensive.
The observed sociodemographic patterns in nonresponses introduce bias into the
estimates, undermine the implementation of the initial sampling design, and raise
concerns about the reliability of the resulting sample.

Measurement error is another type of difficulty, which is present even in the
case of complete enumerations. If we do not consider measurement errors caused
by human nature and behavior, our findings will be flawed even if we are precise in
the sampling stage and obtain a random and representative sample of the population.

This thesis addresses the phenomenon of nonresponse by presenting a new proced-
ure to handle nonresponse during the sampling stage: Allocation of samples that
consider expected response rates (ERR). This is discussed in Chapter 4.

Regarding measurement error, we demonstrate how replication surveys can be
employed to evaluate measurement errors without relying on the notion of true
population parameters and ideal measurements. Additionally, we investigate the
presence of the Regression to the Mean phenomenon in the process of answering
questions. The new method of replication surveys and the findings on measurement
error are presented in Chapter 5. Measurement error is also affected by cultural
factors, which makes it particularly important for international comparisons. For
the same reason, there is an urgent need to investigate the effects on the response
process at the national level. In this respect, the thesis represents added value in
terms of understanding the trends observed particularly in Hungary.
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Chapter 3

Surveying the human population

Survey sampling theory and the classical sampling theory of mathematical statistics
have two major differences. First, unlike the classical sampling theory, the pop-
ulations in survey sampling are finite. Secondly, the elements being observed are
individuals who, by their actions and personal decisions, impact the data quality by
hindering the accurate completion of the procedural steps. This chapter introduces
the theory of surveying the human population focusing on these two differences.

Chapter 3.1 presents the mathematical foundations of human population samples
in terms of sampling and inference. This chapter covers the theoretical basics and
shows how survey sampling and inference are carried out in theory.

Chapter 3.2 delves into factors that can influence survey research results and
distinguishes mathematical and non-mathematical factors in the total survey error
framework. This chapter places particular emphasis on nonresponse and measure-
ment inaccuracies, which are the main focus of the thesis findings.

3.1 Mathematical foundations

We start by describing the general framework for sampling from a finite popula-
tion with the relevant notation and definitions (Chapter 3.1.1). Chapter 3.1.2 then
introduces the different sampling methods in human population surveys reflecting
on practical applications of international surveys in Europe. In Chapter 3.1.3 the
main theories of finite population inference are presented, covering the concept of
superpopulation and the central limit theorem.

3.1.1 Sampling from finite populations

In the general framework of finite population samples, consider a finite set of ele-
ments identified by integers U = {1, 2, ..., N}. This set of identifiers is referred to as
the population list. The set U is discrete and consists of a finite number of elements.
Each element jth in the list is associated with a vector of characteristics denoted by
yj. In survey sampling applications, yj is assumed to be real valued. The entire set
of N vectors is denoted by F and is referred to as a finite population or a finite
universe. A sample is a subset of elements. In statistical sampling, the goal is to
select samples using probability rules in order to establish the probability charac-
teristics of the set of samples defined by the selection rules. The terms ”random
samples” and ”probability samples” are used to refer to samples selected using prob-
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ability rules. In this case, the statistic used to derive an estimate from the sample
is predetermined, and the method ensures that only one estimate is obtained from
a specific sample using that statistic [46]. Let A denote the set of possible samples
under a specific probability procedure, and let A represent the set of indices of U
that are included in the sample. In the following, the population from which the
samples are selected is assumed to be fixed. Let P [A = s] represent the probability
of selecting s (where s ∈ A). A sampling design is a function p(·) that maps s to
the interval [0, 1], such that p(s) = P [A = s] for any s ∈ A. A set of samples of
primary importance is the set of all possible samples that contain a fixed number
of distinct units. Denote the fixed size by n. A probability sampling method for
fixed-size samples of n assigns a probability to each possible sample. The inclusion
probability for element k is the sum of the sample probabilities for all samples that
contain element k,

πk = P (k ∈ A) =
∑
s∈A(k)

p(s),

where A(k) is the set of samples that contain element k.

Indicator variables are defined in the context of probability sampling schemes to
determine which elements are part of the sample. To denote the indicator variable
for element k, we use the notation Ik. Thus,

Ik = 1 if element k is in the sample

= 0 otherwise.
(3.1)

Consider the vector d = (I1, I2, ..., IN), which represents a set of random variables.
The probability distribution of d plays a crucial role in determining the probabilistic
characteristics of functions derived from the sample. The sampling design defines
the probability structure of d, with the inclusion probability of element k being
equal to the expected value of Ik.

πk = E{Ik}.
The joint inclusion probability, denoted by πkl, for elements k and l (k 6= l) is the
sum of sample probabilities for all samples that contain both elements k and l. In
terms of the indicator variables, the joint inclusion probability for elements k and l
is

πkl = E{IkIl}.
The number of units in a particular sample is

n =
N∑
k=1

Ik

and because each Ik is a random variable with expected value πk, the expected
sample size is

E{n} =
N∑
k=1

E{Ik} =
N∑
k=1

πk
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The variance of the sample size is

V {n} =

{
N∑
k=1

Ik

}
=

N∑
k=1

N∑
l=1

(πkl − πkπl)

=
N∑
k=1

N∑
l=1

πkl −

(
N∑
k=1

πk

)2

,

In the equation, πkk is equal to πk. When the variance V {n} is equal to zero, it
indicates that the design is a fixed sample size or fixed-size design [1].

3.1.2 Sampling methods in surveys

This chapter delves into the sampling methods applicable in human population sur-
veys. It begins by discussing direct element sampling approaches, followed by an
overview of more complex methods. According to Särndal [10], two fundamental fea-
tures of direct element sampling are highlighted: (1) the requirement of a sampling
frame that lists all population elements and (2) the sampling units being the popu-
lation elements directly.

The subsequent direct element sampling strategies are applicable in surveys of
human populations: Bernoulli sampling (Chapter 3.1.2.1), simple random sampling
(Chapter 3.1.2.2), systematic sampling (Chapter 3.1.2.3), Poisson sampling (Chapter
3.1.2.4), and probability proportional to size sampling (Chapter 3.1.2.5). In contrast
to direct element designs, complex sampling schemes often involve the selection
of population elements in multiple steps, such as choosing other units like a geo-
graphic unit. Illustrations of these are outlined in this chapter as stratified sampling
(Chapter 3.1.2.6), and multistage sampling (Chapter 3.1.2.7).

Since human population surveys are an applied field of mathematical statistics,
the practical feasibility of a sampling design is a key issue. Bernoulli and Poisson
sampling techniques lead to random fluctuations in sample sizes and are not com-
monly used in survey applications. Despite this, they are valuable for illustrating
basic principles in survey sampling and can be used as frameworks for comprehend-
ing nonresponse mechanisms, which will be later addressed in the survey quality
context. In contrast, systematic sampling, proportional probability sampling by
size, stratified sampling, and multistage sampling are widely used in survey practice
[10]. When applicable, examples are used to illustrate these sampling methods.

3.1.2.1 Bernoulli sampling

Bernoulli sampling is considered the simplest design [10]. In this method, the sample
membership indicators I1, . . . , IN are random variables that are independent and
identically distributed. Assuming π is a constant with 0 < π < 1, each Ik follows a
Bernoulli distribution with the same parameters [10].

P (Ik = 1) = π; P (Ik = 0) = 1− π
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If ns represents the (random) sample size, the sampling scheme is described by

p(s) = πns(1− π)N−ns (3.2)

The inclusion probabilities are πk = π for all k and πkl = π2 for all k 6= l.
In order to choose a Bernoulli sample, the straightforward list-sequential method1

can be employed. In Bernoulli sampling, the size of the sample, ns, is a random
variable that follows a binomial distribution, with its mean and variance specified
as

E(ns) = Nπ; V (ns) = Nπ(1− π)

The variance of the sample size ns, can be assessed by an interval [10]. Using the
normal distribution to approximate the binomial, we have ns obtained within the
limits

Nπ ± z1−(α/2)[Nπ(1− π)]1/2

with a probability of roughly 1−α, where constant z1−(α/2) is exceeded with probab-
ility α/2 by the unit normal random variable. For example, in the case of a survey
of the Hungarian adult population, where let N = 8, 000, 000 and π = 0.0005, the
99% interval is

4000± 2.58(3, 998)1/2 = 4, 000± 163

so the probable variation in this case is roughtly 4% of the expected sample size. In
surveys, a limitation of Bernoulli sampling may arise from the inability to determine
in advance the precise size of the chosen sample. Moreover, the variability in sample
sizes tends to increase the variance of the π estimators [10]. In the Bernoulli design,
the π estimator for the population total t =

∑
U yk of a given characteristics y (as

defined in Chapter 3.1.1) is expressed as

t̂π =
1

π

∑
s

yk (3.3)

The unbiased variance estimator is given by

V̂ (t̂π) =
1

π

(
1

π
− 1

)∑
s

y2k (3.4)

3.1.2.2 Simple random sampling

The Bernoulli sampling belongs to the category of designs that may be termed equal
probability sampling designs. The common feature of such designs is that the first-
order inclusion probabilities are all equal, that is, πk = constant (k = 1, . . . , N). We
now consider an additional equal probability sampling design, the simple random
sampling. This sampling design is often taken as a point of reference when discussing

1A sequential list scheme entails carrying out a series of random experiments by progressing
through the list of elements, without the requirement to reach the end, and conducting an experi-
ment for each element that results in either selecting or not selecting the element [10].
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alternative designs [1]. Under the simple random sampling design every sample s of
the fixed size n recieves the same probability of being selected. That is

p(s) =

{
1/
(
N
n

)
, if s is of size n

0, otherwise
(3.5)

The inclusion probabilities are

πk =
n

N
k = 1, . . . , N

πkl =
n(n− 1)

N(N − 1)
k 6= l = 1, . . . , N

We call f = n/N the sampling fraction. The simple random sampling design may
be carried out with the following list-sequential scheme [10].
Let ε1, ε2, . . . , be independent random numbers drawn from the Unif(0, 1) distri-
bution. If ε1 < f , the element k = 1 is selected, otherwise not. For subsequent
elements, k = 2, 3, . . . , let nk be the number of elements selected among the first
k − 1 elements in the population list. If

εk <
n− nk

N − k + 1

the element k is selected, otherwise not. The procedure terminates when nk = n.
Population lists (registres) are usually only accessible to official bodies. These bod-
ies, in turn, select individuals for a number of data collection purposes. When
selecting respondents, it is important to minimize overlap in the sample of different
data collections. Non-overlapping is preferred when multiple surveys of the same
population need to be conducted quickly. Having little to no overlap helps reduce the
burden on respondents and may lead to higher response rates by avoiding excessive
approaches. Samples drawn without overlap are called negatively coordinated [10].
The following implementation of the simple random sampling design has the ad-
vantage that it permits the simultaneous selection of several non-overlapping simple
random samples [10]. This scheme proposes N independent Unif(0, 1) random num-
bers ε1, . . . , εk, . . . , εN are first drawn, where εk is tied to the kth element. These
numbers are then ordered according to size;

εk1 < εk2 < · · · < εkN

The notation indicates that the ith smallest among the N ε-values corresponds to
the element ki, i = 1, . . . , N . Subsequently, the n smallest ε-values {kn+1, . . . , k2n}
form a second independent random sample, distinct from the first one, and so forth.
Any set of n predetermined positions in the ordered sequence defines an independent
random sample. More details on the technique of negatively coordinated samples
can be found in [10, 47, 48].
Under the simple random sample the π estimator of the population total t =

∑
U yk

can be written

t̂π = Nȳs =
1

f

∑
s

yk (3.6)

where f = n
N

is the sampling fraction.
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Although simple random sampling follows simple logic at a theoretical level, it is
very difficult to implement in practice.

One contributing factor to the difficulty lies in acquiring population lists: not all
countries possess a comprehensive population register, and even if one exists, in-
dividual lists may be limited or unavailable. In Hungary, the Ministry of Interior
manages the population register, granting access to only a basic random sample of
individuals. Additionally, when populations are geographically spread out, a simple
random sample will also be geographically spread out, resulting in increased time
and costs for data collection (due to the need for more extensive travel to reach each
respondent). According to the 2011 census, Hungary comprises 3155 settlements
with an average adult population of 2800 individuals. Selecting a sample of 4000
individuals would involve individuals from 7-800 settlements, making data collection
significantly challenging. Therefore, general human population surveys with simple
random sampling are rarely utilized. Instead, simple random sampling methods are
typically integrated into multistage sampling procedures, which will be discussed in
Chapter 3.1.2.6.

3.1.2.3 Systematic sampling

In contrast to simple random sampling, systematic sampling in surveys of human
populations involves a series of procedures that offer various practical benefits, par-
ticularly due to its straightforward implementation [10]. Our focus here is on the
basic form of systematic sampling. The initial element is selected randomly and
with equal probability from the first a elements on the population list. The value of
the positive integer a is predetermined and is known as the sampling interval. Sub-
sequent selections do not require additional random draws. The remaining sample
is determined by systematically selecting every ath element thereafter until the end
of the list. Consequently, there are only a possible samples, each with an equal
probability of selection, namely q/a. The simplicity of a single random draw is a
significant advantage. For example, it is straightforward for an interviewer to choose
a systematic sample while in the field, such as selecting respondents from a list of
addresses or choosing respondents among customers or public transportation users.

For the definition of systematic sampling, let a be the fixed sampling interval
and let n be the integer part of N/a, where N is the population size. Then the

N = na+ c

where the integer c satisfies 0 ≤ c < a. if c = 0, a sample size n will be drawn by
the procedure that we now present. If c < 0, the sample size is going to be either n
or n+ 1.
The selection, which can be seen as a list sequential, is as follows:

(i) Select with equal probability 1/a a random integer, say r, between 1 and a
(inclusively).

(ii) The selected sample is composed as

s = {k : k = r + (j − 1)a ≤ N ; j = 1, 2, . . . , ns} = sr (3.7)
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where the sample size ns is either n+ 1 (when r ≥ c) or n (when c < r,≤ a).
the integer r is called the random start.

Under the systematic sampling design, with the sampling interval a, the π estimator
of the population total t =

∑
U yk is

t̂π = ats

where ts =
∑

s yk is the sample total of y, and s is a member of the set of possible
samples {s1, . . . , s2, . . . , sa}, sr being defined 3.7.

3.1.2.4 Poisson sampling

Bernoulli sampling, simple random sampling, and systematic sampling are designs
with equal probabilities, meaning that all πk are the same in these designs. Having
equal probabilities results in straightforward estimators, but this is not a common
feature in survey sampling. In practice, most designs involve unequal probabilities,
as they tend to be more effective [10].

An example of an unequal probability sampling design is Poisson sampling,
which is an extension of Bernoulli sampling [49]. In Poisson sampling, a specific
positive inclusion probability πk is assigned to each element, where k = 1, . . . , N .
This design is characterized by the independence of the sample membership indic-
ators Ik, with Ik following a distribution as described below.

P (Ik = 1) = πk, P (Ik = 0) = 1− πk
k = 1, . . . , N . The Poisson sampling design is such that the sample s has the
probability

p(s) =
∏
k∈s

πk
∏

k∈U−s

(1− πk) (3.8)

where s ∈ l , the set of all 2N subsets of U . Due to independence, πkl = πkπl for
any k 6= l. Because the πk can be specified in a variety of ways, Poisson sampling
corresponds to a whole class of designs [10].

Given a set of inclusion probabilities π1, . . . , πN , the Poisson design has a simple
list-sequential implementation [1]. Let ε1, . . . , εN be independent random numbers
drawn from the Unif(0, 1) distribution. If εk < πk, the element k is selected, other-
wise not; k =, 1, . . . , N .

In Poisson sampling, the sample size ns is random, with mean

E(ns) =
∑
U

πk (3.9)

and variance

V (ns) =
∑
U

πk(1− πk) (3.10)

Under the Poisson sampling design, the π estimator of the population total t =∑
U yk is given by

t̂n =
∑
s

ȳk =
∑
s

yk/πk (3.11)
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Since n =
∑

U πk, we get

πk = nyk/
∑
U

yk (3.12)

k = 1, . . . , N , assuming also that yk ≤
∑

U yk/n for al k. The values of yk are
currently unknown; however, in certain surveys, we may have information on one
or more additional variables, which are variables with known values for the entire
population. Let us assume that x1, . . . , xN represents known positive values of an
auxiliary variable x. It is also plausible to hypothesize that y is roughly proportional
to x. In such instances, we can consider πk to be proportional to the known xk.
Specifically, for k = 1, . . . , N , assuming xk ≤

∑
U xk/n for all k. If xk >

∑
U xk/n,

we should set πk = 1. When the ratio yk/xk remains relatively constant, the resulting
estimator π will exhibit low variance. The inclusion probabilities determined by 3.12
are called proportional to size. The value xk is viewed as a measure of size for the
kth element. Common size measures include total assets or the number of employees
for a population of business firms, total territory for a population of farms, etc. [10].

Poisson sampling has the same drawback as Bernoulli sampling, that is, a ran-
dom sample size [1].

3.1.2.5 Probability proportional-to-size sampling

The examination of Poisson sampling demonstrated that when the variable under
study y is closely related to a known auxiliary variable x that is positive, there is a
valid reason to opt to select elements with a probability that is proportional to x.
For example, x could serve as a rough cost-effective indicator of an initial assessment
of the variable being studied [10]. Sampling based on probability proportional to
size is beneficial not only for Poisson sampling, but also for various other sampling
methodologies [1]. Consider the π estimator in a fixed-size without-replacement
design

t̂π =
∑
s

yk/πk (3.13)

Assume that it is feasible to create a fixed-size design without replacement and a
sampling method to execute this design in such a way that

yk/πk = c, k = 1, . . . , N (3.14)

where c is a constant. Then, for any sample s, we would have the following.

t̂π = nc

where n represents a fixed size of s. As t̂π does not exhibit variability, its variance
would be zero. It is evident that a design (along with a corresponding sampling
scheme) that satisfies 3.14 cannot be identified as it requires prior knowledge of all
yk. However, if the auxiliary variable x is understood to be roughly proportional
to y, then selecting πk in proportion to the known value xk will result in approxim-
ately constant ratios yk/πk. Consequently, the variance of the estimator π will be
minimized [10].
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3.1.2.6 Stratified samples

In stratified sampling, the population is divided into distinct subgroups known as
strata, with a probability sample taken from each stratum independently. This
method is highly effective and versatile, making it a commonly utilized approach.
According to Särndal [10], three key factors contribute to the popularity of stratified
sampling.

(i) If estimates are needed for particular subgroups (geographic units, demo-
graphic groups), each subgroup can be considered as a distinct stratum. If
the membership of the subgroup is defined in the framework, a suitable prob-
ability sample can be chosen from each stratum.

(ii) In a survey, some subgroups may experience higher rates of nonresponse and
measurement issues compared to others. The amount of additional information
available can also vary greatly. These factors indicate that it may be beneficial
to tailor the sampling method to each subgroup to improve the accuracy of the
estimation. Therefore, it may be prudent to treat each subgroup as a distinct
stratum.

(iii) Due to administrative purposes, the survey organization might have segmented
its area into multiple geographic districts, each with a field office. In this
scenario, it is common practice to consider each district as a stratum.

The objective is to select an efficient, yet practical, stratified sample. For this,
we need to define the stratification variable, which is the characteristics used to
subdivide the population into strata (this can be the type of settlement, region,
county, or demographic variables such as gender, age, level of education), and the
number of strata, which depends on the categories of the stratification variable and
ns. In stratified sampling design, the sampling design and sample size must be
specified in each stratum (often the same type of sampling design is applied in all
strata. An estimator must be specified for each stratum. Often, this choice is also
made uniformly for all strata [10]).
By stratification of a finite population U = {1, . . . , k, . . . , N} we mean a partition
of U into H subpopulations, called strata and denoted U1, . . . , Uh, . . . , UH , where
Uh = {k : k} belongs to the stratum h [1]. By stratified sampling, we mean that a
probability sample sh is selected from Uh according to the design ph(·) (h = 1, . . . , H)
and that the selection in one stratum is independent of the selections in all other
strata. The resulting total sample, denoted a, will therefore be composed as

s = s1 ∪ s2 ∪ s3 ∪ · · · ∪ sH
and, because of the independence,

p(s) = p1(s1)p2(s2) · · · pH(sH)

The number of elements within the stratum h, referred to as the size of the stratum
h, is represented by Nh, which is considered to be a known value. As the stratum is
a subset of U ,

N =
H∑
h=1

Nh.
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The population total can be decomposed as

t =
∑
U

yk =
H∑
h=1

th =
H∑
h=1

NhȳUh
(3.15)

where th =
∑

Uh
yk represents the total within the stratum, and ȳUh

is the mean
within the stratum.
In stratified sampling, the π estimator of the population total t =

∑
U yk can be

written as

t̂π =
H∑
h=1

t̂hπ (3.16)

where t̂hπ is the π estimator of th =
∑

Uh
yk.

If simple random sampling is applied in all strata, with a fixed sample size of nh in
stratum h, as a consequence of 3.15 and 3.5, we then have the π estimator of the
population total t =

∑
U yk is

t̂π =
H∑
h=1

Nhȳsh (3.17)

where ȳsh =
∑

sh
yk/nh.

3.1.2.7 Multistage sampling

The sampling designs outlined in Chapter 3.1.2.1-3.1.2.6 are based on the assumption
that direct sampling of elements is feasible, meaning that population elements can
serve as sampling units in a single sampling stage. However, in numerous surveys,
direct element sampling is not employed mainly due to the following reasons [10, 50]:

1. There is no sampling frame available that can identify every single element of
the population, and the cost of creating such a frame is too high.

2. The population elements are distributed across a large area, making direct
element sampling lead to a widely dispersed sample as mentioned in the case
of simple random sampling in Chapter 3.1.2.2. This would make the cost of
fieldwork unaffordable due to the significant travel expenses associated with
personal interviews. Moreover, effective supervision of fieldwork might be chal-
lenging, potentially leading to high nonresponse rates and significant measure-
ment inaccuracies.

A variety of sampling designs are available for surveys in which the elements sampled
are not exclusively individuals. These range from cluster sampling to highly complex
multistage sampling designs that use unequal probability sampling at various stages
of selection. The simplest version of multistage sampling is two-stage sampling. In
the case of a two-stage sample design, the sample of elements is obtained as a result
of two stages of sampling:

1. The population units are initially classified into separate subgroups known
as primary sampling units (PSUs). A random sample of PSUs is selected,
marking the first sampling stage.
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2. The second-phase sampling units (SSUs) can be individuals or clusters (groups
of individuals). A probability-based sample of SSUs is chosen from each PSU
in the first-stage sample, which forms the second-stage sampling procedure.
When SSUs are clusters, all individuals within the selected SSUs are surveyed.

Multistage sampling often consists of three or more stages of sampling. There is
a hierarchy of sampling units: primary sampling units, secondary sampling units
within PSUs, tertiary sampling units with SSUs, etc. The sampling units in the last
stage sampling are called ultimate sampling units, and those in the next to the last
stage are called penultimate sampling units [10]. Despite their complexity, sampling
designs in three or more stages are often used in human population surveys. The
objective in this section is to present a general result for sampling in r stages, where
r ≥ 2.

First, he population is divided into primary sampling units (PSUs), U1, . . . , Ui, . . . , UN .
Their sizes are often unknown before sampling begins. The set of PSUs will be rep-
resented symbolically as

U1 = {1, . . . , i, . . . , N1}

Let s1, p1(·), π1i, π1ij, ti, t̂i denote the same as in Chapter 3.1.2.1-3.1.2.6.
We do not need detailed notation for the subsequent r − 1 stages of sampling.
However, we assume that we construct an estimator t̂i of the total PSU ti, such that
t̂i is unbiased with respect to the final r − 1 stages of selection, that is,

E(t̂i|s1) = ti

for all i. The ultimate stage sampling units are not necessary elements; they can
also be clusters of elements.

Let Vi = V (t̂i|si) be the variance of t̂i due to the last r − 1 stages of selection,
and let V̂i be an unbiased estimator of Vi given si, that is, E(V̂i|si) = ti.

We assume invariance and independence of the sampling stages subsequent to
the first stage. Whenever a certain PSU is selected, subsampling of that PSU follows
an invariant rule, and subsampling of one PSU is independent of subsampling of all
other PSUs. It is easy to show that an unbiased estimator of the population total t
is given by

t̂ =
∑
s1

t̂i/π1i (3.18)

where E(t̂i|s1) = ti.

Multistage sampling is the most commonly used sampling design in human popula-
tion surveys. To illustrate these concepts, we present the European Social Survey
(ESS) as an example that incorporates all these factors into the sampling design.
Since its establishment in 2001, the ESS has been conducting cross-national surveys
across Europe2. These surveys involve face-to-face interviews with newly selected

2More about the ESS and their methodology can be found here: https://www.

europeansocialsurvey.org/about-ess
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cross-sectional samples every two years. It aims to harmonize data collection ef-
forts in 40 countries and ensure comparability over time across the 10 waves of data
collection conducted so far.
Multi-stage sample designs are proposed to participating countries to enhance cost-
efficiency by clustering the sample within small geographical areas, where each
cluster is assigned to one interviewer, or to accommodate constraints imposed by
the available sampling frames [50]. Some examples of multi-stage sample designs in
the participating countries include:

(i) 2-stage. First stage small geographical areas; second stage persons (population
register)

(ii) 3-stage. First stage small geographical areas; second stage dwellings; third
stage persons (address list or area sampling)

(iii) 4-stage. First stage small geographical areas; second stage addresses; third
stage dwellings; fourth stage persons (address list or area sampling)

Hungary uses a 2-stage sampling design: the first stage consists of small geograph-
ical areas (settlements); second stage consists of persons. There are two sampling
domains in the first stage of the sampling design. The first domain consists of Bud-
apest and the 141 largest settlements in Hungary, while the second domain includes
all other settlements. The allocation of samples to each domain is based on the
population of individuals aged 15 and above [50].

In the first domain, a one-stage sampling design is employed, which involves
stratified sampling using the settlements as strata. Within each stratum, individuals
are selected using a simple random sample. The sample size in the first sampling
domain is 2300 individuals [50].

A two-stage sampling design is employed in the second sampling domain. In
the first stage, settlements are chosen through a stratified sampling method, with
the strata representing 7 geographical regions. The sample size allocation to each
stratum is proportional to the size of the target population (15+ population) within
that stratum. Within each stratum, settlements are sampled based on the prob-
ability proportional to the size of their target population (15+ population). The
selected settlements (PSUs), for a given round of the ESS can be found in Figure
3.1.
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Figure 3.1: Selected settlements (PSUs) during first-stage sampling in Hungary

Source: Own figure.

In the second stage, individuals are selected from each chosen settlement using a
simple random sampling technique. In the case of the ESS, individuals are selected
from the population register, but there are several other surveys, in the case of which
addresses are selected [50]. In these cases, the sampling design is supplemented
with an additional stage, which is the within household selection. Within-household
selection is a separate field in survey sampling, and not discussed further in this
thesis.

The ESS field example in this chapter contains results from the following published
paper of the author:
Messing, V., Ságvári, B., Szeitl, B. (2022): Is ”push-to-web” an alternative to face-
to-face survey?: Experiences from a ”push-to-web” hybrid survey in Hungary. (In
Hungarian) Statisztikai Szemle (0039-0690): 100/3 pp 213-233

3.1.3 Finite population inference

Like other inference procedures, survey statistics relies heavily on limit theorems.
Central limit theorems (CLTs) assume that observations are drawn from an infinite
population [51], which poses a limitation in the context of human population surveys,
where the population is finite. Consequently, the general consideration of CLTs in
human population surveys is limited. To overcome this limitation in the case of
survey sampling, the concept of superpopulation is applied, whereby CLTs can be
interpreted for finite populations. This concept involves the creation of an artificial
infinite sequence of finite populations, which allows for the fulfillment of convergence
properties. Chapter 3.1.3.1 outlines the superpopulation concept, while Chapter
3.1.3.2 explores the general form of the finite population CLTs based on the artificial
sequences of finite populations.
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3.1.3.1 The super-population concept

As stated in Chapter 3.1.1, the general assumption in survey sampling is that N is
considered to be fixed. This assumption may cause difficulties in making inferences
from human population surveys in two aspects: regarding (1) the theoretical scope
of conclusions; and (2) the adoptability of limit theories. In this chapter, these as-
pects are discussed.

In reality, the population undergoes constant changes over time as individuals are
born, die, move in, and move out. This means that the conclusions drawn from a
survey experiment can be directly generalized only to the state of the population
at the given time of sampling (i.e. to Hungary at a given moment) and not to the
population in general (i.e. the Hungarian population in the long run). The need to
be able to separate these two different targets motivated the development of a more
general population concept, called superpopulation [52].

In the concept of superpopulation, there exists an artificial general population,
consisting of an infinite number of finite populations [53]. This infinite sequence of
finite populations represents a population in the long run. The finite population
(N), from which the sample n is directly drawn, is regarded a random sample of
the infinite population, thus different sets of N subjects can arise from the infinite
superpopulation. With this concept, the superpopulation is postulated to provide
an abstract representation of a broader entity from which the population values are
generated. It follows that sampling theories can be classified based on the targets
of inference. If the target parameters are parameters of the finite population, the
sampling procedure is a random sampling process from a fixed finite population, and
if the target parameters are parameters of infinite superpopulation, the sampling
procedure can be regarded as a random two-step sampling process from an infinite
population. The concept of superpopulation was initially introduced in the context
of discussing estimators and analyses that utilize repeated survey and census data.
Based on this broader concept, a census is only a larger sample, and complete
enumerations are unfeasible [54, 53].

In the superpopulation concept, the superpopulation is linked to the potentially
observable finite population by defining superpopulation models. These models are
most commonly regression models that consider the underlying social and economic
cause systems. In addition to general regression models, numerous more complex
models have been discussed in the literature [55, 56]. However, we do not discuss
superpopulation models in the thesis.

The adoptability of limit theories is another aspect that poses challenges due to
the assumed fixed value of N . Just as the superpopulation concept influences the
theoretical scope of conclusions, sequences of finite populations are also considered
in the context of finite population CLTs.

For formulating superpopulations in this aspect, the sequences are composed
of finite populations and their corresponding probability samples. Each element
within the finite population sequence is identified by a set of indices. It is commonly
assumed that the Nth finite population consists of N elements [1]. Thus, the set of
indices for the Nth population is

UN = {1, 2, ..., N},
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where N = 1, 2, .... Associated with the ith element of the Nth population is a
column vector of characteristics, denoted by YiN . Let

FN = (Y1N ,Y2N , ...,YNN)

be the set of vectors for the Nth finite population. The set FN is often called
simply the Nth finite population, or the Nth finite universe. Two types of {FN}
can be specified. In one, the set FN is a set of fixed vectors from fixed sequence.
In the other, the vectors YiN , i = 1, 2, ..., N are random variables. For example,
the {YiN}, i = 1, 2, ..., N , might be the first N element of the sequence {Yi} of iid
random variables with distribution function F (Y ).

Recall that a sample is defined as a subset of population indices, where AN
represents the indices in the sample taken from the Nth finite population. The
sample size, denoted as nN , refers to the number of unique indices in the sample.
It is assumed that samples are chosen based on the probability rule pN(A). A fully
specified sequence includes details about the structure of the finite populations and
the sampling probabilities. For instance, it may assume that the finite population
consists of N independent and identically distributed (iid) random variables with
specified probabilities, and that the samples are simple random samples without
replacement of size nN selected from the N population elements [1]. In this scenario,
a simple random sample of size nN taken from the finite universe is a set of iid random
variables with a common distribution function Fy(y).

Theorem 3.1.3.1. (Fuller [2009]: Sampling Statistics Chapter 1.3., pp. 34.) Sup-
pose that Y1, Y2, ..., YN are iid with distribution function F (Y ) and corresponding
characteristic function ϕ(t) = E{eity}. Let d = (I1, I2, ..., IN)

′
be a random vector

with each component supported {0, 1} representing if the element is selected to the
sample or not. Assume that d is independent of (Y1, Y2, ...Yn)

′
. Let U = {1, 2, ..., N}

and define A = {k ∈ U : Ik = 1}. If A is nonempty, the random variables
(Yk, k ∈ A)|d are iid with characteristic function ϕ(t).

The theorem relies on that the probability rule defining membership in the sample,
the probability function for d, is independent of (y1, y2, ..., yN). Then it follows that
given d with component support on {0, 1}, the sets (yk, k ∈ A} and {yk, k /∈ A} are
sets of random variables n and N − n iid with distribution function Fy(y).

3.1.3.2 Central limit theorem for finite populations

As summarized by Li [51], Erdös and Rényi [57] and Hájek [58] separately established
finite population central limit theorems (CLTs) for simple random sampling from
finite populations. In the following, the general CLT for finite populations is outlined
based on Hajek [58] and Li [51].

Consider a finite population UN = {yN1, yN2, . . . , yNN} with N units. The
sample is a subset of UN represented by the vector of inclusion indicators (I1, . . . , IN) ∈
{0, 1}N , where Ii = 1 if the sample contains unit i, and Ii = 0 otherwise. In simple
random sampling, the probability that the inclusion vector (I1, . . . , IN) takes a par-
ticular value (z1, . . . , zN) is n!(N − n)!/N !, where

∑N
i=1 zi = n and

∑N
i=1(1 − zi) =

N − n. The sample average ȳs =
∑N

i=1 IiyNi/n is a simple estimator of the popu-
lation mean. In the formula of ȳs, the randomness comes from (I1, . . . , IN), and all
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yNi’s are fixed population quantities. Because of this feature, it is straightforward
to show that ȳs has mean ȳN and variance

var(ȳs) =

(
1

n
− 1

N

)
νN , (3.19)

depending on the finite population variance of UN (see [59]):

νN =
1

N − 1

N∑
i=1

(yNi − ȳN)2. (3.20)

In order to perform statistical inference on ȳN using ȳs, it is necessary to describe
the sampling distribution of ȳs resulting from simple random sampling.

The finite population asymptotic scheme involves placing UN within a theoretical
infinite sequence of finite populations of increasing sizes, in line with the superpop-
ulation concept discussed in Chapter 3.1.3.1. The asymptotic distribution of any
sample statistic is its distribution as the sample size approaches infinity along this
theoretical infinite sequence [51]. Similar to the classical Lindeberg–Feller Central
Limit Theorem (CLT) [58], the asymptotic properties of ȳs are heavily influenced
by the maximum squared deviation of the ȳNi’s from the population mean ȳN :

mN = max
1≤i≤N

(yNi − ȳN)2 (3.21)

Hájek [58] asserts that, subject to certain regularity conditions on the sequence of
finite populations {UN}∞N=1 and the sample sizes of simple random samples, the
sample mean converges asymptotically to a normal distribution.

Theorem 3.1.3.2. Li [51] Let ȳs denote the mean of a simple random sample of
size n taken from a finite population UN = {yN1, yN2, . . . , yNN}. As N →∞, if

1

min(n,N − n)
· mN

νN
→ 0 (3.22)

then (ȳs−ȳN)/
√
var(ȳs)

d−→ N (0, 1), where νN is defined in (3.20) and mN is defined
in (3.21).

3.2 Quality control

In human population surveys, there are several stages between the sampling design
p(·) and the estimation of a particular population parameter Y , which can lead to
errors and biases. This chapter systematically introduces all errors and biases in the
research process.

The total survey error (TSE) framework is the most comprehensive method
of understanding the sources of errors and biases in survey estimates, classifying
them based on the representation and measurement components [60]. Chapter 3.2.1
introduces the TSE framework, which is reconsidered by categorizing the sources of
errors and biases into mathematical and non-mathematical factors in Chapter 3.2.2.
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3.2.1 The total survey error framework

The basic concept of the TSE refers to all errors that arise in the design, collection,
processing, and analysis of survey data [18]. In this context, a survey error is defined
as the deviation of a survey estimate from its underlying true value [60]. The TSE
framework aims to consider two distinct sets of inferential procedures in surveys. The
first set involves steps taken from an estimation derived from a group of respondents
to the target population, focusing on aspects like coverage, sampling, nonresponse,
and adjustment error characteristics of statistics based on samples. The second set
involves steps taken from a single respondent’s answer to a question, related to the
measurement that has been the subject of psychometric research on measurement
error [18]. Figure 3.2 illustrates the various phases involved in collecting human
population survey data, along with the potential errors and biases that could arise
at each transition between the steps. In the following, we outline these errors and
biases in the representation and measurement components of the TSE based on [18].

Figure 3.2: Total Survey Error Framework.

Source: Own editing based on Groves (2009), pp. 48. [18]

Coverage error constitutes the initial element of the representation aspect within the
TSE framework (on the left side of Figure 3.2). Coverage error represents the non-
observational gap between the target population and the sampling frame. Coverage
error is always present, as there is no perfect sampling frame (e.g. population
register) that totally matches the population. The bias of coverage can be expressed
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as:

ȲC − Ȳ =
D

N
(ȲC − ȲD),

where Ȳ denotes the mean value of the target population, while ȲC represents the
mean value of the population available in the sampling frame. ȲD denotes the mean
value of the target population that is not included in the sampling frame. N still
refers to the total number of individuals in the target population, whereas C repres-
ents the total number of individuals covered by the sampling frame and D denotes
the number of individuals not covered by the sampling frame. Consequently, the er-
ror in the mean value caused by undercoverage3 can be computed by multiplying the

noncoverage rate
(
D
N

)
by the difference between the mean values of the covered and

noncovered individuals in the target population. Coverage error may be perceived
either as a feature of the population or as a feature of the research setting.

When sampling from populations that have a comprehensive and reliable pop-
ulation register, efforts can be made to reduce this error. However, in situations
where the population register of a country is either unreliable or unavailable, cover-
age error becomes relevant. Addressing coverage error is only possible when there
are available data concerning D and ȲD, which is usually not the case.

Sampling error refers to the difference between the sampling frame and the selec-
ted sample [18]. There are two types of sampling error: sampling bias and sampling
variance. Sampling bias occurs when certain members of the sampling frame have
a reduced chance of being selected. Sampling variance arises because, given the
sample design, different realizations of the sample (s) can be drawn. Each of these
samples produces a different sample average, which forms the sampling distribution
of the average. The dispersion of this distribution measures the sampling variance.
The magnitude of the error due to sampling depends on four key principles in the
sampling design (p(·)): (1) whether the sampling design is a probability sampling
process; (2) whether the sample is stratified; (3) whether element or cluster samples
are used; and (4) the sample size. Sampling bias is influenced by how probabilities of
selection are assigned to different frame elements (πi). Sampling variance measures
the variability of the ȳs values in all sample realizations:∑S

s=1

(
ȳs − ȲC

)2
S

When sampling variance is high, the sample means are very unstable, thus the
sampling error is high.

Nonresponse error refers to the discrepancy between the sample and the pool
of respondents due to non-participation. Despite efforts made in the field, not all
individuals in a survey are successfully measured. Let ȳs represent the mean of
the specific sample selected, ȳm represent the mean of the respondents within the
sth sample, ȳv represent the mean of the nonrespondents within the sth sample, ns
represent the total number of sample members in the sth sample, ms represent the
total number of respondents in the sth sample, and vs represent the total number of
nonrespondents in the sth sample. Similar to coverage bias, nonresponse bias can
be expressed as follows:

3In sample surveys, it is more typical to encounter undercoverage than overcoverage. Neverthe-
less, the same reasoning can be applied to situations of overcoverage.
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ym − ys =
vs
ns

(ym − ys)

Therefore, the bias caused by nonresponse for the sample mean can be calculated
by multiplying the nonresponse rate with the difference between the mean of the
respondents and the mean of the nonrespondents. Nonresponse can occur when one
or more variables in a questionnaire do not receive any response. We distinguish
unit nonresponse, which happens when there is a complete absence of information
for a particular unit, and item nonresponse, which occurs when there is a lack of
information for a unit but only for certain variables [5].

• Unit nonresponse can happen due to various reasons. The main theories and
current trends are outlined in Chapter 2.2. The most important reasons are:
the potential respondent declining to answer or being unable to provide a
response, inability to reach the potential respondent, loss or destruction of the
questionnaire, or abandonment of the questionnaire at the beginning of the
survey.

• Item nonresponse may occur when individuals refuse to answer specific ques-
tions, do not understand the questions or responses, abandon the survey before
completion, or when certain parts of the questionnaire are invalidated due to
inconsistencies in the collected data. The thesis does not delve into item non-
response any further, but the author addresses this issue in another study
[61].

Postsurvey adjustment is a data correction technique, which may also contribute
errors. It uses information about the target or frame population, or the response
rate on the sample. Generally, adjustments assign greater weight to sample elements
(wi) that are underrepresented in the final data set. An adjusted sample mean is
calculated by:

ȳrw =

∑r
i=1wiysi∑r
i=1wi

The error related to the adjusted mean is (ȳrw − Ȳ ).

The second component of the TSE frameworks (right side of Figure 3.2) consists of
errors regarding the measurement at the individual level. To define these errors, let
us denote:

• µi is the true value of a construct for the ith person in the population,
i = 1, 2, . . . , N

• Yi is the value of a measurement for the ith person in the sample, i = 1, 2, . . . , n

• yi is the value of the response to a given question, i = 1, 2, . . . , n

• yip is the value of the response after the data processing steps, i = 1, 2, . . . , n.

Lack of validity refers to the discrepancy between constructs and measures in an
observational context. Each measurement of the ith individual represents just one
of the numerous possible measurements (trials) that could be performed. When a
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particular measure of Y is administered, the outcome is not µi, but rather the true
value plus an error associated with the specific trial (Yit = µi + εit). Validity (q) is
determined by the correlation between the measurement, Yi, and the true value, µi,
between all potential trials and individuals.

q =
Eit
[
(Yit − Y )(µi − µ)

]√
Eit(Yit − Ȳ )2

√
Eit(µi − µ)2

When there is a covariance between y and µ, it suggests robust construct validity
in the measurement. A dependable indicator of an underlying construct is one
that demonstrates a strong correlation with the construct. Evaluating validity is
challenging as the latent construct cannot be directly observed.

Measurement error occurs when there is a difference between the actual value
of a measurement and the value obtained when measuring a sample unit. In the
field of survey measurement theory, a response deviation occurs when yi 6= Yi. If
these deviations in responses consistently point in the same direction in multiple
attempts, it may suggest the presence of response bias, thus Et(yit) 6= Yi. However,
unlike measurement bias, response deviations can also result in unreliable responses
due to variation. The key difference between response variance and response bias
is that the latter is systematic, consistently overestimating or underestimating the
quantity being measured, while response variance causes fluctuation in estimated
values across attempts [18].
The processing or editing error is the discrepancy between the variable utilized in
the estimation and the one provided by the respondent, indicated as (yip − yi).

The errors in the TSE framework are classified based on representation (sample)
and measurement (answers). This aligns with how we considered the reasons for
inaccurate estimates in Chapter 2: the issue could stem from either sample-related
concerns, which become more critical as response rates decline, or from the meas-
urement process itself, specifically the response, which can be influenced by various
psychological and social factors. In Chapter 3.2.2, the errors are classified into two
groups: those that can be rectified using existing mathematical tools (mathematical
factors of the total error) and those that cannot be rectified directly with current
mathematical tools (non-mathematical factors of the error).

3.2.2 Mathematical and non-mathematical factors of the
total error

Certain errors and biases can be accurately detected through mathematical tech-
niques, allowing for estimation of their extent and direct management of their con-
sequences. These can be regarded as mathematical aspects of the inaccuracies. In
contrast, there are effcts where the underlying mechanisms are not well-defined, the
patterns are only partially understood, making it difficult to address their impacts.
These can be seen as non-mathematical aspects. Figure 3.3 illustrates the various
types of inaccuracies identified in human population surveys, categorizing them into
mathematical and non-mathematical components.
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Figure 3.3: The element of the TSE framework in the group of mathematical and non-mathematical
factors

Soruce: Own editing.

Mathematical factors include errors that can be managed by sampling design (sampling
error), accurate data processing procedures (processing error), and suitable post-
survey weights (weighting error). The extent of these errors can be quantified in an
exact way using the formulae presented in Chapter 3.2.1.

On the contrary, non-mathematical elements encompass inaccuracies that are
impacted by phenomena that are not directly observable. Lack of validity, non-
response error, measurement error, and coverage error fall under the umbrella of
non-mathematical factors. Lack of validity is dependent on the researcher’s abil-
ity to adequately capture the phenomena of the studied population, while the true
population phenomena remain unknown. Nonresponse and measurement errors are
primarily influenced by the behaviors of respondents: nonresponse error is related
to participant behavior in survey participation, while measurement error pertains to
the accuracy of responses to specific questions. The responses of those who decline
to answer will always remain unknown, making it impossible to quantify the extent
of the error. Similarly, the true responses of those who provide different answers
will never be known, making it challenging to quantify the degree of error. Cov-
erage error is influenced by the research infrastructure and the specific population
being studied. For instance, the population not included in a population register is
unknown due to lack of data.

Errors within the category of non-mathematical factors are inevitable, yet their
underlying mechanisms remain elusive.

As discussed in Chapter 2.2, these specific issues often lead to inaccurate pre-
dictions as they are more challenging to manage compared to mathematical factors.
The thesis will now delve into two errors within the realm of non-mathematical
factors: nonresponse error, which impacts the composition of the sample, and meas-
urement error, which affects the accuracy of responses.

36



Chapter 4

A new sample allocation method

As mentioned in Chapter 3.2, the issue of bias caused by nonresponse is commonly
addressed through post-stratification. Although this approach is generally effective
when there is enough supplementary data, it increases variance in cases where certain
cells have very limited or no observations. This chapter introduces a novel method
that addresses the issue of nonresponse bias and reduces variance by allocating
samples based on expected response rates. The approach is specifically designed
for stratified sample designs (Chapter 3.1.2.6), which are commonly used in survey
implementations.

We demonstrate that if specific response rates are available for different strata,
the new sample allocation that takes these into account has certain advantages over
the traditional proportional to size (PS) allocation methods. This is accomplished
not only when the response rates are accurately known, but also when they are only
approximately defined. In fact, an allocation that considers the expected response
rates (ERR) leads to lower variance compared to using a PS allocation. By imple-
menting the new allocation method, it becomes possible to effectively address one
of the most critical quality concerns in human population surveys, the nonresponse
bias. This method allows better control over sample composition, thereby reducing
variance and ensuring an appropriate representation of the population.

After a short introduction, we briefly introduce the traditional PS procedure with
post-stratification (Chapter 4.2) before Chapter 4.3 formally presents the method
of ERRs allocation. The relative performance of ERRs allocation is assessed by
comparing the variances in the resulting estimates in Chapter 4.4. The asymptotic
variances are calculated using the d-method in Chapter 4.5.1 and are then initially
compared by assuming correctly specified response rates in Chapter 4.5.2. Here, the
assumed response rates are subject to random fluctuations, which are then corrected
using post-stratification. In Chapter 4.5.3, variance comparison is performed in
terms of misspecified response rates, and the results of an extensive assessment
using various combinations of specific population parameters are presented.

This chapter is published as:
B. Szeitl & T. Rudas (2022) ”Reducing variance with sample allocation based on
expected response rates in stratified sample designs” Journal of Survey Statistics
and Methodology (10), 1107–1120 https://doi.org/10.1093/jssam/smab021
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4.1 Introduction

Correcting for nonresponse starts with identifying the nonresponse mechanism. Ru-
bin (1976, [62]) proposed a typology for the different types of nonresponse mechan-
ism:

(i) Nonresponse is called uniform or missing completely at random (MCAR) if it
does not depend on either the variable of interest or auxiliary variables. The
response probability is then constant for all units in the population.

(ii) Nonresponse is called ignorable or missing at random (MAR) if the response
probability depends on auxiliary variables, which are not affected by nonre-
sponse, but do not depend on the variable of interest.

(iii) Nonresponse is called nonignorable or missing not at random (MNAR) if it
depends on the variable of interest which is affected by nonresponse. For
example, if the nonresponse of an income variable depends on the income
itself.

The concept of nonresponse mechanisms is illustrated using the analogy of the tra-
ditional dice roll experiments in Figure 4.1. The complete set of true values (i.e. all
of the 16 individuals in the sample) is shown in Figure 4.1a. Figure 4.1b demon-
strates the MCAR situation, where some results are not visible but are independent
of the true values in Figure 4.1a. On the contrary, Figure 4.1c presents the MNAR/-
MAR scenario, where the unobserved outcomes depend on the rolled values (which
can coinsidered as an auxiliary variable or the variable of interest). In this case,
there could be a hidden process that hides larger values, leading to biased estim-
ates. When addressing data quality, the modeling task involves recognizing the
nonresponse mechanism associated with the variable being studied.

(a) Total sample (b) MCAR (c) MNAR (MAR)

Figure 4.1: Nonresponse mechanism based on the analogy of the dice roll

Source: Own figure.

Nonresponse can therefore seriously distort the results and even lead to incorrect con-
clusions. As we discussed in Chapter 2, previous field experiences and the analysis
of current survey meta-data indicate that the overall increase in survey nonresponse
does not equally apply to different population subgroups [29, 63]. The resulting
distortion of sample composition is usually dealt with using post-stratification [18].
It has been found that single-person households, renters and individuals outside of
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the labour force are less likely to participate in surveys than members of other social
groups [64, 29]. This suggests that giving a larger proportional allocation to these
groups may improve the realised sample. To be able to determine the exact propor-
tions during the allocation procedure, estimates from previous surveys are needed.
In case of item-nonresponse the expected historical response rates are easy to de-
termine using publicly available survey data. In the case of unit-nonresponse, the
contact data (or survey meta-data) are typically not available publicly, but survey
organizations can use their own historical data.

As we introduced in Chapter 3.1.2.7, to achieve an optimum balance between data
collection costs and estimation efficiency (variance reduction), complex selection
methods are typically required for the sampling design of human population surveys.

Samples that are representative according to previously appointed variables may
be obtained via a precise allocation of the sample sizes within different strata, if the
relevant information is available both for the entire population, e.g., from a census,
and also for every individual in a sampling frame, e.g., in a register. Generally,
the proportional-to-stratum size (PS) allocation method [65] is used. However, the
realised (observed) sample sizes within the strata tend to differ from the planned
(allocated) ones.

4.2 Allocation proportional to size

Let N denote the population size and let Nh (h = 1, 2, . . . , H), be the sizes of the
strata relevant to the sampling procedure, with N = N1 + ... + NH . In a stratified
random sample, a simple random sample of nh elements is taken from each stratum
h (h = 1, 2, ..., H), with a total sample size of n elements.

When the survey aims to collect m responses, the response rate which character-
izes the population needs to be taken into account in deciding about the attempted
sample size. Of course, such decisions should be made based on the true response
rate, but it is rarely known. Thus, the ERR, say r, is used which is based on former
experience. Then, a total of n = m/r observations are allocated.

In the case of allocation proportional to size (PS), let nPSh (h = 1, 2, ..., H) denote
the subsample size within stratum h. The sampling fraction nPSh /Nh is specified to
be the same for each stratum and thus

nPSh =
1

r

Nh

N
m h=1,...,H , (4.1)

which implies that the overall sampling fraction n/N is the same as the fraction
taken from each stratum. The total allocated sample size is then as follows:

nPS = m
H∑
h=1

Nh

N

1

r
=
m

r
(4.2)
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4.3 A new allocation based on ERRs

In the case of ERR allocation, let nERRh (h = 1, 2, ..., H) denote the allocated sub-
sample size within stratum h. Let rh (h = 1, 2, ..., H) denote the stratum-specific
ERRs, which are also assumed to be population parameters. Clearly,

r =
H∑
h=1

rhNh

N
.

In ERR allocation, the allocated sample size in each stratum nERRh is specified using,
instead of the population level ERR, the stratum-specific ERRs. The allocated
sample size in each stratum is

nERRh =
1

rh

Nh

N
m h=1,...,H. (4.3)

Consequently, the total allocated sample size is

nERR = m
H∑
h=1

Nh

N

1

rh
. (4.4)

4.4 Estimation procedures

To assess the ERRs and PS allocations, the variances of the estimates obtained will
be compared in Chapter 4.5.1 using the δ-method. Here, we describe the estimating
procedures.

The main aim is to estimate the proportion of respondents within a given population
who would choose a fixed category, e.g., ’yes’, of a given close-ended question based
on observed samples in terms of both ERRs and PS allocations. In both cases,
post-stratification is applied prior to the estimation to appropriately reproduce the
relative sizes of the strata in the population [18].

It is assumed that responding to the survey is probabilistic and occurs in stratum
h with probability ph and is independent from the true answer to the question of
interest. It should be noted that the rh response rates represent the expectation of
the researcher based on previous knowledge and that ph is the true probability of
responding. The probability of nonresponse1 is therefore 1− ph in each stratum h.
Thus, the nonresponse mechanism is MCAR [62]. The probability of a ’yes’ response
is assumed to be qh in each stratum h.
Under the previous assumptions, the complete data for each stratum, would be the
observation of a variable Zh with the following four components:

1. Zh1 counts the number of cases when the selected respondent did answer and
the answer was ’yes’.

1For the present argument, it is irrelevant whether nonresponse applies to the entire survey
because of no-contact or refusal or only to the current question.
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2. Zh2 counts the number of cases when the selected respondent did answer and
the answer was ’no’;

3. Zh3 counts the number of cases when the selected respondent did not answer
and the answer would have been ’yes’;

4. Zh4 counts the number of cases when the selected respondent did not answer
and the answer would have been ’no’;

Within stratum h, Zh has a multinomial distribution with parameters nh and qh,
where nh is the allocated sample size for stratum h, which depends on the type of
allocation, and under the assumed independence of the true response from whether
or not the answer is received,

qh = (phqh, ph(1− qh), (1− ph)qh, (1− ph)(1− qh)). (4.5)

The observed sample size is oh = Zh1 + Zh2 in stratum h, and for each observation,
a post-stratification weight of

Nh

N

∑H
i=1 oi

oh
h=1,. . . ,H.

is applied, which adjusts the fraction of the sample size in stratum h to be equal to
the population fraction of stratum h but does not change the total observed sample
size. After weight is applied, Zhj is replaced by

Nh

N
·
∑H

i=1(Zi1 + Zi2)

Zh1 + Zh2
Zhj , j=1,2,3,4 h=1,. . . ,H.

As such, the natural estimator for the fraction of ’yes’ responses in stratum h is

q̂h =

Nh

N
·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh1

Nh

N
·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh2 + Nh

N
·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh1

=
Zh1

Zh1 + Zh2
, (4.6)

which is the relative frequency of ’yes’ responses among all responses observed in
stratum h. It should be noted that as q̂h refers to a single stratum, the post-
stratification weights are cancelled out because they are identical within each stratum.
For the entire sample, the Zh variables have a product multinomial distribution.
The estimator for the fraction of ’yes’ responses in the total sample is

q̂ =

∑H
h=1

Nh

N
·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh1∑H

h=1

(
Nh

N
·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh2 + Nh

N
·
∑H

i=1(Zi1+Zi2)

Zh1+Zh2
Zh1

)

=
1

N

H∑
h=1

Nh
Zh1

Zh1 + Zh2
(4.7)

which is the weighted fraction of ’yes’ responses among all responses observed in
the total sample. Here, post-stratification has the effect of weighting the stratum-
specific estimates in terms of their population weights.
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4.5 Variance comparison

In this chapter we compare the variances of the estimates derived from the ERRs
and PS allocations using the δ-method and present the results in the case of correctly
specified and misspecified response rates.

4.5.1 The δ-method

Theorem 4.5.1.1 (Multidimensional δ-method). Let Xn, n = 1, 2, ... be a sequence
of k-dimensional vector-valued random variables such that,

√
n(Xn − a)

d−→ Y, (4.8)

where a ∈ Rk and Y ∼ N(0,Σ). If a function f : Rk −→ Rl is differentiable at

a ∈ Rk, and D is its l × k matrix of partial derivatives with dij = ∂fi(a)
∂xj

, then

√
n(f(Xn)− f(a))

d−→ Z,Z ∼ N(0, DΣDT ). (4.9)

The proof of the Theorem can be found in [66] or [49].
As condition (4.8) holds for the multinomial distribution, theorem 4.5.1.1 may be
applied within each stratum. The estimator for the proportion of ’yes’ responses in
the total population (4.7) in Chapter 4.4, is the weighted fraction of ’yes’ responses
among all responses observed across all strata.
In one strata, when omitting the index h, the estimation function is f(Z) = Z1

Z1+Z2

and the partial derivatives are as follows:

df

dZ1

=
Z2

(Z1 + Z2)2
df

dZ2

= − Z1

(Z1 + Z2)2

df

dZ3

= 0
df

dZ4

= 0

The partial derivative vector D with the components evaluated above at the expect-
ations E(Z1) = np1 and E(Z2) = np2, is

D =



− np1
(np1+np2)2

np2
(np1+np2)2

0

0


(4.10)

As Z has a multinomial distribution with the probability vector given in (4.5), its
covariance matrix is

Σ =


np1(1− p1) −np1p2 −np1p3 −np1p4
−np2p1 np2(1− p2) −np2p3 −np2p4
−np3p1 −np3p2 np3(1− p3) −np3p4
−np4p1 −np4p2 −np4p3 np4(1− p4)

 (4.11)
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Then, one has the following results for the asymptotic variances.

Theorem 4.5.1.2 (Variance of the estimates). Let the population size be N , and let
the population be divided into H strata of respective sizes of Nh, (h = 1, .., H). Let
m be the intended total sample size, r the ERR in the entire population and rh the
respective ERRs in the strata. The true population proportion of those possessing the
characteristics of interest is denoted by qh, which is the parameter to be estimated
in each stratum h. Finally, let ph be the true response rate in stratum h. Then, the
asymptotic variances of the estimates obtained from samples based on PS and ERRs
allocations, with post-stratification applied, are as follows.

V PS(q̂) =
1

Nm

H∑
h=1

Nhqh(1− qh)
r

ph
(4.12)

V ERR(q̂) =
1

Nm

H∑
h=1

Nhqh(1− qh)
rh
ph

(4.13)

Proof. As stratified sampling leads to a product multinomial distribution (see, e.g.,
Rudas, 2018), Theorem 4.5.1.1 is applied for each stratum. Then, the asymptotic
variance is obtained as follows:

DTΣD =
(phqh)(ph(1− qh))2 + (phqh)

2(ph(1− qh))
nh((ph(1− qh) + phqh)4

=
p3hqh − p3hq2h

nhp4h
=
p3hqh(1− qh)

nhp4h
=
qh(1− qh)
nhph

As the allocated stratum-specific sample sizes nh are different in the PS and ERR
allocations, different asymptotic variances will be obtained.
In the case of PS allocation, using (4.1),

V PS
h (q̂) =

qh(1− qh)
nPSh ph

=
qh(1− qh)(
1
r
Nh

N
m
)
ph
,

whereas for the total sample, the following is obtained:

V PS(q̂) =
1

N2

H∑
h=1

N2
h V̂h(q̂) =

1

N2

H∑
h=1

N2
h

qh(1− qh)(
1
r
Nh

N
m
)
ph

=
1

Nm

H∑
h=1

Nhqh(1− qh)
r

ph
.

The asymptotic variance in stratum h in case of the ERR allocation with (4.3) is

V ERR
h (q̂) =

qh(1− qh)
nERRh ph

=
qh(1− qh)(
1
rh

Nh

N
m
)
ph

whereas for the total sample, the following is obtained:

V ERR(q̂) =
1

N2

H∑
h=1

N2
h V̂h(q̂) =

1

N2

H∑
h=1

N2
h

qh(1− qh)(
1
rh

Nh

N
m
)
ph
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=
1

Nm

H∑
h=1

Nhqh(1− qh)
rh
ph

In terms of a general comparison of the variances obtained above, the difference
of the variances for the ERR and PS allocations, disregarding a positive constant
multiplier, may be written as a weighted sum of the quantities

rh − r
ph

, (4.14)

with weights equal to
Nhqh(1− qh). (4.15)

Large negative values and small positive values of (4.14) point to a better per-
formance of the ERR allocation than of the PS allocation. The value of (4.14) is
sometimes negative and sometimes positive, as r is a weighted average of the rh
values. Negative values of (4.14) are obtained when rh is smaller than average and
they will be made larger if ph is small. Positive values of (4.14) are obtained when rh
is greater than average and will be made smaller if ph is large. Thus, (4.14) may be
viewed as a measure of how well the ERRs rh approximate the true response rates
ph, with large negative and small positive values meaning better approximation.

Consequently, V ERR(q̂)−V PS(q̂) may be seen as a weighted average of how well
rh approximates ph, as measured by (4.14), where the weights are the total variances
of the strata, given in (4.15). The better the approximation, in particular in the
strata with large total variances, the better the ERR allocation performs relative to
the PS allocation.

In the following, more detailed comparisons are given.

4.5.2 Comparison under correctly specified response rates

In this section, we prove that in the case of correctly specified response rates (rh =
ph), the variance of the estimate based on the ERRs allocation is less than or equal
to that derived from the PS allocation:
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Theorem 4.5.2.1 (Relationships among the variances). Let V̂ PS(q̂) be the total
variance of the estimates based on a sample drawn via the PS allocation given in
(4.12), and let V̂ ERR(q̂) be the total variance of the estimates based on a sample
drawn by the allocation based on different ERRs, as given in (4.13). If the observed
response rates are equal to the ERRs, then,

V̂ ERR(q̂) ≤ V̂ PS(q̂) (4.16)

Proof. If rh = ph, the response rates are correctly specified, and then r is also the
average ERR among all strata. Because N , Nh and qh are population parameters,
and m is a fixed constant, it is enough to see that

H∑
h=1

Nhqh(1− qh) ≤
H∑
h=1

Nhqh(1− qh)
1
H

∑H
j=1 pj

ph

or

1∑H
h=1wh

H∑
h=1

wh
1

1
H

∑H
j=1 pj

≤ 1∑H
h=1wh

H∑
h=1

wh
1

ph
.

As the left hand side is the weighted harmonic mean of the values 1
p1
, . . . , 1

pH
, and the

right-hand side is the weighted arithmetic mean of the same numbers, by inequality
between these means [67] demonstrates that the claim of the theorem is true.

4.5.3 Comparison under misspecified response rates

In this chapter, we compare the ERRs and PS allocation methods under misspecific-
ation that is, when the true response rates differ from the ERRs used in the sample
allocation (ph 6= rh). The variances were compared for all combinations of parameter
values with a fixed number of strata, H = 3. Specifically, all possible combinations
of the following parameter values were considered: all possible combinations of the
values

{
0.1, 0.3, 0.5, 0.7, 0.9

}
for the true response rates

{
p1, p2, p3

}
and for the

ERRs
{
r1, r2, r3

}
. The parameter to be estimated in every stratum h (h = 1, 2, 3)

was given values between 0 and 1, with an increment of 0.05. The size of the pop-
ulation N = 107,the sizes of the strata N1 = 2 ∗ 106, N2 = 3 ∗ 106, N3 = 5 ∗ 106,
and the desired total sample size m = 1000 were fixed. With the different choices, a
total of 15.625.000 different sets of parameters were defined. The calculations were
conducted using the R statistical environment.
Figure 4.2 shows the comparison of the variances of the estimates obtained using
ERRs and PS allocations. The comparison is given in terms of the total absolute
misspecification of the response rates,

∑H
h=1 |rh − ph| (x-axis) and of the total ab-

solute distance of the ERRs
{
r1, r2, r3

}
from their weighted average,

∑H
h=1 |rh − r|

(y-axis).
The magnitude of the misspecification of the response rates appeared to have a
greater impact on the relative performances of the two allocation procedures. When
the total absolute misspecfication was less than 0.3, the ERR allocation almost
always performed better. Meanwhile, the total absolute distance of the ERRs from
their weighted average appears to have had a small and non-systematic effect.
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Figure 4.2: Comparison of the variances in the estimates obtained using ERR and PS allocations,
in terms of the total absolute misspecification of the response rates (x-axis:

∑H
h=1 |rh − ph|) and

the total absolute distance of the ERRs from one weighted average (y-axis:
∑H

h=1 |rh − r|).
Source: Own figure.

Figure 4.3 shows the comparison of the variances of the estimates obtained using
ERR and PS allocations in terms of the total absolute misspecification of the re-
sponse rates,

∑H
h=1 |rh − ph| (x-axis) and the difference in the absolute deviances of

the response rates from their respective weighted averages,
∑H

h=1(|rh− r|− |ph− p|)
(y-axis).
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When the total absolute misspecification of the response rates was lower than 0.3,
the ERR allocation yielded mostly smaller variances. Meanwhile, in the range of
0.3−0.4, the two allocations performed equally well. Most notably, an equal precision
can be expected in the extreme areas of the plot.

Figure 4.3: Comparison of the varianc in the estimates obtained using ERR and PS allocations, in
terms of the total absolute misspecification of the response rates (x-axis:

∑H
h=1 |rh − ph|) and the

difference in the absolute deviations of the response rates from their respective weighted averages
(y-axis:

∑H
h=1(|rh − r| − |ph − p|)).

Source: Own figure.
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Figure 4.4 shows the comparison of the variances of the estimates obtained using
the ERR and PS allocations in terms of the total absolute distance of the response
rates from their weighted average

∑H
h=1 |rh − r| (x-axis) and the difference in the

absolute deviations of the response rates from their respective weighted averages∑H
h=1(|rh − r| − |ph − p|) (y-axis).

Here, the total absolute misspecification shown on the x-axes of Figures 4.2 and
4.3 was disregarded but was clearly more influential than the characteristics shown
in Figure 4.4. When the difference between the total absolute deviations of the
expected rates and the ERRs was less than approximately half of the latter, the ERR
allocation always performed better, irrespective of whether or not the individual
response rates were correctly predicted.

Figure 4.4: Comparison of the variances of the estimates obtained using the ERR and the PS
allocations in terms of the total absolute distance of the response rates from their weighted average
(x-axis:

∑H
h=1 |rh − r|) and the difference in the absolute deviations of the response rates from

their respective weighted averages (y-axis:
∑H

h=1(|rh − r| − |ph − p|).
Source: Own figure.
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4.6 Discussion

In this chapter, we demonstrated how ERRs can be utilised in the sample allocation
procedure. In the process, we introduced an ERRs allocation procedure where the
stratum-specific ERRs were used to determine the allocated sample sizes within each
stratum. We assessed the method by comparing it with a standard proportional
allocation method (PS) where stratum-specific response rates are not used. The
assessment of the sample allocation procedures used a comparison of the resulting
asymptotic variances based on the δ-method when assuming the expected responses
were equal to the true responses. In the case of misspecified response rates, extensive
enumeration was used. The first finding of the chapter is that if the stratum-specific
response rates are correctly specified, ERRs allocation performs better than PS
allocation in terms of the variances of the estimates. In practice, however, it may be
difficult to precisely estimate the stratum-specific response rates prior to sampling.
In such cases, approximate response rates based on experience need to be used. On
the basis of the numerical results obtained:

(a) ERRs allocation outperforms PS allocation if the total absolute distance of
the ERRs from the true response rates is moderate,

(b) The total absolute distance of the ERRs from their weighted average and the
total absolute distance of the true response rates from their weighted average
do not appear to affect the aforementioned finding,

(c) When the difference between the total absolute deviations of the expected and
of the true response rates is less than approximately half of the latter, ERRs
allocation always performs better, irrespective of whether or not the individual
response rates were correctly predicted.

In this chapter, statistics other than proportions were not investigated, because of
the problematic nature of the distributional assumptions including the homogeneity
of variances which would have to be made. However, given that the proportions
were obtained as averages of specific indicators, we expect similar results to hold in
more general cases.

When examining the variances in situations where response rates are inaccur-
ately specified, considering factors such as the number of strata and their variability
can substantially increase the complexity of the analysis. We aim to explore this
further in a more general context for future research.

The allocation method described in this chapter may be applied to other sampling
designs which include separate allocation steps for subsamples. These designs in-
clude multistage sampling where sample allocations taking into consideration the
different ERRs in the different primary sampling units may be applied.
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Chapter 5

A new scheme for assessing survey
quality

The ERRs allocation provided an improvement to the sample component in the
survey estimates. In addition to the sample component, there is another source of
error, which is related to the quality of the measurement. In this chapter, we provide
a new aspect for evaluating the quality of surveys. The framework presented here
assesses the uncertainty with which a survey yields the result. This uncertainty is
defined as the extent to which the results would be different if the original survey
were repeated. The aspect presented here can be added to the TSE framework
(introduced in Chapter 3.2.1). Within the basic concept of TSE, errors are defined
as the deviation of a survey response from its underlying true value [60]. However,
the concept of an underlying true value is problematic due to quality errors in
complete enumerations, which motivates the analysis of replication surveys.

Our approach models the precision of the values found in a survey compared to
a potential replication of the survey. We define nonresponse uncertainty (NU) and
measurement uncertainty (MU), which refer to the sources of difference between two
replications of surveys and can be linked to nonresponse and measurement error in
the TSE. Unlike general methods that assess the reliability and validity of a given
question, this new scheme assesses the uncertainties of the survey as a whole.

After a short introduction to measurement error in Chapter 5.1, the quality
issues of the theoretical population values are outlined in Chapter 5.2. Then we
present the replication survey framework and show how the total difference between
two replication surveys can be decomposed in theory into NU and MU (Chapter
5.3). The new approach is also illustrated with a case study: two replications of
the ESS are compared for some selected variables both at the sample and individual
levels (Chapter 5.4).

This chapter is accepted as:
B. Szeitl & T. Rudas (2024) ”Assessing survey quality with a replication survey:
nonresponse uncertainty and measurement uncertainty in the ESS” Methods, data,
analysis (MDA)

The case study presented in this chapter is based on the OTKA research (nr. K
125162) ”How to Approach the Unreachable? Pilot analysis of unit non-response
and ineligible populations in empirical surveys by re-contacting”. The research was
led by Tóth István György and Blanka Szeitl at Tárki Social Research Institute.
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5.1 Introduction

A major part of the inaccuracy of survey estimates is due to different types of
measurement error [18]. The measurement error is between the construct (µi) and
measurement (Yi) sections in the TSE framework. It is one of the biggest chal-
lenges of human population surveys because it includes several human factors in the
answering process (cognitive functions, social desirability, etc.) whose pattern is dif-
ficult to detect. In this chapter, we outline the most relevant methods for analyzing
measurement error.

Drawing on the comparison to a traditional roll of dice, the concept of measurement
error can be visualized in Figure 5.1. In the case of measurement error, we differ-
entiate between random error and systematic bias. Figure 5.1a represents the total
sample, i.e. the answers of 16 individuals to a selected question. Figure 5.1b rep-
resents the random error: There are six cases in which we cannot observe the true
answers, but the measurement mechanism is independent of the values. System-
atic bias in measurement procedures can be found in Figure 5.1c. The inaccurately
measured values are influenced by the actual values of the experiments: this mech-
anism tends to affect the measurement of lower values, thus introducing bias to the
measurement. Unlike nonresponse error, in the case of measurement error, we are
unaware that there is a misrepresentation and there is a possibility that we consider
the measured value as the true value for the specific respondent.

(a) n (b) random error (c) systematic bias

Figure 5.1: Measurement error using the analogy of the dice roll

Source: Own figure.

In the analysis of measurement error, we investigate how the responses of observed
individuals vary and how this affects the accuracy of estimates [45]. The existing lit-
erature proposes various solutions to mitigate these effects during the data collection
stage (random response, item count techniques, high level of anonymity [18, 45]).
During data processing and analysis, measurement error is considered part of the
overall quality of the survey questions [45]. There are techniques to estimate or
predict the quality of the question, such as the Multitrait-Multimethod (MTMM)
approach and the Survey Quality Program (SQP). Additionally, structural equation
models can be used to model measurement error [43]. However, it should be noted
that the exploration of measurement error within survey quality aspects is relatively
limited, constraining the available solutions [41].
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Before correcting for measurement error, we need to establish a model for the
reliability and validity of the measurements [45]. In the measurement model, we
investigate the relationship between two latent variables (f1 and f2). Their relation-
ship is represented by the correlation coefficient ρ(f1, f2), which can be estimated
by the observed correlation coefficent of the measured variables, ρ(y1, y2) [18]. The
relationship between f1 and y1 and between f2 and y2 will not be perfect due to
measurement errors (e1 and e2). The standardized effect of the variable of interest
fi on yi is called the quality coefficient (qi). If the latent variables and the errors
are uncorrelated and the variables are standardized, the variance of the observed
variables is 1, and it follows that:

var(yi) = q2i + var(ei). (5.1)

Because of this result, the quality of the ith question is q2i = 1−var(errors) and the
coefficient qi is called the quality coefficient [45]. It can also be shown that:

ρ(y1, y2) = ρ(f1, f2)q1q2 (5.2)

When the quality of the two variables decreases, the correlation coefficient ρ(y1, y2)
also decreases, but at a much faster rate. If the quality of the measurements is
equal to 0.5 (the average quality in survey research, Alwin, 2007), then the quality
coefficients qi are 0.7 and the expected correlation between the observed variables
will be only half the size of the correlation between the variables of interest. If the
quality coefficients decrease to 0.6, then this correlation will be as small as one-third
of the true value [45].
It is evident that measurement models are built on the assumption of an inherent
true value, known as the latent variable. Following the quality indicators theory,
these latent variables can be quantified, and the theory of variables is evaluated in
relation to this latent variable. Chapter 5.2 outlines the potential issues associated
with this concept.

5.2 The illusion of true population values

In the context of sample surveys, it is assumed that the population value being es-
timated is known and can be measured for all members of the population. However,
the true value of population parameters can only be obtained through complete enu-
merations, i.e. censuses. Census data are crucial in sampling design and during the
assessment and correction of the sample in certain aspects. The TSE approach to
survey quality assumes that there exists a true population value that is not known
and the goal is to estimate it [18]. In the TSE framework, each component of er-
rors and biases is defined relative to the assumed true value, which in practice also
represents the census value.

Censuses, on the other hand, face issues related to their true completeness. Some
of these problems are theoretical, while others are relevant to the practice of survey
sampling. The core of the theoretical problems is related to the superpopulation
concept, which was previously discussed in Chapter 3.1.3.1. Based on this concept,
a truly complete census cannot be achieved, as the population is not fixed and is
constantly changing. According to the superpopulation concept, the census is also
a survey, only with a very large sample size [54]. Practical issues with census values
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are related to the accuracy of census data, particularly concerning the inclusion of
all individuals in the enumeration and the accuracy of their responses to census
questionnaires [68]. Census coverage differs from that of sample surveys because
censuses tend to cover the entire population without sampling. Consequently, they
are prone to nonresponse errors typical of sample surveys. Inaccurate responses in
censuses lead to the same measurement errors seen in sample surveys, making it
unnecessary to examine them separately in the context of censuses [68].

On the contrary, census coverage is a significant topic in the current statistical
literature. This chapter presents some recent findings to establish a foundation for
the concept of replication surveys.

The precision of census data is thoroughly examined by different institutions, in-
cluding the United States Census Bureau (US CB), the Office for National Statistics
in the United Kingdom (ONS), and the United Nations Economic Commission for
Europe (UNECE). These entities offer comprehensive recommendations to guar-
antee the accuracy of censuses [69]. The techniques proposed by these bodies for
evaluating quality utilize sample surveys to calculate potential under and overrep-
resentation in census data.

For the 2021 Census, the ONS has estimated coverage using a Census Coverage
Survey (CCS), which was a post-census sample survey. The data was used in a
capture-recapture structure linked to the census data, on which logistic regression
models were used to estimate the effect of different demographic characteristics on
the probability of response/coverage [68]. Their results suggest that the probability
of response could not only be subject to non-response error, but also to systematic
bias similar to non-response bias, as it varied somewhat for the main demographic
variables such as gender and age (Figure 5.2 and 5.3).

Figure 5.2: Age-gender undercoverage probabilities (female) in England and Wales

Source: Office for National Statistics, Census 2021, Coverage estimation for Census 2021 in England and Wales
Methodology for coverage estimation of Census 2021 in England and Wales. pp. 9.
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Figure 5.3: Age-gender undercoverage probabilities (male) in England and Wales

Source: Office for National Statistics, Census 2021, Coverage estimation for Census 2021 in England and Wales
Methodology for coverage estimation of Census 2021 in England and Wales. pp. 10.

The CB uses an additional survey to improve the accuracy of their censuses. In
contrast to the ONS, the CB’s supplementary survey is conducted before the census
data collection process, serving as a preparation tool. This survey also assesses
public attitudes towards the census, which is a valuable indicator of the likelihood
of encountering incorrect, false, or incomplete data [70]. The American Statistical
Association (ASA) guidelines for handling incomplete responses highlight that this
issue exhibits a demographic pattern, with notable differences between Black and
Non-Black populations. To address this, the ASA references two pertinent bench-
mark data sources, namely the Demographic Analysis (DA) and the Population
Estimates Program, both of which involve the collection of sample survey data [71].

A complete enumeration of the population eliminates any sampling errors; how-
ever, it does not guarantee error-free estimates. Various factors such as measurement
errors, nonresponse errors, coverage errors, and processing errors can still be signi-
ficant, and in some cases even more severe compared to sample surveys [72]. Even
with advances in technology, these issues cannot be completely eliminated and may
even introduce additional problems in data collection. Therefore, it is important to
question the concept of true values in survey research. Especially since the census
data, which is a benchmark for sample surveys, are in most cases also validated by
additional (or even previous) sample surveys.

In the following chapters, we propose an alternative approach to assess survey
quality: instead of an illusion of a true population parameter, our method addresses
the issue of survey quality through replication surveys.
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5.3 Theory

5.3.1 Replication surveys

A replication survey attempts to revisit the original survey, including not only the
previously successful respondents, but also the part of the sample that could not
be reached in the original survey [73]. According to the definition of replication
surveys, it has two main objectives: (1) it acts as a reliability check of the original
study or (2) it detects the validity and inconsistency of the measurements [73]. In
the following, replication surveys are considered to be used for (1) purpose. It is also
common to assess the reliability of the measurements in test-retest and longitudinal
studies [74, 75, 43]. In these cases, the entire initial sample is not revisited, but only
the successful sample from the original survey. The primary aim of these researches
is to reduce measurement error in longitudinal studies. A great illustration is the
dependent interview technique (DI) and the proactive dependent interview technique
(PDI). DI and PDI use information from responses provided in previous interview
rounds to modify the phrasing and routing of the questions in subsequent survey
waves, as well as to facilitate edit checks within the interview [76]. Both approaches
are widely used in panel surveys to achieve greater longitudinal consistency, lower
levels of random measurement error, and to reduce the response burden [77].

Our method is not concerned with how to reduce errors but about presenting a
new concept of measuring uncertainties. In our approach, uncertainties are defined
relative to the potential repetition of an original study without any relevant changes
in the research design. Replication surveys serve as a substitute for the notion of
inherent true value, which is a fundamental aspect of the TSE framework.

5.3.2 Decomposition of the total difference of answers

In this chapter, we formally show the decomposition of the total difference of the
answers from two replications of a survey. We consider the cases of continuous vari-
ables by decomposing the mean, and correlation coefficient, and discrete variables
by decomposing the relative frequency of the ith category, and χ2-test statistics
for independence. In the following, we present NU and MU in the joint attempted
sample of potential first and second replications of a survey. The following notations
are used for different groups of answers (Figure 5.4): set A denotes the answers of
the total completed sample of the first replication of a survey, set B concerns the
answers of the total completed sample of the second replication of a survey, set C
denotes the answers of the group of those who responded only to the first replic-
ation of a survey, and set D denotes the answers of those who responded only to
the second replication of a survey. Sets E and F refer to answers from those, who
responded to both replications. Set E concerns the answers of the first survey, and
set F concerns the answers of the second survey.
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Figure 5.4: Different groups of answers in replication surveys

Source: Own figure.

NU depends on whether individuals who respond to the first replication of a survey
give different answers from those who respond to the second replication of a survey,
and thus NU captures the uncertainty of the base of responders/non-responders.
Since there are respondents who did not participate in either replication of a survey
and are therefore not included in this analysis, a particular kind of NU is stud-
ied: only in relation to the two replications of the survey. MU is the difference
between the answers of the two replications of a survey from the same respondents.
MU is defined both at the individual/respondent level and at the sample level. If
MU occurs, there is an observation gap between the answers obtained in the first
replication of a survey and the answers obtained in the second replication of a sur-
vey. Theorems 5.3.2.1 - 5.3.2.4 includes the decompositions of the mean, correlation
coefficient, relative frequency of the ith category of a discrete variable, and χ2-test
statistics for independence between two discrete variables.

Theorem 5.3.2.1 (Decomposition of the total difference of the mean). Let X denote
a variable measured in both replications and X̄A, X̄B, X̄C , X̄D, X̄E, X̄F be the mean of
X in sets A− F respectively. Let mA,mB,mC ,mD,mE, and mF denote the sample
sizes for each set, respectively. The decomposition of the difference of X̄ between
the first and second replications of a survey can be written as the weighted average
of the differences between sets C and D and the weighted average of the differences
between sets E and F. The decomposition of the difference is:

X̄A − X̄B =
mC +mD

mA +mB

(
X̄C − X̄D

)
+
mE +mF

mA +mB

(
X̄E − X̄F

)
, (5.3)

where X̄C − X̄D is the NU and X̄E − X̄F is the MU.
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Theorem 5.3.2.2 (Decomposition of the total difference of the correlation coef-
ficient). Let X and Y denote two variables measured in both replications and let
r(X, Y )A, r(X, Y )B, r(X, Y )C , r(X, Y )D, r(X, Y )E, r(X, Y )F be the correlation
coefficients of X and Y in sets A–F , respectively. The decomposition of the dif-
ference of r(X, Y ) between the first and the second replications is obtained as the
weighted average of the Fisher’s z-scores [78] of the differences between set C and set
D and the difference between sets E and F . The Fisher’s z-transformed correlation
coefficients are denoted by r′(X, Y )A, r′(X, Y )B, r′(X, Y )C, r′(X, Y )D, r′(X, Y )E,
r′(X, Y )F in sets A–F , respectively. Following the standard Fisher’s z-score method
in Alexander [78], the decomposition of the difference is:

r(X, Y )A − r(X, Y )B =
mC +mD

mA +mB

(r′(X, Y )C − r′(X, Y )D)

+
mE +mF

mA +mB

(r′(X, Y )E − r′(X, Y )F ) , (5.4)

where r′(X, Y )C − r′(X, Y )D is the NU and r′(X, Y )E − r′(X, Y )F is the MU.

Theorem 5.3.2.3 (Decomposition of the total difference in the relative frequency
of the ith category). Let giA, giB denote the relative frequencies in the two replic-
ations and let νiA, νiB, νiC , νiD, νiE, νiF , the number of cases of category i. The
decomposition of the difference in the relative frequency of a given category between
the first and second replications is obtained as the weighted average of the differences
between set C and set D and the difference between sets E and F. The decomposition
of the difference is:

giA − giB =
mC +mD

mA +mB

(
νiC
mC

− νiD
mD

)
+
mE +mF

mA +mB

(
νiE
mE

− νiF
mF

)
, (5.5)

where
(
νiC
mC
− νiD

mD

)
is the NU and

(
νiE
mE
− νiF

mF

)
is the MU.

Theorem 5.3.2.4 (Decomposition of the total difference in the χ2-test statistics for
the independence). Let X and Y denote two variables measured in both replications,
let r denote the number of response categories of variable X and let ν denote the
number of response categories of variable Y . The observed frequencies of each cell
(ij) in sets A − F are denoted with OijA, OijB , OijC , OijD , OijE , OijF , respectively
and the expected frequencies of each ij cell are denoted with EijA, EijB , EijC , EijD ,
EijE , EijF for all sets respectively. If identical marginal distributions are assumed
for X and Y , between sets C and E and sets D and F, the decomposition of the
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difference is:

χ2
A − χ2

B =
r∑
i=1

ν∑
j=1

([
1

EijC

(
O2
ijC
− 2OijC

)
− 1

EijD

(
O2
ijD
− 2OijD

)]
+[

1

EijC

(
O2
ijE
− 2OijE

)
− 1

EijD

(
O2
ijF
− 2OijF

)]
+[

1

EijC
(2OijCOijE)− 1

EijD
(2OijDOijF )

]
+[

1

EijE

(
O2
ijC
− 2OijC

)
− 1

EijF

(
O2
ijD
− 2OijD

)]
+[

1

EijE

(
O2
ijE
− 2OijE

)
− 1

EijF

(
O2
ijF
− 2OijF

)]
+[

1

EijE
(2OijCOijE)− 1

EijF
(2OijDOijF )

])
(5.6)

If identical marginal distributions are not assumed, the expected frequencies of set
C + E and set D + F cannot be given as a sum of the expected frequencies of the

separate sets, but can be written as EijC + EijE −
(
Oi·C
mC
− Oi·C+Oi·E

mC+mE

)
and EijD +

EijF −
(
Oi·D
mD
− Oi·D+Oi·F

mD+mF

)
. In this case, the decomposition of the difference of the

χ2 test statistics becomes more complex, which will not be discussed further in this
chapter.

It can be seen, that the total difference between the responses obtained in two rep-
lications of a survey can be decomposed exclusively into NU and MU in the case
of continuous variables regarding the mean, and correlation coefficients, in the case
of discrete variables regarding relative frequency and the χ2-test statistics for inde-
pendence. This means that if a survey is repeated, the total difference is due to a
change in the respondent base and to the different answers of those who respond to
both surveys.
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5.4 Case study

5.4.1 Data and methods

The effect of NU and MU is illustrated with a case study using the 8th wave of the
ESS, which was performed twice in Hungary within the framework of a methodo-
logical research. The attempted sample size in the original ESS survey was 4, 000
addresses, of which, for budgetary reasons, 3, 000 addresses were randomly selected
as the attempted sample in the replication survey of the ESS. Hereafter, the ori-
ginal ESS survey will be referred to as the first replication of the survey and the
replication survey will be referred to as the second replication of the survey. The
word ”original” is not used in the new terminology to express that none of the sur-
veys can measure the original response, each one measures a response that has some
deviation from the true value. For the second replication of the ESS, all the first
fieldwork conditions and standards regarding data collection were applied and the
allocations of the addresses to interviewers were independent in the two replications.
A shortened version of the questionnaire was used in the second replication of the
survey by skipping some thematic block of questions. The wording and the order of
the questions remained the same to minimize the contextual effect. The list of the
repeated questions can be found in the Appendix Table 8.1.

The uncertainties are defined by comparing the answers of the first replication
of the ESS and the second replication of the ESS. In the following, we present NU
and MU in the common attempted sample of the first and second replications of
the ESS (n = 3, 000). Figure 5.5 presents the different sub-sets and their sample
sizes in the replication of the ESS. Following the notations presented in Section 5.3.2
the sets are as follows: set A denotes the answers of the total completed sample of
the first replication of the ESS, set B concerns the answers of the total completed
sample of the second replication of the ESS, set C denotes the answers of the group
of those who responded only to the first replication of the ESS, and set D denotes
the answers of those who responded only to the second replication of the ESS. Sets
E and F refer to answers from those, who responded to both replications. Set E
concerns the answers of the first replication of the ESS, and set F concerns the
answers of the second replication of the ESS. Compared to Figure 5.4, Figure 5.5 is
supplemented with the unsuccessful addresses in both replications of the ESS.
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Figure 5.5: Different groups of answers and sample sizes in the replications of the ESS

Note: The columns on either side of the figure represent the two replications of the ESS in the same structure in
which the different groups of answers of replication surveys in general are presented in Figure 5.4

The first ESS replication was fielded between May and September 2017, while the
second replication was conducted between November 2018 and January 2019. The
magnitudes of the uncertainties are only meaningful for variables that are stable over
time. Therefore, variables were selected for the analysis, for which it can be assumed
that their real values are stable in 20 months of time between the two replications.
This ensures that the differences observed between the two replications are not due to
a real change in opinions/attitudes, but are the results of measurement uncertainty.
The selection procedure for the stable variables was based on the following two
criteria:

(i) variables for which the real change in answers is not possible or extremely
unlikely (i.e. logically assumed to be stable); or

(ii) variables for which ESS time series data (available for Hungary between 2016-
2022, which can be found in the Appendix Figure 8.1) do not show statistically
significant nonstationarity (i.e. may be considered stable in time). Stationarity
is tested with the Dickey-Fuller test1.

In Table 5.1 the variables selected for the analysis based on these criteria can be
found. The distribution of all the variables included in the analysis is shown in the
Appendix Table 8.2 for the total samples and for different subsets respectively.

1The Dickey-Fuller test is used to examine if a unit root is present in an autoregressive model.
The alternative hypothesis of the test is to determine whether the model is stationary [79].
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variable type levels of measurement criteria Augmented Dickey-Fuller test

Level of respondent’s education factual ordinal scale (1-14) i -

Level of mother’s education factual ordinal scale (1-14) i -

General trust attitude ordinal scale (1-10) ii stable

Religiosity attitude ordinal scale (1-10) ii stable

Table 5.1: Selected stable variables

Figure 5.6 shows the distribution of selected variables in the first (set A) and second
(set B) replications of the ESS. In the case of all variables, significant differences can
be found when comparing the results of the two replications of the survey. The χ2-
test is significant for the level of education (p = 0, 000), mother’s level of education
(p = 0, 000), general trust (p = 0, 000), and religiousness (p = 0, 005). It can be
seen that the variables selected as stable on the basis of the criteria summarized in
Table 5.1 still showed a difference in the replications.

Figure 5.6: The total differences between the two replications of the surveys (set A – first replica-
tion; set B – second replication)

Source: Own figure.

In Chapter 5.3.2, the theory of the decomposition of the total difference between
replication surveys was presented. Based on this theory, the total difference between
the two replications of the ESS in Figure 5.6 is the sum of NU and MU. In the
following, NU and MU are analyzed separately.

5.4.2 Nonresponse uncertainty

NU is related to the fact that the completed samples of the surveys are usually
different. In Figure 5.7, the distributions of the variables in set C and set D can
be found. Among the univariate distributions, there is no significant difference; the
overall answers among sets C–D are similar. χ2-tests were used to compare the
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distributions. Based on the test results no significant difference is detected in the
case of the respondent’s level of education (p = 0, 337), general trust (p = 0, 218),
and religiousness (p = 0, 128). The distributions of the mother’s level of education
differed significantly (p = 0, 000) between set C and set D. This means that regard-
ing the distribution of the variables, in the case of 3 out of the 4 variables, there
is no significant difference between the individuals who responded only to the first
replication of the survey and those who responded only to the second replication of
the survey.

Figure 5.7: Distributions of answers of those who responded only to one survey

Source: Own figure.

5.4.3 Measurement uncertainty

MU is the uncertainty between the answers of those, responding to both replications
of the ESS. Figure 5.8 shows the distributions of the variables obtained from the
first replication (set E) and from the second replication (set F). Set E and Set F
are composed of the same individuals: set E represents their first answers and set F
represents their second answers. Overall, similar results are found when examining
the distributions from the two surveys. χ2-tests were used to compare the distri-
butions, based on which no significant differences are detected in the case of the
respondent’s level of education (p = 0, 186), but significant differences are detected
in the case of the mother’s level of education (p = 0, 000), general trust (p = 0, 000),
and religiousness (p = 0, 006). This means that at the sample level, MU is not
relevant in the case of the respondent’s level of education but relevant in the case of
the other variables, thus, asking the same individuals twice results in a significantly
different distribution.
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Figure 5.8: Distributions of answers of those who responded to both surveys

Source: Own figure.

In the following, this difference is presented at the individual level. Even if there
was a short time between the two replications of the ESS, it is hard to exclude the
real changes in the answers. Out of the four variables under consideration, there
are two factual variables for which the probability of a real change is very low: the
level of education and the mother’s level of education. Since 20 months of time
passed between the two replications of the survey, it is unlikely that a respondent’s
or the mother’s highest level of education would increase by one category (a category
covers an average of 4 years). Moreover, it is logically impossible for respondents or
their mothers to have a lower level of education a year and a half later.

Figure 5.9 presents the differences between the first and second answers relative
to the answers from the first replication of the ESS. If there were a real change
in answers, the distributions of the difference would be skewed towards the high
values (positive changes in the answers). It can be seen that for each variable the
distributions of the difference are symmetric. The figure also shows that reporting
of the unlikely or logically impossible changes in answers to education questions is
common not only for the full sample but also for the sub-sample of respondents over
45 years of age (yellow charts), for whom a change in the highest level of education,
and mother’s highest level of education is even less likely due to advancing age. This
underlines the fact that, although a real change cannot be completely excluded,
it can rather be said that the difference is mainly due to MU. This uncertainty
measured for factual variables is assumed to be present as large or even larger
volumes in the case of the attitude variables. The figure also shows that for each
variable, the mean of the difference (µ) is around 0.
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Figure 5.9: Difference between first and second answers (set E − set F)

Source: Own figure.

5.4.3.1 Regression to the mean

When repeated measurements are made on the same subject, regression to the mean
(RTM) always occurs [80]. In the following, we show to what extent it can be
detected in the case of replication surveys. The RTM was first discussed by Francis
Galton in the late 1800s. Galton’s famous example was the average height of fathers
and their sons. He found that tall fathers had (on average) sons who were shorter
than them, whereas short fathers had (on average) sons who were taller than them.
That is, sons with fathers at the extreme tails of the distribution had heights closer
to the population mean height. Galton assumed that the measurements are related
to common genetic material and are observed with random errors. If values are
observed with random errors, the observed values deviate from the true values in
a positive or negative direction. The observed values in the extreme positive tail
of the normal distribution during the first measurement are more likely to deviate
from the true value by a positive error, whereas the observed values in the extreme
negative tail of the normal distribution during the first measurement are more likely
to deviate from the true value by a negative error. Due to the properties of the
normal density, in the second observation, the former values will tend to be smaller,
whereas observed values in the extreme negative tail of the distribution tend to be
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greater during the second measurement.
Therefore, the natural change in repeated measurement is due to the charac-

teristics of the normal density function, and it can be observed between any two
variables when observations are measured with random errors, the variables are
associated, and the joint distribution is normal.

In most analyzes, RTM is presented between continuous variables [81, 82, 83];
and we have not found treatments for the case of ordinal-scale variables. In this
chapter, we show that RTM can also occur between ordinal-scale variables, and we
illustrate it with the repeated answers of the two surveys.

Theorem 5.4.3.1 (Regression to the mean [84]). Let X1 and X2 be random vari-
ables with joint distribution function F . Assume that X1 and X2 have the same
marginal distribution and let µ denote their common mean. The distribution F
exhibits regression to the mean if, for all c > µ,

µ ≤ E[X2|X1 = c] < c,

and for all c < µ,
µ ≥ E[X2|X1 = c] > c.

To determine the extent of the deviation caused by the RTM the correlation coeffi-
cient (ρ) is involved [85]. The RTM effect is

E[X2|X1 = c] = µ+ ρ(c− µ).

If ρ is 1, then RTM is not present at all. The smaller the correlation between X1

and X2, the stronger the RTM effect, since X2 is expected to be even closer to the
mean. If ρ is 0, the difference between the two measurements is entirely due to the
RTM phenomenon. If X1 is large (c > µ) then X2 is expected to be smaller (if only
0 ≤ ρ < 1), and if X1 is smaller than the mean, then X2 is expected to be larger.
In both cases, X2 is expected to be closer to the mean than X1. For ordinal-scale
variables, the number of response categories is finite, thus in the negative/positive
extreme ends of the scale, tending toward the mean definitely occurs because there
is no room to take smaller/greater values. In the case of ordinal-scale variables, the
strength of the association between the two measurements is also a key aspect: if
there is no association between the first and the second measurement, the difference
is entirely due to the RTM, while if the strength of the association is the strongest
possible, then RTM is not present. The change in RTM effect between the two
endpoints depends on the properties of the chosen association measure.

Figure 5.10 illustrates the appearance of RTM for the selected ordinal-scale variables
of the ESS with a scatter plot of the change in answers (y-axis = answer from the first
survey − answer from the second survey and x-axis = answer from the first survey).
Respondents whose responses in the first survey were unusually low tended to give
a higher response in the second survey (the difference between the second and first
answers is negative), while respondents whose first responses were unusually high in
the first survey tended to give a lower answer in the second survey (the difference
between the first and second answers is positive), which means that the inconsistency
of the responses that seemed like a random fluctuation is, in fact, an obligate change
due to the RTM phenomenon.
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Figure 5.10: Difference between the first and second answers (first answers on the x-axis, and the
difference between the first and second answers is on the y-axis)

Source: Own figure.

A figure showing the differences observed by the response categories is provided
in the Appendix Figure 8.2. Regarding the potential demographic characteristics of
the inconsistency in the answers, in the Appendix Figure 8.3 the observed differences
are presented based on the gender of the respondents. It can be seen that no patterns
appear to be found along certain values of the questions or along the gender variable.

In the case of general trust and religiousness, the RTM phenomena is presented
from a different perspective (Figure 5.11 and Figure 5.12). In the case of general
trust, the mean is 4.54 and the mode is value 5. In observing the RTM phenomenon
the mean as the reference point to which the observations may regress toward is
considered to be 5. In Figure 5.11, the values on the x-axis represents the first
answers’ absolute difference from the mean value (0 represents value 5 as answer)
and the values on the y-axis represents the second answers’ absolute difference from
the mean value (0 represents value 5 as answer). The size of the bubbles represent
the proportion of the given pattern. It can be seen, that in the case of answers
with a greater difference relative to the mean value (values 3, 4, 5 on the x-axis)
there is a higher share of those regression back towrd the mean in the case of their
second answers. In the case of religiousness, the mean is 4.02 and the mode is
value 0. This distribution is skewed to the right, which make the picture concerning
RTM more complex. However, in observing the RTM phenomenon the mean as the
reference point to which the observations may regress toward is considered to be
4. In Figure 5.12, the values on the x-axis represents the first answers’ absolute
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Figure 5.11: General trust: Responses relative to the mean values

Source: Own figure.

difference from the mean value (0 represents value 4 as answer) and the values on
the y-axis represents the second answers’ absolute difference from the mean value
(0 represents value 4 as answer). The size of the bubbles represent the proportion
of the given pattern. It can be seen, that in the case of answers with a greater
difference relative to the mean value (values 4, 5, 6 on the x-axis) there is a higher
share of those regression back towrd the mean in the case of their second answers.

Figure 5.12: How religiousness you are? - Responses relative to the mean values

Source: Own figure.
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5.4.3.2 Joint effects of the uncertainties

In this chapter, we present the extent of NU and MU when measuring the association
between two ordinal-scale variables. The chosen association measure is Cramér’s V,
which also takes into account the different sample sizes of the different sets and
the number of categories of different variables. It is based on Pearson’s chi-squared
statistic, which is decomposed into NU and MU following Chapter 5.3.2. The ex-
tent of NU is measured by the relative difference in the association measurement
between the group of those who responded only to the first replication and those
who responded only to the second replication of the ESS. The extent of MU is meas-
ured by the relative difference in the association measurement between the first and
second answers of those, who responded to both replications of the ESS. The joint
effect of NU and MU is measured by the extent to which the association measure
differs between the total respondent base of the first and second replications of the
ESS. In Figure 5.13 the proportional change in the Cramér’s V values relative to
the Cramer’s V value in the first replication of the survey can be found.
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Figure 5.13: Differences in Cramér’s V values

Source: Own figure.

It can be seen that in the case of NU (Figure 5.13a), most pairs of variables the
change in the Cramer’s V value is around 0, 82 and 0, 99 (i.e. the associations are
weaker for the second replication than for the first replication of the ESS). In the
case of MU (Figure 5.13b), the associations were both weaker and stronger for the
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second replication than for the first replication of the ESS (the changes are between
0, 89 and 1, 45). As a result, the joint effect of NU and MU (Figure 5.13c) is minor:
between the first and the second replications of the ESS, the total change in the
associations is between 0.90 and 1, 23.

5.5 Discussion

When considering bias in survey data, there is usually a strong emphasis on com-
paring the respondent base with the population and identifying problems arising
from ”missing” individuals. Our results draw attention to another dimension: the
instability of the respondent base and the instability in their answers are also rel-
evant. In this chapter, we discussed a new aspect of assessing the quality of survey
values involving instability with uncertainties. The new aspect can be added to the
TSE framework by considering survey uncertainties compared to a potential replic-
ation of the survey. The chapter discussed the new approach in theory and with a
case study of the 8th wave of the ESS, which was performed twice in Hungary. We
do not suggest that surveys should be replicated as a way of collecting data, but
rather point out a possible new outlook on evaluation that could be the subject of
further methodological research. The first finding of the chapter was that the total
difference between two survey replications is the sum of NU and MU; therefore, the
total difference was the combination of uncertainty about the respondent bases and
uncertainty about the answers obtained. We found that for the univariate analysis,
NU was negligible but relevant for the multivariate analysis. For MU, we compared
the answers of those who responded to both surveys. The second finding of the
study was that although the first and second answers generally resulted in the same
distribution, on an individual basis, respondents appeared to be inconsistent with
their answers. This phenomenon was explained with RTM, which occurs because
values are observed with random errors. The third finding of the study was that, in
multivariate analysis, both NU and MU are relevant, but their joint impact cause
minor differences at the total sample level. The limitation of the method is related
to the characteristics of the variables considered. Excluding real change is not al-
ways possible, but, in general, our results are applicable when data collections are
relatively close in time, the information that the variable measures can consider
stable, and when there are no other external effects that affect the population opin-
ion. Another limitation of the study arises from the questionnaire: as a shortened
version of the original questionnaire was used in the replication, the effect of the
changed context may have some influence on the response process even if the order
and wording of the questionnaire remained exactly the same. The analysis used
the standard, validated questions of the ESS, however, their inherent measurement
errors may be a factor if the respondents provide inconsistent answers. This effect
would be difficult to distinguish and is beyond the scope of the chapter.

5.6 Further research: Models for measurement

uncertainty

In this chapter, we present configurations that may cause the observed changes
between the first and second replications of the survey. The content of this chapter
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serves as a foundation for future research and will help shape the inquiries we aim
to explore in the future.

We consider two models for the observational process and we examine the models
for the correlation coefficients of a given variable which is observed in the surveys.
The first model assumes that the results from the two surveys are observations with
errors relative to the supposed true values of the variables, as in the theory of total
survey error. The second model does not rely on the true values of the variables,
rather it assumes that the second replication of the survey yields result with errors
relative to the first replication of the survey.
Let X and Y be the supposed true values. Given that the same sample is observed
twice, only MU is present. Xi and Yi measure X and Y in the i-th surveys. We
assume that the expected values exist and the standard differences are finite. Ac-
cording to the first model, denote by εi and δi independent normally distributed
errors representing the difference from the true values in the ith surveys. Then
X1 = X + ε1, Y1 = Y + δ1, X2 = X + ε2, Y2 = Y + δ2. Since MU is a nonsystematic
error, εi and δi are independent of X and Y , respectively. In Chapte 5.4.3.1, we
found that the two surveys resulted in the same distributions at the sample level;
thus, we assume that E(εi) = E(δi) = 0. In this model, the difference between the
correlation coefficients can be written as follows:∣∣r(X + ε1, Y + δ1)

∣∣− ∣∣r(X + ε2, Y + δ2)
∣∣. (5.7)

We expand the expression as follows:

∣∣∣∣∣ E((X + ε1)− E(X + ε1))((Y + δ1)− E((Y + δ1))

(D(X) + D(ε1) + 2cov(X, ε1))(D(Y ) + D(δ1) + 2cov(Y, δ1))

∣∣∣∣∣
−

∣∣∣∣∣ E((X + ε2)− E(X + ε2))(Y − E(Y + δ2))

(D(X) + D(ε2) + 2cov(X, ε2))(D(Y ) + D(δ2) + 2cov(Y, δ2))

∣∣∣∣∣
(5.8)

Then, we can simplify (5.8) as follows:

∣∣∣∣∣ E((X − E(X))((Y )− E(Y ))

(D(X) + D(ε1))(D(Y ) + D(δ1))

∣∣∣∣∣
−

∣∣∣∣∣ E((X − E(X))(Y − E(Y ))

(D(X) + D(ε2))(D(Y ) + D(δ2))

∣∣∣∣∣
(5.9)

The numerators in (5.9) are the same and positive, so to identify under what con-
ditions the correlation coefficients increase, decrease or remain the same, it suffices
to observe the following quotient:

A =
(D(X) + D(ε1))(D(Y ) + D(δ1))

(D(X) + D(ε2))(D(Y ) + D(δ2))
(5.10)

If the value of A = 1, there is no difference in the correlation coefficients (for ex-
ample, if we further assume that D(ε1) = D(ε2) and that D(δ1) = D(δ2)). If the
value of A > 1, the correlation coefficients in the second replication of the survey will
be smaller than in the first replication of the survey (for example if D(ε1) < D(ε2)
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and D(δ1) < D(δ2)). If the value of A < 1 the correlation coefficients in the second
replication of the survey will be greater than in the first replication of the survey (for
example if D(ε1) > D(ε2) and D(δ1) > D(δ2)). Although this model with assuming
observations with errors relative to the supposed true values may seem reasonable, it
did not provide a natural explanation for the phenomenon of decreasing correlation
coefficients.

In the second model, MUs are observed in the second replication of the survey
relative to the first one, which are denoted by ε and δ. Then, X2 = X1 + ε, and
Y2 = Y1 + δ. As in the case of the first model, here, ε and δ are independent of X1

and Y1, respectively, since these uncertainties are nonsystematic. From our previous
finding in Chapter 5.4.3, E(ε) = E(δ) = 0. In this model, the difference between
the correlation coefficients can be written as follows:∣∣r(X1, Y1)

∣∣− ∣∣r(X1 + ε, Y1 + δ)
∣∣. (5.11)

We expand the expression as follows:

∣∣∣∣∣E((X1 − E(X1))(Y1 − E(Y1))

D(X1)D(Y1)

∣∣∣∣∣
−

∣∣∣∣∣ E((X1 + ε)− E(X1 + ε))((Y1 + δ)− E(Y1 + δ))

(D(X1) + D(ε) + 2cov(X1, ε))(D(Y1) + D(δ) + 2cov(Y1, δ))

∣∣∣∣∣
(5.12)

Then, we can simplify (5.12) as follows:

∣∣∣∣∣E((X1 − E(X1))(Y1 − E(Y1))

D(X1)D(Y1)

∣∣∣∣∣
−

∣∣∣∣∣E((X1)− E(X1))((Y1)− E(Y1))

(D(X1) + D(ε))(D(Y1) + D(δ))

∣∣∣∣∣
(5.13)

The numerators in (5.13) are the same and positive, so to identify under what
conditions the correlation coefficients change, is suffices to observe the following
quotient:

B =
D(X1)D(Y1)

(D(X1) + D(ε))(D(Y1) + D(δ))
(5.14)

If the value of B = 1 there is no difference in the correlation coefficients (for ex-
ample, if we further assume that ε and δ are constants thus D(X1) = D(X1) + D(ε)
and D(Y1) = D(Y1) + D(δ)). However, if this is the case, ε and δ are constant
0, when the second replication of the survey results in observations without any
MUs. If the value of B > 1, the correlation coefficients in the second replication of
the survey will be smaller than in the first replication of the survey; however, since
standard differences cannot be negative, based on this model, if any MU exists, the
correlation coefficients will decrease.
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With the second model of the observational process, we can describe decrease in
the absolute value of the correlation coefficients. This phenomenon can be linked
to Shannon’s theory of entropy [86], which proposes a measure for the amount of
uncertainty or entropy encoded in a random variable. This theory is employed to
model communication systems in which a message is transmitted through a noisy
channel from a source to a destination. In the second model, the source is the result
of the first survey, the destination is the result of the second survey, and the noisy
channel is the MU between the two data collections. The definition of Shannon’s
entropy can be extended to two random variables as joint entropy. The joint entropy
is the sum of the univariate entropies only if the variables are independent; in all
other cases, it depends on several other parameters that are not closely related to
the topic of this thesis but highlights the complexity of the issue.
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Summary

Survey statistics deal with data from questionnaire surveys. The thesis focuses on a
special field of this, sample-based human population surveys. In human population
surveys, the measurement is that the sampled individuals answer a question and
these answers are used to estimate a population parameter.

Human population surveys are the main basis for public, economic, commercial,
and political decisions, thus the reliability of the estimates is crucial. Election fore-
casts based on survey data have been predicting election outcomes with increasing
error over the last 20 years, suggesting methodological reassessment and improve-
ment of data collection and estimation procedures (Chapter 2). This increasing
inaccuracy is the main motivation for the thesis. The reliability of human pop-
ulation surveys depends on two factors: (1) how well the sample represents the
population under study, and (2) how well the responses reflect the true population
values.

The thesis presented the mathematical foundations of human population surveys
(Chapter 3) and outlined the main sampling procedures. From a mathematical
point of view, one of the most important properties of survey research is that the
sample is drawn from finite populations and, therefore, the classical limit theorems
of mathematical statistics do not apply. The thesis describes the finite population
application of the central limit theorem and the underlying super-population concept
(Chapter 3.1).

In collecting data from people, in addition to the mathematical aspects, there
are human factors to consider, as individuals may refuse to be included in the sample
or may deliberately or accidentally give false answers to questions. These phenom-
ena hinder data collection from being carried out in precise rules of mathematical
statistics and lead to biases in the estimates.

The thesis presented the total survey error framework and a structure of how the
total potential error can be divided into a set of mathematical and non-mathematical
factors (Chapter 3.2). Mathematical factors can be well controlled by precise sample
selection and appropriate post-correction procedures. Therefore, it can be assumed
that errors related to human factors are more responsible for the current inac-
curacies.

Two sources of error have been addressed in detail in the thesis: (1) the nonre-
sponse error associated with the composition of the sample and (2) the measurement
error associated with the accuracy of the answers. In this thesis, we provide a new
correction method and a new assessment scheme to deal with these errors.
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Chapter 4 presented a new sample allocation method to efficiently correct for bias
due to sample composition. Our method allocates sub-sample sizes from population
strata inversely proportional to expected response rates (ERRs). Based on the
results of the evaluation of the new method, we can say that if response rates are
correctly predicted, the allocation of ERR always results in a lower variance in
the estimates than the allocation method currently in practice. This is proven by
theorems on mean inequality.

Simulations have also been used to illustrate that even for miscalculated ERRs,
the new allocation method often performs better. Important considerations here
are, for example, the difference between expected and actual response rates and the
dispersion of the actual response rates of the strata.

Our new allocation method addresses the problem that a decreasing response
rate in survey research results in a biased sample composition, and therefore in-
creases the inaccuracy of the estimates. This effect can be controlled by our method.

In the thesis, a new scheme for survey assessments is introduced: the scheme
of replication surveys (Chapter 5). We show that the replication survey framework
provides a unique opportunity to simultaneously investigate the factors most re-
sponsible for the error of the estimates, nonresponse and measurement error. This
would not be possible in any other way. The main difference between the replic-
ation survey framework and the traditional approach (e.g. the total survey error
framework) is that the quality of a survey is assessed by the extent to which the
same result would be obtained if the data collection were repeated. The total survey
error framework measures the total error of a survey estimate relative to the true
population value of the parameter under investigation. The new approach presented
in this chapter assumes that, although the true population value exists, it cannot be
measured by surveys. Every survey measures the true population value with error;
therefore, treating a census value as a true parameter is illusory and results in a false
benchmark. The structure of repeated surveys is first theoretically described, and
the theorems were introduced to show that the variance of a repeated survey can
be decomposed into a part due to sample composition (nonresponse uncertainty)
and a part due to response uncertainty (measurement uncertainty). Theorems are
presented for both discrete and continuous variables: for continuous variables, theor-
ems are presented for the decomposition of the mean and the correlation coefficient,
while for discrete variables, theorems are presented for the decomposition of the
relative frequency of the ith category of a variable and the decomposition of the
χ2-test statistics.

We then present a case study along which the framework can be demonstrated.
This case study summarized the results of a 2019 OTKA research in survey method-
ology with the participation of the author. The research repeated the 8th wave of the
ESS in Hungary and compared the results found along the sample composition and
measurement dimensions. We found that the measurement error is more significant
than the sample composition error component: respondents gave different answers
even on objective parameters such as the respondent’s or mother’s education level
for the first and second data collection. We also found that the regression to the
mean (RTM) phenomenon is present for the measurement error. The results on
RTM have so far only been related to continuous variables, but the results of the
thesis show that it is also relevant for categorical variables.
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The thesis also reported results that motivate further research on the topic.
The author’s further plans include: testing the repeated survey framework for more
than two replicates and examining measurement uncertainty on a set of responses;
building multivariate models to examine measurement error and, based on this, de-
veloping new data correction (post-stratification) procedures; including the mode of
data collection in the studies (most notably, taking into account face-to-face, tele-
phone and online data collections); and modeling uncertainty using the concept of
entropy.

The thesis is based on the following three published papers

1. B. Szeitl and T. Rudas (2022): Reducing Variance with Sample Allocation
Based on Expected Response Rates in Stratified Sample Designs, Journal of
Survey Statistics and Methodology, Volume 10, Issue 4, September 2022, Pages
1107–1120,
https://doi.org/10.1093/jssam/smab021

2. B. Szeitl and T. Rudas (2024): Assessing survey quality with a replication
survey: nonresponse uncertainty and measurement uncertainty in the ESS,
Methods, data, analyses (MDA)

3. Messing, V., Ságvári, B., Szeitl, B. (2022): Is ”push-to-web” an alternative
to face-to-face survey?: Experiences from a ”push-to-web” hybrid survey in
Hungary. (In Hungarian) STATISZTIKAI SZEMLE (0039-0690): 100/3 pp
213-233 (2022)

Further publications of the author are

• Buda, J., Hajdu, G., Szeitl, B., Janky, B. (2023): A new method for the
imputation of key indicators based on separate high-quality survey data. IN-
TERNATIONAL JOURNAL OF PUBLIC OPINION RESEARCH (accepted)

• Messing, V., Ságvári, B., Szeitl, B. (2023): Respondings as expected? The
effects of survey mode on estimates of sensitive attitudes in self-completion and
face-to-face interviews of the European Social Survey. SURVEY RESEARCH
METHODS (under review)

• Szeitl, B., Tóth, I. (2021): Revisiting the ESS R8 sample a year after – Lessons
from a re-contact survey to test patterns of unit non-response in Hungary. Sur-
vey Methods: Insights from the Field. https://surveyinsights.org/?p=14864

• Simonovits, G., Kates, S., Szeitl, B. (2019): Local Economic Shocks and Na-
tional Election Outcomes: Evidence from Hungarian Administrative Data.
POLITICAL BEHAVIOR 41(2), 337–348.

Conference presentations by the author:

• European Social Survey Conference (accepted): Responding as expected? The
effects of survey mode on estimates of sensitive attitudes in self-completion
and face-to-face interviews of the European Social Survey. 8-10 July 2024

• Comparative Survey Design and Implementation Workshop: Sampling innov-
ations and data collection challenges in probability panels. 18-20 March 2024
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• General Online Research Conference (GOR): Probability theory in survey meth-
ods (workshop). 20-23 February 2024

• European Survey Research Association (ESRA): The risk of nonresponse bias
in online and mixed-method surveys. 17-21 July 2023

• Workshop on data collection in survey methodology, Central Statistical Office
of Hungary: Biasing estimates from online survey data collections based on the
characteristics of the Hungarian population. (In Hungarian) 7 November 2023

• Workshop on Survey Climate and Trust in Scientific Surveys, University of
Kassel: The prevalence and potential bias of online surveys. 4-5 October 2022

• General Online Research Conference (GOR): Quantifying nonresponse and
measurement uncertainty in surveys based on a replication of the European
Social Survey. 7-9 September 2022

• European Young Statistician Meeting (EYSM): Controlling Unit-Nonresponse
Bias During Within-Household Selection With Optimal Allocation and New
Specification of Kish Grid. 29 July - 2 August 2019

• European Survey Research Association (ESRA): Controlling Unit-Nonresponse
Bias During Within-Household Selection with New Allocation Involving Re-
sponse Rates. 15-19 July 2019
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Chapter 7

Összefoglalás

A survey statisztika kérdő́ıves kutatásokból származó adatokkal foglalkozik. A
dolgozat ennek egy speciális ágára a mintavételen alapuló lakossági survey adat-
felvételekre fókuszált. A lakossági survey adatgyűjtések esetében a mérés az, hogy
a mintába került személyek megválaszolnak egy kérdést és ezek a válaszok alapján
becsüljük meg a populációs paramétert.

A lakossági survey kutatások legfontosabb alapjául szolgálnak a közéleti, gaz-
dasági, kereskedelmi és politikai döntéseknek, ı́gy a becslések megb́ızhatósága kulc-
sfontosságú. A survey adatokon alapuló választási előrejelzések az elmúlt 20 évben
egyre nagyobb hibával jelzik elő a választások kimenetelét, amiből arra következtet-
hetünk, hogy indokolt az adatgyűjtési és becslési eljárások módszertani újraértékelése
és fejlesztése (2. fejezet). Ez a növekvő pontatlanság tekinthető a dolgozat alapjául
szolgáló kutatások legfőbb motivációjának. A lakossági survey-ek megb́ızhatósága
leginkább két tényezőn múlik: (1) mennyire jól reprezentálja a minta a vizsgált
populációt, illetve, hogy (2) mennyire jól tükrözik a válaszok a valódi populációs
paramétereket.

A dolgozat bemutatta a lakossági survey-ek matematikai alapjait (3. fejezet) és
vázolta a legfontosabb mintavételi eljárásokat. Matematikai szempontból a survey
kutatások egyik legfontosabb tulajdonsága az, hogy a mintát véges populációkból
vesszük, ezért a matematikai-statisztika klasszikus határérték tételei nem érvényesek.
A dolgozat ismertette a centrális határeloszlás tétel véges populációs alkalmazását
és az ennek alapját képező szuper-populációs koncepciót (3.1. fejezet).

Azáltal, hogy emberektől gyűjtünk adatokat, a matematikai szempontokon túl,
számos emberi tényezővel kell számolnunk, hiszen a potenciális válaszadók vissza-
utaśıthatják a mintába kerülést, illetve megtehetik azt is, hogy egy adott kérdésre
szándékosan vagy véletlenül nem a valódi választ adják. Ezek a jelenségek gátolják
azt, hogy az adatgyűjtést a matematikai statisztika prećız szabályait betartva vigyük
véghez és torźıtásokat eredményeznek a becslések esetében.

A dolgozat bemutatta a total survey error keretrendszerét és azt, hogy az összes
potenciális hiba hogyan osztható fel a matematikai és az emberi tényezők csoportjára
(3.2. fejezet). Látható, hogy a matematikai tényezők prećız mintaválasztással és
megfelelő utólagos korrekciós eljárásokkal jól kontrollálhatóak. Emiatt feltehető,
hogy a jelenleg tapasztalható pontatlanságokért inkább az emberi tényezők cso-
portjába tartozó hibák a felelősek.

A dolgozat két hibaforrással foglalkozott részletesen: (1) a mintakompoźıciós
tényezőkhöz kapcsolható nonresponse error-ral, és (2) a válaszok pontosságához

77



Chapter CHAPTER 7. ÖSSZEFOGLALÁS

kapcsolható measurement error-ral. A dolgozatban ezen hibák kezelésére nyújtottunk
korrekciós módszert, illetve alternat́ıv szemléletet.

A 4. fejezet egy új minta allokációs módszert mutatott be arra vonatkozóan, hogy
a minta-összetételből fakadó torźıtást hatékonyan korrigáljuk. Módszerünk a a
populációs rétegekból a várt válaszadási arányokkal (expected response rates, ERRs)
ford́ıtottan arányosan jelöli ki az alminták méretét. Az új módszer kiértékelésének
eredményei alapján azt mondhatjuk, hogy amennyiben a válaszadási arányokat
sikerül helyesen előre jelezni az ERR allokáció minden esetben alacsonyabb vari-
anciát eredményez a becslésekben mint a jelenleg gyakorlatban lévő allolációs megol-
dás. Ezt a középérték egyenlőtlenégre vonatkozó tételek bizonýıtják.

Szimulációk seǵıtségével azt is illusztráltuk, hogy még hibás ERR-ek esetében
is sokszor jobban teljeśıt az új allokációs módszer. Ekkor fontos szempont például
az, hogy mekkora a különbség a várt és a valódi válaszadások között (azaz, hogy
mekkor a hiba mértéke) és az, hogy mekkora a rétegek valódi válaszadási arányainak
szórása.

Az új allokációs módszerünk arra a problémára nyújt megoldást, hogy az adat-
felvételek esetében tapasztalható csökkenő válaszadási arány torz minta-kompoźıciót
eredményez és emiatt növeli a becslések pontatlanságát. Módszerünkkel ez a hatás
kontrollálható.

A mérési hibával kapcsolatban a dolgozat egy új szemléletet vezetett be (5. fe-
jezet). Azt mutattuk be, hogy a megismételt adatgyűjtések (replication survey) kere-
trendszere egyedülálló lehetőséget nyújt arra, hogy a becslések hibájáért leginkább
felelős tényezőket, a nonrepsonse és a measurement error-t egyidőleg vizsgáljuk.
Erre semmilyen más formában nem lenne lehetőség. A megismételt survey-ek kere-
trendszere leginkább abban különbözik a tradicionális szemlélettől (például a total
survey error keretrendszerétől), hogy egy survey minőségét úgy ı́téli meg, hogy men-
nyiben kapnánk azonos eredményt akkor, ha az adatgyűjtést megismételnénk. A
total survey error framework egy survey becslés teljes hibáját a vizsgált paraméter
valódi populációs értékéhez képest határozza meg. A dolgozatban bemutatott új
szemlélet abból indul ki, hogy habár a valódi populációs érték létezik, az survey
módszerekkel nem mérhető. Minden mérés hibával méri a valódi populációs értéket,
emiatt egy cenzus során mért érték valódi paraméterként kezelése csak illúzió és ha-
mis viszonýıtási pontot eredményez. A megismételt survey-ek struktúráját elsőként
elméletben ismertettük és bevezettük az arra vonatkozó tételeket, hogy egy sur-
vey ismétlése esetén az eltérés felbontható egy mintakompoźıcióból (nonresponse
uncertainty) és egy válaszadási bizonytalanságból (measurement uncertainty) eredő
részre. A tételek diszkrét és folytonos változók esetére is mutatnak be releváns
eredményeket: folytonos változók esetére az átlag és a korrelációs együttható dekom-
poźıciójára vonatkozó tételek, mı́g diszkrét változók esetében egy változó i-edik
kategóriájának relat́ıv gyakoriságára és a χ2 próbastatisztika dekompoźıciójára von-
atkozó tételek szerepelnek.

Ezután egy esettanulmányt mutattunk be, mely mentén a keretrendszer de-
montrálható. Ez az esettanulmány a szerző részvételével zajló 2019-es OTKA kutatás
eredményit összegezte. A kutatás során az ESS 8. magyarországi hullámát megismé-
teltük és a talált eredményeket összevetettük a minta-kompoźıciós és mérési di-

menziók mentén. Azt találtuk, hogy a mérési hiba sokkal jelentékenyebb, mint a
mintakompoźıcióból álló hibarész: a válaszadók még az olyan objekt́ıv paraméterekkel
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kapcsolatban is különböző válaszokat adtak az első, illetve a második adatfelvétel
esetében, mint például a válaszadó, vagy az anyja iskolai végzettsége. Azt találtuk
továbbá, hogy a mérési hiba esetében jelen van az átlaghoz való visszatérés (re-
gression to the mean, RTM) jelensége. Az RTM-mel kapcsolatos eredmények eddig
kizárólag folytonos változókra vonatkoztak, a dolgozat eredményei alapján viszont
látszik, hogy ez kategórikus változók esetében is releváns.

A dolgozat számos olyan eredményt is közölt, amely indokolttá teszi a téma
további kutatását. A szerző további tervei között szerepel: a megismételt survey
keretrendszer vizsgálata kettőnél több ismétlés esetére, illetve a mérési bizonytalanság
vizsgálata válaszok sorozatán; többváltozós modellek éṕıtése a mérési hibák elemzésé-
re és ennek alapján új adatkorrekciós (utólagos rétegzési) eljárások fejlesztése; az

adatgyűjtési mód bevonása a vizsgálatokba (leginkább a személyes, a telefonos és
az online adatgyűjtések figyelembe vétele); valamint a bizonytalanságok modellezése
az entrópia fogalmával.

A disszertáció a szerző három publikációján alapul:

1. B. Szeitl and T. Rudas (2022). Reducing Variance with Sample Allocation
Based on Expected Response Rates in Stratified Sample Designs, Journal of
Survey Statistics and Methodology, Volume 10, Issue 4, September 2022, Pages
1107–1120,
https://doi.org/10.1093/jssam/smab021

2. B. Szeitl and T. Rudas (2024). Assessing survey quality with a replication
survey: nonresponse uncertainty and measurement uncertainty in the ESS,
Methods, data, analyses (MDA), elfogadott

3. Messing, V., Ságvári, B., Szeitl, B. (2022): Is ”push-to-web” an alternative
to face-to-face survey?: Experiences from a ”push-to-web” hybrid survey in
Hungary. (In Hungarian) STATISZTIKAI SZEMLE (0039-0690): 100/3 pp
213-233

A szerző további publikációi:

• Buda, J., Hajdu, G., Szeitl, B., Janky, B. (2023). A new method for the im-
putation of key indicators based on separate high-quality survey data. INTER-
NATIONAL JOURNAL OF PUBLIC OPINION RESEARCH (elfogadott)

• Messing, V., Ságvári, B., Szeitl, B. (2023): Respondings as expected? The
effects of survey mode on estimates of sensitive attitudes in self-completion and
face-to-face interviews of the European Social Survey. SURVEY RESEARCH
METHODS (elfogadott)

• Szeitl, B., Tóth, I. (2021): Revisiting the ESS R8 sample a year after – Lessons
from a re-contact survey to test patterns of unit non-response in Hungary. Sur-
vey Methods: Insights from the Field. https://surveyinsights.org/?p=14864

• Simonovits, G., Kates, S., Szeitl, B. (2019). Local Economic Shocks and
National Election Outcomes: Evidence from Hungarian Administrative Data.
POLITICAL BEHAVIOR 41(2), 337–348.

A szerző konferencia-megjelenései:
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• European Social Survey Conference (elfogadott): Responding as expected? The
effects of survey mode on estimates of sensitive attitudes in self-completion and
face-to-face interviews of the European Social Survey. 2024. július 8-10

• Comparative Survey Design and Implementation Workshop: Sampling innova-
tions and data collection challenges in probability panels. 2024. március 18-20

• General Online Research Conference (GOR): Probability theory in survey meth-
ods (workshop). 2024. február 20-23

• European Survey Research Association (ESRA): The risk of nonresponse bias
in online and mixed-method surveys. 2023. július 17-21

• Adatgyűjtés-módszertani workshop, Központi Statisztikai Hivatal (KSH): Az
online survey adatgyűjtésekből származó becslések torźıtása a magyar lakosság
jellemzői alapján. 2023. november 7.

• Workshop on Survey Climate and Trust in Scientific Surveys, University of
Kassel: The prevalence and potential bias of online surveys. 2022. október 4-5

• General Online Research Conference (GOR): Quantifying nonresponse and
measurement uncertainty in surveys based on a replication of the European
Social Survey. 2022. szeptember 7-9

• European Young Statistician Meeting (EYSM): Controlling Unit-Nonresponse
Bias During Within-Household Selection With Optimal Allocation and New
Specification of Kish Grid. 2019. július 29 - augusztus 2

• European Survey Research Association (ESRA): Controlling Unit-Nonresponse
Bias During Within-Household Selection with New Allocation Involving Re-
sponse Rates. 2019. július 15-19
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Chapter 8

Appendix

Var Label

ppltrst Most people can be trusted, or you can’t be too careful

pplfair Most people try to take advantage of you, or try to be fair

pplhlp Most of the time people helpful or mostly looking out for themselves

trstlgl Trust in the legal system

trstplc Trust in the police

trstplt Trust in politicians

stflife How satisfied with life as a whole

stfeco How satisfied with present state of economy in Hungary

stfgov How satisfied with the Hungarian government

edlvbhu Highest level of education

eduyrs Years of full-time education completed

edulvlfa Father’s highest level of education

edulvlma Mother’s highest level of education

hhmmb Number of people living regularly as member of household

marital Legal marital status

mainact Main activity, last 7 days

wkhct Total contracted hours per week in main job overtime excluded

uempnyr Become unemployed in the next 12 months, how likely

hincsrc Main source of household income

hinctnt Household’s total net income, all sources

hincfel Feeling about household’s income nowadays

rlgdgr How religious are you

rlgatnd How often attend religious services apart from special occasions

Table 8.1: List of common variables in the two replications of the ESS
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Figure 8.1: Attitude variables selected based on the ESS time series
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Var Type Question Category n=1233 n=1448 n=461 n=676

a1 attitude Most people try to take advantage of you, or try to be fair? Most people try to take advantage of me 5 3.5 5 4

1 2.1 5.8 2.4 5.2

2 9.8 11.8 8.7 11.4

3 14.9 12.6 11.5 11.4

4 11.8 12.4 12.4 12.9

5 20.8 17.6 19.3 18.6

6 13.3 12.6 14.5 12.9

7 13 12.1 14.5 12

8 5.6 7.7 6.5 7.1

9 1.9 2.7 2.2 3

Most people try to take advantage of me 1.6 1.1 2.6 1.3

missing 0.2 0.1 0.4 0.3

a2 attitude Regardless of whether you belong to a particular religion, how religious would you say you are? Not at all religious 20.9 19.5 21.9 21.4

1 7.1 5.9 7.4 6.5

2 8.6 11 7.8 10.8

3 8.4 8.4 9.1 7.4

4 5.9 6.8 6.3 7.8

5 16.1 13 15.6 13

6 9.2 9.3 9.8 9.5

7 9.2 8.4 10.8 7.4

8 6.9 7.4 5.9 7

9 2 1.9 1.3 2.2

Very religious 4.4 5.6 3.5 4.4

missing 1.4 2.7 0.7 2.5

f1 factual What is the highest level of education you have successfully completed? Did not attend any school at all 0.2 0.1 0.2 0.1

Primary school (1-4 classes) or equivalent 2.6 1.8 1.5 0.7

Primary school (5-7 classes) or equivalent 18.7 14.5 17.8 11.5

Completed Primary School or equivalent 29 29.6 28 29.1

Certificate of Trade school 0.8 0.6 1.3 0.7

Incompleted Secondary School 16 17.8 19.1 20.6

Completed secondary school or equivalent 13.1 16 13.2 15.1

With certificate of Intermediate Technological Educational Institute or equivalent, no university degree 6 4.5 5 4.7

Higher form of vocational education 1.2 1.7 1.5 1.9

Attended some years of Higher Education (at least 1 year) but not holding a Diploma 8.3 8.6 7.2 8.6

Diploma in College 1.1 0.9 1.1 1

Diploma in University 0.6 1.1 0.9 1.8

Post-Graduate Diploma holder 1.9 1.9 3.3 3

PhD holder 0.1 0.1 0 0.1

missing 0.4 0.8 0 0.9

f2 factual What is the highest level of education your mother successfully completed? Did not attend any school at all 1.9 1.5 1.5 1

Primary school (1-4 classes) or equivalent 12.4 10.9 11.9 8.1

Primary school (5-7 classes) or equivalent 19.3 27.6 18.2 25.3

Completed Primary School or equivalent 36.7 26 35.8 28.3

Certificate of Trade school 0.6 0.6 1.3 0.7

Incompleted Secondary School 6.1 11.5 8.9 13.5

Completed secondary school or equivalent 3.8 11.6 4.1 12

With certificate of Intermediate Technological Educational Institute or equivalent, no university degree 2.2 1.4 2 1.9

Higher form of vocational education 0.9 0.9 1.1 0.7

Attended some years of Higher Education (at least 1 year) but not holding a Diploma 3.2 3.3 3 4

Diploma in College 0.7 0.3 0.4 0.3

Diploma in University 0.6 0.5 1.1 0.6

Post-Graduate Diploma holder 1.4 1.1 1.1 0.9

PhD holder 0.1 0.1 0.2 0

missing 10.1 2.8 9.3 2.7

Table 8.2: Summary of the variables involved
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Figure 8.2: The differences in the answers between the first answers (x-axis) and the second answers
(y-axis) of those responded to both surveys

Source: Own figure.
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Figure 8.3: The differences in the answers between the first answers (x-axis) and the second answers
(y-axis) of those responded to both surveys based on the gender of the respondent

Source: Own figure. 93
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