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Introduction
Managing software bugs is an essential part of software development and companies tend to spend
a large amount of resources on it. Programmers tend to make mistakes despite the assistance
provided by different integrated development environments, and errors may also occur due to
frequent changes in the code and inappropriate specifications; therefore, it is important to get
more and/or better tools to help the automatic detection of errors [24]. Dealing with software
bugs consists of tasks like preventing, finding, and fixing bugs.

Finding software bugs is usually done by checking the source code manually and looking for
the root of the problem based on bug reports. It is a time- and resource-consuming activity, and
minimizing the required effort would help to reduce the cost of the development. Unit tests can
also help us detect and localize software faults, but it requires writing test cases in parallel with
development, and it is also a resource-intensive task. Another way of assisting bug localization
is to characterize the known ones with some appropriate metrics and try to predict which source
code elements have the highest probability of containing a bug. The most important step in
facilitating error detection is to analyze already known errors to identify patterns or trends.

Analyzing known bugs requires a source code change history and a bug tracking system.
Nowadays, many developers use a versioning system - like Subversion or Git -, hence the source
code history is often available. The use of bug tracking systems is also quite common in software
development. There are numerous commercial and open-source software systems available for
these purposes. The bug reports are recorded within these systems and all changes related to
the bugs are also tracked, including the source code fixes. Furthermore, different web services
are built to meet these needs. The most popular ones, like SourceForge, Bitbucket, and GitHub,
fulfill the above-mentioned functionalities. They usually provide several services, such as source
code hosting and user management. Their APIs make it possible to retrieve various kinds of data,
e.g., they provide support for the examination of the behavior or the cooperation of users, or even
for the analysis of the source code itself. Since most of these services include bug tracking, the
idea of using this information in the characterization of buggy source code parts is raised [38]. To
do so, the bug reports managed by these source code hosting providers must be connected to the
appropriate source code parts. A common practice in version control systems is to describe the
changes in a comment belonging to a commit (log message) and often to provide the identifier of
the associated bug report that the commit is supposed to fix [26]. This can be used to identify
the faulty versions of the source code. GitHub contains more than 330 million repositories and
has a readily usable API to access these projects, which are accessible via Git; hence it is a
convenient choice as a data source for the studies.

In terms of programming languages, some of the most popular languages in use today include
Java, Python, C++, JavaScript, and PHP. According to the TIOBE Index, the most popular
programming language in 2023 was Python, followed by C, C++, and Java. Java has been a pop-
ular programming language for many years and is widely used in enterprise software development
due to its scalability, reliability, and portability. JavaScript (JS) is the de-facto web program-
ming language globally, and the most adopted language on GitHub. JavaScript is massively
used in the client side of web applications to achieve high responsiveness and user-friendliness.
In recent years, due to its flexibility and effectiveness, it has also been increasingly adopted for
server-side development, leading to full-stack web applications [11]. Platforms such as Node.js
allow developers to conveniently develop both the front- and back-end of the applications entirely
in JavaScript. Despite its popularity, the intrinsic characteristics of JavaScript—such as weak
typing, prototypal inheritance, and run-time evaluation—make it one of the most error-prone
programming languages. As such, a large body of software engineering research has focused on
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the analysis and testing of JavaScript web applications [14, 35, 36, 29, 20, 9, 28, 10]. For these
reasons, although there are many different programming languages, we made a conscious decision
to focus our efforts on analyzing bugs reported in Java or JavaScript projects.

Although a vast amount of raw data is available regarding software bugs, collecting, filtering,
and processing it can be a time-consuming and resource-intensive task. Many papers have dealt
with bug databases using many kinds of approaches, such as bug prediction, fault localization,
or testing techniques [17, 32, 30, 27, 39]. Researchers often use a database created for their
own purposes, but these datasets are rarely published for the community. Despite the abun-
dance of research on software bugs, the availability of bug databases that are accessible to the
public is notably inadequate and overlooked. Additionally, subject programs or accompanying
experimental data are rarely made available in a detailed, descriptive, curated, and coherent
manner. This not only hampers the reproducibility of the studies themselves but also makes it
difficult for researchers to assess the state-of-the-art of related research and compare existing so-
lutions. Specifically, testing techniques are typically evaluated with respect to their effectiveness
at detecting faults in existing programs, however, real bugs are hard to isolate, reproduce, and
characterize. Therefore, the common practice relies on manually seeded faults or mutation test-
ing [23]. Each of these solutions has limitations. Manually injected faults can be biased toward
researchers’ expectations, undermining the representativeness of the studies that use them. Mu-
tation techniques, on the other hand, allow for generating a large number of “artificial” faults.
Although research has shown that mutants are quite representative of real bugs [21, 25, 12],
mutation testing is computationally expensive to use in practice. For these reasons, publicly
available benchmarks of bugs are of paramount importance for devising novel debugging, bug
prediction, fault localization, or program repair approaches.

The characterization of buggy source code elements through various methods is still a popular
research area. For automatic recognition of unknown faulty code elements, it is a prerequisite to
characterize the already known ones. There are many good studies on bug characterization [22,
34, 16, 19]. Processing the diff files of a commit can help us obtain the exact code sections
affected by the bug. The most commonly used methods for bug characterization include textual
similarities with faulty code parts [13], source code analysis, product metrics [18, 33], or process
metrics. There are numerous tools, some of which are free, that are capable of analyzing source
code written in different programming languages and producing product metrics for the code
elements. During our studies, we used the OpenStaticAnalyzer tool for source code analysis,
because it is able to process source code written in either Java or JavaScript programming
languages and it can extract detailed information about the source code elements.

Our work is comprised of three thesis points. The objectives of these thesis points are as
follows:

I. Present a novel method for constructing a bug database and evaluate its use-
fulness for bug prediction while also comparing it with a database made using
the traditional approach.

II. Present a method for computing software process metrics using a graph database,
assess the metrics’ predictive power for bugs, and compare them with product
metrics.

III. Present a benchmark of real, manually verified JavaScript bugs, and discuss
the results of our quantitative and qualitative analyses of these bugs.
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I. A Novel Bug Prediction Dataset and its Validation
Previously published datasets have followed a conventional approach to creating benchmark
datasets for testing bug prediction techniques. These datasets typically include all code elements,
both faulty and non-faulty, from one or more versions of the analyzed system. In this thesis point,
we introduce a new approach that focuses on collecting snapshots of source code elements affected
by bugs, along with their characteristics, before and after the bugs were fixed. This approach
excludes code elements that were not impacted by bugs.

By utilizing this kind of dataset, we can effectively capture the changes in software product
metrics during bug fixes. This enables us to examine the differences in source code metrics
between faulty and non-faulty code elements and gain valuable insights. To conduct our analysis,
we selected 15 open-source projects from GitHub and considered all reported bugs from their bug
tracking systems. We constructed databases at three source code levels: file, class, and method.
This new dataset is called the BugHunter Dataset.

Using 11 machine learning algorithms, we built prediction models and demonstrated the
dataset’s potential for bug prediction and further investigations. An important aspect to inves-
tigate is how the bug prediction models built from the novel dataset compare to the ones that
used the traditional datasets as corpus. To conduct this comparison we utilized our traditional
dataset, which was generated from the same 15 projects and referred to as the GitHub Bug
Dataset [7].

We investigated the following research questions:

• Research Question 1: Is the BugHunter Dataset usable for bug prediction purposes?

• Research Question 2: Are the method-level metrics projected to the class level better
predictors than the class-level metrics themselves?

• Research Question 3: Is the BugHunter Dataset more powerful and expressive than the
GitHub Bug Dataset?

To answer the first research question, we analyzed the results obtained by different machine
learning algorithms at the method, class, and file levels. Considering the results we obtained,
we can state that creating bug prediction models at the method level is more successful than
at file and class levels if we consider the full dataset. We also observed variations in F-measure
values across different projects, supporting our hypothesis that not all projects provide suitable
training sets. We achieved promising F-measure values for individual projects, reaching up to
0.7573 at the method level, 0.7400 at the class level, and 0.7741 at the file level. We can answer
this research question in a positive manner and say that the constructed dataset is usable for
bug prediction.

The dataset contains the bug information on both method and class levels, and we also know
the containing relationships between classes and methods. However, since classes have a different
set of source code metrics than methods, a question arose: can we (and more importantly, should
we) use method-level metrics to predict faulty classes? To answer our second research question,
we carried out an experiment where we projected the results of the method-level learning to
the class level. During the cross-validation of the method-level learning, we used the containing
classes of the methods to calculate the confusion matrix from the number of classes classified as
buggy and non-buggy. Classes containing at least one buggy method were considered buggy.

We compared this result with the result of the class-level prediction. The results in Ta-
ble 1 show that the projection method performs much better than the prediction with class-level
metrics.

3



Table 1: The results of projected learning

Algorithm Precision Recall F-Measure

Projected Class Projected Class Projected Class

trees.RandomForest 0.7471 0.5336 0.7370 0.5336 0.7405 0.5334
trees.RandomTree 0.7421 0.5381 0.7273 0.5380 0.7330 0.5376
functions.SGD 0.7441 0.5718 0.7288 0.5676 0.7322 0.5626
rules.DecisionTable 0.7425 0.5703 0.7404 0.5705 0.7309 0.5637
trees.J48 0.7390 0.5531 0.7250 0.5530 0.7290 0.5520

Using method-level metrics for class-level bug prediction performed the best in our study;
the F-measure values reached 0.74. We suspect that this is due to the generality of class-level
metrics, which are therefore not powerful enough to effectively distinguish source code bugs. As
an extension of the answer to the first research question, we can provide the above-described
mechanism to locate class-level bugs with higher accuracy in a software system.

Comparing the expressive power of different datasets is a harsh task since, as the various
datasets were created with different purposes, they often have only a few independent variables
in common. To answer our third research question, we provide an objective comparison between
our traditional bug dataset, the GitHub Bug Dataset, and the BugHunter Dataset. The datasets
include exactly the same 15 projects, and their sets of independent variables are common and also
calculated in the same way with the same tool. We used the same machine learning algorithms
to build prediction models. This way, it is quite straightforward to compare the expressiveness
and compactness of these datasets.

Table 2: Predictive capabilities and sizes of the datasets

Dataset Avg. Std.dev. Min Max Size

Method level

BugHunter 0.6319 0.0836 0.3376 0.7573 109,244
Traditional 0.7348 0.0789 0.4019 0.8339 167,708

Class level

BugHunter 0.5685 0.0704 0.3572 0.7400 66,092
Traditional 0.7710 0.0869 0.3446 0.8331 27,216

File level

BugHunter 0.5147 0.0749 0.3328 0.7741 49,868
Traditional 0.6058 0.1076 0.2882 0.8247 16,235

Projected

BugHunter 0.7405 0.0914 0.3178 0.8386 -
Traditional 0.7831 0.0716 0.4399 0.8825 -

Firstly, we compare the size of the datasets expressed with the number of entries located in
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the datasets (see Table 2). A rate of 1.54 is achieved at the method level, 0.41 at the class
level, and 0.33 at the file level. The obtained rate is higher than 1.0 for the method level, which
shows that the new approach contains fewer entries at this level. One would expect that the new
approach will contain fewer entries than the traditional one since the BugHunter Dataset only
contains the entries that were affected by a closed bug. However, the traditional GitHub Bug
Dataset only depends on the size (number of files, classes, and methods) of the projects included.
In contrast, the BugHunter Dataset highly depends on the number of closed bugs in the system
(a large project can have a small number of reported bugs). To sum up, we cannot clearly decide
whether the novel dataset is more compact, however, it is clearly visible that BugHunter could
compress the bug-related information at the method level. We achieved an F-measure value of
0.6319 at the method level and the composed dataset contains 58,464 fewer entries than the
traditional one. In both datasets, the number of entries is sufficient to build a predictive model
from, however, we should investigate the predictive capabilities first to conclude our findings
related to expressive power and compactness.

Table 2 presents machine learning results for method, class, and file levels, and also the
F-measure values for the projected method-level predictors, respectively.

On the traditional GitHub Bug Dataset, the machine learning algorithms performed better,
achieving higher F-measure values in every case. The two kinds of datasets differ fundamentally
because they are constructed with two different methods. The method of building a traditional
dataset leads to some uncertainty in the dataset because it could happen that the bug is not yet
present in the assigned release version. Table 3 shows some characteristics of this uncertainty.

Table 3: Uncertainty in the traditional dataset

Project Average
days

Average commits
before reported

Average commits
before fixed

Android U. I. L. 78.78 179.04 22.82
ANTLR v4 83.73 94.83 66.21
Broadleaf Comm. 96.40 524.88 116.74
Eclipse Ceylon 136.05 442.00 20.22
Elasticsearch 93.85 1,004.60 382.79
Hazelcast 84.61 1,905.88 143.54
jUnit 91.94 76.71 171.09
MapDB 102.09 150.47 25.06
mcMMO 108.71 289.83 41.72
Mission Control T. 64.00 203.00 55.93
Neo4j 39.53 535.77 189.30
Netty 83.65 411.60 48.96
OrientDB 99.21 568.76 179.30
Oryx 63.00 104.42 3.40
Titan 51.35 65.91 59.85

The second column is the average number of days elapsed between the date of the release
and the date of the bugs reported. We can see that these averages are quite high; the overall
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average is 85 days. The third column is the average number of commits contributed to the project
between the release commit and the date of the bug report. These values vary for each project
because they depends on the developers’ level of activity. For some projects (Elasticsearch,
Hazelcast) it could mean thousands of modifications before the bug was reported. The more
commits are performed, the higher the probability that the source code element became buggy
after the release. The fourth column shows the average number of commits performed between
the time when the bug was reported and when the fix was applied. These numbers are much
smaller, which also demonstrates that bugs are fixed relatively fast. This fast corrective behavior
causes before and after fix states to be less different for the BugHunter approach. Consequently,
less difference in metric values makes building a precise prediction model more difficult.

The new BugHunter approach, however, is free from the uncertainty mentioned above because
it only uses the buggy and the fully fixed states of the bug-related source code elements. This
way, the produced bug dataset is more precise, hence it is more appropriate for machine learning.
Therefore, we cannot clearly state that the traditional dataset is better, even despite the higher
F-measure values. The difference between the values of the two datasets is around 0.10 at the
method level, 0.21 at the class level, and 0.09 at the file level. Projecting method-level metrics
to the class level achieved almost as high an F-measure value (0.7405) as in the traditional case
(0.7831). The difference is only 0.04, yet it is on a much more precise dataset.

The Author’s Contributions
The author has made several significant contributions to this research. Firstly, he designed

and implemented the novel method presented for constructing bug databases. Additionally, he
actively participated in the literature review and the process of defining criteria for the inclusion
of projects in the BugHunter dataset. The author was responsible for executing the method,
constructing the dataset, and gathering all the statistics related to the projects. Lastly, the
author took a leading role in producing and analyzing the results obtained from the machine
learning techniques utilized in this study. The publications related to this thesis point are:

♦ Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Rudolf Ferenc. Characterization
of Source Code Defects by Data Mining Conducted on GitHub. In 15th International
Conference on Computational Science and Its Applications (ICCSA 2015), Banff, AB,
Canada, June 22–25, pages 47–62, LNCS, Volume 9159. Springer International Publishing,
2015.

♦ Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A Public Bug Database of GitHub
Projects and its Application in Bug Prediction. In 16th International Conference on Com-
putational Science and Its Applications (ICCSA 2016), Beijing, China, July 4–7, pages
625–638, LNCS, Volume 9789. Springer International Publishing, 2016.

♦ Rudolf Ferenc, Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Tibor Gyimóthy. An
Automatically Created Novel Bug Dataset and its Validation in Bug Prediction. Journal
of Systems and Software, 2020, 169: 110691.
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II. Calculation of Process Metrics and their Bug Predic-
tion Capabilities

Studies have shown that process metrics outperform product metrics in bug prediction. However,
the use of process metrics remains limited, and there is a scarcity of research in this area.
Therefore, in this thesis point, we aim to address these gaps by presenting an effective method
for computing a variety of software process metrics.

We implemented the calculation of 22 process metrics for files, classes, and methods, along
with the corresponding bug counts. To evaluate the effectiveness of process metrics, we selected
five open-source Java projects from GitHub and generated databases for 5 release versions of
each project. Finally, we evaluated their ability to predict bugs and compared them with the
product metrics.

We investigated the following research questions:

• Research Question 1: Is the dataset containing process metrics usable for bug prediction
purposes?

• Research Question 2: Which metrics are more effective for predicting software bugs:
process metrics or product metrics?

• Research Question 3: What is the relation between product metrics and process metrics?

To answer the first research question, we evaluated the 11 algorithms on all 25 release ver-
sions and only used process metrics as predictors. The results obtained suggest that databases
with process metrics are suitable for bug prediction purposes, with the RandomForest and De-
cisionTable methods performing the best. Specifically, we achieved F-measure values of 0.7997
(Titan) at the class level, 0.8180 (MapDB) at the file level, and 0.8185 (MapDB) at the
method level using the RandomForest algorithm. Furthermore, it is important to note that not
all projects are equally capable of providing an appropriate training set for bug prediction. Ad-
ditionally, on average, process metrics provide stronger indications of bug-proneness at higher
levels of source code, such as classes or files.

Table 4: Comparison of the average F-measure values achieved with product metrics and process
metrics

File Class Method

Product Process Product Process Product Process

ANTLR4 0.7035 0.6940 0.7129 0.6748 0.7198 0.5142
Broadleaf C. 0.6926 0.6766 0.7470 0.6772 0.7830 0.6116
MapDB 0.6420 0.7860 0.6939 0.6531 0.6709 0.7328
jUnit 0.5647 0.6805 0.7164 0.6143 0.5824 0.5350
Titan 0.5759 0.6968 0.6971 0.7386 0.6252 0.7004

To compare the predictive power of product and process metrics and to answer the second
research question, we evaluated the dataset using the two different sets of metrics on the release
version with the highest number of bug entries for each project. The achieved F-measure values
are listed in Table 4. Looking at the results it can be concluded that creating bug prediction
models based on process metrics at the file level generally yields better performance compared to
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those using product metrics. However, at lower levels of source code, such as the class or method
level, product metrics often outperform process metrics. An interesting observation is that the
standard deviation of the resulting F-measure values is consistently lower for process metrics in
almost all cases, with an average difference of 0.0375. Furthermore, the overall lowest achieved
F-measure values are higher for process metrics in almost all cases, with an average difference
of 0.0809. These findings suggest that bug prediction results obtained from process metrics are
more robust and reliable, indicating their suitability for predicting bugs in source code.

Finally, to answer the third research question, we computed the Pearson correlation coefficient
values between product and process metrics. The results indicate that process metrics correlate
more with each other than with product metrics. There are higher correlation values (~0.45)
between a few size-based product metrics and process metrics, but in general, there are no
dominant correlation values between product and process metrics.

(a) Method level (b) Class level

Figure 1: Correlation of product and process metrics

We illustrate the correlation matrices in Figure 1. The black cells denote the low absolute
value of the correlation (close to zero), while the white cells denote the high absolute value of the
correlation (near one or minus one). The process metrics are in the bottom right quarter. We
can state that process metrics provide a distinct perspective in characterizing the source code
elements compared to product metrics, as there are no strong correlations between the two types
of metrics.

The Author’s Contributions
This study is the author’s independent work. He reviewed the literature, designed the method-

ology, and implemented the necessary tools. Subsequently, he generated the bug databases
containing process metrics, conducted the evaluations, and drew conclusions. The publications
related to this thesis point are:

♦ Péter Gyimesi. Automatic Calculation of Process Metrics and their Bug Prediction
Capabilities. In Acta Cybernetica, pages 537–559, Volume 23, No 2, 2017.

♦ Péter Gyimesi. An open-source solution for automatic bug database creation. In
Proceedings of the 10th International Conference on Applied Informatics (ICAI 2017), Eger,
Hungary, January 30–February 1, pages 111–119, 2017.

8



III. A Public Dataset of JavaScript Bugs
Despite the extensive research on JavaScript (JS), a well-organized repository of labeled JS bugs
was still missing. The presence of numerous JS implementations further complicated the task of
creating a cohesive bugs benchmark. To address this gap, in this thesis point, we introduced a
benchmark, called BugsJS, comprising a total of 453 manually selected and validated JS-related
bugs from 10 open-source JS projects. Additionally, we have developed a framework to automate
research processes utilizing our benchmark. We conducted an investigation to determine whether
the bug-fixing patterns for JS bugs align with existing classification schemes. By conducting
both quantitative and qualitative analyses on the bugs, we constructed a taxonomy of JS bugs
present in the benchmark, which, to our knowledge, is the first of its kind. We also explored the
relationship between this categorization and bug-fixing patterns.

We investigated the following research questions:

• Research Question 1: Do the bug-fixing patterns for JavaScript bugs in BugsJS match
existing classification schemes?

• Research Question 2: How do the bug-fixing patterns in BugsJS relate to our taxonomy
of bugs?

To answer the first research question, we investigated the connection between the bug-fixing
patterns for JS and existing classification schemes. Similar studies [31, 37, 15] in the past have
explored patterns in bug-fixing changes within Java programs, suggesting that the existence of
such patterns reveals certain code constructs that could indicate weak points in the source code,
where developers are consistently more likely to introduce bugs. We used the categories suggested
by Pan et al. [31] to classify bug-fixing patterns, which were originally related to Java bug fixes.
The aim was to assess whether these categories generalize to JS or whether there are specific
bug-fix patterns that emerge in JS. Our findings are listed in Table 5.

Table 5: Bug-fixing change types found in BugsJS

Category Example #

E
xi

st
in

g

if-related Changing if conditions 291
Assignments Modifying the RHS of an assignment 166
Function calls Adding or modifying an argument 152
Class fields Adding/removing class fields 22
Function declarations Modifying a function’s signature 94
Sequences Adding a function call to a sequence of calls, all with the same receiver 42
Loops Changing a loop’s predicate 5
switch blocks Adding/removing a switch branch 6
try blocks Introducing a new try-catch block 1

N
ew

return statements Changing a return statement 40
Variable declaration Declaring an existing variable 2
Initialization Initializing a variable with empty object literal/array 3
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Our analysis revealed that 88% of the bugs in our benchmark had fixes falling into one of
the proposed categories. The most common fix patterns involved modifying an if statement.
Interestingly, the same three categories were also found to be the most frequent in Java code.
Furthermore, we identified three JS-specific recurring patterns.

By conducting both quantitative and qualitative analyses on the bugs, we constructed a
taxonomy of JS bugs present in the benchmark. To answer the second research question, we
compared the taxonomy with the bug-fixing patterns used to fix the bugs. We focused our analysis
on the first three main bug categories of our taxonomy: incomplete feature implementation,
incorrect feature implementation, and generic.

Table 6: Taxonomy and bug-fixing types

AS CF IF JS LP MC MD None SQ SW TY

incomplete feature implementation
configuration processing 1 0 9 1 0 2 1 1 1 0 0

missing type check 1 0 0 0 0 1 0 0 0 0 0
error handling 1 0 12 1 0 3 4 3 1 0 1

callbacks 1 0 4 0 0 2 0 0 1 0 0
incomplete data processing 4 2 9 1 0 11 7 3 1 1 0
incomplete output message 0 0 1 0 0 3 0 0 0 0 0
missing input validation 29 8 53 4 1 11 22 2 2 2 0

empty input parameters 1 0 3 0 0 1 0 0 1 0 0
missing handling of spaces 2 0 2 1 0 1 2 0 0 0 0
missing handling of special characters 6 0 5 1 0 1 0 0 0 0 0
missing null check 0 0 5 2 0 0 0 0 0 0 0
missing type check 18 2 39 2 1 10 10 2 1 1 0

incorrect feature implementation
configuration processing 5 0 3 1 1 2 1 3 0 0 0
incorrect data processing 24 2 39 5 1 27 13 3 9 1 0

incorrect initialization 5 0 0 0 0 4 0 3 5 0 0
incorrect type comparison 0 0 1 0 0 0 0 0 0 0 0

incorrect filepath 4 0 4 2 0 4 1 0 2 0 0
incorrect handling of regex expressions 13 0 4 0 0 6 3 0 0 0 0
incorrect input validation 25 1 56 12 0 27 15 2 4 1 0

empty input parameters 0 0 1 0 0 0 0 1 0 0 0
incorrect handling of special characters 9 0 7 0 1 12 9 1 3 0 0
unnecessary type check 5 0 7 0 0 0 2 0 0 0 0

incorrect output 1 0 0 3 0 5 0 1 0 0 0
incorrect output message 2 2 8 1 0 10 2 3 0 0 0

performance 1 0 5 0 0 1 0 0 7 0 0
generic

data processing 1 0 1 2 0 2 0 1 1 0 0
loop statement

incorrect loop statement 0 0 0 0 0 0 0 1 0 0 0
missing type conversion 2 0 1 0 0 0 0 0 1 0 0
return statement

incorrect return statement 0 0 0 0 0 1 0 0 0 0 0
missing return statement 0 0 1 0 0 0 0 2 0 0 0

typo 1 0 2 0 0 2 1 0 0 0 0
variable initialization

incorrect variable initialization 3 1 0 0 0 0 0 0 0 0 0
missing variable initialization 0 4 0 5 0 2 0 0 2 0 0

perfective maintenance 1 0 9 1 0 1 1 0 0 0 0
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Table 6 provides statistics about the occurrence of each bug-fix type corresponding to the bug
types. The table can serve to analyze the emergence of correlations between bug-fix types and
bug types. Overall, the most common bug-fixes in BugsJS are if-related (291), the second most
common are assignment-related (166), and the third most common are method-call-related (152)
bug-fixes. These bug-fix types are mostly related to the most prominent bug categories, namely
missing input validation, incorrect input validation, and incorrect data processing. Another
correlation is that assignment-related fixes are also the preferred way to fix regexes. These are
perhaps the only correlations between bug-fix types and bug types that are observable in our
benchmark.

This comprehensive analysis demonstrates that the dataset encompasses a wide range of bugs
and can serve as a reliable benchmark for conducting reproducible research in software analysis
and testing.

The Author’s Contributions
During this research, the author actively participated in designing the research plan and

implementing the framework, which included the benchmark. He was responsible for collecting
and analyzing JavaScript projects, selecting suitable bugs, and extracting relevant bug fixes.
Additionally, he took part in manually validating the bugs. Throughout the analysis of the
bugs, the author actively contributed to examining bug-fixing patterns, as well as creating and
validating the bug taxonomy. Finally, the author took a leading role in analyzing the correlation
between the bug taxonomy and the bug-fixing patterns. The publications related to this thesis
point are:

♦ Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Arpád Beszédes,
Rudolf Ferenc and Ali Mesbah. BugsJS: A Benchmark of JavaScript Bugs. In 12th IEEE
Conference on Software Testing, Validation and Verification (IEEE ICST 2019), Xi’an,
China, April 22–27, pages 90–101, IEEE, Volume 1. IEEE Computer Society Press, 2019.

♦ Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Arpád Beszédes,
Rudolf Ferenc and Ali Mesbah. BugsJS: A Benchmark and Taxonomy of JavaScript Bugs.
Journal of Software Testing, Verification and Reliability (STVR 2021), John Wiley & Sons
Publishing. 38 pages.

♦ Béla Vancsics, Péter Gyimesi, Andrea Stocco, Davood Mazinanian, Arpád Beszédes,
Rudolf Ferenc and Ali Mesbah. Poster: Supporting JavaScript Experimentation with
BugsJS. In 12th IEEE Conference on Software Testing, Validation and Verification (IEEE
ICST 2019), Poster Track, Xi’an, China, April 22–27, pages 375–378, IEEE, Volume 1.
IEEE Computer Society Press, 2019.
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Summary
We showed that previous datasets created using traditional approaches contain uncertainties.
Therefore, we developed a novel method to capture the before-fix and after-fix states of buggy
source code elements, resulting in a dataset with reduced uncertainties. We carried out empirical
evaluations and found that this dataset can be useful for bug prediction. We also conducted an
experiment to compare the bug prediction capabilities of method-level metrics projected to the
class level with those of class-level metrics. Our findings indicate that projecting method-level
metrics to the class level enhances their predictive power for bug prediction.

Despite previous studies showing that process metrics outperform product metrics in bug
prediction, the use of process metrics is not widespread, and there is a scarcity of research on
process metrics. To address this, we developed a method to efficiently compute process metrics
for files, classes, and methods using a graph database. We confirmed that bug databases with
process metrics are suitable for bug prediction. We also compared process and product metrics
and found that the use of process metrics in bug prediction yields more stable results. Moreover,
process metrics provide a different perspective on characterizing source code elements compared
to product metrics.

Lastly, we created a benchmark of real, manually-verified JavaScript bugs, along with a
framework to automate research processes. We analyzed the bugs included in the benchmark
and found that most have fixes that fall into existing bug-fixing patterns. We also created a
bug taxonomy and investigated whether this categorization relates to bug-fixing patterns. This
benchmark serves as a reliable source for conducting reproducible research in software analysis
and testing.

Table 7 summarizes the main publications and how they relate to our thesis points.

№ [4] [7] [1] [2] [3] [5] [6] [8]
I. ♦ ♦ ♦

II. ♦ ♦

III. ♦ ♦ ♦

Table 7: Thesis contributions and supporting publications
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