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Doctoral School of Computer Science

Department of Computational Optimization

Faculty of Science and Informatics

University of Szeged

Szeged
2024





Contents

1 Introduction 7
1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Graph Representations . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Graph Paths and Cycles . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Graph Measures and Metrics . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Graph Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.5 Special Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.6 Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Cutting Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.5 Branch-and-Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.6 Heurstics and Metaheuristics . . . . . . . . . . . . . . . . . . . . . 17

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Algorithmic Upper Bounds for Graph Geodetic Number 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Binary integer linear programming model . . . . . . . . . . . . . . 20

2.2 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Locally greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Graph instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Discussion on results with random graphs . . . . . . . . . . . . . . 27
2.3.3 Discussion of the results on larger graph instances . . . . . . . . . 34

2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



3 Symbolic Regression for Approximating Graph Geodetic Number 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Parameters of the Numerical Experiments . . . . . . . . . . . . . . . . . . 39

3.3.1 Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Real-World Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 CGP Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Training data parameters . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Geodetic number . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Exact Methods for the Longest Induced Cycle Problem 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Order-based model . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Subtour-elimimation model . . . . . . . . . . . . . . . . . . . . . 52
4.2.4 Cycle-elimination model . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.5 Cordless-cycle model . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Cut generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.3 Longest Isometric Cycle . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.1 Computational environment and dataset . . . . . . . . . . . . . . . 59
4.4.2 Computational results . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Maximizing the Smallest Eigenvalue of the Grounded Laplacian Matrix 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 First approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 Second approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Appendix 73

Bibliography 77

ii



Summary 85
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Chapter 1

Introduction

Optimization involves the search for the optimal solution for a given problem. It stands as
a fundamental concept among diverse disciplines such as mathematics, computer science,
engineering, economics, and beyond. Selecting the appropriate optimization technique de-
pends on the problem’s category as well as the trade-off between the quality of the solution
and the time sufficient for computation.

In combinatorial optimization, recommended approaches to achieve the best possible so-
lution include standard methods like integer linear programming, binary integer linear pro-
gramming, and linear programming with the relaxation for certain or all variables, yet still
achieving an integer solution. Additionally, decomposition methods like Benders decompo-
sition and Dantzig–Wolfe decomposition are efficient for some problem classes. Conversely,
if reaching the optimal solution demands significant computational resources then the focus
is on attaining a good enough solution within a reasonable time, thus metaheuristics and
heuristics gain substantial importance.

Graph theory is the study of graphs, which serve as mathematical structures used to
represent and analyze connections between objects. Its practical implementations include
diverse domains, including computer science, network science, social science, biology, and
more. The connection between optimization and graph theory has long been a significant
focal point for researchers, involving the utilization of optimization techniques to deal with
graph theory problems.

The primary objective of this thesis is to address three NP-hard problems from graph
theory. These problems cannot be solved by deterministic algorithms in polynomial time,
making them particularly challenging. The thesis explores different techniques to solve these
problems and demonstrates the efficiency of the proposed methods compared to the methods
presented in the literature.
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8 Introduction

1.1 Graphs

1.1.1 Graph Representations

In graph theory, a graph is fundamentally defined as a set of vertices and edges. The vertices
can represent diverse types of data, and the edges serve as connections between pairs of
vertices, forming a graph topological representation. Simply, a graph is either directed or
undirected. Directed graphs have edges with specified directions, while undirected graphs
have edges without any particular direction. A simple graph is represented by having, at
most, one edge between any two vertices and the absence of any edge that starts and ends at
the same vertex.

On the other hand, spectral representation provides an alternative way to represent graphs,
which allows the graph to be defined using linear algebra elements, i.e., matrices and vec-
tors, such as Adjacency matrix [82], Degree matrix, and Laplacian matrix [64]. This specific
representation holds significant importance in clarifying both the structural and functional
characteristics of the graph.

1.1.2 Graph Paths and Cycles

Graph paths and cycles are foundational concepts within the domain of graph theory [19]. A
walk refers to a sequence of vertices and edges that traverse the graph, permitting revisits to
both vertices and edges. If a walk doesn’t have repeated edges, it is termed a trail. On the
other hand, a path denotes a walk where no repetition of vertices or edges occurs. Lastly, a
cycle in the graph is a specific type of path where the initial and final vertices are the same,
resulting in a closed loop within the graph. The length of a path is defined by the number
of edges it contains. Among all the paths between two vertices, the shortest path is the one
with the minimum number of edges. The graph diameter is the length of the longest path
among all the shortest paths within the graph.

The study of paths and cycles with specific structures serves as the basis for many graph
theory problems that have been studied over the years. An instance of such a problem is the
Eulerian walk, which involves finding a cyclic walk that traverses each edge precisely once
[89]. Another well-known problem is the Hamiltonian cycle, which seeks a cycle that visits
each vertex exactly once [3]. These problems have practical applications in various fields,
making them subjects of great interest in graph theory research.

1.1.3 Graph Measures and Metrics

In graph theory, diverse measures and metrics are available. Some of them have a global
scope, providing insights for the entire graph, while others are assigned to individual com-
ponents like vertices and edges. An essential notion in graph theory is centrality, which
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emphasizes the importance of graph elements by utilizing a function that assigns values to
each element.

Throughout, Let G=(V,E) be a graph with vertex set V and edge set E. Degree centrality
[92] is the first to mention. This metric describes a vertex’s importance based on the number
of edges that connect it to other vertices within the graph, which is denoted as degv for a
given vertex v.

Betweenness centrality (B) [14] measures the proportion of all the shortest paths passing
through a particular vertex. To elaborate, let gst be the total number of shortest paths between
vertices s and t, and for a vertex i let ni

st be the number of shortest paths between s and t that
go through vertex i. The computation of Bi is defined as:

Bi = ∑
s,t∈V,s ̸=t

ni
st

gst

Closeness centrality [72] computes the average distance from a specific vertex to all other
vertices in the graph. Let di j be the shortest path length between vertex i and all other vertices
in the graph, then the concept can be expressed as follows:

Ci =
n

∑ j∈V di j

Eigenvector centrality [18] is a metric that measures the importance of a vertex by con-
sidering the importance of its neighbors. A vertex with high eigenvector centrality indicates
that it is connected to vertices with high eigenvector centrality. The computation of eigen-
vector centrality requires solving the following equation:

Ax = λx (x ̸= 0)

where x is the eigenvector and λ is its corresponding eigenvalue. Thus the centrality of vertex
v can be defined as:

eigv =
1
λ

∑
t∈M(v)

eigt

where M(v) is the set of the neighbors of v.

Density of a graph can be described as a global measurement to evaluate the ratio between
the number of vertices and the number of edges. The average degree of the graph can be
outlined as follows:

a =
2m
n

Consequently,
DE =

a
n−1
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A graph is classified as sparse when the density is close to zero, whereas it is considered
dense when the density is close to one.

Clustering coefficient [15] is an additional metric that estimates the likelihood of two
neighbors of a vertex being connected, representing the number of triangles in a graph. It
can be calculated using the following formula:

CC =
number of closed triplets

number of triplets (open and closed)

In this context, a closed triplet refers to a triangle, whereas an open triplet is a path of length
two.

1.1.4 Graph Matrices

For a simple, undirected graph denoted by G = (V ,E), where V represents the set of vertices
and E represents the set of edges, with |V | = n vertices and |E| = m edges, the adjacency
matrix A is defined as

Ai j =

{
1 if (i, j) ∈ E,

0 otherwise.

Adjacency matrix is a square matrix in which a non-zero element indicates that the cor-
responding nodes are adjacent. Implementations of well-known algorithms like Dijkstra’s
algorithm [48] and Floyd’s algorithm [81] usually use the adjacency matrix to calculate the
shortest paths for a given graph.

The Degree matrix D is n×n diagonal matrix defined as:

Di j =

{
degi if i = j,

0 otherwise.

The Laplacian matrix L is defined as follows:

Li j =


degi if i = j,

−1 if (i, j) ∈ E,

0 otherwise,

Laplacian matrix is a square matrix that can be used to calculate, e.g., the number of
spanning trees for a given graph. The eigenvalues of the Laplacian matrix are non-negative,
and they do not exceed twice the maximum node degree[11].

1.1.5 Special Graphs

Connected Graph A graph is considered connected when there is at least one path connect-
ing every pair of vertices. On the other hand, a graph is disconnected if certain vertices
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cannot be reached from other vertices. Figure 1.1 shows a connected graph.

5

4

3

2 6

71

Figure 1.1: Connected graph

Regular Graph Within the domain of graph theory, a regular graph indicates a graph in
which all vertices have an equal number of neighbors i.e. every vertex has the same
degree. If the vertices in the graph have a degree of k, the graph is referred to as a
k-regular graph. 2-regular graph shown in figure 1.2

4

2

3

1

Figure 1.2: 2-regular graph

Complete Graph A complete graph, as displayed in figure 1.3, is defined as a graph in
which each vertex is connected to every other vertex. Consequently, each vertex has a
degree of n−1, and the overall number of edges in the graph is n(n−1)

2

4

2

3

1

Figure 1.3: Complete graph

Acyclic Graph A graph that has no cycles is known as an acyclic graph. When the graph
is acyclic and connected, it takes on the name of a tree. Conversely, an acyclic graph
that is disconnected is referred to as a forest (a collection of trees). In the tree graph,
the number of edges is n−1. Figure 1.4 illustrated acyclic graph.
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Figure 1.4: Acyclic graph

Bipartite Graph In a bipartite graph, the vertices are separated into two disjoint sets, with
edges connecting vertices from the different sets. This implies that no edges exist
between vertices within the same set. An example of a bipartite graph is displayed in
figure 1.5

4

3

2

6

7

1

5

Figure 1.5: Bipartite graph

Planar Graph A graph is considered planar if it can be shown on a plane in such a way that
none of its edges intersect. a planar graph shown in figure 1.6

5

4

3

2

1

Figure 1.6: Planar graph
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1.1.6 Random Graphs

Random graph models serve as a fundamental approach for generating graphs. Typically,
the characteristics and various graph features can be predicted by creating a graph based on
a specific model. There are three well-known models outlined as follows:

Erdős-Rényi (ER) model [35], a graph is chosen uniformly at random from the set of all
graphs containing n vertices and m edges in case of G(n,m). In the case of G(n, p)
the graph is constructed by connecting nodes randomly with each edge included in the
graph with probability p independently from every other edge.

Watts-Strogatz (WS) model [88] generates graphs with small-world attributes, indicating
that the average of all shortest paths in the graph is relatively low and the graph demon-
strates a high CC.

Barabási-Albert (BA) model [4] constructs graphs using a preferential attachment growing
mechanism, where vertices with more connections have a higher probability of receiv-
ing new links. As a result, this model exhibits the scale-free property, characterized by
a power-law distribution of the form pk ∼ k−α , where pk represents the fraction of ver-
tices with degree k, and α is a parameter typically falling within the range 2 < α < 3.

1.2 Optimization

1.2.1 Linear Programming

Linear programming (LP) stands as the base for many optimization methods and constitutes a
field of study that was referenced during the 1930s [49]. A substantial advancement occurred
with the introduction of the simplex algorithm by George Dantzig in the 1940s [32], which
proved the capability of solving systems of linear inequalities. The standard formulation of
a linear program is as follows:

min cT x (1.1)

subject to

Ax ≥ b (1.2)

x ≥ 0 (1.3)

Within this context, the decision variables are represented by the n-vector x, A stands for
an m× n matrix, b is a vector of length m, and c forms a vector of length n. The formal
definition of the objective function is presented in (1.1), and the set of inequalities marked as
(1.2) and (1.3) represents the constraints. The feasible region of a linear program denotes the
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region containing all potential solutions that satisfy the constraints of the problem. Solving
the linear program involves determining values for x within the feasible region, achieving
a minimization of the objective function while simultaneously fulfilling the constraints. If
no value of x fulfills the constraints Ax ≥ b and x ≥ 0, the problem is classified as infeasi-
ble. Conversely, if the constraints do not place bounds on the feasible region, such that the
objective can tend to −∞ the problem is described as unbounded.

The linear program in which the decision variables are constrained to integer values is
referred to as an Integer Linear Program (ILP):

min cT x (1.4)

subject to

Ax ≥ b (1.5)

x ∈ Zn (1.6)

A more restricted version, termed Binary Integer Linear Programming (BILP), is when the
decision variables are restricted to exclusively binary values, either zero or one.

min cT x (1.7)

subject to

Ax ≥ b (1.8)

x ∈ {0,1}n (1.9)

In the case where certain decision variables are required to be integers while others are
continuous, the program is denoted as a Mixed Integer Linear Programming (MILP).

min cT x+dT y (1.10)

subject to

Ax+Dy ≥ b (1.11)

x ≥ 0 (1.12)

x ∈ Zn (1.13)

1.2.2 Duality

Duality plays a crucial role in the domain of optimization and mathematical programming
[13]. In an optimization problem, the purpose is to find the optimal solution—be it max-
imizing or minimizing the objective function—while fulfilling the constraints. This main
problem is known as the primal problem. The dual problem derives from the primal prob-
lem, involving the determination of a set of dual variables that correspond to the constraints
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of the primal problem. The optimal solution of the dual problem specifies bound on the
optimal solution of the primal problem. For the following LP

min cT x (1.14)

subject to

Ax ≥ b (1.15)

x ≥ 0 (1.16)

the dual problem is defined as:

max bT y (1.17)

subject to

AT y ≤ c (1.18)

y ≥ 0 (1.19)

The essence of duality is the duality theorem, which proves a robust connection between
the optimal solutions of the primal and dual problems. To study the concept, let’s consider
the primal and dual problems as defined previously:

Theorem 1 (Weak Duality Theorem) If x is a primal feasible solution and y is a dual fea-
sible solution for primal and dual problems respectively,

• If equality holds in cT x ≥ bT y then x is primal optimal solution and y is dual optimal
solution.

• If either primal or dual is unbounded, then the other problem is infeasible.

Theorem 2 (Strong Duality Theorem) If x is a primal feasible solution and y is a dual
feasible solution for primal and dual problems respectively,

• x is primal optimal solution and y is dual optimal solution such that cT x = bT y.

• If either primal or dual is infeasible, then the other problem is either unbounded or
infeasible.

1.2.3 Cutting Plane

The cutting plane is a technique employed to enhance the efficiency of solving ILP and MILP
problems. This method was initially introduced by Gomory [42]. The approach revolves
around solving the problem, and when the solution is not an integer, a valid constraint is
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added to the problem. This constraint is satisfied by all feasible integer solutions but is
violated by the current non-integer solution. By combining the cut into the problem and
resolving it, a new solution is obtained. This iterative process is repeated until an integer
solution is attained. Gomory demonstrated that this method terminates within a finite number
of steps. Thus, Gomory’s cuts are applied to cut down the search space and cut off the non-
integer solutions while preserving the integer solution.

1.2.4 Branch-and-Bound

The Branch and Bound algorithm (B&B) [30] stands as a notably efficient optimization
method primarily utilized for handling ILP and MILP problems. It adopts a divide-and-
conquer approach to partition the search space of the initial problem into sub-problems with
smaller search space, consequently constructing a search tree.

The initial phase of the B&B begins with the solution of the root node located at the top
of the search tree. At this stage, all variables are relaxed, assuming continuous values. If the
relaxation of the root node generates an infeasible solution, it implies the original problem is
similarly infeasible. Conversely, if the linear relaxation of the root node generates an optimal
solution where all integer variables have integer values, then this solution is optimal for the
original problem.

However, if the solution resulting from the relaxation includes at least one non-integer
variable, branching is employed. Through branching, two sub-problems are generated, each
with an extra constraint. Let x∗i be the solution from the relaxation, the new constraints take
the form of xi ≤ ⌊x∗i ⌋ in the first sub-problem and xi ≥ ⌈x∗i ⌉ in the second sub-problem. These
sub-problems are subsequently tackled recursively.

The efficacy of the B&B relies on its utilization of the pruning technique. For instance,
in a minimization problem, solutions obtained from the relaxations serve as lower bounds,
while integral solutions serve as upper bounds. As a result, a sub-problem can be disregarded
if its solution is equal to or greater than the upper bound. This mechanism simplifies the
search procedure and effectively narrows down the search space of feasible solutions.

1.2.5 Branch-and-Cut

Branch-and-Cut algorithm (B&C) [68] is an enhanced variant of the B&B, representing a
hybrid approach that combines the B&B with cutting planes. The primary objective is to
attain better linear relaxation solutions, i.e. to achieve a superior bound, by getting more
efficient pruning of the search space using the cuts.

In this algorithm, a search tree is constructed similarly to the B&B. On the other hand, a
cut is added to the problem to limit the solution domain for the LP relaxation problems while
preserving valid integer solutions. By including these cuts, significant performance improve-
ments can be achieved, as they reduce the number of branches that need to be explored in
the search tree.



1.3 Contributions 17

1.2.6 Heurstics and Metaheuristics

The term heuristic derives from the Greek word ”heuriskein” meaning ”to discover” [91].
In this context, a heuristic approach suggests methodologies intended to facilitate problem-
solving. Consequently, heuristic optimization is applied to find approximate solutions with-
out guaranteeing the achievement of the optimal solution, but rather aiming to ensure a
good solution within a reasonable time. Heuristics are recommended when no reliable exact
method exists to solve the problem, or when an exact method exists but proves computation-
ally intensive, demanding substantial time and/or storage resources. Furthermore, heuristics
can be utilized to provide initial solutions for solvers. Well-known heuristic strategies en-
compass greedy algorithms [84] and hill climbing [29]. These techniques are especially
beneficial for problems with specific structures.

Similar to heuristic, metaheuristics optimization [1, 16] constitutes an approach to problem-
solving wherein algorithms are designed and implemented to achieve approximative solu-
tions for complicated optimization problems. Metaheuristics emphasizes two strategies: ex-
ploiting the current search region for the most promising solution and exploring new search
regions to efficiently find solutions. These methodologies are adaptable and applicable to a
diverse spectrum of optimization problems, including combinatorial optimization, continu-
ous optimization, and multi-objective optimization. Some common examples of metaheuris-
tics optimization algorithms include Genetic Algorithms [5], Ant Colony Optimization [33],
Grey Wolf Optimization [67], and an expanding array of algorithms classified as nature-
inspired due to their simulation of mechanisms observed in the nature.

The primary distinction between heuristics and metaheuristics lies in their problem de-
pendency. Heuristics are highly designed for specific problems, enabling efficient solutions
for those particular cases but often proving to be not good enough for other problems. On
the opposite, metaheuristics are conducted as general-purpose algorithms that can be ap-
plied effectively to almost all types of optimization problems, irrespective of their specific
characteristics.

1.3 Contributions
The primary purpose of this thesis is to tackle three NP-hard graph problems by utilizing
various optimization techniques, including standard methods, heuristics, and metaheuristics.
The evaluation of the proposed methods involved comparing their results and execution times
with those presented in the literature. The concepts, figures, tables, and results presented in
this thesis have been previously published in scientific papers. In summary, the contributions
can be outlined as follows:

Chapter 2.: I introduced novel algorithmic approaches for obtaining upper bounds of the
graph geodetic number, which is known to be an NP-hard problem. To demonstrate the effi-
ciency of these algorithms, I conducted experiments on a diverse set of graphs with varying
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structures. Through a comparison of the results with the BILP formalism from recent liter-
ature, I illustrate that my approaches outperform the BILP in terms of computational speed
while maintaining a sufficiently precise upper bound relative to the optimal solution.

Chapter 3.: I proposed an approach that combines Symbolic Regression with an evolu-
tionary algorithm known as Cartesian Genetic Programming, to formulate equations capable
of approximating the graph geodetic number. To evaluate the efficacy of these equations,
I performed assessments on both randomly generated and real-world graphs. The results
demonstrated that the derived equations showed a reasonable approximation in comparison
to the optimal solution.

Chapter 4.: I introduced three integer linear programs to attain optimal solutions for the
longest induced cycle problem, a well-known graph problem categorized as NP-complete.
The numerical efficiency of these proposed approaches was validated through experiments
conducted on real-world graphs and compared to the methods proposed in the literature.

Chapter 5.: I presented two methods to tackle the NP-hard problem of maximizing the
smallest eigenvalue of the grounded Laplacian matrix. Degree centrality is used as the base
for the first method. In addition, the vertex cover problem was employed as an additional
method of solving the problem. To evaluate the efficiency of the proposed methods, I exe-
cuted experiments on real-world graphs, comparing the obtained solutions and the execution
times with the methods proposed in the literature.



Chapter 2

Algorithmic Upper Bounds for Graph
Geodetic Number

2.1 Introduction

Path-covering problems hold significant value both in theory and practical applications due
primarily to their straightforward interpretability. These problems encompass various com-
plicated notions of coverage, with one notable subset revolving around the determination of
shortest paths. Within this problem domain lies the concept of the graph geodetic number,
which is a global measure for simple connected graphs to find the minimal-cardinality set
of vertices, such that all shortest paths between its elements cover every vertex of the graph.
Geodetic number problem initially introduced in the work by Harary [46]. This problem
finds applications in several fields, with one particular example outlined in Manuel’s work
[59], where it is framed as a social network problem.

Notably, it has been shown that computing the geodetic number is a computationally
challenging task for general graphs, as it falls into the NP-hard problem category [12]. As
is often the case with graph theoretical problems, an ILP formulation is viable. Hansen
and van Omme presented such a model in a recent paper [45], which also featured the first
computational experiments conducted on a collection of moderately sized random graphs.

Chakraborty et al. [25] proposed an algorithm for approximating the geodetic number on
edge color multigraph. An efficient polynomial algorithm to compute the geodetic number
of interval graphs was presented in [34].

Geodetic sets and geodetic numbers have diverse applications. They find utility in com-
putational sociology, as suggested in [22, 86]. The concept of the convexity of a set of ver-
tices in a graph, as defined in [47], represents a somewhat converse property to geodetic sets.
Related concepts include the graph hull number [36] and the domination number [44], all of
which have practical applications. For instance, they are employed in public transportation
design [25], achievement and avoidance games [24], location problems [75], maximizing
switchboard numbers in telephone tree graphs [69], mobile ad hoc networks [76], and the

19
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design of efficient typologies for parallel computing [73].
Drawing inspiration from these results, this work, which is published in [9], conducts an

empirical investigation into upper bound algorithms. These algorithms, as demonstrated by
the experiments, consistently produce results with minimal gaps on diverse sets of graphs.
Notably, these methods require relatively low computational time, even when applied to
random graphs comprising 150 vertices, as well as on large-scale real-world graphs.

2.1.1 Problem description

A simple connected graph is denoted by G = (V ,E). Assume that n = |V | and m = |E|.
Given i, j ∈ V , the set I[i, j] contains all k ∈ V which lies on any shortest path (geodetics)
between i and j. The union of all I[i, j] for all i, j ∈ S ⊆V is denoted by I[S], which is called
geodetic closure of S ⊆V . Formally

I[S] := {k ∈V : ∃i, j ∈ S,k ∈ I[i, j]}.

The geodetic set is a set S for which I[S] =V . The geodetic number of G is

g(G) := min{|S| : S ⊆V and I[S] =V}.

2.1.2 Binary integer linear programming model

In the paper by Hansen et al. [45], a BILP formulation is introduced as follows. They use
duv to represent the length of the shortest path between any two vertices u and v in the graph,
where u,v ∈V .

For each vertex k ∈V , they define the set Pk as:

Pk := {(i, j) ∈V ×V | dik +dk j = di j}.

Here, Pk contains all pairs of vertices for which the shortest path goes through vertex k.
The model is formulated as follows:

min
n

∑
k=1

xk (2.1)

subject to

1− xk ≤ ∑
(i, j)∈Pk

yi j ∀ k, i, j ∈V , i < j (2.2)

yi j ≤ xi ∀ i, j ∈V , i < j (2.3)

yi j ≤ x j ∀ i, j ∈V , i < j (2.4)

xi + x j −1 ≤ yi j ∀ i, j ∈V , i < j (2.5)
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xi ∈ {0,1} ∀i ∈V (2.6)

yi j ∈ {0,1} ∀i, j ∈V , i < j (2.7)

The variable xk serves as an indicator of whether vertex k belongs to the set S or not.
Consequently, the objective is to minimize the sum of these binary variables. The auxiliary
variables yi j represent the bilinear term xix j. Thus, in equation (2.2), it is implied that xk can
only be 0 if there exist vertices i and j in set S such that vertex k is part of their shortest path.
The McCormick conditions, as detailed in equations (2.3)-(2.5), establish a correspondence
yi j = xix j.

2.2 Upper bounds

The most straightforward upper bound for the geodetic number is g(G) ≤ n, a bound that
holds precisely for complete graphs. Chartrand et al. [26], establish a more refined upper
bound, g(G) ≤ n− d + 1, where d represents the diameter of graph G. Additional upper
bounds are detailed in [21, 83, 86], although these are specific to certain graph structures.
The aim is to derive upper bounds applicable to general graphs through algorithmic methods.
This pursuit leads to the development of two upper bound algorithms: the first one uses
Floyd’s algorithm [81], while the second algorithm is based on Dijkstra’s algorithm [48].

2.2.1 Greedy algorithm

The core concept behind this algorithm is to construct a geodetic set in an iterative greedy
manner. At each iteration, the algorithm selects a vertex, denoted as i, to be added to set S
that leads to the maximum increase in I[S]. In other words, it chooses the vertex for which
the cardinality | I[S∪{i}]\ I[S] | is maximal.

Initialization. The initialization phase is shown in Algorithm 1. In lines 4−5, the al-
gorithm computes all-pair shortest paths, which are subsequently utilized in lines 6−8 to
define sets denoted as Ii j. These sets, at this stage, are essentially the same as I[i, j], which
was previously introduced in Section 2.1.1. In other words, they contain all vertices on any
shortest path between vertices i and j. A distinct notation is employed here intentionally, as
the sets Ii j may change later in the algorithm. In line 9, vertices with a degree of at most one
are placed into the initially empty geodetic set S. A vertex with a degree of one is the vertex
that is connected by a single edge in the graph, and these vertices are required to be part of
the geodetic set S, as it is established in [46]. The geodetic closure I[S] is initialized for the
set S in lines 10−11, though it is important to note that this set could potentially be empty at
this stage. Finally, in lines 12−13, all vertices that have already been covered are removed
from the sets Ii j.
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Algorithm 1: Greedy algorithm - Initialization
1 Function GreedyInit

2 S = /0, I[S] = /0, Ii j = /0 ∀i, j ∈V
3 di j = 1 ∀(i, j) ∈ E, di j = ∞ ∀(i, j) /∈ E
4 for ∀k ∈V, i ∈V, j ∈V do // distance calculation

5 di j = min{di j,dik +dk j} // by Floyd algorithm

6 for ∀i ∈V, j ∈V,k ∈V do // calculation of Ii j
7 if di j = dik +dk j then
8 Ii j = Ii j ∪{k}

9 S = {k ∈V | degk ≤ 1} // unreachable vertices must be in S

10 for ∀i ∈ S, j ∈ S do // build I[S] for S

11 I[S] = I[S]∪ Ii j

12 for ∀i ∈V, j ∈V do // Update Ii j-s by removing

13 Ii j = Ii j \ I[S] // all covered vertices

Auxiliary functions. The description of the greedy approach is extended in Algorithm 2,
where the functions LargestIncrease and LargestIncreasePair are introduced. These
functions are responsible for determining the vertex (or vertex pair) that if they are included
in set S, resulting in the most expansion of the covered set I[S]. Two sets of notations are
utilized: the sets Ii[S] encompass vertices that would be covered if vertex i were included in
set S, and sets Ii j[S] consist of vertices that would be covered if both vertices i and j were
included in set S. The initialization of sets Ii[S] as empty occurs in line 16. Subsequently,
in lines 15−18, these sets Ii[S] are constructed based on the vertices currently present in
Ii j, where vertex i is not a member of set S while vertex j is part of set S. Further, in
line 19, the variable ℓ is defined as the vertex from the set V \S for which Ii[S] is maximized.
Similarly, within the function LargestIncreasePair(V,S,I), lines 21−22 are responsible
for computing the sets Ii j[S] using vertices that would yield the greatest expansion of I[S] if
the pair (i, j) included. Lastly, in line 23, a pair of vertices is selected such that the set Ii j[S]
is the largest among the options.

Main algorithm. The primary loop of the greedy approach is presented in Algorithm 3.
The condition outlined in line 27 verifies if there are any uncovered vertices remaining. In
lines 28−33, a heuristic rule is applied, which involves a straightforward check to see if the
size of set Iℓ[S] is at least half the size of set Ikh[S]. This constitutes a greedy choice, although
it is worth noting that alternative conditions could also be employed to determine whether
to add a single vertex or a pair of vertices to set S. Subsequently, in lines 34−35, the sets
Ii j are updated by removing all the covered vertices from them. In line 36, the selection of
the vertex that results in the greatest expansion of I[S] needs to be chosen again. Finally,
the execution of lines 37−40 depends on the value of the parameter AddOne. If it is set to
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Algorithm 2: Greedy algorithm - Auxiliary functions
14 Function LargestIncrease(V,S, I)
15 for ∀i ∈V \S do // compute Ii[S], the set increasing

16 Ii[S] = /0 // I[S] if i is included

17 for ∀ j ∈ S do
18 Ii[S] = Ii[S]∪ Ii j

19 ℓ= argmax
i∈V\S

|Ii[S]| // find vertex for which I[S] would grow most

return ℓ, Iℓ[S]
20 Function LargestIncreasePair(V,S, I)
21 for ∀i ∈V \S, j ∈V \S do // compute Ii j[S], the set increasing

22 Ii j[S] = Ii j ∪ Ii[S]∪ I j[S] // I[S] if i, j are included

23 (k,h) = argmax
i, j∈V\S

|Ii j[S]| // pair of vertices which I[S] would grow most

return k,h, Ikh[S]

AddOne = 0, then the algorithm chooses the best pair of vertices to add to set S by invoking
the LargestIncreasePair function. In contrast, when AddOne = 1, this function call is
skipped, and the adjustments made in line 38 are applied to ensure consistency.

It is important to note that, since the input graph G is undirected, similar to the description
of the BILP in Section 2.1.2, one can safely assume the condition i < j for all relevant cases.
In practice, this assumption is employed in the actual implementation of the greedy algorithm
to enhance its efficiency. However, these technical details have been omitted for the sake of
simplicity in understanding the pseudocodes.

Computational complexity

The greedy heuristic employs Floyd’s algorithm to compute distances in the input graph,
which requires O(n3) time. The construction of Ii j involves nested loops, with a complexity
of O(n3). Calculating I[S] and updating Ii j both have a time complexity of O(n2).

Within the main loop of the algorithm, there are nested loops. Initially, there is an outer
loop that checks if there are any non-empty Iℓ[S] remaining, which can iterate up to n times
in the worst case. Subsequently, the inner loop for updating all Ii j has a time complexity
of O(n2). Both auxiliary functions used to identify the vertex or vertices that maximize the
growth of I[S] essentially involve two loops, resulting in a time complexity of O(n2) for
each function. Considering the combination of the outer and inner loops, the overall time
complexity of this part is O(n3). Consequently, the computational complexity of the greedy
algorithm is O(n3).
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Algorithm 3: Greedy algorithm - Main
24 GreedyInit // initialize Ii j sets and S
25 [ℓ, Iℓ[S]] = LargestIncrease(V,S, I) // ℓ would make I[S] grow most

26 [k,h, Ikh[S]] = LargestIncreasePair(V,S, I) // k,h make I[S] grow most

27 while |Iℓ[S]|+ |Ikh[S]|> 0 do // the set is not geodetic yet

28 if |Iℓ[S]|> |Ikh[S]|/2 then // balance adding one or two vertices to S
29 S = S∪ l
30 I[S] = I[S]∪ Iℓ[S] // update I[S]
31 else
32 S = S∪{k,h}
33 I[S] = I[S]∪ Ikh[S] // update I[S]

34 for ∀i ∈V, j ∈V do // Update Ii j-s by removing

35 Ii j = Ii j \ I[S] // all covered vertices

36 [ℓ, Iℓ[S]] = LargestIncrease(V,S, I) // recompute Iℓ[S]
37 if AddOne then // AddOne is a control parameter

38 k = h = 0; Ikh[S] = /0
39 else
40 [k,h, Ikh[S]] = LargestIncreasePair(V,S, I) // recompute Ikh[S]

2.2.2 Locally greedy algorithm

The locally greedy algorithm serves the same purpose as previously described, which is to
efficiently find an upper bound on g(G). Moreover, it aims to achieve speed improvements
compared to the method introduced in Section 2.2.1 by utilizing only local information.
Instead of calculating all shortest paths using Floyd’s algorithm, this approach calculates
distances from a specific vertex to all vertices not yet included in the geodetic set S using
Dijkstra’s algorithm.

The specifics of the locally greedy algorithm are clarified in Algorithm 4. This algorithm
takes vertex v as input, which can be either a degree-one vertex, as discussed in Section 2.2.1,
or a simplicial vertex. A simplicial vertex is defined as a vertex whose neighbors collectively
form a clique, meaning that every pair of neighbors are adjacent. It has been proved in [2]
that simplicial vertices are always part of the geodetic set.

Vertex v serves as the initial element of set S. The LargestLocalIncrease function, as
indicated in line 42, returns the vertex u that would maximize the growth of set I[S]. This
function is further detailed in lines 53-59. Initially, it calculates the distances from vertex v
to all other vertices in the graph, along with the corresponding shortest paths, and fills the
sets Iv,:. Dijkstra’s algorithm, a well-known algorithm, is used for this purpose, although its
detailed implementation is not provided in the pseudocode. Subsequently, in lines 55-57, the
function computes the sets I j[S] for all j ∈V \S. In line 58, the function identifies the vertex
u whose inclusion in S would result in the greatest expansion of I[S].
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In lines 43-45, the algorithm adds vertex u to the geodetic set S, updates I[S], and
then removes I[S] from the set R, which represents the remaining vertices yet to be cov-
ered. The main loop of the algorithm, as described in lines 47-52, checks in each itera-
tion whether set R is empty, indicating if there are still any uncovered vertices. As long as
there are uncovered vertices remaining, the algorithm will continue to execute, calling the
LargestLocalIncrease function on vertex w in line 48.

Algorithm 4: Locally Greedy algorithm
Input: v a degree-one or simplicial vertex

41 R =V,S = v, I[S] = /0, Ii[S] = /0 ∀i ∈V, Ii j = /0 ∀i, j ∈V
42 [u, Iu[S]] = LargestLocalIncrease(v,V,S, I) // I[S] would grow most for u
43 S = S∪{u} // update S
44 I[S] = I[S]∪ Iu[S]∪{v,u} // update I[S]
45 R = R\ I[S] // update R by removing covered vertices

46 w = u
47 while |R|> 0 do // the set is not geodetic yet

48 [u, Iu[S]] = LargestLocalIncrease(w,V,S, I) // compute Iu[S]
49 S = S∪{u} // update S
50 I[S] = I[S]∪ Iu[S]∪{u} // update I[S]
51 R = R\ I[S] // update R by removing covered vertices

52 w = u

53 Function LargestLocalIncrease(v,V,S, I)
54 Iv,: = Dijkstra(v) // shortest paths by Dijkstra algorithm

55 for ∀ j ∈V \S do
56 for ∀i ∈ S do
57 I j[S] = I j[S]∪ Ii j

58 u = argmax
j∈V\S

|I j[S]\ I[S]| // find the vertex which I[S] would grow most

59 return u, Iu[S]

Computational complexity

The locally greedy algorithm employs Dijkstra’s algorithm to calculate distances within the
input graph, which operates in O(n2) time. The construction of I j[S] using nested loops has
a complexity of O(n2). Consequently, the LargestLocalIncrease function, taken as a
whole, requires O(n2) time.

The primary while loop of the algorithm serves to fill the geodetic set S by invoking the
LargestLocalIncrease function repeatedly until set R becomes empty. This loop iterates
at most n times. Hence, the total computational complexity of the locally greedy algorithm is
O(n3), which is consistent with the computational complexity of the other greedy methods
proposed in Section 2.2.1.
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2.3 Numerical experiments
To assess the performance and efficiency of the upper bound algorithms discussed in Section
2.2, both the BILP and the algorithms were implemented in AMPL [38]. Gurobi [43] served
as the solver, with parameters configured as mipfocus=1 and timelim=3600. The experi-
ments were conducted on a computer with a 3.10 GHz i5-2400 CPU and 8GB of memory.

The obtained results are presented in Tables 2.1, 2.2, 2.3, and 2.4. The columns in these
tables give the following information:

graph: Indicates the size of the graphs, specified by the number of vertices (n) and the
number of edges (m);

exact: Shows the exact geodetic number (or best solution found by Gurobi in case of run-
ning out of time) and the time taken in seconds to find this solution;

greedy: Displays the upper bound determined by the greedy algorithm (i.e., Algorithm 3)
using AddOne = 0, along with its execution time in seconds;

greedy (AddOne): Presents the upper bound identified by the greedy algorithm (Algorithm
3) when AddOne = 1, i.e., the addition of only one vertex at a time. The execution
time in seconds is also included;

locally greedy: Represents the upper bound founded by the locally greedy algorithm (Al-
gorithm 4) and the time taken in seconds to compute it.

2.3.1 Graph instances

The algorithms were provided with a variety of input graphs, including randomly generated
graphs with diverse structural characteristics. This approach aimed to gain a deeper under-
standing of how the solution to the geodetic number problem is influenced by the graph
structure. Additionally, a limited selection of real-world graphs was included in the bench-
mark for evaluation.

Random graphs

The random graphs were generated by using the standard models: ER model [35], WS model
[88] and BA model [4].

Regarding the number of vertices and edges the following approaches were used:

• the number of vertices were n = 10,20,30,40,50,60,70,80,90,100, and

• the number of edges followed the scheme as in [45]:

– for each case one can have maximum n(n−1)
2 edges,



2.3 Numerical experiments 27

– and 20%, 40%, 60%, and 80% of the maximum number of edges has been taken.

• Apart from these graphs, some bigger graphs were created with n = 115,135,150
vertices, using the same procedure as above with the only difference that 25%, 50%,
and 75% of the maximum number of edges were taken.

Real-world graphs

The graphs utilized in this study are considered benchmark graphs. The first set of graphs
was sourced from the datasets available in the UCINET software1, while the other graphs
are well-known graphs from the Network Repository2.

2.3.2 Discussion on results with random graphs

General observations

Before the discussion of the specific results for different types of random graphs, a general
overview can be summarized as follows.

• In less than half of the cases, the exact solutions were obtained, mainly due to time
constraints. In these instances, the reported solution serves as a lower bound for the
geodetic number.

• Both versions of the greedy algorithm (Algorithm 3) consistently completed their ex-
ecution in less than 2 seconds for every tested random graph. Their execution times
were generally similar. The version considering pairs of vertices (AddOne=0) typically
provided a superior or equal upper bound compared to the version considering a single
vertex (AddOne=1).

• The locally greedy algorithm (Algorithm 4) showed remarkably fast execution times,
typically taking less than 0.2 seconds for each tested graph. On average, this algorithm
proved to be the fastest among the options.

• Unsurprisingly, as the number of vertices increased, both the geodetic number and its
computation time also increased (for graphs with the same density). When considering
averages for graphs with the same density, the geodetic number tended to decrease as
density increased. The computational effort was most extensive when the density was
0.4 and minimal when it was 0.8.

1https://sites.google.com/site/ucinetsoftware/datasets/
2http://networkrepository.com/

https://sites.google.com/site/ucinetsoftware/datasets/
http://networkrepository.com/
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Erdős-Rényi random graphs

The results for the Erdős-Rényi graphs are presented in Table 2.1. The solver successfully
found the optimal solution within the time limit for 22 instances, which is 45% of the cases.

The greedy algorithm failed to obtain the optimal solution in 28 cases. Consequently,
it reported the optimal value as an upper bound in 43% of the cases. For 20 graphs, it
missed the optimum by just one additional vertex, and for 7 graphs, it fell short by two more
vertices in the minimal geodetic set. Conversely, it managed to find a superior solution in one
instance compared to the upper bound reported by Gurobi. In comparing the two versions of
the greedy algorithm, they yielded the same values in 38 cases. AddOne=1 provided better
upper bounds for only 2 input graphs, while the default version outperformed it in 9 cases.

The locally greedy algorithm reported the optimal solution in 22 cases, amounting to
45% of the cases. In 16 cases, the upper bound missed the optimal solution by one additional
vertex, in 6 cases by two more vertices, and in 5 cases by three or more vertices.

When comparing the greedy algorithm with the locally greedy algorithm, the two meth-
ods reported identical upper bounds in 32 cases. In 7 cases, the locally greedy algorithm
provided superior upper bounds, whereas in 10 cases, the greedy algorithm was closer to the
optimal solution.

The final row in Table 2.1 displays the mean values for the obtained geodetic number
bounds as well as the average execution times. Although the differences are minimal, the
greedy algorithm excels in achieving robust upper bounds, while the locally greedy approach
stands out as the fastest method for Erdős-Rényi random graphs.

Table 2.1: Numerical results for the Erdős-Rényi random graphs, time is given in seconds.
The best results are highlighted.

graph exact greedy greedy (AddOne) locally greedy
n m value time value time value time value time

10 9 4 0.004 4 0.004 4 0.003 4 0.001
10 18 4 0.004 4 0.004 4 0.004 4 0.004
10 30 4 0.007 4 0.002 4 0.002 4 0.002
10 36 3 0.011 4 0.004 4 0.004 3 0.004
20 37 5 0.063 5 0.009 5 0.008 6 0.004
20 76 4 0.073 4 0.011 4 0.011 4 0.006
20 114 4 0.767 5 0.01 5 0.011 5 0.007
20 152 3 0.197 3 0.011 3 0.012 3 0.006
30 87 6 0.906 7 0.018 8 0.017 7 0.011
30 174 6 3.258 8 0.019 8 0.019 6 0.013
30 261 4 2.198 5 0.016 5 0.015 5 0.011
30 348 4 3.259 4 0.02 4 0.018 4 0.009
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Table 2.1: (continued) Numerical results for the Erdős-Rényi random graphs, time is given
in seconds. The best results are highlighted.

graph exact greedy greedy (AddOne) locally greedy
n m value time value time value time value time

40 156 7 76.422 7 0.03 7 0.027 9 0.011
40 312 6 89.274 8 0.031 7 0.031 7 0.016
40 468 4 17.424 6 0.039 6 0.037 6 0.011
40 624 3 4.086 4 0.036 4 0.037 4 0.013
50 245 7 208.332 9 0.056 9 0.051 10 0.023
50 490 6 1169.8 7 0.059 8 0.052 8 0.018
50 735 5 832.257 6 0.068 6 0.059 5 0.014
50 1000 3 18.231 4 0.061 4 0.057 4 0.016
60 354 ≤ 9 > 3600 10 0.092 11 0.083 11 0.028
60 708 ≤ 7 > 3600 8 0.106 8 0.096 8 0.025
60 1062 ≤ 5 > 3600 6 0.111 6 0.097 5 0.024
60 1416 4 429.412 4 0.104 4 0.101 4 0.016
70 483 ≤ 8 > 3600 10 0.131 10 0.121 12 0.033
70 966 ≤ 7 > 3600 9 0.164 9 0.139 9 0.038
70 1449 ≤ 5 > 3600 6 0.156 7 0.152 6 0.031
70 1932 4 663.129 4 0.147 4 0.142 4 0.025
80 632 ≤ 9 > 3600 9 0.193 10 0.181 13 0.048
80 1264 ≤ 8 > 3600 9 0.235 10 0.208 9 0.047
80 1896 ≤ 6 > 3600 6 0.242 6 0.215 6 0.039
80 2528 ≤ 4 > 3600 4 0.225 4 0.214 4 0.029
90 801 ≤ 10 > 3600 10 0.277 13 0.261 15 0.638
90 1602 ≤ 8 > 3600 9 0.331 10 0.295 9 0.052
90 2403 ≤ 5 > 3600 6 0.347 6 0.316 5 0.041
90 3204 ≤ 4 > 3600 5 0.319 5 0.302 5 0.041

100 990 ≤ 12 > 3600 11 0.375 14 0.348 15 0.076
100 1980 ≤ 9 > 3600 9 0.449 9 0.387 9 0.061
100 2970 ≤ 6 > 3600 6 0.479 6 0.423 6 0.047
100 3960 ≤ 4 > 3600 4 0.433 4 0.425 4 0.038
115 1638 ≤ 13 > 3600 15 0.627 15 0.572 14 0.101
115 3277 ≤ 7 > 3600 8 0.746 8 0.648 8 0.074
115 4916 ≤ 5 > 3600 5 0.704 5 0.672 5 0.068
135 2261 ≤ 14 > 3600 15 0.943 14 0.823 16 0.152
135 4522 ≤ 8 > 3600 8 1.107 8 0.953 8 0.107
135 6783 ≤ 4 > 3600 5 1.101 5 1.042 5 0.088
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Table 2.1: (continued) Numerical results for the Erdős-Rényi random graphs, time is given
in seconds. The best results are highlighted.

graph exact greedy greedy (AddOne) locally greedy
n m value time value time value time value time

150 2793 ≤ 15 > 3600 16 1.393 16 1.154 16 0.182
150 5587 ≤ 8 > 3600 8 1.528 8 1.356 8 0.134
150 8381 ≤ 5 > 3600 5 1.563 5 1.465 5 0.107

average 6.224 2055.492 6.898 0.309 7.122 0.279 7.184 0.053

Watts-Strogatz random graphs

The results for the Watts-Strogatz graphs are detailed in Table 2.2. In this case, the exact
method reached its time limit in 23 instances, solving the problem for only 53% of the cases.

The greedy algorithm produced the same result as the exact method in 29% of the cases,
specifically for 14 graphs. When it did not match the optimal (or best-reported) value, it
provided a +1 difference for 25 graphs and a +2 difference for 10 graphs.

Among the two versions of the greedy algorithm, 38 cases resulted in identical values.
AddOne=1 yielded superior upper bounds in only one instance, while the default version
outperformed it 10 times.

The locally greedy algorithm found the optimal solution in 8 cases. In 22 cases, the
upper bound missed the optimal solution by just one additional vertex, in 12 cases by two
more vertices, and in 7 cases by three or more vertices.

When comparing the performance of the greedy algorithm and the locally greedy al-
gorithm, they reported the same upper bound in 29 cases. The locally greedy algorithm
provided better upper bounds in 3 cases, while the default version yielded better results in 17
cases.

Regarding average performance, as reported in the last row of Table 2.2, the default
greedy algorithm was the best in providing superior upper bounds, whereas the locally
greedy approach proved to be the fastest for Watts-Strogatz random graphs.
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Table 2.2: Numerical results for the Watts-Strogatz random graphs, time is given in seconds.
The best results are highlighted.

graph exact greedy greedy (AddOne) locally greedy
n m value time value time value time value time

10 9 5 0.008 5 0.003 5 0.003 5 0.002
10 18 3 0.013 3 0.004 3 0.004 3 0.003
10 30 3 0.012 3 0.004 3 0.004 3 0.003
10 36 2 0.007 2 0.001 2 0.001 2 0.001
20 37 5 0.102 6 0.011 6 0.008 6 0.007
20 76 5 0.512 6 0.011 6 0.011 6 0.008
20 114 4 0.477 4 0.009 4 0.008 4 0.006
20 152 4 0.728 4 0.011 5 0.011 5 0.007
30 87 7 2.294 7 0.019 7 0.018 9 0.013
30 174 6 6.423 6 0.02 6 0.02 7 0.011
30 261 5 3.852 5 0.022 5 0.019 5 0.012
30 348 4 1.052 4 0.019 4 0.018 4 0.006
40 156 7 20.866 9 0.036 9 0.032 10 0.018
40 312 6 106.294 6 0.035 9 0.032 8 0.019
40 468 4 35.792 4 0.038 4 0.035 5 0.015
40 624 3 2.963 4 0.035 5 0.034 3 0.011
50 245 7 82.019 8 0.054 8 0.047 11 0.023
50 490 ≤ 7 > 3600 9 0.067 9 0.058 9 0.024
50 735 5 255.426 6 0.072 6 0.063 6 0.019
50 1000 4 4.742 5 0.059 5 0.058 5 0.017
60 354 9 771.2 10 0.094 11 0.085 12 0.031
60 708 ≤ 7 > 3600 9 0.102 9 0.094 9 0.031
60 1062 5 561.631 7 0.107 8 0.1 6 0.026
60 1416 4 10.923 5 0.097 5 0.095 5 0.021
70 483 ≤ 8 > 3600 10 0.138 9 0.126 11 0.035
70 966 ≤ 7 > 3600 9 0.161 9 0.137 9 0.037
70 1449 ≤ 5 > 3600 6 0.157 6 0.141 6 0.026
70 1932 4 28.026 5 0.148 5 0.137 5 0.024
80 632 ≤ 9 > 3600 10 0.208 10 0.183 13 0.047
80 1264 ≤ 8 > 3600 9 0.238 10 0.207 10 0.048
80 1896 ≤ 5 > 3600 7 0.239 7 0.216 7 0.042
80 2528 4 390.748 5 0.213 5 0.208 5 0.028
90 801 ≤ 10 > 3600 11 0.276 13 0.265 13 0.058
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Table 2.2: (continued) Numerical results for the Watts-Strogatz random graphs, time is given
in seconds. The best results are highlighted.

graph exact greedy greedy (AddOne) locally greedy
n m value time value time value time value time

90 1602 ≤ 8 > 3600 9 0.336 9 0.286 10 0.061
90 2403 ≤ 6 > 3600 7 0.344 7 0.311 7 0.049
90 3204 4 106.156 6 0.327 6 0.302 5 0.041

100 990 ≤ 11 > 3600 11 0.371 13 0.343 15 0.082
100 1980 ≤ 8 > 3600 9 0.472 9 0.387 9 0.068
100 2970 ≤ 6 > 3600 7 0.452 7 0.417 7 0.059
100 3960 4 350.92 6 0.415 6 0.398 6 0.043
115 1638 ≤ 13 > 3600 14 0.614 14 0.574 15 0.106
115 3277 ≤ 8 > 3600 9 0.715 9 0.648 9 0.091
115 4916 ≤ 5 > 3600 6 0.693 6 0.645 6 0.071
135 2261 ≤ 14 > 3600 15 0.927 16 0.832 15 0.135
135 4522 ≤ 7 > 3600 9 1.112 9 0.952 9 0.116
135 6783 ≤ 5 > 3600 6 1.065 6 0.997 6 0.086
150 2793 ≤ 13 > 3600 14 1.287 16 1.164 15 0.183
150 5587 ≤ 8 > 3600 8 1.497 8 1.338 9 0.141
150 8381 ≤ 5 > 3600 6 1.502 6 1.411 6 0.106

average 6.265 1745.78 7.163 0.303 7.45 0.28 7.673 0.043

Barabási-Albert random graphs

Lastly, for the Barabási-Albert graphs, the computational results are presented in Table 2.3.
Gurobi successfully found the optimal solution within the time limit for 25 instances, ac-
counting for 51% of the cases.

The greedy algorithm failed to match the exact method’s value in 31 cases, resulting in a
success rate of 37%. It reported a +1 difference for 21 graphs, a +2 difference for 8 graphs,
and a +3 difference for one graph compared to the value obtained by the exact method.
Remarkably, for one graph instance, it achieved a better upper bound than Gurobi.

When comparing the two versions of the greedy algorithm, they produced identical val-
ues in 29 cases. AddOne=1 provided a better upper bound in 2 cases, while the default version
outperformed it 18 times.

The locally greedy algorithm found the optimal solution in 10 cases. In 19 cases, the
upper bound missed the optimal solution by just one additional vertex, in 10 cases by two
more vertices, and in 10 cases by three or more vertices.
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The default version of the greedy algorithm and the locally greedy algorithm reported
the same upper bound in 25 cases. In 4 cases, the locally greedy algorithm provided a better
upper bound, whereas in 20 cases, the default version was superior.

The last row of Table 2.3 summarizes the average performance. Similar to the other two
types of random graphs, the default greedy algorithm stands out as the most effective for
obtaining upper bounds for the geodetic number, while the locally greedy algorithm excels
in achieving this quickly for Barabási-Albert random graphs.

Table 2.3: Numerical results for the Barabási-Albert random graphs, time is given in sec-
onds. The best results are highlighted.

graph exact greedy greedy (AddOne) locally greedy
n m value time value time value time value time

10 9 6 0.004 8 0.004 6 0.004 6 0.002
10 18 4 0.007 4 0.004 4 0.004 4 0.001
10 30 4 0.007 4 0.004 4 0.004 4 0.002
10 36 3 0.009 3 0.002 3 0.001 3 0.001
20 37 7 0.042 7 0.012 7 0.011 8 0.008
20 76 5 0.058 6 0.011 7 0.009 6 0.007
20 114 4 0.176 5 0.012 5 0.012 5 0.007
20 152 3 0.046 3 0.008 3 0.007 3 0.005
30 87 9 0.269 10 0.021 12 0.02 11 0.011
30 174 6 0.382 7 0.02 8 0.017 7 0.012
30 261 5 0.995 5 0.016 5 0.015 5 0.007
30 348 3 0.724 4 0.019 4 0.019 4 0.011
40 156 10 20.117 11 0.032 12 0.033 12 0.016
40 312 7 4.014 10 0.038 10 0.035 10 0.02
40 468 5 9.844 7 0.037 7 0.034 7 0.017
40 624 4 1.955 4 0.036 4 0.035 4 0.013
50 245 11 6.754 12 0.064 12 0.051 13 0.026
50 490 8 197.846 10 0.063 9 0.056 10 0.022
50 735 5 58.891 7 0.067 8 0.061 6 0.019
50 1000 4 12.052 6 0.059 6 0.053 5 0.014
60 354 ≤ 11 > 3600 12 0.097 12 0.092 16 0.037
60 708 ≤ 8 > 3600 10 0.103 10 0.096 9 0.031
60 1062 6 645.853 6 0.101 7 0.094 7 0.028
60 1416 4 26.435 4 0.092 4 0.089 4 0.018
70 483 ≤ 11 > 3600 11 0.142 14 0.129 18 0.048
70 966 ≤ 9 > 3600 11 0.164 11 0.139 11 0.043
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Table 2.3: (continued) Numerical results for the Barabási-Albert random graphs, time is
given in seconds. The best results are highlighted.

graph exact greedy greedy (AddOne) locally greedy
n m value time value time value time value time

70 1449 ≤ 6 > 3600 6 0.151 6 0.135 6 0.025
70 1932 4 67.771 5 0.146 5 0.137 5 0.027
80 632 ≤ 11 > 3600 11 0.207 12 0.187 18 0.068
80 1264 ≤ 9 > 3600 9 0.224 9 0.203 11 0.051
80 1896 ≤ 6 > 3600 7 0.231 7 0.208 7 0.041
80 2528 4 132.305 5 0.217 5 0.207 5 0.032
90 801 ≤ 13 > 3600 14 0.305 17 0.283 20 0.081
90 1602 ≤ 9 > 3600 10 0.315 11 0.281 11 0.064
90 2403 ≤ 6 > 3600 7 0.334 8 0.311 7 0.047
90 3204 4 713.099 5 0.305 5 0.283 5 0.042
100 990 ≤ 15 > 3600 14 0.392 18 0.363 18 0.101
100 1980 ≤ 9 > 3600 10 0.421 13 0.378 13 0.081
100 2970 ≤ 7 > 3600 8 0.435 8 0.402 8 0.063
100 3960 ≤ 4 > 3600 5 0.416 5 0.387 5 0.052
115 1638 ≤ 15 > 3600 16 0.626 18 0.566 18 0.121
115 3277 ≤ 8 > 3600 8 0.673 8 0.608 10 0.081
115 4916 ≤ 5 > 3600 5 0.648 5 0.632 6 0.062
135 2261 ≤ 15 > 3600 15 0.938 18 0.828 21 0.176
135 4522 ≤ 9 > 3600 10 1.064 11 0.927 10 0.115
135 6783 ≤ 5 > 3600 6 1.053 6 0.963 7 0.106
150 2793 ≤ 15 > 3600 17 1.282 17 1.192 20 0.221
150 5587 ≤ 9 > 3600 9 1.443 11 1.291 10 0.137
150 8381 ≤ 6 > 3600 6 1.415 7 1.342 6 0.118

average 7.27 1802.034 8.061 0.3 8.653 0.27 9.081 0.048

2.3.3 Discussion of the results on larger graph instances

The values reported in Table 2.4 demonstrate that BILP can require hours to determine the
exact geodetic number for graphs containing thousands of vertices and edges. In contrast, the
proposed algorithms were capable of providing acceptable upper bounds within a reasonable
time. It is important to note that, for this particular set of graphs, there was no time limit
imposed on Gurobi. Even for the largest graph instance (ia-email-univ), both versions of the
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greedy algorithm were able to generate slightly less accurate upper bounds than the exact
value in under 700 seconds. Although the locally greedy algorithm proved to be the fastest,
it missed the upper bound by a considerably larger margin for the larger graphs compared to
the greedy method. This pattern is also reflected in the average performance data provided
in the last row of Table 2.4.

Table 2.4: Numerical results for real-world graphs, time is given in seconds unless indicated
otherwise

graph exact greedy greedy (AddOne) locally greedy
name n m value time value time value time value time

karate 34 78 16 0.06 16 0.024 16 0.019 16 0.015
mexican 35 117 7 0.21 7 0.025 8 0.023 9 0.011
sawmill 36 62 14 0.09 14 0.022 14 0.019 15 0.015
chesapeake 39 170 5 0.12 5 0.026 5 0.023 5 0.008
ca-netscience 379 914 253 37 m 256 21.6 260 20.8 264 14.1
bio-celegans 453 2025 172 1 h 183 40.8 188 34.3 225 14.8
rt-twitter-copen 761 1029 459 6 h 459 101.7 459 103.4 490 112.6
soc-wiki-vote 889 2914 275 14 h 276 236.4 277 232.0 409 120.5
ia-email-univ 1133 5451 244 16 h 248 698.6 250 677.9 464 269.0

average 160.6 4 h 162.7 122.1 164.1 118.7 210.8 59.0

2.4 Concluding remarks
Given the fact that the graph geodetic number problem is computationally challenging, it
is valuable to develop an algorithmic way capable of providing upper bounds of acceptable
quality within a reasonable time.

The author of this Ph.D. thesis is responsible for the following contributions presented in
this chapter:

II/1. I have introduced two greedy-type approaches. The first, known as the greedy algo-
rithm, utilizes Floyd’s algorithm, whereas the locally greedy algorithm is based on
Dijkstra’s algorithm.

II/2. I have empirically demonstrated that the proposed algorithms can efficiently obtain
upper bounds that closely approximate the optimal solution obtained from the binary
integer linear programming. Meanwhile, their computational time is a small fraction
of that needed to obtain the exact geodetic number.
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Chapter 3

Symbolic Regression for Approximating
Graph Geodetic Number

3.1 Introduction

Geodetic number is a global measure for simple connected graphs to find the minimal-
cardinality set of vertices, such that all shortest paths between its elements cover every vertex
of the graph [45]. A BILP formulation for the geodetic number problem was introduced in
[45], which also included the initial computational experiments conducted on a set of ran-
dom graphs. The formal definition of the geodetic number and its applications has been
introduced in Section 2.1.

Symbolic Regression (SR) is a mathematical modeling technique aimed at discovering a
simple formula that accurately fits a given output based on a set of inputs. Unlike traditional
regression methods, which start with a predefined model, Symbolic Regression does not
begin with a specific model structure. Instead, in SR, initial formulas are generated randomly
by combining input parameters, operators, and constants. Subsequently, new formulas are
constructed by recombining existing formulas using evolutionary algorithms, with genetic
programming being the focus of this chapter.

Symbolic Regression operates within an effectively infinite search space, as it can poten-
tially generate an infinite number of formulas. However, this characteristic can be beneficial
when utilizing an evolutionary algorithm like genetic programming, which relies on diversity
to efficiently explore the search space and ultimately discover highly accurate formulas.

The input parameters and constants in SR are predetermined. SR combines these input
elements using a set of predefined arithmetic operators, such as (+,−,×,÷, etc.) to formu-
late a mathematical expression. Symbolic Regression has been applied in various domains,
including physics, where it has been employed to identify physical laws based on experi-
mental data [79], as well as to find analytical solutions for iterated functions of arbitrary
forms [80]. While there are alternative algorithms in the literature that can be used for Sym-
bolic Regression beyond genetic programming [63], genetic programming remains one of

37
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the most widely used and popular algorithms applied by Symbolic Regression [52].
Cartesian Genetic Programming (CGP) is one of the most famous genetic programming

tools, developed by Miller [66]. CGP is an iteration-based evolutionary algorithm that works
as it follows. CGP begins by creating a set of initial solutions, from which the best solution
is chosen by evaluating the solutions based on a fitness function. Then these solutions will be
used to create the next generation in the algorithm. The next generation’s solutions will be a
mixture of chosen solutions from the previous generations, where the new solutions should
not be identical to the previous ones, which can be done by mutation. Mutation is used to
change small parts of the new solutions and it usually occurs probabilistically for CGP. The
mutation rate is the probability of applying the mutation to a specific solution. Eventually,
the algorithm must terminate. There are two cases in which this occurs: the algorithm has
reached the maximum number of generations, or the algorithm has reached the target fitness.
At this point, a final solution is selected and returned. CGP has several parameters to set up,
which certainly have effects on its performance. The specific parameters used in this work
are detailed in Section 3.3.3.

In this work, which is published in [8], SR with CGP has been used to derive formulas
capable of approximating the graph geodetic number. The obtained formulas are tested on
random and real-world graphs. They demonstrated how various graph properties as training
data can lead to diverse formulas with different accuracy.

3.2 Methodologies
While there are limited research papers exploring the use of SR to approximate graph prop-
erties, Märtens et al. [60] serves as a notable starting point. They utilized SR and CGP
with inputs as eigenvalues of the Laplacian and adjacency matrices to optimize graph diam-
eter and isoperimetric number on real-world graphs. In this study, the focus is on obtaining
results for the geodetic number for both random and real-world graphs. Consequently, an
investigation into graph properties closely associated with the geodetic number was carried
out.

The implementation employed in this work was the CGP-Library, a cross-platform Carte-
sian Genetic Programming tool developed by Andrew Turner1. This C-based library is com-
patible with Linux, Windows, and MacOS.

To utilize CGP, a training dataset is required. Each dataset contains instances, with each
instance comprising two main components: (i) parameters representing graph properties and
selected constants as inputs and (ii) the exact value of the corresponding graph property
as the output. CGP then aims to combine these parameters and constants using arithmetic
operators to achieve the desired output. The set of arithmetic operators used consistently
across all cases includes (+,−,×,÷,

√
x,x2,x3). The chosen graph properties encompass

eigenvalues of the Adjacency and Laplacian matrices, the count of degree-one vertices, the
1http://www.cgplibrary.co.uk/

http://www.cgplibrary.co.uk/
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count of simplicial vertices, the number of vertices, and the number of edges. It will be
demonstrated that these parameters are closely related to the graph geodetic number, making
them valuable inputs for CGP. The subsequent section will categorize these inputs for clarity.

3.3 Parameters of the Numerical Experiments

The main goal of the experiments was to investigate the graph geodetic number for random
graphs and real-world graphs. Since the most related paper to this work of Märtens et al. [60]
contains results for the graph diameter (which is, similar to the geodetic number, also based
on shortest paths) the results obtained for the diameter reported and compared to these values.
The metrics used to measure the goodness of a formula are mean absolute error and mean
relative error. In the following subsections, the graphs used for the training as well as for the
validation are described.

3.3.1 Random Graphs

A set of 120 random graphs was created by using the three well-known generative models:
ER model [35], WS model [88] and BA model [4]. Regarding the number of vertices and
edges the following approach was used:

• the number of vertices were n = 10,20,30,40,50,60,70,80,90,100, and

• the number of edges followed the scheme as in [45]:

– for each case one can have maximum n(n−1)
2 edges,

– 20%, 40%, 60%, and 80% of this maximum number of edges were taken.

3.3.2 Real-World Graphs

A collection of 10 real-world graphs from the Network Repository [78] was employed for
this study. To construct the training dataset, 120 connected subgraphs were generated from
these networks, varying in size (with 14≤N ≤ 140). This was accomplished using a straight-
forward procedure. Given a real-world graph G = (V ,E), the process began by randomly
selecting a set W ⊂ V of vertices. Subsequently, the subgraph of G with vertex set W was
extracted. This subgraph, denoted as Ĝ, might not necessarily be connected. As a final step,
the largest connected component of Ĝ was chosen.

3.3.3 CGP Parameters

CGP needs predefined parameters to work properly. Table 3.1 summarizes the values of the
parameters used in the experiments. The details of the parameters used are the following.
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Table 3.1: Parameters of CGP

Parameter Value

Evolutionary Strategy (1+4)-ES

Vertex Arity 2

Mutation Type Probabilistic

Mutation Rate 0.05

Fitness Function Supervised Learning

Target Fitness 0.1

Selection Scheme Select Fittest

Reproduction scheme Mutation Random Parent

Number of generations 200,000

Update frequency 100

Threads 1

Function Set add sub mul div sqrt sq cube

Evolutionary Strategy The evolutionary strategy uses selection and mutation as search op-
erators. The usual version used by CGP is the one that is applied in this chapter, which
is called (1+4)-ES. Here, the procedure selects the fittest individual as the parent for
the next generation, from the combination of the current parent and the four children.

Vertex Arity Each vertex is assumed to take as many inputs as the maximum vertex arity
value, namely, the maximum number of inputs connected to a specific vertex.

Mutation Type The mutation, as the basic search operator of the evolutionary strategy, is
performed by adding a random vector to the current solution. In this chapter, this is
done probabilistically.

Mutation Rate The probability of applying mutation on a specific solution.

Fitness Function The supervised learning fitness function applies to each solution and as-
signs a fitness value to how closely the solution output matches the desired output.
Based on that, the solutions with better fitness value will be chosen for the next gener-
ations.

Target Fitness The fitness function used in this work is the absolute differences (absolute
error) between the generated and predefined outputs, where the best solution is the one
with an absolute difference less than or equal to the given value.
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Selection Scheme The applied fittest selection schemes select the best solutions based on
the closest fitness obtained by the solution.

Reproduction scheme There are two ways in which new children can be created from their
parents. In the first method, the child is simply a mutated copy of the parent. In the
second method, the child is a combination of both parents with or without mutation.
This latter method is referred to as recombination. Usually, CGP-Library uses the
random parent reproduction scheme which simply creates each child as a mutated
version of its parents.

Number of generations How many iterations CGP will apply before termination unless one
of the solutions obtains the target fitness.

Update frequency The frequency at which the user is updated on progress, where the progress
details are shown on the terminal.

Threads The number of threads the CGP library will use internally.

Function Set the arithmetic operators used by CGP to combine the inputs.

3.3.4 Training data parameters

The list of parameters used as input in the training data, separated into different sets as
follows.
For random graphs:

1) N,M,λN ,λi (i = 1,2,3)

2) N,M,µN−1,µi (i = 1,2,3)

3) N,M,λi,λN−i−1 (i = 1, . . . ,5)

4) N,M,µi,µN−i−1 (i = 1, . . . ,5)

5) N,M,λi,λN−i−1 (i = 1, . . . ,5) and constants 1,2,3,4,5

6) N,M,µi,µN−i−1 (i = 1, . . . ,5) and constants 1,2,3,4,5

where N is the number of vertices, M is number of edges, λi is the i-th eigenvalue of Adja-
cency matrix, µi is the i-th eigenvalue of Laplacian matrix.

For real-world graphs:

1) N,M,γ,σ , and constants 1,2,3,4,5

2) N,M,γ,σ ,λi,λN−i−1 (i = 1, . . . ,5)
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3) N,M,γ,σ ,µi,µN−i−1 (i = 1, . . . ,5)

4) N,M,γ,σ ,λi,λN−i−1 (i = 1, . . . ,5) and constants 1,2,3,4,5

5) N,M,γ,σ ,µi,µN−i−1 (i = 1, . . . ,5) and constants 1,2,3,4,5

where γ is the number of vertices with degree one in the graph, and σ is the number of
simplicial vertices in the graph.

3.4 Results
To derive formulas for both random graphs and real-world graphs, CGP was executed a
dozen times for each category. Among the generated formulas, the best ones were selected
based on their absolute error and relative error compared to the exact values. Therefore, the
best formulas exhibited the smallest errors. The complete list of chosen formulas can be
found in the Appendix 6. In the following sections, the best formula for each case will be
presented and discussed.

It is important to note that both the diameter and the geodetic number are integer values.
However, the formulas obtained through Symbolic Regression often yield non-integer re-
sults. Therefore, in the tables reporting the results, the formula-derived values were rounded
before calculating the errors.

The results will be presented in two types of tables. For random graphs, only a summary
of the approximation errors will be displayed. For real-world graphs, comprehensive details
will be provided, including the calculated values for both the diameter and the geodetic
number using the best formulas.

3.4.1 Diameter

The diameter of a graph, as discussed in 1.1.2, represents the length of the longest shortest
path among all the shortest paths within the graph. This measure can be readily calculated,
allowing for a comparison between the exact diameter value and the approximations derived
from the formulas obtained through Symbolic Regression.

Random graphs

For the diameter of random graphs, Table 3.2 summarizes the results obtained for the differ-
ent models, where (6.5) gives the best approximation:

N +λN−2 +4√
M

In the context of the examined random graphs, the eigenvalue λN−2 falls within the range
of [−7,−1]. On average, this range is canceled by the constant factor of +4 in formula



3.4 Results 43

(6.5). Additionally, for these types of graphs, we have M = O(N), implying that formula
(6.5) is approximately O(

√
N). The square root function, within the range considered in the

experiments, is close to the logarithm function. It is a well-known fact that the diameter of
(random) graphs can be approximated by log(N). Interestingly, despite not having the log
function in the function set (as indicated in Table 3.1), Symbolic Regression found formula
(6.5), which is close to the logarithm of the number of vertices in the graphs.

Table 3.2: Diameter validations on random graphs

formula (6.1) (6.2) (6.3) (6.4) (6.5) (6.6)

ER
mean absolute error 1 1.5 0.6 6.05 0.4 0.9
mean relative error 0.4 0.53 0.19 2.46 0.1 0.33

BA
mean absolute error 1.3 0.8 0.35 4.2 0.1 0.55
mean relative error 0.52 0.28 0.14 1.86 0.03 0.2

WS
mean absolute error 1.7 1.7 0.5 6.15 0.35 1.15
mean relative error 0.57 0.57 0.18 2.48 0.1 0.4

Real-world graphs

For the diameter of real-world graphs, as presented in Table 3.3, formula (6.14) was the best,
yielding values very close to the exact diameter:

2M
λ1λ 2

2
+

λ 2
5 +2(λN −λ3)+50

λ1
+

2
λ1λ2

Upon closer examination, it becomes evident that the last term in the formula typically
has very small values, often below 0.1. The other components of (6.14) contribute in roughly
equal measure to the final result. This formula contains the first three, fifth, and last eigenval-
ues of the adjacency matrix, along with the number of edges. It serves as a clear example of
the surprising capabilities of Symbolic Regression, as it can discover a non-trivial combina-
tion of graph features that effectively approximates a graph metric like diameter. However, it
is essential to note that the computational complexity remains O(N3) due to the eigenvalue
calculations. This implies that it requires a similar computational cost as applying an exact
algorithm like Floyd-Warshall to determine the diameter.

It is worth mentioning that formulas (6.8) and (6.9) yielded the same mean relative error
as (6.14). However, they performed less effectively in terms of mean absolute error. The for-
mula (6.9) includes some eigenvalues of the Laplacian matrix and constants, while formula
(6.8) utilizes eigenvalues of the adjacency matrix, the number of vertices, and the number
of simplicial vertices. Consequently, these formulas, while not providing as accurate ap-
proximations as (6.14), are constructed using different graph parameters compared to (6.14).
In the 5th column of Table 3.3, results from [60] for the same set of graphs are included.
Clearly, all the formulas show smaller errors than the best solution reported in [60].
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Table 3.3: Diameter validations on real-world graphs

graph(N, M) d [60] (6.7) (6.8) (6.9) (6.10)(6.11)(6.12)(6.13)(6.14)

ca-netscience(379,914) 17 21 13 9 14 19 4 17 12 10
bio-celegans(453,2025) 7 7 5 4 8 12 3 8 6 4
rt-twitter-copen(761,1029) 14 16 13 14 14 19 12 17 20 11
soc-wiki-vote(889,2914) 13 10 11 8 11 15 7 11 12 6
ia-email-univ(1133,5451) 8 6 9 9 7 12 9 8 13 10
ia-fb-messages(1266,6451) 9 7 10 8 8 12 7 9 11 6
bio-yeast(1458,1948) 19 19 14 28 15 20 18 18 39 18
socfb-nips-ego(2888,2981) 9 52 14 14 16 23 3 20 21 7
web-edu(3031,6474) 11 36 14 11 15 22 13 19 16 8
inf-power(4941,6594) 46 98 14 38 17 24 71 20 53 48

mean absolute error: 13.3 5.6 4 5.2 6.9 6.2 5.2 6.4 3.3

mean relative error: 0.92 0.28 0.27 0.27 0.53 0.37 0.31 0.48 0.27

3.4.2 Geodetic number

To compare the approximations provided by the formulas found by Symbolic Regression, it
was necessary to compute the exact geodetic number of the input graphs. For this purpose,
the BILP proposed in [45] was employed.

Random graphs

The results for the geodetic number of random graphs are presented in Table 3.4. Formula
(6.15) yielded the best approximations for the ER and WS graphs:√

N3/2

λ1
− λN−4N3/2

λ 2
1 +N3/2

In the case of BA graphs, formula (6.16) resulted in the lowest error:

µ2
4

µ2µN−3
+
√

N −µ3

Both of these formulas require the computation of all eigenvalues, making their computa-
tional cost O(N3). Note that while the exact computation of the geodetic number is NP-hard,
formulas (6.15) and (6.16) can be evaluated in polynomial time. In general, formula (6.15)
provides the best approximation for all three types of random graphs. Upon closer examina-
tion, it becomes obvious that the second part of the formula is approximately half of the first
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Table 3.4: Geodetic number validations on random graphs

formula (6.15) (6.16) (6.17) (6.18)

ER
mean absolute error 0.92 1.31 1 1.07
mean relative error 0.1 0.16 0.16 0.13

BA
mean absolute error 2.15 1 1.775 2.92
mean relative error 0.18 0.08 0.17 0.26

WS
mean absolute error 0.54 1.38 0.92 0.69
mean relative error 0.04 0.19 0.12 0.08

part. Thus, a simplified formula could be:

3
2

√
N3/2

λ1

On average, this simpler formula yields slightly less optimistic approximations (mean abso-
lute error = 1.89, mean relative error = 0.1), but it only requires the computation of the first
dominant eigenvalue, resulting in a lower computational cost of O(N2).

Real-world graphs

Table 3.5 shows the results for the real-world graphs. In this case, the best approximation
was obtained by the surprisingly compact formula (6.26):

γ +σ +
√

M−2

Formula (6.26) contains the number of degree-one vertices and the number of simpli-
cial vertices because these vertices are proven to be essential components of the geodetic
set, as demonstrated in previous research [2, 46]. Both of these factors are present in all
the best formulas, as detailed in the Appendix. In networks like the ca-netscience and
bio-celegans, simplicial vertices are much, while the number of degree-one vertices is rel-
atively low. Conversely, in other graphs, the number of simplicial vertices is limited, usually
below 10. The remaining part of the geodetic number is approximated by

√
M − 2, con-

tributing at most one-third to the overall approximation for these graphs. Formula (6.26) has
a computational complexity of O(NM).

Improvement

The goal is to derive a general formula for the geodetic number that can provide accurate
approximations for any real-world graph. To achieve this, linear regression was employed
to refine formula (6.26). The generalized formula, which includes multipliers as variables,
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Table 3.5: Geodetic number validation on real-world graphs.

graph(N, M) g(G) (6.19) (6.20) (6.21) (6.22) (6.23) (6.24) (6.25) (6.26)

ca-netscience(379,914) 253 208 151 190 198 194 206 195 200
bio-celegans(453,2025) 172 213 115 119 195 188 225 203 146
rt-twitter-copen(761,1029) 459 436 437 438 439 428 446 442 444
soc-wiki-vote(889,2914) 275 247 212 220 222 231 247 259 245
ia-email-univ(1133,5451) 244 225 182 194 181 192 208 196 233
ia-fb-messages(1266,6451) 318 266 254 264 276 280 296 313 311
bio-yeast(1458,1948) 784 763 761 766 761 751 775 762 773

mean absolute error: 32.7 56.1 44.9 39.9 39.0 29.7 28.1 21.9

mean relative error: 0.12 0.21 0.17 0.14 0.13 0.12 0.11 0.08

takes the form:
a · γ +b ·σ + c ·

√
M−d

The initial values for these variables were set to a = b = c = d = 1. Linear regression was
utilized to determine the optimal values of the variables a, b, c, and d that minimize the mean
absolute error in the approximated values. The results of the linear regression indicated that
the optimal values are a = 0.99, b = 0.79, c = 0.97, and d = 0.99. Therefore, the formula
can be expressed as:

0.99 · γ +0.79 ·σ +0.97 ·
√

M−0.99 (3.1)

Validation of improved formula

To evaluate the accuracy of formula (3.1), a validation process was conducted using 120 sub-
graphs (with 31 ≤ N ≤ 485) extracted from the real-world graphs listed in Table 3.5. These
sub-graphs were generated following the procedure outlined in Section 3.3.2. The geodetic
number was computed twice for each sub-graph: first, the exact value was determined using
the BILP from [45], and second, an approximation was obtained using formula (3.1). Figure
3.1 presents a comparison between the two sets of values for these sub-graphs, illustrating
that the approximations are close to the exact g(G) values. Across all 120 graphs, the mean
absolute error obtained using formula (3.1) was 12.27, and the mean relative error was 0.18.
This represents a slight improvement over formula (6.26), which resulted in a mean absolute
error of 12.37 and the same relative error as formula (3.1).

In Figure 3.1, two noticeable gaps are evident, representing that for certain graphs, the
approximation is significantly lower than the exact value. This occurs when the number of
simplicial vertices and/or degree-one vertices is zero for these specific graphs. Since formula
(3.1) relies on the summation of the number of simplicial vertices, the number of degree-one
vertices, and the number of edges, the absence of any of these values results in these gaps.
For graphs where γ and/or σ is zero, it may be more beneficial to utilize one of the formulas
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Figure 3.1: Exact g(G) and values given by the optimized formula (3.1)

derived for random graphs. For instance, when applying formula (6.15) to these graphs, the
mean absolute error obtained is 39.87, and the mean relative error is 0.57. In contrast, using
formula (3.1) on the same graphs yields a mean absolute error of 40.87 and a mean relative
error of 0.6.

3.5 Concluding remarks
Metaheuristics are viable options for handling complicated graph problems. This work
demonstrated that Symbolic Regression and Cartesian Genetic Programming are success-
fully applicable to derive optimized formulas for graph geodetic number.

The author of this Ph.D. thesis is responsible for the following contributions presented in
this chapter:

III/1. I have used Symbolic Regression together with Cartesian Genetic Programming to
derive a general formula that can approximate the value of the geodetic number. The
formula is simply the sum of the number of edges, the number of degree-one vertices,
and the number of simplicial vertices. Thus, the approximation of the geodetic number
can be obtained in a reasonable computational time, even for graphs with thousands of
vertices and edges.

III/2. I have demonstrated how different training sets will lead to different formulas with
different accuracy which validates that using parameters that are highly related to the
graph property as training data will help Symbolic Regression to approximate in a
better manner.
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Chapter 4

Exact Methods for the Longest Induced
Cycle Problem

4.1 Introduction

A significant part of combinatorial optimization is closely related to graphs. Within graph
theory, the concept of graph cycles has fundamental importance. Identifying a simple cy-
cle or a cycle with a specific structure within a graph forms the basis for numerous graph-
theoretical problems that have been under investigation for many years.

Kumar et al. [53], introduced a heuristic algorithm for the longest simple cycle problem.
The authors utilized both adjacency matrices and adjacency lists, achieving a time complex-
ity for the proposed algorithm proportional to the number of vertices plus the number of
edges of the graph. In [6], the authors investigated the longest cycle within a graph with a
large minimal degree. For a graph G = (V,E) with a vertex count of |V | = n, the parame-
ter min deg(G) denotes the smallest degree among all vertices in G, while c(G) represents
the size of the longest cycle within G. The authors demonstrated that for n > k ≥ 2, with
min deg(G) ≥ n/k, the lower bound c(G) ≥ [n/(k − 1)] holds. Broersma et al. [23] pro-
posed exact algorithms for identifying the longest cycles in claw-free graphs. A claw, in this
context, refers to a star graph including three edges. The authors introduced two algorithms
for identifying the longest cycle within such graphs containing n vertices: one algorithm
operates in O(1.6818n) time with exponential space complexity, while the second algorithm
functions in O(1.8878n) time with polynomial space complexity.

In the work by Lokshtanov [58], the focus lies on the examination of the longest isometric
cycle within a graph, which is defined as the longest cycle where the distance between any
two vertices on the cycle remains consistent with their distances in the original graph. The
author introduced a polynomial-time algorithm to address this specific problem.

The primary focus of this work, which is based on [10], is dedicated to addressing the
challenge of identifying the longest induced (or chordless) cycle problem. For a graph G =

(V,E) and a subset W ⊆V , the W -induced graph G[W ] comprises all the vertices from set W

49
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and the edges from G that connect vertices exclusively within W . The objective of the longest
induced cycle problem is to determine the largest possible subset W for which the graph G[W ]

forms a cycle. While it may seem straightforward to obtain an induced cycle since every
isometric cycle is an induced cycle, it has been shown that identifying the longest induced
cycle within a graph is an NP-complete problem, as demonstrated by Garey et al. [40].

The longest induced path (P), discussed in [62], represents a sequence of vertices within
graph G, where each consecutive pair of vertices is connected by an edge e ∈ E and there
is no edge between non-consecutive vertices within P. In the context of a general graph
G, determining the existence of an induced path with a specific length is proven to be NP-
complete, as detailed in [40]. Consequently, the longest induced cycle can be considered as
a special case of the longest induced path.

Holes in a graph, defined as induced cycles with four or more vertices, play a significant
role in various contexts. Perfect graphs, for instance, are characterized by the absence of odd
holes or their complements [28]. Moreover, when addressing challenges like finding max-
imum independent sets in a graph [71], the existence of odd holes leads to the formulation
of odd hole inequalities, strengthening approaches for these problems. Similarly, in other
problem domains such as set packing and set partitioning [20], these odd hole inequalities
serve as crucial components.

Several papers have explored the longest induced cycle problem in graphs with specific
structures. In [39], the author investigated the longest induced cycle within the unit circulant
graph. To define the unit circulant graph Xn = Cay(Zn;Z∗

n), where n is a positive integer,
consider the following. The vertex set of Xn, denoted as V (n), comprises the elements of
Zn, the ring of integers modulo n. The edge set of Xn, represented as E(n), for x,y ∈ V (n),
(x,y) ∈ E(n) if and only if x− y ∈ Z∗

n, with Z∗
n being the set of units within the ring Zn.

The author demonstrates that if the positive integer n has r distinct prime divisors, then Xn

contains an induced cycle of length 2r +2. In a separate study by Wojciechowski et al. [90],
the authors examine the longest induced cycles within hypercube graphs. If G represents
a d-dimensional hypercube, they proved the existence of an induced cycle with a length
≥ (9/64) ·2d .

Pereira et al. [74] dealt with the longest cordless cycle problem, which is equivalent to
the longest induced cycle problem. They presented an ILP formulation along with additional
valid inequalities to strengthen and refine the formulation, all of which were incorporated
into a B&C algorithm. They applied a multi-start heuristic method for initial solution gener-
ation and then conducted performance evaluations of the algorithm on a range of randomly
generated graphs, including those with up to 100 vertices.

This work proposes three ILP designed to handle the longest induced cycle problem
within general graphs. Some of these models build upon the models applied by prior work
focused on solving the longest induced path problem, as seen in the studies by Marzo et
al. [61] and Bokler et al. [17]. Matsypura et al. [62] introduced three ILP formulations and
an exact iterative algorithm based on these formulations for tackling the longest induced path
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problem. However, it is important to note that these methods do not extend in this work, as
they were found to be less effective in comparison to models in [17, 61].

4.2 Models

4.2.1 Notations

Let G = (V,E) be an undirected graph with vertex set V and edge set E ⊂ V ×V . An edge
e ∈ E can be given as (i, j) for some i, j ∈ V . However, the symmetric pair ē = ( j, i) is
not included in E. Thus, the symmetric edge set E∗ = E ∪{ē = ( j, i) : e = (i, j) ∈ E} is
introduced. Throughout, an edge e = (i, j), and ē = ( j, i) unless explicitly stated otherwise.

The notation δ is used for adjacent edges over vertices and edges as follows. The outgo-
ing and incoming edges of vertex i denoted with δ+(i) = {(i,k)∈ E∗}, and δ−(i) = {(k, i)∈
E∗}, respectively. Additionally, δ (i) = δ+(i)∪δ−(i) denote all the edges incident to vertex
i.

For an edge e = (i, j) ∈ E∗, outgoing edges are δ+(e) = δ+(i)∪ δ+( j) \ {e, ē}, and
similarly, incoming edges are δ−(e) = δ−(i)∪ δ−( j) \ {e, ē}. The neighbour edges of e
are denoted by δ (e) = δ+(e)∪ δ−(e) for all e ∈ E∗. This notation can be extended to any
subset of vertices C ⊂ V , where δ+(C) := {(k, l) ∈ E∗ : k ∈ C, l ∈ V \C} and δ−(C) :=
{(k, l) ∈ E∗ : l ∈ C,k ∈ V \C} denote the outgoing and incoming edges of C, respectively,
and δ (C) = δ+(C)∪δ−(C) all edges that connect C with V \C.

4.2.2 Order-based model

The first model to discuss, called LIC, is an MILP model using order-based formulation to
avoid subtours. The formalism of the model is as follows:

max ∑
i∈V

yi (4.1)

subject to

xe + xē ≤ 1 ∀ e ∈ E (4.2)

∑
g∈δ+(e)

xg ≤ 1 ∀ e ∈ E∗ (4.3)

yi = ∑
g∈δ+(i)

xg ∀i ∈V (4.4)

yi = ∑
g∈δ−(i)

xg ∀i ∈V (4.5)
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∑
i∈V

wi = 1 (4.6)

wi ≤ yi ∀ i ∈V (4.7)

ui −u j ≤ n(1− xe)−1+nwi ∀e ∈ E∗ (4.8)

∑
i∈V

iwi ≤ jy j +n(1− y j) ∀ j ∈V (4.9)

yi,ui ≥ 0 ∀i ∈V (4.10)

xe ∈ {0,1} ∀e ∈ E∗ (4.11)

wi ∈ {0,1} ∀i ∈V (4.12)

The variable yi indicates whether vertex i is part of the longest induced cycle or not.
Consequently, the objective in (4.1) aims to maximize the sum of these variables, which
directly corresponds to the length of the cycle. The decision variable xe is one if the edge e
is included in the solution, and zero otherwise.

The constraints can be understood as follows. Given that E∗ is symmetric, constraint
(4.2) guarantees that only one of the edges e or ē can exist in the cycle, preventing the
formation of small cycles. Constraint (4.3) ensures that for any edge e = (i, j) ∈ E∗, only
one outgoing edge from either vertex i or vertex j can be part of the cycle. Constraints (4.4)
and (4.5) ensure that for a given vertex i, only one outgoing edge and one incoming edge can
be chosen to be part of the cycle. The constraint (4.8) is a modified Miller-Tucker-Zemlin
(MTZ) order-based formulation: if edge e is in the cycle, vertices i and j must be arranged in
sequential order unless the binary variable wi equals 1. This variable is introduced to handle
the position of the last vertex in the cycle, facilitating the ordering process. Constraint (4.9)
functions as a symmetry-breaking constraint, as described in [85]. It enforces that the last
vertex in the cycle must have the smallest index among all vertices in the cycle.

For a variation of the above introduced LIC model consider the following constraint:

xe + xē ≥ yi + y j −1 ∀ e = (i, j) ∈ E (4.13)

Constraint (4.13) guarantees that either edge e or ē must be included in the solution if both
endpoints i and j are part of the solution. Conversely, if an edge is not selected for the
solution, neither of its endpoints can be included in the solution. By substituting constraint
(4.3) in the original LIC model with constraint (4.13), we create a new model LIC2. This
modification leads to improved runtime performance compared to LIC, as demonstrated in
Section 4.4.

4.2.3 Subtour-elimimation model

The second model used to address the longest induced cycle problem is based on the model
presented by Bokler et al. [17], which is referred to ILPcut and was originally designed for
identifying the longest induced path. E∗ is the symmetric edge set, as defined previously.
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Let C represent the set of cycles in G. The model is defined as follows:

max
1
2 ∑

e∈E∗
xe (4.14)

subject to

xe = xē ∀e ∈ E (4.15)

xe ≤ ∑
g∈δ−(i)

xg ∀ e = (i, j) ∈ E∗ (4.16)

∑
g∈δ−(i)

xg + ∑
g∈δ+( j)

xg ≤ 2 ∀ e = (i, j) ∈ E∗ (4.17)

∑
e∈δ (i)

xe ≤ ∑
g∈δ (C)

xg ∀C ∈ C , i ∈C (4.18)

xe ∈ {0,1} ∀e ∈ E∗ (4.19)

The binary decision variable xe indicates whether edge e is a part of the longest induced
cycle. In this case edge selection is symmetric, thus the objective is to maximize half of the
sum of these variables, as defined in objective function (4.14). Symmetry of the solution is
guaranteed by (4.15). Constraint (4.16) enforces that the solution forms a cycle or cycles,
while constraint (4.17) specifies that for any edge e, precisely two of its adjacent edges must
also be selected. This ensures the induced property of the solution. Constraint (4.18) is
utilized to eliminate small cycles in the graph.

4.2.4 Cycle-elimination model

The third model, called cec, is a modified version of the cec model introduced in [61] to find
the longest induced path. The formalism of the model is as follows:

max ∑
i∈V

yi (4.20)

subject to

∑
e∈δ (i)

xe = 2yi ∀ i ∈V (4.21)

xe ≤ yi ∀ i ∈V,e ∈ δ (i) (4.22)

xe ≥ yi + y j −1 ∀e = (i, j) ∈ E (4.23)

∑
i∈C

yi ≤ |C|−1 ∀C ∈ C (4.24)

yi ∈ {0,1} ∀i ∈V (4.25)

xe ∈ {0,1} ∀e ∈ E (4.26)
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The binary decision variable yi maintains its previous interpretation, equal to one if vertex
i is part of the solution. Additionally, variable xe is set to one if edge e is included in the
solution. However, in this context, the symmetric edge is not needed. The objective function
(4.20) seeks to maximize the number of vertices within the induced cycle. Constraint (4.21)
guarantees that each vertex within the solution is connected to precisely two vertices in
the cycle. Constraints (4.22) and (4.23) are in place to ensure that the cycle is induced.
To eliminate solutions composed of small cycles from consideration, constraint (4.24) is
introduced. C represents the set of the cycles for the given graph. Constraint (4.24) is
combined into the model to enforce the solution to consist of a single cycle. This means that
multiple small cycles are not deemed valid solutions.

4.2.5 Cordless-cycle model

The CCP formulation was introduced by Pereira et al. [74] to deal with the problem at hand.
The formulation is described as follows:

max ∑
i∈V

yi (4.27)

subject to

∑
e∈E

xe = ∑
i∈V

yi (4.28)

∑
i∈V

yi ≥ 4 (4.29)

∑
e∈δ (i)

xe = 2yi ∀ i ∈V (4.30)

xe ≤ yi ∀ i ∈V,e ∈ δ (i) (4.31)

xe ≥ yi + y j −1 ∀ e = (i, j) ∈ E (4.32)

∑
g∈δ (C)

xg ≥ 2(yi + y j −1) C ⊂V, i ∈C, j ∈V \C (4.33)

xe ∈ {0,1} ∀e ∈ E (4.34)

yi ∈ {0,1} ∀i ∈V (4.35)

The formulation includes the usual sets of binary variables: yi and xe, indicating whether
vertex i and edge e are in the cycle or not. Consequently, the number of selected vertices and
edges is equal, as required by (4.28), and at least four vertices must be selected by (4.29).
Each vertex within the solution is incident to precisely two edges, as guaranteed by (4.30).
Furthermore, (4.31)–(4.32) ensures that any solution is an induced subgraph of G. More
specifically, any edge of G with both its endpoints belonging to the solution must be part of
the solution. Moreover, the subgraph defined by x and y remains connected, as guaranteed
by the subtour elimination constraint (4.33).
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The CCP formulation was employed by the authors of [74], along with various valid
inequalities. They introduced nine B&C algorithms and subsequently chose the top three
among them. The first one, labeled as BC1 contains constraints (4.28)-(4.35), and in addition
the following constraint:

∑
g∈δ (C)

xg ≥ 2xe C ⊂V,e = (i, j) ∈ E, i ∈C, j ∈V \C (4.36)

This algorithm initiates by separating (4.33), and subsequently, the resulting inequality is
enhanced to the more robust form of (4.36). This specific constraint ensures that if xe = 1,
then it is mandatory for yi = y j = 1 to hold true, due to the presence of inequalities (4.31)-
(4.32).

For the BC2 and BC3 algorithms, both constraints (4.37) and (4.38) were included to-
gether with constraints (4.28)-(4.36).

∑
i∈Q

yi ≤ 2 (4.37)

∑
e∈E(Q)

xe ≥ ∑
i∈Q

yi −1 (4.38)

For a clique Q ⊂ V , |Q| ≥ 3. Constraint (4.37) ensures that within a clique Q at most
two of its vertices can be part of the induced cycle. On the other hand, constraint (4.38)
guarantees that for a clique Q the number of vertices that can be part of the induced cycle is
limited to at most one more than the number of edges that can be included from the clique.
Namely, only one of the edges from Q might be included in the solution.

For the BC2 algorithm, they implemented a rule that imposes no restrictions on the num-
ber of separation rounds. In other words, whenever a violated inequality is detected, it is
included in the cut pool. Conversely, for BC3, a fixed number of separation rounds, specif-
ically 30, was established, and inequalities were added to the cut pool if a clique did not
share two or more vertices with a clique in a previously accepted inequality. The order of
inequalities in the cut pool was determined by descending order of the absolute values of
their corresponding linear programming relaxation dual variables. All three algorithms uti-
lized the lower bounds obtained from the multi-start CCP heuristic, which is a constructive
procedure that takes a predefined edge as input data. The algorithm then seeks to extend a
tentative path, containing the selected vertices. Vertices are added to the path one at a time,
accepted if they are adjacent to one of the path’s current extremities and not adjacent to any
internal vertices. The procedure terminates when the endpoints of the path meet, resulting in
a chordless cycle of G, or when further expansion of the path becomes impossible.
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4.3 Algorithms

Out of the three models only LIC (and LIC2) can be directly solved using any MILP solver.
Both ILPcut and cec rely on the set of small cycles, which are usually created as part of the
solution process, either through an iterative cut generation approach or, more effectively, via
B&C algorithm by employing separation. Note that subtour elimination inequalities (4.18)
and (4.24), present in the ILPcut and cec models respectively, exhibit exponential complexity.
Consequently, attempting to enumerate all inequalities corresponding to each subtour within
the graph and subsequently cutting them becomes impractical. Instead, these inequities can
be combined into the ILPcut and cec models upon encountering them. Hence, the cut gen-
eration approach is employed as follows: the method is initiated with a model relaxing all
subtour elimination inequalities, and if subtours arise in integer solutions, violated inequal-
ities are added, and this process is repeated until the optimal solution is reached. For that,
callback functionality from Gurobi [43] was employed, which can be used to add these in-
equalities iteratively. The Depth-First Search (DFS) algorithm is employed on the induced
subgraph of the integer solution to identify cycles, subsequently introducing a new inequal-
ity for each subtour discovered. The entire procedure, which combines the models and cut
generations, is shown in Algorithms 5 and 6.

4.3.1 Initialization

In the initialization phase of the procedure, ILPcut and cec models are created, encompassing
the creation of their variables, constraints, and objective functions.

4.3.2 Cut generation

To tackle the ILPcut and cec models, the cut generation mechanism combined with the B&B
algorithm, as explained earlier. Consequently, each model was addressed using two distinct
approaches, as outlined below.

First approach

The first approach involves cut generation as outlined in Algorithm 5. In each iteration, a
subproblem from the B&B tree is solved. In line 4 the algorithm checks if the solution of the
subproblem is an integer solution. Based on this, the DFS is employed to detect any subtours
within the solution, as shown in line 5. If a subtour exists, and its length is less than or equal
to the value of the variable longest induced cycle, a cut is appended for that cycle. If
not, the value of the variable is updated to reflect the length of the cycle, and there is no need
to introduce a cut because the cycle could potentially be the optimal solution. These details
are clarified in lines 6 through 9. The cut generation terminates when there are no further
subtours present in the solution, indicating the completion of the procedure.
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Algorithm 5: Cut Generation1
1 model Initialization() // initializing the ILPcut or cec model

2 longest induced cycle=0

3 Function Cut Generation1()

4 if model.status==feasible integer then // has integer solution

5 C=DFS(feasible integer) // find subtour in the solution

6 if length(C) ≤ longest induced cycle then
7 model.addConstr(4.18,4.24) // add cut (4.18) or (4.24)

8 else
9 longest induced cycle=length(C) // update variable value

10 model.optimize(Cut Generation1()) // solve the model

11 print(longest induced cycle)

Second approach

The second cut generation-based approach is detailed in Algorithm 6. In each iteration, a
subproblem is solved, and if an integer solution is obtained, the algorithm verifies the pres-
ence of any subtours using DFS as described in lines 15 through 16. If any cycles are de-
tected, a cut is integrated into the model (line 17), and the length of the cycle is updated if it
exceeds the value of the variable longest induced cycle (line 19). It is important to note
that to further improve the procedure, a constraint is added to the model in line 20. This con-
straint ensures that the objective value must be greater than the length of the longest induced
cycle discovered so far. Using this cut generation leads to the problem becoming infeasible,
yet the longest induced cycle length is recorded in the variable longest induced cycle.

Algorithm 6: Cut Generation2
12 model Initialization() // initializing the ILPcut or cec model

13 longest induced cycle=0

14 Function Cut Generation2()

15 if model.status==feasible integer then // has integer solution

16 C=DFS(feasible integer) // find subtour in the solution

17 model.addConstr(4.18,4.24) // add cut (4.18) or (4.24)
18 if length(C) > longest induced cycle then
19 longest induced cycle=length(C)

20 model.addConstr(model.ObjVal ≥ longest induced cycle+1)

21 model.optimize(Cut Generation2()) // solve the model

22 print(longest induced cycle)
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4.3.3 Longest Isometric Cycle

Lokshtanov’s algorithm, as described in [58], aims to identify the longest isometric cycle
within a graph. By the definition of an isometric cycle, as discussed in Section 4.1, if a given
graph G contains an isometric cycle with a length of ℓ, then there must also exist an induced
cycle within the graph with a length of m where m ≥ ℓ. Consequently, the longest isometric
cycle serves as a benchmark for the longest induced cycle. The algorithm’s objective is to
verify the existence of an isometric cycle with a length of k in a given graph G = (V,E). If
such a cycle exists, the graph G can be employed to construct a new graph Gk with vertices
as vertex pairs of G. Namely, V (Gk) = {(u,v) ∈ V : duv = ⌊k/2⌋}, where duv is the length
of the shortest path between u and v, and its edge set given by E(Gk) = {((u,v),(w,x)) :
(u,w) ∈ E(G)∧ (v,x) ∈ E(G)}. The method is outlined in Algorithm 7. For a given value of
k, the algorithm computes the graph Gk and examines whether there exists a pair of vertices
(u,v) and (v,x) within V (Gk) such that (v,x) belongs to the set Mk(u,v) := {(u,x) : (u,x) ∈
V (Gk)∧ (v,x) ∈ E(G)} and dGk [(u,v),(v,x)] = ⌊k/2⌋. If such a pair is found, it indicates the
presence of an isometric cycle with a length of k.

Algorithm 7: Longest Isometric Cycle
23 LISC=0

24 for ∀l ∈V, i ∈V, j ∈V do // distance calculation

25 di j = min{di j,dil +dl j} // by Floyd algorithm

26 if G is a tree then // no cycles in tree graph

27 return LISC

28 for k = 3 → n do
29 Vk = /0 // vertices of Gk
30 for u∧ v ∈V do
31 if duv = ⌊k/2⌋ then
32 Vk =Vk ∪{(u,v)}

33 Ek = /0 // edges of Gk
34 for (u,v)∧ (w,x) ∈Vk do
35 if (u,w) ∈ E ∧ (v,x) ∈ E then
36 Ek = Ek ∪{((u,v),(w,x))}

37 Gk = (Vk,Ek)
38 for (u,v,x) ∈V do
39 if (u,v) ∈Vk ∧ (v,x) ∈ Mk(v,u)∧dGk [(u,v),(v,x)] = ⌊k/2⌋ then
40 LISC:= k

41 print(LISC)
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4.4 Numerical experiments
To demonstrate and evaluate the effectiveness of the proposed methods, numerical results
were presented for three models: the LIC model, the ILPcut model, and the cec model. Fur-
thermore, a comparison was conducted between the cec model and models from [74] on
randomly generated graphs to highlight the efficiency of the proposed approach in compari-
son to existing methods.

4.4.1 Computational environment and dataset

The algorithms detailed in Section 4.3 were implemented in Julia 1.7.0, utilizing the JuMP
package version 0.22.1. Gurobi 9.5.0 was used as the solver for all experiments. Each run
was constrained to a one-hour time limit and a single thread. For the longest isometric cycle
algorithm, the implementation is done using Python 3.8 with a 24-hour time limit. These
computations were performed on a computer with an Intel Core i7-4600U CPU, 8GB of
RAM, and running the Windows 10 operating system.

To verify the efficacy of the proposed methods, two sets of network datasets were used.
The first is the RWC set, comprising 19 real-world networks that encompass communication
and social networks within companies, networks of book characters, as well as transporta-
tion, biological, and engineering networks, as described in [62]. Additionally, the Movie
Galaxy (MG) set, consisting of 773 graphs that represent social networks among movie
characters, as detailed in [50]. For further information about these instances, refer to the
following link: http://tcs.uos.de/research/lip.

To perform a comparison with the results presented in [74], the experiments were con-
ducted on random graphs with varying values of n ranging from 50 to 100, considering both
10% and 30% density. For every case, 10 graphs were generated. Every run was restricted
to a maximum duration of one hour, with no restrictions on the number of threads, and with
an initial solution set to 4, as described in [74]. Regarding the hardware comparison, the
information available in the following link (https://www.cpubenchmark.net/compare)
was utilized to collect the details of the CPU used in all experiments, as outlined in Table
4.1. To ensure a fair comparison, the execution times were normalized in all cases. The ratio
between the single-thread ratings gives a good approximation of the relative speed. There-
fore, the percentage value in the last row of Table 4.1 was calculated. The run time was then
modified by multiplying it by the corresponding percentage factor.

4.4.2 Computational results

Table 4.2 presents the computational experiments conducted on the RWC instances. The sec-
ond column displays the optimal solutions for each instance (opt). The third column shows
the length of the longest isometric cycle (LISC). The fourth and fifth columns respectively
indicate the number of vertices (N) and edges (M) within the corresponding graph. Columns

http://tcs.uos.de/research/lip
 https://www.cpubenchmark.net/compare
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Table 4.1: CPU performance comparison between the CPU used in this work and in [74].

Benchmarks Intel Core i7-4600U Intel Xeon W-3223

Clock Speed (GHz) 2.1 3.5
Turbo Speed (GHz) Up to 3.3 Up to 4.0 GHz

Number of Physical Cores 2 (Threads: 4) 8 (Threads: 16)
Single Thread Rating 1641 2480

Percent 0.66 1

six through eleven show the time in seconds required to identify the optimal solution us-
ing the various methods employed in this study. Specifically, ILPcut2 and cec2 refer to the
methods outlined in Algorithm 6. For all these methods, the search was initiated using the
LISC value as an initial solution, incorporating a constraint: ObjVal ≥ LISC. These results
are indicated in every second row corresponding to each graph. Instances that resulted in
timeouts are denoted by the symbol	.

Table 4.2: Running times on RWC instances, time is given in seconds.

graph opt LISC N M LIC LIC2 ILPcut ILPcut2 cec cec2

high-tech 10 5 33 91
1.22 0.63 0.95 0.33 0.38 0.14
0.99 0.42 1.15 1.57 1.02 0.77

karate 6 5 34 78
0.63 0.58 0.21 0.24 0.20 0.19
0.66 0.53 0.23 0.29 0.24 0.17

mexican 13 7 35 117
0.92 0.82 0.66 0.88 0.24 0.20
0.83 0.78 0.69 0.74 0.20 0.20

sawmill 6 5 36 62
0.54 0.43 0.18 0.37 0.15 0.10
0.33 0.30 0.36 0.16 0.13 0.11

tailorS1 12 7 39 158
2.93 1.11 1.37 1.45 0.34 0.33
1.38 0.89 1.76 1.76 0.37 0.44

chesapeake 15 5 39 170
1.01 0.69 0.56 0.81 0.24 0.22
1.05 0.72 0.97 0.87 0.28 0.31

tailorS2 12 5 39 223
3.11 2.05 3.49 4.46 0.74 0.65
3.25 3.09 3.74 4.62 0.83 0.75

attiro 28 9 59 128
0.93 1.24 0.55 0.53 0.18 0.24
0.67 0.71 0.52 0.68 0.28 0.31

krebs 8 7 62 153
10.91 7.23 1.19 0.94 0.94 0.48



4.4 Numerical experiments 61

Table 4.2: (continued) Running times on RWC instances, time is given in seconds.

graph opt LISC N M LIC LIC2 ILPcut ILPcut2 cec cec2

10.39 5.56 0.86 1.02 0.57 0.38

dolphins 20 7 62 159
14.75 23.70 1.81 2.35 1.70 1.02
10.66 13.83 2.80 2.98 0.74 1.50

prison 28 9 67 142
5.90 10.22 0.83 1.56 0.62 0.61
6.93 10.23 4.81 1.03 0.66 0.48

huck 5 5 69 297
519.95 299.12 19.53 17.79 4.31 4.51
447.72 493.74 18.22 19.71 3.34 3.31

sanjuansur 35 11 75 144
6.16 5.85 0.68 0.71 0.37 0.49
7.70 3.61 0.82 1.36 0.44 0.38

jean 7 5 77 254
276.98 147.77 15.93 14.57 2.45 2.41
150 147.85 13.97 14.80 2.32 2.41

david 15 8 87 406
544.99 308.06 46.23 54.23 5.22 4.36
219.14 323.96 45.24 38.33 3.31 3.47

ieeebus 32 13 118 179
2.52 5.14 0.76 0.94 0.43 0.62
7.82 5.82 0.79 1.35 0.33 0.3

sfi 3 3 118 200
6.98 6.51 0.74 0.90 0.3 0.31
6.40 2.80 0.84 1.32 0.34 0.31

anna 15 	 138 493
90.75 52.11 10.60 23.65 1.37 1.71
- - - - - -

494bus 116 	 494 586
108.48 126.77 27.13 33.09 2.73 2.10
- - - - - -

average
84.19 52.63 7.02 8.41 1.21 1.09
51.52 59.70 5.75 5.45 0.9 0.92

The various methods exhibit diverse performance characteristics in terms of execution
time and the number of instances solved optimally. Key observations from Table 4.2 are as
follows:

• cec2 outperforms cec in 13 cases, ILPcut , ILPcut2, LIC and LIC2 in all the cases.

• ILPcut2 was faster than LIC2 for 15 cases and LIC for all instances.
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• LIC2 outperforms LIC in 14 cases.

• For some instances in ILPcut and cec, the graphs and results are indicated by boldface
and underlined in Table 4.2. This is to emphasize that these graphs contain multiple
longest induced cycles of the same length, and the procedures described in Algorithm
5 cut the cycle if its length is less than or equal to the longest induced cycle found so
far. Thus, for these graphs, all the longest cycles are found by the method.

• Using LISC as an initial solution does not contribute significantly to improving the
execution time in the majority of cases.

• The results emphasize the correlation between graph density and execution time. Graph
density is defined as the ratio of the edges present in a graph to the maximum number
of edges it can hold. This relationship is particularly evident for dense graphs like
huck, jean, and david, especially in the case of LIC and LIC2 models. However, it is
not the case for cec and cec2 models as their running times show less sensitivity to the
graph’s density.

The results for the MG instances, organized into groups based on the number of edges,
are presented in Table 4.3. Unlike LIC and LIC2, where the running times increase propor-
tionally with the instance size, the results indicate that cec and cec2 are more reliable, with
running times showing less sensitivity to the graph’s size.

Table 4.3: Running times on MG instances, time is given in seconds.

nr. of edges nr. of instances LIC LIC2 ILPcut ILPcut2 cec cec2

1–49 107 0.14 0.14 0.12 0.18 0.09 0.08
50–74 135 0.37 0.29 0.2 0.3 0.17 0.12
75–99 151 0.7 0.58 0.32 0.39 0.22 0.17

100–124 121 1.74 1.32 0.51 0.65 0.29 0.24
125–149 90 4.5 3.67 0.82 0.99 0.37 0.34
150–199 89 10.45 7.48 1.49 1.7 0.56 0.49
200–629 80 169.38 110.49 13.28 16.39 2.41 1.9

average 157.23 126.35 44.73 57.28 26.84 22.01

The results for the random graphs are presented in Table 4.4, where cec2 compared
against the top three algorithms introduced in [74]. The runtime represents the average dura-
tion on the ten graphs in each case. Notably, cec2 outperforms these algorithms in all cases,
even before normalizing the execution times with the ratio listed in Table 4.1. Moreover,
cec2 successfully solved the instance with 100 vertices and 30% density, a scenario where
none of the algorithms in [74] succeeded.
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Table 4.4: Running times on random instances for cec2, BC1, BC2, and BC3, time is given
in seconds. Values in brackets show the original execution time of cec2.

Randomly generated graphs: 10% density

n cec2 BC1 BC2 BC3

50 0.32 (0.49) 0.33 0.3 0.39
60 0.79 (1.2) 1.19 1.2 1.34
70 4.17 (6.32) 5.57 4.93 5.58
80 20.5 (31.1) 37.15 26.9 27.34
90 93.93 (142.32) 160.1 155.82 168.02

100 518.75 (785.99) 1321.41 1129.47 1094.8

average 106.41 254.29 219.77 216.25

Randomly generated graphs: 30% density

n cec2 BC1 BC2 BC3

50 4.15 (6.28) 8.21 9.6 8.78
60 26.14 (39.6) 39.82 46.18 51.9
70 90.11 (136.52) 234.45 206.36 283.28
80 203.81 (308.8) 935.78 676.52 1139.55
90 544.88 (825.58) 2072.16 1874.91 3011.17

100 1810.49 (2743.17) 	 	 	

average 446.6 658.08 562.71 898.94

4.5 Concluding remarks
Considering the NP-hardness of the longest induced cycle problem, it is crucial to find an ef-
ficient method that can provide optimal solutions within a reasonable time. Standard methods
have been introduced and evaluated against existing methods from the literature to address
this problem.

The author of this PhD thesis is responsible for the following contributions presented in
this chapter:

IIII/1. I proposed three integer linear programs, some of which are extensions of models
created for solving the longest induced path problem. The proposed programs had
varying execution times and the number of instances they were able to solve optimally.

IIII/2. I conducted a comparison between my proposed methods and the methods proposed
previously in the literature, and the results demonstrated that the newly introduced
methods consistently outperformed those presented in the literature.
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Chapter 5

Maximizing the Smallest Eigenvalue of
the Grounded Laplacian Matrix

5.1 Introduction

The most basic approach to describing graphs involves their topological representation,
which defines a graph as a set of vertices and edges. Nevertheless, employing spectral rep-
resentations, like the Adjacency matrix or Laplacian matrix, can greatly enhance the ability
to describe the structural and functional characteristics of the graph. Laplacian matrix (L)
is a symmetric, positive semidefinite matrix. A widely recognized fact is that it comprises
n eigenvalues, which are real numbers and are always non-negative. These eigenvalues are
constrained within a range, bounded by twice the maximum vertex degree, as clarified in
[11]. Consequently, 0 ≤ µ1 ≤ µ2 ≤ . . .≤ µn ≤ 2 ·maxi∈V degi, with µi representing the i-th
eigenvalue of L.

According to Mohar et al. [70], the eigenvalues of the Laplacian matrix find utility across
a wide range of disciplines. One of their primary applications lies within the domain of graph
theory, where they have significant implications. Specifically, the count of spanning trees in
a graph G can be demonstrated by the product of all non-zero eigenvalues of L, as noted in
[56]. Furthermore, the aggregate resistance distances between all pairs of vertices can also
be computed using the eigenvalues of L, as highlighted in [51]. Another notable aspect of
L is the Fiedler value, introduced by Fiedler [37], which corresponds to the second smallest
eigenvalue. The Fiedler value plays a pivotal role in determining the graph’s connectivity,
as a graph is considered connected when its Fiedler value is greater than zero. Lastly, the
number of components within G is equivalent to the multiplicity of the zero eigenvalues of
L.

Consider the graph G = (V ,E) along with its Laplacian matrix. The grounded Laplacian
matrix, denoted as L(S) and introduced in [65], constitutes a submatrix of dimensions (n−
k)× (n− k). It is derived by removing k rows and their corresponding columns from L,
where S ⊂ V , |S| = k, and 0 < k ≪ n. The minimum eigenvalue of L(S) is represented as

65
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µ(S). It is important to note that L(S) is a symmetric positive definite matrix, which implies
that all of its eigenvalues are strictly positive real numbers. Consequently, µ(S) > 0. The
smallest eigenvalue within L(S) plays a crucial role in determining the convergence rate of
leader-follower networked dynamical systems, as discussed in [77]. It also influences the
effectiveness of the pinning control scheme for complex dynamical networks, as explored in
[57]. A bigger µ(S) corresponds to a faster convergence rate and improved performance in
pinning control.

It is worth mentioning that identifying the L(S) with the maximum possible µ(S) has
been proven to be a computationally challenging problem, classified as NP-hard, as outlined
in [87]. Wang et al. [87] introduced two greedy-type algorithms for this purpose. The first,
known as the NAÏVE algorithm, entails a k iterations. During each iteration, a candidate ver-
tex is selected if its inclusion in set S maximizes µ(S). The second algorithm referred to as
the FAST algorithm, assesses candidate vertices based on the sum of eigenvalues of their ad-
jacent vertices. The optimal candidate is determined by identifying the maximum sum value.
To compute these eigenvalues, the eigenvector corresponding to the smallest eigenvalue of
L(S) is employed, and this is approximated using the SDDM solver [31]. Importantly, this
approach avoids the need to calculate the entire eigensystem. In this work, which is pub-
lished in [7], two algorithms have been proposed to deal with the problem at hand. The first
algorithm relies on the centrality of the vertices to select elements of set S, while the second
algorithm is based on the vertex cover problem.

5.2 Methodologies

5.2.1 First approach

The first approach, referred to as DEGREE-G, draws inspiration from the well-known Ger-
schgorin circle theorem [41]. The theorem provides bounds on the eigenvalues of a square
matrix. It claims that each eigenvalue of a square matrix resides within at least one Ger-
schgorin circle, with each circle corresponding to a row in the matrix. In this representation,
the center of the circle corresponds to the diagonal element of the matrix, while the radius
is determined by the sum of the absolute values of the off-diagonal elements. Figure 5.1
visually illustrates the Gerschgorin circles for a Laplacian matrix.

The key idea for maximizing the smallest eigenvalue is to move the Gerschgorin circles
further away from the origin. To achieve this, the proposed method ranks the vertices based
on a specific centrality measure and subsequently removes the corresponding row and col-
umn from the Laplacian matrix. Algorithm 8 outlines this approach, this approach utilizing
degree centrality for this purpose.

To illustrate this method, consider applying it to the L shown in Figure 5.1 with k = 2,
resulting in µ(S) = 1.27 with S = {2,5}, as demonstrated in Figure 5.2. In contrast, the
NAÏVE algorithm from [87] yields the set S = {2,4} and µ(S) = 1.2. Note that neither of
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Figure 5.1: A Laplacian matrix (left) and its Gershgorin circles (right)

Algorithm 8: Degree-G Algorithm
1 vertex cen = sort(centrality(V ))
2 for i = 1 → k do
3 remove(L(vertex cen[i]))

4 compute(µ(S))

these methods could achieve the optimal solution, which, in this simple example, is µ(S) =
1.47 with S = {1,5}

L =

 3 −1 −1
−1 3 −1
−1 −1 4
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Figure 5.2: Illustration of the result of Algorithm 8 using degree centrality.
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5.2.2 Second approach

The second method known as COVER, takes advantage of the Gerschgorin circles, but it
utilizes the concept of the maximum k vertex cover problem. This problem is rooted in the
classic vertex cover problem [27], with the key distinction being that in the k vertex cover
problem, the objective is to identify a set of k vertices that are incident to the maximum
number of edges in the graph. This differs from the vertex cover problem, which aims to find
the minimum number of vertices such that each edge in the graph is incident to at least one
of these vertices. The BILP for the vertex cover is formulated as follows:

min ∑
i∈V

xi (5.1)

subject to

xi + x j ≥ 1 ∀(i, j) ∈ E (5.2)

xi ∈ {0,1} ∀i ∈V (5.3)

Note that the binary variables xi represent the minimum number of vertices that incident
to all the edges in the graph. The BILP of k vertex cover is defined as follows:

max ∑
j∈V

y j (5.4)

subject to

∑
i∈V

xi = k (5.5)

y j ≤ ∑
∀i∈V :( j,i)∈E

xi ∀ j ∈V (5.6)

k ∈ N (5.7)

xi,yi ∈ {0,1} ∀i ∈V (5.8)

Once more, in this BILP, the variables xi represent vertices that cover the maximum
number of vertices within the graph, while yi denotes vertices that have been covered. The
constraints are designed to guarantee that only k vertices can be chosen and that the value
of yi is equal to 1 if and only if at least one of its adjacent vertices, represented by xi, is
selected. After successfully solving this BILP, the algorithm proceeds to remove the rows
and columns in L corresponding to the solution. Subsequently, it determines the smallest
eigenvalue of the resulting modified matrix.

Additionally, combining vertex cover and degree centrality concepts has the potential to
enhance the outcomes. Consequently, the objective function in the BILP has the following
modifications:
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max ∑
j∈V

y j − ε ∑
j∈V

deg jx j, (5.9)

where ε is a small number to not change the main objective. For instance ε = 1
∑ j∈V deg j

can be chosen. This modification aims to select k vertices with the lowest degree to maximize
the objective. This approach is defined as COVER1.

The maximum k vertex cover problem often yields multiple solutions, starting to employ
a method to explore the possibility of obtaining an improved value for µ(S) through alternate
solutions. The concept involves an iterative process of solving the BILP while including a
constraint that prevents the solution from resembling previous ones. By examining various
solutions, different values for µ(S) can be obtained, and select the one that yields the best
result. This additional constraint is formulated as follows for a given previously obtained
solution S ⊂V :

∑
i∈S

xi ≤ k−1. (5.10)

During each iteration, the algorithm ensures that the solution covers the maximum possi-
ble number of vertices, denoted as nc, which means that ∑i∈V yi = nc must hold; otherwise,
the algorithm terminates the iteration. This approach is referred to as COVER2. The maxi-
mum number of iterations, and consequently the maximum number of alternative solutions,
is fixed at 100.

5.3 Numerical results
To evaluate and compare the effectiveness of the proposed methods, a comparative analysis
against the two algorithms introduced by Wang et al. [87] was conducted. All these algo-
rithms were implemented using Julia 1.7.0 along with the JuMP 0.22.1 package. The Gurobi
9.5.0 solver was utilized on a computer with an Intel Core i7-4600U CPU and 8GB RAM,
running the Windows 10 operating system. The experiments were carried out on real-world
networks, all of which are publicly available through KONECT [54], SNAP [55], and RWC1.

Results for different k values. Figure 5.3 displays the outcomes obtained by applying
the proposed approaches to a range of real-world graphs. The figure presents the smallest
eigenvalue, denoted as µ(S), for six distinct values of k.

The displayed results illustrate that the effectiveness of these methods varies across dif-
ferent graphs, yet certain patterns arise. It is evident that the DEGREE-G and FAST methods

1http://tcs.uos.de/research/lip

http://tcs.uos.de/research/lip
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exhibit inferior performance compared to the NAÏVE and COVER methods. Notably, the
NAÏVE method consistently outperforms the other techniques, although the COVER method
performs equally well or even better than the NAÏVE method at specific values of k.

(a) Prison (b) Huck

(c) Sanjuansur (d) Jean

(e) Sfi (f) Anna

Figure 5.3: Values of µ(S) obtained by the algorithms for different k values.



5.3 Numerical results 71

Results for specific k values. Instead of employing arbitrary values for k a more systematic
approach is used by utilizing the vertex cover BILP to identify the smallest value of k that
guarantees a substantial increase in the value of µ(S). Table 5.1 presents the corresponding
values of k and µ(S) for various real-world graphs using the diverse methods discussed. It is
evident that the NAÏVE and COVER methods outperform the DEGREE-G and FAST methods.
Interestingly, the COVER methods consistently match or even outperform the performance
of the NAÏVE method across all cases.

Table 5.1: Values of µ(S) for k value obtained from vertex cover.

graph N M k NAÏVE FAST DEGREE-G COVER COVER1 COVER2

Prison 67 142 41 1 0.48 1.97 1.59 1.63 2.38
Huck 69 297 44 1 1 1.7 1 2.48 3.5
Sanjuansur 75 144 40 1.59 0.84 0.95 1.29 1.27 1.59
Jean 77 254 42 1 0.37 0.67 1 1.24 1.24
David 87 406 51 1 1 2.45 3.44 2.65 2.77
ieeebus 118 179 61 1 0.59 0.73 1 1.06 1.2
Sfi 118 200 53 1 0.27 0.24 1 1 1
Anna 138 493 58 1 0.83 0.87 1 1.65 1.65
Usair 332 2126 149 1 0.74 1 1 1.59 1.59
494bus 494 586 216 0.38 0.07 0.14 1 1 1

average 0.99 0.62 1.07 1.33 1.56 1.79

Furthermore, a time comparison among the different methods was conducted. Table 5.2
displays the runtimes for k = 5 using each method, with a time limit of one hour. The results
indicate that the DEGREE-G and FAST methods exhibit significantly shorter execution times
compared to the NAÏVE and COVER methods. Notably, the NAÏVE and COVER algorithms
exceeded the time limit for graphs with thousands of vertices and edges, emphasizing that
the COVER methods generally outperform NAÏVE in terms of task completion speed.
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Table 5.2: The time (in seconds) to compute µ(S) for k = 5.

graph N M NAÏVE FAST DEGREE-G COVER COVER1 COVER2

Prison 67 142 0.63 0.005 0.002 0.031 0.028 1.14
Huck 69 297 0.78 0.008 0.003 0.036 0.038 5.69
Sanjuansur 75 144 1.00 0.008 0.003 0.031 0.036 7.71
Jean 77 254 1.02 0.008 0.004 0.035 0.034 13.62
David 87 406 1.42 0.014 0.008 0.041 0.041 2.21
ieeebus 118 179 2.87 0.011 0.003 0.043 0.042 9.13
Sfi 118 200 2.71 0.011 0.008 0.041 0.041 7.72
Anna 138 493 3.88 0.016 0.014 0.067 0.066 14.54
Usair 332 2126 29.77 0.049 0.034 0.651 0.513 21.86
494bus 494 586 102.98 0.057 0.051 0.382 0.323 15.71
Email-Univ 1133 5451 1589.44 0.550 0.531 13.632 17.497 104.34
Routers-RF 2113 6632 >3600 1.448 1.515 55.288 57.114 273.0
US-Grid 4941 6594 >3600 14.255 15.551 312.706 315.643 1947.85
WHOIS 7476 56943 >3600 50.343 50.425 >3600 >3600 >3600
PGP 10680 24340 >3600 140.943 143.747 >3600 >3600 >3600

average 1075.79 13.852 14.126 505.532 506.094 641.63

5.4 Concluding remarks
Given the fact that maximizing the smallest eigenvalue of the grounded Laplacian matrix
is a complicated problem, it is desirable to develop efficient algorithms that can provide
solutions of acceptable quality within a reasonable time. Two approaches were introduced
and demonstrated experimentally.

The author of this PhD thesis is responsible for the following contributions presented in
this chapter:

IV/1. I proposed two algorithms to address the problem: the first one, named DEGREE-
G relies on vertex centrality, while the second one, called COVER is based on the
maximum vertex cover problem.

IV/2. Both algorithms, as evidenced by experimental results, consistently produced promis-
ing solutions within a reasonable time, emphasizing their competitiveness when com-
pared to existing algorithms in the literature.
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Appendix

The best formulas, obtained by SR and CGP in chapter 3, are listed for the different graph
types and graph properties, concerning mean absolute deviation.

Formulas for random graphs diameter. The results obtained by these formulas are shown
in Table 3.2. √
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Formulas for real-world graphs diameter. The results obtained by these formulas are
shown in Table 3.3.
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Formulas for random graphs geodetic number. The results obtained by these formulas
are shown in Table 3.4. √
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Formulas for real-world graphs geodetic number. The results obtained by these formu-
las are shown in Table 3.5.
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Summary

This PhD thesis introduces optimization methods for graph problems classified as NP-hard.
These are problems for which no deterministic algorithm is capable of solving them in poly-
nomial time. More specifically, three graph problems were addressed, and for each, different
optimization methods were used. These methods include standard methods, metaheuristics,
and heuristics. In all cases, the performance of these methods was compared with those
proposed in the literature, considering factors such as execution time and the quality of the
solutions achieved. This comparative analysis aims to demonstrate the effectiveness of the
proposed optimization methods.

The thesis was structured into four major parts. In the following sections, I will provide
an overview of the findings from Chapter 2 to Chapter 5. Chapter 1 is an introductory chapter,
that introduces the reader to the fundamentals of optimization and graph theory, and clarifies
the interrelationship between these two domains.

Thesis I.

Chapter 2 dealt with a graph problem known as graph geodetic number, which is a global
measure for simple connected graphs and it belongs to the path covering problems, to find the
minimal-cardinality set of vertices, such that all shortest paths between its elements cover ev-
ery vertex of the graph. Two greedy algorithms were proposed to obtain upper bounds for the
geodetic number in an algorithmic way. The efficiency of these algorithms is demonstrated
on real-world graphs and randomly generated graphs.

Thesis II.

In Chapter 3, Symbolic Regression with an evolutionary algorithm called Cartesian Genetic
Programming has been used to derive formulas capable of approximating the graph geodetic
number. The obtained formulas are evaluated on random and real-world graphs. It demon-
strated how various graph properties as training data can lead to diverse formulas with differ-
ent accuracy. It also investigated which training data are closely related to the graph property.
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Thesis III.

In Chapter 4, the work aimed to deal with the longest induced (chordless) cycle problem,
which is a graph problem involves the task of determining the largest possible subset of
vertices within a graph in such a way that the induced subgraph forms a cycle. Within this
work, three integer linear programs have been proposed to yield optimal solutions for this
problem. To demonstrate the efficiency of these methods, experiments were conducted on a
range of real-world graphs as well as random graphs. Additionally, a comparative analysis
against approaches previously proposed in the literature was performed.

Thesis IV.

In Chapter 5, the purpose is to maximize the smallest eigenvalue of the grounded Laplacian
matrix which is the Laplacian matrix’s (n− k)× (n− k) submatrix after k rows and associ-
ated columns have been removed. Motivated by the Gershgorin circle theorem, the degree
centrality is used to select k nodes that would maximize the smallest eigenvalue. In addition,
the vertex cover problem was employed as an additional method of solving the problem.
The efficiency of these approaches is demonstrated on real-world graphs and compared to
the methods proposed in the literature.

Contributions of the thesis

In the first thesis group, the contributions are related to obtaining upper bounds of the
graph geodetic number in an algorithmic way which was capable of providing solutions of
acceptable quality within a reasonable time. Detailed discussion can be found in Chapter 2.

I/1. I introduced two greedy-type algorithms. The first, known as the greedy algorithm,
relies on Floyd’s algorithm, while the local greedy algorithm is based on Dijkstra’s
algorithm.

I/2. I have empirically demonstrated that the proposed algorithms can efficiently obtain
upper bounds that closely approximate the optimal solution obtained from the binary
integer linear programming. Meanwhile, their computational time remains a small
fraction of that needed to obtain the exact geodetic number.

In the second thesis group, the contributions are related to using Symbolic Regression and
Cartesian Genetic Programming to derive optimized formulas for graph geodetic number.
Detailed discussion can be found in Chapter 3.
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II/1. I have used Symbolic Regression together with Cartesian Genetic Programming to
derive a general formula that approximates the graph geodetic number. The formula
is simply the sum of the number of edges, the number of degree-one vertices, and the
number of simplicial vertices. Thus, the approximation of the geodetic number can
be obtained in a reasonable computational time, even for graphs with thousands of
vertices and edges.

II/2. I demonstrated how different training sets will lead to different formulas with different
accuracy which validates that using parameters that are highly related to the graph
property as training data will help in approximation in a better manner.

In the third thesis group, the contributions are related to finding an efficient approach that
can deliver optimal solutions within a reasonable time for the longest induced cycle prob-
lem. Exact methods have been introduced and evaluated against existing methods from the
literature to address this problem. Detailed discussion can be found in Chapter 4.

III/1. I proposed three integer linear programs, some of which are extensions of models
created for solving the longest induced path problem. The proposed programs had
varying execution times and the number of instances they were able to solve optimally.

III/2. I conducted a comparison between my methods and the methods proposed previously
in the literature, and the results demonstrated that the newly introduced methods con-
sistently outperformed those presented in the literature.

In the fourth thesis group, the contributions are related to proposing new methods to max-
imize the smallest eigenvalue of the grounded Laplacian matrix, which can deliver solu-
tions of acceptable quality within a reasonable time. Two approaches were introduced and
demonstrated through experiments and compared to the methods proposed in the literature.
A detailed discussion can be found in Chapter 5.

IV/1. I proposed two algorithms to address the problem: the first one, named DEGREE-G
relies on vertex centrality, while the second one, called COVER is based on the vertex
cover problem.

IV/2. Both algorithms, as evidenced by experimental results, consistently produced promis-
ing solutions within a reasonable time, emphasizing their competitiveness when com-
pared to existing algorithms in the literature.
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Összefoglalás

Jelen PhD-értekezés optimalizációs módszereket mutat be, elemez és tárgyal NP-nehéz,
gráfokon értelmezett problémákhoz. Ezek olyan problémák, amelyekre jelen tudásunk sz-
erint nincs polinomiális futási idejű algoritmus. Konkrétan három gráfproblémát vizsgáltunk,
és mindegyikhez különböző optimalizációs módszereket alkalmaztunk. Ezek a módszerek
alkalmazzák a standard eljárásokat, metaheurisztikákat és heurisztikákat. Minden esetben
ezeknek a módszereknek a teljesı́tményét összehasonlı́tottuk a szakirodalomban javasolt
módszerekkel, figyelembe véve olyan tényezőket, mint az végrehajtási idő és az elért megol-
dások minősége. Az összehasonlı́tó elemzésnek a célja a javasolt optimalizációs módszerek
hatékonyságának bemutatása.

Az értekezés négy fő részből áll. A következő szakaszokban áttekintést nyújtok a 2. és
5. fejezetek eredményeiről. Az 1. fejezet bevezető fejezetként szolgál, és megismerteti az
olvasót a gráfelmélet ide vonatkozó alapjaival és a jelen tézisben releváns, optimalizálással
kapcsolatos fogalmakkal. Tisztázzuk továbbá e két terület közötti kapcsolatot.

1. tézis

A 2. fejezetben foglalkoztam a geodetikus szám meghatározásával, amely egy NP-nehéz
gráfprobléma. Ez egy globális mérőszám egyszerű összefüggő gráfokhoz, és az útvonal
lefedési problémák közé tartozik. Célja a minimális csúcshalmaz megtalálása, amelynek
minden eleme közötti legrövidebb utak fedik a gráf összes csúcsát. Két mohó algoritmust
javasoltam a geodéziai szám felső korlátjainak algoritmikus meghatározására. Ezeknek az al-
goritmusoknak hatékonyságát valós világbeli gráfokon és véletlenszerűen generált gráfokon
mutattuk be.

2. tézis

A 3. fejezetben a geodetikus szám közelı́tésére használható képletek előállı́tásával foglalkoz-
tunk, ahol a szimbolikus regressziót egy Genetikus Programozás nevű evolúciós algorit-
mussal együtt alkalmaztuk. Az előállı́tott képletek pontosságát valós világbeli és véletlen
gráfokon teszteltük. Ezzel bemutattuk, hogy különböző gráf tulajdonságok használata tréning
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adatként különböző pontosságú képletekhez vezethet. Továbbá vizsgáltuk, mely tréning ada-
tok kapcsolódnak valóban a különböző tulajdonságokhoz.

3. tézis
A 4. fejezetben a leghosszabb indukált kör nevű gráfproblémával foglalkoztunk, ami egy
NP-teljes feladat. Itt meghatározandó a gráfban található lehető legnagyobb csúcshalmaz
kiválasztása oly módon, hogy az indukált részgráf kört alkosson. Három vegyes egészértékű
lineáris programot javasoltunk az optimális megoldások meghatározására. A módszerek
számı́tási hatékonyságának bemutatására és összehasonlı́tására kı́sérleteket végeztünk külön-
böző valós gráfokon, valamint véletlen gráfokon egyaránt. Emellett összehasonlı́tó elemzést
végeztünk a szakirodalomban korábban javasolt megközelı́tésekkel.

4. tézis

A 5. fejezet témája gráfok Dirichlet-Laplace (DL) mátrixával1 kapcsolatos probléma. A
DL mátrix a gráf Laplace mátrixának egy (n− k)× (n− k) részmátrixa, miután k sor és az
azokhoz tartozó oszlopokat eltávolı́tjuk. A feladatban olyan DL mátrixot kell előállı́tani,
amelynek a legkisebb sajátértéke maximális. Ez a probléma is NP-nehéz. A Gershgorin-
kör tétel motiválta a fokszám alapú módszerünket. Emellett kidolgoztunk olyan módszert
is, amely a csúcsfedési feladat megoldását használja fel az eredeti probléma megoldására.
Ezeknek a megközelı́téseknek az hatékonyságát valós gráfokon demonstráltuk, és összeha-
sonlı́tottuk az irodalomban javasolt módszerekkel.

A disszertáció tézisei

Az első tézis-csoportban a gráfok geodetikus számára vonatkozó, algoritmikusan meghatározható
felső korlátok előállı́tására alkalmas eredményeimet mutattam be. Ezek a módszerek megfelelő
minőségű megoldásokat kı́náltak elfogadható időkereten belül. A részletes tárgyalás meg-
található a 2. fejezetben.

I/1. Két mohó tı́pusú megközelı́tést mutattam be. Az első, amit egyszerűen csak mohó
algoritmusnak nevezünk, a Floyd algoritmusra támaszkodik; mı́g a lokálisan mohó
algoritmus a Dijkstra algoritmuson alapul.

I/2. Numerikus kı́sérletekkel igazoltam, hogy a javasolt algoritmusok hatékonyan képesek
olyan felső korlátokat előállı́tani, amelyek közelı́tik a bináris egészértékű lineáris

1az angol nyelvű szakirodalomban inkább szokás a grounded Laplacian elnevezés, azonban erre a
változatra nincsen szerencsés magyar fordı́tás
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programozással kapott optimális megoldást. Eközben a számı́tási idejük csak kis
töredéke annak, amire szükség van a geodetikus szám pontos meghatározásához.

A második tézis-csoportban az eredmények a szimbolikus regresszió és a Genetikus Pro-
gramozás használatához kapcsolódnak annak érdekében, hogy optimalizált képleteket kapjunk
egy gráf geodetikus számának meghatátozására. A részletes bemutatás a 3. fejezetben található.

II/1. Szimbolikus regressziót használtam Genetikus Programozással együtt, hogy olyan
általános képleteket állı́tsak elő, amelyek közelı́tik egy gráf geodetikus számát. A
legjobb képlet egyszerűen az élek számának, az 1-fokszámú csúcsok számának és a
szimpliciális csúcsok számának összege. Így a geodetikus szám közelı́tése elérhető
elfogadható számı́tási idő alatt, még az ezer csúcsú gráfok esetén is.

II/2. Kimutattam, hogy különböző tanı́tóhalmazok különböző képletekhez vezetnek különböző
pontossággal, amely igazolja, hogy a gráf tulajdonságához erősen kapcsolódó paraméterek
használata tanı́tóadatként segı́ti a szimbolikus regressziót a jobb közelı́tés elérésében.

A harmadik téziscsoportban a leghosszabb indukált kör megkereséséhez használható mod-
ellek kidolgozásával foglalkoztam. A feladat egy NP-teljes probléma. Új, egzakt modelleket
vezettünk be és vetettük össze a szakirodalomban található modellekkel. Részletes bemu-
tatás a 4. fejezetben található.

III/1. Három új vegyes egész értékű lineáris programot javasoltam, amelyek között van
olyan is, amely a leghosszabb indukált út probléma megoldására készı́tett modellek
kiterjesztése. A javasolt programok különböző végrehajtási idővel és az általuk op-
timálisan megoldható példák számával rendelkeztek.

III/2. Összehasonlı́tást végeztem a saját javasolt módszereim és az irodalomban korábban
javasolt módszerek között, és az eredmények azt mutatták, hogy az újonnan bemuta-
tott módszerek folyamatosan jobban teljesı́tettek, mint az irodalomban bemutatottak.

A negyedik téziscsoportban található hozzájárulásaim a Dirichlet-Laplace mátrixok legkisebb
sajátértékének maximalizálásával kapcsolatosak. Két megközelı́tést vezettünk be, amelyekre
a numerikus kı́sérletekkel összehasonlı́tást végeztünk az irodalomban javasolt módszerekkel.
Részletes bemutatás a 5. fejezetben található.

IV/1. Két algoritmust javasoltam a probléma kezelésére: az elsőt DEGREE-G-nek neveztem,
és a fokszám központosságára támaszkodik, mı́g a másodikat COVER-nek neveztem,
és a csúcsfedés problémára épül.

IV/2. Mindkét algoritmus, a kı́sérleti eredmények szerint, állandóan ı́géretes megoldásokat
hozott létre elfogadható időkereten belül, kiemelve versenyképességüket az irodalom-
ban meglévő algoritmusokhoz viszonyı́tva.
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