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1. Introduction 

All living entities adapt to their environment. This phenomenon can be observed as 

morphological differences both at the macro- and microscales. Microscopy became a 

crucial tool for cell biology because it allowed researchers to go beyond the limits of the 

human eye and recognise structural differences between individual cells. With the 

development of optical, chemical and electronic technologies, modern automated 

microscopes produce thousands of images routinely. 

In order to draw conclusions and suggest an appropriate diagnosis or treatment, biological 

samples are frequently examined at the single-cell level in biological research and medical 

examinations. The key step in treatment development is to validate efficacy on target cell 

types [1]. Cell cultures or tissue samples from patients can be used to study a treatment's 

effects. For each case, precise and reliable results depend on single-cell phenotyping. The 

phenotype of a cell is the culmination of numerous cellular processes – driven by the 

organism’s genetic code and environmental factors – that result in a unique morphological 

trait. Visual cell phenotyping is the characterization and quantification of these cellular 

features in images. Image-based phenotypic classifications are usually performed by 

machine-learning algorithms. 

Machine learning methods are designed to learn functional correlations based on features 

and solve tasks like classification, regression or clustering [2]. Image processing and 

classical machine learning approaches have been widely used to decipher significant 

biological patterns [3, 4]. However, a new generation of image analysis algorithms has 

been able to thrive thanks to the development of deep learning-based computer vision 

methods [5]. 

Machine learning earned a crucial role in cell biology and in medical image analysis. One 

of the reasons behind that is developments in microscopy and computational cell biology 

led to a massive increase in data volume, frequently as large as millions of images per 

study. Researchers nowadays prefer these high-content screenings, however analysing the 

produced datasets manually is either time-consuming or downright impossible. Another 

reason is that there is a chance that machines could see useful properties in images that are 

invisible for the human eye. It is in everyone’s interest to get precise medical diagnosis 
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and reliable treatment suggestions and to achieve this, it is important to improve the 

accuracy of machine learning algorithms. 

In this thesis, we show how taking the cellular microenvironment into account affects the 

phenotypic characterisation of single cells using supervised machine learning and deep 

learning [6, 7]. For the latter, we also propose a transformation similar to what is used in 

fisheye cameras to increase classification accuracy. Finally, we present the challenges we 

face when analysing 3-dimensional cell cultures. Outside of the classification procedure, 

we describe how to perform the necessary steps that precede the analysis: improve the 

quality of the microscopic images of these cultures [8], annotate [9] and segment cell nuclei 

[10]. 

 

1.1 Machine learning 

Machine learning is a subfield of artificial intelligence that focuses on the development of 

algorithms and models that allow computers to learn from data and make predictions or 

decisions without being explicitly programmed. It involves the use of statistical methods 

and algorithms to build mathematical models of complex phenomena, making it possible 

to analyse and identify patterns in large datasets [11]. 

There are three main categories of machine learning algorithms: supervised learning, 

unsupervised learning, and semi-supervised learning [12]. In supervised learning, the 

algorithm is trained on a labelled dataset, meaning that the correct output is already known 

for each input example. The algorithm uses this labelled data to learn a mapping between 

inputs and outputs, allowing it to make predictions on new, unseen data. Commonly used 

algorithms that work in a supervised way include linear regression, logistic regression, and 

decision trees [13]. 

Unsupervised learning, on the other hand, involves training the algorithm on an unlabelled 

dataset, where the correct output is not known [14]. The goal of unsupervised learning is 

to identify patterns in the data, such as clusters or groups of similar examples. K-means 

clustering [15], hierarchical clustering [16], and principal component analysis [17] are 

widely used examples of this learning type. 
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In the semi-supervised learning approach, a small amount of labelled data is combined 

with a large amount of unlabelled data to train the algorithm [18]. The algorithm uses the 

labelled data to make predictions and then uses the information it learns from the 

predictions to improve its ability to make predictions on the unlabelled data. This process 

is repeated until the algorithm provides the best possible predictions for the entire dataset. 

Examples of semi-supervised learning algorithms include co-training and self-training 

[19]. 

All three approaches have been applied to a wide range of applications, from computer 

vision and natural language processing to finance and healthcare [11]. However, the choice 

of which approach to use depends on the specific problem being addressed and the 

characteristics of the data. 

In recent years, machine learning methods have evolved significantly due to the increasing 

availability of large datasets and the development of more powerful computational 

resources [20]. This has enabled the development of deep learning algorithms, which use 

multiple layers of artificial neural networks to model different fields of life and science 

[21]. Deep learning has been particularly successful in tasks such as image classification 

[22] and natural language processing [23]. 

Despite the impressive results of machine learning algorithms, there are still many 

challenges that need to be addressed. Often, machine learning algorithms are susceptible 

to overfitting [24], which occurs when the algorithm becomes too specialised to the 

training data and is unable to make accurate predictions on new, unseen data. There is also 

ongoing work to improve the interpretability of machine learning models [25], so that it is 

easier for humans to understand why the algorithm makes certain predictions. 

 

 1.1.1 Classical supervised machine learning in biological image analysis 

This section outlines a typical workflow for solving phenotypic classification using 

classical supervised machine learning [6], as depicted in Figure 1. The process begins with 

original images of biological samples, which are fed into segmentation algorithms to find 

the outlines of individual cells. From these segmented areas, computer-understandable 
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information is collected, which includes basic properties like intensity, texture, and shape 

of individual objects. Each cell has its own feature vector containing its data. 

Once feature extraction is complete, a training database is created by a human expert who 

decides which phenotypes appear in the images. These phenotypes become the classes for 

machine learning. After adding enough training examples, the database is given to a 

machine learning algorithm, which aims to find the boundaries of each class in a 

multidimensional space (where the number of dimensions equal to the number of features 

used). 

After the algorithm has completed the training phase, the resulting model can be saved and 

used to classify cells in new, previously unseen images. This workflow enables researchers 

to identify and study various phenotypes with high accuracy, providing insights into the 

underlying mechanisms of biological processes. 

 

Figure 1 Supervised machine learning process for biological image analysis 

  

1.1.2 Deep learning 

Deep learning is a sub-field of neural networks, which is a sub-field of machine learning, 

all of which fall under the umbrella of artificial intelligence. Deep neural networks (DNNs) 

have been around since the 1960s, but their widespread use was limited due to 
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computational complexity and resource requirements [26–28]. Recent technological 

advancements, such as the availability of high-performance GPUs, have allowed for the 

rise of deep learning-powered applications. 

Since their ground-breaking performance in the 2012 ImageNet challenge [29], deep 

learning techniques have been effectively used for a variety of visual identification tasks, 

such as pose estimation [30], activity recognition [31], object recognition [32], and object 

tracking [33]. In phenotypic image analysis, deep learning has taken the lead in tasks such 

as semantic segmentation, feature extraction, picture augmentation, and object detection 

[34]. 

DNNs use an end-to-end approach to learning, taking raw data as input and learning from 

training examples to produce the desired output. Unlike traditional machine learning 

techniques, which rely on manually selected features, DNNs automatically extract features 

from the data (Figure 2). DNNs are composed of multiple layers of artificial neurons that 

transform the data into a higher-level representation. This architecture allows for 

outstanding discriminatory power despite the simplicity of the individual calculations. 

Modern DNNs often contain hundreds of layers, and can learn to perform multiple tasks 

using the same network [35]. 

One of the main advantages of DNNs is their ability to perform transfer learning [36]. 

Transfer learning is the practice of using a pre-trained DNN for a new task, rather than 

starting the training from scratch [37]. This can greatly reduce the amount of data needed 

to train a new network, and can lead to better performance in some cases. Another 

advantage of DNNs is their ability to learn from large and diverse datasets, which can lead 

to better generalisation and robustness. 

Despite their many advantages, DNNs are not without their challenges [38]. One of the 

biggest challenges is the need for large amounts of data to train the networks. Another 

challenge is the potential for overfitting, where the network becomes too specialised to the 

training data and performs poorly on new data. Additionally, DNNs can be 

computationally demanding, requiring powerful hardware to train and deploy. 
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Figure 2 Differences between classical machine learning and deep learning. When solving 

a machine learning problem, we follow a specific workflow. We extract selected features 

from the input images, then with a machine learning algorithm, we create a model that 

describes or predicts the object. On the other hand, with deep learning, we skip the manual 

step of extracting features from images. Instead we feed the images directly into the deep 

learning network which then predicts the object’s phenotypic class. Figure is partially 

adapted from [7]. 

Deep learning algorithms are more attractive than the conventional machine learning 

methods in a variety of aspects. Firstly, deep networks can learn to perform multiple tasks 

using the same network [39]. In addition, deep learning has the capacity to model highly 

complex functions, enabling it to solve issues that are beyond the scope of classical 

methods. 

 

1.2 Biological background 

Understanding cellular complexity is essential for treating diseases effectively and 

answering significant questions about cell biology. Personalised medicine has tremendous 

potential to become a widely used application for patients [40], but it requires the use of 

automated microscopes and appropriate analysis software to work efficiently. High-

content screening is a popular method used with cell cultures to identify substances that 

can alter cell phenotype in a desired manner, such as small molecules, peptides, or RNAi 

[41]. Automated software capable of processing large amounts of data is used for 
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computational analysis [42]. Single-cell level analysis of cell cultures or tissue sections 

could provide a more precise description of the studied sample compared to looking at the 

sample as a whole. By considering the frequency and occurrence of affected cells, valuable 

insights can be gained into the functional differences between adapted and healthy samples. 

As a result, working on the single-cell level is essential for obtaining reliable information 

[43]. 

  

1.2.1 Cell cultures 

For the past century, the most commonly used method for studying and analysing adherent 

cell lines has been 2D or monolayer culture [44, 45]. This involves growing cells on a flat 

surface, such as a plastic culture flask or Petri dish, which can be coated with proteins or 

other substances to aid in cell adhesion and promote their growth [46, 47]. Maintaining 

cells in these flasks is inexpensive and straightforward, and protocols have been developed 

that are robust and reduce the risk of contamination. Cell viability and morphology can be 

monitored easily as one can directly image through these substrates [48]. Additionally, it 

is simple to add reagents and take samples to analyse the effects of different conditions and 

stimuli. 

High-content screening is a technique that enables the examination of various compounds 

and treatments on multiple cell lines simultaneously in multi-well plates [49]. Culturing is 

a convenient technique used to prepare and maintain cell cultures for high-content 

screening experiments. Patient-derived cells can also be cultured for clinical trials or 

medical treatments [50]. 

After undergoing microscopy, the acquired images are analysed with appropriate software 

[6]. Image processing is generally more straightforward for cell culture images compared 

to tissues, especially when using fluorescent labelling due to the negligible background 

signal [51]. Different kinds of labelling techniques can be applied to visualise the 

expression of certain protein products or more generally the functional integrity of cells. 

Fluorescent dyes are most frequently used to label certain proteins or cellular 

compartments [52], such as the nucleus, cell membrane, cytoskeletal proteins like actin or 

tubulin, lipid droplets, or virus particles in infection studies. DAPI or Hoechst are typically 
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used to label the nucleus, while Alexa Fluor dyes are usually used for the cytoskeleton. 

Expressed proteins are often tagged with GFP or mCherry. However, fluorescent labelling 

often prevents the examination of living cells, except for expressed fluorescent proteins, 

as the dye conjugation to the target biological structure may cause perturbations or even 

cell death [53]. 

 

1.2.2 Tissue sections 

Tissue sections are thin slices of biological tissue that are used for a wide range of 

applications in biology, including histology, pathology, and molecular biology. These 

sections are typically generated through a process known as sectioning, in which a tissue 

sample is embedded in a matrix, such as paraffin or frozen media, and then sliced into thin 

sections using a microtome or cryostat [54]. The generation of tissue sections is a complex 

process that requires careful handling and processing of tissue samples to ensure that they 

are preserved in a manner that allows for accurate analysis. The choice of embedding 

matrix, slicing technique, and staining protocol can all impact the quality and integrity of 

the tissue section [55]. 

Histological analysis of tissue sections has been a cornerstone of medical research for over 

a century and has played a critical role in the diagnosis and treatment of diseases [56]. They 

are also widely used in molecular biology applications, such as in situ hybridization and 

immunohistochemistry [54]. These techniques allow researchers to localise specific 

molecules within the tissue section and to study their expression and distribution. 

Samples in the form of tissue sections, originating from patients or model organisms, are 

commonly analysed in pathology to identify specific regions, such as tumorous or healthy 

[57]. In order to achieve our desired outcome, we may opt for brightfield microscopy 

instead of fluorescent microscopy, as it is more suitable for live-cell assays [53]. The most 

commonly used stain for tissue sections in histology is the hematoxylin and eosin stain, 

which allows pathologists to differentiate between different cellular compartments based 

on the staining patterns. Hematoxylin stains cell nuclei dark purple, while eosin stains the 

extracellular matrix and cytoplasm pink, with other components appearing in various 

combinations of these colours. 
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When conducting a software-guided analysis of tissue samples, their intrinsic 3D nature 

can pose challenges, as cells or nuclei located above or below the focal plane may be partly 

obscured by surrounding tissue, making accurate segmentation difficult [51]. However, the 

biological structure of the sample also means that cells imaged in tissue more closely 

resemble their true appearance than those in 2D culture, which can provide additional 

information on underlying cellular processes. 

 

1.2.3 3D cell cultures 

For decades, 2D monolayer cell cultures have been the go-to model systems to evaluate 

drug efficacy in drug discovery studies. These 2D cell culture systems are convenient, cost-

effective, and widely used. However, they have several drawbacks and limitations. One of 

the main concerns is that the actual three-dimensional (3D) environment in which cancer 

cells exist in vivo is not accurately mimicked [58]. Thus, the 2D environment may provide 

misleading results regarding the expected responses of cancer cells to anticancer drugs 

[59]. Typically, the standard preclinical screening process for therapeutic agents involves 

testing compounds on 2D cell culture systems and animal models before introducing them 

in clinical trials [60]. However, the percentage of efficient agents dramatically decreases 

with each phase, and less than 5% of anticancer agents and small molecule oncology 

therapeutics pass the clinical trials and are finally approved for marketing by regulatory 

agencies [59]. One of the possible causes of this failure is that the drug responses of 2D 

cell cultures systems do not consistently predict the outcomes of clinical studies [61, 62]. 

The main drawback of conventional 2D culture is that it does not replicate the complex 

architecture and microenvironment of in vivo cells. As a result, cells cultured in 2D possess 

different characteristics such as morphology, proliferation, differentiation potential, cell-

cell and cell-matrix interactions, and signal transduction, when compared to in vivo cells 

[63]. These concerns led to the development of 3D cell culture systems, which offer a 

promising solution to bridge the gap between cell-based assays and clinical trials. 3D cell 

culture systems provide a more physiologically relevant environment, closely resembling 

the behaviour of in vivo cells. In recent years, numerous in vitro platforms have been 

developed for 3D culture systems in cancer and stem cell research, including drug 
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development, biological research, tissue engineering, and other experimental analyses 

[64]. Therefore, cellular phenomena can be investigated under conditions that closely 

resemble the in vivo environment [65]. 

There are several 3D in vitro models that are currently used in biological laboratories, with 

spheroids being the most common [66]. Spheroids consist of clusters of cells arranged in a 

sphere-like structure and have several advantages over 2D cultures, including the ability to 

mimic in vivo conditions and preserve cell structure [67]. Consequently, spheroids are 

being increasingly used in drug discovery, tumour biology, and immunotherapy [68–70]. 

Despite the many benefits of using 3D cell cultures, large-scale image acquisition is still a 

major challenge, particularly with spheroids. The main issue is that it is difficult to 

visualise individual cells in the deeper layers of 3D samples due to limited light penetration 

and scattering. To address this problem, several optical clearing methods have been 

developed [8]. 
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2. Aims 

Our objective was to demonstrate how considering the cellular microenvironment during 

machine learning training impacts classification accuracy and determine the optimal 

distance from the cell of interest where the classifier performs with the highest efficiency. 

To accomplish this, we followed three main paths: 1) use information from the cell and its 

environment as input for classical machine learning algorithms, 2) use a fisheye-like 

transformation on original biological images and use these datasets as inputs for deep 

learning algorithms and 3) investigate the crucial steps required in 3D, such as 3D image 

acquisition, 3D cell annotation, 3D cell segmentation, and use a 3D co-culture dataset in 

which we distinguished phenotypes. 

The main findings of this thesis are as follows. 

1) Taking into account the environmental features of cells can enhance the accuracy 

of machine learning-based phenotypic classification. 

2) Combining the cellular microenvironment with fisheye transformation can improve 

deep learning-based single-cell phenotyping. 

3) Incorporating neighbourhood features can increase classification accuracy in 3D 

cell cultures. 
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3. Environmental features combined with classical machine 

learning 

Understanding the diverse phenotypic structure of cellular systems is crucial to answer 

major biological questions. With the multitude of images that modern automated 

microscopes produce, manual analysis is nearly impossible. Because of that, machine 

learning-based analysis software earned a key role in single-cell-level profiling of large 

datasets. However, existing approaches are limited by only analysing the local features of 

the target cell in isolation, and do not include information from the cellular 

microenvironment. 

In this part of the thesis, we demonstrate how including different environmental features 

can improve single-cell-level phenotypic analysis. The proposed methodology was tested 

on cell culture and tissue section images. We measured the size of the environment with 

Euclidean and KNN (K-nearest neighbours) distances. Our experimental results show that 

a cell's environment has a significant role in determining its entity. 

3.1 Background 

Analysing large bioimaging datasets produced during high-content screenings requires the 

development of automated and objective computational methods [71]. Numerous open-

source and commercially available software have been developed to make image and 

computational data analysis more efficient [72–74]. CellProfiler became one of the most 

widely used open-source software for image processing [75]. It features modules for 

several image processing operations that can be performed task-by-task in a pipeline. This 

pipeline allows for the identification of biological objects—typically nuclei, cytoplasm, 

and cells—and the calculation of their metric features, such as their area, shape, texture, 

and intensity. Previous studies have suggested segmentation techniques for the 

differentiation of even more complex shape morphologies, like cells that are contacting or 

overlapping [76, 77]. 

Despite the developments in the field, it is still a challenge for single-cell segmentation 

methods to work on tissue section images. Therefore, we have chosen to apply the simple 

linear iterative clustering (SLIC) superpixel segmentation method on tissue sections to test 
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our hypothesis (that including the cellular microenvironment improves classification). 

Superpixel algorithms group pixels into larger coherent regions, thus they could replace 

the conventional pixel grid used in single-cell segmentation methods [78]. Superpixel 

algorithms became popular in computer vision applications because they are easy-to-use, 

fast, and produce high-quality segmentations. The SLIC algorithm generates superpixels 

by grouping pixels together based on similarities in intensity and location in the image 

plane [79]. 

Instead of manually verifying every experiment, machine learning techniques are made to 

discover functional relations from instances based on features [2]. Often, these techniques 

are more effective than traditional ones in handling multi-dimensional data analysis tasks 

like differentiating phenotypes that are defined by a large number of features [80, 81]. The 

extension of CellProfiler, CellProfiler Analyst applies supervised learning on features 

extracted from images of individual cells to identify their phenotypes [82, 83]. From 

version 2.0, it is written in Python, utilises a variety of machine learning techniques, 

performs classification at the cell and field-of-view levels, and offers a tool for visualising 

data from entire experiments [42]. CellClassifier displays the original microscope images 

so the users could annotate individual cells in their natural context [84]. Another software 

that uses CellProfiler metadata and is appropriate for multi-class classification is called 

Enhanced CellClassifier [85]. This program is able to distinguish between complex 

phenotypes. Advanced Cell Classifier is a graphical image analysis software in which users 

can use various machine learning methods [86]. Advanced Cell Classifier 2.0 has a built-

in tool called phenotype finder, which allows researchers to reveal new and biologically 

important cell phenotypes [87]. Additionally, some programs have the ability to classify 

entire images rather than just individual objects (e.g., WND-CHARM, CP-CHARM) [88, 

89]. 

The above-mentioned software have a major limitation in that they only operate at the 

single-cell level, and do not gather data from the cell's micro- or macroenvironment. As a 

result, they cannot account for the population context of the cell of interest. It has been 

demonstrated that both internal and extrinsic factors influence single-cell heterogeneity in 

cell populations [90–92]. Based on previous studies on genetically identical individual 

cells, it is hypothesised that differences in phenotypes are determined by the properties of 

growing cell populations, which create microenvironmental diversity to which cells 
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eventually adapt [93, 94]. The arrangement of cells inside tissues is also not random; the 

core of the cellular landscape is established even before differentiation, which is regulated 

by well-known biological mechanisms. As a result, the single-cell entity is strongly 

influenced by the cellular milieu. Based on this, it seems plausible that using environmental 

information of each individual cell of interest for machine learning applications would 

improve classification. 

In this part of the thesis, we present a systematic analysis of how cellular neighbourhood 

impacts the phenotypic characterization of individual cells using supervised machine 

learning. For various neighbourhood sizes, environmental features were measured, and 

machine learning classification rates were compared. For the evaluations, a variety of well-

known machine learning methods were applied. Data from tissue sections and cell cultures 

were used to compare the methods. Our results indicate that by including the features of 

the cell's surroundings in phenotypic analysis tools, we can significantly outperform 

conventional methods. 

3.2 Datasets 

We analysed two separate datasets to test our hypothesis utilising biological and clinical 

data. First, we tested data from a breast cancer cell line treated with various drugs used in 

medical practice. After that, we examined images of urinary bladder cancer tissue sections 

to confirm our findings and assess the performance of our method. 

  

3.2.1 MCF-7 cell culture dataset 

Our first dataset is a publicly available MCF-7 breast cancer cell line collection (available 

online at the Broad Bioimage Benchmark Collection [95] 

https://www.broadinstitute.org/bbbc/BBBC021/) that had been treated for 24 hours with 

113 different small compounds at eight different doses. To summarise the treatments 

briefly, a specific group of targeted and cancer-relevant cytotoxic drugs were applied on 

the MCF-7 cell line. These drugs caused a wide range of aggressive and subtle cell 

phenotypes. The cells were then fixed, stained for DNA, F-actin, and B-tubulin and imaged 

by fluorescent microscopy. Images from 55 microtiter plates (with 96-well format) were 

https://www.broadinstitute.org/bbbc/BBBC021/
https://www.broadinstitute.org/bbbc/BBBC021/
https://www.broadinstitute.org/bbbc/BBBC021/
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used to create the publicly accessible dataset. This dataset contains approximately 2 million 

cells in 39.000 images [96]. 

 

3.2.2. Urinary bladder cancer tissue sections 

The images in our second image dataset are of a urinary bladder carcinoma (UBC) tissue 

sample. The images were acquired from patient derived samples were obtained from the 

University of Szeged (approval authorisation number: 5127, registration number: 17/2022-

SZTE). The samples were obtained from 3 patients (sex and gender identity/age/stage of 

cancer of the subjects respectively: female/71/stage 2, male/65/stage 3, male/73/stage 2). 

According to standard histopathologic procedure, slides of urinary cancer tissue were 

stained with hematoxylin-eosin (HE). Formalin-fixed and paraffin-embedded tissues were 

cut in 4-µm-thick sections and stained in a Tissue-Tek DRS 2000E-D2 Slide Stainer 

(Sakura Finetek Japan) instrument according to the manufacturer’s instructions. Images 

were taken by an Axio Imager Z.1 (Carl Zeiss Meditec AG, Germany) microscope 

equipped with an EC Plan-NEOFLUOAR 20x/0.5NA lens using the AxioVision 

SE64Rel.4.9.1.1 (Carl Zeiss Meditec AG, Germany) software. 

 

3.3 Methods 

3.3.1. Evaluation Software 

For numerous steps in our experiments, we used an image analysis and machine learning 

software, BIAS (previously named as SCT Analyzer) developed by Single-Cell 

Technologies Ltd. (Szeged, Hungary). This software incorporates customisable cell 

segmentation algorithms, such as SLIC segmentation, and image pre-processing 

techniques (e.g. illumination correction, filtering). The user can annotate segmented 

regions into any number of phenotypic classes with the aid of an interactive interface. A 

variety of machine learning methods are available that can work on a single-cell-level. An 

active learning interface is also offered to increase user efficiency [97]. 
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3.3.2 Segmentation 

CellProfiler 2.2.0 was used to segment images from the high-content-screening dataset of 

drug-treated MCF-7 samples (Fig. 3a). Nuclei were detected using the adaptive Otsu 

algorithm. Cells with a diameter of less than 5 µm and nuclei touching the borders were 

excluded. Cytoplasm of cells was isolated using watershed separation based on the nuclei 

as seed points. 

 

Figure 3 Segmentation of cell culture and tissue section images. (a) Segmentation of the 

MCF-7 breast cancer cell line using CellProfiler 2.2.0. Scale bar: 50 µm (b) SLIC 

superpixel segmentation of urinary bladder cancer tissue section images. Images were 

segmented into superpixels of different sizes (25, 50, 100 pixels). Scale bar: 50 µm. Figure 

is adapted from [6]. 

For the segmentation of the tissue dataset, we used the SLIC superpixel segmentation 

algorithm in BIAS. We tested different superpixel sizes: 25, 35, 50, 75, and 100 pixels - 

6.75, 9.45, 13.5, 20.25, and 27 µm (Fig. 3b). For all cases, if the superpixels were smaller 

than 20, 25, 40, 60 or 75 pixels, respectively, we forced connectivity between them. 
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3.3.3 Feature extraction 

We extracted the most commonly used cell-based and neighbourhood features. Regular 

features describe the intensity, texture, and shape of selected objects. We ran our 

experiment in three different ways: using only regular features, using only neighbourhood 

features and combining the two. The full list of features we used: 

·       Regular features: area, ellipse eccentricity, ellipse major axis length, ellipse minor 

axis length, ellipse orientation, enclosing circle radius, extent, form factor, Haralick 

texture features (angular second moment, contrast, correlation, sum of squares: 

variation, inverse difference moment, sum average, sum variance, sum entropy, 

entropy, difference variance, difference entropy, information measure of correlation), 

integrated intensity, intensity maximum, intensity mean, intensity median, intensity 

minimum, intensity standard deviation, perimeter, solidity. 

·       Neighbourhood features: the minimum, maximum, mean, median, and standard 

deviation statistics of the regular features; distance features: minimum, maximum, 

mean, median, standard deviation. 

Before analysing the environment, we first computed all cellular features and then used 

these characteristics to describe the microenvironment. To calculate distances, we first 

found the centre of mass for each segmented area. We used two different approaches to get 

the neighbours of a cell: the K-nearest neighbours (KNN) and the N-distance methods (Fig. 

4a, b). In the case of KNN (where ‘K’ denotes a positive integer) we chose the 

neighbouring cells based on Euclidean distance. For the other, we took a fixed N-pixel 

radius around an area’s reference point and selected all cells/superpixels within this range. 

Once we had all neighbours for each individual cell, we calculated the neighbourhood 

features. 

Neighbourhood features were computed from statistics of regular features. Distance 

statistics represent the localisation of the neighbouring cells. An additional feature was 

added for the Euclidean distance-based approach to describe the neighbourhood's size, i.e. 

the number of neighbours within the specified range (for KNN it was not necessary as ‘K’ 

was already known). 
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Figure 4 Feature extraction. (a) The K-nearest neighbours (KNN) method, illustrated in a 

schematic figure and in real cell culture and tissue section scenarios, K=5. Scale bars: 25 

µm (b) The n-distance method, illustrated in a schematic figure and in real cell culture and 

tissue section scenarios, n=50 pixels (cell culture: 19.51 µm, tissue sections: 13.5 µm). 

Scale bars: 25 µm. Figure is adapted from [6]. 

 

Figure 5 is an example of how two cells with different phenotypes might have remarkably 

similar regular features and local appearances, but when additional neighbourhood 

properties are taken into account, we can see a clear distinction between them. 

 

Figure 5 Superpixels containing two different phenotypes (cancer cell and fibroblast) 

share highly similar regular features, but features of their neighbourhoods differ 

significantly. Scale bars: 50 µm. Figure is adapted from [6]. 
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3.3.4 Machine-learning algorithms 

After feature extraction, we created the annotated single-cell set for machine learning 

classification using BIAS. For the high-content-screening dataset, we used the phenotypic 

annotation set published by Piccinini and colleagues [87]. In their study, they applied the 

phenotype finder tool of Advanced Cell Classifier to identify biologically significant cell 

phenotypes in this dataset. Nine phenotypic classes (i.e. abundant, rounded, elongated, 

multinucleated, bundled microtubule, peripheral cytoskeleton, punctate actin foci, 

decreased cell size and fragmented nucleus) and a debris class were identified (Fig. 6a), 

and 1,673 cells were labelled (see Table 1). We took special care to prevent biasing of 

neighbourhood features by avoiding labelling identical cell types in close proximity, 

because in that arrangement, cells would have highly similar characteristics, which could 

lead to a bias in the evaluation. 

Within the UBC cancer tissue image dataset, we distinguished eight different phenotypic 

classes: cancer cell, lumen, endothelial cell, stroma, fibroblast-fibrocyte, lymphocyte-

plasma cell, smooth muscle, and lipocyte (Fig. 6b) and a debris class. We labelled an 

average of 1200 superpixels for each superpixel size. Table 1 contains the full list of 

labelled superpixels in each class. As this dataset contained a relatively low number of 

images (38), it was unavoidable to annotate cells in a close proximity. However, to ensure 

that cells close to each other are placed in either in the training or the test set (otherwise 

we may favourably bias the evaluation), we generated the cross-validation folders at the 

image level instead of the cell level. 

Our aim was to find the optimal neighbourhood size, where machine-learning works with 

the highest classification accuracy. In the case of the UBC dataset, we also compared the 

classification performance on different superpixel sizes. For the evaluation we used Weka 

3.8.1 (http://www.cs.waikato.ac.nz/ml/weka/), a machine learning and statistical 

framework. 

We tested the performance of five classification methods: Naïve Bayes, Random Forest, 

Support Vector Machine (SMO), the Logistic Regression (Simple Logistic), and 

Multilayer Perceptron (MLP). We used 10-fold cross validation to measure the accuracy. 
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Figure 6 Distinguished phenotypes. (a) Cells of nine different phenotype classes identified 

in the MCF-7 High-Content-Screening Dataset. (b) Eight phenotypic classes in the UBC 

tissue image dataset. Figure is adapted from [6]. 
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Table 1 Distribution of the labelled cells in the MCF-7 and the UBC datasets. Table is 

adapted from [6]. 

  

MCF-7 

Phenotypes 

Number 

of 

labelled 

cells 

  

UBC 

Phenotypes 

Number 

of 

labelled 

super- 

pixels 

(SLIC 

25) 

Number 

of 

labelled 

super- 

pixels 

(SLIC 

35) 

Number 

of 

labelled 

super- 

pixels 

(SLIC 

50) 

Number 

of 

labelled 

super- 

pixels 

(SLIC 

75) 

Number 

of 

labelled 

super- 

pixels 

(SLIC 

100) 

Abundant 307 Cancer cell 200 200 150 100 75 

Rounded 301 Lumen 200 200 150 100 77 

Bundled 
microtubule 

85 Endothelial 
cell 

100 100 75 55 40 

Multi- 

nucleated 

155 Stroma 200 200 150 100 62 

Punctate 
actin foci 

54 Fibroblast/ 

fibrocyte 

200 200 150 100 62 

Decreased 

cell size 

47 Lymphocyte/ 

Plasma cell 

200 200 150 100 66 

Elongated 94 Smooth 

muscle 

200 200 150 100 73 

Peripheral 

cytoskeleton 

124 Lipocyte 200 200 150 100 75 

Fragmented 
nucleus 

185 Debris 200 200 150 100 68 

Debris 321             

Sum of 

labelled 

cells: 

1673 Sum of 

labelled 

superpixels: 

1700 1700 1275 855 598 
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3.4 Results 

We evaluated the performance of neighbourhood features on both image sets. We 

compared various classification methods, took into account the size of the neighbourhood 

and tested whether regular features, neighbourhood features or the combination of these 

features produce the best results. We anticipated that the inclusion of neighbourhood 

features would improve the performance of machine learning based on the concordant 

opinion of biologists and pathologists, who highlight the relevance of cellular 

microenvironment. We also observed that the local features of cells can be remarkably 

similar, despite belonging to different phenotypic classes, but the neighbourhood features 

clearly distinguish them (Figure 5). We hypothesised that there is a nonzero, but not 

excessively big size of the environment, where classifiers work best (i.e., an optimal 

neighbourhood size with respect to accuracy). 

3.4.1 Improved accuracy in cell culture 

For the MCF-7 breast cancer cells, we selected 5–25 nearest neighbours for the KNN and 

100–1200 pixels (39.025–468.3 µm) for the Euclidean distance-based analysis. According 

to cross-validation results, adding more neighbours increases accuracy for all classifiers 

(Fig. 7a). The SMO classifier displayed the best performance at a distance of 800 pixels 

(312.2 µm). In this instance, accuracy was 90.80%, which is 10% higher than that achieved 

when considering regular features only (Fig. 8a,b). An enhancement can also be seen when 

we compare our results to an earlier study[87], in which the MCF-7 dataset was analysed 

with Advanced Cell Classifier (see Supplementary Section 1). 

3.4.2 Neighbourhood features have major influence on phenotyping tissue sections 

In the case of the UBC dataset, we used the KNN approach with 5-3000 neighbours and 

the N-distance method between 100 and 1500 pixels (27-405 µm) to analyse the effect of 

neighbourhood features. First, we tested the RandomForest algorithm for all training sets. 

Figure 7b shows the cross validation results for various SLIC sizes. The best performance 

(90.96% accuracy) appears at superpixel size 35 (when a superpixel region is 

approximately 89.3 µm2) in the case of 100-nearest neighbours. Using only local features 

at the same superpixel size and same KNN value, accuracy reaches 83.87%. This means 

that the inclusion of neighbourhood features increases the performance of over 7%. 



29 

 

We used this preliminary information based on RandomForest calculations that superpixel 

size 35 could be the optimal choice and tested other supervised classification models on 

this size (Fig. 7c). The MLP classifier with 100-nearest neighbours produced the best 

accuracy (93.37%). Without the neighbourhood features, accuracy was 74.96%. The other 

classifiers we examined showed a similar trend: using neighbourhood features resulted in 

better results in each case than did relying only on regular features (Fig. 8c,d). 

 

Figure 7 Comparison of the performance of machine learning methods (RandomForest, 

NaiveBayes, SMO, SimpleLogistic, MultilayerPerceptron) on different neighbourhood 

distances. (a) Machine learning accuracies in the cell culture dataset using neighbours 

selected with the KNN (left) and the N-distance methods (right). (We note that principal 

component analysis was performed using 99% coverage before the Naïve Bayes and the 

Multilayer Perceptron calculations to reduce computational complexity.) (b) Three-

dimensional (3D) illustration (and its contour) of the performance of the RandomForest 

algorithm in the UBC tissue dataset with respect to different superpixel and neighbourhood 

sizes using the KNN (left) and the N-distance (right) methods. (c) Machine learning 

accuracies on the best performing superpixel size (SLIC35, based on Figure 7b results) in 

the case of the UBC tissue image dataset. Figure is adapted from [6]. 
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Figure 8 The effect of taking cellular neighbourhood into account. (a) Prediction examples 

based on machine learning (SMO) in the cell culture dataset. Original image (left), scale: 
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50 µm, prediction using regular features only (middle), prediction using regular and 

neighbourhood features, N-distance: 1200 pixels, 468.3 µm (right) (b) Confusion matrices 

of the best machine learning performance (SMO) in the MCF-7 breast cancer cell dataset, 
taking the features of single-cells into account (middle) and considering neighbourhood 

features (N-distance: 1200 pixels, 468.3 µm) as well (right) (c) Prediction examples based 

on machine learning (MLP) in the UBC tissue dataset. Original image (left), scale: 50 µm, 

prediction using regular features only (middle), prediction using the combination of 

regular and neighbourhood features, KNN, K=100 (right), superpixel size: 35 pixels (9.45 

µm) (d) Confusion matrices of the best machine learning performance (MLP) in the case 

of the tissue section images. Calculations using base features only (middle) and taking 

cellular neighbourhood into account (KNN, K=100). Figure is adapted from [6]. 

 

3.4 Conclusion 

In this part of the thesis, we presented an analysis of two datasets to test our hypothesis 

using biological and clinical data. The first dataset used was a publicly available MCF-7 

breast cancer cell line collection treated with various drugs used in medical practice. The 

second dataset was images of urinary bladder cancer tissue sections obtained from patient-

derived samples. We extracted regular and neighbourhood features to describe the 

microenvironment (the local features of cells can be similar across different phenotypic 

classes, but neighbourhood features clearly distinguish them). We used two different 

approaches to get the neighbours of a cell, the K-nearest neighbours (KNN) and the N-

distance methods. In conclusion, we found that the inclusion of neighbourhood features 

improves the accuracy of machine learning based classification in both cell culture and 

tissue sections (Figure 8). The optimal neighbourhood size varies based on the dataset and 

classifier used. The results suggest that neighbourhood features have a major influence on 

phenotyping tissue sections, with an increase in performance close to 20%. This 

information can be used to optimise the selection of neighbourhood features for machine 

learning classification in future studies. 
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4. Fisheye transformation combined with deep learning 

In the previous chapter we discussed that image-based features derived from the 

microenvironment have an enormous impact on successfully determining the phenotype of 

a cell. Deep learning networks are able to process arbitrary image sizes and therefore it is 

technically feasible to process larger microenvironments. However, from a biological point 

of view it seems reasonable that the direct neighbours of a cell have a bigger impact than 

the cells that are farther. We wanted to illustrate this phenomenon in the input images of 

the networks. To achieve this, we used a distortion similar to those characteristic for 

fisheye cameras. With this approach we could produce images that (1) contain the fully 

featured view of the cell-of-interest, (2) include the neighbourhood and (3) give lesser 

weight to cells that are far from the cell-of-interest. In this part of the thesis we show that 

using the proposed transformation with proper settings, we could improve classification 

accuracy for both cell culture and tissue-section images. We also present that the range of 

potential applications of the aforementioned method goes beyond microscopy, as in the 

case of a dataset that contains images of wild animals, we could achieve better results 

compared to traditional deep-learning approaches. 

4.1 Background 

Researchers have utilised a combination of computer vision and traditional machine 

learning methods to aid in tasks such as exploring changes in cell structure during imaging-

based drug screening, classifying the distribution of proteins within cells, segmenting 

single cells in images, and tracking objects [4, 77, 98–100]. Although these techniques 

were successfully used in the past, deep learning approaches tend to be more effective in 

recognizing biological patterns when analysing images [5, 101]. 

Deep learning has produced impressive results in addressing biological problems [34]. The 

appearance of a cell is shaped by various cellular processes and factors, including the 

stochasticity of gene expression, diverse proteomes and metabolomes, which contribute to 

its unique morphological configuration [102]. By utilising deep learning, researchers have 

been able to examine factors such as replicative age, organelle inheritance, and stress 

response [103]. Deep learning analysis methods have proven to be as effective as human 

pathologists in classifying whole-slide images into cancerous and normal lung tissue 
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categories, and even predicting the top ten most commonly mutated genes [104]. Another 

common challenge in cell biology is identifying proteins and determining their locations 

within cells. To address this issue, multiple models have been developed to automatically 

identify subcellular localization patterns, utilising data from the Human Protein Atlas, 

which comprises single-cell-level images of 12,003 human proteins [105–107]. 

The variability among individual cells within a population is also influenced by the 

microenvironment of each cell [92, 93]. Research has shown that the unique characteristics 

of the cellular neighbourhood can play a critical role in understanding the collective 

organisation of cells in various contexts. For example, Snijder et al. have reported that in 

a cell culture setting, the burden of viral infection at the single-cell level can be predicted 

based solely on each cell's microenvironment [93]. Bove et al. found that in a study of 

competition between normal Madin-Darby canine kidney (MDCK) cells and cells lacking 

the polarity protein scribble, the likelihood of cell division was significantly higher for 

MDCK cells when their neighbourhood was mostly comprised of scribble cells [108]. 

There are numerous other examples in the literature of the importance of cellular 

neighbourhood, such as neighbouring epidermal stem cells affecting each other's 

differentiation, and the size difference of ligand-producing hair cell precursors in the inner 

ear compared to their neighbours [109]. As it was shown in the previous chapter of the 

thesis, our group has also concluded that incorporating the features of a cell's 

microenvironment improves phenotype classification in high-content screens [6]. Based 

on these findings, we believe that incorporating environmental data into deep learning 

phenotypic profiling is worth exploring. 

Recently, fisheye cameras have gained significant attention from both technical experts 

and the general public. These cameras use ultra-wide angle lenses that are capable of 

capturing panoramic or hemispheric images, but they introduce significant optical 

distortion into the process. Specific mapping techniques (such as stereographic, 

equidistant, equisolid angle, or orthogonal) are utilised by fisheye lenses, which give the 

resulting images a characteristic convex, non-rectilinear appearance [110]. Due to their 

ability to provide rich visual information, fisheye lenses have a wide range of applications, 

including generating augmented or virtual reality, improving the performance of intelligent 

robot vision systems, and simplifying the complexity of surveillance systems [111–113]. 
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To rectify the distortion introduced by fisheye lenses, various correction models have been 

proposed [114–116]. 

In this part of the thesis, we propose a new approach to represent images for deep learning-

based image classification networks. The approach involves using a fisheye-like spatial 

sampling method to transform the original image, which contains the object of interest in 

the centre along with its predefined microenvironment. The transformation collects more 

pixels from the proximity of the object-of-interest and decreases the resolution for larger 

proximity (Fig. 9b). The results show that the proposed pipeline outperforms classical 

machine learning methods and deep learning-based classifiers on different datasets, such 

as cell cultures, scans of cancerous tissues, and real-life images. The fisheye transform 

method achieves higher accuracy scores on the datasets compared to using multi-scale 

images in parallel (i.e. an image pyramid) for the network. Moreover, the fisheye 

transformation can be incorporated into the network as a layer, although it requires more 

computational resources when large images are fed into the network [117]. 

 

Figure 9 Fisheye transformation. (a) Illustration of the optical parameters for the fisheye 

transformation. (b) The difference between classical and fisheye pixel sampling: in the 
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classic case we select pixels evenly, while in case of fisheye, sampling is dense near to the 

object-of-interest, and less dense as the distance from the object increases. (c) Examples 

of the fisheye transformation. Figure is adapted from [7]. 

 

4.2 Datasets 

4.2.1 MCF-7 cell culture 

As a cell culture dataset, we used the same set we described in section 3.2.1. To see 

examples of the distinguished phenotypic classes, see Fig. 10a. 

  

4.2.2 Urinary bladder cancer tissue sections 

We used our previously described (section 3.2.2.) urinary bladder cancer (UBC) tissue 

dataset. Refer to Fig. 10b to observe instances of the distinguished phenotypic classes. 

  

4.2.3 Lung cancer tissue sections 

We used images of lung cancer (LC) tissues as a test dataset (Fig. 10c). The images were 

acquired from patient-derived samples were obtained from University of Szeged (approval 

authorisation number: 5127, registration number: 17/2022-SZTE). The samples were 

obtained from 4 patients (sex and gender identity/age/histological observations of the 

subjects respectively: female/75/primary pulmonary multinodular invasive papillary 

adenocarcinoma, female/65/primary lung origin, acinar predominant adenocarcinoma, 

female/74/primary lung origin, invasive adenocarcinoma, acinaris predominant, 

male/76/primary lung origin, invasive solid adenocarcinoma). 

The slides of lung cancer tissues were stained with HE in standard histopathological 

procedures. Formalin-fixed and paraffin-embedded tissue sections were cut into 4 µm thick 

slices, and were stained using a Tissue-Tek DRS 2000E-D2 Slide Stainer (Sakura Finetek 

Japan) according to the manufacturer’s instructions. Using the AxioVision 

SE64Rel.4.9.1.1 (Carl Zeiss Meditec AG, Germany) software, images were captured with 
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an Axio Imager Z.1 (Carl Zeiss Meditec AG, Germany) microscope equipped with an EC 

Plan-NEOFLUOAR 20x/0.5NA lens. 

For this dataset, we differentiated 10 phenotypic classes (blood cell, cancer cell, cartilage, 

endothelial cell, epithelium, fibroblast-fibrocyte, gland, lymphocyte-plasma cell, muscle 

cell and stroma cell, see Fig. 10c), and labelled 5,000 cells. 

 

Figure 10 Distinguished classes. (a) Cells of nine different phenotype classes identified in 

the MCF-7 High-Content-Screening Dataset. (b) Eight phenotypic classes in the UBC 

tissue image dataset. (c) Ten phenotypic classes in the LC tissue image dataset. (d) The ten 

most common animal species in the iWildCam2020 dataset. Figure is adapted from [7]. 

 

4.2.4 iWildCam 2020 dataset 

The iWildCam 2020 dataset was created from a Kaggle competition that was centred on 

the task of categorising different animal species. The Wildlife Conservation Society, 

iNaturalist, the U.S. Geological Survey, and Microsoft AI for Earth were the primary 

sources of data. The training dataset for the competition is composed of 217,959 pictures 

taken at 441 sites, and it contains 267 categories, which have an uneven number of 

examples. The top 10 classes that include the majority of the examples (excluding the 

'empty' category, which has no visible animals in the picture) are shown in Fig. 10d. 
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4.3 Methods 

4.3.1 Segmentation 

The segmentation we used for the MCF-7 and UBC datasets is described in section 3.3.2. 

Similar to the UBC dataset, the SLIC superpixel segmentation technique [78] was 

employed to segment urinary bladder cancer and lung cancer section images. In this case, 

a superpixel size of 35 pixels was used, and connectivity was enforced between superpixels 

with less than 25 pixels. Our previous research has shown that this superpixel size is most 

effective for representing cells [6]. 

While annotating the MCF-7, urinary bladder, and lung cancer datasets, we recorded and 

saved the x-y coordinates of the nuclei/superpixels' centres. These coordinates were then 

utilised as inputs for the fisheye transformation. 

The iWildCam dataset was accompanied by a general animal detection model called 

MegaDetector (https://github.com/microsoft/CameraTraps/blob/master/megadetector.md) 

and an annotation file with one label per image, provided by the Kaggle competition 

organisers. In cases where multiple animals appeared in an image, we selected the detection 

with the highest accuracy and used its label. MegaDetector utilises bounding boxes, and 

for our study, we used the x-y coordinates of the bounding box centres as inputs for the 

fisheye transformation. 

  

4.3.2 Fisheye transformation 

A range of ultra-wide angle lenses exist, all of which introduce a notable visual distortion. 

In our investigation, we assessed an algorithm that artificially replicates this distortion 

present in images captured using ultra-wide angle lenses. We examined the importance of 

nearby features to identify the optimal distance for achieving the highest classification 

accuracy. 
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The projection position of a given real world point in fisheye transformation can be 

determined based on the angle of the incident ray. This can be calculated using a mapping 

function: 

𝑟 = 𝑚(𝑓, 𝜃), 

where 𝑓 is the focal length. For a given 𝑓 we can reformulate the above equation as 

𝑟 = 𝑚𝑓(𝜃). 

The mapping function is an essential component of fisheye lenses that determines the 

position of an object (r) in the image relative to the centre, based on the focal distance (f) 

and the angle (θ) from the optical axis. The functions in wide-angle lens cameras include 

the following: 

- Rectilinear:  

𝑟 = 𝑓 tan 𝜃 

- Fisheye 

- Equidistant  

𝑟 = 𝑓𝜃 

- Equisolid angle 

𝑟 = 2𝑓 sin
𝜃

2
 

- Stereographic 
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𝑟 = 2𝑓 tan
𝜃

2
 

- Orthographic 

𝑟 = 𝑓 sin 𝜃 

 

All of these functions are invertible: 

𝜃 = 𝑚𝑓
−1(𝑟). 

The following relation is also valid for 𝜃: 

𝑡𝑎𝑛 𝜃 =
𝑝

𝑑
, 

where 𝑑 is the distance between point 𝑝 and the centre of the lens, measured along the axis 

of the lens. In our case, the pixels of an image represent the object points, and the constant 

d remains the same throughout the entire image. 

In tasks that involve transforming images, the transformation function is typically 

expressed as an inverse mapping, which specifies the source position of every output pixel. 

In other words, it determines the value of p for each output position r. From the equations 

above, p can be calculated as follows: 

𝑝 = 𝑑 ∙𝑡𝑎𝑛 𝑚𝑓
−1(𝑟) . 

This equation contains two free parameters: 𝑑 and 𝑓. The scalar multiplier d only impacts 

magnification. The value of f affects both the scale and magnitude of distortion. However, 

in our study, we aimed to adjust the fisheye effect of the transformation without changing 

the scale of the selected area. To achieve this, we connected the value of d and f in a way 

that preserves the scaling. 



40 

 

 

Let’s mark the size of the selected area with 𝛼. Our objective is to maintain the original 

position of the corner points even after the fisheye distortion is applied. In this case an 

equation is introduced as follows: 

𝑡𝑎𝑛 𝜃𝑚𝑎𝑥  =
𝛼

2𝑑
, 

where 𝜃𝑚𝑎𝑥 is the angle of the incoming ray from the borders of the selected area. As for 

the border points are expected to be transformed into themselves, 

𝜃𝑚𝑎𝑥 = 𝑚𝑓
−1 (

𝛼

2
) 

is also valid. Combining these two equations gives 

𝑑 =
𝛼

2 𝑡𝑎𝑛  𝑚𝑓
−1 (

𝛼
2) 

. 

It is evident that the last equation is determined by 𝑓 as a modifiable parameter (when the 

value of 𝛼 is fixed). Thus, the final form of the equation for the fisheye transformation is 

𝑝 =
𝛼

2
∙

𝑡𝑎𝑛  𝑚𝑓
−1(𝑟) 

𝑡𝑎𝑛  𝑚𝑓
−1 (

𝑠
2) 

. 

 

As an easy-to-read interpretation, we normalise the value of θ to the range of [0, 1], and 

then rescale it to the range [0,
𝛼

2
]. 



41 

 

Note that in the calculations above it is assumed that the selected area of interest is in the 

middle of the image. However, with a simple translation, the calculations are valid for any 

arbitrary image positions. 

The first parameter that we optimised was the window size, which refers to the range 

around our object of interest (i.e., the object height in optical terms, as shown in Fig. 9a). 

For the MCF-7, UBC, and LC datasets, we previously saved the x-y coordinates of the 

nuclei/superpixels centre, and then applied the selected pixel range for fisheye 

transformation based on these coordinates. For the iWildCam dataset, we cropped the areas 

of interest from the original images in four different sizes for fisheye transformation. We 

multiplied the size of the original bounding box by 1.0, 1.5, 2.0, and 2.5. When we 

multiplied the original size by 1.0, we cropped the images to the same size for both the 

baseline and fisheye-transformation images. For all other cases, we considered a larger 

environment size. 

The second adjustable parameter we optimised was the focal distance, which determines 

the extent of the distortion. Unlike for the analyses based on our original idea of acquiring 

information based on cell neighbourhood, we used pixel-based information acquisition 

(Fig. 4, 9b). The third parameter we optimised was the mapping function, which in cameras 

is responsible for transforming a portion of a spherical object into a 2D plane. In this study, 

we selected the "equidistant" function, which is one of the most common mapping 

functions used in cameras, to test our hypothesis on the significance of neighbourhood in 

classification accuracy. We set the object distance (the distance between the original image 

and the lenses) to eliminate scaling due to fisheye distortion in all cases. For additional 

examples of transformed images, see Supplementary Figure S1-S4. 

 

4.3.3 Deep learning-based object classification 

Matlab R2019b and its Deep Learning Toolbox (version 13.0) were employed for image 

classification in this study. The toolbox offers a platform to develop or implement 

networks, pre-trained models, and apps. Two pre-trained networks on ImageNet, ResNet50 

and InceptionV3, were utilised for transfer learning due to their accuracy, speed, and size. 

To avoid any possible positive influence of evaluation, annotated cells were excluded from 

the validation image as a neighbour in the training dataset of MCF-7 and UBC datasets. 
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Instead, the training dataset was pre-defined at the image level. In contrast, LC and 

iWildCam datasets only contained one annotated object per image, and were randomised 

and split into 80% for training and 20% for validation. Data augmentation was performed 

on the training datasets using standard geometry transformations such as reflection in the 

left-right and a top-bottom directions, rotation, horizontal and vertical scaling. However, 

we did not use any transformations that would move the cell-of-interest away from the 

centre of the image, as this would impact the fisheye transformation. 

The deep-learning parameters used: MiniBatchSize: 64, MaxEpochs: 100, 

InitialLearnRate: 3e-4, LearnRateDropFactor: 0.3, LearnRateDropPeriod: 50, Shuffle: 

every epoch. 

 

4.4 Results 

We assessed the effectiveness of a fisheye-inspired sampling approach in enhancing deep 

learning-based image classification networks, using several image datasets (Figure 10). 

We compared ResNet50 and InceptionV3-based classifiers, and examined the impact of 

neighbourhood extent and focal distance of the fisheye transformation. Our aim was to 

determine the best combination of these parameters that would produce the most accurate 

results. 

We used ResNet50 and InceptionV3 models as baselines for comparison. For the cell 

culture and tissue section datasets, we cropped out 192x192 pixel-sized images around the 

cells' centres and resized them to 224x224 to meet the models' requirements. For the 

iWildCam dataset, we cropped out the bounding boxes around the animals and resized 

them to 224x224 pixel images. We did not use fisheye transformation for benchmarking. 

We performed two-sample t-tests for statistical analysis of the classification accuracy 

results (see Supplementary Section 2). 

Based on previous studies in cellular biology, we hypothesised that considering the cell's 

microenvironment would enhance deep learning classification performance. To test this, 

we introduced a fisheye transformation, which takes into account more pixels from the 

object-of-interest's direct neighbourhood than from the surrounding region (Fig. 9b). We 
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also hypothesised that there would be an optimal combination of neighbourhood range and 

focal distance for deep learning-based classification accuracy. 

 

4.4.1 Increased classification accuracy on images of cell cultures 

For the MCF-7 breast cancer cell dataset, we defined an environmental range of 45 to 724 

pixels (17.56-282.54 µm). The average nuclei size in this dataset is 37 pixels (14.44 µm). 

Validation results indicate that the accuracy of both ResNet50 and InceptionV3 classifiers 

improves when applying the fisheye transformation (Fig. 11a). The best performance was 

achieved with the ResNet50 model using a window size of 543 pixels (211.91 µm) and a 

focal length of 130 arbitrary units. This resulted in an accuracy of 91.38%, which is 7% 

better than deep learning alone (84.31%). Our previous results with classical machine 

learning approaches showed a maximum accuracy of 90.80% with the support vector 

machine classifier, which was outperformed by the highest classification accuracy 

achieved with fisheye distortion. Although InceptionV3 had a higher deep learning 

baseline (85.85%) than ResNet50, the best result we achieved with InceptionV3 using 

distorted images was only 89.33%. 

We also segmented nuclei and cytoplasm in the MCF-7 dataset and tested the effect of 

including the environment and the fisheye transformation on classification accuracy. We 

used the same ResNet50 network for both the baseline and fisheye calculations. The results 

show that the accuracy is lowest when the network sees only the nuclei, and highest when 

using fisheye transformed images that include the cell’s microenvironment (see Figure S5-

S6). 
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Figure 11 Comparison of the performance of deep learning networks (ResNet50, 
InceptionV3) upon considering different neighbourhood distances. (a) Classification 

accuracies for the MCF-7 cell culture dataset using ResNet50 (left) and InceptionV3 

(right). (b) Classification accuracies for the urinary bladder cancer tissue image dataset. 

(c) Classification accuracies for the lung cancer tissue dataset. (d) Classification 

accuracies for the iWildCam2020 dataset. Green lines indicate the baseline yielded with 
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deep learning upon using the original (undistorted) images, while black lines indicate the 

results achieved on fisheye distorted images with different f (focal distance) values (the 

values are measured in arbitrary units). Figure is adapted from [7]. 

 

4.4.2 Fisheye transformation has a major impact on phenotyping tissue sections 

In the UBC tissue image dataset and the lung cancer dataset, we collected neighbourhood 

information for window sizes of 45 to 724 pixels (12.15-195.48 µm) and 45 to 362 pixels 

(17.55-141.18 µm), respectively. The average nuclei sizes for these datasets were 32 pixels 

(8.64 µm) and 39 pixels (15.21 µm), respectively. Our results indicate that using the 

fisheye transformation improved classification accuracy compared to traditional deep 

learning, regardless of whether we used ResNet50 or InceptionV3.  

In our previous study on the UBC dataset, we achieved a maximum classification accuracy 

of 93.37% with MLP calculations using neighbourhood features. In our current study, 

using the fisheye transformation with ResNet50, we achieved a best performance of 

98.14% with a window size of 272 pixels and a 150 arbitrary unit focal length (Fig. 11b). 

Without using the distorted images, classification accuracy was 94.41% only. For the lung 

cancer dataset, InceptionV3 performed slightly better than ResNet50, with a maximum 

accuracy of 99.46% achieved by incorporating the neighbourhood feature with a 272 pixel 

range and using 170 arbitrary units as focal distance. This is more than 2% better than the 

results yielded with InceptionV3 on undistorted images (accuracy: 97.25%). 

 

4.4.3 Fisheye transformation outperforms image pyramids 

To compare the performance of our proposed fisheye transformation with classical 

multiscale approaches, we conducted a benchmark test on the UBC and LC datasets using 

an image pyramid as input for the networks. We provided ResNet50 networks with images 

of different scales (1/1, 1/2, 1/4) simultaneously. The phenotypic classification accuracy 

was 97.9% for the UBC dataset and 99.1% for the lung cancer dataset. These results show 

that using the image pyramid approach produces better outcomes than traditional deep 

learning. However, it is not as effective as the fisheye transformed approach. 
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4.4.4 Improved accuracy in case of the iWildCam2020 dataset 

Our study aimed to determine whether incorporating environmental information from real-

life scenes could enhance the accuracy of classification results. The dataset comprised 

photographs of animals captured from stationary camera positions. As the perspective 

varied, the animals appeared either small or large in the images. To address this disparity, 

we utilised the size of the bounding boxes surrounding the animals as references, rather 

than using fixed pixel-distances. The deep learning baselines for classification accuracy 

were 95.3% and 95.22% for ResNet50 and InceptionV3, respectively. However, when 

fisheye-transformed images were used, classification accuracy improved to 95.48% with 

ResNet50, using 2.0× the size of the bounding boxes as the neighbourhood feature and a 

focal length of 150 units. 

 

4.5 Conclusion 

In this chapter, we proposed a new method that combines fisheye transformation with deep 

learning to improve phenotypic classification accuracy. We tested our method on various 

datasets, including MCF-7 cell culture, urinary bladder cancer and lung cancer tissue 

sections, and iWildCam2020. Our approach outperformed traditional machine learning 

methods that used single-cell and neighbourhood features, as well as deep learning models 

that used non-fisheye transformed images as input (Figure 12). 

The most significant improvement was observed in the tissue section images, where 

microenvironmental differences are apparent. These differences are evident in the 

histology studies of tissues, where the cooperation and interdependence of different cells 

are visible. Our method captures these differences by using the fisheye transformation and 

considers the adjacency information of endothelial cells and the presence of restricted cell 

types such as connective tissue cells and smooth muscle cells. 
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Figure 12 The effect of combining the fisheye transformation with deep learning. (a) 

Prediction examples and confusion matrices based on ResNet50 models in the cell culture 

dataset. Original image (left), prediction and confusion matrix using the model built on 

standard images (middle), prediction and confusion matrix using the model built on 
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fisheye-transformed images, window size: 543 pixels, focal length: 130 a.u. (right). In the 

second and fourth images we show with different colours the predicted phenotypes and in 

the third and fifth images we show if the prediction was true (green) or false (red). (b) 

Prediction examples and confusion matrices of the best deep learning performance 

(ResNet50) in the urinary bladder cancer tissue dataset. Original image (left), prediction 

and confusion matrix using traditional deep learning (middle) and considering the cellular 

neighbourhood with fisheye transformation, window size: 272 pixels, focal length: 150 a.u. 

(right). (c) Prediction examples and confusion matrices based on InceptionV3 models in 

the lung cancer tissue dataset. Original image (left), prediction and confusion matrix using 

the model built on undistorted images (middle), prediction and confusion matrix using the 

combination of deep-learning and fisheye-distorted images, window size: 272 pixels, focal 

length: 170 a.u. (right). Figure is adapted from [7]. 

 

We also observed an improvement in accuracy in the case of cell cultures. Though there 

are homogeneous-looking areas in these images, they are not composed of molecularly 

identical cells. Here, the fisheye transformation helps capture the differences in these 

regions, and the neighbourhood provides a more statistically stable basis for decision 

making. 

While we observed only minor improvements in accuracy in the iWildCam dataset, we 

demonstrate that the fisheye transformation approach is generally applicable to any image 

data where the environment plays an important role. 

In conclusion, our study shows that incorporating the microenvironment into machine-

based decisions can improve phenotypic classification accuracy. This highlights the 

importance of considering macro structures in cellular structures. We also demonstrate that 

non-uniformly sampling the original image data for deep learning training and inference is 

feasible and can further improve accuracy. A potential extension to our approach could 

involve introducing data transformer layers that can learn non-linear spatial sampling 

functions. 
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5. Analysis of 3D cell cultures 

In the previous chapters, we talked about improving machine learning accuracy for 2D 

images by considering the neighbourhood of the cell of interest. Now, we turn our attention 

to 3D cell cultures. Despite recent developments in the analysis of 3D data, a number of 

methodological challenges remain unresolved. So in this chapter we will focus not only on 

phenotypic classification, but also on the steps that precede it. These steps include sample 

generation, image acquisition, annotation and segmentation. We will discuss how to 

improve the quality of microscopy images using optical clearing and quantify the 

effectiveness of different clearing protocols. Then, we will discuss the challenges and 

solutions for annotating and segmenting cells in 3D. Finally, we will share our results so 

far in studying cells and their microenvironment in 3D co-cultures. 

3D cell cultures refer to cell models where cells are grown in three-dimensional structures, 

as opposed to traditional two-dimensional monolayer cultures. 3D cultures have numerous 

applications in anticancer drug screenings and toxicology studies. Extensive research has 

shown that these 3D cell cultures are more reliable than the classical flat (2D) cell cultures 

(as described in Chapter 1). Culturing cells in a 3D manner offers multiple benefits 

compared to 2D cell culture, as it enables the expression of extracellular matrix 

components and facilitates interactions between cells and the matrix, as well as between 

cells themselves [118]. 

We can define different types of 3D multicellular models based on their geometry and 

functional complexity [66]: 

● Multicellular aggregate: a 3D cell cluster free from a defined structural obligation 

● Spheroid: a type of multicellular aggregate that is almost spherical in shape 

● Tumoroid: a spheroid composed of cancer cells 

● Co-culture spheroid: a spheroid that is composed of more than one cell type not 

accomplishing a specific function together 

● Microtissue: a 3D multicellular aggregate that includes multiple cell types that 

work together to perform a specific function 



50 

 

● Organoid: a self-renewing multicellular aggregate that has an irregular shape and 

self-organise into ex vivo mini-organs  

 

5.1 Related methods 

5.1.1 Optical clearing and a quantitative metric to measure its effectiveness 

Confocal and light sheet-based fluorescence microscopy are widely used to acquire images 

of single cells of spheroids [119]. However, in these models, imaging depth is significantly 

restricted due to the scattering of the excitation and emission lights. This scattering leads 

to a loss of fluorescence intensity and contrast, practically limiting the screening of cells 

to the outer layer of the spheroids only. The primary reason behind this light scattering 

effect is the presence of refractive index (RI) discontinuities between and within spheroids 

[120]. To address this issue, numerous optical clearing protocols have been developed 

[121]. 

Optical clearing is a process that makes biological samples, such as cells, tissues, or even 

whole organisms, optically transparent [122]. It is a crucial technique for biological 

imaging as it allows scientists to visualise the complex structures and connections within 

these samples in three dimensions, without the need of tissue sectioning approaches that 

can introduce artefacts. This technique is particularly valuable in the fields of neuroscience, 

developmental biology, and cancer research, where understanding the intricate three-

dimensional organisation of cells and tissues is essential [123]. 

There are a variety of optical clearing methods, each with its strengths and drawbacks. 

However, the primary objective of most of these methods is to enhance the transparency 

of samples chemically, by equilibrating the RI throughout the sample. The process of 

optical clearing typically involves several steps, although the specific methods can vary 

depending on the application and the type of sample being studied. Here's a general 

overview of the optical clearing process [124]: 

1. Fixation: The first step involves fixing the biological sample. Fixation helps 

preserve the sample's structural integrity and prevents degradation. Different 

fixatives may be used depending on the specific experiment's requirements. 
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2. Dehydration: In this step, water is removed from the sample using a series of 

alcohol solutions with increasing concentrations. Dehydration helps prevent the 

sample from swelling when it comes into contact with the clearing agent. 

3. Clearing: The most critical step is the application of a clearing agent, which 

replaces the sample's water and lipids. The clearing agent has refractive properties 

similar to the biological sample, reducing light scattering and making the tissue 

transparent. 

4. Staining and labelling (optional): Depending on the research objectives, the cleared 

sample can be stained or labelled with fluorescent markers or antibodies to 

highlight specific structures or molecules of interest. 

5. Imaging: Once the sample has been successfully cleared, it can be imaged using 

various microscopy techniques, such as confocal microscopy or light-sheet 

microscopy. The ability to image the sample in three dimensions allows researchers 

to gain insights into complex cellular and neural networks, which would be 

challenging with conventional two-dimensional imaging. 

While clearing protocols are being increasingly utilised for 3D cultures in cellular 

phenotyping assays [125, 126], quantitatively evaluating their effectiveness remains a 

challenging task. Qualitative and quantitative measures are used in most recent studies to 

assess the effectiveness of clearing [127–129]. During qualitative approaches, based on 

images that were taken with brightfield and fluorescence microscopy before and after 

optical clearing, most of the researchers applied subjective scoring [130]. While this 

method is suitable when determining the presence or absence of fluorescent signals after 

the clearing process or when distinguishing different clearing protocols based on 

brightfield images, it becomes time-consuming and impractical when comparing hundreds 

of 3D images. 

In our work [8], we presented the development and comparison of metrics designed to 

measure the efficiency of optical clearing protocols for 3D images in a standardised 

manner. We evaluated seven metrics commonly used to assess blurriness in general photos 

and videos (namely intensity variance, gradient magnitude variance, Laplacian variance, 

histogram thresholding, histogram entropy, frequency thresholding and Kurtosis) and 

implemented them into an easy-to-use open-source ImageJ/Fiji [131] plugin called 

Spheroid Quality Measurement (SQM). 
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To test the performance and usability of these metrics, we created and shared a dataset 

[132] containing 90 spheroids derived from three different human carcinoma cell lines (T-

47D: human breast cancer, 5-8F: human nasopharyngeal carcinoma, Huh-7D12: human 

hepatoma). In order to make the spheroids more comparable to each other, we paid special 

attention to generate them with a nearly identical size (200 to 250 µm in diameter). We 

cleared all three types of spheroids with five popular water-based clearing protocols, 

namely ClearT [133] ClearT2 [133] CUBIC [132, 134], ScaleA2 [135] and Sucrose [132, 

136]. In Figure 13 we could see the qualitative comparison of the cleared spheroids. 

 

 

Figure 13 Qualitative comparison of cleared spheroids. Brightfield images of the different 

cleared spheroids on glass slides with a grid of parallel black lines. The scale bar 

represents 100 μm. Figure is adapted from [132]. 

 

We asked ten microscopy experts - each with a minimum of 5 years of experience in 

microscopy and working with spheroid images – to evaluate the 3D dataset (in Figure 14 

we could see examples of the images, the experts had to examine). Their task was to 

visually assess the sharpness of the images. We considered their assessment as ground 

truth. Then, we compared the correlation between their evaluation and the results of the 

metrics. We found that out of the seven metrics examined, only intensity variance proved 

suitable for quantitatively measuring and assessing different optical clearing protocols. 

Finally, to measure the efficacy of the clearing protocols, we used intensity variance metric 

and identified the best clearing protocols for each cell line. As anticipated, the tested optical 

clearing protocols exhibited varying performances on the three cell lines. For the T-47D 
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cell line, which formed the least compact spheroids, the Sucrose, CUBIC, and ScaleA2 

protocols demonstrated equal effectiveness, resulting in no significant quality differences 

among the cleared groups. The ScaleA2 clearing protocol provided the best image quality 

for the 5-8F spheroids. Finally, the Huh-7D12 cell line only showed successful 

visualisation of single nuclei in the lower regions of the spheroids when using the Sucrose 

clearing protocol. 

 

Figure 14 Comparison of the optical clearing protocols on nuclei-labelled fluorescence 

images, showing the middle region of the spheroids. Figure is adapted from [132]. 

 

5.1.2 3D nuclei annotation 

One of the biggest challenges in computational biology is the segmentation of single cells 

in microscopy images. Segmentation is the first step in analysing cell cultures before 
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further phenotype-based statistics and other bioimage analysis tasks can be performed. 

Studies have demonstrated that deep learning-based systems significantly surpass classical 

image processing techniques when it comes to 2D nuclei segmentation [51]. However, 

these approaches require precise and large training datasets (for the segmentation of 3D 

cell cultures the training data contains 3D-annotated spheroids). Generating such ground 

truth datasets in 2D often involves manually drawing cell contours on a 2D canvas. 

Likewise, the natural progression to 3D would entail annotating each slice of the volume 

data. However, it is not difficult to see that this approach is extremely time-consuming. In 

addition, when annotating slice by slice, the human eye may not be able to find the exact 

boundary of the objects, which could lead to discontinuous object surfaces, which is 

against our goal to create the most accurate training dataset. 

To overcome these issues, we designed 3D-Cell-Annotator [9] (Figure 15), offering an 

alternative method for accurately outlining 3D shapes through the utilisation of a 

specialised active surface model [137]. This tool is a patch for the segmentation plugin of 

the widely used Medical Imaging Interaction Toolkit (MITK) [138]. Due to the 

computational complexity and high cost of active surface models, our approach was 

specifically designed to leverage Graphics Processing Units (GPUs) and implemented 

within the NVidia CUDA framework. This implementation resulted in a considerable 

speed boost, several orders of magnitude faster compared to traditional CPU 

implementations.  

 

Figure 15 3D-Cell-Annotator (a) 3D-Cell-Annotator graphical user interface. (b) 

Confocal single-cell dataset annotated by three experts. Despite the fact that the 
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annotators are all experts in the field, the obtained segmentations slightly differ (green 

contours). However, those obtained by the proposed software do not vary significantly (red 

contour). (c) Segmentations of a cancer-derived multicellular spheroid, imaged with an 

LSFM at a single-cell level. (d) 3D-Cell-Annotator can be used to extract cells with a 

special phenotype as shown in the magnified cell (red). Figure is adapted from [9]. 

 

This tool facilitates the 3D segmentation of individual cells and nuclei from a 3D dataset, 

commonly acquired using confocal, multi-photon, or light-sheet fluorescence microscopes. 

It employs 3D active contours with shape descriptors as prior information to achieve 

accurate single cell annotation in a semi-automatic manner. Each object is assigned a label 

to initiate contour evolution, and the annotation process can be done manually, cell-by-

cell, or semi-automatically by placing initial seed points. Unlike the general active surface 

algorithm, which may generate object clusters when cells share boundaries, the proposed 

selective active surface method uses user-provided shape descriptor values (sphericity and 

volume) to apply forces and ensure more precise segmentation. During surface evolution, 

these prior parameters can be finely adjusted with high precision to achieve single cell level 

segmentation. The resulting segmentations are automatically exported as 3D masks. 

During the evaluation of 3D-Cell-Annotator, we computed the Jaccard Index for the 

segmentations obtained by 3D-Cell-Annotator, and compared it to other tools as well as to 

manual segmentations executed by expert annotators [9, 10]. The obtained results showed 

that 3D-Cell-Annotator works with an accuracy comparable to human experts. Based on 

these results, we consider this tool suitable for generating training tests for more advanced 

machine learning approaches. 

 

5.1.3 3D nuclei segmentation 

As we implied in chapter 5.1.2, our aim is to segment cell nuclei automatically. Of the 

existing methods, we chose StarDist-3D [139] because its developers claim that it works 

with high precision in images with low signal-to-noise ratios and/or dense packing of 

nuclei, which is the case in images of spheroids. The name "StarDist" was chosen because 

this model applies a star-convex polygon representation for cell shape, instead of using 
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more traditional methods like watershed transformations [140] or the U-Net convolutional 

neural network [141]. 

As StarDist is a method for deep learning based instance segmentation, it requires training 

data. This data consists of corresponding pairs of input (i.e. raw) images and fully 

annotated label images (i.e. every pixel is labelled with a unique object id or 0 for 

background). During the training there are two main steps (Figure 16): 

1. Object Detection: StarDist begins by detecting the centers of individual cells in the 

3D image. Each cell is associated with a center voxel (a pixel in 3D space). The 

task is formulated as a binary classification problem where each voxel in the 3D 

image is classified as either being the center of a cell or not. 

2. Shape Prediction: After the centers of cells are detected, StarDist predicts the 3D 

shape of each cell. This is done by predicting the distances from the center voxel 

to the boundary of the cell in various directions. 

 

 

Figure 16 Representation of the StarDist-3D method. a) StarDist-3D method is trained to 

densely predict object probabilities p and radial distances dk to object boundaries. b) 

Schematic of the used convolutional neural networks architecture based on ResNet. Figure 

is adapted from [139]. 

 

This method predicts the parameters of the polyhedra directly and densely for each pixel. 

Following this, it applies non-maximum suppression to remove redundancies from the 

large set of polyhedron shapes that we've obtained. Ideally, this process will leave us with 

only one predicted shape for each actual object in the image. 
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5.2. Materials and methods 

5.2.1 Co-culture spheroid dataset 

We used 3D images of co-culture spheroids as a test dataset. The spheroids were generated 

from Hela-Kyoto adenocarcinoma cells and MRC-5 fibroblast cells. The cell ratio was: 

20+80% (60 HeLa cells + 240 MRC-5 = 300 cells/well). The seeding happened 

sequentially, which means that on day 1 60 HeLa cells per well were seeded into a U-

bottom, cell-repellent 384-well plate (Greiner, 787979). On day 2, 240 MRC-5 cells were 

added to each well. The spheroids were incubated in a medium consists of DMEM 

supplemented with 10% of FBS, 1% L-glutamine and 1% P/S/A. After the spheroids 

developed, they were washed twice with Ca2+/Mg2+ PBS and fixed with 4% PFA for an 

hour at room temperature. For the staining, the spheroids were incubated in 1% TRITON-

X for overnight, then wash with PBS 2 times. The nuclei were stained with DAPI (1 µg/ml) 

overnight. The Hela-Kyoto cells express two fluorescent proteins, a H2B-associated 

mCherry fluorescent protein and an alpha tubulin-associated EGFP (enhanced GFP). This 

means that the nuclei of Hela-Kyoto cells, when excited with 638 nm light, are visible in 

fluorescence microscopy images without staining. When looking at the DAPI channel, all 

nuclei from both the HeLa and fibroblast cell lines are visible (Figure 17). 

 

Figure 17 Cell nuclei in a HeLa-Kyoto – MRC-5 co-culture spheroid. a) Cells under 405 

nm laser excitation (we could see all of the cell nuclei), b) cells under 638 nm laser 

excitation (we could only see the Hela-Kyoto cells), c) the combination of the channels in 

a) and b). Scalebar: 50 µm. 

 

A Leica SP8 Digital LightSheet microscope was used to take fluorescence images. 

Fluorescence light sheet images were acquired with an exposure time of 200 ms at 50% 

laser intensity at 405 and 638 nm (maximum laser intensity 350 mW), and a 25x/0.95 
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detection objective was used for light sheet imaging with a 2.5 mm mirror device mounted 

on the objective. Images were captured with the sCMOS DFC9000 Leica camera at a 

resolution of 2048 × 2048 pixels with a pixel size of 0.14370117 µm. The spacing between 

images in each z-set was 3.7 µm. 

 

5.2.2 Segmentation 

For 3D nuclei segmentation, we used the aforementioned StarDist-3D method [139]. 

However, as it was described in subchapter 5.1.3, to train the deep neural network, we need 

annotated 3D data. To create that, we used 3D-Cell-Annotator [9] on 12 images showing 

fluorescently labelled nuclei of spheroids. Our training dataset contained manually and 

semi-automatically annotated nucleus instances (7238 in total). We applied data 

augmentations during training, including random rotations, flips, and intensity changes, 

which are typically sensible for 3D microscopy images.  

We randomly chose 9/3 images for training/validation. To evaluate the performance of our 

trained model, we used the same metrics as the authors of the StarDist article [139]. 

Namely, we calculated 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝜏) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

where TP are true positives, which are pairs of predicted and ground-truth nuclei having 

an overlap beyond a chosen intersection over union threshold (τ). FP are false positives 

(unmatched predicted instances) and FN are false negatives (unmatched ground-truth 

instances). The value of τ can be between 0 (even slightly overlapping objects count as 

correctly predicted) and 1 (only pixel-perfectly overlapping objects count). During our 

evaluation, we set τ to 0.7 and reached 0.6453 accuracy. 

After the training was finished, we used our model to segment nuclei in new, previously 

unseen images (see Figure 18). 
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Figure 18 Nuclei segmentation with StarDist-3D method on a Hela-Kyoto-MRC-5 co-

culture spheroid. Top: 3D representation of a nuclei-labelled co-culture spheroid and the 

segmentation what was performed on it. Bottom: Representation of the nuclei segmentation 

in different z-positions, showing the top, the middle and the bottom region of the spheroid. 
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5.2.3 Feature extraction 

We extracted 3D features that describe the shape and intensity of the selected nuclei and 

we used neighbourhood features to represent the microenvironment. The full list of features 

we used: 

 Regular features:  

o Shape features: elongation, equivalent ellipsoid diameters, equivalent 

sphere diameter, equivalent sphere perimeter, extent, Feret diameter, 

flatness, number of components, principal moments, rotation invariants, 

roundness, surface voxels, volumetry, voxels 

o Intensity features: integrated, minimum, maximum, mean, median and 

standard deviation statistics of a 3D region 

 Neighbourhood features: the minimum, maximum, mean, median, and standard 

deviation statistics of the regular features; distance features: minimum, maximum, 

mean, median, standard deviation. 

Similar to what was presented in Chapter 3, we have defined what we consider a neighbour 

in two ways: with the KNN and the N-distance methods (here, we calculated the Euclidean-

distances in the 3D space). For the feature extraction, we used BIAS (see subsection 3.3.1). 

 

5.2.4 Machine learning classification 

After feature extraction, we created a training dataset for machine learning classification 

using BIAS. We distinguished two classes: HeLa-Kyoto cells and MRC-5 cells and 400 

cells were labelled. We took special care to not label the same cell types that are in a close 

proximity, because it could potentially cause a bias in the evaluation. During the labelling, 

the human experts used information in the images from both the red and blue channels to 

distinguish the two cell types. Fibroblast cells are visible only in the blue channel, while 

carcinoma cells are visible in both channels (Figure 17,19). However, after preliminary 

tests, where our concept performed above 99% accuracy (Supplementary Section 3), we 

raised the question whether accurate classification was possible using shape features only. 

So it is important to point out that from then, we performed our training in such a way that 

the machine learning algorithms were not given intensity information of the objects 
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(whether a given nucleus was visible in the red or blue channel), but could only use data 

about the shape of the nuclei (Figure 19). 

We tested the performance of two classification methods: Random Forest and Multilayer 

Perceptron with different KNN and N-distance sizes. We used 10-fold cross validation to 

measure the accuracy. 

 

Figure 19 a) Image seen by the human expert during training data generation b) Image 

used by the machine learning algorithm. Scalebar: 50 µm. 

 

5.3. Results 

With two classification methods (Random Forest and Multilayer Perceptron), we 

compared whether the usage of regular features, neighbourhood features or the 

combination of these features give us the highest classification accuracy (Figure 20). We 

also took into account the size of the neighbourhood, we selected 5-25 nearest neighbours 

for the KNN and 100-500 pixels (14.37-71.85 µm) for the N-distance-based analysis.  

 

Figure 20 Illustration of the origin of regular features, neighbourhood features and the 

combination of them 
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The cross-validation results show that using neighbourhood features increases accuracy in 

every examined case (Figure 21). For both classifiers, whether KNN or N-distance 

approach was used, the highest results were obtained when both regular and neighbourhood 

features were included in the calculation. The best performance we observed was for the 

25 KNN using the Random Forest classifier. In this case, accuracy reached 87.5%, which 

is 13% better than that achieved when considering local features only. 

 

Figure 21 Comparison of the performance of machine learning methods RandomForest 

and MultilayerPerceptron (MLP) on different neighbourhood distances. Neighbours were 

selected with the KNN (left) and the N-distance methods (right). 
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6. Discussion 

The unprecedented progress in collecting and storing digital data has fuelled the demand 

for fast and dependable computer-based processing of digital images. This process aims to 

extract valuable insights from complex and diverse image datasets. In fields like life 

sciences, the improvements in microscopy provides never-seen chances for in-depth and 

detailed examination of biological systems. However, analysing this large amount of 

information requires automated processing of thousands of images. 

In this thesis, cell biology and pathology derived microscopy image analysis was addressed 

at a single-cell level. This kind of analysis can be a starting point to get detailed insight to 

the mechanism of action, viability or disease progression of individual cells in samples. 

There is a great potential that this deeper understanding could lead to more efficient 

treatments in drug discovery and clinical trials, or diagnosis in personalised medicine. 

Phenotypic single-cell analysis has become an important part of next-generation digital 

pathology evaluations. Regular histology work includes comparing neighbouring cells on 

a slide at smaller or larger distances. For instance, the subjective morphological 

comparison of nearby tumour cells is commonly used to identify anisocytosis or 

anisonucleosis, two biological hallmarks of malignancy [6]. Most often, digital pathology 

evaluation strategies concentrate on single cell features, the environment of individual cells 

is beyond its focus. 

In the first part of this thesis, we introduced a machine learning-based phenotyping method 

that uses both local and neighbourhood features. We showed that taking the cellular 

microenvironment into account significantly increases the recognition accuracy. This 

enhancement was observable for both cell cultures and tissue sections. However, we should 

point out that it was somewhat weaker (but still noticeable) in the case of images of cell 

cultures. From a biological viewpoint it is not difficult to explain why there is a difference 

in improvements between the MCF-7 and UBC datasets. Human tissue is a collection of 

heterogeneous cell types. Certain cell types frequently appear near each other, so 

recognising one can help us identify the other. 

The main questions we needed to address were: how many nearby cells do we need to 

include and from how far away to improve single-cell classification? In a cell culture, as 
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expected, including more cells from the environment increased accuracy for all of the 

classifiers until it reached a plateau. In the case of the urinary bladder cancer sections, we 

found a peak of the optimal distance of neighbours at ~80–100 micrometres, almost 

independently of the type of the classification method. Due to the inclusion of 

neighbouring cells, the amount of information substantially rises until a certain point (i.e. 

the optimal neighbourhood size). After this, adding more cells that are farther apart, led to 

a slowly growing confusion, i.e. the increasing number of neighbouring elements resulted 

in a decrease in accuracy. In our study, the NaiveBayes classifier achieved a modest level 

of accuracy, while the SMO, RandomForest, and MultiLayer Perceptron methods worked 

with high accuracy. 

In the second part of the thesis, we presented a method combining fisheye transformation 

with deep learning, an extension to our previous model, incorporating the information 

obtained from the cellular microenvironment in phenotypic classification. We showed that 

our method works better on MCF-7 cell culture and urinary bladder cancer datasets than 

using traditional machine learning with regular and neighbourhood features. We compared 

our results to the performance of deep neural networks (ResNet50 and InceptionV3) that 

used non-fisheye transformed images as inputs. For each dataset we used (a cell culture, 

two tissue sections, and a dataset containing images of animals), training with fisheye-

transformed images resulted in significantly higher phenotypic classification accuracies. 

An interesting segment of the testing was the inclusion of the iWildCam dataset. This is 

the only dataset in this thesis which is not cell biology or histology related. In the case of 

this set, usage of the fisheye transformation caused only a minor improvement in accuracy 

compared to the other datasets. The reason behind that might be that while recording the 

animals, fixed positioned cameras were used. This means that if animals were close or far 

from the camera, the view of their environment could be big, small, or not visible at all. 

Hence, even if we increase the window size, it may occur that we do not gain more 

information about the surrounding area. 

The third part of the thesis delved into the challenges of working with 3D cell cultures and 

the subsequent analysis in a three-dimensional context. The scientific community is excited 

about 3D cellular model systems because they promise to more closely reflect and recreate 

the in vivo tissue environment than 2D systems. We have to keep in mind though, that 



65 

 

these models frequently lack the necessary cell types and growth factors and do not take 

into account long-distance signalling from other organs, the immune system, the endocrine 

system, or the microbiome. As a result, in many cases they do not represent the complexity 

of many in vivo tissues [142]. 

Imaging of 3D model systems is a difficult task, due to the fact that these systems are 

characterised by high density and differences in refractive index that perturb the 

penetration depth of light and the opportunity to visualise very large spheroids [143]. In 

our work, we compared five clearing protocols on three types of spheroids generated from 

carcinoma cell-lines. We reviewed and evaluated seven quality metrics which 

quantitatively characterise the imaging quality. Based on our findings, we proposed the use 

of a unique quality metric as a way to compare optical clearing techniques and select the 

one that is most appropriate for a given experiment. 

A first step of many single-cell image analysis pipeline is segmentation. There are already 

existing methods to do this task in 3D [10], however, especially the deep-learning 

approaches require 3D annotated data to work properly. We developed 3D-Cell-Annotator 

that could potentially help annotators to create such training dataset in a semi-automated 

fashion. 

Finally, we showed our results in studying single-cells and their neighbourhood in a 3D 

co-culture that consisted of carcinoma and fibroblast cells. We found that including the 

neighbourhood features in our calculations improved phenotypic classification accuracy. 

An interesting result is that we could achieve a higher accuracy using the neighbourhood 

features only without including information about the cell itself. Another important finding 

is that we could recognize the two cell-types with 87.5% accuracy when we took into 

account only the shape attributes of the cells and their neighbours. This could have a critical 

influence on cell staining or labelling execution. Designing these cell staining experiments 

is a demanding task. So if we can demonstrate that we can get enough information for 

analysis while using fewer dyes, we can make it easier to carry out experiments. 

In conclusion, we showed that the incorporation of the microenvironment into machine-

learning based decisions can improve the task of single-cell phenotypic classification. This 

underscores the notion that cellular structures exhibit a deliberate organisation, and it is 

beneficial to account for these macro-structures in our considerations. 
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Our research also raises several directions to follow. One thing worth testing is the 

effectiveness of the fisheye transformation in 3D. We have seen that in the 2D case, it has 

improved the accuracy of the cell classification. However, the 2D implementation of the 

transformation was not integrated into a deep learning network, so it implies an extra pre-

processing step. Including this integration in the 3D implementation would probably make 

the learning process easier and faster. 

Another direction is to examine more complex 3D structures. It could be achieved by 

increasing the number of cell lines we use during co-culture spheroid generation. Another 

way to get more information from 3D cell cultures is to distinguish more phenotypes than 

we worked with before (for example dead/alive cells or mitotic cells). In our opinion, 

similar to the 2D case, the microenvironment may have a greater influence on the 

appearance of individual cells in 3D tissue samples. However, even with the promising 

advancements in tissue sectioning and image registration methods [144–146], it is rarely 

possible to achieve 3D single-cell resolution. Nonetheless, we believe that with the right 

choice of optical clearing and fluorescence staining protocols, we can get closer to 3D 

single-cell phenotype analysis in tissue samples. Classifying cells in such systems more 

accurately is a step towards characterising and understanding the phenotypic heterogeneity 

and cellular diversity of organisms. 
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Summary 

Machine learning has assumed a pivotal role in the realms of cell biology and medical 

image analysis. This emergence is primarily attributed to advancements in microscopy and 

computational cell biology, resulting in an unprecedented surge in data volume, often 

reaching the scale of millions of images per study. Modern-day researchers increasingly 

prefer high-content screenings; however, manually analysing the resulting datasets is either 

excessively time-consuming or, in some instances, not feasible. Moreover, there is 

potential for machines to identify valuable features within images that are beyond the 

human eye's capabilities. There is a shared interest in achieving detailed and reliable 

medical diagnoses and treatment. To accomplish this objective, it is crucial to enhance the 

accuracy of machine learning algorithms. 

This thesis presents our research in microscopic image analysis. Our aim was to extract 

valuable insights from complex image datasets on a single-cell level, particularly in the 

context of cell biology and pathology. We showed the influence of considering the cellular 

microenvironment in the phenotypic characterisation of individual cells using supervised 

machine learning and deep learning techniques. 

Firstly, we analysed images of MCF-7 cell culture and urinary bladder cancer tissue 

sections with classical supervised machine learning methods. We defined two approaches 

to represent the microenvironment: the K-nearest neighbours (KNN) and the N-distance 

methods. We extracted regular and neighbourhood features, and we have seen that while 

the local features of cells can be similar across different phenotypic classes, the 

neighbourhood features are able to identify them. The results of our analysis demonstrated 

that the incorporation of neighbourhood features significantly enhances the accuracy of 

machine learning-based classification, regardless of whether the data originates from cell 

cultures or tissue sections. The optimal size of the neighbourhood varied according to the 

specific dataset and classifier used. Notably, our findings emphasised the substantial 

impact of neighbourhood features on tissue section phenotyping, with performance 

improvement close to 20%. 

In the second part of the dissertation, we introduced a novel approach of representing 

images to deep-learning-based image classification networks. The fundamental concept 

revolves around the following notion: the original image includes both the object of 
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interest, as well as its surrounding microenvironment within a pre-defined range. 

Subsequently, a fisheye-like spatial sampling technique is applied to transform the images. 

The fisheye sampling collects more pixels from the close proximity of the object of interest, 

and the resolution decreases for larger proximity. Our findings demonstrated that the 

proposed transformation highly outperforms conventional machine-learning techniques 

and deep-learning-based classifiers. This performance was evaluated across various 

datasets including cell cultures, scans of cancerous tissues, and real-life images. 

While images in the MCF-7 cell culture dataset may contain visually uniform sections, it 

is important to recognise that these areas do not consist of cells that are molecularly 

identical. In such instances, the fisheye transformation proves valuable in capturing 

distinctions within these regions, and the utilisation of neighbourhood information offers 

a more statistically robust foundation for decision making. 

The most notable enhancement was in the case of urinary bladder cancer and lung cancer 

tissue sections, where variations in the microenvironment are clearly distinguishable. 

These distinctions become evident in histological examinations of tissues, revealing the 

synergistic relationships and interdependencies among various cell types. Our approach 

effectively captures these distinctions by employing the fisheye transformation and taking 

into account the spatial relationships of cells in different phenotypic classes. 

We observed only a modest accuracy improvement in the case of the iWildCam dataset 

(containing images of wild animals). It is still a relevant finding, as it demonstrates that the 

fisheye transformation approach is not useful in the case of microscopy images only, but 

for images from other aspects of life as well, where the environment plays an important 

role. 

In the third part of the thesis, we turned our attention to 3D cell cultures. As 3D single-cell 

analysis is a relatively new scientific field, we faced several challenges during the steps 

that precede phenotypic classification.  

We discussed the enhancement of microscopy image quality through optical clearing and 

assessed the efficacy of various clearing protocols. We presented our work on the 

development and comparison of a novel metric designed to assess the effectiveness of 

optical clearing protocols for 3D images in a consistent manner. We generated a 3D dataset 

consisting of cancer spheroids and used five different clearing protocols. We examined 
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seven no-reference sharpness metrics to evaluate these protocols. Out of the seven metrics 

only intensity variance proved suitable for quantitatively measuring the effect of optical 

clearing in microscopy images. 

Then, we explored the difficulties and remedies associated with annotating and segmenting 

cells in three dimension. Segmentation is the first step of single-cell level bioimage 

analysis. In 2D it is already demonstrated that the usage of deep learning methods for this 

task is highly effective. However, for the segmentation of 3D cell cultures, such algorithms 

require 3D-annotated data. To create this dataset manually is time-consuming and could 

lead to inaccurate training instances. To overcome these issues, we developed an MITK 

(Medical Imaging Interaction Toolkit) plugin, 3D-Cell-Annotator, which allows us to do 

annotation in a semi-automatic way. 

Lastly, we shared our achieved progress in investigating cells and their microenvironment 

within 3D co-cultures consisted of carcinoma and fibroblast cells. Similar to the first part, 

we used KNN and N-distance measurements to determine which cells we consider 

neighbours, and then performed the classifications with supervised machine learning 

algorithms. Our results showed, that including the neighbourhood features in the machine 

learning process increased phenotypic classification accuracy. Furthermore, we could 

distinguish the two cell types with 87.5% accuracy, solely by considering the shape 

attributes of the cells and their neighbours. 

Overall, the research demonstrates that integrating the cellular microenvironment into 

machine learning-driven analysis enhances single-cell phenotypic classification. This 

highlights the importance of considering macro-structures within cellular systems, 

ultimately advancing the understanding and potential applications of image analysis in 

various scientific contexts. 
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Összefoglalás 

A gépi tanulás kulcsfontosságú szerepet tölt be a sejtbiológia és az orvosi képelemzés 

területén. Ez elsősorban a mikroszkópia és a számítógépes sejtbiológia fejlődésének 

köszönhető, ami az adatmennyiség soha nem látott mértékű megugrását eredményezte, 

gyakran elérve a több millió képet vizsgálatonként. Napjainkban a kutatók egyre inkább a 

high-content felvételeket részesítik előnyben. Az így keletkező adathalmazok kézi 

elemzése azonban vagy túlságosan időigényes, vagy egyes esetekben egyenesen lehetetlen. 

Ezen kívül az elemzések során a számítógépek olyan értékes jellemzőket azonosíthatnak a 

képeken belül, amelyek az emberei szem számára láthatatlanok. Közös érdek a részletes és 

megbízható orvosi diagnózisok és kezelések felállítása. E cél eléréséhez elengedhetetlen a 

gépi tanulási algoritmusok pontosságának növelése. 

Ez a dolgozat a mikroszkopikus képelemzéssel kapcsolatos kutatásainkat mutatja be. 

Célunk az volt, hogy egysejtes szinten, különösen a sejtbiológia és a patológia 

összefüggésében értékes felismeréseket nyerjünk összetett képadathalmazokból. 

Megmutattuk, hogy a sejtek mikrokörnyezetének figyelembevétele milyen hatással van az 

egyes sejtek fenotípus jellemzésére, felügyelt gépi tanulás és mélytanulási technikák 

segítségével. 

Először MCF-7 sejttenyészetről és húgyhólyagrákos szöveti metszetekről készült képeket 

elemeztünk klasszikus felügyelt gépi tanulási módszerekkel. Két megközelítést 

használtunk a mikrokörnyezet meghatározására: a K-közelebbi szomszéd (KNN) és az N-

távolság módszerét. Lokális és szomszédsági jellemzőket vontunk ki, és azt láttuk, hogy 

míg a sejtek helyi jellemzői hasonlóak lehetnek a különböző fenotípus osztályokban, a 

szomszédsági jellemzők képesek megkülönböztetni őket. Eredményeink azt mutatták, 

hogy a szomszédsági jellemzők bevonása jelentősen növeli a gépi tanuláson alapuló 

osztályozás pontosságát, függetlenül attól, hogy az adatok sejtkultúrákból vagy szöveti 

metszetekből származnak. A szomszédság optimális mérete az adott adathalmaztól és az 

alkalmazott osztályozótól függően változott. Eredményeink kiemelik a szomszédsági 

jellemzők jelentős hatását a szöveti metszetek fenotipizálása esetében, ahol a 

teljesítményjavulás megközelítette a 20%-ot. 

A disszertáció második részében a képek reprezentálásának újszerű megközelítését 

mutattuk be, amelyek a mélytanuláson alapuló képosztályozó hálózatok bemeneteként 
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funkcionálhatnak. Az elvárásaink a következők voltak a bemeneti képekkel kapcsolatban: 

az eredeti kép tartalmazza mind a számunkra érdekes objektumot, mind pedig az azt 

körülvevő mikrokörnyezetet egy előre meghatározott tartományon belül. Ezt követően egy 

halszemoptika-szerű térbeli mintavételi technikát alkalmazunk a képek átalakítására. A 

halszemoptika-szerű mintavételezés több képpontot gyűjt össze a vizsgált objektum 

közvetlen közeléből, mint a távolabb elhelyezkedő képterületekről. Eredményeink azt 

mutatták, hogy a javasolt transzformáció nagymértékben felülmúlja a hagyományos gépi 

tanulási technikákat és a mélytanuláson alapuló osztályozókat. Ezt a teljesítményt 

különböző adathalmazokon, köztük sejttenyészeteken, rákos szöveti metszeteken és valós 

életből származó képeken értékeltük. 

Bár az MCF-7 sejtkultúra adathalmaz képei vizuálisan egységes megjelenésű sejteket 

tartalmazhatnak, fontos felismerni, hogy ezek a területek nem molekulárisan azonos 

sejtekből állnak. Ilyen esetekben a halszem-transzformáció értékesnek bizonyul a régiókon 

belüli különbségek megragadásában, és a szomszédsági információk felhasználása 

statisztikailag megbízhatóbb alapot nyújt az osztályozáshoz. 

A legjelentősebb javulást a húgyhólyagrák és a tüdőrák szöveti metszeteknél tapasztaltuk, 

ahol a mikrokörnyezet eltérései egyértelműen felismerhetők. Ezek a különbségek 

szövettani vizsgálatok során válnak nyilvánvalóvá, feltárva a különböző sejttípusok közötti 

szinergikus kapcsolatokat és kölcsönös függőségeket. Megközelítésünk a halszem-

transzformáció alkalmazásával és a különböző fenotípusos osztályokba tartozó sejtek 

térbeli kapcsolatainak figyelembevételével hatékonyan használja fel ezen különbség-

információkat. 

Az iWildCam adathalmaz (amely vadon élő állatok képeit tartalmazza) esetében csak 

szerény pontosságjavulást tapasztaltunk. Mindazonáltal a változás szignifikáns és kiemelt 

számunkra, mivel azt mutatja, hogy a halszem-transzformáción alapuló megközelítés nem 

csak a mikroszkópos képek esetében hasznos, hanem az élet más területeiről származó 

képek esetében is, ahol a környezet fontos szerepet játszik. 

A dolgozat harmadik részében a 3D-s sejtkultúrák felé fordítottuk figyelmünket. Mivel a 

3D egysejtes analízis viszonylag új tudományos terület, a fenotípus osztályozást megelőző 

lépések során számos kihívással szembesültünk.  

Tárgyaltuk a mikroszkópos képminőség optikai tisztítással történő javítását, és felmértük 

a különböző tisztítási protokollok hatékonyságát. Bemutattuk egy olyan új metrika 



73 

 

kifejlesztésére és összehasonlítására irányuló munkánkat, amelynek célja a 3D képek 

optikai tisztítási protokolljainak hatékonyságának egységesített értékelése volt. 

Létrehoztunk egy rákos szferoidokból álló 3D-s adathalmazt és öt különböző tisztítási 

protokollt alkalmaztunk ezen mintákon. E protokollok hatékonyságának megállapítására 

hét fajta kiértékelést vizsgáltunk. A hét metrika közül csak az intenzitásvariáció bizonyult 

alkalmasnak az optikai tisztítás hatásának kvantitatív mérésére mikroszkópos képeken. 

Ezután megvizsgáltuk a sejtek háromdimenziós annotálásával és szegmentálásával 

kapcsolatos kihívásokat. A szegmentálás az egysejtes biológiai képek elemzésének első 

lépése. 2D-ben már bebizonyosodott, hogy a mélytanulási módszerek használata erre a 

feladatra igen hatékony. A 3D-s sejttenyészetek szegmentálásához azonban az ilyen 

algoritmusoknak 3D-s annotált tanító adatokra van szükségük. Ennek az adathalmaznak a 

manuális létrehozása időigényes és pontatlan tanításai példák használatához vezethet. E 

problémák leküzdésére kifejlesztettünk egy MITK (Medical Imaging Interaction Toolkit) 

plugint, a 3D-Cell-Annotator-t, amellyel az annotációt részben automatizált módon 

végezhetjük el. 

Végül megosztottuk a sejtek és mikrokörnyezetük vizsgálatában elért eredményeinket a 

karcinóma- és fibroblaszt sejtekből álló 3D ko-kultúrák esetében. Az első részhez 

hasonlóan KNN és N-távolság mérésekkel határoztuk meg, hogy mely sejteket tekintjük 

szomszédnak, majd felügyelt gépi tanulási algoritmusokkal végeztük el az 

osztályozásokat. Eredményeink azt mutatták, hogy a szomszédsági jellemzők bevonása a 

gépi tanulási folyamatba növelte a fenotípus osztályozási pontosságot. 87,5%-os 

pontossággal tudtuk megkülönböztetni a két sejttípust a szferoidokon belül, kizárólag a 

sejtek és szomszédaik alaki jellemzőinek figyelembevételével. 

Összességében a kutatás azt mutatja, hogy a sejtek mikrokörnyezetének integrálása a gépi 

tanulás által vezérelt elemzésbe javítja az egysejtes fenotípus osztályozást. Ez rávilágít a 

mikrostruktúrák sejtes rendszereken belüli figyelembevételének fontosságára, ami végső 

soron a képelemzés megértését és lehetséges alkalmazásait segíti elő különböző 

tudományos kontextusokban. 

  



74 

 

References  

1. Horvath, P., Aulner, N., Bickle, M., Davies, A.M., Nery, E. Del, Ebner, D., 

Montoya, M.C., Östling, P., Pietiäinen, V., Price, L.S., Shorte, S.L., Turcatti, G., 

Von Schantz, C., Carragher, N.O.: Screening out irrelevant cell-based models of 

disease. Nat. Rev. Drug Discov. 15, 751–769 (2016). 

https://doi.org/10.1038/nrd.2016.175. 

2. Domingos, P.: A Few Useful Things to Know About Machine Learning. Commun. 

ACM. 55, 78–87 (2012). https://doi.org/10.1145/2347736.2347755. 

3. Sommer, C., Gerlich, D.W.: Machine learning in cell biology – teaching computers 

to recognize phenotypes. J. Cell Sci. 126, 5529 LP – 5539 (2013). 

4. Grys, B.T., Lo, D.S., Sahin, N., Kraus, O.Z., Morris, Q., Boone, C., Andrews, B.J.: 

Machine learning and computer vision approaches for phenotypic profiling. J. Cell 

Biol. 216, 65–71 (2016). https://doi.org/10.1083/jcb.201610026. 

5. Pratapa, A., Doron, M., Caicedo, J.C.: Image-based cell phenotyping with deep 

learning. Curr. Opin. Chem. Biol. 65, 9–17 (2021). 

https://doi.org/10.1016/j.cbpa.2021.04.001. 

6. Toth, T., Balassa, T., Bara, N., Kovacs, F., Kriston, A.: Environmental properties of 

cells improve machine learning-based phenotype recognition accuracy. Sci. Rep. 1–

9 (2018). https://doi.org/10.1038/s41598-018-28482-y. 

7. Toth, T., Bauer, D., Sukosd, F., Peter, H.: Fisheye transformation enhances deep-

learning- based single-cell phenotyping by including cellular microenvironment. 

Cell Reports Methods. 2, 100339 (2022). 

https://doi.org/10.1016/j.crmeth.2022.100339. 

8. Diosdi, A., Hirling, D., Kovacs, M., Toth, T., Harmati, M., Koos, K., Buzas, K., 

Piccinini, F., Horvath, P.: A quantitative metric for the comparative evaluation of 

optical clearing protocols for 3D multicellular spheroids. Comput. Struct. 

Biotechnol. J. 19, 1233–1243 (2021). https://doi.org/10.1016/j.csbj.2021.01.040. 

9. Tasnadi, E.A., Toth, T., Kovacs, M., Diosdi, A., Pampaloni, F., Molnar, J., Piccinini, 

F., Horvath, P.: 3D-Cell-Annotator : an open-source active surface tool for single-

cell segmentation in 3D microscopy images. 36, 2948–2949 (2020). 



75 

 

https://doi.org/10.1093/bioinformatics/btaa029. 

10. Piccinini, F., Balassa, T., Carbonaro, A., Diosdi, A., Toth, T., Moshkov, N., Tasnadi, 

E.A., Horvath, P.: Software tools for 3D nuclei segmentation and quantitative 

analysis in multicellular aggregates. Comput. Struct. Biotechnol. J. 18, 1287–1300 

(2020). https://doi.org/10.1016/j.csbj.2020.05.022. 

11. Shinde, P.P.: A Review of Machine Learning and Deep Learning Applications. 2018 

Fourth Int. Conf. Comput. Commun. Control Autom. 1–6 (2018). 

12. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall 

Press, USA (2020). 

13. Khemphila, A., Boonjing, V.: Comparing performances of logistic regression, 

decision trees, and neural networks for classifying heart disease patients. In: 2010 

International Conference on Computer Information Systems and Industrial 

Management Applications (CISIM). pp. 193–198 (2010). 

https://doi.org/10.1109/CISIM.2010.5643666. 

14. Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K.A., Elkhatib, Y., Hussain, A., Al-

Fuqaha, A.: Unsupervised Machine Learning for Networking: Techniques, 

Applications and Research Challenges. IEEE Access. 7, 65579–65615 (2019). 

https://doi.org/10.1109/ACCESS.2019.2916648. 

15. Likas, A., Vlassis, N., J. Verbeek, J.: The global k-means clustering algorithm. 

Pattern Recognit. 36, 451–461 (2003). 

https://doi.org/https://doi.org/10.1016/S0031-3203(02)00060-2. 

16. Murtagh, F., Contreras, P.L.S.: Algorithms For Hierarchical Clustering: An 

Overview. WIREs Data Min. Knowl. Discov. 2, 86–97 (2011). 

https://doi.org/10.1002/widm.53. 

17. Ringnér, M.: What is principal component analysis? Nat. Biotechnol. 26, 303–304 

(2008). https://doi.org/10.1038/nbt0308-303. 

18. van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 

109, 373–440 (2020). https://doi.org/10.1007/s10994-019-05855-6. 

19. Reddy, Y.C.A.P., Viswanath, P., Reddy, B.E.: Semi - supervised learning : a brief 

review. 7, 81–85 (2018). 



76 

 

20. Schmidt, J., Marques, M.R.G., Botti, S., Marques, M.A.L.: Recent advances and 

applications of machine learning in solid-state materials science. npj Comput. 

Mater. 5, 83 (2019). https://doi.org/10.1038/s41524-019-0221-0. 

21. Choudhary, K., DeCost, B., Chen, C., Jain, A., Tavazza, F., Cohn, R., Park, C.W., 

Choudhary, A., Agrawal, A., Billinge, S.J.L., Holm, E., Ong, S.P., Wolverton, C.: 

Recent advances and applications of deep learning methods in materials science. npj 

Comput. Mater. 8, 59 (2022). https://doi.org/10.1038/s41524-022-00734-6. 

22. Cai, L., Gao, J., Zhao, D.: A review of the application of deep learning in medical 

image classification and  segmentation. Ann. Transl. Med. 8, 713 (2020). 

https://doi.org/10.21037/atm.2020.02.44. 

23. Lauriola, I., Lavelli, A., Aiolli, F.: An introduction to Deep Learning in Natural 

Language Processing: Models, techniques, and tools. Neurocomputing. 470, 443–

456 (2022). https://doi.org/https://doi.org/10.1016/j.neucom.2021.05.103. 

24. Ying, X.: An Overview of Overfitting and its Solutions. J. Phys. Conf. Ser. 1168, 

22022 (2019). https://doi.org/10.1088/1742-6596/1168/2/022022. 

25. Kaur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H., Wortman Vaughan, J.: 

Interpreting Interpretability: Understanding Data Scientists’ Use of Interpretability 

Tools for Machine Learning. In: Proceedings of the 2020 CHI Conference on 

Human Factors in Computing Systems. pp. 1–14. Association for Computing 

Machinery, New York, NY, USA (2020). 

https://doi.org/10.1145/3313831.3376219. 

26. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and 

organization in the brain. Psychol. Rev. 65 6, 386–408 (1958). 

27. Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numer. 

Math. 16, 146–160 (1976). https://doi.org/10.1007/BF01931367. 

28. Ivakhnenko, A.G., Lapa, V.G.: CYBERNETIC PREDICTING DEVICES. 

Presented at the (1966). 

29. Krizhevsky, A., Hinton, G.E.: ImageNet Classification with Deep Convolutional 

Neural Networks. 1–9. 

30. Dang, Q., Yin, J., Wang, B., Zheng, W.: Deep Learning Based 2D Human Pose 



77 

 

Estimation : A Survey. 24, 663–676 (2019). 

31. Ronao, C.A., Cho, S.: Human activity recognition with smartphone sensors using 

deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016). 

https://doi.org/10.1016/j.eswa.2016.04.032. 

32. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A unified embedding for face 

recognition and clustering. In: 2015 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR). pp. 815–823 (2015). 

https://doi.org/10.1109/CVPR.2015.7298682. 

33. Grigorescu, S.: A survey of deep learning techniques for autonomous driving. 

(2019). https://doi.org/10.1002/rob.21918. 

34. Moen, E., Bannon, D., Kudo, T., Graf, W., Covert, M., Van Valen, D.: Deep 

learning for cellular image analysis. Nat. Methods. 16, 1233–1246 (2019). 

https://doi.org/10.1038/s41592-019-0403-1. 

35. He, K., Sun, J.: Deep Residual Learning for Image Recognition. 1–9. 

36. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data. 

3, 9 (2016). https://doi.org/10.1186/s40537-016-0043-6. 

37. Mei, X., Liu, Z., Robson, M.S.P.M., Marinelli, B., Huang, M.: RadImageNet : An 

Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning. 

(2022). 

38. Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., 

Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L.: Review of deep learning: 

concepts, CNN architectures, challenges, applications, future directions. J. Big Data. 

8, 53 (2021). https://doi.org/10.1186/s40537-021-00444-8. 

39. Azizpour, H., Razavian, A., Sullivan, J., Maki, A., Carlsson, S.: Factors of 

Transferability for a Generic ConvNet Representation. IEEE Trans. Pattern Anal. 

&amp; Mach. Intell. 38, 1790–1802 (2016). 

https://doi.org/10.1109/TPAMI.2015.2500224. 

40. Litman, T.: Personalized medicine-concepts, technologies, and applications in 

inflammatory  skin diseases. APMIS. 127, 386–424 (2019). 

https://doi.org/10.1111/apm.12934. 



78 

 

41. Singh, S., Carpenter, A.E., Genovesio, A.: Increasing the Content of High-Content 

Screening : An Overview. (2014). https://doi.org/10.1177/1087057114528537. 

42. Dao, D., Fraser, A.N., Hung, J., Ljosa, V., Singh, S., Carpenter, A.E.: CellProfiler 

Analyst: interactive data exploration, analysis and classification of large biological 

image sets. Bioinformatics. 32, 3210–3212 (2016). 

https://doi.org/10.1093/bioinformatics/btw390. 

43. Mcdole, K., Amat, F., Turaga, S.C., Branson, K., Keller, P.J., Amat, F., Berger, A.: 

In Toto Imaging and Reconstruction of Post- Implantation Mouse Development at 

the Single- Cell Level In Toto Imaging and Reconstruction of Post-Implantation 

Mouse Development at the Single-Cell Level. 859–876 (2018). 

https://doi.org/10.1016/j.cell.2018.09.031. 

44. Kapałczyńska, M., Kolenda, T., Przybyła, W., Zajączkowska, M., Teresiak, A., 

Filas, V., Ibbs, M., Bliźniak, R., Łuczewski, Ł., Lamperska, K.: 2D and 3D cell 

cultures - a comparison of different types of cancer cell  cultures. Arch. Med. Sci. 

14, 910–919 (2018). https://doi.org/10.5114/aoms.2016.63743. 

45. Philippeos, C., Hughes, R.D., Dhawan, A., Mitry, R.R.: Introduction to cell culture. 

Methods Mol. Biol. 806, 1–13 (2012). https://doi.org/10.1007/978-1-61779-367-

7_1. 

46. Ramsey, W.S., Hertl, W., Nowlan, E.D., Binkowski, N.J.: Surface treatments and 

cell attachment. In Vitro. 20, 802–808 (1984). https://doi.org/10.1007/BF02618296. 

47. Shen, M., Horbett, T.A.: The effects of surface chemistry and adsorbed proteins on 

monocyte/macrophage  adhesion to chemically modified polystyrene surfaces. J. 

Biomed. Mater. Res. 57, 336–345 (2001). https://doi.org/10.1002/1097-

4636(20011205)57:3<336::aid-jbm1176>3.0.co;2-e. 

48. Wiatrak, B., Kubis-Kubiak, A., Piwowar, A., Barg, E.: PC12 Cell Line: Cell Types, 

Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells. 9, 

(2020). https://doi.org/10.3390/cells9040958. 

49. Shariff, A., Kangas, J., Coelho, L.P., Quinn, S., Murphy, R.F.: Automated Image 

Analysis for High-Content Screening and Analysis. J. Biomol. Screen. 15, 726–734 

(2010). https://doi.org/10.1177/1087057110370894. 



79 

 

50. Antoniou, N., Prodromidou, K., Kouroupi, G., Boumpoureka, I., Samiotaki, M., 

Panayotou, G., Xilouri, M., Kloukina, I., Stefanis, L., Grailhe, R., Taoufik, E., 

Matsas, R.: High content screening and proteomic analysis identify a kinase 

inhibitor that rescues pathological phenotypes in a patient-derived model of 

Parkinson’s disease. npj Park. Dis. 8, 15 (2022). https://doi.org/10.1038/s41531-

022-00278-y. 

51. Hollandi, R., Szkalisity, A., Toth, T., Carpenter, A.E., Smith, K., Hollandi, R., 

Szkalisity, A., Toth, T., Tasnadi, E., Molnar, C., Mathe, B., Grexa, I.: Methods in 

Brief nucleAIzer : A Parameter-free Deep Learning Framework for Nucleus 

Segmentation Using Image Style Transfer ll ll Methods in Brief nucleAIzer : A 

Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image 

Style Transfer. Cell Syst. 10, 453-458.e6 (2020). 

https://doi.org/10.1016/j.cels.2020.04.003. 

52. Grimm, J.B., Lavis, L.D.: Caveat fluorophore: an insiders’ guide to small-molecule 

fluorescent labels. Nat. Methods. 19, 149–158 (2022). 

https://doi.org/10.1038/s41592-021-01338-6. 

53. Proteins, F.: Use of Fluorescent Probes : Their Effect on Cell Biology and 

Limitations. 2036, 2031–2036 (2012). 

54. Bancroft, J.D., Gamble, M.: Theory and practice of histological techniques. Elsevier 

health sciences (2008). 

55. Taqi, S.A., Sami, S.A., Sami, L.B., Zaki, S.A.: A review of artifacts in 

histopathology. J. Oral Maxillofac. Pathol. 22, 279 (2018). 

https://doi.org/10.4103/jomfp.JOMFP_125_15. 

56. Underwood, J.C.E.: More than meets the eye: the changing face of histopathology. 

Histopathology. 70, 4–9 (2017). https://doi.org/10.1111/his.13047. 

57. Veta, M., Pluim, J.P.W., van Diest, P.J., Viergever, M.A.: Breast Cancer 

Histopathology Image Analysis: A Review. IEEE Trans. Biomed. Eng. 61, 1400–

1411 (2014). https://doi.org/10.1109/TBME.2014.2303852. 

58. Lovitt, C.J., Shelper, T.B., Avery, V.M.: Advanced cell culture techniques for 

cancer drug discovery. Biology (Basel). 3, 345–367 (2014). 



80 

 

https://doi.org/10.3390/biology3020345. 

59. Westhouse, R.A.: Safety assessment considerations and strategies for targeted small 

molecule  cancer therapeutics in drug discovery. Toxicol. Pathol. 38, 165–168 

(2010). https://doi.org/10.1177/0192623309354341. 

60. Hughes, J.P., Rees, S., Kalindjian, S.B., Philpott, K.L.: Principles of early drug 

discovery. Br. J. Pharmacol. 162, 1239–1249 (2011). 

https://doi.org/10.1111/j.1476-5381.2010.01127.x. 

61. Gomez-Roman, N., Stevenson, K., Gilmour, L., Hamilton, G., Chalmers, A.J.: A 

novel 3D human glioblastoma cell culture system for modeling drug and radiation  

responses. Neuro. Oncol. 19, 229–241 (2017). 

https://doi.org/10.1093/neuonc/now164. 

62. Ramaiahgari, S.C., den Braver, M.W., Herpers, B., Terpstra, V., Commandeur, 

J.N.M., van de Water, B., Price, L.S.: A 3D in vitro model of differentiated HepG2 

cell spheroids with improved  liver-like properties for repeated dose high-

throughput toxicity studies. Arch. Toxicol. 88, 1083–1095 (2014). 

https://doi.org/10.1007/s00204-014-1215-9. 

63. Lv, D., Hu, Z., Lu, L., Lu, H., Xu, X.: Three-dimensional cell culture: A powerful 

tool in tumor research and drug  discovery. Oncol. Lett. 14, 6999–7010 (2017). 

https://doi.org/10.3892/ol.2017.7134. 

64. Huang, Y., Tong, L., Yi, L., Zhang, C., Hai, L., Li, T., Yu, S., Wang, W., Tao, Z., 

Ma, H., Liu, P., Xie, Y., Yang, X.: Three-dimensional hydrogel is suitable for 

targeted investigation of amoeboid  migration of glioma cells. Mol. Med. Rep. 17, 

250–256 (2018). https://doi.org/10.3892/mmr.2017.7888. 

65. Lv, D., Yu, S.-C., Ping, Y.-F., Wu, H., Zhao, X., Zhang, H., Cui, Y., Chen, B., 

Zhang, X., Dai, J., Bian, X.-W., Yao, X.-H.: A three-dimensional collagen scaffold 

cell culture system for screening  anti-glioma therapeutics. Oncotarget. 7, 56904–

56914 (2016). https://doi.org/10.18632/oncotarget.10885. 

66. Piccinini, F., Santis, I. De, Bevilacqua, A.: Advances in cancer modeling: fluidic 

systems for increasing representativeness of large 3D multicellular spheroids. 

Biotechniques. 65, 312–314 (2018). https://doi.org/10.2144/btn-2018-0153. 



81 

 

67. Cesarz, Z., Tamama, K.: Spheroid Culture of Mesenchymal Stem Cells. Stem Cells 

Int. 2016, 9176357 (2016). https://doi.org/10.1155/2016/9176357. 

68. Sawant-Basak, A., Obach, R.S.: Emerging Models of Drug Metabolism, 

Transporters, and Toxicity. Drug Metab. Dispos. 46, 1556–1561 (2018). 

https://doi.org/10.1124/dmd.118.084293. 

69. Sant, S., Johnston, P.A.: The production of 3D tumor spheroids for cancer drug 

discovery. Drug Discov. Today Technol. 23, 27–36 (2017). 

https://doi.org/https://doi.org/10.1016/j.ddtec.2017.03.002. 

70. Di Modugno, F., Colosi, C., Trono, P., Antonacci, G., Ruocco, G., Nisticò, P.: 3D 

models in the new era of immune oncology: focus on T cells, CAF and ECM. J. 

Exp. Clin. Cancer Res. 38, 117 (2019). https://doi.org/10.1186/s13046-019-1086-2. 

71. Lock, J.G., Stromblad, S.: Systems microscopy: an emerging strategy for the life 

sciences. Exp. Cell Res. 316, 1438–1444 (2010). 

https://doi.org/10.1016/j.yexcr.2010.04.001. 

72. Boland, M. V, Murphy, R.F.: A neural network classifier capable of recognizing the 

patterns of all major subcellular structures in fluorescence microscope images of 

HeLa cells. Bioinformatics. 17, 1213–1223 (2001). 

https://doi.org/10.1093/bioinformatics/17.12.1213. 

73. Young, D.W., Bender, A., Hoyt, J., McWhinnie, E., Chirn, G.-W., Tao, C.Y., 

Tallarico, J.A., Labow, M., Jenkins, J.L., Mitchison, T.J., Feng, Y.: Integrating high-

content screening and ligand-target prediction to identify mechanism of action. Nat 

Chem Biol. 4, 59–68 (2008). 

74. Gasparri, F., Mariani, M., Sola, F., Galvani, A.: Quantification of the proliferation 

index of human dermal fibroblast cultures with the ArrayScan high-content 

screening reader. J. Biomol. Screen. 9, 232–243 (2004). 

https://doi.org/10.1177/1087057103262836. 

75. Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., 

Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., Golland, P., Sabatini, D.M.: 

CellProfiler: image analysis software for identifying and quantifying cell 

phenotypes. Genome Biol. 7, R100 (2006). https://doi.org/10.1186/gb-2006-7-10-



82 

 

r100. 

76. Molnar, J., Molnar, C., Horvath, P.: An Object Splitting Model Using Higher-Order 

Active Contours for Single-Cell Segmentation. In: Bebis, G., Boyle, R., Parvin, B., 

Koracin, D., Porikli, F., Skaff, S., Entezari, A., Min, J., Iwai, D., Sadagic, A., 

Scheidegger, C., and Isenberg, T. (eds.) Advances in Visual Computing: 12th 

International Symposium, ISVC 2016, Las Vegas, NV, USA, December 12-14, 

2016, Proceedings, Part I. pp. 24–34. Springer International Publishing, Cham 

(2016). https://doi.org/10.1007/978-3-319-50835-1_3. 

77. Molnar, C., Jermyn, I.H., Kato, Z., Rahkama, V., Östling, P., Mikkonen, P., 

Pietiäinen, V., Horvath, P.: Accurate Morphology Preserving Segmentation of 

Overlapping Cells based on Active Contours. Sci. Rep. 6, 32412 (2016). 

https://doi.org/10.1038/srep32412. 

78. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC 

Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern 

Anal. Mach. Intell. 34, 2274–2282 (2012). 

https://doi.org/10.1109/TPAMI.2012.120. 

79. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic Superpixels 

Technical Report. (2010). 

80. Neumann, B., Walter, T., Heriche, J.-K., Bulkescher, J., Erfle, H., Conrad, C., 

Rogers, P., Poser, I., Held, M., Liebel, U., Cetin, C., Sieckmann, F., Pau, G., Kabbe, 

R., Wunsche, A., Satagopam, V., Schmitz, M.H.A., Chapuis, C., Gerlich, D.W., 

Schneider, R., Eils, R., Huber, W., Peters, J.-M., Hyman, A.A., Durbin, R., 

Pepperkok, R., Ellenberg, J.: Phenotypic profiling of the human genome by time-

lapse microscopy reveals cell division genes. Nature. 464, 721–727 (2010). 

https://doi.org/10.1038/nature08869. 

81. Banerjee, I., Yamauchi, Y., Helenius, A., Horvath, P.: High-Content Analysis of 

Sequential Events during the Early Phase of Influenza A Virus Infection, (2013). 

https://doi.org/10.1371/journal.pone.0068450. 

82. Jones, T.R., Kang, I.H., Wheeler, D.B., Lindquist, R.A., Papallo, A., Sabatini, D.M., 

Golland, P., Carpenter, A.E.: CellProfiler Analyst: data exploration and analysis 

software for complex image-based screens. BMC Bioinformatics. 9, 482 (2008). 



83 

 

https://doi.org/10.1186/1471-2105-9-482. 

83. Jones, T.R., Carpenter, A.E., Lamprecht, M.R., Moffat, J., Silver, S.J., Grenier, J.K., 

Castoreno, A.B., Eggert, U.S., Root, D.E., Golland, P., Sabatini, D.M.: Scoring 

diverse cellular morphologies in image-based screens with iterative feedback and 

machine learning. Proc. Natl. Acad. Sci. U. S. A. 106, 1826–1831 (2009). 

https://doi.org/10.1073/pnas.0808843106. 

84. Rämö, P., Sacher, R., Snijder, B., Begemann, B., Pelkmans, L.: CellClassifier: 

supervised learning of cellular phenotypes. Bioinformatics. 25, 3028–3030 (2009). 

https://doi.org/10.1093/bioinformatics/btp524. 

85. Misselwitz, B., Strittmatter, G., Periaswamy, B., Schlumberger, M.C., Rout, S., 

Horvath, P., Kozak, K., Hardt, W.-D.: Enhanced CellClassifier: a multi-class 

classification tool for microscopy images, (2010). https://doi.org/10.1186/1471-

2105-11-30. 

86. Horvath, P., Wild, T., Kutay, U., Csucs, G.: Machine Learning Improves the 

Precision and Robustness of High-Content Screens. J. Biomol. Screen. 16, 1059–

1067 (2011). https://doi.org/10.1177/1087057111414878. 

87. Piccinini, F., Balassa, T., Szkalisity, A., Molnar, C., Paavolainen, L., Kujala, K., 

Buzas, K., Sarazova, M., Pietiainen, V., Kutay, U., Smith, K., Horvath, P.: 

Advanced Cell Classifier: User-Friendly Machine-Learning-Based Software for 

Discovering Phenotypes in High-Content Imaging Data. Cell Syst. 4, 651-655.e5 

(2017). https://doi.org/10.1016/j.cels.2017.05.012. 

88. Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D.M., Goldberg, I.G.: 

WND-CHARM: Multi-purpose image classification using compound image 

transforms. Pattern Recognit. Lett. 29, 1684–1693 (2008). 

https://doi.org/http://dx.doi.org/10.1016/j.patrec.2008.04.013. 

89. Uhlmann, V., Singh, S., Carpenter, A.E.: CP-CHARM: segmentation-free image 

classification made accessible. BMC Bioinformatics. 17, 51 (2016). 

https://doi.org/10.1186/s12859-016-0895-y. 

90. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression 

in a single cell. Science. 297, 1183–1186 (2002). 



84 

 

https://doi.org/10.1126/science.1070919. 

91. Maheshri, N., O’Shea, E.K.: Living with noisy genes: how cells function reliably 

with inherent variability in gene expression. Annu. Rev. Biophys. Biomol. Struct. 

36, 413–434 (2007). https://doi.org/10.1146/annurev.biophys.36.040306.132705. 

92. Raj, A., van Oudenaarden, A.: Nature, nurture, or chance: stochastic gene 

expression and its consequences. Cell. 135, 216–226 (2008). 

https://doi.org/10.1016/j.cell.2008.09.050. 

93. Snijder, B., Sacher, R., Ramo, P., Damm, E.-M., Liberali, P., Pelkmans, L.: 

Population context determines cell-to-cell variability in endocytosis and virus 

infection. Nature. 461, 520–523 (2009). https://doi.org/10.1038/nature08282. 

94. Vlamakis, H., Aguilar, C., Losick, R., Kolter, R.: Control of cell fate by the 

formation of an architecturally complex bacterial community. Genes Dev. 22, 945–

953 (2008). https://doi.org/10.1101/gad.1645008. 

95. Ljosa, V., Sokolnicki, K.L., Carpenter, A.E.: Annotated high-throughput 

microscopy image sets for validation. Nat Meth. 9, 637 (2012). 

96. Caie, P.D., Walls, R.E., Ingleston-Orme, A., Daya, S., Houslay, T., Eagle, R., 

Roberts, M.E., Carragher, N.O.: High-Content Phenotypic Profiling of Drug 

Response Signatures across Distinct Cancer Cells. Mol. Cancer Ther. 9, 1913 LP – 

1926 (2010). 

97. Smith, K., Horvath, P.: Active Learning Strategies for Phenotypic Profiling of High-

Content Screens. J. Biomol. Screen. 19, 685–695 (2014). 

https://doi.org/10.1177/1087057114527313. 

98. Scheeder, C., Heigwer, F., Boutros, M.: Machine learning and image-based 

profiling in drug discovery. Curr. Opin. Syst. Biol. 10, 43–52 (2018). 

https://doi.org/https://doi.org/10.1016/j.coisb.2018.05.004. 

99. Lin, D., Sun, L., Toh, K.-A., Zhang, J.B., Lin, Z.: Biomedical image classification 

based on a cascade of an SVM with a reject option and subspace analysis. Comput. 

Biol. Med. 96, 128–140 (2018). 

https://doi.org/https://doi.org/10.1016/j.compbiomed.2018.03.005. 

100. Dufour, A.C., Jonker, A.H., Olivo-Marin, J.C.: Deciphering tissue morphodynamics 



85 

 

using bioimage informatics. Philos. Trans. R. Soc. B Biol. Sci. 372, (2017). 

https://doi.org/10.1098/rstb.2015.0512. 

101. Gupta, A., Harrison, P.J., Wieslander, H., Pielawski, N., Kartasalo, K., Partel, G., 

Solorzano, L., Suveer, A., Klemm, A.H., Spjuth, O., Sintorn, I.M., Wählby, C.: 

Deep Learning in Image Cytometry: A Review. Cytom. Part A. 95, 366–380 (2019). 

https://doi.org/10.1002/cyto.a.23701. 

102. Standke, S.J., Colby, D.H., Bensen, R.C., Burgett, A.W.G., Yang, Z.: Mass 

Spectrometry Measurement of Single Suspended Cells Using a Combined Cell 

Manipulation System and a Single-Probe Device. Anal. Chem. 91, 1738–1742 

(2019). https://doi.org/10.1021/acs.analchem.8b05774. 

103. Mattiazzi Usaj, M., Sahin, N., Friesen, H., Pons, C., Usaj, M., Masinas, M.P.D., 

Shuteriqi, E., Shkurin, A., Aloy, P., Morris, Q., Boone, C., Andrews, B.J.: 

Systematic genetics and single-cell imaging reveal widespread morphological  

pleiotropy and cell-to-cell variability. Mol. Syst. Biol. 16, e9243 (2020). 

https://doi.org/10.15252/msb.20199243. 

104. Coudray, N., Ocampo, P.S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyö, 

D., Moreira, A.L., Razavian, N., Tsirigos, A.: Classification and mutation prediction 

from non–small cell lung cancer histopathology images using deep learning. Nat. 

Med. 24, 1559–1567 (2018). https://doi.org/10.1038/s41591-018-0177-5. 

105. Sullivan, D.P., Winsnes, C.F., Åkesson, L., Hjelmare, M., Wiking, M., Schutten, R., 

Campbell, L., Leifsson, H., Rhodes, S., Nordgren, A., Smith, K., Revaz, B., 

Finnbogason, B., Szantner, A., Lundberg, E.: Deep learning is combined with 

massive-scale citizen science to improve large-scale image classification. Nat. 

Biotechnol. 36, 820–828 (2018). https://doi.org/10.1038/nbt.4225. 

106. Ouyang, W., Winsnes, C.F., Hjelmare, M., Cesnik, A.J., Åkesson, L., Xu, H., 

Sullivan, D.P., Dai, S., Lan, J., Jinmo, P., Galib, S.M., Henkel, C., Hwang, K., 

Poplavskiy, D., Tunguz, B., Wolfinger, R.D., Gu, Y., Li, C., Xie, J., Buslov, D., 

Fironov, S., Kiselev, A., Panchenko, D., Cao, X., Wei, R., Wu, Y., Zhu, X., Tseng, 

K.-L., Gao, Z., Ju, C., Yi, X., Zheng, H., Kappel, C., Lundberg, E.: Analysis of the 

Human Protein Atlas Image Classification competition. Nat. Methods. 16, 1254–

1261 (2019). https://doi.org/10.1038/s41592-019-0658-6. 



86 

 

107. Thul, P.J., Åkesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., 

Alm, T., Asplund, A., Björk, L., Breckels, L.M., Bäckström, A., Danielsson, F., 

Fagerberg, L., Fall, J., Gatto, L., Gnann, C., Hober, S., Hjelmare, M., Johansson, F., 

Lee, S., Lindskog, C., Mulder, J., Mulvey, C.M., Nilsson, P., Oksvold, P., Rockberg, 

J., Schutten, R., Schwenk, J.M., Sivertsson, Å., Sjöstedt, E., Skogs, M., Stadler, C., 

Sullivan, D.P., Tegel, H., Winsnes, C., Zhang, C., Zwahlen, M., Mardinoglu, A., 

Pontén, F., von Feilitzen, K., Lilley, K.S., Uhlén, M., Lundberg, E.: A subcellular 

map of the human proteome. Science (80-. ). 356, eaal3321 (2017). 

https://doi.org/10.1126/science.aal3321. 

108. Bove, A., Gradeci, D., Fujita, Y., Banerjee, S., Charras, G., Lowe, A.R.: Local 

cellular neighborhood controls proliferation in cell competition. Mol. Biol. Cell. 28, 

3215–3228 (2017). https://doi.org/10.1091/mbc.e17-06-0368. 

109. Mesa, K.R., Kawaguchi, K., Cockburn, K., Gonzalez, D., Boucher, J., Xin, T., 

Klein, A.M., Greco, V.: Homeostatic Epidermal Stem Cell Self-Renewal Is Driven 

by Local Differentiation. Cell Stem Cell. 23, 677-686.e4 (2018). 

https://doi.org/10.1016/j.stem.2018.09.005. 

110. Sahin, C.: The Geometry and Usage of the Supplementary Fisheye Lenses in 

Smartphones. Smartphones from an Appl. Res. Perspect. (2017). 

https://doi.org/10.5772/intechopen.69691. 

111. Schmalstieg, D., Hollerer, T.: Augmented reality: principles and practice. Addison-

Wesley Professional (2016). 

112. Sáez, Á., Bergasa, L.M., López-Guillén, E., Romera, E., Tradacete, M., Gómez-

Huélamo, C., del Egido, J.: Real-Time Semantic Segmentation for Fisheye Urban 

Driving Images Based on ERFNet, (2019). https://doi.org/10.3390/s19030503. 

113. Tseng, D., Chen, C., Tseng, C.: Automatic detection and tracking in multi-fisheye 

cameras surveillance system. Int. J. Comput. Elect. Eng. 9, (2017). 

114. Li, T., Tong, G., Tang, H., Li, B., Chen, B.: FisheyeDet: A Self-Study and Contour-

Based Object Detector in Fisheye Images. IEEE Access. 8, 71739–71751 (2020). 

https://doi.org/10.1109/ACCESS.2020.2987868. 

115. Silberstein, S., Levi, D., Kogan, V., Gazit, R.: Vision-based pedestrian detection for 



87 

 

rear-view cameras. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings. pp. 

853–860 (2014). https://doi.org/10.1109/IVS.2014.6856399. 

116. Bertozzi, M., Castangia, L., Cattani, S., Prioletti, A., Versari, P.: 360° Detection and 

tracking algorithm of both pedestrian and vehicle using fisheye images. In: 2015 

IEEE Intelligent Vehicles Symposium (IV). pp. 132–137 (2015). 

https://doi.org/10.1109/IVS.2015.7225675. 

117. Jaderberg, M., Simonyan, K., Zisserman, A., kavukcuoglu,  koray: Spatial 

Transformer Networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and 

Garnett, R. (eds.) Advances in Neural Information Processing Systems. Curran 

Associates, Inc. (2015). 

118. Rios, A.C., Clevers, H.: Imaging organoids: a bright future ahead. Nat. Methods. 

15, 24–26 (2018). https://doi.org/10.1038/nmeth.4537. 

119. Method of the Year 2014. Nat. Methods. 12, 1 (2015). 

https://doi.org/10.1038/nmeth.3251. 

120. Costa, E.C., Silva, D.N.: Optical clearing methods : An overview of the techniques 

used for the imaging of 3D spheroids. 2742–2763 (2019). 

https://doi.org/10.1002/bit.27105. 

121. Richardson, D.S., Lichtman, J.W.: Clarifying Tissue Clearing. (2015). 

https://doi.org/10.1016/j.cell.2015.06.067. 

122. Tian, T., Yang, Z., Li, X.: Tissue clearing technique : Recent progress and 

biomedical applications. 489–507 (2021). https://doi.org/10.1111/joa.13309. 

123. Ueda, H.R., Ertürk, A., Chung, K., Gradinaru, V., Chédotal, A., Tomancak, P., 

Keller, P.J.: Tissue clearing and its applications in neuroscience. Nat. Rev. 

Neurosci. 21, 61–79 (2020). https://doi.org/10.1038/s41583-019-0250-1. 

124. Richardson, D.S., Guan, W., Matsumoto, K., Pan, C., Chung, K., Ertürk, A., Ueda, 

H.R., Lichtman, J.W.: Tissue clearing. Nat. Rev. Methods Prim. 1, 1–24 (2021). 

https://doi.org/10.1038/s43586-021-00080-9. 

125. Tainaka, K., Kuno, A., Kubota, S.I., Murakami, T., Ueda, H.R.: Chemical Principles 

in Tissue Clearing and Staining Protocols for Whole-Body Cell Profiling. Annu. 

Rev. Cell Dev. Biol. 32, 713–741 (2016). https://doi.org/10.1146/annurev-cellbio-



88 

 

111315-125001. 

126. Dekkers, J.F., Alieva, M., Wellens, L.M., Ariese, H.C.R., Jamieson, P.R., Vonk, 

A.M., Amatngalim, G.D., Hu, H., Oost, K.C., Snippert, H.J.G., Beekman, J.M., 

Wehrens, E.J., Visvader, J.E., Clevers, H., Rios, A.C.: High-resolution 3D imaging 

of fixed and cleared organoids. Nat. Protoc. 14, 1756–1771 (2019). 

https://doi.org/10.1038/s41596-019-0160-8. 

127. Smyrek, I., Stelzer, E.H.K.: Quantitative three-dimensional evaluation of 

immunofluorescence staining for large whole mount spheroids with light sheet 

microscopy. Biomed. Opt. Express. 8, 484 – 499 (2017). 

https://doi.org/10.1364/BOE.8.000484. 

128. Costa, E.C., Moreira, A.F., de Melo-Diogo, D., Correia, I.J.: Polyethylene glycol 

molecular weight influences the ClearT2 optical clearing method for spheroids 

imaging by confocal laser scanning microscopy. J. Biomed. Opt. 23, 55003 (2018). 

https://doi.org/10.1117/1.JBO.23.5.055003. 

129. Ansari, N., Müller, S., Stelzer, E.H.K., Pampaloni, F.: Chapter 13 - Quantitative 3D 

Cell-Based Assay Performed with Cellular Spheroids and Fluorescence 

Microscopy. In: Conn, P.M.B.T.-M. in C.B. (ed.) Laboratory Methods in Cell 

Biology. pp. 295–309. Academic Press (2013). 

https://doi.org/https://doi.org/10.1016/B978-0-12-407239-8.00013-6. 

130. Kolesová, H., Čapek, M., Radochová, B., Janáček, J., Sedmera, D.: Comparison of 

different tissue clearing methods and 3D imaging techniques for visualization of 

GFP-expressing mouse embryos and embryonic hearts. Histochem. Cell Biol. 146, 

141–152 (2016). https://doi.org/10.1007/s00418-016-1441-8. 

131. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., 

Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., 

Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source 

platform for biological-image analysis. Nat. Methods. 9, 676–682 (2012). 

https://doi.org/10.1038/nmeth.2019. 

132. Diosdi, A., Hirling, D., Kovacs, M., Toth, T., Harmati, M., Koos, K., Buzas, K., 

Piccinini, F., Horvath, P.: Cell lines and clearing approaches : a single-cell level 3D 

light-sheet fluorescence microscopy dataset of multicellular spheroids. Data Br. 36, 



89 

 

107090 (2021). https://doi.org/10.1016/j.dib.2021.107090. 

133. Kuwajima, T., Sitko, A.A., Bhansali, P., Jurgens, C., Guido, W., Mason, C.: ClearT: 

a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. 

Development. 140, 1364–1368 (2013). https://doi.org/10.1242/dev.091844. 

134. Susaki, E.A., Tainaka, K., Perrin, D., Kishino, F., Tawara, T., Watanabe, T.M., 

Yokoyama, C., Onoe, H., Eguchi, M., Yamaguchi, S., Abe, T., Kiyonari, H., 

Shimizu, Y., Miyawaki, A., Yokota, H., Ueda, H.R.: Whole-Brain Imaging with 

Single-Cell Resolution Using Chemical Cocktails and Computational Analysis. 

Cell. 157, 726–739 (2014). 

https://doi.org/https://doi.org/10.1016/j.cell.2014.03.042. 

135. Hama, H., Kurokawa, H., Kawano, H., Ando, R., Shimogori, T., Noda, H., Fukami, 

K., Sakaue-Sawano, A., Miyawaki, A.: Scale: a chemical approach for fluorescence 

imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14, 1481–

1488 (2011). https://doi.org/10.1038/nn.2928. 

136. Tsai, P.S., Kaufhold, J.P., Blinder, P., Friedman, B., Drew, P.J., Karten, H.J., Lyden, 

P.D., Kleinfeld, D.: Correlations of neuronal and microvascular densities in murine 

cortex revealed by  direct counting and colocalization of nuclei and vessels. J. 

Neurosci.  Off. J. Soc.  Neurosci. 29, 14553–14570 (2009). 

https://doi.org/10.1523/JNEUROSCI.3287-09.2009. 

137. Molnar, J., Tasnadi, E., Kintses, B., Farkas, Z., Pal, C., Horvath, P., Danka, T.: 

Active Surfaces for Selective Object Segmentation in 3D. In: 2017 International 

Conference on Digital Image Computing: Techniques and Applications (DICTA). 

pp. 1–7 (2017). https://doi.org/10.1109/DICTA.2017.8227401. 

138. Nolden, M., Zelzer, S., Seitel, A., Wald, D., Müller, M., Franz, A.M., Maleike, D., 

Fangerau, M., Baumhauer, M., Maier-Hein, L., Maier-Hein, K.H., Meinzer, H.-P., 

Wolf, I.: The Medical Imaging Interaction Toolkit: challenges and advances : 10 

years of  open-source development. Int. J. Comput. Assist. Radiol. Surg. 8, 607–620 

(2013). https://doi.org/10.1007/s11548-013-0840-8. 

139. Weigert, M., Schmidt, U., Haase, R., Sugawara, K., Myers, G.: Star-convex 

polyhedra for 3D object detection and segmentation in microscopy. Proc. - 2020 

IEEE Winter Conf. Appl. Comput. Vision, WACV 2020. 3655–3662 (2020). 



90 

 

https://doi.org/10.1109/WACV45572.2020.9093435. 

140. Lotufo, R.A., Falcao, A.X., Zampirolli, F.A.: IFT-Watershed from gray-scale 

marker. In: Proceedings. XV Brazilian Symposium on Computer Graphics and 

Image Processing. pp. 146–152 (2002). 

https://doi.org/10.1109/SIBGRA.2002.1167137. 

141. Ozgur Cicek, Ahmed Abdulkabdir, Soeren S. Lienkamp, Thomas Brox, O.R.: 3D 

U_net. Med. Image Comput. Comput. Interv. 424–432 (2016). 

https://doi.org/10.1007/978-3-319-46723-8. 

142. Carragher, N., Piccinini, F., Tesei, A., Jr, O.J.T., Bickle, M., Horvath, P.: Concerns, 

challenges and promises of high-content analysis of 3D cellular models. Nat. Rev. 

Drug Discov. 17, 606 (2018). https://doi.org/10.1038/nrd.2018.99. 

143. le Roux, L., Volgin, A., Maxwell, D., Ishihara, K., Gelovani, J., Schellingerhout, 

D.: Optimizing imaging of three-dimensional multicellular tumor spheroids with  

fluorescent reporter proteins using confocal microscopy. Mol. Imaging. 7, 214–221 

(2008). 

144. Ossipova, O., Sokol, S.Y.: Cryosectioning and Immunostaining of Xenopus 

Embryonic Tissues. Cold Spring Harb. Protoc. 2021, pdb.prot107151 (2021). 

https://doi.org/10.1101/pdb.prot107151. 

145. Hoque, M.Z., Keskinarkaus, A., Nyberg, P., Mattila, T., Seppänen, T.: Whole slide 

image registration via multi-stained feature matching. Comput. Biol. Med. 144, 

105301 (2022). https://doi.org/https://doi.org/10.1016/j.compbiomed.2022.105301. 

146. Lu, J., Öfverstedt, J., Lindblad, J., Sladoje, N.: Is image-to-image translation the 

panacea for multimodal image registration? A comparative study. PLoS One. 17, 1–

33 (2022). https://doi.org/10.1371/journal.pone.0276196. 

 

  



91 

 

Supplementary 

Section 1 – Significance test for the results with SMO classifier in the case of the MCF-

7 dataset 

We compare our results to an earlier study, in which the MCF-7 dataset was analysed with 

Advanced Cell Classifier. In that study, the highest accuracy reached considering regular 

features only was 88.4%, using the SimpleLogistic (Logistic Boost) classifier, while in this 

paper we report 90.8% best performance with the combination of regular and 

neighbourhood features (SMO classifier). The 2.4% difference in accuracy is significant. 

We randomized our data several times and calculated the accuracies with the mentioned 

classifiers (Logistic Boost for information from single-cells only, and SMO for data with 

neighbourhood features). 

 

Advanced Cell Classifier Neighbourhood 

Logistic Boost accuracies: SMO accuracies: 

88.3443 90.795 

88.5236 90.9145 

88.2845 90.4363 

88.165 90.1973 

88.2247 90.9743 

 

As a statistical procedure, two-sample t-test was performed, we considered the result 

significant at p <0.05. 

 

Descriptive 

Statistics      

    N Mean SD SEM 

ACC   5 88.30842 0.1376 0.06154 

Neighbourhood   5 90.66348 0.33386 0.14931 

  Difference:   -2.35506     

 

t-Test Statistics    

  t Statistic DF Prob>|t| 

Equal Variance Assumed -14.58315 8 

4.79E-

07 

Equal Variance NOT 

Assumed -14.58315 5.3209 

1.71E-

05 

 

Null hypothesis: mean1-mean2 = 0 

Alternative hypothesis: mean1-mean2 <> 0 

At the 0.05 level, the difference is significant. 
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Section 2- Significance tests for the results with the fisheye transformation method 

MCF-7 

Our best result (accuracy: 91.38%) for this dataset with the fisheye-transformation appears 

with a window size of 543 pixels with a focal length of 130 arbitrary units when we used 

ResNet50. We compare this result to a baseline, where we used ResNet50 (accuracy: 

84.31%). For the baseline we cropped out images around the cells’ centre with 192x192 

pixel diameter (so in this case, we haven’t performed fisheye transformation on the original 

images). Deep learning calculations were run 5-5 times on both the baseline and the fisheye 

transformed data. 

MCF7 

baseline MCF7 best 

accuracies accuracies 

82,23 92 

84,89 90,15 

85,03 91,08 

84,17 91,68 

85,23 91,99 

As a statistical procedure, two-sample t-test was performed, we considered the result 

significant at p <0.05. 

Descriptive 

statistics       

  N Mean SD SEM Median 

MCF7_baseline   5 84,31 1,22955 0,54987 84,89 

MCF7_best   5 91,38 0,78253 0,34996 91,68 

 Difference 5 -7,07   0,65179 -6,76 

 

t-Test Statistics    

 

t 

Statistic DF Prob>|t| 

Equal Variance Assumed 

-

10,8471 8 

4,61E-

06 

Equal Variance NOT Assumed (Welch 

Correction) 

-

10,8471 6,78368 

1,56E-

05 

 

Null hypothesis: mean1-mean2 = 0 
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Alternative hypothesis: mean1-mean2 <> 0 

At the 0.05 level, the 7.07% difference in accuracy is significant. 

 

Urinary Bladder Cancer 

Our best result (accuracy: 98.14%)for this dataset with the fisheye-transformation appears 

with a window size of 272 pixels with a focal length of 150 arbitrary units when we used 

ResNet50. We compare this result to a baseline, where we used ResNet50 (accuracy: 

94.41%). For the baseline we cropped out images around the cells’ centre with 192x192 

pixel diameter (so in this case, we haven’t performed fisheye transformation on the original 

images). Deep learning calculations were run 5-5 times on both the baseline and the fisheye 

transformed data. 

UBC 

baseline UBC best 

accuracies accuracies 

94,12 97,94 

94,68 98,24 

94,04 98,24 

94,85 97,97 

94,36 98,31 

 

As a statistical procedure, two-sample t-test was performed, we considered the result 

significant at p <0.05. 

Descriptive 

statistics       

  N Mean SD SEM Median 

UBC_baseline   5 94,41 0,35 0,15652 94,36 

UBC_best   5 98,14 0,17161 0,07675 98,24 

 Difference 5 -3,73   0,17433 -3,82 

 

t-Test Statistics    

 

t 

Statistic DF Prob>|t| 

Equal Variance Assumed 

-

21,3965 8 

2,40E-

08 
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Equal Variance NOT Assumed (Welch 

Correction) 

-

21,3965 5,81818 

9,37E-

07 

 

Null hypothesis: mean1-mean2 = 0 

Alternative hypothesis: mean1-mean2 <> 0 

At the 0.05 level, the 3.83% difference in accuracy is significant. 

 

Lung Cancer 

Our best result (accuracy: 99.46%)for this dataset with the fisheye-transformation appears 

with a window size of 272 pixels with a focal length of 170 arbitrary units when we used 

inceptionV3. We compare this result to a baseline, where we used inceptionV3 (accuracy: 

97.25%). For the baseline we cropped out images around the cells’ centre with 192x192 

pixel diameter (so in this case, we haven’t performed fisheye transformation on the original 

images). Deep learning calculations were run 5-5 times on both the baseline and the fisheye 

transformed data. 

LC 

baseline LC best 

accuracies accuracies 

97,32 99,64 

97,54 98,97 

97,01 99,57 

97,03 99,54 

97,35 99,58 

 

As a statistical procedure, two-sample t-test was performed, we considered the result 

significant at p <0.05. 

Descriptive 

statistics       

  N Mean SD SEM Median 

Lung_baseline   5 97,25 0,22638 0,10124 97,32 

Lung_best   5 99,46 0,27632 0,12357 99,57 

 Difference 5 -2,21   0,15975 -2,32 

 

t-Test Statistics    
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t 

Statistic DF Prob>|t| 

Equal Variance Assumed 

-

13,8341 8 

7,20E-

07 

Equal Variance NOT Assumed (Welch 

Correction) 

-

13,8341 7,70198 

1,03E-

06 

 

Null hypothesis: mean1-mean2 = 0 

Alternative hypothesis: mean1-mean2 <> 0 

At the 0.05 level, the 2.21% difference in accuracy is significant. 

 

iWildCam2020 

Our best result (accuracy: 95.48%)for this dataset with the fisheye-transformation appears 

when 2.5× the size of bounding boxes were considered as the neighbourhood feature and 

focal length was set to 150 units and we used ResNet50. We compare this result to a 

baseline, where we used ResNet50 (accuracy: 95.3%). For the baseline we cropped out 

images with different dimensions based on the bounding boxes provided by the Kaggle 

organisers (so in this case, we haven’t performed fisheye transformation on the images). 

Deep learning calculations were run 5-5 times on both the baseline and the fisheye 

transformed data. 

iWildCam 

baseline 

iWildCam 

best 

accuracies accuracies 

95,32 95,51 

95,29 95,46 

95,27 95,49 

95,33 95,46 

95,29 95,48 

As a statistical procedure, two-sample t-test was performed, we considered the result 

significant at p <0.05. 

Descriptive 

statistics       

  N Mean SD SEM Median 

iWildCam_baseline   5 95,3 0,02449 0,01095 95,29 

iWildCam_best   5 95,48 0,02121 0,00949 95,48 
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 Difference 5 -0,18   0,01449 -0,19 

 

t-Test Statistics    

 

t 

Statistic DF Prob>|t| 

Equal Variance Assumed 

-

12,4212 8 

1,65E-

06 

Equal Variance NOT Assumed (Welch 

Correction) 

-

12,4212 7,84 

1,96E-

06 

 

Null hypothesis: mean1-mean2 = 0 

Alternative hypothesis: mean1-mean2 <> 0 

At the 0.05 level, the 0.18% difference in accuracy is significant. 

 

Section 3 – Machine learning classification results for 3D co-culture spheroid 

In the case of the 3D cell culture dataset (described in Chapter 5.2.1), we extracted all 

regular features of the cells that is possible to calculate in BIAS. Namely: 

 Shape features: elongation, equivalent ellipsoid diameters, equivalent 

sphere diameter, equivalent sphere perimeter, extent, Feret diameter, 

flatness, number of components, principal moments, rotation invariants, 

roundness, surface voxels, volumetry, voxels 

 Intensity features (for both the blue and the red channel): integrated, 

minimum, maximum, mean, median and standard deviation statistics of a 

3D region 

We used the RandomForest and Multilayer Perceptron algorithms for the classification. 

With 10-fold cross validation we got the following classification accuracies: 

RandomForest: 98.5%, Multilayer Perceptron: 99.5%. 
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Supplementary Figure S1. Examples of the fisheye transformation with different window 

sizes (ranges) and focal distances using the ‘equidistant’ mapping function in the MCF-7 

cell culture dataset. 

 

Supplementary Figure S2. Examples of the fisheye transformation with different window 

sizes (ranges) and focal distances using the ‘equidistant’ mapping function in the urinary 

bladder cancer tissue dataset. 
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Supplementary Figure S3. Examples of the fisheye transformation with different window 

sizes (ranges) and focal distances using the ‘equidistant’ mapping function in the lung 

cancer tissue dataset. 
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Supplementary Figure S4. Examples of the fisheye transformation with different window 

sizes (ranges) and focal distances using the ‘equidistant’ mapping function in the 

iWildCam2020 dataset. 

 

 


