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1 Introduction

Pertussis is a communicable disease caused by the bacterium Bordetella pertussis. The facts

about this infection discussed in [1–5] reveal that it is a global health issue that deserves great

attention. This infection confers non-permanent immunity upon recovery, and immune boosting

is possible upon re-exposure. To examine the behavior of this infection, the SIRWS and SIRWJS

models, which incorporate waning-boosting dynamics in their formulation are applied. We find

in [6] a very general framework of waning-boosting dynamics.

A notable assumption in previous investigations of the SIRWS model [7–11] is that immune

waning rates are the same for individuals who move from the recovered compartment to the

waning compartment (R → W ) and for those who transition to the susceptible compartment

(W → S). We refer to this as the symmetric partition of the immune period. The same

assumption is made in the study of the SIRWJS model [9].

In this work, we propose a new, potentially asymmetric partitioning of the total immune period

and investigate its effect on the dynamics of the SIRWS and SIRWJS models. Our investigations

of the resulting systems include analytical computation of the formulae for equilibria, stability

analysis of equilibria, and numerical continuation techniques to construct bifurcation diagrams.

We find stability switches and Hopf bifurcations from steady states forming multiple endemic

bubbles, and saddle–node bifurcations of periodic orbits. As these models are used actively in

the study of pertussis, we believe that our results contribute to a better understanding of the

dynamics of the transmission of the disease.

The dissertation is based on the following two scientific papers of the author:

• Richmond Opoku-Sarkodie, Ferenc A. Bartha, Mónika Polner, Gergely Röst, Dynamics of

an SIRWS model with waning of immunity and varying immune boosting period, Journal

of Biological Dynamics, 16 (1) (2022) 596-618, [mtmt: 33047203].

• Richmond Opoku-Sarkodie, Ferenc A. Bartha, Mónika Polner, Gergely Röst, Bifurcation

analysis of waning-boosting epidemiological models with repeat infections and varying im-

munity periods, Journal of Mathematics and Computers in Simulation, 281 (2024) 624-643,

[mtmt: 34425145].
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2 SIRWS model with waning of immunity and varying immune

boosting period

The susceptible-infectious-recovered-waned-susceptible (SIRWS) model is an extension of the

susceptible-infectious-recovered-susceptible (SIRS) model to include an intermediate compart-

ment W that holds individuals with waning immunity. This model separates the population of

immune individuals into two categories according to the level of immunity.

Figure 1 shows the flow diagram of the SIRWS model that incorporates our asymmetric par-

tition of the immunity period. In this transition diagram, recovered individuals in R have full

immunity, and may lose it by the chain of transitions R → W → S. Members of W have varying

levels of immunity and boosting of immunity is possible upon re-exposure. The frequency of

that re-exposure is regulated by the boosting force ν. Also, hosts that undergo boosting are not

infectious, as in [6, 7, 10, 12], as opposed to [9].

Figure 1: Flow diagram of the SIRWS system (1).
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The dynamics of the SIRWS model is governed by the following system of ordinary differential

equations

dS

dt
= −βIS + ωκW + µ(1− S), (1a)

dI

dt
= βIS − γI − µI, (1b)

dR

dt
= γI − ακR+ νβIW − µR, (1c)

dW

dt
= ακR− ωκW − νβIW − µW, (1d)

with parameters summarized in Table 1.

β > 0 transmission rate

µ > 0 birth and death rate

γ > 0 recovery rate from primary infection

κ > 0 immune decay rate

α−1 ∈ (0, 1)
relative size of the first immune
protection period from R −→ W

ω−1 (1− α−1) ∈ (0, 1)
relative size of the second immune
protection period from W −→ S

ν > 0 boosting force

Table 1: Description of parameters of the SIRWS system.

The population is normalized to 1, and the basic reproduction number of our system, which we

compute using the next-generation matrix method [13] is R0 =
β

γ+µ .

The symmetric partition of the immunity period means that the expected duration in R is

(2κ)−1 and in W is (2κ)−1, thus the average duration of immune protection is

1

2κ
+

1

2κ
=

1

κ
,

where κ is the immune decay rate. We relax this symmetry by introducing two new parameters

α > 1 and ω > 1 setting the average time spent in R and W to (ακ)−1 and (ωκ)−1, respectively.

Hence,

1

ακ
+

1

ωκ
=

1

κ
that is ω =

α

α− 1
. (2)

We use the relation W (t) = 1− S(t)− I(t)−R(t) to get the reduced system

3



dS

dt
= −βIS + ωκW + µ(1− S), (3a)

dI

dt
= βIS − γI − µI, (3b)

dR

dt
= γI − ακR+ νβIW − µR. (3c)

2.1 Equilibria and stability

The disease free equilibrium (DFE) of our system is (1, 0, 0). There are two other equilibria,

which we represent by EE+ = (S∗, I∗+, R
∗
+) and EE− = (S∗, I∗−, R

∗
−). Their corresponding

formulae are

S∗ = γ+µ
β , (4)

I∗± =
±
√

(c1ν + c2)2 + c3ν + (c1ν − c2)

2βν(γ + µ)
, (5)

R∗
± =

γ + µ+ ωκ

2βωκ

[(
2c0 −

1

γ + µ

)
c1 +

1

ν(γ + µ)

(
c2 ∓

√
(c1ν + c2)2 + c3ν

)]
. (6)

where

c0 =
1

γ + µ+ ωκ
·
(
1 +

ωκ

µ

)
c1 = µ(β − (γ + µ)).

c2 = (γ + µ)(ακ+ ωκ) + µ(γ + µ) + αωκ2

c3 = 4γ(β − (γ + µ))αωκ2

With regard to our epidemiological setting

(S(t), I(t), R(t)) ∈ D :=
{
(s, i, r) ∈ R3

≥0 | 0 ≤ s+ i+ r ≤ 1
}
,

only EE+ may be admissible and therefore is the endemic equilibrium.
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Our analysis showed that the DFE is locally asymptotically stable when R0 < 1 and unstable

when R0 > 1. The type of bifurcation associated with the change in dynamics when R0 = 1 is

established in the following Theorem.

Theorem 2.1. For all the model parameters of the system (1), a transcritical bifurcation of

forward type occurs at R0 = 1.
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Figure 2: Transcritical bifurcation of forward type and the appearance of the LAS endemic
equilibrium EE+ at R0 = 1.

2.2 The Routh-Hurwitz criterion for EE+

To ascertain the stability of the endemic equilibrium EE+ given that R0 > 1 holds, we apply

the Routh-Hurwitz (RH) criterion [14, 15] to our characteristic polynomial

a0λ
3 + a1λ

2 + a2λ+ a3 = 0,

where

a0 = 1,

a1 = βI∗+(1 + ν) + (ακ+ ωκ+ 2µ),

a2 = βI∗+[(ακ+ ωκ+ 2µ) + γ + βνI∗+ + µν] + (ωκ+ µ)(ακ+ µ),

a3 = βI∗+[(ωκ+ µ)(ακ+ µ) + (γ + µ)βνI∗+ + γ(ακ+ ωκ+ µ) +

ωκβν(1− S∗ − I∗+ −R∗
+)].

(7)

5



Primarily, the criterion states that EE+ is locally asymtotically stable iff the following inequal-

ities are satisfied

ai > 0, for i = 0, 1, 2, 3, and

a1a2 > a3.

The positivity of a0, . . . , a3 is readily established. Hence we define the function

yν(α) = a1a2 − a3, (8)

and analyze signs changes for α > 1 and ν > 0.

2.3 Transformation of yν(α)

Noticing the symmetry in the formulae in (5) and (7) with respect to α and ω, we further make

the substitution

η = κ(α+ ω) = κ(αω) = κ
α2

α− 1
, (9)

with η ∈ [4κ,∞). With the help of this substitution, we obtain a different version of (8) in

terms of η

yν(α) ≡ yν(η) = â1â2 − â3,

where

â1 = Î(1 + ν) + (η + 2µ),

â2 = Î[(η + µ) + (γ + µ) + µν + νÎ] + µ(η + µ) + κη,

â3 = Î[2νÎ(γ + µ)− νµ(β − (γ + µ)) + (γ + µ)(µ+ η) + κη],

with Î = βI∗+.

A significant feature of yν(α) made known by the substitution (9) is that there is a bijection

(1, 2) ∋ α 7→ α′ ∈ (2,∞) such that yν(α) = yν(α
′). In particular, local extrema at α ̸= 2 appear

in pairs.
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Furthermore, using the chain rule, we obtain that

∂yν
∂α

=
∂yν
∂η

· dη
dα

=
∂yν
∂η

· κα(α− 2)

(α− 1)2
.

Clearly, α = 2 (that is η = 4κ) is a critical point of yν for all immune boosting parameters ν.

We recall that α = 2 represents the symmetric partition of the immunity period used in previous

investigations of the SIRWS model. Other values of α ̸= 2, represent our proposed asymmetric

partition of the immunity period, and it produces significantly different qualitative behavior in

the SIRWS model.

2.4 Numerical simulations

For the numerical investigations, we use the following parameters γ = 17, κ = 1/10, µ = 1/80,

and β = 260, taken from [7], where the authors studied natural immune boosting in pertussis

dynamics. We construct a heatmap of (8), see Figure 3, where the red and blue regions indicate

where EE+ is stable and unstable respectively. As already shown earlier the local extrema occur

in pairs, we observe this phenomenon from the two inserts highlighted in Figure 3. Furthermore,

it also reveals double bubbles of instability for certain boosting rates, e.g. ν = 2.06362 and

ν = 13.7, see Figure 4 for their corresponding bifurcation diagrams, which are constructed using

MatCont [16].
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Figure 3: Heatmap of the RH stability criterion (8) and bistability region. Purple curve repre-
sents yν(α) = 0. Points on the thick purple curve are supercritical Hopf bifurcation points and
points on the broken purple curve are subcritical Hopf bifurcation points.
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Figure 4: Bifurcation diagram w.r.t α with ν = 2.06362 (4a), and ν = 13.7 (4b). We clearly see
the double endemic bubbles, and a small bubble appearing inside the region of stable oscillations.
The concept of the endemic bubble is found in [17].
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3 The SIRWJS model: a compartmental model with waning

and boosting, where secondary exposure can make the host

infective

In the SIRWJS model, boosting of immunity occurs through a secondary infectious state, labelled

J . According to the flow diagram of this model displayed in Figure 5, the primary force of

infection is β(I+ ξJ). The path from W to R results in a boosting of the individual’s immunity

level. On the other hand, in the absence of re-exposure to the disease causing pathogen, hosts

eventually lose their immunity modelled as a transition from W back to the S compartment

where they are fully susceptible again to the infection.

Figure 5: Flow diagram for the SIRWS system with secondary infections

The governing system of ordinary differential equations describing the dynamics presented in

Figure 5

dS

dt
= −β(I + ξJ)S + ωκW + µ(1− S) (10a)

dI

dt
= β(I + ξJ)S − γI − µI (10b)

dR

dt
= γI − ακR+ ρJ − µR (10c)

dW

dt
= ακR− ωκW − νβ(I + ξJ)W − µW (10d)

dJ

dt
= νβ(I + ξJ)W − µJ − ρJ, (10e)
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with descriptions and assumptions on the system parameters are summarized in Table 1 and

Table 2.

ξ ≥ 0
relative infectivity of secondary infections

w.r.t. primary

ρ > 0 recovery rate from secondary infection

Table 2: Parameters of the SIRWJS system.

The substitution

R = 1− S − I −W − J (11)

reduces system (10) to

dS

dt
= −β(I + ξJ)S + ωκW + µ(1− S) (12a)

dI

dt
= β(I + ξJ)S − γI − µI (12b)

dW

dt
= ακ(1− S − I −W − J)− ωκW − νβ(I + ξJ)W − µW (12c)

dJ

dt
= νβ(I + ξJ)W − µJ − ρJ (12d)

Note that the feasible region for our epidemiological setting

(S(t), I(t),W (t), J(t)) ∈ D :=
{
(s, i, w, j) ∈ R4

≥0 | 0 ≤ s+ i+ w + j ≤ 1
}

is forward invariant and the the basic reproduction number R0 = β
γ+µ . We again relax this

restrictive assumption of symmetric partition of the immunity period such that the total period

of immune protection is

1

ακ
+

1

ωκ
=

1

κ
, (13)

under the assumption of α+ ω = αω.

3.1 Equilibria and stability analysis

The disease free equilibrium (DFE) of (12) is (S∗, I∗,W ∗, J∗) = (1, 0, 0, 0), and formulae for the

non-trivial equilibria is
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S∗ =
γ + µ

β
− νξ(γ + µ)

ρ+ µ
W ∗, (14)

I∗ = µ

(
1

γ + µ
− 1

β

)
+

(
ωκ

γ + µ
+

µνξ

ρ+ µ

)
W ∗, (15)

J∗ =
νβI∗W ∗

ρ+ µ− νβξW ∗ . (16)

Note that ρ+ µ− νβξW ∗ ̸= 0, and W ∗ is the solution of the quadratic equation

f(W ∗) := A(W ∗)2 +BW ∗ + C = 0, (17)

with

A = νβ2
[
− νξ2(γ + µ)Q0 + ξQ1 +

(
ακ(ρ+ µ)− νξµ(γ + µ)− ηκ(ρ+ µ)

)
Q2

]
,

B = β(ρ+ µ)
[(
νξ(γ + µ)− νξ(β − γ − µ)

)
Q0 −Q1 − νµ(β − γ − µ)Q2

]
,

C = (β − γ − µ)(ρ+ µ)2Q0,

(18)

where

η := α+ ω = αω,

Q0 := ακγ,

Q1 :=
[
(γ + µ)(ηκ+ µ) + ηκ2

]
(ρ+ µ),

Q2 := ακ+ ρ+ µ.

(19)

For R0 > 1, there is an endemic equilibrium (EE) given by the root

W ∗ ≡ W ∗
− =

−B −
√
B2 − 4AC

2A
. (20)

Naturally, non-negative equilibria exist when R0 > 1. However, our investigations revealed the

existence of other non-negative equilibria occurring in instances when R0 < 1.
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Theorem 3.1. Let

Θ = νξ(γ + µ)Q0 −Q1, (21)

with Q0, Q1 defined in (19). If Θ > 0, then there is a 0 < β̃ < γ+µ such that, besides the DFE,

there are two other epidemiologically relevant equilibria for β ∈ (β̃, γ+µ) and only the DFE for

β < β̃. On the other hand, if Θ ≤ 0, then the only epidemiologically relevant equilibrium is the

DFE for R0 < 1.

The sign of Θ plays a significant role in determining the type of bifurcation that occurs when

R0 = 1. This result is formally stated in Theorem 3.2.

Theorem 3.2. If Θ > 0, then a transcritical bifurcation of backward type occurs at R0 = 1,

and when Θ < 0, then a transcritical bifurcation of forward type occurs at R0 = 1.
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Figure 6: Backward bifurcation (left) and forward bifurcation (right) at R0 = 1. Stable branches
are marked with continuous and unstable branches with dashed lines. The parameters used for
both cases are ρ = 17, κ = 0.1, γ = 17, µ = 0.0125, ν = 150, α = 200. The relative infectivity in
the backward case is ξ = 0.9 and in the forward case ξ = 0.001. The saddle-node bifurcation
point is marked with LP on the equilibria branch.

3.2 The Routh-Hurwitz criterion for EE

For the stability of the endemic equilibrium, we obtain the characteristic polynomial

det(J− λI) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0 (22)

with a4 = det(J). Here, J is the Jacobian of our system evaluated at EE and expressions for

the coefficients of (22) are in [18].

By applying the Routh-Hurwitz stability criterion, given that R0 > 1 holds, we found that the
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EE is locally asymptotically stable if and only if the coefficients of the characteristic polynomial

(22) satisfy

(i) ai > 0 for i = 1, 2, 3, 4,

(ii) a1a2 > a3, and

(iii) a1a2a3 > a21a4 + a23.

We establish the positivity of the coefficients that is condition (i), details of which are outlined

in [18]. For (iii), we define

yν(α, ξ) = a1a2a3 − (a21a4 + a23), (23)

such that all conditions of the criterion are satisfied if and only if yν(α, ξ) > 0. We note here

that condition (ii) can be derived from the other two conditions.

3.3 Numerical simulations

Using the same parameters as before, we construct heatmaps to study the sign of yα(ν, ξ), given

by (23). Here, ξ ∈ (0, 1) is taken from [9]. For ξ = 0, we readily experience changes in the

dynamics w.r.t Figure 3. The instability set, marked as K is somewhat similar but the regular

shape resulting in simultaneous appearance of double-bubbles of instability is lost, see Figure 7.

The region around ν ≈ 2.06 displays much simpler behaviour and for ν ≈ 13.5, we still see

bubbles, though without the symmetry they possess. The numerical investigations also revealed

that as ξ grows, the curve yν(α, ξ) = 0 deforms so that these double-bubbles disappear, see

Figure 8. In addition, the region K shrinks and disappears, hence it results in the increase of

local asymptotic stability region of the EE.
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Figure 7: Heatmap of the RH criterion (23) for ξ = 0. Purple curve represents yν(α) = 0.
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Figure 8: Heatmap of the RH criterion (23) for ξ = 10−4. Purple curve represents yν(α) = 0.

Depicted in Figure 9 are one-parameter bifurcation diagrams showing the bubble for small and

large ν respectively.

14



1 2 3 4 5 6

Partition of immunity ( )

1

1.5

2

2.5

3

3.5

4

P
ri

m
a
ry

 i
n

fe
ct

io
n

s 
( 

I 
)

10
-3

H
1

H
2

(a)

1 2 3 4 5 6

Partition of immunity ( )

0

1

2

3

4

5

6

7

P
ri

m
a
ry

 i
n

fe
ct

io
n

s 
( 

I 
)

10
-3

1.5 2 2.5 3

1

1.2

1.4

 I

10
-3

H
1

H
2

H
3

H
4

H
2

H
3

(b)

Figure 9: One-parameter bifurcation diagram with ξ = 10−5 for (a) ν = 2.07 and (b) ν = 13.45
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